File: fermi_lat.py

package info (click to toggle)
gammapy 2.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,800 kB
  • sloc: python: 81,999; makefile: 211; sh: 11; javascript: 10
file content (599 lines) | stat: -rw-r--r-- 19,647 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
"""
Fermi-LAT with Gammapy
======================

Data inspection and preliminary analysis with Fermi-LAT data.

Introduction
------------

Gammapy fully supports Fermi-LAT data analysis from DL4 level (binned
maps). In order to perform data reduction from the events list and
spacecraft files to binned counts and IRFs maps we recommend to use
`Fermipy <http://fermipy.readthedocs.io/>`__, which is based on
the `Fermi Science
Tools <https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/>`__
(Fermi ST).

Using Gammapy with Fermi-LAT data could be an option for you if you want
to do an analysis that is not easily possible with Fermipy and the Fermi
Science Tools. For example a joint likelihood fit of Fermi-LAT data with
data e.g. from H.E.S.S., MAGIC, VERITAS or some other instrument, or
analysis of Fermi-LAT data with a complex spatial or spectral model that
is not available in Fermipy or the Fermi ST.

This tutorial will show you how to convert Fermi-LAT data into a DL4
format  that can be used by Gammapy (`~gammapy.datasets.MapDataset`) and perform a 3D analysis. As an
example, we will look at the Galactic center.
We are going to analyses high-energy data from 10 GeV from 1 TeV (in reconstructed energy).

Setup
-----

For this notebook you have to get the prepared
`fermi-gc` data provided in your `$GAMMAPY_DATA`.


"""

# %matplotlib inline

import numpy as np
from astropy import units as u
import matplotlib.pyplot as plt

from gammapy.catalog import CATALOG_REGISTRY
from gammapy.datasets import Datasets, FermipyDatasetsReader
from gammapy.estimators import TSMapEstimator
from gammapy.maps import Map
from gammapy.modeling import Fit
from gammapy.modeling.models import (
    Models,
    PointSpatialModel,
    PowerLawSpectralModel,
    TemplateSpatialModel,
    SkyModel,
    PowerLawNormSpectralModel,
)
from gammapy.utils.scripts import make_path

######################################################################
# Check setup
# ~~~~~~~~~~~
#
# We check the setup in this tutorial, as we require specific files to be
# downloaded to continue.

from gammapy.utils.check import check_tutorials_setup

check_tutorials_setup()


######################################################################
# Fermipy configuration file
# --------------------------
#
# Gammapy can utilise the same configuration file as Fermipy to convert
# the Fermipy-generated maps into Gammapy datasets. For more information on the
# structure of these files, refer to the `Fermipy configuration
# page <https://fermipy.readthedocs.io/en/latest/config.html>`__. In this
# tutorial, we will analyse Galactic center data generated with Fermipy version 1.3 and
# the configuration given in
# `$GAMMAPY_DATA/fermi-gc/config_fermipy_gc_example.yaml`:
#


######################################################################
# .. code:: yaml
#
#    # Fermipy example configuration
#    # for details, see https://fermipy.readthedocs.io/en/latest/config.html
#    # For IRFs, event type and event class options, see https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Data/LAT_DP.html
#    components:
#      - model: {isodiff: $FERMI_DIR/refdata/fermi/galdiffuse/iso_P8R3_CLEAN_V3_PSF2_v1.txt}
#        selection: {evtype: 16}  #4 is PSF0, 8 PSF1, 16 PSF2, 32 PSF3
#        data: {ltcube: null}
#      - model: {isodiff: $FERMI_DIR/refdata/fermi/galdiffuse/iso_P8R3_CLEAN_V3_PSF3_v1.txt}
#        selection: {evtype: 32}
#        data: {ltcube: null}
#
#    data:
#      evfile : ./raw/events_list.lst
#      scfile : ./raw/L241227031840F357373F12_SC00.fits
#
#    binning:
#      roiwidth   : 8.0
#      binsz      : 0.1
#      binsperdec   : 10
#      coordsys : GAL
#      proj: CAR
#      projtype: WCS
#
#    selection :
#    # gtselect parameters
#      emin : 3981.0717055349733 # ENERGY TRUE for Gammapy
#      emax : 2511886.4315095823 # ENERGY TRUE for Gammapy
#      zmax    : 105 # deg
#      evclass : 256 # CLEAN
#      tmin    : 239557417
#      tmax    : 752112005
#
#    # gtmktime parameters
#      filter : 'DATA_QUAL>0 && LAT_CONFIG==1'
#      roicut : 'no'
#
#    # Set the ROI center to the coordinates of this source
#      glon : 0.
#      glat : 0.
#
#    fileio:
#       outdir : ''
#       logfile : 'out.log'
#       usescratch : False
#       scratchdir  : '/scratch'
#
#    gtlike:
#      edisp : True
#      edisp_bins : 0 # DO NOT CHANGE edisp_bins will be handled by Gammapy
#      irfs : 'P8R3_CLEAN_V3'
#
#    model:
#      src_roiwidth : 10.0 # This is used by Fermipy to compute the PSF RADMAX, even if no models are set
#


