1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
/*
* Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom, Karl MacMillan
* 2010 Hasan Yildiz, Christoph Dalitz
* 2014 Christoph Dalitz
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef mgd120203_color
#define mgd120203_color
#include "gamera.hpp"
#include "image_conversion.hpp"
#include "gameramodule.hpp"
#include <string>
#include <map>
#include <vector>
namespace Gamera {
template<class T, class U, class F>
struct extract_plane {
U* operator()(const T& image) {
typedef typename T::value_type from_pixel_type;
typedef typename U::value_type to_pixel_type;
U* view = _image_conversion::creator<to_pixel_type>::image(image);
typename T::const_vec_iterator in = image.vec_begin();
typename U::vec_iterator out = view->vec_begin();
ImageAccessor<from_pixel_type> in_acc;
ImageAccessor<to_pixel_type> out_acc;
F f;
for (; in != image.vec_end(); ++in, ++out)
out_acc.set(f(from_pixel_type(in_acc.get(in))), out);
return view;
}
};
struct Hue {
FloatPixel operator()(RGBPixel pixel) {
return pixel.hue();
}
};
extract_plane<RGBImageView, FloatImageView, Hue> hue;
struct Saturation {
FloatPixel operator()(RGBPixel pixel) {
return pixel.saturation();
}
};
extract_plane<RGBImageView, FloatImageView, Saturation> saturation;
struct Value {
FloatPixel operator()(RGBPixel pixel) {
return pixel.value();
}
};
extract_plane<RGBImageView, FloatImageView, Value> value;
struct Cyan {
FloatPixel operator()(RGBPixel pixel) {
return pixel.cyan();
}
};
extract_plane<RGBImageView, FloatImageView, Cyan> cyan;
struct Magenta {
FloatPixel operator()(RGBPixel pixel) {
return pixel.magenta();
}
};
extract_plane<RGBImageView, FloatImageView, Magenta> magenta;
struct Yellow {
FloatPixel operator()(RGBPixel pixel) {
return pixel.yellow();
}
};
extract_plane<RGBImageView, FloatImageView, Yellow> yellow;
struct Red {
FloatPixel operator()(RGBPixel pixel) {
return pixel.red();
}
};
extract_plane<RGBImageView, FloatImageView, Red> red;
struct Green {
FloatPixel operator()(RGBPixel pixel) {
return pixel.green();
}
};
extract_plane<RGBImageView, FloatImageView, Green> green;
struct Blue {
FloatPixel operator()(RGBPixel pixel) {
return pixel.blue();
}
};
extract_plane<RGBImageView, FloatImageView, Blue> blue;
struct CIE_X {
FloatPixel operator()(RGBPixel pixel) {
return pixel.cie_x();
}
};
extract_plane<RGBImageView, FloatImageView, CIE_X> cie_x;
struct CIE_Y {
FloatPixel operator()(RGBPixel pixel) {
return pixel.cie_y();
}
};
extract_plane<RGBImageView, FloatImageView, CIE_Y> cie_y;
struct CIE_Z {
FloatPixel operator()(RGBPixel pixel) {
return pixel.cie_z();
}
};
extract_plane<RGBImageView, FloatImageView, CIE_Z> cie_z;
struct CIE_Lab_L {
FloatPixel operator()(RGBPixel pixel) {
return pixel.cie_Lab_L();
}
};
extract_plane<RGBImageView, FloatImageView, CIE_Lab_L> cie_Lab_L;
struct CIE_Lab_a {
FloatPixel operator()(RGBPixel pixel) {
return pixel.cie_Lab_a();
}
};
extract_plane<RGBImageView, FloatImageView, CIE_Lab_L> cie_Lab_a;
struct CIE_Lab_b {
FloatPixel operator()(RGBPixel pixel) {
return pixel.cie_Lab_L();
}
};
extract_plane<RGBImageView, FloatImageView, CIE_Lab_L> cie_Lab_b;
// TODO: Find a cool way to false color Complex images.
