1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
"""
Computing flux upper limits
===========================
Explore how to compute flux upper limits for a non-detected source.
Prerequisites
-------------
It is advisable to understand the general Gammapy modeling and fitting
framework before proceeding with this notebook, e.g. :doc:`/user-guide/modeling`.
Context
-------
In the study of VHE sources, one often encounters no significant
detection even after long exposures. In that case, it may be useful to
compute flux upper limits (UL) for the said target consistent with the observation.
Proposed approach
-----------------
In this section, we will use an empty observation from the H.E.S.S. DL3 DR1 to understand how
to quantify non-detections. There are two distinct approaches to consider:
- Test for the presence of emission anywhere in a map and compute an integral flux upper limit at
any position (i.e. UL map).
- Test the presence of emission from a potential source with given position and morphology and compute
integral and differential UL
"""
######################################################################
# Setup
# -----
#
# As usual, let’s start with some general imports…
#
# %matplotlib inline
import matplotlib.pyplot as plt
import astropy.units as u
from gammapy.datasets import MapDataset, Datasets
from gammapy.estimators import FluxPointsEstimator, ExcessMapEstimator
from gammapy.modeling import select_nested_models
from gammapy.modeling.models import (
PointSpatialModel,
PowerLawSpectralModel,
SkyModel,
create_crab_spectral_model,
)
from gammapy.visualization import plot_distribution
######################################################################
# Load observation
# ----------------
#
# For computational purposes, we have
# already created a `~gammapy.datasets.MapDataset` from observation id ``20275`` from the
# public H.E.S.S. data release and stored it in ``$GAMMAPY_DATA``
#
dataset = MapDataset.read("$GAMMAPY_DATA/datasets/empty-dl4/empty-dl4.fits.gz")
dataset.peek()
plt.show()
######################################################################
# Create Upper Limit maps
# -----------------------
#
# We will first use the `~gammapy.estimators.ExcessMapEstimator` for a quick check to see if
# there are any potential sources in the field. The ``correlation_radius`` should be around the
# size of the source you are searching for. You may also use the
# `~gammapy.estimators.TSMapEstimator`.
estimator = ExcessMapEstimator(
sum_over_energy_groups=True,
selection_optional="all",
correlate_off=True,
correlation_radius=0.1 * u.deg,
)
lima_maps = estimator.run(dataset)
significance_map = lima_maps["sqrt_ts"]
excess_map = lima_maps["npred_excess"]
fig, (ax1, ax2) = plt.subplots(
figsize=(11, 4), subplot_kw={"projection": lima_maps.geom.wcs}, ncols=2
)
ax1.set_title("Significance map")
significance_map.plot(ax=ax1, add_cbar=True)
ax2.set_title("Excess map")
excess_map.plot(ax=ax2, add_cbar=True)
plt.show()
######################################################################
# The significance map looks featureless. We will plot a histogram of the
# significance distribution and fit it with a standard normal.
# Deviations from a standard normal can suggest the presence of gamma-ray sources,
# or can also originate from incorrect modeling of the residual hadronic background.
ax = plt.subplot()
plot_distribution(
significance_map,
func="norm",
ax=ax,
kwargs_hist={"bins": 50, "range": (-4, 4), "density": True},
)
plt.show()
######################################################################
# We can also see the correlated upper limits at any position in the map. However, it is important to note
# that this is **not** a source UL, as the containment correction is not applied here. Instead, it gives the
# flux upper limits contained within the ``correlation_radius`` at each pixel. This can be useful
# when making quick look plots to search for the presence of new sources with a field - for example
# in the case of alerts from Gravitational Wave detectors.
#
lima_maps.flux_ul.plot(add_cbar=True, cmap="viridis")
plt.show()