######################################################################
# The most important points for Gammapy users are:
#
# - ``emin`` and ``emax`` in this file should be considered as the energy true range.
#   It should be larger that the reconstructed energy range.
# - ``edisp_bins : 0`` is strongly recommended at this stage otherwise you
#   might face inconsistencies in the energy axes of the different IRFs created by Fermipy.
# - The ``edisp_bins`` value will be redefined later on by Gammapy as a positive value
#   in order to create the reconstructed energy axis properly.
# - If you want to use the `$FERMI_DIR` variable to read the background models
#   it must also be defined in your Gammapy environment,
#   otherwise you have to define your own paths.
# - For this tutorial we copied the iso files in `$GAMMAPY_DATA/fermi-gc` and
#   edited the paths in the yaml file for simplicity.
#
# More generally in order to select a good binning it is important to know
# the instrument resolution, for that you can have a quick look at the
# IRFs in the `Fermi-LAT performance
# page <https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm>`__.
#
# Since the energy resolution varies with energy, it is important to
# choose an energy binning that is fine enough to capture this energy
# dependence. That is why we recommend a binning with 8 to 10 bins per
# decade. The energy axes will be created such as it is linear in log space
# so it's better to define ``emin`` and ``emax`` such as they align with a log binning.
# Here we have as true energy range :math:`\log(emin) = 0.6 \sim 4` GeV to
# :math:`\log(emax) = 3.4 \sim 2500` GeV.
# While the reconstructed energy range of our analysis will be 10 GeV to 1000 GeV.
#
# The spatial binning should be of the same order of the PSF 68%
# containment radius which is in average 0.1 degree above 10 GeV and
# rapidly increases at lower energy. Ideally it should remain within a
# factor of 2 or 3 of the PSF radius at most. In order to properly take
# into account for the sources outside the region of interest that
# contribute inside due to the PSF we have to define a wider ``roiwidth``
# than our actual region of interest. Typically, we need a margin equal to the
# 99% containment of the PSF on each side. Above 10 GeV considering only
# PSF2&3 the 99% PSF containment radius is about 1 degree. Thus, if we
# want to study a 3 degree radius around the GC we have to take a ``roiwidth`` of 8
# deg. (If considering lower energies or including PSF0 and PSF1, it should be much
# larger).
#


######################################################################
# From Fermipy maps to Gammapy datasets
# -------------------------------------
#
# In your Fermipy environment you have to run the following commands
#
# .. code:: python
#
#    from fermipy.gtanalysis import GTAnalysis
#    gta = GTAnalysis('config_fermipy_gc_example.yaml',logging={'verbosity' : 3})
#    gta.setup()
#
#    gta.compute_psf(overwrite=True) # this creates the psf kernel
#    gta.compute_drm(edisp_bins=0, overwrite=True) # this creates the energy dispersion matrix
#    # DO NOT CHANGE edisp_bins here, it will be redefined by Gammapy later on
#
# This will produce a number of files including:
#
# - “ccube_00.fits” (counts)
# - “bexpmap_00.fits” (exposure)
# - “psf_00.fits” (psf)
# - “drm_00.fits” (edisp)
#
#


######################################################################
# In your Gammapy environment you can create the datasets using the
# same configuration file.
#


reader = FermipyDatasetsReader(
    "$GAMMAPY_DATA/fermi-gc/config_fermipy_gc_example.yaml", edisp_bins=4
)
datasets = reader.read()
print(datasets)


######################################################################
# Note that the ``edisp_bins`` is set again here as a positive number so
# Gammapy can create its reconstructed energy axis properly. The energy
# dispersion correction implemented Gammapy is closer to the version
# implemented in Fermitools >1.2.0, which take into account the interplay
# between the energy dispersion and PSF.
#
# Across most of the Fermi energy range, the level of migration in log10(E)
# remains within 0.2, increasing up to 0.4 below 100 MeV,
# due to energy dispersion. Therefore, we recommend that the
# product of \|edisp_bins\| and the width of the log10(E) bins be at
# least equal to 0.2. For a binning of 8 to 10 bins per decade, this
# corresponds to \|edisp_bins\| ≥ 2. For further information, see
# `Pass8_edisp_usage <https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Pass8_edisp_usage.html>`__.
# In our case, we have 10 bins per decade and true energy axis starts
# at about 4 GeV, so with ``edisp_bins=4`` the reconstructed energy axis
# starts at 10 GeV:
#

print(datasets[0].exposure.geom.axes["energy_true"])
print(datasets[0].counts.geom.axes["energy"])

