File: multi_convolution.hxx

package info (click to toggle)
gamera 1%3A3.4.2%2Bgit20160808.1725654-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 22,312 kB
  • ctags: 24,991
  • sloc: xml: 122,324; ansic: 52,869; cpp: 50,664; python: 35,034; makefile: 118; sh: 101
file content (689 lines) | stat: -rw-r--r-- 29,264 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
//-- -*- c++ -*-
/************************************************************************/
/*                                                                      */
/*               Copyright 2003 by Christian-Dennis Rahn                */
/*                        and Ullrich Koethe                            */
/*       Cognitive Systems Group, University of Hamburg, Germany        */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    ( Version 1.6.0, Aug 13 2008 )                                    */
/*    The VIGRA Website is                                              */
/*        http://kogs-www.informatik.uni-hamburg.de/~koethe/vigra/      */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */                
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_MULTI_CONVOLUTION_H
#define VIGRA_MULTI_CONVOLUTION_H

#include "separableconvolution.hxx"
#include "array_vector.hxx"
#include "multi_array.hxx"
#include "accessor.hxx"
#include "numerictraits.hxx"
#include "navigator.hxx"
#include "metaprogramming.hxx"
#include "multi_pointoperators.hxx"


namespace vigra
{


namespace detail
{

/********************************************************/
/*                                                      */
/*        internalSeparableConvolveMultiArray           */
/*                                                      */
/********************************************************/

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor, class KernelIterator>
void
internalSeparableConvolveMultiArrayTmp(
                      SrcIterator si, SrcShape const & shape, SrcAccessor src,
                      DestIterator di, DestAccessor dest, KernelIterator kit)
{
    enum { N = 1 + SrcIterator::level };

    typedef typename NumericTraits<typename DestAccessor::value_type>::RealPromote TmpType;

    // temporay array to hold the current line to enable in-place operation
    ArrayVector<TmpType> tmp( shape[0] );

    typedef MultiArrayNavigator<SrcIterator, N> SNavigator;
    typedef MultiArrayNavigator<DestIterator, N> DNavigator;

    { // only operate on first dimension here
        SNavigator snav( si, shape, 0 );
        DNavigator dnav( di, shape, 0 );

        for( ; snav.hasMore(); snav++, dnav++ )
        {
             // first copy source to temp for maximum cache efficiency
             copyLine( snav.begin(), snav.end(), src,
                       tmp.begin(), typename AccessorTraits<TmpType>::default_accessor() );

             convolveLine( srcIterRange(tmp.begin(), tmp.end(),
                                        typename AccessorTraits<TmpType>::default_const_accessor()),
                           destIter( dnav.begin(), dest ),
                           kernel1d( *kit ) );
        }
        ++kit;
    }

    // operate on further dimensions
    for( int d = 1; d < N; ++d, ++kit )
    {
        DNavigator dnav( di, shape, d );

        tmp.resize( shape[d] );

        for( ; dnav.hasMore(); dnav++ )
        {
             // first copy source to temp for maximum cache efficiency
             copyLine( dnav.begin(), dnav.end(), dest,
                       tmp.begin(), typename AccessorTraits<TmpType>::default_accessor() );

             convolveLine( srcIterRange(tmp.begin(), tmp.end(),
                                        typename AccessorTraits<TmpType>::default_const_accessor()),
                           destIter( dnav.begin(), dest ),
                           kernel1d( *kit ) );
        }
    }
}


} // namespace detail

/** \addtogroup MultiArrayConvolutionFilters Convolution filters for multi-dimensional arrays.

    These functions realize a separable convolution on an arbitrary dimensional
    array that is specified by iterators (compatible to \ref MultiIteratorPage)
    and shape objects. It can therefore be applied to a wide range of data structures
    (\ref vigra::MultiArrayView, \ref vigra::MultiArray etc.).
*/
//@{

/********************************************************/
/*                                                      */
/*             separableConvolveMultiArray              */
/*                                                      */
/********************************************************/

/** \brief Separated convolution on multi-dimensional arrays.

