1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
"""
Event sampling
==============
Learn to sampling events from a given sky model and IRFs.
Prerequisites
-------------
To understand how to generate a model and a `~gammapy.datasets.MapDataset` and how to fit
the data, please refer to the `~gammapy.modeling.models.SkyModel` and
:doc:`/tutorials/analysis-3d/simulate_3d` tutorial.
Context
-------
This tutorial describes how to sample events from an observation of a
one (or more) gamma-ray source(s). The main aim of the tutorial will be
to set the minimal configuration needed to deal with the Gammapy
event-sampler and how to obtain an output photon event list.
The core of the event sampling lies into the Gammapy
`~gammapy.datasets.MapDatasetEventSampler` class, which is based on
the inverse cumulative distribution function `(Inverse
CDF) <https://en.wikipedia.org/wiki/Cumulative_distribution_function#Inverse_distribution_function_(quantile_function)>`__.
The `~gammapy.datasets.MapDatasetEventSampler` takes in input a
`~gammapy.datasets.Dataset` object containing the spectral, spatial
and temporal properties of the source(s) of interest.
The `~gammapy.datasets.MapDatasetEventSampler` class evaluates the map
of predicted counts (``npred``) per bin of the given Sky model, and the
``npred`` map is then used to sample the events. In particular, the
output of the event-sampler will be a set of events having information
about their true coordinates, true energies and times of arrival.
To these events, IRF corrections (i.e. PSF and energy dispersion) can
also further be applied in order to obtain reconstructed coordinates and
energies of the sampled events.
At the end of this process, you will obtain an event-list in FITS
format.
Objective
---------
Describe the process of sampling events from a given Sky model and
obtain an output event-list.
Proposed approach
-----------------
In this section, we will show how to define an observation and create
a Dataset object. These are both necessary for the event sampling. Then,
we will define the Sky model from which we sample events.
In this tutorial, we propose examples for sampling events of:
- `a point-like source <#sampling-the-source-and-background-events>`__
- `a time variable point-like
source <#time-variable-source-using-a-lightcurve>`__
- `an extended source using a template
map <#extended-source-using-a-template>`__
- `a set of observations <#simulate-multiple-event-lists>`__
We will work with the following functions and classes:
- `~gammapy.data.Observations`
- `~gammapy.datasets.Dataset`
- `~gammapy.modeling.models.SkyModel`
- `~gammapy.datasets.MapDatasetEventSampler`
- `~gammapy.data.EventList`
"""
######################################################################
# Setup
# -----
#
# As usual, let’s start with some general imports…
#
from pathlib import Path
import numpy as np
import astropy.units as u
from astropy.coordinates import Angle, SkyCoord
from astropy.time import Time
from regions import CircleSkyRegion
import matplotlib.pyplot as plt
from IPython.display import display
from gammapy.data import (
DataStore,
FixedPointingInfo,
Observation,
observatory_locations,
)
from gammapy.datasets import MapDataset, MapDatasetEventSampler
from gammapy.irf import load_irf_dict_from_file
from gammapy.makers import MapDatasetMaker
from gammapy.maps import MapAxis, WcsGeom
from gammapy.modeling.models import (
ExpDecayTemporalModel,
FoVBackgroundModel,
Models,
PointSpatialModel,
PowerLawNormSpectralModel,
PowerLawSpectralModel,
SkyModel,
TemplateSpatialModel,
)