######################################################################
# Note that selecting ``edisp_bins=2`` means the reconstructed energy
# of the counts geometry will start at :math:`10^{0.8} \sim 6.3` GeV.
# If we want to start the analysis at 10 GeV in this case, we need to
# update the ``mask_fit`` to exclude the first 2 reconstructed energy bins.
# Considering more ``edisp_bins`` is generally safer but requires more memory
# and increases computation time.
#
# Alternatively, if you created the counts and IRF files from the
# Fermi-LAT science tools without Fermipy you can use the
# ``create_dataset``  method. Note that in this case we cannot guarantee
# that your maps have the correct axes dimensions to be properly converted
# into Gammapy datasets.
#

path = make_path("$GAMMAPY_DATA/fermi-gc")
dataset0 = reader.create_dataset(
    path / "ccube_00.fits",
    path / "bexpmap_00.fits",
    path / "psf_00.fits",
    path / "drm_00.fits",
    isotropic_file=None,
    edisp_bins=0,
    name="fermi_lat_gc_psf2",
)
dataset1 = reader.create_dataset(
    path / "ccube_01.fits",
    path / "bexpmap_01.fits",
    path / "psf_01.fits",
    path / "drm_01.fits",
    isotropic_file=None,
    edisp_bins=0,
    name="fermi_lat_gc_psf3",
)

datasets_fromST = Datasets([dataset0, dataset1])


# The above was an alternative reading method we don't need those after
del dataset0, dataset1, datasets_fromST


######################################################################
# Fermi-LAT IRF properties
# ------------------------
#
# Exposure
# ~~~~~~~~
#


######################################################################
# Exposure is almost constant across the field of view, with less than 5%
# variation at a given energy.
#

datasets[0].exposure.plot_interactive(add_cbar=True)
plt.show()


######################################################################
# PSF
# ~~~
#
# For Fermi-LAT, the PSF only varies little within a given regions of
# the sky, especially at high energies like what we have here.
# So we have only one PSF kernel.
#

datasets[0].psf.plot_containment_radius_vs_energy(fraction=(0.68, 0.95, 0.99))
plt.show()


######################################################################
# Region of interest and mask definition
# --------------------------------------
#
# As mentioned previously, the width of dataset is larger that our actual
# region of interest in order to properly take into account for the
# sources outside that contributes inside due to the PSF. So we define the
# valid RoI for fitting by creating a ``mask_fit``.
#

margin = (
    2.0 * u.deg
)  # >1 deg should be fine for this dataset we take 2 so the notebook is faster
geom = datasets[0].counts.geom
mask_fit = Map.from_geom(geom, data=True, dtype=bool)
mask_fit = mask_fit.binary_erode(width=margin, kernel="disk")

mask_fit.plot_interactive()
plt.show()

######################################################################
# Now we attach it the datasets
#

for d in datasets:
    d.mask_fit = mask_fit


######################################################################
# Models
# ------
#
# Isotropic diffuse background
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# The `~gammapy.datasets.FermipyDatasetsReader` also created one isotropic diffuse model
# for each dataset:
#

models_iso = Models(datasets.models)
print(models_iso)


######################################################################
# Galactic diffuse background
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#


######################################################################
# The Fermi-LAT collaboration provides a galactic diffuse emission model,
# that can be used as a background model for Fermi-LAT source analysis.
# These files are called usually IEM for interstellar emission model, the
# latest is
# `gll_iem_v07.fits <https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/aux/4fgl/gll_iem_v07.fits>`__.
# For details see the `BackgroundModels
# page <https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html>`__.
# If you have Fermipy installed it can also be found in
# `$FERMI_DIR/refdata/fermi/galdiffuse/gll_iem_v07.fits`
#
# Diffuse model maps are very large (100s of MB), so as an example here,
# we just load one that represents a small cutout for the Galactic center
# region.
#
# In this case, the maps are already in differential units, so we do not
# want to normalise it again.
#

template_iem = TemplateSpatialModel.read(
    filename="$GAMMAPY_DATA/fermi-gc/gll_iem_v07_gc.fits.gz", normalize=False
)

model_iem = SkyModel(
    spectral_model=PowerLawNormSpectralModel(),
    spatial_model=template_iem,
    name="diffuse-iem",
)


######################################################################
# Let’s look at the template :
#

template_iem.map.plot_interactive(add_cbar=True)
plt.show()
# sphinx_gallery_thumbnail_number = 4


models_diffuse = models_iso + model_iem


######################################################################
# Sources
# ~~~~~~~
#
# Source models can be loaded from the 4FGL catalog directly available in
# `$GAMMAPY_DATA`. For details see the `Fermi-LAT catalog
# page <https://fermi.gsfc.nasa.gov/ssc/data/access/lat/14yr_catalog/>`__.
#

catalog_4fgl = CATALOG_REGISTRY.get_cls("4fgl")()  # load 4FGL catalog


######################################################################
# We want to select only the sources inside the dataset spatial geometry:
#

in_geom = geom.to_image().contains(catalog_4fgl.positions)
catalog_4fgl_gc = catalog_4fgl[in_geom]

models_4fgl_gc = catalog_4fgl_gc.to_models()

