File: listutilities.hpp

package info (click to toggle)
gamera 3.4.1%2Bsvn1423-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 22,292 kB
  • ctags: 25,015
  • sloc: xml: 122,324; ansic: 50,812; cpp: 50,489; python: 34,987; makefile: 119; sh: 101
file content (241 lines) | stat: -rw-r--r-- 7,478 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*
 *
 * Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom, Karl MacMillan
 *               2014      Fabian Schmitt
 *               2009-2014 Christoph Dalitz
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef mgd04302003_listutilities
#define mgd04302003_listutilities

#include <Python.h>
#include "gameramodule.hpp"
#include "canonicpyobject.hpp"
#include <vector>
#include <algorithm>

namespace Gamera {

  // linear time median implementation for vectors of arithmetic objects
  template<class T>
  T median(std::vector<T>* v, bool inlist=false) {
    T m;
    size_t n = v->size();
    std::nth_element(v->begin(), v->begin() + n/2, v->end());
    m = *(v->begin() + n/2);
    if (!inlist && (0 == n % 2)) {
      std::nth_element(v->begin(), v->begin() + n/2 - 1, v->end());
      m = (m + *(v->begin()+n/2-1)) / 2;
    }
    return m;
  }

  // specialized median implementation for arbitrary Python lists
  PyObject* median_py(PyObject* list, bool inlist=false) {
    size_t n,i;
    PyObject *entry, *retval;
    if(!PyList_Check(list))
      throw std::runtime_error("median: Input argument is no list.");
    n = PyList_Size(list);
    if (0 == n)
      throw std::runtime_error("median: Input list must not be empty.");
    // distinction based on content type
    entry = PyList_GetItem(list,0);
    if (PyFloat_Check(entry)) {
      FloatVector* v = FloatVector_from_python(list);
      if (!v)
        throw std::runtime_error("median: Cannot convert list to float type. Is the list inhomogeneous?");
      double m = median(v, inlist);
      delete v;
      return Py_BuildValue("f",m);
    }
    else if (PyInt_Check(entry)) {
      IntVector* v = IntVector_from_python(list);
      if (!v)
        throw std::runtime_error("median: Cannot convert list to int type. Is the list inhomogeneous?");
      int m = median(v, inlist);
      delete v;
      return Py_BuildValue("i",m);
    }
    else {
      // for arbitrary Python lists, we need a wrapper class to
      // make it passable to a C++ vector<>
      std::vector<canonicPyObject>* v = new std::vector<canonicPyObject>;
      PyTypeObject* type = entry->ob_type;
      for(i=0;i<n;++i) {
        entry = PyList_GetItem(list,i);
        if (!PyObject_TypeCheck(entry,type))
          throw std::runtime_error("median: All list entries must be of the same type.");
        v->push_back(canonicPyObject(entry));
      }  
      std::nth_element(v->begin(), v->begin() + n/2, v->end());
      retval = (v->begin() + n/2)->value;
      delete v;
      Py_INCREF(retval);
      return retval;
    }
  }

  int permute_list(PyObject* list) {
    if (!PyList_Check(list)) {
      PyErr_Format(PyExc_TypeError, "Python list required.");
      return 0;
    }
    size_t n = PyList_Size(list);
    size_t j = 1;
    while (j < n && PyObject_Compare(PyList_GET_ITEM(list, j - 1), PyList_GET_ITEM(list, j)) > -1)
      ++j;
    if (j >= n)
      return 0;
    size_t l = 0;
    PyObject* tmp = PyList_GET_ITEM(list, j);
    while (PyObject_Compare(PyList_GET_ITEM(list, l), tmp) > -1)
      ++l;
  
    PyList_SET_ITEM(list, j, PyList_GET_ITEM(list, l));
    PyList_SET_ITEM(list, l, tmp);

    size_t k = 0;
    l = j - 1;
    while (k < l) {
      tmp = PyList_GET_ITEM(list, k);
      PyList_SET_ITEM(list, k, PyList_GET_ITEM(list, l));
      PyList_SET_ITEM(list, l, tmp);
      ++k;
      --l;
    }
    return 1;
  }

