1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
"""
3D detailed analysis
====================
Perform detailed 3D stacked and joint analysis.
This tutorial does a 3D map based analysis on the galactic center, using
simulated observations from the CTA-1DC. We will use the high level
interface for the data reduction, and then do a detailed modelling. This
will be done in two different ways:
- stacking all the maps together and fitting the stacked maps
- handling all the observations separately and doing a joint fitting on
all the maps
"""
from pathlib import Path
import astropy.units as u
from regions import CircleSkyRegion
# %matplotlib inline
import matplotlib.pyplot as plt
from IPython.display import display
from gammapy.analysis import Analysis, AnalysisConfig
from gammapy.estimators import ExcessMapEstimator
from gammapy.modeling import Fit
from gammapy.modeling.models import (
ExpCutoffPowerLawSpectralModel,
FoVBackgroundModel,
Models,
PointSpatialModel,
SkyModel,
)
from gammapy.visualization import plot_distribution
######################################################################
# Analysis configuration
# ----------------------
#
# In this section we select observations and define the analysis
# geometries, irrespective of joint/stacked analysis. For configuration of
# the analysis, we will programmatically build a config file from scratch.
#
config = AnalysisConfig()
# The config file is now empty, with only a few defaults specified.
print(config)
# Selecting the observations
config.observations.datastore = "$GAMMAPY_DATA/cta-1dc/index/gps/"
config.observations.obs_ids = [110380, 111140, 111159]
# Defining a reference geometry for the reduced datasets
config.datasets.type = "3d" # Analysis type is 3D
config.datasets.geom.wcs.skydir = {
"lon": "0 deg",
"lat": "0 deg",
"frame": "galactic",
} # The WCS geometry - centered on the galactic center
config.datasets.geom.wcs.width = {"width": "10 deg", "height": "8 deg"}
config.datasets.geom.wcs.binsize = "0.02 deg"
# Cutout size (for the run-wise event selection)
config.datasets.geom.selection.offset_max = 3.5 * u.deg
config.datasets.safe_mask.methods = ["aeff-default", "offset-max"]
# We now fix the energy axis for the counts map - (the reconstructed energy binning)
config.datasets.geom.axes.energy.min = "0.1 TeV"
config.datasets.geom.axes.energy.max = "10 TeV"
config.datasets.geom.axes.energy.nbins = 10
# We now fix the energy axis for the IRF maps (exposure, etc) - (the true energy binning)
config.datasets.geom.axes.energy_true.min = "0.08 TeV"
config.datasets.geom.axes.energy_true.max = "12 TeV"
config.datasets.geom.axes.energy_true.nbins = 14
print(config)
######################################################################
# Configuration for stacked and joint analysis
# --------------------------------------------
#
# This is done just by specifying the flag on `config.datasets.stack`.
# Since the internal machinery will work differently for the two cases, we
# will write it as two config files and save it to disc in YAML format for
# future reference.
#
config_stack = config.model_copy(deep=True)
config_stack.datasets.stack = True
config_joint = config.model_copy(deep=True)
config_joint.datasets.stack = False
# To prevent unnecessary cluttering, we write it in a separate folder.
path = Path("analysis_3d")
path.mkdir(exist_ok=True)
config_joint.write(path=path / "config_joint.yaml", overwrite=True)
config_stack.write(path=path / "config_stack.yaml", overwrite=True)
######################################################################
# Stacked analysis
# ----------------
#
# Data reduction
# ~~~~~~~~~~~~~~
#
# We first show the steps for the stacked analysis and then repeat the
# same for the joint analysis later
#
# Reading yaml file:
config_stacked = AnalysisConfig.read(path=path / "config_stack.yaml")
analysis_stacked = Analysis(config_stacked)
# select observations:
analysis_stacked.get_observations()
# run data reduction
analysis_stacked.get_datasets()
######################################################################
# We have one final dataset, which we can print and explore
#
dataset_stacked = analysis_stacked.datasets["stacked"]
print(dataset_stacked)
######################################################################
# To visualise a counts map in different energy slices, you can use the
# `~gammapy.maps.WcsNDMap.plot_grid` or `~gammapy.maps.WcsNDMap.plot_interactive`
# functionalities, or create a plot of the counts summed over the energy axis:
#
dataset_stacked.counts.sum_over_axes().smooth(0.02 * u.deg).plot(add_cbar=True)
plt.show()
######################################################################
# Similarly with the background map:
#
dataset_stacked.background.sum_over_axes().plot(add_cbar=True)
plt.show()
######################################################################
# We can quickly check the PSF
#
dataset_stacked.psf.peek()
plt.show()
######################################################################
# And the energy dispersion in the center of the map
#
dataset_stacked.edisp.peek()
plt.show()
######################################################################
# You can also get an excess image with a few lines of code:
#
excess = dataset_stacked.excess.sum_over_axes()
excess.smooth("0.06 deg").plot(stretch="sqrt", add_cbar=True)
plt.show()
