File: color.hpp

package info (click to toggle)
gamera 3.4.1%2Bsvn1423-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 22,292 kB
  • ctags: 25,015
  • sloc: xml: 122,324; ansic: 50,812; cpp: 50,489; python: 34,987; makefile: 119; sh: 101
file content (490 lines) | stat: -rw-r--r-- 16,245 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/*
 * Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom, Karl MacMillan
 *               2010      Hasan Yildiz, Christoph Dalitz
 *               2014      Christoph Dalitz
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef mgd120203_color
#define mgd120203_color

#include "gamera.hpp"
#include "image_conversion.hpp"
#include "gameramodule.hpp"

#include <string>
#include <map>
#include <vector>

namespace Gamera {

  template<class T, class U, class F>
  struct extract_plane {
    U* operator()(const T& image) {
      typedef typename T::value_type from_pixel_type;
      typedef typename U::value_type to_pixel_type;
      U* view = _image_conversion::creator<to_pixel_type>::image(image);
      typename T::const_vec_iterator in = image.vec_begin();
      typename U::vec_iterator out = view->vec_begin();
      ImageAccessor<from_pixel_type> in_acc;
      ImageAccessor<to_pixel_type> out_acc;
      F f;
      for (; in != image.vec_end(); ++in, ++out)
        out_acc.set(f(from_pixel_type(in_acc.get(in))), out);
      return view;
    }
  };

  struct Hue {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.hue();
    }
  };
  extract_plane<RGBImageView, FloatImageView, Hue> hue;

  struct Saturation {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.saturation();
    }
  };
  extract_plane<RGBImageView, FloatImageView, Saturation> saturation;

  struct Value {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.value();
    }
  };
  extract_plane<RGBImageView, FloatImageView, Value> value;

  struct Cyan {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.cyan();
    }
  };
  extract_plane<RGBImageView, FloatImageView, Cyan> cyan;

  struct Magenta {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.magenta();
    }
  };
  extract_plane<RGBImageView, FloatImageView, Magenta> magenta;

  struct Yellow {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.yellow();
    }
  };
  extract_plane<RGBImageView, FloatImageView, Yellow> yellow;

  struct Red {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.red();
    }
  };
  extract_plane<RGBImageView, FloatImageView, Red> red;

  struct Green {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.green();
    }
  };
  extract_plane<RGBImageView, FloatImageView, Green> green;

  struct Blue {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.blue();
    }
  };
  extract_plane<RGBImageView, FloatImageView, Blue> blue;

  struct CIE_X {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.cie_x();
    }
  };
  extract_plane<RGBImageView, FloatImageView, CIE_X> cie_x;

  struct CIE_Y {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.cie_y();
    }
  };
  extract_plane<RGBImageView, FloatImageView, CIE_Y> cie_y;

  struct CIE_Z {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.cie_z();
    }
  };
  extract_plane<RGBImageView, FloatImageView, CIE_Z> cie_z;

  struct CIE_Lab_L {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.cie_Lab_L();
    }
  };
  extract_plane<RGBImageView, FloatImageView, CIE_Lab_L> cie_Lab_L;

  struct CIE_Lab_a {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.cie_Lab_a();
    }
  };
  extract_plane<RGBImageView, FloatImageView, CIE_Lab_L> cie_Lab_a;

  struct CIE_Lab_b {
    FloatPixel operator()(RGBPixel pixel) {
      return pixel.cie_Lab_L();
    }
  };
  extract_plane<RGBImageView, FloatImageView, CIE_Lab_L> cie_Lab_b;

  // TODO: Find a cool way to false color Complex images.