######################################################################
# Define an `~gammapy.data.Observation`
# -------------------------------------
#
# You can firstly create a `~gammapy.data.Observations` object that
# contains the pointing position, the GTIs and the IRF you want to
# consider.
#
# Hereafter, we chose the IRF of the South configuration used for the CTA
# DC1 and we set the pointing position of the simulated field at the
# Galactic Center. We also fix the exposure time to 1 hr.
#
# Let’s start with some initial settings:
path = Path("$GAMMAPY_DATA/cta-caldb")
irf_filename = "Prod5-South-20deg-AverageAz-14MSTs37SSTs.180000s-v0.1.fits.gz"
# telescope is pointing at a fixed position in ICRS for the observation
pointing = FixedPointingInfo(
fixed_icrs=SkyCoord(0.0, 0.0, frame="galactic", unit="deg").icrs,
)
livetime = 1 * u.hr
location = observatory_locations["ctao_south"]
irfs = load_irf_dict_from_file(path / irf_filename)
######################################################################
# Now you can create the observation:
#
observation = Observation.create(
obs_id=1001,
pointing=pointing,
livetime=livetime,
irfs=irfs,
location=location,
)
print(observation)
######################################################################
# Define the `~gammapy.datasets.MapDataset`
# -----------------------------------------
#
# Let’s generate the `~gammapy.datasets.Dataset` object (for more info
# on `~gammapy.datasets.Dataset` objects, please checkout
# :doc:`/tutorials/details/datasets` tutorial):
# we define the energy axes (true and reconstructed), the migration axis
# and the geometry of the observation.
#
# *This is a crucial point for the correct configuration of the event
# sampler. Indeed, the spatial and energetic binning should be treated
# carefully and… the finer the better. For this reason, we suggest to
# define the energy axes (true and reconstructed) by setting a minimum
# binning of least 10-20 bins per decade for all the sources of interest.
# The spatial binning may instead be different from source to source and,
# at first order, it should be adopted a binning significantly smaller
# than the expected source size.*
#
# For the examples that will be shown hereafter, we set the geometry of
# the dataset to a field of view of 2degx2deg and we bin the spatial map
# with pixels of 0.02 deg.
#
energy_axis = MapAxis.from_energy_bounds("0.1 TeV", "100 TeV", nbin=10, per_decade=True)
energy_axis_true = MapAxis.from_energy_bounds(
"0.03 TeV", "300 TeV", nbin=20, per_decade=True, name="energy_true"
)
migra_axis = MapAxis.from_bounds(0.5, 2, nbin=150, node_type="edges", name="migra")
geom = WcsGeom.create(
skydir=pointing.fixed_icrs,
width=(2, 2),
binsz=0.02,
frame="galactic",
axes=[energy_axis],
)
######################################################################
# In the following, the dataset is created by selecting the effective
# area, background model, the PSF and the Edisp from the IRF. The dataset
# thus produced can be saved into a FITS file just using the ``write()``
# function. We put it into the ``event_sampling`` sub-folder:
#
empty = MapDataset.create(
geom,
energy_axis_true=energy_axis_true,
migra_axis=migra_axis,
name="my-dataset",
)
maker = MapDatasetMaker(selection=["exposure", "background", "psf", "edisp"])
dataset = maker.run(empty, observation)
Path("event_sampling").mkdir(exist_ok=True)
dataset.write("./event_sampling/dataset.fits", overwrite=True)
######################################################################
# Define the `~gammapy.modeling.models.SkyModel`: a point-like source
# -------------------------------------------------------------------
#
# Now let’s define a sky model for a point-like source centered 0.5
# deg far from the Galactic Center and with a power-law spectrum. We then
# save the model into a yaml file.
#
spectral_model_pwl = PowerLawSpectralModel(
index=2, amplitude="1e-12 TeV-1 cm-2 s-1", reference="1 TeV"
)
spatial_model_point = PointSpatialModel(
lon_0="0 deg", lat_0="0.5 deg", frame="galactic"
)
sky_model_pntpwl = SkyModel(
spectral_model=spectral_model_pwl,
spatial_model=spatial_model_point,
name="point-pwl",
)
bkg_model = FoVBackgroundModel(dataset_name="my-dataset")
models = Models([sky_model_pntpwl, bkg_model])
file_model = "./event_sampling/point-pwl.yaml"
models.write(file_model, overwrite=True)
######################################################################
# Sampling the source and background events
# -----------------------------------------
#
# Now, we can finally add the `~gammapy.modeling.models.SkyModel` we
# want to event-sample to the `~gammapy.datasets.Dataset` container:
#
dataset.models = models
print(dataset.models)
