1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
|
"""
Fermi-LAT with Gammapy
======================
Data inspection and preliminary analysis with Fermi-LAT data.
Introduction
------------
Gammapy fully supports Fermi-LAT data analysis from DL4 level (binned
maps). In order to perform data reduction from the events list and
spacecraft files to binned counts and IRFs maps we recommend to use
`Fermipy <http://fermipy.readthedocs.io/>`__, which is based on
the `Fermi Science
Tools <https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/>`__
(Fermi ST).
Using Gammapy with Fermi-LAT data could be an option for you if you want
to do an analysis that is not easily possible with Fermipy and the Fermi
Science Tools. For example a joint likelihood fit of Fermi-LAT data with
data e.g. from H.E.S.S., MAGIC, VERITAS or some other instrument, or
analysis of Fermi-LAT data with a complex spatial or spectral model that
is not available in Fermipy or the Fermi ST.
This tutorial will show you how to convert Fermi-LAT data into a DL4
format that can be used by Gammapy (`~gammapy.datasets.MapDataset`) and perform a 3D analysis. As an
example, we will look at the Galactic center.
We are going to analyses high-energy data from 10 GeV from 1 TeV (in reconstructed energy).
Setup
-----
For this notebook you have to get the prepared
`fermi-gc` data provided in your `$GAMMAPY_DATA`.
"""
# %matplotlib inline
import numpy as np
from astropy import units as u
import matplotlib.pyplot as plt
from gammapy.catalog import CATALOG_REGISTRY
from gammapy.datasets import Datasets, FermipyDatasetsReader
from gammapy.estimators import TSMapEstimator
from gammapy.maps import Map
from gammapy.modeling import Fit
from gammapy.modeling.models import (
Models,
PointSpatialModel,
PowerLawSpectralModel,
TemplateSpatialModel,
SkyModel,
PowerLawNormSpectralModel,
)
from gammapy.utils.scripts import make_path
######################################################################
# Check setup
# ~~~~~~~~~~~
#
# We check the setup in this tutorial, as we require specific files to be
# downloaded to continue.
from gammapy.utils.check import check_tutorials_setup
check_tutorials_setup()
######################################################################
# Fermipy configuration file
# --------------------------
#
# Gammapy can utilise the same configuration file as Fermipy to convert
# the Fermipy-generated maps into Gammapy datasets. For more information on the
# structure of these files, refer to the `Fermipy configuration
# page <https://fermipy.readthedocs.io/en/latest/config.html>`__. In this
# tutorial, we will analyse Galactic center data generated with Fermipy version 1.3 and
# the configuration given in
# `$GAMMAPY_DATA/fermi-gc/config_fermipy_gc_example.yaml`:
#
######################################################################
# .. code:: yaml
#
# # Fermipy example configuration
# # for details, see https://fermipy.readthedocs.io/en/latest/config.html
# # For IRFs, event type and event class options, see https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Data/LAT_DP.html