  // divergent colormap after Moreland, 2009
  // for assigning a color to a float value between 0 and 1
  class FloatColormap {
    //typedef typename std::vector<double> MSHValue;
    typedef std::vector<double> MSHValue;
    MSHValue msh_cold;
    MSHValue msh_warm;
    MSHValue xyz_white;
    double   m_mid;
    void rgb2xyz(const RGBPixel& rgb, MSHValue* xyz) {
      MSHValue rgbl(3,0);
      if (rgb.red() > 0.04045)
        rgbl[0] = pow((rgb.red()/255.0 + 0.055)/1.055, 2.4);
      else
        rgbl[0] = rgb.red()/(255.0*12.92);
      if (rgb.green() > 0.04045)
        rgbl[1] = pow((rgb.green()/255.0 + 0.055)/1.055, 2.4);
      else
        rgbl[1] = rgb.green()/(255.0*12.92);
      if (rgb.blue() > 0.04045)
        rgbl[2] = pow((rgb.blue()/255.0 + 0.055)/1.055, 2.4);
      else
        rgbl[2] = rgb.blue()/(255.0*12.92);
      /* this is from Moreland paper, but presumably wrong
      rgbl[0] = pow((rgb.red()/255.0 + 0.055)/1.055, 2.4);
      if (rgbl[0] <= 0.04045) rgbl[0] = rgb.red()/(255.0*12.92);
      rgbl[1] = pow((rgb.green()/255.0 + 0.055)/1.055, 2.4);
      if (rgbl[1] <= 0.04045) rgbl[1] = rgb.green()/(255.0*12.92);
      rgbl[2] = pow((rgb.blue()/255.0 + 0.055)/1.055, 2.4);
      if (rgbl[2] <= 0.04045) rgbl[2] = rgb.blue()/(255.0*12.92);
      */
      //printf("rgbl = (%f,%f,%f)\n", rgbl[0], rgbl[1], rgbl[2]);
      xyz->at(0) = 0.412453*rgbl[0] + 0.357580*rgbl[1] + 0.180423*rgbl[2];
      xyz->at(1) = 0.212671*rgbl[0] + 0.715160*rgbl[1] + 0.072169*rgbl[2];
      xyz->at(2) = 0.019334*rgbl[0] + 0.119193*rgbl[1] + 0.950227*rgbl[2];
    }
    double f(double x) {
      if (x>0.008856) return pow(x, 1/3.0);
      else return (0.787*x + 16.0/116.0);
    }
    double finv(double x) {
      if (x>0.20689) return (x*x*x);
      else return ((x - 16.0/116.0) / 0.787);
    }
    void rgb2msh(const RGBPixel& rgb, MSHValue* msh) {
      MSHValue lab(3,0), xyz(3,0);
      rgb2xyz(rgb, &xyz);
      //printf("xyz = (%f,%f,%f)\n", xyz[0], xyz[1], xyz[2]);
      lab[0] = 116.0*f(xyz[1]/xyz_white[1]) - 16.0;
      lab[1] = 500.0*(f(xyz[0]/xyz_white[0]) - f(xyz[1]/xyz_white[1]));
      lab[2] = 200.0*(f(xyz[1]/xyz_white[1]) - f(xyz[2]/xyz_white[2]));
      msh->at(0) = sqrt(lab[0]*lab[0] + lab[1]*lab[1] + lab[2]*lab[2]);
      if (msh->at(0) > 0.0001)
        msh->at(1) = acos(lab[0] / msh->at(0));
      else
        msh->at(1) = 0;
      if (msh->at(1) > 0.0001)
        msh->at(2) = atan2(lab[2], lab[1]);
      else
        msh->at(2) = 0;
    }
    void msh2rgb(const MSHValue& msh, RGBPixel* rgb) {
      MSHValue lab(3,0), xyz(3,0), rgbl(3,0), srgb(3,0);
      double fy, fx;
      // msh2lab
      lab[0] = msh[0] * cos(msh[1]);
      lab[1] = msh[0] * sin(msh[1]) * cos(msh[2]);
      lab[2] = msh[0] * sin(msh[1]) * sin(msh[2]);
      // lab2xyz
      fy = (lab[0] + 16.0) / 116.0;
      xyz[1] = finv(fy) * xyz_white[1];
      fx = lab[1]/500.0 + fy;
      xyz[0] = finv(fx) * xyz_white[0];
      xyz[2] = finv(fy - lab[2]/200.0) * xyz_white[2];
      //printf("xyz = (%f,%f,%f)\n", xyz[0], xyz[1], xyz[2]);
      // xyz2rgbl
      rgbl[0] =  3.240481*xyz[0] - 1.537152*xyz[1] - 0.498536*xyz[2];
      rgbl[1] = -0.969255*xyz[0] + 1.875990*xyz[1] + 0.041556*xyz[2];
      rgbl[2] =  0.055647*xyz[0] - 0.204041*xyz[1] + 1.057311*xyz[2];
      //printf("rgbl = (%f,%f,%f)\n", rgbl[0], rgbl[1], rgbl[2]);
      // rgbL2rgb
      for (size_t i=0; i<3; i++) {
        //if (rgbl[i] > 0.04045) // This is from moreland, but presumably wrong
        if (rgbl[i] > 0.001308)
          srgb[i] = pow(rgbl[i], 1/2.4)*1.055 - 0.055;
        else
          srgb[i] = rgbl[i]*12.92;
        srgb[i] = srgb[i]*255.0;
      }
      //printf("srgb = (%f,%f,%f)\n", srgb[0], srgb[1], srgb[2]);
      rgb->red(int(srgb[0]+0.25)); rgb->green(int(srgb[1]+0.25)); rgb->blue(int(srgb[2]+0.25));
    }
    double adjust_hue(const MSHValue& msh_sat, double m_unsat) {
      if (msh_sat[0] >= m_unsat-0.1)
        return msh_sat[2];
      double hspin = msh_sat[1]*sqrt(m_unsat*m_unsat - msh_sat[0]*msh_sat[0]) / (msh_sat[0] * sin(msh_sat[1]));
      if (msh_sat[2] > -M_PI/3)
        return msh_sat[2] + hspin;
      else
        return msh_sat[2] - hspin;
    }
  public:
    FloatColormap(const RGBPixel& rgb_cold, const RGBPixel& rgb_warm) {
      msh_cold.resize(3); msh_warm.resize(3); xyz_white.resize(3);
      // compute white point
      RGBPixel rgb_white(255,255,255);
      rgb2xyz(rgb_white, &xyz_white);
      // set cold and warm values
      rgb2msh(rgb_cold, &msh_cold); rgb2msh(rgb_warm, &msh_warm);
      RGBPixel shouldbe; msh2rgb(msh_cold, &shouldbe);
      m_mid = std::max(88.0, std::max(msh_cold[0], msh_warm[0]));
    }
    RGBPixel interpolate_color(double v) {
      MSHValue msh_mid(3,0), msh1(3,0), msh2(3,0);
      RGBPixel rgb;
      if (v < 0.0) {
        msh2rgb(msh_cold, &rgb);
        return rgb;
      }
      if (v > 1.0) {
        msh2rgb(msh_warm, &rgb);
        return rgb;
      }
      if (v<0.5) {
        msh2[0] = m_mid; msh2[1] = 0.0; msh2[2] = 0.0;
        for (size_t i=0; i<3; i++) msh1[i] = msh_cold[i];
        v = 2.0*v;
      } else {
        msh1[0] = m_mid; msh1[1] = 0.0; msh1[2] = 0.0;
        for (size_t i=0; i<3; i++) msh2[i] = msh_warm[i];
        v = 2.0*v - 1.0;
      }
      if ((msh1[1] < 0.05) && (msh2[1] > 0.05))
        msh1[2] = adjust_hue(msh2, msh1[0]);
      else if ((msh2[1] < 0.05) && (msh1[1] > 0.05))
        msh2[2] = adjust_hue(msh1, msh2[0]);
      for (size_t i=0; i<3; i++)
        msh_mid[i] = (1-v)*msh1[i] + v*msh2[i];
      msh2rgb(msh_mid, &rgb);
      return rgb;
    }
  };

