File: light_curve_simulation.py

package info (click to toggle)
gammapy 2.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,800 kB
  • sloc: python: 81,999; makefile: 211; sh: 11; javascript: 10
file content (356 lines) | stat: -rw-r--r-- 10,953 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
"""
Simulating and fitting a time varying source
============================================

Simulate and fit a time decaying light curve of a source using the CTA 1DC response.

Prerequisites
-------------

-  To understand how a single binned simulation works, please refer to
   :doc:`/tutorials/analysis-1d/spectrum_simulation` tutorial and
   :doc:`/tutorials/analysis-3d/simulate_3d` tutorial for 1D and 3D simulations,
   respectively.
-  For details of light curve extraction using gammapy, refer to the two
   tutorials :doc:`/tutorials/analysis-time/light_curve` and
   :doc:`/tutorials/analysis-time/light_curve_flare`.

Context
-------

Frequently, studies of variable sources (eg: decaying GRB light curves,
AGN flares, etc.) require time variable simulations. For most use cases,
generating an event list is an overkill, and it suffices to use binned
simulations using a temporal model.

**Objective: Simulate and fit a time decaying light curve of a source
with CTA using the CTA 1DC response.**

Proposed approach
-----------------

We will simulate 10 spectral datasets within given time intervals (Good
Time Intervals) following a given spectral (a power law) and temporal
profile (an exponential decay, with a decay time of 6 hr). These are
then analysed using the light curve estimator to obtain flux points.

Modelling and fitting of lightcurves can be done either - directly on
the output of the `~gammapy.estimators.LightCurveEstimator` (at the DL5 level) - fit the
simulated datasets (at the DL4 level)

In summary, the necessary steps are:

-  Choose observation parameters including a list of
   `gammapy.data.GTI`
-  Define temporal and spectral models from the :ref:`model-gallery` as per
   science case
-  Perform the simulation (in 1D or 3D)
-  Extract the light curve from the reduced dataset as shown
   in :doc:`/tutorials/analysis-time/light_curve` tutorial
-  Optionally, we show here how to fit the simulated datasets using a
   source model

Setup
-----

As usual, we’ll start with some general imports…

"""

import logging
import numpy as np
import astropy.units as u
from astropy.coordinates import SkyCoord
from astropy.time import Time

# %matplotlib inline
import matplotlib.pyplot as plt
from IPython.display import display

log = logging.getLogger(__name__)


######################################################################
# And some gammapy specific imports
#

import warnings
from gammapy.data import FixedPointingInfo, Observation, observatory_locations
from gammapy.datasets import Datasets, FluxPointsDataset, SpectrumDataset
from gammapy.estimators import LightCurveEstimator
from gammapy.irf import load_irf_dict_from_file
from gammapy.makers import SpectrumDatasetMaker
from gammapy.maps import MapAxis, RegionGeom, TimeMapAxis
from gammapy.modeling import Fit
from gammapy.modeling.models import (
    ExpDecayTemporalModel,
    PowerLawSpectralModel,
    SkyModel,
)

warnings.filterwarnings(
    action="ignore", message="overflow encountered in exp", module="astropy"
)


######################################################################
# We first define our preferred time format:
#

TimeMapAxis.time_format = "iso"


######################################################################
# Simulating a light curve
# ------------------------
#
# We will simulate 10 spectra between 300 GeV and 10 TeV using an
# `~gammapy.modeling.models.PowerLawSpectralModel` and a
# `~gammapy.modeling.models.ExpDecayTemporalModel`. The important
# thing to note here is how to attach a different ``GTI`` to each dataset.
# Since we use spectrum datasets here, we will use a `~gammapy.maps.RegionGeom`.
#

# Loading IRFs
irfs = load_irf_dict_from_file(
    "$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits"
)

# Reconstructed and true energy axis
energy_axis = MapAxis.from_edges(
    np.logspace(-0.5, 1.0, 10), unit="TeV", name="energy", interp="log"
)
energy_axis_true = MapAxis.from_edges(
    np.logspace(-1.2, 2.0, 31), unit="TeV", name="energy_true", interp="log"
)

geom = RegionGeom.create("galactic;circle(0, 0, 0.11)", axes=[energy_axis])

# Pointing position to be supplied as a `FixedPointingInfo`
pointing = FixedPointingInfo(
    fixed_icrs=SkyCoord(0.5, 0.5, unit="deg", frame="galactic").icrs,
)


######################################################################
# Note that observations are usually conducted in Wobble mode, in which
# the source is not in the center of the camera. This allows to have a
# symmetrical sky position from which background can be estimated.
#

# Define the source model: A combination of spectral and temporal model

gti_t0 = Time("2020-03-01")
spectral_model = PowerLawSpectralModel(
    index=3, amplitude="1e-11 cm-2 s-1 TeV-1", reference="1 TeV"
)
temporal_model = ExpDecayTemporalModel(t0="6 h", t_ref=gti_t0.mjd * u.d)

model_simu = SkyModel(
    spectral_model=spectral_model,
    temporal_model=temporal_model,
    name="model-simu",
)

# Look at the model
display(model_simu.parameters.to_table())


######################################################################
# Now, define the start and observation livetime wrt to the reference
# time, ``gti_t0``
#

n_obs = 10

tstart = gti_t0 + [1, 2, 3, 5, 8, 10, 20, 22, 23, 24] * u.h
lvtm = [55, 25, 26, 40, 40, 50, 40, 52, 43, 47] * u.min