# components:
# - model: {isodiff: $FERMI_DIR/refdata/fermi/galdiffuse/iso_P8R3_CLEAN_V3_PSF2_v1.txt}
# selection: {evtype: 16} #4 is PSF0, 8 PSF1, 16 PSF2, 32 PSF3
# data: {ltcube: null}
# - model: {isodiff: $FERMI_DIR/refdata/fermi/galdiffuse/iso_P8R3_CLEAN_V3_PSF3_v1.txt}
# selection: {evtype: 32}
# data: {ltcube: null}
#
# data:
# evfile : ./raw/events_list.lst
# scfile : ./raw/L241227031840F357373F12_SC00.fits
#
# binning:
# roiwidth : 8.0
# binsz : 0.1
# binsperdec : 10
# coordsys : GAL
# proj: CAR
# projtype: WCS
#
# selection :
# # gtselect parameters
# emin : 3981.0717055349733 # ENERGY TRUE for Gammapy
# emax : 2511886.4315095823 # ENERGY TRUE for Gammapy
# zmax : 105 # deg
# evclass : 256 # CLEAN
# tmin : 239557417
# tmax : 752112005
#
# # gtmktime parameters
# filter : 'DATA_QUAL>0 && LAT_CONFIG==1'
# roicut : 'no'
#
# # Set the ROI center to the coordinates of this source
# glon : 0.
# glat : 0.
#
# fileio:
# outdir : ''
# logfile : 'out.log'
# usescratch : False
# scratchdir : '/scratch'
#
# gtlike:
# edisp : True
# edisp_bins : 0 # DO NOT CHANGE edisp_bins will be handled by Gammapy
# irfs : 'P8R3_CLEAN_V3'
#
# model:
# src_roiwidth : 10.0 # This is used by Fermipy to compute the PSF RADMAX, even if no models are set
#
######################################################################
# The most important points for Gammapy users are:
#
# - ``emin`` and ``emax`` in this file should be considered as the energy true range.
# It should be larger that the reconstructed energy range.
# - ``edisp_bins : 0`` is strongly recommended at this stage otherwise you
# might face inconsistencies in the energy axes of the different IRFs created by Fermipy.
# - The ``edisp_bins`` value will be redefined later on by Gammapy as a positive value
# in order to create the reconstructed energy axis properly.
# - If you want to use the `$FERMI_DIR` variable to read the background models
# it must also be defined in your Gammapy environment,
# otherwise you have to define your own paths.
# - For this tutorial we copied the iso files in `$GAMMAPY_DATA/fermi-gc` and
# edited the paths in the yaml file for simplicity.
#
# More generally in order to select a good binning it is important to know
# the instrument resolution, for that you can have a quick look at the
# IRFs in the `Fermi-LAT performance
# page <https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm>`__.
#
# Since the energy resolution varies with energy, it is important to
# choose an energy binning that is fine enough to capture this energy
# dependence. That is why we recommend a binning with 8 to 10 bins per
# decade. The energy axes will be created such as it is linear in log space
# so it's better to define ``emin`` and ``emax`` such as they align with a log binning.
# Here we have as true energy range :math:`\log(emin) = 0.6 \sim 4` GeV to
# :math:`\log(emax) = 3.4 \sim 2500` GeV.
# While the reconstructed energy range of our analysis will be 10 GeV to 1000 GeV.
#
# The spatial binning should be of the same order of the PSF 68%
# containment radius which is in average 0.1 degree above 10 GeV and
# rapidly increases at lower energy. Ideally it should remain within a
# factor of 2 or 3 of the PSF radius at most. In order to properly take
# into account for the sources outside the region of interest that
# contribute inside due to the PSF we have to define a wider ``roiwidth``
# than our actual region of interest. Typically, we need a margin equal to the
# 99% containment of the PSF on each side. Above 10 GeV considering only
# PSF2&3 the 99% PSF containment radius is about 1 degree. Thus, if we
# want to study a 3 degree radius around the GC we have to take a ``roiwidth`` of 8
# deg. (If considering lower energies or including PSF0 and PSF1, it should be much
# larger).
#
######################################################################
# From Fermipy maps to Gammapy datasets
# -------------------------------------
#
# In your Fermipy environment you have to run the following commands
#
# .. code:: python
#
# from fermipy.gtanalysis import GTAnalysis
# gta = GTAnalysis('config_fermipy_gc_example.yaml',logging={'verbosity' : 3})
# gta.setup()
#
# gta.compute_psf(overwrite=True) # this creates the psf kernel
# gta.compute_drm(edisp_bins=0, overwrite=True) # this creates the energy dispersion matrix
# # DO NOT CHANGE edisp_bins here, it will be redefined by Gammapy later on
#
# This will produce a number of files including:
#
# - “ccube_00.fits” (counts)
# - “bexpmap_00.fits” (exposure)
# - “psf_00.fits” (psf)
# - “drm_00.fits” (edisp)
#
#
######################################################################
# In your Gammapy environment you can create the datasets using the
# same configuration file.
#
reader = FermipyDatasetsReader(
"$GAMMAPY_DATA/fermi-gc/config_fermipy_gc_example.yaml", edisp_bins=4
)
datasets = reader.read()
print(datasets)
######################################################################
# Note that the ``edisp_bins`` is set again here as a positive number so
# Gammapy can create its reconstructed energy axis properly. The energy
# dispersion correction implemented Gammapy is closer to the version
# implemented in Fermitools >1.2.0, which take into account the interplay
# between the energy dispersion and PSF.
#
# Across most of the Fermi energy range, the level of migration in log10(E)
# remains within 0.2, increasing up to 0.4 below 100 MeV,
# due to energy dispersion. Therefore, we recommend that the
# product of \|edisp_bins\| and the width of the log10(E) bins be at
# least equal to 0.2. For a binning of 8 to 10 bins per decade, this
# corresponds to \|edisp_bins\| ≥ 2. For further information, see
# `Pass8_edisp_usage <https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Pass8_edisp_usage.html>`__.
# In our case, we have 10 bins per decade and true energy axis starts
# at about 4 GeV, so with ``edisp_bins=4`` the reconstructed energy axis
# starts at 10 GeV:
#
print(datasets[0].exposure.geom.axes["energy_true"])
print(datasets[0].counts.geom.axes["energy"])
