File: pstat.py

package info (click to toggle)
gamera 1:3.4.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 15,912 kB
  • sloc: xml: 122,324; cpp: 50,730; python: 35,044; ansic: 258; makefile: 114; sh: 101
file content (1066 lines) | stat: -rw-r--r-- 37,622 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
# Copyright (c) 1999-2007 Gary Strangman; All Rights Reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# 
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# 
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# Comments and/or additions are welcome (send e-mail to:
# strang@nmr.mgh.harvard.edu).
# 
"""
pstat.py module

#################################################
#######  Written by:  Gary Strangman  ###########
#######  Last modified:  Dec 18, 2007 ###########
#################################################

This module provides some useful list and array manipulation routines
modeled after those found in the |Stat package by Gary Perlman, plus a
number of other useful list/file manipulation functions.  The list-based
functions include:

      abut (source,*args)
      simpleabut (source, addon)
      colex (listoflists,cnums)
      collapse (listoflists,keepcols,collapsecols,fcn1=None,fcn2=None,cfcn=None)
      dm (listoflists,criterion)
      flat (l)
      linexand (listoflists,columnlist,valuelist)
      linexor (listoflists,columnlist,valuelist)
      linedelimited (inlist,delimiter)
      lineincols (inlist,colsize) 
      lineincustcols (inlist,colsizes)
      list2string (inlist)
      makelol(inlist)
      makestr(x)
      printcc (lst,extra=2)
      printincols (listoflists,colsize)
      pl (listoflists)
      printl(listoflists)
      replace (lst,oldval,newval)
      recode (inlist,listmap,cols='all')
      remap (listoflists,criterion)
      roundlist (inlist,num_digits_to_round_floats_to)
      sortby(listoflists,sortcols)
      unique (inlist)
      duplicates(inlist)
      writedelimited (listoflists, delimiter, file, writetype='w')

Some of these functions have alternate versions which are defined only if
Numeric (NumPy) can be imported.  These functions are generally named as
above, with an 'a' prefix.

      aabut (source, *args)
      acolex (a,indices,axis=1)
      acollapse (a,keepcols,collapsecols,sterr=0,ns=0)
      adm (a,criterion)
      alinexand (a,columnlist,valuelist)
      alinexor (a,columnlist,valuelist)
      areplace (a,oldval,newval)
      arecode (a,listmap,col='all')
      arowcompare (row1, row2)
      arowsame (row1, row2)
      asortrows(a,axis=0)
      aunique(inarray)
      aduplicates(inarray)

Currently, the code is all but completely un-optimized.  In many cases, the
array versions of functions amount simply to aliases to built-in array
functions/methods.  Their inclusion here is for function name consistency.
"""

## CHANGE LOG:
## ==========
## 07-11-26 ... edited to work with numpy
## 01-11-15 ... changed list2string() to accept a delimiter
## 01-06-29 ... converted exec()'s to eval()'s to make compatible with Py2.1
## 01-05-31 ... added duplicates() and aduplicates() functions
## 00-12-28 ... license made GPL, docstring and import requirements
## 99-11-01 ... changed version to 0.3
## 99-08-30 ... removed get, getstrings, put, aget, aput (into io.py)
## 03/27/99 ... added areplace function, made replace fcn recursive
## 12/31/98 ... added writefc function for ouput to fixed column sizes
## 12/07/98 ... fixed import problem (failed on collapse() fcn)
##              added __version__ variable (now 0.2)
## 12/05/98 ... updated doc-strings
##              added features to collapse() function
##              added flat() function for lists
##              fixed a broken asortrows() 
## 11/16/98 ... fixed minor bug in aput for 1D arrays
##
## 11/08/98 ... fixed aput to output large arrays correctly

import stats  # required 3rd party module
import string, copy
from types import *

__version__ = 0.4

###===========================  LIST FUNCTIONS  ==========================
###
### Here are the list functions, DEFINED FOR ALL SYSTEMS.
### Array functions (for NumPy-enabled computers) appear below.
###

def abut (source,*args):
    """
Like the |Stat abut command.  It concatenates two lists side-by-side
and returns the result.  '2D' lists are also accomodated for either argument
(source or addon).  CAUTION:  If one list is shorter, it will be repeated
until it is as long as the longest list.  If this behavior is not desired,
use pstat.simpleabut().

