1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
"""
HAWC with Gammapy
=================
Explore HAWC event lists and instrument response functions (IRFs), then perform the
data reduction steps.
Introduction
------------
`HAWC <https://www.hawc-observatory.org/>`__ is an array of
water Cherenkov detectors located in Mexico that detects gamma-rays
in the range between hundreds of GeV and hundreds of TeV.
Gammapy recently added support of HAWC high level data analysis,
after export to the current `open data level 3
format <https://gamma-astro-data-formats.readthedocs.io/>`__.
The HAWC data is largely private. However, in 2022, a small
sub-set of HAWC Pass4 event lists from the Crab nebula region
was publicly `released <https://data.hawc-observatory.org/datasets/crab_events_pass4/index.php>`__.
This dataset is 1 GB in size, so only a subset will be used here as an example.
Tutorial overview
-----------------
This notebook is a quick introduction to HAWC data analysis with Gammapy.
It briefly describes the HAWC data and how to access it, and then uses a
subset of the data to produce a `~gammapy.datasets.MapDataset`, to show how the
data reduction is performed.
The HAWC data release contains events where the energy is estimated using
two different algorithms, referred to as "NN" and "GP" (see this
`paper <https://iopscience.iop.org/article/10.3847/1538-4357/ab2f7d>`__
for a detailed description). These two event classes are not independent, meaning that
events are repeated between the NN and GP datasets. Therefore, these data should never
be analysed jointly, and one of the two estimators needs to be chosen before
proceeding.
Once the data has been reduced to a `~gammapy.datasets.MapDataset`, there are no differences
in the way that HAWC data is handled with respect to data from any other
observatory, such as H.E.S.S. or CTAO.
HAWC data access and reduction
------------------------------
This is how to access data and IRFs from the HAWC Crab event data release.
"""
import astropy.units as u
from astropy.coordinates import SkyCoord
import matplotlib.pyplot as plt
from gammapy.data import DataStore, HDUIndexTable, ObservationTable
from gammapy.datasets import MapDataset
from gammapy.estimators import ExcessMapEstimator
from gammapy.makers import MapDatasetMaker, SafeMaskMaker
from gammapy.maps import Map, MapAxis, WcsGeom
######################################################################
# Chose which estimator we will use
energy_estimator = "NN"
######################################################################
# A useful way to organize the relevant files are with index tables. The
# observation index table contains information on each particular observation,
# such as the run ID. The HDU index table has a row per
# relevant file (i.e., events, effective area, psf…) and contains the path
# to said file.
# The HAWC data is divided into different event types, classified using
# the fraction of the array that was triggered by an event, a quantity
# usually referred to as "fHit". These event types are fully independent,
# meaning that an event will have a unique event type identifier, which
# is usually a number indicating which fHit bin the event corresponds to.
# For this reason, a single HAWC observation has several HDU index tables
# associated to it, one per event type. In each table, there will be
# paths to a distinct event list file and IRFs.
# In the HAWC event data release, all the HDU tables are saved into
# the same FITS file, and can be accesses through the choice of the hdu index.
######################################################################
# Load the tables
# ~~~~~~~~~~~~~~~
data_path = "$GAMMAPY_DATA/hawc/crab_events_pass4/"
hdu_filename = f"hdu-index-table-{energy_estimator}-Crab.fits.gz"
obs_filename = f"obs-index-table-{energy_estimator}-Crab.fits.gz"
######################################################################
# There is only one observation table
obs_table = ObservationTable.read(data_path + obs_filename)
######################################################################
# The remainder of this tutorial utilises just one fHit value, however,
# for a regular analysis you should combine all fHit bins. Here,
# we utilise fHit bin number 6. We start by reading the HDU index table
# of this fHit bin
fHit = 6
hdu_table = HDUIndexTable.read(data_path + hdu_filename, hdu=fHit)
######################################################################
# From the tables, we can create a `~gammapy.data.DataStore`.
data_store = DataStore(hdu_table=hdu_table, obs_table=obs_table)
data_store.info()
######################################################################
# There is only one observation
obs = data_store.get_observations()[0]
######################################################################
# Peek events from this observation
obs.events.peek()
plt.show()
######################################################################
# Peek the energy dispersion:
obs.edisp.peek()
plt.show()
######################################################################
# Peek the psf:
obs.psf.peek()
plt.show()
######################################################################
# Peek the background for one transit:
plt.figure()
obs.bkg.reduce_over_axes().plot(add_cbar=True)
plt.show()
######################################################################
# Peek the effective exposure for one transit:
plt.figure()
obs.aeff.reduce_over_axes().plot(add_cbar=True)
plt.show()