######################################################################
# Note that selecting ``edisp_bins=2`` means the reconstructed energy
# of the counts geometry will start at :math:`10^{0.8} \sim 6.3` GeV.
# If we want to start the analysis at 10 GeV in this case, we need to
# update the ``mask_fit`` to exclude the first 2 reconstructed energy bins.
# Considering more ``edisp_bins`` is generally safer but requires more memory
# and increases computation time.
#
# Alternatively, if you created the counts and IRF files from the
# Fermi-LAT science tools without Fermipy you can use the
# ``create_dataset`` method. Note that in this case we cannot guarantee
# that your maps have the correct axes dimensions to be properly converted
# into Gammapy datasets.
#
path = make_path("$GAMMAPY_DATA/fermi-gc")
dataset0 = reader.create_dataset(
path / "ccube_00.fits",
path / "bexpmap_00.fits",
path / "psf_00.fits",
path / "drm_00.fits",
isotropic_file=None,
edisp_bins=0,
name="fermi_lat_gc_psf2",
)
dataset1 = reader.create_dataset(
path / "ccube_01.fits",
path / "bexpmap_01.fits",
path / "psf_01.fits",
path / "drm_01.fits",
isotropic_file=None,
edisp_bins=0,
name="fermi_lat_gc_psf3",
)
datasets_fromST = Datasets([dataset0, dataset1])
# The above was an alternative reading method we don't need those after
del dataset0, dataset1, datasets_fromST
######################################################################
# Fermi-LAT IRF properties
# ------------------------
#
# Exposure
# ~~~~~~~~
#
######################################################################
# Exposure is almost constant across the field of view, with less than 5%
# variation at a given energy.
#
datasets[0].exposure.plot_interactive(add_cbar=True)
plt.show()
######################################################################
# PSF
# ~~~
#
# For Fermi-LAT, the PSF only varies little within a given regions of
# the sky, especially at high energies like what we have here.
# So we have only one PSF kernel.
#
datasets[0].psf.plot_containment_radius_vs_energy(fraction=(0.68, 0.95, 0.99))
plt.show()
######################################################################
# Region of interest and mask definition
# --------------------------------------
#
# As mentioned previously, the width of dataset is larger that our actual
# region of interest in order to properly take into account for the
# sources outside that contributes inside due to the PSF. So we define the
# valid RoI for fitting by creating a ``mask_fit``.
#
margin = (
2.0 * u.deg
) # >1 deg should be fine for this dataset we take 2 so the notebook is faster
geom = datasets[0].counts.geom
mask_fit = Map.from_geom(geom, data=True, dtype=bool)
mask_fit = mask_fit.binary_erode(width=margin, kernel="disk")
mask_fit.plot_interactive()
plt.show()
######################################################################
# Now we attach it the datasets
#
for d in datasets:
d.mask_fit = mask_fit
######################################################################
# Models
# ------
#
# Isotropic diffuse background
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# The `~gammapy.datasets.FermipyDatasetsReader` also created one isotropic diffuse model
# for each dataset:
#
models_iso = Models(datasets.models)
print(models_iso)
######################################################################
# Galactic diffuse background
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
######################################################################
# The Fermi-LAT collaboration provides a galactic diffuse emission model,
# that can be used as a background model for Fermi-LAT source analysis.
# These files are called usually IEM for interstellar emission model, the
# latest is
# `gll_iem_v07.fits <https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/aux/4fgl/gll_iem_v07.fits>`__.
# For details see the `BackgroundModels
# page <https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html>`__.
# If you have Fermipy installed it can also be found in
# `$FERMI_DIR/refdata/fermi/galdiffuse/gll_iem_v07.fits`
#
# Diffuse model maps are very large (100s of MB), so as an example here,
# we just load one that represents a small cutout for the Galactic center
# region.
#
# In this case, the maps are already in differential units, so we do not
# want to normalise it again.
#
template_iem = TemplateSpatialModel.read(
filename="$GAMMAPY_DATA/fermi-gc/gll_iem_v07_gc.fits.gz", normalize=False
)
model_iem = SkyModel(
spectral_model=PowerLawNormSpectralModel(),
spatial_model=template_iem,
name="diffuse-iem",
)
######################################################################
# Let’s look at the template :
#
template_iem.map.plot_interactive(add_cbar=True)
plt.show()