######################################################################
# Modeling and fitting
# ~~~~~~~~~~~~~~~~~~~~
#
# Now comes the interesting part of the analysis - choosing appropriate
# models for our source and fitting them.
#
# We choose a point source model with an exponential cutoff power-law
# spectrum.
#
######################################################################
# To perform the fit on a restricted energy range, we can create a
# specific *mask*. On the dataset, the `mask_fit` is a `~gammapy.maps.Map` sharing
# the same geometry as the `~gammapy.datasets.MapDataset` and containing boolean data.
#
# To create a mask to limit the fit within a restricted energy range, one
# can rely on the `~gammapy.maps.Geom.energy_mask()` method.
#
# For more details on masks and the techniques to create them in gammapy,
# please checkout the dedicated :doc:`/tutorials/details/mask_maps` tutorial.
#
dataset_stacked.mask_fit = dataset_stacked.counts.geom.energy_mask(
energy_min=0.3 * u.TeV, energy_max=None
)
spatial_model = PointSpatialModel(
lon_0="-0.05 deg", lat_0="-0.05 deg", frame="galactic"
)
spectral_model = ExpCutoffPowerLawSpectralModel(
index=2.3,
amplitude=2.8e-12 * u.Unit("cm-2 s-1 TeV-1"),
reference=1.0 * u.TeV,
lambda_=0.02 / u.TeV,
)
model = SkyModel(
spatial_model=spatial_model,
spectral_model=spectral_model,
name="gc-source",
)
bkg_model = FoVBackgroundModel(dataset_name="stacked")
bkg_model.spectral_model.norm.value = 1.3
models_stacked = Models([model, bkg_model])
dataset_stacked.models = models_stacked
fit = Fit(optimize_opts={"print_level": 1})
result = fit.run(datasets=[dataset_stacked])
######################################################################
# .. _mapdataset_fit_quality:
#
# Fit quality assessment and model residuals for a `~gammapy.datasets.MapDataset`
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
######################################################################
# We can access the results dictionary to see if the fit converged:
#
print(result)
######################################################################
# Check best-fit parameters and error estimates:
#
display(models_stacked.to_parameters_table())
######################################################################
# A quick way to inspect the model residuals is using the function
# `~gammapy.datasets.MapDataset.plot_residuals_spatial()`. This function computes and
# plots a residual image (by default, the smoothing radius is `0.1 deg`
# and `method=diff`, which corresponds to a simple `data - model`
# plot):
#
dataset_stacked.plot_residuals_spatial(method="diff/sqrt(model)", vmin=-1, vmax=1)
plt.show()
######################################################################
# The more general function `~gammapy.datasets.MapDataset.plot_residuals()` can also
# extract and display spectral residuals in a region:
#
region = CircleSkyRegion(spatial_model.position, radius=0.15 * u.deg)
dataset_stacked.plot_residuals(
kwargs_spatial=dict(method="diff/sqrt(model)", vmin=-1, vmax=1),
kwargs_spectral=dict(region=region),
)
plt.show()