// divergent colormap after Moreland, 2009
// for assigning a color to a float value between 0 and 1
class FloatColormap {
//typedef typename std::vector<double> MSHValue;
typedef std::vector<double> MSHValue;
MSHValue msh_cold;
MSHValue msh_warm;
MSHValue xyz_white;
double m_mid;
void rgb2xyz(const RGBPixel& rgb, MSHValue* xyz) {
MSHValue rgbl(3,0);
if (rgb.red() > 0.04045)
rgbl[0] = pow((rgb.red()/255.0 + 0.055)/1.055, 2.4);
else
rgbl[0] = rgb.red()/(255.0*12.92);
if (rgb.green() > 0.04045)
rgbl[1] = pow((rgb.green()/255.0 + 0.055)/1.055, 2.4);
else
rgbl[1] = rgb.green()/(255.0*12.92);
if (rgb.blue() > 0.04045)
rgbl[2] = pow((rgb.blue()/255.0 + 0.055)/1.055, 2.4);
else
rgbl[2] = rgb.blue()/(255.0*12.92);
/* this is from Moreland paper, but presumably wrong
rgbl[0] = pow((rgb.red()/255.0 + 0.055)/1.055, 2.4);
if (rgbl[0] <= 0.04045) rgbl[0] = rgb.red()/(255.0*12.92);
rgbl[1] = pow((rgb.green()/255.0 + 0.055)/1.055, 2.4);
if (rgbl[1] <= 0.04045) rgbl[1] = rgb.green()/(255.0*12.92);
rgbl[2] = pow((rgb.blue()/255.0 + 0.055)/1.055, 2.4);
if (rgbl[2] <= 0.04045) rgbl[2] = rgb.blue()/(255.0*12.92);
*/
//printf("rgbl = (%f,%f,%f)\n", rgbl[0], rgbl[1], rgbl[2]);
xyz->at(0) = 0.412453*rgbl[0] + 0.357580*rgbl[1] + 0.180423*rgbl[2];
xyz->at(1) = 0.212671*rgbl[0] + 0.715160*rgbl[1] + 0.072169*rgbl[2];
xyz->at(2) = 0.019334*rgbl[0] + 0.119193*rgbl[1] + 0.950227*rgbl[2];
}
double f(double x) {
if (x>0.008856) return pow(x, 1/3.0);
else return (0.787*x + 16.0/116.0);
}
double finv(double x) {
if (x>0.20689) return (x*x*x);
else return ((x - 16.0/116.0) / 0.787);
}
void rgb2msh(const RGBPixel& rgb, MSHValue* msh) {
MSHValue lab(3,0), xyz(3,0);
rgb2xyz(rgb, &xyz);
//printf("xyz = (%f,%f,%f)\n", xyz[0], xyz[1], xyz[2]);
lab[0] = 116.0*f(xyz[1]/xyz_white[1]) - 16.0;
lab[1] = 500.0*(f(xyz[0]/xyz_white[0]) - f(xyz[1]/xyz_white[1]));
lab[2] = 200.0*(f(xyz[1]/xyz_white[1]) - f(xyz[2]/xyz_white[2]));
msh->at(0) = sqrt(lab[0]*lab[0] + lab[1]*lab[1] + lab[2]*lab[2]);
if (msh->at(0) > 0.0001)
msh->at(1) = acos(lab[0] / msh->at(0));
else
msh->at(1) = 0;
if (msh->at(1) > 0.0001)
msh->at(2) = atan2(lab[2], lab[1]);
else
msh->at(2) = 0;
}
void msh2rgb(const MSHValue& msh, RGBPixel* rgb) {
MSHValue lab(3,0), xyz(3,0), rgbl(3,0), srgb(3,0);
double fy, fx;
// msh2lab
lab[0] = msh[0] * cos(msh[1]);
lab[1] = msh[0] * sin(msh[1]) * cos(msh[2]);
lab[2] = msh[0] * sin(msh[1]) * sin(msh[2]);
// lab2xyz
fy = (lab[0] + 16.0) / 116.0;
xyz[1] = finv(fy) * xyz_white[1];
fx = lab[1]/500.0 + fy;
xyz[0] = finv(fx) * xyz_white[0];
xyz[2] = finv(fy - lab[2]/200.0) * xyz_white[2];
//printf("xyz = (%f,%f,%f)\n", xyz[0], xyz[1], xyz[2]);
// xyz2rgbl
rgbl[0] = 3.240481*xyz[0] - 1.537152*xyz[1] - 0.498536*xyz[2];
rgbl[1] = -0.969255*xyz[0] + 1.875990*xyz[1] + 0.041556*xyz[2];
rgbl[2] = 0.055647*xyz[0] - 0.204041*xyz[1] + 1.057311*xyz[2];
//printf("rgbl = (%f,%f,%f)\n", rgbl[0], rgbl[1], rgbl[2]);
// rgbL2rgb
for (size_t i=0; i<3; i++) {
//if (rgbl[i] > 0.04045) // This is from moreland, but presumably wrong
if (rgbl[i] > 0.001308)
srgb[i] = pow(rgbl[i], 1/2.4)*1.055 - 0.055;
else
srgb[i] = rgbl[i]*12.92;
srgb[i] = srgb[i]*255.0;
}
//printf("srgb = (%f,%f,%f)\n", srgb[0], srgb[1], srgb[2]);
rgb->red(int(srgb[0]+0.25)); rgb->green(int(srgb[1]+0.25)); rgb->blue(int(srgb[2]+0.25));
}
double adjust_hue(const MSHValue& msh_sat, double m_unsat) {