Usage:   abut(source, args)   where args=any # of lists
Returns: a list of lists as long as the LONGEST list past, source on the
         'left', lists in <args> attached consecutively on the 'right'
"""

    if type(source) not in [ListType,TupleType]:
        source = [source]
    for addon in args:
        if type(addon) not in [ListType,TupleType]:
            addon = [addon]
        if len(addon) < len(source):                # is source list longer?
            if len(source) % len(addon) == 0:        # are they integer multiples?
                repeats = len(source)/len(addon)    # repeat addon n times
                origadd = copy.deepcopy(addon)
                for i in range(repeats-1):
                    addon = addon + origadd
            else:
                repeats = len(source)/len(addon)+1  # repeat addon x times,
                origadd = copy.deepcopy(addon)      #    x is NOT an integer
                for i in range(repeats-1):
                    addon = addon + origadd
                    addon = addon[0:len(source)]
        elif len(source) < len(addon):                # is addon list longer?
            if len(addon) % len(source) == 0:        # are they integer multiples?
                repeats = len(addon)/len(source)    # repeat source n times
                origsour = copy.deepcopy(source)
                for i in range(repeats-1):
                    source = source + origsour
            else:
                repeats = len(addon)/len(source)+1  # repeat source x times,
                origsour = copy.deepcopy(source)    #   x is NOT an integer
                for i in range(repeats-1):
                    source = source + origsour
                source = source[0:len(addon)]

        source = simpleabut(source,addon)
    return source


def simpleabut (source, addon):
    """
Concatenates two lists as columns and returns the result.  '2D' lists
are also accomodated for either argument (source or addon).  This DOES NOT
repeat either list to make the 2 lists of equal length.  Beware of list pairs
with different lengths ... the resulting list will be the length of the
FIRST list passed.

Usage:   simpleabut(source,addon)  where source, addon=list (or list-of-lists)
Returns: a list of lists as long as source, with source on the 'left' and
                 addon on the 'right'
"""
    if type(source) not in [ListType,TupleType]:
        source = [source]
    if type(addon) not in [ListType,TupleType]:
        addon = [addon]
    minlen = min(len(source),len(addon))
    list = copy.deepcopy(source)                # start abut process
    if type(source[0]) not in [ListType,TupleType]:
        if type(addon[0]) not in [ListType,TupleType]:
            for i in range(minlen):
                list[i] = [source[i]] + [addon[i]]        # source/addon = column
        else:
            for i in range(minlen):
                list[i] = [source[i]] + addon[i]        # addon=list-of-lists
    else:
        if type(addon[0]) not in [ListType,TupleType]:
            for i in range(minlen):
                list[i] = source[i] + [addon[i]]        # source=list-of-lists
        else:
            for i in range(minlen):
                list[i] = source[i] + addon[i]        # source/addon = list-of-lists
    source = list
    return source


def colex (listoflists,cnums):
    """
Extracts from listoflists the columns specified in the list 'cnums'
(cnums can be an integer, a sequence of integers, or a string-expression that
corresponds to a slice operation on the variable x ... e.g., 'x[3:]' will colex
columns 3 onward from the listoflists).

Usage:   colex (listoflists,cnums)
Returns: a list-of-lists corresponding to the columns from listoflists
         specified by cnums, in the order the column numbers appear in cnums
"""
    global index
    column = 0
    if type(cnums) in [ListType,TupleType]:   # if multiple columns to get
        index = cnums[0]
        column = map(lambda x: x[index], listoflists)
        for col in cnums[1:]:
            index = col
            column = abut(column,map(lambda x: x[index], listoflists))
    elif type(cnums) == StringType:              # if an 'x[3:]' type expr.
        evalstring = 'map(lambda x: x'+cnums+', listoflists)'
        column = eval(evalstring)
    else:                                     # else it's just 1 col to get
        index = cnums
        column = map(lambda x: x[index], listoflists)
    return column


def collapse (listoflists,keepcols,collapsecols,fcn1=None,fcn2=None,cfcn=None):
     """
Averages data in collapsecol, keeping all unique items in keepcols
(using unique, which keeps unique LISTS of column numbers), retaining the
unique sets of values in keepcols, the mean for each.  Setting fcn1
and/or fcn2 to point to a function rather than None (e.g., stats.sterr, len)
will append those results (e.g., the sterr, N) after each calculated mean.
cfcn is the collapse function to apply (defaults to mean, defined here in the
pstat module to avoid circular imports with stats.py, but harmonicmean or
others could be passed).

