1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
"""
Simulating and fitting a time varying source
============================================
Simulate and fit a time decaying light curve of a source using the CTA 1DC response.
Prerequisites
-------------
- To understand how a single binned simulation works, please refer to
:doc:`/tutorials/analysis-1d/spectrum_simulation` tutorial and
:doc:`/tutorials/analysis-3d/simulate_3d` tutorial for 1D and 3D simulations,
respectively.
- For details of light curve extraction using gammapy, refer to the two
tutorials :doc:`/tutorials/analysis-time/light_curve` and
:doc:`/tutorials/analysis-time/light_curve_flare`.
Context
-------
Frequently, studies of variable sources (eg: decaying GRB light curves,
AGN flares, etc.) require time variable simulations. For most use cases,
generating an event list is an overkill, and it suffices to use binned
simulations using a temporal model.
**Objective: Simulate and fit a time decaying light curve of a source
with CTA using the CTA 1DC response.**
Proposed approach
-----------------
We will simulate 10 spectral datasets within given time intervals (Good
Time Intervals) following a given spectral (a power law) and temporal
profile (an exponential decay, with a decay time of 6 hr). These are
then analysed using the light curve estimator to obtain flux points.
Modelling and fitting of lightcurves can be done either - directly on
the output of the `~gammapy.estimators.LightCurveEstimator` (at the DL5 level) - fit the
simulated datasets (at the DL4 level)
In summary, the necessary steps are:
- Choose observation parameters including a list of
`gammapy.data.GTI`
- Define temporal and spectral models from the :ref:`model-gallery` as per
science case
- Perform the simulation (in 1D or 3D)
- Extract the light curve from the reduced dataset as shown
in :doc:`/tutorials/analysis-time/light_curve` tutorial
- Optionally, we show here how to fit the simulated datasets using a
source model
Setup
-----
As usual, we’ll start with some general imports…
"""
import logging
import numpy as np
import astropy.units as u
from astropy.coordinates import SkyCoord
from astropy.time import Time
# %matplotlib inline
import matplotlib.pyplot as plt
from IPython.display import display
log = logging.getLogger(__name__)
######################################################################
# And some gammapy specific imports
#
import warnings
from gammapy.data import FixedPointingInfo, Observation, observatory_locations
from gammapy.datasets import Datasets, FluxPointsDataset, SpectrumDataset
from gammapy.estimators import LightCurveEstimator
from gammapy.irf import load_irf_dict_from_file
from gammapy.makers import SpectrumDatasetMaker
from gammapy.maps import MapAxis, RegionGeom, TimeMapAxis
from gammapy.modeling import Fit
from gammapy.modeling.models import (
ExpDecayTemporalModel,
PowerLawSpectralModel,
SkyModel,
)
warnings.filterwarnings(
action="ignore", message="overflow encountered in exp", module="astropy"
)
######################################################################
# We first define our preferred time format:
#
TimeMapAxis.time_format = "iso"
######################################################################
# Simulating a light curve
# ------------------------
#
# We will simulate 10 spectra between 300 GeV and 10 TeV using an
# `~gammapy.modeling.models.PowerLawSpectralModel` and a
# `~gammapy.modeling.models.ExpDecayTemporalModel`. The important
# thing to note here is how to attach a different ``GTI`` to each dataset.
# Since we use spectrum datasets here, we will use a `~gammapy.maps.RegionGeom`.
#
# Loading IRFs
irfs = load_irf_dict_from_file(
"$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits"
)
# Reconstructed and true energy axis
energy_axis = MapAxis.from_edges(
np.logspace(-0.5, 1.0, 10), unit="TeV", name="energy", interp="log"
)
energy_axis_true = MapAxis.from_edges(
np.logspace(-1.2, 2.0, 31), unit="TeV", name="energy_true", interp="log"
)
geom = RegionGeom.create("galactic;circle(0, 0, 0.11)", axes=[energy_axis])
# Pointing position to be supplied as a `FixedPointingInfo`
pointing = FixedPointingInfo(
fixed_icrs=SkyCoord(0.5, 0.5, unit="deg", frame="galactic").icrs,
)
######################################################################
# Note that observations are usually conducted in Wobble mode, in which
# the source is not in the center of the camera. This allows to have a
# symmetrical sky position from which background can be estimated.
#
# Define the source model: A combination of spectral and temporal model
gti_t0 = Time("2020-03-01")
spectral_model = PowerLawSpectralModel(
index=3, amplitude="1e-11 cm-2 s-1 TeV-1", reference="1 TeV"
)
temporal_model = ExpDecayTemporalModel(t0="6 h", t_ref=gti_t0.mjd * u.d)
model_simu = SkyModel(
spectral_model=spectral_model,
temporal_model=temporal_model,
name="model-simu",
)
# Look at the model
display(model_simu.parameters.to_table())
######################################################################
# Now, define the start and observation livetime wrt to the reference
# time, ``gti_t0``
#
n_obs = 10
tstart = gti_t0 + [1, 2, 3, 5, 8, 10, 20, 22, 23, 24] * u.h
lvtm = [55, 25, 26, 40, 40, 50, 40, 52, 43, 47] * u.min
######################################################################
# Now perform the simulations
#
datasets = Datasets()
empty = SpectrumDataset.create(
geom=geom, energy_axis_true=energy_axis_true, name="empty"
)
maker = SpectrumDatasetMaker(selection=["exposure", "background", "edisp"])
for idx in range(n_obs):
obs = Observation.create(
pointing=pointing,
livetime=lvtm[idx],
tstart=tstart[idx],
irfs=irfs,
reference_time=gti_t0,
obs_id=idx,
location=observatory_locations["ctao_south"],
)
empty_i = empty.copy(name=f"dataset-{idx}")
dataset = maker.run(empty_i, obs)
dataset.models = model_simu
dataset.fake()
datasets.append(dataset)
