1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
"""
Ring background map
===================
Create an excess (gamma-ray events) and a significance map extracting a ring background.
Context
-------
One of the challenges of IACT analysis is accounting for the large
residual hadronic emission. An excess map, assumed to be a map of only
gamma-ray events, requires a good estimate of the background. However,
in the absence of a solid template bkg model it is not possible to
obtain reliable background model a priori. It was often found necessary
in classical cherenkov astronomy to perform a local renormalization of
the existing templates, usually with a ring kernel. This assumes that
most of the events are background and requires to have an exclusion mask
to remove regions with bright signal from the estimation. To read more
about this method, see
`here. <https://arxiv.org/abs/astro-ph/0610959>`__
Objective
---------
Create an excess (gamma-ray events) map of MSH 15-52 as well as a
significance map to determine how solid the signal is.
Proposed approach
-----------------
The analysis workflow is roughly:
- Compute the sky maps keeping each observation separately using the `~gammapy.analysis.Analysis` class
- Estimate the background using the `~gammapy.makers.RingBackgroundMaker`
- Compute the correlated excess and significance maps using the `~gammapy.estimators.ExcessMapEstimator`
The normalised background thus obtained can be used for general
modelling and fitting.
"""
######################################################################
# Setup
# -----
#
# As usual, we’ll start with some general imports…
#
import logging
# %matplotlib inline
import astropy.units as u
from astropy.coordinates import SkyCoord
from regions import CircleSkyRegion
import matplotlib.pyplot as plt
from gammapy.analysis import Analysis, AnalysisConfig
from gammapy.datasets import MapDatasetOnOff
from gammapy.estimators import ExcessMapEstimator
from gammapy.makers import RingBackgroundMaker
from gammapy.visualization import plot_distribution
log = logging.getLogger(__name__)
######################################################################
# Creating the config file
# ------------------------
#
# Now, we create a config file for out analysis. You may load this from
# disc if you have a pre-defined config file.
#
# In this example, we will use a few H.E.S.S. runs on the pulsar wind nebula,
# MSH 1552
#
# source_pos = SkyCoord.from_name("MSH 15-52")
source_pos = SkyCoord(228.32, -59.08, unit="deg")
config = AnalysisConfig()
# Select observations - 2.5 degrees from the source position
config.observations.datastore = "$GAMMAPY_DATA/hess-dl3-dr1/"
config.observations.obs_cone = {
"frame": "icrs",
"lon": source_pos.ra,
"lat": source_pos.dec,
"radius": 2.5 * u.deg,
}
config.datasets.type = "3d"
config.datasets.geom.wcs.skydir = {
"lon": source_pos.ra,
"lat": source_pos.dec,
"frame": "icrs",
} # The WCS geometry - centered on MSH 15-52
config.datasets.geom.wcs.width = {"width": "3 deg", "height": "3 deg"}
config.datasets.geom.wcs.binsize = "0.02 deg"
# Cutout size (for the run-wise event selection)
config.datasets.geom.selection.offset_max = 2.5 * u.deg
# We now fix the energy axis for the counts map - (the reconstructed energy binning)
config.datasets.geom.axes.energy.min = "0.5 TeV"
config.datasets.geom.axes.energy.max = "10 TeV"
config.datasets.geom.axes.energy.nbins = 10
# We need to extract the ring for each observation separately, hence, no stacking at this stage
config.datasets.stack = False
print(config)
######################################################################
# Getting the reduced dataset
# ---------------------------
#
# We now use the config file to do the initial data reduction which will
# then be used for a ring extraction
#
# Create the config:
analysis = Analysis(config)
# for this specific case,w e do not need fine bins in true energy
analysis.config.datasets.geom.axes.energy_true = (
analysis.config.datasets.geom.axes.energy
)
# First get the required observations
analysis.get_observations()
print(analysis.config)
# Data extraction:
analysis.get_datasets()