######################################################################
# Now perform the simulations
#

datasets = Datasets()

empty = SpectrumDataset.create(
    geom=geom, energy_axis_true=energy_axis_true, name="empty"
)

maker = SpectrumDatasetMaker(selection=["exposure", "background", "edisp"])


for idx in range(n_obs):
    obs = Observation.create(
        pointing=pointing,
        livetime=lvtm[idx],
        tstart=tstart[idx],
        irfs=irfs,
        reference_time=gti_t0,
        obs_id=idx,
        location=observatory_locations["ctao_south"],
    )
    empty_i = empty.copy(name=f"dataset-{idx}")
    dataset = maker.run(empty_i, obs)
    dataset.models = model_simu
    dataset.fake()
    datasets.append(dataset)


######################################################################
# The reduced datasets have been successfully simulated. Let’s take a
# quick look into our datasets.
#

display(datasets.info_table())


######################################################################
# Extract the lightcurve
# ----------------------
#
# This section uses standard light curve estimation tools for a 1D
# extraction. Only a spectral model needs to be defined in this case.
# Since the estimator returns the integrated flux separately for each time
# bin, the temporal model need not be accounted for at this stage. We
# extract the lightcurve in 3 energy bins.
#

# Define the model:
spectral_model = PowerLawSpectralModel(
    index=3, amplitude="1e-11 cm-2 s-1 TeV-1", reference="1 TeV"
)
model_fit = SkyModel(spectral_model=spectral_model, name="model-fit")

# Attach model to all datasets
datasets.models = model_fit

lc_maker_1d = LightCurveEstimator(
    energy_edges=[0.3, 0.6, 1.0, 10] * u.TeV,
    source="model-fit",
    selection_optional=["ul"],
)
lc_1d = lc_maker_1d.run(datasets)

fig, ax = plt.subplots(
    figsize=(8, 6),
    gridspec_kw={"left": 0.16, "bottom": 0.2, "top": 0.98, "right": 0.98},
)
lc_1d.plot(ax=ax, marker="o", axis_name="time", sed_type="flux")
plt.show()


######################################################################
# Fitting temporal models
# -----------------------
#
# We have the reconstructed lightcurve at this point. Now we want to fit a
# profile to the obtained light curves, using a joint fitting across the
# different datasets, while simultaneously minimising across the temporal
# model parameters as well. The temporal models can be applied
#
# -  directly on the obtained lightcurve
# -  on the simulated datasets
#


######################################################################
# Fitting the obtained light curve
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# We will first convert the obtained light curve to a `~gammapy.datasets.FluxPointsDataset`
# and fit it with a spectral and temporal model

# Create the datasets by iterating over the returned lightcurve
dataset_fp = FluxPointsDataset(data=lc_1d, name="dataset_lc")


######################################################################
# We will fit the amplitude, spectral index and the decay time scale. Note
# that ``t_ref`` should be fixed by default for the
# `~gammapy.modeling.models.ExpDecayTemporalModel`.
#

# Define the model:
spectral_model1 = PowerLawSpectralModel(
    index=2.0, amplitude="1e-12 cm-2 s-1 TeV-1", reference="1 TeV"
)
temporal_model1 = ExpDecayTemporalModel(t0="10 h", t_ref=gti_t0.mjd * u.d)


model = SkyModel(
    spectral_model=spectral_model1,
    temporal_model=temporal_model1,
    name="model-test",
)

dataset_fp.models = model
print(dataset_fp)


# Fit the dataset
fit = Fit()
result = fit.run(dataset_fp)
display(result.parameters.to_table())


######################################################################
# Now let’s plot model and data. We plot only the normalisation of the
# temporal model in relative units for one particular energy range
#

plt.figure(figsize=(8, 7))
plt.subplots_adjust(bottom=0.3)
dataset_fp.plot_spectrum(axis_name="time")
plt.show()

######################################################################
# Fit the datasets
# ~~~~~~~~~~~~~~~~
#
# Here, we apply the models directly to the simulated datasets.
#
# For modelling and fitting more complex flares, you should attach the
# relevant model to each group of ``datasets``. The parameters of a model
# in a given group of dataset will be tied. For more details on joint
# fitting in Gammapy, see the :doc:`/tutorials/analysis-3d/analysis_3d`.
#

# Define the model:
spectral_model2 = PowerLawSpectralModel(
    index=2.0, amplitude="1e-12 cm-2 s-1 TeV-1", reference="1 TeV"
)
temporal_model2 = ExpDecayTemporalModel(t0="10 h", t_ref=gti_t0.mjd * u.d)

model2 = SkyModel(
    spectral_model=spectral_model2,
    temporal_model=temporal_model2,
    name="model-test2",
)

display(model2.parameters.to_table())

datasets.models = model2

# Perform a joint fit
fit = Fit()
result = fit.run(datasets=datasets)

display(result.parameters.to_table())

######################################################################
# We see that the fitted parameters are consistent between fitting flux
# points and datasets, and match well with the simulated ones
#


######################################################################
# Exercises
# ---------
#
# 1. Re-do the analysis with `~gammapy.datasets.MapDataset` instead of a `~gammapy.datasets.SpectrumDataset`
# 2. Model the flare of PKS 2155-304 which you obtained using
#    the :doc:`/tutorials/analysis-time/light_curve_flare` tutorial.
#    Use a combination of a Gaussian and Exponential flare profiles.
# 3. Do a joint fitting of the datasets.
#