    This function computes a separated convolution on all dimensions
    of the given multi-dimensional array. Both source and destination
    arrays are represented by iterators, shape objects and accessors.
    The destination array is required to already have the correct size.

    There are two variants of this functions: one takes a single kernel
    of type \ref vigra::Kernel1D which is then applied to all dimensions,
    whereas the other requires an iterator referencing a sequence of
    \ref vigra::Kernel1D objects, one for every dimension of the data.
    Then the first kernel in this sequence is applied to the innermost
    dimension (e.g. the x-dimension of an image), while the last is applied to the
    outermost dimension (e.g. the z-dimension in a 3D image).

    This function may work in-place, which means that <tt>siter == diter</tt> is allowed.
    A full-sized internal array is only allocated if working on the destination
    array directly would cause round-off errors (i.e. if
    <tt>typeid(typename NumericTraits<typename DestAccessor::value_type>::RealPromote)
    != typeid(typename DestAccessor::value_type)</tt>.

    <b> Declarations:</b>

    pass arguments explicitly:
    \code
    namespace vigra {
        // apply the same kernel to all dimensions
        template <class SrcIterator, class SrcShape, class SrcAccessor,
                  class DestIterator, class DestAccessor, class T>
        void
        separableConvolveMultiArray(SrcIterator siter, SrcShape const & shape, SrcAccessor src,
                                    DestIterator diter, DestAccessor dest,
                                    Kernel1D<T> const & kernel);

        // apply each kernel from the sequence `kernels in turn
        template <class SrcIterator, class SrcShape, class SrcAccessor,
                  class DestIterator, class DestAccessor, class KernelIterator>
        void
        separableConvolveMultiArray(SrcIterator siter, SrcShape const & shape, SrcAccessor src,
                                    DestIterator diter, DestAccessor dest,
                                    KernelIterator kernels);
    }
    \endcode

    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        // apply the same kernel to all dimensions
        template <class SrcIterator, class SrcShape, class SrcAccessor,
                  class DestIterator, class DestAccessor, class T>
        void
        separableConvolveMultiArray(triple<SrcIterator, SrcShape, SrcAccessor> const & source,
                                    pair<DestIterator, DestAccessor> const & dest,
                                    Kernel1D<T> const & kernel);

        // apply each kernel from the sequence `kernels in turn
        template <class SrcIterator, class SrcShape, class SrcAccessor,
                  class DestIterator, class DestAccessor, class KernelIterator>
        void
        separableConvolveMultiArray(triple<SrcIterator, SrcShape, SrcAccessor> const & source,
                                    pair<DestIterator, DestAccessor> const & dest,
                                    KernelIterator kernels);
    }
    \endcode

    <b> Usage:</b>

    <b>\#include</b> \<<a href="multi__convolution_8hxx-source.html">vigra/multi_convolution.hxx</a>\>

    \code
    MultiArray<3, unsigned char>::size_type shape(width, height, depth);
    MultiArray<3, unsigned char> source(shape);
    MultiArray<3, float> dest(shape);
    ...
    Kernel1D<float> gauss;
    gauss.initGaussian(sigma);
    // create 3 Gauss kernels, one for each dimension
    ArrayVector<Kernel1D<float> > kernels(3, gauss);

    // perform Gaussian smoothing on all dimensions
    separableConvolveMultiArray(srcMultiArrayRange(source), destMultiArray(dest), 
                                kernels.begin());
    \endcode

    \see vigra::Kernel1D, convolveLine()
*/
doxygen_overloaded_function(template <...> void separableConvolveMultiArray)