Usage:    collapse (listoflists,keepcols,collapsecols,fcn1=None,fcn2=None,cfcn=None)
Returns: a list of lists with all unique permutations of entries appearing in
     columns ("conditions") specified by keepcols, abutted with the result of
     cfcn (if cfcn=None, defaults to the mean) of each column specified by
     collapsecols.
"""
     def collmean (inlist):
         s = 0
         for item in inlist:
             s = s + item
         return s/float(len(inlist))

     if type(keepcols) not in [ListType,TupleType]:
         keepcols = [keepcols]
     if type(collapsecols) not in [ListType,TupleType]:
         collapsecols = [collapsecols]
     if cfcn == None:
         cfcn = collmean
     if keepcols == []:
         means = [0]*len(collapsecols)
         for i in range(len(collapsecols)):
             avgcol = colex(listoflists,collapsecols[i])
             means[i] = cfcn(avgcol)
             if fcn1:
                 try:
                     test = fcn1(avgcol)
                 except Exception:
                     test = 'N/A'
                     means[i] = [means[i], test]
             if fcn2:
                 try:
                     test = fcn2(avgcol)
                 except Exception:
                     test = 'N/A'
                 try:
                     means[i] = means[i] + [len(avgcol)]
                 except TypeError:
                     means[i] = [means[i],len(avgcol)]
         return means
     else:
         values = colex(listoflists,keepcols)
         uniques = unique(values)
         uniques.sort()
         newlist = []
         if type(keepcols) not in [ListType,TupleType]:  keepcols = [keepcols]
         for item in uniques:
             if type(item) not in [ListType,TupleType]:  item =[item]
             tmprows = linexand(listoflists,keepcols,item)
             for col in collapsecols:
                 avgcol = colex(tmprows,col)
                 item.append(cfcn(avgcol))
                 if fcn1 <> None:
                     try:
                         test = fcn1(avgcol)
                     except Exception:
                         test = 'N/A'
                     item.append(test)
                 if fcn2 <> None:
                     try:
                         test = fcn2(avgcol)
                     except Exception:
                         test = 'N/A'
                     item.append(test)
                 newlist.append(item)
         return newlist


def dm (listoflists,criterion):
    """
Returns rows from the passed list of lists that meet the criteria in
the passed criterion expression (a string as a function of x; e.g., 'x[3]>=9'
will return all rows where the 4th column>=9 and "x[2]=='N'" will return rows
with column 2 equal to the string 'N').

Usage:   dm (listoflists, criterion)
Returns: rows from listoflists that meet the specified criterion.
"""
    function = 'filter(lambda x: '+criterion+',listoflists)'
    lines = eval(function)
    return lines


def flat(l):
    """
Returns the flattened version of a '2D' list.  List-correlate to the a.ravel()()
method of NumPy arrays.

Usage:    flat(l)
"""
    newl = []
    for i in range(len(l)):
        for j in range(len(l[i])):
            newl.append(l[i][j])
    return newl


def linexand (listoflists,columnlist,valuelist):
    """
Returns the rows of a list of lists where col (from columnlist) = val
(from valuelist) for EVERY pair of values (columnlist[i],valuelists[i]).
len(columnlist) must equal len(valuelist).

Usage:   linexand (listoflists,columnlist,valuelist)
Returns: the rows of listoflists where columnlist[i]=valuelist[i] for ALL i
"""
    if type(columnlist) not in [ListType,TupleType]:
        columnlist = [columnlist]
    if type(valuelist) not in [ListType,TupleType]:
        valuelist = [valuelist]
    criterion = ''
    for i in range(len(columnlist)):
        if type(valuelist[i])==StringType:
            critval = '\'' + valuelist[i] + '\''
        else:
            critval = str(valuelist[i])
        criterion = criterion + ' x['+str(columnlist[i])+']=='+critval+' and'
    criterion = criterion[0:-3]         # remove the "and" after the last crit
    function = 'filter(lambda x: '+criterion+',listoflists)'
    lines = eval(function)
    return lines


def linexor (listoflists,columnlist,valuelist):
    """
Returns the rows of a list of lists where col (from columnlist) = val
(from valuelist) for ANY pair of values (colunmlist[i],valuelist[i[).
One value is required for each column in columnlist.  If only one value
exists for columnlist but multiple values appear in valuelist, the
valuelist values are all assumed to pertain to the same column.

