1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML
><HEAD
><TITLE
>Reference: Algorithms to Compute Nash Equilibria</TITLE
><META
NAME="GENERATOR"
CONTENT="Modular DocBook HTML Stylesheet Version 1.59"><LINK
REL="HOME"
TITLE="Gambit"
HREF="gambit.html"><LINK
REL="PREVIOUS"
TITLE="Categorical listing of functions"
HREF="gcl.funccat.html"><LINK
REL="NEXT"
TITLE="EnumMixedSolve"
HREF="app.alg.enummixed.html"></HEAD
><BODY
CLASS="APPENDIX"
BGCOLOR="#FFFFFF"
TEXT="#000000"
LINK="#0000FF"
VLINK="#840084"
ALINK="#0000FF"
><DIV
CLASS="NAVHEADER"
><TABLE
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TH
COLSPAN="3"
ALIGN="center"
>Gambit: Software Tools for Game Theory</TH
></TR
><TR
><TD
WIDTH="10%"
ALIGN="left"
VALIGN="bottom"
><A
HREF="gcl.funccat.html"
><<< Previous</A
></TD
><TD
WIDTH="80%"
ALIGN="center"
VALIGN="bottom"
></TD
><TD
WIDTH="10%"
ALIGN="right"
VALIGN="bottom"
><A
HREF="app.alg.enummixed.html"
>Next >>></A
></TD
></TR
></TABLE
><HR
ALIGN="LEFT"
WIDTH="100%"></DIV
><DIV
CLASS="APPENDIX"
><H1
><A
NAME="APP.ALG"
>Reference: Algorithms to Compute Nash Equilibria</A
></H1
><P
>This appendix is an overview of the literature on computing
Nash equilibria in finite games. The focus here is on detailing the
essentials of the theory for the user who wants to compute equilibria,
and to document the implementations of the algorithms provided in
Gambit. The interested user should consult McKelvey and McLennan's
survey article [<SPAN
CLASS="CITATION"
><A
HREF="bib.html#MCKMCL96"
>McKMcL96</A
></SPAN
>],
plus the references
therein and the <A
HREF="bib.html"
>bibliography</A
> of this manual for more information.
</P
><DIV
CLASS="SECT1"
><H1
CLASS="SECT1"
><A
NAME="APP.ALG.START"
>Tips on getting started</A
></H1
><P
>Gambit has a number of algorithms to find Nash equilibria. The
appropriate algorithm to use depends on a number of factors, most
importantly, the number of players in the game, and the number of
equilibria you want to find. </P
><P
>Before computing equilibria, you may wish to eliminate
dominated strategies. The smaller the number of strategies the
algorithm must consider,
the faster any algorithm will run. However, dominance
elimination can itself be computationally intensive, especially if
domination by mixed strategies (for the normal form) is considered,
or if dominance elimination is done on a large extensive form.
<P
></P
><UL
><LI
><P
>If you want to find more than one, or all Nash equilibria of a game,
then you may first successively eliminate strongly dominated
strategies. Any equilibrium of the original game will also be an
equilibrium of the reduced game.</P
></LI
><LI
><P
>If you just want to find <I
CLASS="EMPHASIS"
>one</I
> Nash equilibrium,
you can first successively eliminate <I
CLASS="EMPHASIS"
>weakly</I
>
dominated strategies. Elimination of weakly dominated strategies may
eliminate some Nash equilibria of the original game, so it should not
be used if you want to find multiple Nash equilibria, but any Nash
equilibrium to the reduced game will be an equilibrium to the original
game, so it can be used if you only want to find one equilibrium.</P
></LI
></UL
></P
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="APP.ALG.START.COMMON"
>Common algorithm parameters</A
></H2
><P
>There are a few parameters which are common among several algorithms.</P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="APP.ALG.START.PURE"
>Pure strategy equilibria</A
></H2
><P
>The <A
HREF="app.alg.enumpure.html"
>EnumPureSolve</A
> algorithm can be used to enumerate
all of the pure strategy equilibria for both extensive and normal form
games. </P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="APP.ALG.START.ZEROSUM"
>Two Person Constant Sum Games</A
></H2
><P
>For two person constant sum normal form games, the minimax theorem
applies. The set of Nash equilibria is a convex set, and the problem
of finding Nash equilibria can be formulated as a linear program. The
<A
HREF="app.alg.lp.html"
>LpSolve</A
> algorithm
will solve a constant sum game using this approach.</P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="APP.ALG.START.2P"
>Two Person Games</A
></H2
><P
>For two person nonzero sum games, the problem of finding Nash
equilibria can be formulated as a linear complementarity problem, and
exact solutions can be found as long as computations are done in
rationals. The <A
HREF="app.alg.lcp.html"
>LcpSolve</A
>
algorithm solves a two person game
using this approach. Note that this algorithm can also be used
directly on an extensive form game, where it implements the Koller,
Megiddo, von Stengel sequence form
[<SPAN
CLASS="CITATION"
><A
HREF="bib.html#KOLMEGSTE94"
>KolMegSte94</A
></SPAN
>].</P
><P
>For a two person game the <A
HREF="app.alg.enummixed.html"
>EnumMixedSolve</A
> algorithm
will enumerate all of the extreme points of the components of the set
of Nash equilibria, and hence can be used to find <I
CLASS="EMPHASIS"
>all</I
> Nash
equilibria. </P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="APP.ALG.START.NP"
>Games With More Than Two Players</A
></H2
><P
>For n-person normal form games, with n greater than two, the
<A
HREF="app.alg.polenum.html"
>PolEnumSolve</A
> algorithm will find all Nash
equilibria. The PolEnum algorithm may be computationally infeasible on
large games. Thus other algorithms are also available for finding one
or a sample of Nash equilibria. Since Nash equilibria can be
irrational, the algorithms to locate one equilibrium will only find
approximations (to machine accuracy) of Nash equilibria.</P
><P
><A
HREF="app.alg.simpdiv.html"
>SimpDivSolve</A
>SimpDivSolve is guaranteed to locate one
equilibrium for an n-person normal form game. This algorithm can be
very slow on some games. Hence two other algorithms are also
implemented, <A
HREF="app.alg.qre.html"
>QreSolve</A
>
and <A
HREF="app.alg.liap.html"
>LiapSolve</A
>. These
algorithms can also be used to search for multiple equilibria (with no
guarantee that all have been found), and to search for equilibria
close to a given starting point.</P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="APP.ALG.START.SEQUENTIAL"
>Sequential Equilibria</A
></H2
><P
>Sequential equilibria are equilibria that prescribe optimal behavior
at any information set of the extensive form, given a consistent
assessment of beliefs. See [<SPAN
CLASS="CITATION"
><A
HREF="bib.html#KREWIL82"
>KreWil82</A
></SPAN
>].
<A
HREF="app.alg.qre.html"
>QreSolve</A
> on extensive form games
is guaranteed to converge to a sequential equilibrium.</P
></DIV
></DIV
></DIV
><DIV
CLASS="NAVFOOTER"
><HR
ALIGN="LEFT"
WIDTH="100%"><TABLE
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
><A
HREF="gcl.funccat.html"
><<< Previous</A
></TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="gambit.html"
>Home</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
><A
HREF="app.alg.enummixed.html"
>Next >>></A
></TD
></TR
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
>Categorical listing of functions</TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
> </TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
>EnumMixedSolve</TD
></TR
></TABLE
></DIV
></BODY
></HTML
>
|