######################################################################
# The next step shows how to sample the events with the
# `~gammapy.datasets.MapDatasetEventSampler` class. The class requests a
# random number seed generator (that we set with `random_state=0`), the
# `~gammapy.datasets.Dataset` and the `~gammapy.data.Observations`
# object. From the latter, the
# `~gammapy.datasets.MapDatasetEventSampler` class takes all the meta
# data information.
#
sampler = MapDatasetEventSampler(random_state=0)
events = sampler.run(dataset, observation)
######################################################################
# The output of the event-sampler is an event list with coordinates,
# energies (true and reconstructed) and time of arrivals of the source and
# background events. `events` is a `~gammapy.data.EventList` object
# (for details see e.g. :doc:`/tutorials/data/cta` tutorial.).
# Source and background events are flagged by the MC_ID identifier (where
# 0 is the default identifier for the background).
#
print(f"Source events: {(events.table['MC_ID'] == 1).sum()}")
print(f"Background events: {(events.table['MC_ID'] == 0).sum()}")
######################################################################
# We can inspect the properties of the simulated events as follows:
#
events.select_offset([0, 1] * u.deg).peek()
plt.show()
######################################################################
# By default, the `~gammapy.datasets.MapDatasetEventSampler` fills the
# metadata keyword `OBJECT` in the event list using the first model of
# the SkyModel object. You can change it with the following commands:
#
events.table.meta["OBJECT"] = dataset.models[0].name
######################################################################
# Let’s write the event list and its GTI extension to a FITS file, adopting
# the `observation` functions. We firstly link the `events` to the `observation`
# objects and then we write it into a fits file:
#
observation.events = events
observation.write(
"./event_sampling/events_0001.fits", include_irfs=False, overwrite=True
)
######################################################################
# Time variable source using a lightcurve
# ---------------------------------------
#
# The event sampler can also handle temporal variability of the simulated
# sources. In this example, we show how to sample a source characterized
# by an exponential decay, with decay time of 2800 seconds, during the
# observation.
#
# First of all, let’s create a lightcurve:
#
t0 = 2800 * u.s
t_ref = Time("2000-01-01T00:01:04.184")
times = t_ref + livetime * np.linspace(0, 1, 100)
expdecay_model = ExpDecayTemporalModel(t_ref=t_ref.mjd * u.d, t0=t0)
######################################################################
# where we defined the time axis starting from the reference time
# `t_ref` up to the requested exposure (`livetime`). The bin size of
# the time-axis is quite arbitrary but, as above for spatial and energy
# binning, the finer the better.
#
######################################################################
# Then, we can create the sky model. Just for the sake of the example,
# let’s boost the flux of the simulated source of an order of magnitude:
#
spectral_model_pwl.amplitude.value = 2e-11
sky_model_pntpwl = SkyModel(
spectral_model=spectral_model_pwl,
spatial_model=spatial_model_point,
temporal_model=expdecay_model,
name="point-pwl",
)
bkg_model = FoVBackgroundModel(dataset_name="my-dataset")
models = Models([sky_model_pntpwl, bkg_model])
file_model = "./event_sampling/point-pwl_decay.yaml"
models.write(file_model, overwrite=True)
######################################################################
# For simplicity, we use the same dataset defined for the previous
# example:
#
dataset.models = models
print(dataset.models)
######################################################################
# And now, let’s simulate the variable source:
#
sampler = MapDatasetEventSampler(random_state=0)
events = sampler.run(dataset, observation)
print(f"Source events: {(events.table['MC_ID'] == 1).sum()}")
print(f"Background events: {(events.table['MC_ID'] == 0).sum()}")
######################################################################
# We can now inspect the properties of the simulated source. To do that,
# we adopt the `~gammapy.data.EventList.select_region()` function that extracts only the events
# into a given `~regions.Region` of a `~gammapy.data.EventList` object:
#
src_position = SkyCoord(0.0, 0.5, frame="galactic", unit="deg")
on_region_radius = Angle("0.15 deg")
on_region = CircleSkyRegion(center=src_position, radius=on_region_radius)
src_events = events.select_region(on_region)
######################################################################
# Then we can have a quick look to the data with the ``peek`` function:
#
src_events.peek()
plt.show()
