File: event_sampling.py

package info (click to toggle)
gammapy 2.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,800 kB
  • sloc: python: 81,999; makefile: 211; sh: 11; javascript: 10
file content (501 lines) | stat: -rw-r--r-- 17,018 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
"""
Event sampling
==============

Learn to sampling events from a given sky model and IRFs.

Prerequisites
-------------

To understand how to generate a model and a `~gammapy.datasets.MapDataset` and how to fit
the data, please refer to the `~gammapy.modeling.models.SkyModel` and
:doc:`/tutorials/analysis-3d/simulate_3d` tutorial.

Context
-------

This tutorial describes how to sample events from an observation of a
one (or more) gamma-ray source(s). The main aim of the tutorial will be
to set the minimal configuration needed to deal with the Gammapy
event-sampler and how to obtain an output photon event list.

The core of the event sampling lies into the Gammapy
`~gammapy.datasets.MapDatasetEventSampler` class, which is based on
the inverse cumulative distribution function `(Inverse
CDF) <https://en.wikipedia.org/wiki/Cumulative_distribution_function#Inverse_distribution_function_(quantile_function)>`__.

The `~gammapy.datasets.MapDatasetEventSampler` takes in input a
`~gammapy.datasets.Dataset` object containing the spectral, spatial
and temporal properties of the source(s) of interest.

The `~gammapy.datasets.MapDatasetEventSampler` class evaluates the map
of predicted counts (``npred``) per bin of the given Sky model, and the
``npred`` map is then used to sample the events. In particular, the
output of the event-sampler will be a set of events having information
about their true coordinates, true energies and times of arrival.

To these events, IRF corrections (i.e. PSF and energy dispersion) can
also further be applied in order to obtain reconstructed coordinates and
energies of the sampled events.

At the end of this process, you will obtain an event-list in FITS
format.


Objective
---------

Describe the process of sampling events from a given Sky model and
obtain an output event-list.


Proposed approach
-----------------

In this section, we will show how to define an observation and create
a Dataset object. These are both necessary for the event sampling. Then,
we will define the Sky model from which we sample events.

In this tutorial, we propose examples for sampling events of:

-  `a point-like source <#sampling-the-source-and-background-events>`__
-  `a time variable point-like
   source <#time-variable-source-using-a-lightcurve>`__
-  `an extended source using a template
   map <#extended-source-using-a-template>`__
-  `a set of observations <#simulate-multiple-event-lists>`__

We will work with the following functions and classes:

-  `~gammapy.data.Observations`
-  `~gammapy.datasets.Dataset`
-  `~gammapy.modeling.models.SkyModel`
-  `~gammapy.datasets.MapDatasetEventSampler`
-  `~gammapy.data.EventList`

"""

######################################################################
# Setup
# -----
#
# As usual, let’s start with some general imports…
#

from pathlib import Path
import numpy as np
import astropy.units as u
from astropy.coordinates import Angle, SkyCoord
from astropy.time import Time
from regions import CircleSkyRegion
import matplotlib.pyplot as plt
from IPython.display import display
from gammapy.data import (
    DataStore,
    FixedPointingInfo,
    Observation,
    observatory_locations,
)
from gammapy.datasets import MapDataset, MapDatasetEventSampler
from gammapy.irf import load_irf_dict_from_file
from gammapy.makers import MapDatasetMaker
from gammapy.maps import MapAxis, WcsGeom
from gammapy.modeling.models import (
    ExpDecayTemporalModel,
    FoVBackgroundModel,
    Models,
    PointSpatialModel,
    PowerLawNormSpectralModel,
    PowerLawSpectralModel,
    SkyModel,
    TemplateSpatialModel,
)