######################################################################
# This way of accessing residuals is quick and handy, but comes with
# limitations. For example:
#
# - In case a fitting energy range was defined using a
# `~gammapy.datasets.MapDataset.mask_fit`, it won’t be taken into account.
# Residuals will be summed up over the whole reconstructed energy range
# - In order to make a proper statistic treatment, instead of simple
# residuals a proper residuals significance map should be computed
#
# A more accurate way to inspect spatial residuals is the following:
#
estimator = ExcessMapEstimator(
correlation_radius="0.1 deg",
selection_optional=[],
energy_edges=[0.1, 1, 10] * u.TeV,
)
result = estimator.run(dataset_stacked)
result["sqrt_ts"].plot_grid(
figsize=(12, 4), cmap="coolwarm", add_cbar=True, vmin=-5, vmax=5, ncols=2
)
plt.show()
######################################################################
# Distribution of residuals significance in the full map geometry:
#
significance_map = result["sqrt_ts"]
kwargs_hist = {"density": True, "alpha": 0.9, "color": "red", "bins": 40}
ax, res = plot_distribution(
significance_map,
func="norm",
kwargs_hist=kwargs_hist,
kwargs_axes={"xlim": (-5, 5)},
)
plt.show()
######################################################################
# Here we could also plot the number of predicted counts for each model and
# for the background in our dataset by using the
# `~gammapy.visualization.plot_npred_signal` function.
#
######################################################################
# Joint analysis
# --------------
#
# In this section, we perform a joint analysis of the same data. Of
# course, joint fitting is considerably heavier than stacked one, and
# should always be handled with care. For brevity, we only show the
# analysis for a point source fitting without re-adding a diffuse
# component again.
#
# Data reduction
# ~~~~~~~~~~~~~~
#
# Read the yaml file from disk
config_joint = AnalysisConfig.read(path=path / "config_joint.yaml")
analysis_joint = Analysis(config_joint)
# select observations:
analysis_joint.get_observations()
# run data reduction
analysis_joint.get_datasets()
# You can see there are 3 datasets now
print(analysis_joint.datasets)
######################################################################
# You can access each one by name or by index, eg:
#
print(analysis_joint.datasets[0])
######################################################################
# After the data reduction stage, it is nice to get a quick summary info
# on the datasets. Here, we look at the statistics in the center of Map,
# by passing an appropriate `region`. To get info on the entire spatial
# map, omit the region argument.
#
display(analysis_joint.datasets.info_table())
models_joint = Models()
model_joint = model.copy(name="source-joint")
models_joint.append(model_joint)
for dataset in analysis_joint.datasets:
bkg_model = FoVBackgroundModel(dataset_name=dataset.name)
models_joint.append(bkg_model)
print(models_joint)
# and set the new model
analysis_joint.datasets.models = models_joint
fit_joint = Fit()
result_joint = fit_joint.run(datasets=analysis_joint.datasets)
######################################################################
# .. _dataset_fit_quality:
#
# Fit quality assessment and model residuals for a joint `~gammapy.datasets.Datasets`
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
######################################################################
# We can access the results dictionary to see if the fit converged:
#
print(result_joint)
######################################################################
# Check best-fit parameters and error estimates:
#
print(models_joint)
######################################################################
# Since the joint dataset is made of multiple datasets, we can either:
#
# - Look at the residuals for each dataset separately. In this case, we can
# directly refer to the section :ref:`mapdataset_fit_quality`
# - Or, look at a stacked residual map.
#
stacked = analysis_joint.datasets.stack_reduce()
stacked.models = [model_joint]
stacked.plot_residuals_spatial(vmin=-1, vmax=1)
plt.show()
######################################################################
# Then, we can access the stacked model residuals as previously shown in
# the section :ref:`dataset_fit_quality`.
#
######################################################################
# Finally, let us compare the spectral results from the stacked and joint
# fit:
#
def plot_spectrum(model, ax, label, color):
spec = model.spectral_model
energy_bounds = [0.3, 10] * u.TeV
spec.plot(
ax=ax, energy_bounds=energy_bounds, energy_power=2, label=label, color=color
)
spec.plot_error(ax=ax, energy_bounds=energy_bounds, energy_power=2, color=color)
fig, ax = plt.subplots()
plot_spectrum(model, ax=ax, label="stacked", color="tab:blue")
plot_spectrum(model_joint, ax=ax, label="joint", color="tab:orange")
ax.legend()
plt.show()
######################################################################
# Summary
# -------
#
# Note that this notebook aims to show you the procedure of a 3D analysis
# using just a few observations. Results get much better for a more
# complete analysis considering the GPS dataset from the CTA First Data
# Challenge (DC-1) and also the CTA model for the Galactic diffuse
# emission, as shown in the next image:
#
######################################################################
# .. image:: ../../_static/DC1_3d.png
#
#
######################################################################
# Exercises
# ---------
#
# - Analyse the second source in the field of view: G0.9+0.1 and add it
# to the combined model.
# - Perform modeling in more details.
# - Add diffuse component, get flux points.
#
|