if (msh_sat[0] >= m_unsat-0.1)
return msh_sat[2];
double hspin = msh_sat[1]*sqrt(m_unsat*m_unsat - msh_sat[0]*msh_sat[0]) / (msh_sat[0] * sin(msh_sat[1]));
if (msh_sat[2] > -M_PI/3)
return msh_sat[2] + hspin;
else
return msh_sat[2] - hspin;
}
public:
FloatColormap(const RGBPixel& rgb_cold, const RGBPixel& rgb_warm) {
msh_cold.resize(3); msh_warm.resize(3); xyz_white.resize(3);
// compute white point
RGBPixel rgb_white(255,255,255);
rgb2xyz(rgb_white, &xyz_white);
// set cold and warm values
rgb2msh(rgb_cold, &msh_cold); rgb2msh(rgb_warm, &msh_warm);
RGBPixel shouldbe; msh2rgb(msh_cold, &shouldbe);
m_mid = std::max(88.0, std::max(msh_cold[0], msh_warm[0]));
}
RGBPixel interpolate_color(double v) {
MSHValue msh_mid(3,0), msh1(3,0), msh2(3,0);
RGBPixel rgb;
if (v < 0.0) {
msh2rgb(msh_cold, &rgb);
return rgb;
}
if (v > 1.0) {
msh2rgb(msh_warm, &rgb);
return rgb;
}
if (v<0.5) {
msh2[0] = m_mid; msh2[1] = 0.0; msh2[2] = 0.0;
for (size_t i=0; i<3; i++) msh1[i] = msh_cold[i];
v = 2.0*v;
} else {
msh1[0] = m_mid; msh1[1] = 0.0; msh1[2] = 0.0;
for (size_t i=0; i<3; i++) msh2[i] = msh_warm[i];
v = 2.0*v - 1.0;
}
if ((msh1[1] < 0.05) && (msh2[1] > 0.05))
msh1[2] = adjust_hue(msh2, msh1[0]);
else if ((msh2[1] < 0.05) && (msh1[1] > 0.05))
msh2[2] = adjust_hue(msh1, msh2[0]);
for (size_t i=0; i<3; i++)
msh_mid[i] = (1-v)*msh1[i] + v*msh2[i];
msh2rgb(msh_mid, &rgb);
return rgb;
}
};
RGBImageView* false_color(const FloatImageView& image, int colormap) {
RGBImageView* view = _image_conversion::creator<RGBPixel>::image(image);
FloatImageView::const_vec_iterator vi = image.vec_begin();
FloatPixel fmax = *vi;
FloatPixel fmin = *vi;
for (; vi != image.vec_end(); ++vi) {
if (*vi > fmax)
fmax = *vi;
if (*vi < fmin)
fmin = *vi;
}
double scale = fmax - fmin;
FloatImageView::const_vec_iterator in = image.vec_begin();
RGBImageView::vec_iterator out = view->vec_begin();
if (colormap == 0) { // diverging colormap
RGBPixel rgb1(59,76,192), rgb2(180,4,38), rgb3;
FloatColormap fc(rgb1, rgb2);
for (; in != image.vec_end(); ++in, ++out)
out.set(fc.interpolate_color((in.get()-fmin)/scale));
}
else { // rainbow colormap
double val;
for (; in != image.vec_end(); ++in, ++out) {
val = (in.get()-fmin)/scale;
double a = (1.0 - val)*4.0;
int x = int(a);
int y = int(255*(a-x));
if (x == 0)
out.set(RGBPixel(255,y,0));
else if (x == 1)
out.set(RGBPixel(255-y,255,0));
else if (x == 2)
out.set(RGBPixel(0,255,y));
else if (x == 3)
out.set(RGBPixel(0,255-y,255));
else
out.set(RGBPixel(0,0,255));
}
}
return view;
}
RGBImageView* false_color(const GreyScaleImageView& image, int colormap) {
RGBImageView* view = _image_conversion::creator<RGBPixel>::image(image);
GreyScaleImageView::const_vec_iterator in = image.vec_begin();
RGBImageView::vec_iterator out = view->vec_begin();
ImageAccessor<GreyScalePixel> in_acc;
ImageAccessor<RGBPixel> out_acc;
// Build a table mapping greyscale values to false color RGBPixels
RGBPixel table[256];
if (colormap == 0) { // diverging colormap
RGBPixel rgb1(59,76,192), rgb2(180,4,38), rgb3;
FloatColormap fc(rgb1, rgb2);
/*for (double v=0.0; v<=1; v+=1/256.0) {
rgb3 = fc.interpolate_color(v);
printf("%7.6f,%i,%i,%i\n", v, rgb3.red(), rgb3.green(), rgb3.blue());
}*/
for (size_t i=0.0; i<256; i++) {
table[i] = fc.interpolate_color(double(i)/255.0);
}
}