Usage:   linexor (listoflists,columnlist,valuelist)
Returns: the rows of listoflists where columnlist[i]=valuelist[i] for ANY i
"""
    if type(columnlist) not in [ListType,TupleType]:
        columnlist = [columnlist]
    if type(valuelist) not in [ListType,TupleType]:
        valuelist = [valuelist]
    criterion = ''
    if len(columnlist) == 1 and len(valuelist) > 1:
        columnlist = columnlist*len(valuelist)
    for i in range(len(columnlist)):          # build an exec string
        if type(valuelist[i])==StringType:
            critval = '\'' + valuelist[i] + '\''
        else:
            critval = str(valuelist[i])
        criterion = criterion + ' x['+str(columnlist[i])+']=='+critval+' or'
    criterion = criterion[0:-2]         # remove the "or" after the last crit
    function = 'filter(lambda x: '+criterion+',listoflists)'
    lines = eval(function)
    return lines


def linedelimited (inlist,delimiter):
    """
Returns a string composed of elements in inlist, with each element
separated by 'delimiter.'  Used by function writedelimited.  Use '\t'
for tab-delimiting.

Usage:   linedelimited (inlist,delimiter)
"""
    outstr = ''
    for item in inlist:
        if type(item) <> StringType:
            item = str(item)
        outstr = outstr + item + delimiter
    outstr = outstr[0:-1]
    return outstr


def lineincols (inlist,colsize):
    """
Returns a string composed of elements in inlist, with each element
right-aligned in columns of (fixed) colsize.

Usage:   lineincols (inlist,colsize)   where colsize is an integer
"""
    outstr = ''
    for item in inlist:
        if type(item) <> StringType:
            item = str(item)
        size = len(item)
        if size <= colsize:
            for i in range(colsize-size):
                outstr = outstr + ' '
            outstr = outstr + item
        else:
            outstr = outstr + item[0:colsize+1]
    return outstr


def lineincustcols (inlist,colsizes):
    """
Returns a string composed of elements in inlist, with each element
right-aligned in a column of width specified by a sequence colsizes.  The
length of colsizes must be greater than or equal to the number of columns
in inlist.

Usage:   lineincustcols (inlist,colsizes)
Returns: formatted string created from inlist
"""
    outstr = ''
    for i in range(len(inlist)):
        if type(inlist[i]) <> StringType:
            item = str(inlist[i])
        else:
            item = inlist[i]
        size = len(item)
        if size <= colsizes[i]:
            for j in range(colsizes[i]-size):
                outstr = outstr + ' '
            outstr = outstr + item
        else:
            outstr = outstr + item[0:colsizes[i]+1]
    return outstr


def list2string (inlist,delimit=' '):
    """
Converts a 1D list to a single long string for file output, using
the string.join function.

Usage:   list2string (inlist,delimit=' ')
Returns: the string created from inlist
"""
    stringlist = map(makestr,inlist)
    return string.join(stringlist,delimit)


def makelol(inlist):
    """
Converts a 1D list to a 2D list (i.e., a list-of-lists).  Useful when you
want to use put() to write a 1D list one item per line in the file.

Usage:   makelol(inlist)
Returns: if l = [1,2,'hi'] then returns [[1],[2],['hi']] etc.
"""
    x = []
    for item in inlist:
        x.append([item])
    return x


def makestr (x):
    if type(x) <> StringType:
        x = str(x)
    return x


def printcc (lst,extra=2):
    """
Prints a list of lists in columns, customized by the max size of items
within the columns (max size of items in col, plus 'extra' number of spaces).
Use 'dashes' or '\\n' in the list-of-lists to print dashes or blank lines,
respectively.