  PyObject* all_subsets(PyObject* a_input, int k) {

    // special treatment for k=0: only one set (the empty set)
    if (k==0) {
      PyObject* result = PyList_New(1);
      PyList_SetItem(result, 0, PyList_New(0));
      return result;
    }

    PyObject* a = PySequence_Fast(a_input, "First argument must be iterable");
    if (a == NULL)
      return 0;

    int n = PySequence_Fast_GET_SIZE(a);
    if (k < 0 || k > n) {
      Py_DECREF(a);
      throw std::runtime_error("k must be between 0 and len(a)");
    }

    PyObject* result = PyList_New(0);
    std::vector<int> indices(k);
    bool start = true;
    int m2 = 0;
    int m = k;
    do {
      if (start) {
        start = false;
      } else {
        if (m2 < n - m)
          m = 0;
        m++;
        m2 = indices[k - m];
      }

      for (int j = 1; j <= m; ++j) 
        indices[k + j - m - 1] = m2 + j;

      PyObject* subset = PyList_New(k);
      for (int j = 0; j < k; ++j) {
        PyObject* item = PySequence_Fast_GET_ITEM(a, indices[j] - 1);
        Py_INCREF(item);
        PyList_SetItem(subset, j, item);
      }
      PyList_Append(result, subset);
      Py_DECREF(subset);
    } while (indices[0] != n - k + 1);
  
    Py_DECREF(a);
    return result;
  }



  FloatVector* kernel_density(FloatVector* values, FloatVector* x, double bw=0.0, int kernel=0)
  {
	if (values->size() == 0)
      throw std::runtime_error("no values given for kernel density estimation");
	if (x->size() == 0)
      throw std::runtime_error("no x given for kernel density estimation");
    if (kernel<0 || kernel>2)
      throw std::runtime_error("kernel must be 0 (rectangular), 1 (triangular), or 2 (gaussian)");

    // copy values because sort changes vector
	FloatVector val_cop = FloatVector(*values);
	std::sort(val_cop.begin(), val_cop.end());
	
	//Silverman's Rule of Thumb
	if (bw == 0.0 && val_cop.size() > 1) {
      // compute variance
      double mu = 0.0;
      for (size_t i = 0; i < val_cop.size(); i++)
		mu += val_cop[i];
      mu /= val_cop.size();
      double var = 0.0;
      for (size_t i = 0; i < val_cop.size(); i++)
		var += (val_cop[i] - mu)*(val_cop[i] - mu);
      var /= (val_cop.size() - 1);
      // compute inter-quartile range
      size_t lq = val_cop.size() / 4;
      size_t uq = (val_cop.size() * 3) / 4;
      double iqr = val_cop[uq] - val_cop[lq];
      // Silverman's rule
      bw = 0.9 * std::min(sqrt(var), iqr/1.34) * pow((double)val_cop.size(),-0.2);
    }
	if (bw == 0.0) // can happen when almost all values are identical
      bw = 1.0;

	const double pre_gaus = 1.0/sqrt(2 * M_PI);
	const double sqrt6 = sqrt(6.0);

	FloatVector* result_vec = new FloatVector(x->size(),0.0);
	for(size_t i = 0; i < x->size(); i++) {
      double result = 0;
      for(size_t j = 0; j < values->size(); j++) {
        double k_x = (x->at(i) - values->at(j)) / bw;
        switch(kernel) {
        case 0:	//rectangular
          if (abs(k_x) <= 1.732051)  // sqrt(3)
            result += 0.2886751;     // 1/(2*sqrt(3))
          break;
        case 1:	//triangular
          if (abs(k_x) <= sqrt6)
            result += (sqrt6 - abs(k_x)) / (sqrt6*sqrt6);
          break;
        case 2:	//gaussian
          result += pre_gaus * exp(-k_x*k_x/2.0);
          break;
        }
      }
      result_vec->at(i) = result / (bw * values->size());
    }
	
	return result_vec;
  }

}

#endif