######################################################################
# That's still quite a lot of sources
#
print("Number of source models", len(models_4fgl_gc))


######################################################################
# In order to improve performances we can store all the sources outside
# the ``mask_fit`` region into a single template (the same could be done
# for all the sources we want to keep frozen).
#

sources_ouside_roi = models_4fgl_gc.select_mask(~mask_fit, use_evaluation_region=False)
sources_inside_roi = Models([m for m in models_4fgl_gc if m not in sources_ouside_roi])

geom_true = datasets[0].exposure.geom
sources_outside_roi = sources_ouside_roi.to_template_sky_model(
    geom_true, name="sources_outside"
)

sources_outside_roi.spatial_model.filename = "sources_outside.fits"

sources_outside_roi.spatial_model.map.plot_interactive(add_cbar=True)
plt.show()

######################################################################
# Now we have less models to describe the sources
#
models_sources = sources_inside_roi + sources_outside_roi

print("Number of source models", len(models_sources))

######################################################################
# Fit
# ---
#
# Now, the big finale: let’s do a 3D of the brightest sources and IEM
# models.
#
# First we attach the models to the datasets.
#

models = models_sources + models_diffuse

datasets.models = models

print("Number of models", len(models))


######################################################################
# Let’s find the 3 brightest sources:
#

n_brightest = 3
integrated_flux = u.Quantity(
    [m.spectral_model.integral(10 * u.GeV, 1 * u.TeV) for m in sources_inside_roi]
)
order = np.argsort(integrated_flux)
selected_sources = Models([sources_inside_roi[int(ii)] for ii in order[:n_brightest]])

print(selected_sources.names)

free_models = selected_sources + model_iem


######################################################################
# We keep only their normalisation free for simplicity:
#

models.freeze()  # freeze all parameters

# and unfreeze only the amplitude or norm of the selected models
for p in free_models.parameters:
    if p.name in ["amplitude", "norm"]:
        p.frozen = False
        p.min = 0

print("Number of free parameters", len(models.parameters.free_parameters))

fit = Fit()
result = fit.run(datasets=datasets)

print(result)


######################################################################
# Residual TS map
# ---------------
#
# Now we can look at the residual TS map to check there is no significant
# excess left:
#

spatial_model = PointSpatialModel()
spectral_model = PowerLawSpectralModel(index=2)
model = SkyModel(spatial_model=spatial_model, spectral_model=spectral_model)

ts_estimator = TSMapEstimator(
    model,
    kernel_width="1 deg",  # this set close to the 95-99% containment radius of the PSF
    selection_optional=[],
    sum_over_energy_groups=True,
    energy_edges=[10, 1000] * u.GeV,
)


ts_results = ts_estimator.run(datasets)


image = ts_results["sqrt_ts"]
image = image.cutout(
    image.geom.center_skydir, width=np.max(image.geom.width) - 2 * margin
)

fig = plt.figure(figsize=(7, 5))
ax = image.plot(
    clim=[-8, 8],
    cmap=plt.cm.RdBu_r,
    add_cbar=True,
    kwargs_colorbar={"label": r"$\sqrt{TS}$ [$\sigma$]"},
)
sources_inside_roi.plot_regions(
    ax=ax, edgecolor="g", linestyle="-", kwargs_point=dict(marker=".")
)
plt.show()


######################################################################
# Serialisation
# -------------
#
# To serialise the created dataset, you must proceed through the Datasets
# API
#

datasets.write(
    filename="fermi_lat_gc_datasets.yaml",
    filename_models="fermi_lat_gc_models.yaml",
    overwrite=True,
)
datasets_read = Datasets.read(
    filename="fermi_lat_gc_datasets.yaml", filename_models="fermi_lat_gc_models.yaml"
)


######################################################################
# Exercises
# ---------
#
# - Fit the position and spectrum of the source `SNR
#   G0.9+0.1 <http://gamma-sky.net/#/cat/tev/110>`__.
# - Make maps and fit the position and spectrum of the `Crab
#   nebula <http://gamma-sky.net/#/cat/tev/25>`__.
#


######################################################################
# Summary
# -------
#
# In this tutorial you have seen how to work with Fermi-LAT data with
# Gammapy. You have to use Fermipy or the Fermi ST to perform the data
# reduction then you can use Gammapy for analysis using the same methods
# that are used to analyse IACT data.
#