  RGBImageView* false_color(const FloatImageView& image, int colormap) {
    RGBImageView* view = _image_conversion::creator<RGBPixel>::image(image);

    FloatImageView::const_vec_iterator vi = image.vec_begin();
    FloatPixel fmax = *vi;
    FloatPixel fmin = *vi;
    for (; vi != image.vec_end(); ++vi) {
      if (*vi > fmax)
        fmax = *vi;
      if (*vi < fmin)
        fmin = *vi;
    }
    double scale = fmax - fmin;
    FloatImageView::const_vec_iterator in = image.vec_begin();
    RGBImageView::vec_iterator out = view->vec_begin();

    if (colormap == 0) { // diverging colormap
      RGBPixel rgb1(59,76,192), rgb2(180,4,38), rgb3;
      FloatColormap fc(rgb1, rgb2);
      for (; in != image.vec_end(); ++in, ++out)
        out.set(fc.interpolate_color((in.get()-fmin)/scale));
    }
    else { // rainbow colormap
      double val;
      for (; in != image.vec_end(); ++in, ++out) {
        val = (in.get()-fmin)/scale;
        double a = (1.0 - val)*4.0;
        int x = int(a);
        int y = int(255*(a-x));
        if (x == 0)
          out.set(RGBPixel(255,y,0));
        else if (x == 1)
          out.set(RGBPixel(255-y,255,0));
        else if (x == 2)
          out.set(RGBPixel(0,255,y));
        else if (x == 3)
          out.set(RGBPixel(0,255-y,255));
        else
          out.set(RGBPixel(0,0,255));
      }
    }

    return view;	
  }

  RGBImageView* false_color(const GreyScaleImageView& image, int colormap) {
    RGBImageView* view = _image_conversion::creator<RGBPixel>::image(image);
    GreyScaleImageView::const_vec_iterator in = image.vec_begin();
    RGBImageView::vec_iterator out = view->vec_begin();
    ImageAccessor<GreyScalePixel> in_acc;
    ImageAccessor<RGBPixel> out_acc;