Usage:   printcc (lst,extra=2)
Returns: None
"""
    if type(lst[0]) not in [ListType,TupleType]:
        lst = [lst]
    rowstokill = []
    list2print = copy.deepcopy(lst)
    for i in range(len(lst)):
        if lst[i] == ['\n'] or lst[i]=='\n' or lst[i]=='dashes' or lst[i]=='' or lst[i]==['']:
            rowstokill = rowstokill + [i]
    rowstokill.reverse()   # delete blank rows from the end
    for row in rowstokill:
        del list2print[row]
    maxsize = [0]*len(list2print[0])
    for col in range(len(list2print[0])):
        items = colex(list2print,col)
        items = map(makestr,items)
        maxsize[col] = max(map(len,items)) + extra
    for row in lst:
        if row == ['\n'] or row == '\n' or row == '' or row == ['']:
            print
        elif row == ['dashes'] or row == 'dashes':
            dashes = [0]*len(maxsize)
            for j in range(len(maxsize)):
                dashes[j] = '-'*(maxsize[j]-2)
            print lineincustcols(dashes,maxsize)
        else:
            print lineincustcols(row,maxsize)
    return None


def printincols (listoflists,colsize):
    """
Prints a list of lists in columns of (fixed) colsize width, where
colsize is an integer.

Usage:   printincols (listoflists,colsize)
Returns: None
"""
    for row in listoflists:
        print lineincols(row,colsize)
    return None


def pl (listoflists):
    """
Prints a list of lists, 1 list (row) at a time.

Usage:   pl(listoflists)
Returns: None
"""
    for row in listoflists:
        if row[-1] == '\n':
            print row,
        else:
            print row
    return None


def printl(listoflists):
    """Alias for pl."""
    pl(listoflists)
    return


def replace (inlst,oldval,newval):
    """
Replaces all occurrences of 'oldval' with 'newval', recursively.

Usage:   replace (inlst,oldval,newval)
"""
    lst = inlst*1
    for i in range(len(lst)):
        if type(lst[i]) not in [ListType,TupleType]:
            if lst[i]==oldval: lst[i]=newval
        else:
            lst[i] = replace(lst[i],oldval,newval)
    return lst


def recode (inlist,listmap,cols=None):
    """
Changes the values in a list to a new set of values (useful when
you need to recode data from (e.g.) strings to numbers.  cols defaults
to None (meaning all columns are recoded).

Usage:   recode (inlist,listmap,cols=None)  cols=recode cols, listmap=2D list
Returns: inlist with the appropriate values replaced with new ones
"""
    lst = copy.deepcopy(inlist)
    if cols != None:
        if type(cols) not in [ListType,TupleType]:
            cols = [cols]
        for col in cols:
            for row in range(len(lst)):
                try:
                    idx = colex(listmap,0).index(lst[row][col])
                    lst[row][col] = listmap[idx][1]
                except ValueError:
                    pass
    else:
        for row in range(len(lst)):
            for col in range(len(lst)):
                try:
                    idx = colex(listmap,0).index(lst[row][col])
                    lst[row][col] = listmap[idx][1]
                except ValueError:
                    pass
    return lst


def remap (listoflists,criterion):
    """
Remaps values in a given column of a 2D list (listoflists).  This requires
a criterion as a function of 'x' so that the result of the following is
returned ... map(lambda x: 'criterion',listoflists).  

Usage:   remap(listoflists,criterion)    criterion=string
Returns: remapped version of listoflists
"""
    function = 'map(lambda x: '+criterion+',listoflists)'
    lines = eval(function)
    return lines


def roundlist (inlist,digits):
    """
Goes through each element in a 1D or 2D inlist, and applies the following
function to all elements of FloatType ... round(element,digits).

Usage:   roundlist(inlist,digits)
Returns: list with rounded floats
"""
    if type(inlist[0]) in [IntType, FloatType]:
        inlist = [inlist]
    l = inlist*1
    for i in range(len(l)):
        for j in range(len(l[i])):
            if type(l[i][j])==FloatType:
                l[i][j] = round(l[i][j],digits)
    return l


def sortby(listoflists,sortcols):
    """
Sorts a list of lists on the column(s) specified in the sequence
sortcols.

Usage:   sortby(listoflists,sortcols)
Returns: sorted list, unchanged column ordering
"""
    newlist = abut(colex(listoflists,sortcols),listoflists)
    newlist.sort()
    try:
        numcols = len(sortcols)
    except TypeError:
        numcols = 1
    crit = '[' + str(numcols) + ':]'
    newlist = colex(newlist,crit)
    return newlist


def unique (inlist):
    """
Returns all unique items in the passed list.  If the a list-of-lists
is passed, unique LISTS are found (i.e., items in the first dimension are
compared).