######################################################################
# Extracting the ring background
# ------------------------------
#
# Since the ring background is extracted from real off events, we need to
# use the Wstat statistics in this case. For this, we will use the
# `~gammapy.datasets.MapDatasetOnOff` and the `~gammapy.makers.RingBackgroundMaker` classes.
#
######################################################################
# Create exclusion mask
# ~~~~~~~~~~~~~~~~~~~~~
#
# First, we need to create an exclusion mask on the known sources. In this
# case, we need to mask only MSH 15-52 but this depends on the sources
# present in our field of view.
#
# get the geom that we use
geom = analysis.datasets[0].counts.geom
energy_axis = analysis.datasets[0].counts.geom.axes["energy"]
geom_image = geom.to_image().to_cube([energy_axis.squash()])
# Make the exclusion mask
regions = CircleSkyRegion(center=source_pos, radius=0.4 * u.deg)
exclusion_mask = ~geom_image.region_mask([regions])
exclusion_mask.sum_over_axes().plot()
plt.show()
######################################################################
# For the present analysis, we use a ring with an inner radius of 0.5 deg
# and width of 0.3 deg.
#
ring_maker = RingBackgroundMaker(
r_in="0.5 deg", width="0.3 deg", exclusion_mask=exclusion_mask
)
######################################################################
# Create a stacked dataset
# ~~~~~~~~~~~~~~~~~~~~~~~~
#
# Now, we extract the background for each dataset and then stack the maps
# together to create a single stacked map for further analysis
#
energy_axis_true = analysis.datasets[0].exposure.geom.axes["energy_true"]
stacked_on_off = MapDatasetOnOff.create(
geom=geom_image, energy_axis_true=energy_axis_true, name="stacked"
)
for dataset in analysis.datasets:
# Ring extracting makes sense only for 2D analysis
dataset_on_off = ring_maker.run(dataset.to_image())
stacked_on_off.stack(dataset_on_off)
######################################################################
# This `stacked_on_off` has `on` and `off` counts and acceptance
# maps which we will use in all further analysis. The `acceptance` and
# `acceptance_off` maps are the system acceptance of gamma-ray like
# events in the `on` and `off` regions respectively.
#
print(stacked_on_off)
######################################################################
# Compute correlated significance and correlated excess maps
# ----------------------------------------------------------
#
# We need to convolve our maps with an appropriate smoothing kernel. The
# significance is computed according to the Li & Ma expression for ON and
# OFF Poisson measurements, see
# `here <https://ui.adsabs.harvard.edu/abs/1983ApJ...272..317L/abstract>`__.
#
#
# Also, since the off counts are obtained with a ring background estimation, and are thus already correlated, we specify `correlate_off=False`
# to avoid over correlation.
# Using a convolution radius of 0.04 degrees
estimator = ExcessMapEstimator(0.04 * u.deg, selection_optional=[], correlate_off=False)
lima_maps = estimator.run(stacked_on_off)
significance_map = lima_maps["sqrt_ts"]
excess_map = lima_maps["npred_excess"]
# We can plot the excess and significance maps
fig, (ax1, ax2) = plt.subplots(
figsize=(11, 4), subplot_kw={"projection": lima_maps.geom.wcs}, ncols=2
)
ax1.set_title("Significance map")
significance_map.plot(ax=ax1, add_cbar=True)
ax2.set_title("Excess map")
excess_map.plot(ax=ax2, add_cbar=True)
plt.show()
######################################################################
# It is often important to look at the significance distribution outside
# the exclusion region to check that the background estimation is not
# contaminated by gamma-ray events. This can be the case when exclusion
# regions are not large enough. Typically, we expect the off distribution
# to be a standard normal distribution. To compute the significance distribution outside the exclusion region,
# we can recompute the maps after adding a `mask_fit` to our dataset.
#
# Mask the regions with gamma-ray emission
stacked_on_off.mask_fit = exclusion_mask
lima_maps2 = estimator.run(stacked_on_off)
significance_map_off = lima_maps2["sqrt_ts"]
kwargs_axes = {"xlabel": "Significance", "yscale": "log", "ylim": (1e-3, 1)}
ax, _ = plot_distribution(
significance_map,
kwargs_hist={
"density": True,
"alpha": 0.5,
"color": "red",
"label": "all bins",
"bins": 51,
},
kwargs_axes=kwargs_axes,
)
ax, res = plot_distribution(
significance_map_off,
ax=ax,
func="norm",
kwargs_hist={
"density": True,
"alpha": 0.5,
"color": "blue",
"label": "off bins",
"bins": 51,
},
kwargs_axes=kwargs_axes,
)
plt.show()
# sphinx_gallery_thumbnail_number = 2
|