###############################################################################
# .. _compute_upper_lims:
#
# Compute upper limits for a source
# ---------------------------------
#
# Now, we address a more specific question.
# Suppose we were expecting a source at a specific position, say the center of our map.
# We’ll attempt to fit a point source at that location to determine whether the signal
# is significant above the background.
#
# For this, we compare two hypotheses:
#
# - Null hypothesis, :math:`H_0` - only the background is present (i.e., no source)
# - Alternative hypothesis, :math:`H_1` - the background plus a point source
#
# The difference in test statistic (TS) between the two cases indicates the
# significance of the alternative hypothesis.
#
# For this purpose, we can utilise the function `~gammapy.modeling.select_nested_models` which
# performs these comparisons internally.
# As the null hypothesis, :math:`H_0`, corresponds to the case of no source, we set the amplitude to 0, in other words
# the source has no flux.
#
# To prevent the fit from converging to unrelated positions, we freeze the spatial parameters.
# Alternatively, you can constrain the parameter ranges to stay within your expected region.
spectral_model = PowerLawSpectralModel()
spatial_model = PointSpatialModel(lon_0=187 * u.deg, lat_0=2.6 * u.deg, frame="icrs")
spatial_model.lat_0.frozen = True
spatial_model.lon_0.frozen = True
sky_model = SkyModel(
spatial_model=spatial_model, spectral_model=spectral_model, name="source"
)
dataset.models = sky_model
LLR = select_nested_models(
datasets=Datasets(dataset),
parameters=[sky_model.parameters["amplitude"]],
null_values=[0],
)
print(LLR)
######################################################################
# The fitted parameters under the alternative hypothesis:
print(LLR["fit_results"].parameters.to_table())
######################################################################
# The test statistic is ``ts ~ 4.7``. Note that here we have
# only 1 free parameter, the amplitude, and thus, we can assume the simple conversion
# significance = :math:`\sqrt{ts} \approx 2.2`.
# Therefore, the observed fluctuations are not significant above the background.
# Next, we will estimate the differential upper limits of the source.
###############################################################################
# Differential upper limits
# ~~~~~~~~~~~~~~~~~~~~~~~~~
#
# In the absence of a detection, using the model directly from the fit is meaningless as its features can be
# simply due to background fluctuations.
# It is important to **set a reasonable model** on the dataset
# before proceeding with the `~gammapy.estimators.FluxPointsEstimator`. This model can come from
# measurements from other instruments, be an extrapolation of the flux
# observed at other wavelengths, come from theoretical estimations, etc.
# In particular, a model with a negative amplitude as obtained above should not be used.
#
# Note that **the computed upper limits depend on the spectral parameters of the assumed model**.
# Here, we compute the 3-sigma upper limits for assuming a spectral index of 2.0.
# We also fix the spatial parameters of the model to prevent the minimiser
# from wandering off to different regions in the FoV.
#
sky_model.parameters["amplitude"].value = 1e-14
sky_model.parameters["index"].value = 2.0
sky_model.freeze(model_type="spatial")
energy_edges = dataset.geoms["geom"].axes["energy"].edges
fpe = FluxPointsEstimator(
selection_optional="all",
energy_edges=energy_edges,
n_sigma_ul=3,
source="source",
)
fp1 = fpe.run(dataset)
fp1.plot(sed_type="dnde")
plt.show()
######################################################################
# Integral upper limits
# ~~~~~~~~~~~~~~~~~~~~~
#
# To compute the integral upper limits between certain energies,
# we can simply run `~gammapy.estimators.FluxPointsEstimator`
# with one bin in energy.
emin = energy_edges[0]
emax = energy_edges[-1]
fpe2 = FluxPointsEstimator(
selection_optional=["ul"], energy_edges=[emin, emax], source="source"
)
fp2 = fpe2.run(dataset)
print(
f"Integral upper limit between {emin:.1f} and {emax:.1f} is {fp2.flux_ul.quantity.ravel()[0]:.2e}"
)
######################################################################
# Sensitivity estimation
# ~~~~~~~~~~~~~~~~~~~~~~
#
# We can then ask, **would this source have been detectable given this IRF/exposure time?**
#
# The `~gammapy.estimators.FluxPointsEstimator` can be used to obtain the sensitivity,
# which can be compared to the flux prediction for a given (hypothetical) source. We have the 5-sigma
# sensitivity here, which can be configured using ``n_sigma_sensitivity``
# parameter of this estimator. Let us see what we would have seen if a Crab-like source was
# present in the center.
# Note that this computed sensitivity does not take into account the factors
# such as the minimum number of gamma-rays (see :doc:`/tutorials/analysis-1d/cta_sensitivity`)
# and is dependent on the analysis configuration.
# We compare this with the known Crab spectrum.
crab_model = create_crab_spectral_model()
fp1.dnde_sensitivity.plot(label="sensitivity")
crab_model.plot(
energy_bounds=fp1.geom.axes["energy"], sed_type="dnde", label="Crab spectrum"
)
plt.grid(which="minor", alpha=0.3)
plt.legend()
plt.show()
# sphinx_gallery_thumbnail_number = 6
######################################################################
# Thus, a Crab-like source should have been above our sensitivity till around ~ 4 TeV for this specific observation.
|