Usage:   unique (inlist)
Returns: the unique elements (or rows) in inlist
"""
    uniques = []
    for item in inlist:
        if item not in uniques:
            uniques.append(item)
    return uniques

def duplicates(inlist):
    """
Returns duplicate items in the FIRST dimension of the passed list.

Usage:   duplicates (inlist)
"""
    dups = []
    for i in range(len(inlist)):
        if inlist[i] in inlist[i+1:]:
            dups.append(inlist[i])
    return dups


def nonrepeats(inlist):
    """
Returns items that are NOT duplicated in the first dim of the passed list.

Usage:   nonrepeats (inlist)
"""
    nonrepeats = []
    for i in range(len(inlist)):
        if inlist.count(inlist[i]) == 1:
            nonrepeats.append(inlist[i])
    return nonrepeats


#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================
#===================   PSTAT ARRAY FUNCTIONS  =====================

try:                         # DEFINE THESE *ONLY* IF numpy IS AVAILABLE
 import numpy as N

 def aabut (source, *args):
    """
Like the |Stat abut command.  It concatenates two arrays column-wise
and returns the result.  CAUTION:  If one array is shorter, it will be
repeated until it is as long as the other.

Usage:   aabut (source, args)    where args=any # of arrays
Returns: an array as long as the LONGEST array past, source appearing on the
         'left', arrays in <args> attached on the 'right'.
"""
    if len(source.shape)==1:
        width = 1
        source = N.resize(source,[source.shape[0],width])
    else:
        width = source.shape[1]
    for addon in args:
        if len(addon.shape)==1:
            width = 1
            addon = N.resize(addon,[source.shape[0],width])
        else:
            width = source.shape[1]
        if len(addon) < len(source):
            addon = N.resize(addon,[source.shape[0],addon.shape[1]])
        elif len(source) < len(addon):
            source = N.resize(source,[addon.shape[0],source.shape[1]])
        source = N.concatenate((source,addon),1)
    return source


 def acolex (a,indices,axis=1):
    """
Extracts specified indices (a list) from passed array, along passed
axis (column extraction is default).  BEWARE: A 1D array is presumed to be a
column-array (and that the whole array will be returned as a column).

Usage:   acolex (a,indices,axis=1)
Returns: the columns of a specified by indices
"""
    if type(indices) not in [ListType,TupleType,N.ndarray]:
        indices = [indices]
    if len(N.shape(a)) == 1:
        cols = N.resize(a,[a.shape[0],1])
    else:
        cols = N.take(a,indices,axis)
    return cols


 def acollapse (a,keepcols,collapsecols,fcn1=None,fcn2=None,cfcn=None):
    """
Averages data in collapsecol, keeping all unique items in keepcols
(using unique, which keeps unique LISTS of column numbers), retaining
the unique sets of values in keepcols, the mean for each.  If stderror or
N of the mean are desired, set either or both parameters to 1.

Usage:   acollapse (a,keepcols,collapsecols,fcn1=None,fcn2=None,cfcn=None)
Returns: unique 'conditions' specified by the contents of columns specified
         by keepcols, abutted with the mean(s) of column(s) specified by
         collapsecols
"""
    def acollmean (inarray):
        return N.sum(N.ravel(inarray))

    if type(keepcols) not in [ListType,TupleType,N.ndarray]:
        keepcols = [keepcols]
    if type(collapsecols) not in [ListType,TupleType,N.ndarray]:
        collapsecols = [collapsecols]

    if cfcn == None:
        cfcn = acollmean
    if keepcols == []:
        avgcol = acolex(a,collapsecols)
        means = N.sum(avgcol)/float(len(avgcol))
        if fcn1<>None:
            try:
                test = fcn1(avgcol)
            except Exception:
                test = N.array(['N/A']*len(means))
            means = aabut(means,test)
        if fcn2<>None:
            try:
                test = fcn2(avgcol)
            except Exception:
                test = N.array(['N/A']*len(means))
            means = aabut(means,test)
        return means
    else:
        if type(keepcols) not in [ListType,TupleType,N.ndarray]:
            keepcols = [keepcols]
        values = colex(a,keepcols)   # so that "item" can be appended (below)
        uniques = unique(values)  # get a LIST, so .sort keeps rows intact
        uniques.sort()
        newlist = []
        for item in uniques:
            if type(item) not in [ListType,TupleType,N.ndarray]:
                item =[item]
            tmprows = alinexand(a,keepcols,item)
            for col in collapsecols:
                avgcol = acolex(tmprows,col)
                item.append(acollmean(avgcol))
                if fcn1<>None:
                    try:
                        test = fcn1(avgcol)
                    except Exception:
                        test = 'N/A'
                    item.append(test)
                if fcn2<>None:
                    try:
                        test = fcn2(avgcol)
                    except Exception:
                        test = 'N/A'
                    item.append(test)
                newlist.append(item)
        try:
            new_a = N.array(newlist)
        except TypeError:
            new_a = N.array(newlist,'O')
        return new_a