# sphinx_gallery_thumbnail_number = 4
models_diffuse = models_iso + model_iem
######################################################################
# Sources
# ~~~~~~~
#
# Source models can be loaded from the 4FGL catalog directly available in
# `$GAMMAPY_DATA`. For details see the `Fermi-LAT catalog
# page <https://fermi.gsfc.nasa.gov/ssc/data/access/lat/14yr_catalog/>`__.
#
catalog_4fgl = CATALOG_REGISTRY.get_cls("4fgl")() # load 4FGL catalog
######################################################################
# We want to select only the sources inside the dataset spatial geometry:
#
in_geom = geom.to_image().contains(catalog_4fgl.positions)
catalog_4fgl_gc = catalog_4fgl[in_geom]
models_4fgl_gc = catalog_4fgl_gc.to_models()
######################################################################
# That's still quite a lot of sources
#
print("Number of source models", len(models_4fgl_gc))
######################################################################
# In order to improve performances we can store all the sources outside
# the ``mask_fit`` region into a single template (the same could be done
# for all the sources we want to keep frozen).
#
sources_ouside_roi = models_4fgl_gc.select_mask(~mask_fit, use_evaluation_region=False)
sources_inside_roi = Models([m for m in models_4fgl_gc if m not in sources_ouside_roi])
geom_true = datasets[0].exposure.geom
sources_outside_roi = sources_ouside_roi.to_template_sky_model(
geom_true, name="sources_outside"
)
sources_outside_roi.spatial_model.filename = "sources_outside.fits"
sources_outside_roi.spatial_model.map.plot_interactive(add_cbar=True)
plt.show()
######################################################################
# Now we have less models to describe the sources
#
models_sources = sources_inside_roi + sources_outside_roi
print("Number of source models", len(models_sources))
######################################################################
# Fit
# ---
#
# Now, the big finale: let’s do a 3D of the brightest sources and IEM
# models.
#
# First we attach the models to the datasets.
#
models = models_sources + models_diffuse
datasets.models = models
print("Number of models", len(models))
######################################################################
# Let’s find the 3 brightest sources:
#
n_brightest = 3
integrated_flux = u.Quantity(
[m.spectral_model.integral(10 * u.GeV, 1 * u.TeV) for m in sources_inside_roi]
)
order = np.argsort(integrated_flux)
selected_sources = Models([sources_inside_roi[int(ii)] for ii in order[:n_brightest]])
print(selected_sources.names)
free_models = selected_sources + model_iem
######################################################################
# We keep only their normalisation free for simplicity:
#
models.freeze() # freeze all parameters
# and unfreeze only the amplitude or norm of the selected models
for p in free_models.parameters:
if p.name in ["amplitude", "norm"]:
p.frozen = False
p.min = 0
print("Number of free parameters", len(models.parameters.free_parameters))
fit = Fit()
result = fit.run(datasets=datasets)
print(result)
######################################################################
# Residual TS map
# ---------------
#
# Now we can look at the residual TS map to check there is no significant
# excess left:
#
spatial_model = PointSpatialModel()
spectral_model = PowerLawSpectralModel(index=2)
model = SkyModel(spatial_model=spatial_model, spectral_model=spectral_model)
ts_estimator = TSMapEstimator(
model,
kernel_width="1 deg", # this set close to the 95-99% containment radius of the PSF
selection_optional=[],
sum_over_energy_groups=True,
energy_edges=[10, 1000] * u.GeV,
)
ts_results = ts_estimator.run(datasets)
image = ts_results["sqrt_ts"]
image = image.cutout(
image.geom.center_skydir, width=np.max(image.geom.width) - 2 * margin
)
fig = plt.figure(figsize=(7, 5))
ax = image.plot(
clim=[-8, 8],
cmap=plt.cm.RdBu_r,
add_cbar=True,
kwargs_colorbar={"label": r"$\sqrt{TS}$ [$\sigma$]"},
)
sources_inside_roi.plot_regions(
ax=ax, edgecolor="g", linestyle="-", kwargs_point=dict(marker=".")
)
plt.show()
######################################################################
# Serialisation
# -------------
#
# To serialise the created dataset, you must proceed through the Datasets
# API
#
datasets.write(
filename="fermi_lat_gc_datasets.yaml",
filename_models="fermi_lat_gc_models.yaml",
overwrite=True,
)
datasets_read = Datasets.read(
filename="fermi_lat_gc_datasets.yaml", filename_models="fermi_lat_gc_models.yaml"
)
######################################################################
# Exercises
# ---------
#
# - Fit the position and spectrum of the source `SNR
# G0.9+0.1 <http://gamma-sky.net/#/cat/tev/110>`__.
# - Make maps and fit the position and spectrum of the `Crab
# nebula <http://gamma-sky.net/#/cat/tev/25>`__.
#
######################################################################
# Summary
# -------
#
# In this tutorial you have seen how to work with Fermi-LAT data with
# Gammapy. You have to use Fermipy or the Fermi ST to perform the data
# reduction then you can use Gammapy for analysis using the same methods
# that are used to analyse IACT data.
#
|