else { // rainbow colormap
for (size_t i=0.0; i<256; i++) {
double a = (255.0 - i)*4.0/255.0;
int x = int(a);
int y = int(255*(a-x));
if (x == 0)
table[i] = RGBPixel(255,y,0);
else if (x == 1)
table[i] = RGBPixel(255-y,255,0);
else if (x == 2)
table[i] = RGBPixel(0,255,y);
else if (x == 3)
table[i] = RGBPixel(0,255-y,255);
else
table[i] = RGBPixel(0,0,255);
}
}
// Create RGB based on table
for (; in != image.vec_end(); ++in, ++out)
out_acc.set(table[in_acc.get(in)], out);
return view;
}
// replace colors with labels
// Christoph Dalitz and Hasan Yildiz
template<class T>
Image* colors_to_labels(const T &src, PyObject* obj) {
OneBitImageData* dest_data = new OneBitImageData(src.size(), src.origin());
OneBitImageView* dest = new OneBitImageView(*dest_data, src.origin(), src.size());
typedef typename T::value_type value_type;
value_type value;
typedef typename OneBitImageView::value_type onebit_value_type;
std::string buf;
onebit_value_type label;
// highest label that can be stored in Onebit pixel type
onebit_value_type max_value = std::numeric_limits<onebit_value_type>::max();
std::map<unsigned int, unsigned int> pixel;
std::map<unsigned int, unsigned int>::iterator iter;
PyObject *itemKey, *itemValue;
unsigned int testKey;
Py_ssize_t pos = 0;
// mapping given how colors are to be mapped to labels
if (PyDict_Check(obj)) {
// copy color->label map to C++ map
long given_label;
label = 1;
while (PyDict_Next(obj, &pos, &itemKey, &itemValue)) {
if (label == max_value) {
char msg[128];
sprintf(msg, "More RGB colors than available labels (%i).", max_value);
throw std::range_error(msg);
}
label++;
if( !PyObject_TypeCheck(itemKey, get_RGBPixelType()) ) {
throw std::runtime_error("Dictionary rgb_to_label must have RGBPixel's as keys");
}
RGBPixel *rgbpixel = ((RGBPixelObject *) itemKey)->m_x;
testKey = (rgbpixel->red() << 16) | (rgbpixel->green() << 8) | rgbpixel->blue();
given_label = PyInt_AsLong(itemValue);
if (given_label < 0)
throw std::invalid_argument("Labels must be positive integers.");
if (pixel.find(testKey) == pixel.end())
pixel[testKey] = given_label;
}
for (size_t y=0; y<src.nrows(); ++y) {
for (size_t x=0; x<src.ncols(); ++x) {
value = src.get(Point(x,y));
testKey = (value.red() << 16) | (value.green() << 8) | value.blue();
if (pixel.find(testKey) != pixel.end())
dest->set(Point(x,y), pixel.find(testKey)->second);
}
}
}
// no mapping given: determine labels automatically by counting
else if (obj == Py_None) {
label = 2;
// special colors black and white
pixel[0] = 1;
pixel[(255<<16) | (255<<8) | 255] = 0;
for (size_t y=0; y<src.nrows(); ++y) {
for (size_t x=0; x<src.ncols(); ++x) {
value = src.get(Point(x,y));
testKey = (value.red() << 16) | (value.green() << 8) | value.blue();
if ( !(value.red()==0 && value.green()==0 && value.blue()==0) &&
!(value.red()==255 && value.green()==255 && value.blue()==255) &&
pixel.find(testKey) == pixel.end() ) {
if (label == max_value) {
char msg[128];
sprintf(msg, "More RGB colors than available labels (%i).", max_value);
throw std::range_error(msg);
}
pixel[testKey] = label++;
}
// replace color with label
dest->set(Point(x,y), pixel.find(testKey)->second);
}
}
}
// some argument given that is not a mapping color -> label
else {
throw std::invalid_argument("Mapping rgb_to_label must be dict or None");
}
return dest;
}
}
#endif
|