 def adm (a,criterion):
    """
Returns rows from the passed list of lists that meet the criteria in
the passed criterion expression (a string as a function of x).

Usage:   adm (a,criterion)   where criterion is like 'x[2]==37'
"""
    function = 'filter(lambda x: '+criterion+',a)'
    lines = eval(function)
    try:
        lines = N.array(lines)
    except Exception:
        lines = N.array(lines,dtype='O')
    return lines


 def isstring(x):
    if type(x)==StringType:
        return 1
    else:
        return 0


 def alinexand (a,columnlist,valuelist):
    """
Returns the rows of an array where col (from columnlist) = val
(from valuelist).  One value is required for each column in columnlist.

Usage:   alinexand (a,columnlist,valuelist)
Returns: the rows of a where columnlist[i]=valuelist[i] for ALL i
"""
    if type(columnlist) not in [ListType,TupleType,N.ndarray]:
        columnlist = [columnlist]
    if type(valuelist) not in [ListType,TupleType,N.ndarray]:
        valuelist = [valuelist]
    criterion = ''
    for i in range(len(columnlist)):
        if type(valuelist[i])==StringType:
            critval = '\'' + valuelist[i] + '\''
        else:
            critval = str(valuelist[i])
        criterion = criterion + ' x['+str(columnlist[i])+']=='+critval+' and'
    criterion = criterion[0:-3]         # remove the "and" after the last crit
    return adm(a,criterion)


 def alinexor (a,columnlist,valuelist):
    """
Returns the rows of an array where col (from columnlist) = val (from
valuelist).  One value is required for each column in columnlist.
The exception is if either columnlist or valuelist has only 1 value,
in which case that item will be expanded to match the length of the
other list.

Usage:   alinexor (a,columnlist,valuelist)
Returns: the rows of a where columnlist[i]=valuelist[i] for ANY i
"""
    if type(columnlist) not in [ListType,TupleType,N.ndarray]:
        columnlist = [columnlist]
    if type(valuelist) not in [ListType,TupleType,N.ndarray]:
        valuelist = [valuelist]
    criterion = ''
    if len(columnlist) == 1 and len(valuelist) > 1:
        columnlist = columnlist*len(valuelist)
    elif len(valuelist) == 1 and len(columnlist) > 1:
        valuelist = valuelist*len(columnlist)
    for i in range(len(columnlist)):
        if type(valuelist[i])==StringType:
            critval = '\'' + valuelist[i] + '\''
        else:
            critval = str(valuelist[i])
        criterion = criterion + ' x['+str(columnlist[i])+']=='+critval+' or'
    criterion = criterion[0:-2]         # remove the "or" after the last crit
    return adm(a,criterion)


 def areplace (a,oldval,newval):
    """
Replaces all occurrences of oldval with newval in array a.

Usage:   areplace(a,oldval,newval)
"""
    return N.where(a==oldval,newval,a)


 def arecode (a,listmap,col='all'):
    """
Remaps the values in an array to a new set of values (useful when
you need to recode data from (e.g.) strings to numbers as most stats
packages require.  Can work on SINGLE columns, or 'all' columns at once.
@@@BROKEN 2007-11-26

Usage:   arecode (a,listmap,col='all')
Returns: a version of array a where listmap[i][0] = (instead) listmap[i][1]
"""
    ashape = a.shape
    if col == 'all':
        work = a.ravel()
    else:
        work = acolex(a,col)
        work = work.ravel()
    for pair in listmap:
        if type(pair[1]) == StringType or work.dtype.char=='O' or a.dtype.char=='O':
            work = N.array(work,dtype='O')
            a = N.array(a,dtype='O')
            for i in range(len(work)):
                if work[i]==pair[0]:
                    work[i] = pair[1]
            if col == 'all':
                return N.reshape(work,ashape)
            else:
                return N.concatenate([a[:,0:col],work[:,N.newaxis],a[:,col+1:]],1)
        else:   # must be a non-Object type array and replacement
            work = N.where(work==pair[0],pair[1],work)
            return N.concatenate([a[:,0:col],work[:,N.newaxis],a[:,col+1:]],1)


 def arowcompare(row1, row2):
    """
Compares two rows from an array, regardless of whether it is an
array of numbers or of python objects (which requires the cmp function).
@@@PURPOSE? 2007-11-26