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor, class KernelIterator>
void
separableConvolveMultiArray( SrcIterator s, SrcShape const & shape, SrcAccessor src,
                             DestIterator d, DestAccessor dest, KernelIterator kernels )
{
    typedef typename NumericTraits<typename DestAccessor::value_type>::RealPromote TmpType;

    if(!IsSameType<TmpType, typename DestAccessor::value_type>::boolResult)
    {
        // need a temporary array to avoid rounding errors
        MultiArray<SrcShape::static_size, TmpType> tmpArray(shape);
        detail::internalSeparableConvolveMultiArrayTmp( s, shape, src,
             tmpArray.traverser_begin(), typename AccessorTraits<TmpType>::default_accessor(), kernels );
        copyMultiArray(srcMultiArrayRange(tmpArray), destIter(d, dest));
    }
    else
    {
        // work directly on the destination array
        detail::internalSeparableConvolveMultiArrayTmp( s, shape, src, d, dest, kernels );
    }
}

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor, class KernelIterator>
inline
void separableConvolveMultiArray(
    triple<SrcIterator, SrcShape, SrcAccessor> const & source,
    pair<DestIterator, DestAccessor> const & dest, KernelIterator kit )
{
    separableConvolveMultiArray( source.first, source.second, source.third,
                                 dest.first, dest.second, kit );
}

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor, class T>
inline void
separableConvolveMultiArray( SrcIterator s, SrcShape const & shape, SrcAccessor src,
                             DestIterator d, DestAccessor dest,
                             Kernel1D<T> const & kernel )
{
    ArrayVector<Kernel1D<T> > kernels(shape.size(), kernel);

    separableConvolveMultiArray( s, shape, src, d, dest, kernels.begin() );
}

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor, class T>
inline void
separableConvolveMultiArray(triple<SrcIterator, SrcShape, SrcAccessor> const & source,
                            pair<DestIterator, DestAccessor> const & dest,
                            Kernel1D<T> const & kernel )
{
    ArrayVector<Kernel1D<T> > kernels(source.second.size(), kernel);

    separableConvolveMultiArray( source.first, source.second, source.third,
                                 dest.first, dest.second, kernels.begin() );
}

/********************************************************/
/*                                                      */
/*            convolveMultiArrayOneDimension            */
/*                                                      */
/********************************************************/

/** \brief Convolution along a single dimension of a multi-dimensional arrays.

    This function computes a convolution along one dimension (specified by
    the parameter <tt>dim</tt> of the given multi-dimensional array with the given
    <tt>kernel</tt>. Both source and destination arrays are represented by
    iterators, shape objects and accessors. The destination array is required to
    already have the correct size.

    This function may work in-place, which means that <tt>siter == diter</tt> is allowed.

    <b> Declarations:</b>

    pass arguments explicitly:
    \code
    namespace vigra {
        template <class SrcIterator, class SrcShape, class SrcAccessor,
                  class DestIterator, class DestAccessor, class T>
        void
        convolveMultiArrayOneDimension(SrcIterator siter, SrcShape const & shape, SrcAccessor src,
                                       DestIterator diter, DestAccessor dest,
                                       unsigned int dim, vigra::Kernel1D<T> const & kernel);
    }
    \endcode

    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcShape, class SrcAccessor,
                  class DestIterator, class DestAccessor, class T>
        void
        convolveMultiArrayOneDimension(triple<SrcIterator, SrcShape, SrcAccessor> const & source,
                                       pair<DestIterator, DestAccessor> const & dest,
                                       unsigned int dim, vigra::Kernel1D<T> const & kernel);
    }
    \endcode

    <b> Usage:</b>

    <b>\#include</b> \<<a href="multi__convolution_8hxx-source.html">vigra/multi_convolution.hxx</a>\>

    \code
    MultiArray<3, unsigned char>::size_type shape(width, height, depth);
    MultiArray<3, unsigned char> source(shape);
    MultiArray<3, float> dest(shape);
    ...
    Kernel1D<float> gauss;
    gauss.initGaussian(sigma);

    // perform Gaussian smoothing along dimensions 1 (height)
    convolveMultiArrayOneDimension(srcMultiArrayRange(source), destMultiArray(dest), 1, gauss);
    \endcode

