File: detect.py

package info (click to toggle)
gammapy 2.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,800 kB
  • sloc: python: 81,999; makefile: 211; sh: 11; javascript: 10
file content (288 lines) | stat: -rw-r--r-- 9,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
"""
Source detection and significance maps
======================================

Build a list of significant excesses in a Fermi-LAT map.

Context
-------

The first task in a source catalog production is to identify
significant excesses in the data that can be associated to unknown
sources and provide a preliminary parametrization in terms of position,
extent, and flux. In this notebook we will use Fermi-LAT data to
illustrate how to detect candidate sources in counts images with known
background.

**Objective: build a list of significant excesses in a Fermi-LAT map**

Proposed approach
-----------------

This notebook show how to do source detection with Gammapy using the
methods available in `~gammapy.estimators`. We will use images from a
Fermi-LAT 3FHL high-energy Galactic center dataset to do this:

-  perform adaptive smoothing on counts image
-  produce 2-dimensional test-statistics (TS)
-  run a peak finder to detect point-source candidates
-  compute Li & Ma significance images
-  estimate source candidates radius and excess counts

Note that what we do here is a quick-look analysis, the production of
real source catalogs use more elaborate procedures.

We will work with the following functions and classes:

-  `~gammapy.maps.WcsNDMap`
-  `~gammapy.estimators.ASmoothMapEstimator`
-  `~gammapy.estimators.TSMapEstimator`
-  `~gammapy.estimators.utils.find_peaks`

"""

######################################################################
# Setup
# -----
#
# As always, let’s get started with some setup …
#

import numpy as np
import astropy.units as u

# %matplotlib inline
import matplotlib.pyplot as plt
from IPython.display import display
from gammapy.datasets import MapDataset
from gammapy.estimators import ASmoothMapEstimator, TSMapEstimator
from gammapy.estimators.utils import find_peaks, find_peaks_in_flux_map
from gammapy.irf import EDispKernelMap, PSFMap
from gammapy.maps import Map
from gammapy.modeling.models import PointSpatialModel, PowerLawSpectralModel, SkyModel


######################################################################
# Read in input images
# --------------------
#
# We first read the relevant maps:
#

counts = Map.read("$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-counts-cube.fits.gz")
background = Map.read(
    "$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-background-cube.fits.gz"
)

exposure = Map.read("$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-exposure-cube.fits.gz")

psfmap = PSFMap.read(
    "$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-psf-cube.fits.gz",
    format="gtpsf",
)

edisp = EDispKernelMap.from_diagonal_response(
    energy_axis=counts.geom.axes["energy"],
    energy_axis_true=exposure.geom.axes["energy_true"],
)

dataset = MapDataset(
    counts=counts,
    background=background,
    exposure=exposure,
    psf=psfmap,
    name="fermi-3fhl-gc",
    edisp=edisp,
)


######################################################################
# Adaptive smoothing
# ------------------
#
# For visualisation purpose it can be nice to look at a smoothed counts
# image. This can be performed using the adaptive smoothing algorithm from
# `Ebeling et
# al. (2006) <https://ui.adsabs.harvard.edu/abs/2006MNRAS.368...65E/abstract>`__.
#
# In the following example the `~gammapy.estimators.ASmoothMapEstimator.threshold`
# argument gives the minimum significance expected, values below are clipped.
#

scales = u.Quantity(np.arange(0.05, 1, 0.05), unit="deg")
smooth = ASmoothMapEstimator(threshold=3, scales=scales, energy_edges=[10, 500] * u.GeV)
images = smooth.run(dataset)

plt.figure(figsize=(9, 5))
images["flux"].plot(add_cbar=True, stretch="asinh")
plt.show()


######################################################################
# TS map estimation
# -----------------
#
# The Test Statistic, :math:`TS = 2 \Delta log L` (`Mattox et
# al. 1996 <https://ui.adsabs.harvard.edu/abs/1996ApJ...461..396M/abstract>`__),
# compares the likelihood function L optimized with and without a given
# source. The TS map is computed by fitting by a single amplitude
# parameter on each pixel as described in Appendix A of `Stewart
# (2009) <https://ui.adsabs.harvard.edu/abs/2009A%26A...495..989S/abstract>`__.
# The fit is simplified by finding roots of the derivative of the fit
# statistics (default settings use `Brent’s
# method <https://en.wikipedia.org/wiki/Brent%27s_method>`__).
#
# We first need to define the model that will be used to test for the
# existence of a source. Here, we use a point source.
#

spatial_model = PointSpatialModel()

# We choose units consistent with the map units here...
spectral_model = PowerLawSpectralModel(amplitude="1e-22 cm-2 s-1 keV-1", index=2)
model = SkyModel(spatial_model=spatial_model, spectral_model=spectral_model)