Usage:   arowcompare(row1,row2)
Returns: an array of equal length containing 1s where the two rows had
         identical elements and 0 otherwise
"""
    return 
    if row1.dtype.char=='O' or row2.dtype=='O':
        cmpvect = N.logical_not(abs(N.array(map(cmp,row1,row2)))) # cmp fcn gives -1,0,1
    else:
        cmpvect = N.equal(row1,row2)
    return cmpvect


 def arowsame(row1, row2):
    """
Compares two rows from an array, regardless of whether it is an
array of numbers or of python objects (which requires the cmp function).

Usage:   arowsame(row1,row2)
Returns: 1 if the two rows are identical, 0 otherwise.
"""
    cmpval = N.alltrue(arowcompare(row1,row2))
    return cmpval


 def asortrows(a,axis=0):
    """
Sorts an array "by rows".  This differs from the Numeric.sort() function,
which sorts elements WITHIN the given axis.  Instead, this function keeps
the elements along the given axis intact, but shifts them 'up or down'
relative to one another.

Usage:   asortrows(a,axis=0)
Returns: sorted version of a
"""
    return N.sort(a,axis=axis,kind='mergesort')


 def aunique(inarray):
    """
Returns unique items in the FIRST dimension of the passed array. Only
works on arrays NOT including string items.

Usage:   aunique (inarray)
"""
    uniques = N.array([inarray[0]])
    if len(uniques.shape) == 1:            # IF IT'S A 1D ARRAY
        for item in inarray[1:]:
            if N.add.reduce(N.equal(uniques,item).ravel()) == 0:
                try:
                    uniques = N.concatenate([uniques,N.array[N.newaxis,:]])
                except TypeError:
                    uniques = N.concatenate([uniques,N.array([item])])
    else:                                  # IT MUST BE A 2+D ARRAY
        if inarray.dtype.char != 'O':  # not an Object array
            for item in inarray[1:]:
                if not N.sum(N.alltrue(N.equal(uniques,item),1)):
                    try:
                        uniques = N.concatenate( [uniques,item[N.newaxis,:]] )
                    except TypeError:    # the item to add isn't a list
                        uniques = N.concatenate([uniques,N.array([item])])
                else:
                    pass  # this item is already in the uniques array
        else:   # must be an Object array, alltrue/equal functions don't work
            for item in inarray[1:]:
                newflag = 1
                for unq in uniques:  # NOTE: cmp --> 0=same, -1=<, 1=>
                    test = N.sum(abs(N.array(map(cmp,item,unq))))
                    if test == 0:   # if item identical to any 1 row in uniques
                        newflag = 0 # then not a novel item to add
                        break
                if newflag == 1:
                    try:
                        uniques = N.concatenate( [uniques,item[N.newaxis,:]] )
                    except TypeError:    # the item to add isn't a list
                        uniques = N.concatenate([uniques,N.array([item])])
    return uniques


 def aduplicates(inarray):
    """
Returns duplicate items in the FIRST dimension of the passed array. Only
works on arrays NOT including string items.

Usage:   aunique (inarray)
"""
    inarray = N.array(inarray)
    if len(inarray.shape) == 1:            # IF IT'S A 1D ARRAY
        dups = []
        inarray = inarray.tolist()
        for i in range(len(inarray)):
            if inarray[i] in inarray[i+1:]:
                dups.append(inarray[i])
        dups = aunique(dups)
    else:                                  # IT MUST BE A 2+D ARRAY
        dups = []
        aslist = inarray.tolist()
        for i in range(len(aslist)):
            if aslist[i] in aslist[i+1:]:
                dups.append(aslist[i])
        dups = unique(dups)
        dups = N.array(dups)
    return dups

except ImportError:    # IF NUMERIC ISN'T AVAILABLE, SKIP ALL arrayfuncs
 pass