    \see separableConvolveMultiArray()
*/
doxygen_overloaded_function(template <...> void convolveMultiArrayOneDimension)

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor, class T>
void
convolveMultiArrayOneDimension(SrcIterator s, SrcShape const & shape, SrcAccessor src,
                               DestIterator d, DestAccessor dest,
                               unsigned int dim, vigra::Kernel1D<T> const & kernel )
{
    enum { N = 1 + SrcIterator::level };
    vigra_precondition( dim < N,
                        "convolveMultiArrayOneDimension(): The dimension number to convolve must be smaller "
                        "than the data dimensionality" );

    typedef typename NumericTraits<typename DestAccessor::value_type>::RealPromote TmpType;
    ArrayVector<TmpType> tmp( shape[dim] );

    typedef MultiArrayNavigator<SrcIterator, N> SNavigator;
    typedef MultiArrayNavigator<DestIterator, N> DNavigator;

    SNavigator snav( s, shape, dim );
    DNavigator dnav( d, shape, dim );

    for( ; snav.hasMore(); snav++, dnav++ )
    {
         // first copy source to temp for maximum cache efficiency
         copyLine( snav.begin(), snav.end(), src,
		   tmp.begin(), typename AccessorTraits<TmpType>::default_accessor() );

         convolveLine( srcIterRange( tmp.begin(), tmp.end(), typename AccessorTraits<TmpType>::default_const_accessor()),
                       destIter( dnav.begin(), dest ),
                       kernel1d( kernel ) );
    }
}

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor, class T>
inline void
convolveMultiArrayOneDimension(triple<SrcIterator, SrcShape, SrcAccessor> const & source,
                               pair<DestIterator, DestAccessor> const & dest,
                               unsigned int dim, vigra::Kernel1D<T> const & kernel )
{
    convolveMultiArrayOneDimension( source.first, source.second, source.third,
                                   dest.first, dest.second, dim, kernel );
}

/********************************************************/
/*                                                      */
/*             gaussianSmoothMultiArray                 */
/*                                                      */
/********************************************************/

/** \brief Isotropic Gaussian smoothing of a multi-dimensional arrays.

    This function computes an isotropic convolution of the given multi-dimensional
    array with a Gaussian filter at the given standard deviation <tt>sigma</tt>.
    Both source and destination arrays are represented by
    iterators, shape objects and accessors. The destination array is required to
    already have the correct size. This function may work in-place, which means
    that <tt>siter == diter</tt> is allowed. It is implemented by a call to
    \ref separableConvolveMultiArray() with the appropriate kernel.
    If the data are anisotropic (different pixel size along different dimensions)
    you should call \ref separableConvolveMultiArray() directly with the appropriate
    anisotropic Gaussians.

    <b> Declarations:</b>

    pass arguments explicitly:
    \code
    namespace vigra {
        template <class SrcIterator, class SrcShape, class SrcAccessor,
                  class DestIterator, class DestAccessor>
        void
        gaussianSmoothMultiArray(SrcIterator siter, SrcShape const & shape, SrcAccessor src,
                                 DestIterator diter, DestAccessor dest,
                                 double sigma);
    }
    \endcode

    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcShape, class SrcAccessor,
                  class DestIterator, class DestAccessor>
        void
        gaussianSmoothMultiArray(triple<SrcIterator, SrcShape, SrcAccessor> const & source,
                                 pair<DestIterator, DestAccessor> const & dest,
                                 double sigma);
    }
    \endcode

    <b> Usage:</b>

    <b>\#include</b> \<<a href="multi__convolution_8hxx-source.html">vigra/multi_convolution.hxx</a>\>

    \code
    MultiArray<3, unsigned char>::size_type shape(width, height, depth);
    MultiArray<3, unsigned char> source(shape);
    MultiArray<3, float> dest(shape);
    ...
    // perform isotropic Gaussian smoothing at scale `sigma
    gaussianSmoothMultiArray(srcMultiArrayRange(source), destMultiArray(dest), sigma);
    \endcode