######################################################################
# Define an `~gammapy.data.Observation`
# -------------------------------------
#
# You can firstly create a `~gammapy.data.Observations` object that
# contains the pointing position, the GTIs and the IRF you want to
# consider.
#
# Hereafter, we chose the IRF of the South configuration used for the CTA
# DC1 and we set the pointing position of the simulated field at the
# Galactic Center. We also fix the exposure time to 1 hr.
#
# Let’s start with some initial settings:

path = Path("$GAMMAPY_DATA/cta-caldb")
irf_filename = "Prod5-South-20deg-AverageAz-14MSTs37SSTs.180000s-v0.1.fits.gz"

# telescope is pointing at a fixed position in ICRS for the observation
pointing = FixedPointingInfo(
    fixed_icrs=SkyCoord(0.0, 0.0, frame="galactic", unit="deg").icrs,
)
livetime = 1 * u.hr
location = observatory_locations["ctao_south"]


irfs = load_irf_dict_from_file(path / irf_filename)

######################################################################
# Now you can create the observation:
#

observation = Observation.create(
    obs_id=1001,
    pointing=pointing,
    livetime=livetime,
    irfs=irfs,
    location=location,
)
print(observation)

######################################################################
# Define the `~gammapy.datasets.MapDataset`
# -----------------------------------------
#
# Let’s generate the `~gammapy.datasets.Dataset` object (for more info
# on `~gammapy.datasets.Dataset` objects, please checkout
# :doc:`/tutorials/details/datasets` tutorial):
# we define the energy axes (true and reconstructed), the migration axis
# and the geometry of the observation.
#
# *This is a crucial point for the correct configuration of the event
# sampler. Indeed, the spatial and energetic binning should be treated
# carefully and… the finer the better. For this reason, we suggest to
# define the energy axes (true and reconstructed) by setting a minimum
# binning of least 10-20 bins per decade for all the sources of interest.
# The spatial binning may instead be different from source to source and,
# at first order, it should be adopted a binning significantly smaller
# than the expected source size.*
#
# For the examples that will be shown hereafter, we set the geometry of
# the dataset to a field of view of 2degx2deg and we bin the spatial map
# with pixels of 0.02 deg.
#

energy_axis = MapAxis.from_energy_bounds("0.1 TeV", "100 TeV", nbin=10, per_decade=True)
energy_axis_true = MapAxis.from_energy_bounds(
    "0.03 TeV", "300 TeV", nbin=20, per_decade=True, name="energy_true"
)
migra_axis = MapAxis.from_bounds(0.5, 2, nbin=150, node_type="edges", name="migra")

geom = WcsGeom.create(
    skydir=pointing.fixed_icrs,
    width=(2, 2),
    binsz=0.02,
    frame="galactic",
    axes=[energy_axis],
)

######################################################################
# In the following, the dataset is created by selecting the effective
# area, background model, the PSF and the Edisp from the IRF. The dataset
# thus produced can be saved into a FITS file just using the ``write()``
# function. We put it into the ``event_sampling`` sub-folder:
#

empty = MapDataset.create(
    geom,
    energy_axis_true=energy_axis_true,
    migra_axis=migra_axis,
    name="my-dataset",
)
maker = MapDatasetMaker(selection=["exposure", "background", "psf", "edisp"])
dataset = maker.run(empty, observation)

Path("event_sampling").mkdir(exist_ok=True)
dataset.write("./event_sampling/dataset.fits", overwrite=True)

######################################################################
# Define the `~gammapy.modeling.models.SkyModel`: a point-like source
# -------------------------------------------------------------------
#
# Now let’s define a sky model for a point-like source centered 0.5
# deg far from the Galactic Center and with a power-law spectrum. We then
# save the model into a yaml file.
#

spectral_model_pwl = PowerLawSpectralModel(
    index=2, amplitude="1e-12 TeV-1 cm-2 s-1", reference="1 TeV"
)
spatial_model_point = PointSpatialModel(
    lon_0="0 deg", lat_0="0.5 deg", frame="galactic"
)

sky_model_pntpwl = SkyModel(
    spectral_model=spectral_model_pwl,
    spatial_model=spatial_model_point,
    name="point-pwl",
)

bkg_model = FoVBackgroundModel(dataset_name="my-dataset")

models = Models([sky_model_pntpwl, bkg_model])

file_model = "./event_sampling/point-pwl.yaml"
models.write(file_model, overwrite=True)