######################################################################
# Data reduction into a `~gammapy.datasets.MapDataset`
# ----------------------------------------------------
#
# We will now produce a `~gammapy.datasets.MapDataset` using the data from one of the
# fHit bins. In order to use all bins, one just needs to repeat this
# process inside a for loop that modifies the variable fHit.
######################################################################
# First we define the geometry and axes, starting with the energy reco axis:
energy_axis = MapAxis.from_edges(
[1.00, 1.78, 3.16, 5.62, 10.0, 17.8, 31.6, 56.2, 100, 177, 316] * u.TeV,
name="energy",
interp="log",
)
######################################################################
# Note: this axis is the one used to create the background model map. If
# different edges are used, the `~gammapy.makers.MapDatasetMaker` will interpolate between
# them, which might lead to unexpected behaviour.
######################################################################
# Define the energy true axis:
energy_axis_true = MapAxis.from_energy_bounds(
1e-3, 1e4, nbin=140, unit="TeV", name="energy_true"
)
######################################################################
# Finally, create a geometry around the Crab location:
geom = WcsGeom.create(
skydir=SkyCoord(ra=83.63, dec=22.01, unit="deg", frame="icrs"),
width=6 * u.deg,
axes=[energy_axis],
binsz=0.05,
)
######################################################################
# Define the makers we will use:
maker = MapDatasetMaker(selection=["counts", "background", "exposure", "edisp", "psf"])
safe_mask_maker = SafeMaskMaker(methods=["aeff-max"], aeff_percent=10)
######################################################################
# Create an empty `~gammapy.datasets.MapDataset`.
# The keyword ``reco_psf=True`` is needed because the HAWC PSF is
# derived in reconstructed energy.
dataset_empty = MapDataset.create(
geom, energy_axis_true=energy_axis_true, name=f"fHit {fHit}", reco_psf=True
)
dataset = maker.run(dataset_empty, obs)
######################################################################
# The livetime information is used by the `~gammapy.makers.SafeMaskMaker` to retrieve the
# effective area from the exposure. The HAWC effective area is computed
# for one source transit above 45º zenith, which is around 6h.
# Since the effective area condition used here is relative to
# the maximum, this value does not actually impact the result.
dataset.exposure.meta["livetime"] = "6 h"
dataset = safe_mask_maker.run(dataset)
######################################################################
# Now we have a dataset that has background and exposure quantities for
# one single transit, but our dataset might comprise more. The number
# of transits can be derived using the good time intervals (GTI) stored
# with the event list. For convenience, the HAWC data release already
# included this quantity as a map.
transit_map = Map.read(data_path + "irfs/TransitsMap_Crab.fits.gz")
transit_number = transit_map.get_by_coord(geom.center_skydir)
######################################################################
# Correct the background and exposure quantities:
dataset.background.data *= transit_number
dataset.exposure.data *= transit_number
######################################################################
# Check the dataset we produced
# -----------------------------
#
# We will now check the contents of the dataset.
# We can use the ``.peek()`` method to quickly get a glimpse of the contents
dataset.peek()
plt.show()
######################################################################
# Create significance maps to check that the Crab is visible:
excess_estimator = ExcessMapEstimator(
correlation_radius="0.2 deg", selection_optional=[], energy_edges=energy_axis.edges
)
excess = excess_estimator.run(dataset)
(dataset.mask * excess["sqrt_ts"]).plot_grid(
add_cbar=True, cmap="coolwarm", vmin=-5, vmax=5
)
plt.show()
######################################################################
# Combining all energies
excess_estimator_integrated = ExcessMapEstimator(
correlation_radius="0.2 deg", selection_optional=[]
)
excess_integrated = excess_estimator_integrated.run(dataset)
excess_integrated["sqrt_ts"].plot(add_cbar=True)
plt.show()
######################################################################
# Exercises
# ---------
#
# - Repeat the process for a different fHit bin.
# - Repeat the process for all the fHit bins provided in the data
# release and fit a model to the result.
#
######################################################################
# Next steps
# ----------
#
# Now you know how to access and work with HAWC data. All other
# tutorials and documentation concerning 3D analysis techniques and
# the `~gammapy.datasets.MapDataset` object can be used from this step on.
#
|