    \see separableConvolveMultiArray()
*/
doxygen_overloaded_function(template <...> void gaussianSmoothMultiArray)

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor>
void
gaussianSmoothMultiArray( SrcIterator s, SrcShape const & shape, SrcAccessor src,
                   DestIterator d, DestAccessor dest, double sigma )
{
    typedef typename NumericTraits<typename DestAccessor::value_type>::RealPromote kernel_type;
    Kernel1D<kernel_type> gauss;
    gauss.initGaussian( sigma );

    separableConvolveMultiArray( s, shape, src, d, dest, gauss);
}

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline void
gaussianSmoothMultiArray(triple<SrcIterator, SrcShape, SrcAccessor> const & source,
                  pair<DestIterator, DestAccessor> const & dest,
                  double sigma )
{
    gaussianSmoothMultiArray( source.first, source.second, source.third,
                              dest.first, dest.second, sigma );
}

/********************************************************/
/*                                                      */
/*             gaussianGradientMultiArray               */
/*                                                      */
/********************************************************/

/** \brief Calculate Gaussian gradient of a multi-dimensional arrays.

    This function computes the Gaussian gradient of the given multi-dimensional
    array with a sequence of first-derivative-of-Gaussian filters at the given
    standard deviation <tt>sigma</tt> (differentiation is applied to each dimension
    in turn, starting with the innermost dimension). Both source and destination arrays
    are represented by iterators, shape objects and accessors. The destination array is
    required to have a vector valued pixel type with as many elements as the number of
    dimensions. This function is implemented by calls to
    \ref separableConvolveMultiArray() with the appropriate kernels.
    If the data are anisotropic (different pixel size along different dimensions)
    you should call \ref separableConvolveMultiArray() directly with the appropriate
    anisotropic Gaussian derivatives.

    <b> Declarations:</b>

    pass arguments explicitly:
    \code
    namespace vigra {
        template <class SrcIterator, class SrcShape, class SrcAccessor,
                  class DestIterator, class DestAccessor>
        void
        gaussianGradientMultiArray(SrcIterator siter, SrcShape const & shape, SrcAccessor src,
                                   DestIterator diter, DestAccessor dest,
                                   double sigma);
    }
    \endcode

    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcShape, class SrcAccessor,
                  class DestIterator, class DestAccessor>
        void
        gaussianGradientMultiArray(triple<SrcIterator, SrcShape, SrcAccessor> const & source,
                                   pair<DestIterator, DestAccessor> const & dest,
                                   double sigma);
    }
    \endcode

    <b> Usage:</b>

    <b>\#include</b> \<<a href="multi__convolution_8hxx-source.html">vigra/multi_convolution.hxx</a>\>

    \code
    MultiArray<3, unsigned char>::size_type shape(width, height, depth);
    MultiArray<3, unsigned char> source(shape);
    MultiArray<3, TinyVector<float, 3> > dest(shape);
    ...
    // compute Gaussian gradient at scale sigma
    gaussianGradientMultiArray(srcMultiArrayRange(source), destMultiArray(dest), sigma);
    \endcode

    <b> Required Interface:</b>

    see \ref convolveImage(), in addition:

    \code
    int dimension = 0;
    VectorElementAccessor<DestAccessor> elementAccessor(0, dest);
    \endcode

    \see separableConvolveMultiArray()
*/
doxygen_overloaded_function(template <...> void gaussianGradientMultiArray)

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor>
void
gaussianGradientMultiArray( SrcIterator si, SrcShape const & shape, SrcAccessor src,
			    DestIterator di, DestAccessor dest, double sigma )
{
    typedef typename DestAccessor::value_type DestType;
    typedef typename NumericTraits<typename DestType::value_type>::RealPromote kernel_type;

    Kernel1D<kernel_type> gauss, derivative;
    gauss.initGaussian(sigma);
    derivative.initGaussianDerivative(sigma, 1);

    typedef VectorElementAccessor<DestAccessor> ElementAccessor;