######################################################################
# In the right figure of the bottom panel, it is shown the source
# lightcurve that follows a decay trend as expected.
#
######################################################################
# Extended source using a template
# --------------------------------
#
# The event sampler can also work with a template model. Here we use the
# interstellar emission model map of the Fermi 3FHL, which can be found in
# the `$GAMMAPY_DATA` repository.
#
# We proceed following the same steps showed above and we finally have a
# look at the event’s properties:
#
template_model = TemplateSpatialModel.read(
"$GAMMAPY_DATA/fermi-3fhl-gc/gll_iem_v06_gc.fits.gz", normalize=False
)
# we make the model brighter artificially so that it becomes visible over the background
diffuse = SkyModel(
spectral_model=PowerLawNormSpectralModel(norm=5),
spatial_model=template_model,
name="template-model",
)
bkg_model = FoVBackgroundModel(dataset_name="my-dataset")
models_diffuse = Models([diffuse, bkg_model])
file_model = "./event_sampling/diffuse.yaml"
models_diffuse.write(file_model, overwrite=True)
dataset.models = models_diffuse
print(dataset.models)
sampler = MapDatasetEventSampler(random_state=0)
events = sampler.run(dataset, observation)
events.select_offset([0, 1] * u.deg).peek()
plt.show()
######################################################################
# Simulate multiple event lists
# -----------------------------
#
# In some user case, you may want to sample events from a number of
# observations. In this section, we show how to simulate a set of event
# lists. For simplicity, we consider only one point-like source, observed
# three times for 1 hr and assuming the same pointing position.
#
# Let’s firstly define the time start and the livetime of each
# observation:
#
tstarts = Time("2020-01-01 00:00:00") + [1, 5, 7] * u.hr
livetimes = [1, 1, 1] * u.hr
n_obs = len(tstarts)
irf_paths = [path / irf_filename] * n_obs
events_paths = []
for idx, tstart in enumerate(tstarts):
irfs = load_irf_dict_from_file(irf_paths[idx])
observation = Observation.create(
obs_id=idx,
pointing=pointing,
tstart=tstart,
livetime=livetimes[idx],
irfs=irfs,
location=location,
)
dataset = maker.run(empty, observation)
dataset.models = models
sampler = MapDatasetEventSampler(random_state=idx)
events = sampler.run(dataset, observation)
path = Path(f"./event_sampling/events_{idx:04d}.fits")
events_paths.append(path)
events.table.write(path, overwrite=True)
######################################################################
# You can now load the event list and the corresponding IRFs with
# `~gammapy.data.DataStore.from_events_files()`:
#
path = Path("./event_sampling/")
events_paths = list(path.rglob("events*.fits"))
data_store = DataStore.from_events_files(events_paths, irf_paths)
display(data_store.obs_table)
######################################################################
# Then you can create the observations from the data store and make your own
# analysis following the instructions in the
# :doc:`/tutorials/starting/analysis_2` tutorial.
#
observations = data_store.get_observations()
observations[0].peek()
plt.show()
######################################################################
# Exercises
# ---------
#
# - Try to sample events for an extended source (e.g. a radial gaussian
# morphology);
# - Change the spatial model and the spectrum of the simulated Sky model;
# - Include a temporal model in the simulation
#
|