######################################################################
# Sampling the source and background events
# -----------------------------------------
#
# Now, we can finally add the `~gammapy.modeling.models.SkyModel` we
# want to event-sample to the `~gammapy.datasets.Dataset` container:
#

dataset.models = models
print(dataset.models)

######################################################################
# The next step shows how to sample the events with the
# `~gammapy.datasets.MapDatasetEventSampler` class. The class requests a
# random number seed generator (that we set with `random_state=0`), the
# `~gammapy.datasets.Dataset` and the `~gammapy.data.Observations`
# object. From the latter, the
# `~gammapy.datasets.MapDatasetEventSampler` class takes all the meta
# data information.
#

sampler = MapDatasetEventSampler(random_state=0)
events = sampler.run(dataset, observation)

######################################################################
# The output of the event-sampler is an event list with coordinates,
# energies (true and reconstructed) and time of arrivals of the source and
# background events. `events` is a `~gammapy.data.EventList` object
# (for details see e.g. :doc:`/tutorials/data/cta` tutorial.).
# Source and background events are flagged by the MC_ID identifier (where
# 0 is the default identifier for the background).
#

print(f"Source events: {(events.table['MC_ID'] == 1).sum()}")
print(f"Background events: {(events.table['MC_ID'] == 0).sum()}")

######################################################################
# We can inspect the properties of the simulated events as follows:
#

events.select_offset([0, 1] * u.deg).peek()
plt.show()

######################################################################
# By default, the `~gammapy.datasets.MapDatasetEventSampler` fills the
# metadata keyword `OBJECT` in the event list using the first model of
# the SkyModel object. You can change it with the following commands:
#

events.table.meta["OBJECT"] = dataset.models[0].name

######################################################################
# Let’s write the event list and its GTI extension to a FITS file, adopting
# the `observation` functions. We firstly link the `events` to the `observation`
# objects and then we write it into a fits file:
#

observation.events = events
observation.write(
    "./event_sampling/events_0001.fits", include_irfs=False, overwrite=True
)

######################################################################
# Time variable source using a lightcurve
# ---------------------------------------
#
# The event sampler can also handle temporal variability of the simulated
# sources. In this example, we show how to sample a source characterized
# by an exponential decay, with decay time of 2800 seconds, during the
# observation.
#
# First of all, let’s create a lightcurve:
#

t0 = 2800 * u.s
t_ref = Time("2000-01-01T00:01:04.184")

times = t_ref + livetime * np.linspace(0, 1, 100)
expdecay_model = ExpDecayTemporalModel(t_ref=t_ref.mjd * u.d, t0=t0)

######################################################################
# where we defined the time axis starting from the reference time
# `t_ref` up to the requested exposure (`livetime`). The bin size of
# the time-axis is quite arbitrary but, as above for spatial and energy
# binning, the finer the better.
#

######################################################################
# Then, we can create the sky model. Just for the sake of the example,
# let’s boost the flux of the simulated source of an order of magnitude:
#

spectral_model_pwl.amplitude.value = 2e-11

sky_model_pntpwl = SkyModel(
    spectral_model=spectral_model_pwl,
    spatial_model=spatial_model_point,
    temporal_model=expdecay_model,
    name="point-pwl",
)

bkg_model = FoVBackgroundModel(dataset_name="my-dataset")

models = Models([sky_model_pntpwl, bkg_model])

file_model = "./event_sampling/point-pwl_decay.yaml"
models.write(file_model, overwrite=True)


######################################################################
# For simplicity, we use the same dataset defined for the previous
# example:
#

dataset.models = models
print(dataset.models)

######################################################################
# And now, let’s simulate the variable source:
#

sampler = MapDatasetEventSampler(random_state=0)
events = sampler.run(dataset, observation)

print(f"Source events: {(events.table['MC_ID'] == 1).sum()}")
print(f"Background events: {(events.table['MC_ID'] == 0).sum()}")