    // compute gradient components
    for(unsigned int d = 0; d < shape.size(); ++d )
    {
        ArrayVector<Kernel1D<kernel_type> > kernels(shape.size(), gauss);
        kernels[d] = derivative;
        separableConvolveMultiArray( si, shape, src, di, ElementAccessor(d, dest), kernels.begin());
    }
}

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline void
gaussianGradientMultiArray(triple<SrcIterator, SrcShape, SrcAccessor> const & source,
                  pair<DestIterator, DestAccessor> const & dest, double sigma )
{
    gaussianGradientMultiArray( source.first, source.second, source.third,
                              dest.first, dest.second, sigma );
}

/********************************************************/
/*                                                      */
/*             symmetricGradientMultiArray              */
/*                                                      */
/********************************************************/

/** \brief Calculate gradient of a multi-dimensional arrays using symmetric difference filters.

    This function computes the gradient of the given multi-dimensional
    array with a sequence of symmetric difference filters a (differentiation is applied
    to each dimension in turn, starting with the innermost dimension). Both source and
    destination arrays are represented by iterators, shape objects and accessors.
    The destination array is required to have a vector valued pixel type with as many
    elements as the number of dimensions. This function is implemented by calls to
    \ref convolveMultiArrayOneDimension() with the symmetric difference kernel.

    <b> Declarations:</b>

    pass arguments explicitly:
    \code
    namespace vigra {
        template <class SrcIterator, class SrcShape, class SrcAccessor,
                  class DestIterator, class DestAccessor>
        void
        symmetricGradientMultiArray(SrcIterator siter, SrcShape const & shape, SrcAccessor src,
                                    DestIterator diter, DestAccessor dest);
    }
    \endcode

    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcShape, class SrcAccessor,
                  class DestIterator, class DestAccessor>
        void
        symmetricGradientMultiArray(triple<SrcIterator, SrcShape, SrcAccessor> const & source,
                                    pair<DestIterator, DestAccessor> const & dest);
    }
    \endcode

    <b> Usage:</b>

    <b>\#include</b> \<<a href="multi__convolution_8hxx-source.html">vigra/multi_convolution.hxx</a>\>

    \code
    MultiArray<3, unsigned char>::size_type shape(width, height, depth);
    MultiArray<3, unsigned char> source(shape);
    MultiArray<3, TinyVector<float, 3> > dest(shape);
    ...
    // compute gradient
    symmetricGradientMultiArray(srcMultiArrayRange(source), destMultiArray(dest));
    \endcode

    <b> Required Interface:</b>

    see \ref convolveImage(), in addition:

    \code
    int dimension = 0;
    VectorElementAccessor<DestAccessor> elementAccessor(0, dest);
    \endcode

    \see convolveMultiArrayOneDimension()
*/
doxygen_overloaded_function(template <...> void symmetricGradientMultiArray)

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor>
void
symmetricGradientMultiArray(SrcIterator si, SrcShape const & shape, SrcAccessor src,
                   DestIterator di, DestAccessor dest)
{
    typedef typename DestAccessor::value_type DestType;
    typedef typename NumericTraits<typename DestType::value_type>::RealPromote kernel_type;

    Kernel1D<kernel_type> filter;
    filter.initSymmetricGradient();

    typedef VectorElementAccessor<DestAccessor> ElementAccessor;

    // compute gradient components
    for(unsigned int d = 0; d < shape.size(); ++d )
    {
        convolveMultiArrayOneDimension(si, shape, src,
				                       di, ElementAccessor(d, dest),
				                       d, filter);
    }
}

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline void
symmetricGradientMultiArray(triple<SrcIterator, SrcShape, SrcAccessor> const & source,
                            pair<DestIterator, DestAccessor> const & dest )
{
    symmetricGradientMultiArray(source.first, source.second, source.third,
                                dest.first, dest.second);
}

//@}

} //-- namespace vigra


#endif        //-- VIGRA_MULTI_CONVOLUTION_H