######################################################################
# Here we show a full configuration of the estimator. We remind the user of the meaning
# of the various quantities:
#
# -  ``model``: a `~gammapy.modeling.models.SkyModel` which is converted to a source model kernel
# -  ``kernel_width``: the width for the above kernel
# -  ``n_sigma``: number of sigma for the flux error
# -  ``n_sigma_ul``: the number of sigma for the flux upper limits
# -  ``selection_optional``: what optional maps to compute
# -  ``n_jobs``: for running in parallel, the number of processes used for the computation
# -  ``sum_over_energy_groups``: to sum over the energy groups or fit the `norm` on the full energy cube


estimator = TSMapEstimator(
    model=model,
    kernel_width="1 deg",
    energy_edges=[10, 500] * u.GeV,
    n_sigma=1,
    n_sigma_ul=2,
    selection_optional=None,
    n_jobs=1,
    sum_over_energy_groups=True,
)


maps = estimator.run(dataset)

######################################################################
# Accessing and visualising results
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# Below we print the result of the `~gammapy.estimators.TSMapEstimator`. We have access to a number of
# different quantities, as shown below. We can also access the quantities names
# through ``maps.available_quantities``.
#

print(maps)

######################################################################
#

fig, (ax1, ax2, ax3) = plt.subplots(
    ncols=3,
    figsize=(20, 3),
    subplot_kw={"projection": counts.geom.wcs},
    gridspec_kw={"left": 0.1, "right": 0.98},
)

maps["sqrt_ts"].plot(ax=ax1, add_cbar=True)
ax1.set_title("Significance map")
maps["flux"].plot(ax=ax2, add_cbar=True, stretch="sqrt", vmin=0)
ax2.set_title("Flux map")
maps["niter"].plot(ax=ax3, add_cbar=True)
ax3.set_title("Iteration map")
plt.show()


######################################################################
# The flux in each pixel is obtained by multiplying a reference model with a
# normalisation factor:

print(maps.reference_model)

######################################################################
#
maps.norm.plot(add_cbar=True, stretch="sqrt")
plt.show()


######################################################################
# Source candidates
# -----------------
#
# Let’s run a peak finder on the `sqrt_ts` image to get a list of
# point-sources candidates (positions and peak `sqrt_ts` values). The
# `~gammapy.estimators.utils.find_peaks` function performs a local maximum search in a sliding
# window, the argument `min_distance` is the minimum pixel distance
# between peaks (smallest possible value and default is 1 pixel).
#

sources = find_peaks(maps["sqrt_ts"], threshold=5, min_distance="0.25 deg")
nsou = len(sources)
display(sources)

# Plot sources on top of significance sky image
plt.figure(figsize=(9, 5))
ax = maps["sqrt_ts"].plot(add_cbar=True)

ax.scatter(
    sources["ra"],
    sources["dec"],
    transform=ax.get_transform("icrs"),
    color="none",
    edgecolor="w",
    marker="o",
    s=600,
    lw=1.5,
)
plt.show()

# sphinx_gallery_thumbnail_number = 3


######################################################################
# We can also utilise `~gammapy.estimators.utils.find_peaks_in_flux_map`
# to display various parameters from the FluxMaps

sources_flux_map = find_peaks_in_flux_map(maps, threshold=5, min_distance="0.25 deg")
display(sources_flux_map)


######################################################################
# Note that we used the instrument point-spread-function (PSF) as kernel,
# so the hypothesis we test is the presence of a point source. In order to
# test for extended sources we would have to use as kernel an extended
# template convolved by the PSF. Alternatively, we can compute the
# significance of an extended excess using the Li & Ma formalism, which is
# faster as no fitting is involve.
#


######################################################################
# What next?
# ----------
#
# In this notebook, we have seen how to work with images and compute TS
# and significance images from counts data, if a background estimate is
# already available.
#
# Here’s some suggestions what to do next:
#
# -  Look how background estimation is performed for IACTs with and
#    without the high level interface in
#    :doc:`/tutorials/starting/analysis_1` and
#    :doc:`/tutorials/starting/analysis_2` notebooks,
#    respectively
# -  Learn about 2D model fitting in the :doc:`/tutorials/analysis-2d/modeling_2D` notebook
# -  Find more about Fermi-LAT data analysis in the
#    :doc:`/tutorials/data/fermi_lat` notebook
# -  Use source candidates to build a model and perform a 3D fitting (see
#    :doc:`/tutorials/analysis-3d/analysis_3d`,
#    :doc:`/tutorials/analysis-3d/analysis_mwl` notebooks for some hints)
#