######################################################################
# We can now inspect the properties of the simulated source. To do that,
# we adopt the `~gammapy.data.EventList.select_region()` function that extracts only the events
# into a given `~regions.Region` of a `~gammapy.data.EventList` object:
#

src_position = SkyCoord(0.0, 0.5, frame="galactic", unit="deg")

on_region_radius = Angle("0.15 deg")
on_region = CircleSkyRegion(center=src_position, radius=on_region_radius)

src_events = events.select_region(on_region)

######################################################################
# Then we can have a quick look to the data with the ``peek`` function:
#

src_events.peek()
plt.show()

######################################################################
# In the right figure of the bottom panel, it is shown the source
# lightcurve that follows a decay trend as expected.
#

######################################################################
# Extended source using a template
# --------------------------------
#
# The event sampler can also work with a template model. Here we use the
# interstellar emission model map of the Fermi 3FHL, which can be found in
# the `$GAMMAPY_DATA` repository.
#
# We proceed following the same steps showed above and we finally have a
# look at the event’s properties:
#

template_model = TemplateSpatialModel.read(
    "$GAMMAPY_DATA/fermi-3fhl-gc/gll_iem_v06_gc.fits.gz", normalize=False
)
# we make the model brighter artificially so that it becomes visible over the background
diffuse = SkyModel(
    spectral_model=PowerLawNormSpectralModel(norm=5),
    spatial_model=template_model,
    name="template-model",
)

bkg_model = FoVBackgroundModel(dataset_name="my-dataset")

models_diffuse = Models([diffuse, bkg_model])

file_model = "./event_sampling/diffuse.yaml"
models_diffuse.write(file_model, overwrite=True)

dataset.models = models_diffuse
print(dataset.models)


sampler = MapDatasetEventSampler(random_state=0)
events = sampler.run(dataset, observation)

events.select_offset([0, 1] * u.deg).peek()
plt.show()

######################################################################
# Simulate multiple event lists
# -----------------------------
#
# In some user case, you may want to sample events from a number of
# observations. In this section, we show how to simulate a set of event
# lists. For simplicity, we consider only one point-like source, observed
# three times for 1 hr and assuming the same pointing position.
#
# Let’s firstly define the time start and the livetime of each
# observation:
#

tstarts = Time("2020-01-01 00:00:00") + [1, 5, 7] * u.hr
livetimes = [1, 1, 1] * u.hr

n_obs = len(tstarts)
irf_paths = [path / irf_filename] * n_obs
events_paths = []

for idx, tstart in enumerate(tstarts):
    irfs = load_irf_dict_from_file(irf_paths[idx])
    observation = Observation.create(
        obs_id=idx,
        pointing=pointing,
        tstart=tstart,
        livetime=livetimes[idx],
        irfs=irfs,
        location=location,
    )

    dataset = maker.run(empty, observation)
    dataset.models = models
    sampler = MapDatasetEventSampler(random_state=idx)
    events = sampler.run(dataset, observation)

    path = Path(f"./event_sampling/events_{idx:04d}.fits")
    events_paths.append(path)
    events.table.write(path, overwrite=True)

######################################################################
# You can now load the event list and the corresponding IRFs with
# `~gammapy.data.DataStore.from_events_files()`:
#

path = Path("./event_sampling/")
events_paths = list(path.rglob("events*.fits"))
data_store = DataStore.from_events_files(events_paths, irf_paths)
display(data_store.obs_table)


######################################################################
# Then you can create the observations from the data store and make your own
# analysis following the instructions in the
# :doc:`/tutorials/starting/analysis_2` tutorial.
#

observations = data_store.get_observations()
observations[0].peek()
plt.show()

######################################################################
# Exercises
# ---------
#
# -  Try to sample events for an extended source (e.g. a radial gaussian
#    morphology);
# -  Change the spatial model and the spectrum of the simulated Sky model;
# -  Include a temporal model in the simulation
#