######################################################################
# The reduced datasets have been successfully simulated. Let’s take a
# quick look into our datasets.
#
display(datasets.info_table())
######################################################################
# Extract the lightcurve
# ----------------------
#
# This section uses standard light curve estimation tools for a 1D
# extraction. Only a spectral model needs to be defined in this case.
# Since the estimator returns the integrated flux separately for each time
# bin, the temporal model need not be accounted for at this stage. We
# extract the lightcurve in 3 energy bins.
#
# Define the model:
spectral_model = PowerLawSpectralModel(
index=3, amplitude="1e-11 cm-2 s-1 TeV-1", reference="1 TeV"
)
model_fit = SkyModel(spectral_model=spectral_model, name="model-fit")
# Attach model to all datasets
datasets.models = model_fit
lc_maker_1d = LightCurveEstimator(
energy_edges=[0.3, 0.6, 1.0, 10] * u.TeV,
source="model-fit",
selection_optional=["ul"],
)
lc_1d = lc_maker_1d.run(datasets)
fig, ax = plt.subplots(
figsize=(8, 6),
gridspec_kw={"left": 0.16, "bottom": 0.2, "top": 0.98, "right": 0.98},
)
lc_1d.plot(ax=ax, marker="o", axis_name="time", sed_type="flux")
plt.show()
######################################################################
# Fitting temporal models
# -----------------------
#
# We have the reconstructed lightcurve at this point. Now we want to fit a
# profile to the obtained light curves, using a joint fitting across the
# different datasets, while simultaneously minimising across the temporal
# model parameters as well. The temporal models can be applied
#
# - directly on the obtained lightcurve
# - on the simulated datasets
#
######################################################################
# Fitting the obtained light curve
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# We will first convert the obtained light curve to a `~gammapy.datasets.FluxPointsDataset`
# and fit it with a spectral and temporal model
# Create the datasets by iterating over the returned lightcurve
dataset_fp = FluxPointsDataset(data=lc_1d, name="dataset_lc")
######################################################################
# We will fit the amplitude, spectral index and the decay time scale. Note
# that ``t_ref`` should be fixed by default for the
# `~gammapy.modeling.models.ExpDecayTemporalModel`.
#
# Define the model:
spectral_model1 = PowerLawSpectralModel(
index=2.0, amplitude="1e-12 cm-2 s-1 TeV-1", reference="1 TeV"
)
temporal_model1 = ExpDecayTemporalModel(t0="10 h", t_ref=gti_t0.mjd * u.d)
model = SkyModel(
spectral_model=spectral_model1,
temporal_model=temporal_model1,
name="model-test",
)
dataset_fp.models = model
print(dataset_fp)
# Fit the dataset
fit = Fit()
result = fit.run(dataset_fp)
display(result.parameters.to_table())
######################################################################
# Now let’s plot model and data. We plot only the normalisation of the
# temporal model in relative units for one particular energy range
#
plt.figure(figsize=(8, 7))
plt.subplots_adjust(bottom=0.3)
dataset_fp.plot_spectrum(axis_name="time")
plt.show()
######################################################################
# Fit the datasets
# ~~~~~~~~~~~~~~~~
#
# Here, we apply the models directly to the simulated datasets.
#
# For modelling and fitting more complex flares, you should attach the
# relevant model to each group of ``datasets``. The parameters of a model
# in a given group of dataset will be tied. For more details on joint
# fitting in Gammapy, see the :doc:`/tutorials/analysis-3d/analysis_3d`.
#
# Define the model:
spectral_model2 = PowerLawSpectralModel(
index=2.0, amplitude="1e-12 cm-2 s-1 TeV-1", reference="1 TeV"
)
temporal_model2 = ExpDecayTemporalModel(t0="10 h", t_ref=gti_t0.mjd * u.d)
model2 = SkyModel(
spectral_model=spectral_model2,
temporal_model=temporal_model2,
name="model-test2",
)
display(model2.parameters.to_table())
datasets.models = model2
# Perform a joint fit
fit = Fit()
result = fit.run(datasets=datasets)
display(result.parameters.to_table())
######################################################################
# We see that the fitted parameters are consistent between fitting flux
# points and datasets, and match well with the simulated ones
#
######################################################################
# Exercises
# ---------
#
# 1. Re-do the analysis with `~gammapy.datasets.MapDataset` instead of a `~gammapy.datasets.SpectrumDataset`
# 2. Model the flare of PKS 2155-304 which you obtained using
# the :doc:`/tutorials/analysis-time/light_curve_flare` tutorial.
# Use a combination of a Gaussian and Exponential flare profiles.
# 3. Do a joint fitting of the datasets.
#
|