    // Build a table mapping greyscale values to false color RGBPixels
    RGBPixel table[256];
    if (colormap == 0) { // diverging colormap
      RGBPixel rgb1(59,76,192), rgb2(180,4,38), rgb3;
      FloatColormap fc(rgb1, rgb2);
      /*for (double v=0.0; v<=1; v+=1/256.0) {
        rgb3 = fc.interpolate_color(v);
        printf("%7.6f,%i,%i,%i\n", v, rgb3.red(), rgb3.green(), rgb3.blue());
      }*/
      for (size_t i=0.0; i<256; i++) {
        table[i] = fc.interpolate_color(double(i)/255.0);
      }
    }
    else { // rainbow colormap
      for (size_t i=0.0; i<256; i++) {
        double a = (255.0 - i)*4.0/255.0;
        int x = int(a);
        int y = int(255*(a-x));
        if (x == 0)
          table[i] = RGBPixel(255,y,0);
        else if (x == 1)
          table[i] = RGBPixel(255-y,255,0);
        else if (x == 2)
          table[i] = RGBPixel(0,255,y);
        else if (x == 3)
          table[i] = RGBPixel(0,255-y,255);
        else
          table[i] = RGBPixel(0,0,255);
      }
    }

    // Create RGB based on table
    for (; in != image.vec_end(); ++in, ++out)
      out_acc.set(table[in_acc.get(in)], out);
      
    return view;	
  }

  // replace colors with labels
  // Christoph Dalitz and Hasan Yildiz
  template<class T>
  Image* colors_to_labels(const T &src, PyObject* obj) {
    OneBitImageData* dest_data = new OneBitImageData(src.size(), src.origin());
    OneBitImageView* dest = new OneBitImageView(*dest_data, src.origin(), src.size());

    typedef typename T::value_type value_type;
    value_type value;
    typedef typename OneBitImageView::value_type onebit_value_type;

    std::string buf;
    onebit_value_type label;
    // highest label that can be stored in Onebit pixel type
    onebit_value_type max_value = std::numeric_limits<onebit_value_type>::max();

    std::map<unsigned int, unsigned int> pixel;
    std::map<unsigned int, unsigned int>::iterator iter;

    PyObject *itemKey, *itemValue;
    unsigned int testKey;
    Py_ssize_t pos = 0;

    // mapping given how colors are to be mapped to labels
    if (PyDict_Check(obj)) {

      // copy color->label map to C++ map
      long given_label;
      label = 1;
      while (PyDict_Next(obj, &pos, &itemKey, &itemValue)) {
        if (label == max_value) {
          char msg[128];
          sprintf(msg, "More RGB colors than available labels (%i).", max_value);
          throw std::range_error(msg);
        }
        label++;
        if( !PyObject_TypeCheck(itemKey, get_RGBPixelType()) ) {
            throw std::runtime_error("Dictionary rgb_to_label must have RGBPixel's as keys");
        }
        
        RGBPixel *rgbpixel = ((RGBPixelObject *) itemKey)->m_x;
        testKey = (rgbpixel->red() << 16) | (rgbpixel->green() << 8) | rgbpixel->blue();
        
        given_label = PyInt_AsLong(itemValue);
        if (given_label < 0)
          throw std::invalid_argument("Labels must be positive integers.");
        if (pixel.find(testKey) == pixel.end()) 
          pixel[testKey] = given_label;
      }

      for (size_t y=0; y<src.nrows(); ++y) {
        for (size_t x=0; x<src.ncols(); ++x) {
          value = src.get(Point(x,y));
          testKey = (value.red() << 16) | (value.green() << 8) | value.blue();
          if (pixel.find(testKey) != pixel.end()) 
            dest->set(Point(x,y), pixel.find(testKey)->second);
        }
      }
    }

    // no mapping given: determine labels automatically by counting
    else if (obj == Py_None) {
      label = 2;
      // special colors black and white
      pixel[0] = 1;
      pixel[(255<<16) | (255<<8) | 255] = 0;
      for (size_t y=0; y<src.nrows(); ++y) {
        for (size_t x=0; x<src.ncols(); ++x) {

          value = src.get(Point(x,y));  
          testKey = (value.red() << 16) | (value.green() << 8) | value.blue();
          
          if ( !(value.red()==0 && value.green()==0 && value.blue()==0) &&
               !(value.red()==255 && value.green()==255 && value.blue()==255) &&
               pixel.find(testKey) == pixel.end() ) {
            if (label == max_value) {
              char msg[128];
              sprintf(msg, "More RGB colors than available labels (%i).", max_value);
              throw std::range_error(msg);
            }
            pixel[testKey] = label++;
          }

          // replace color with label
          dest->set(Point(x,y), pixel.find(testKey)->second);
        }
      }
    }

    // some argument given that is not a mapping color -> label
    else {
      throw std::invalid_argument("Mapping rgb_to_label must be dict or None");
    }

    return dest;
  }

}

#endif