1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
"""
MAGIC with Gammapy
==================
Explore the MAGIC IRFs and perform a point like spectral analysis with energy dependent offset cut.
Introduction
------------
`MAGIC <https://magic.mpp.mpg.de/>`__ (Major Atmospheric Gamma Imaging
Cherenkov Telescopes) consists of two Imaging Atmospheric Cherenkov telescopes in La Palma, Spain.
These 17m diameter telescopes detect gamma-rays from ~ 30 GeV to 100 TeV.
The MAGIC public data release contains around 100 hours of data and can be found `here <https://opendata.magic.pic.es/>`__.
This notebook presents an analysis based on just two runs of the Crab Nebula.
It provides an introduction to using the MAGIC DL3 data products, to produce a
`~gammapy.datasets.SpectrumDatasetOnOff`. Importantly it shows how to perform a data reduction
with energy-dependent directional cuts, as described further below.
For further information, see `this paper <https://ui.adsabs.harvard.edu/abs/2024JHEAp..44..266A/abstract>`__.
Prerequisites
-------------
- Understanding the basic data reduction performed in the
:doc:`/tutorials/analysis-1d/spectral_analysis` tutorial.
- understanding the difference between a
`point-like <https://gamma-astro-data-formats.readthedocs.io/en/latest/irfs/point_like/index.html>`__
and a
`full-enclosure <https://gamma-astro-data-formats.readthedocs.io/en/latest/irfs/full_enclosure/index.html>`__
IRF.
Context
-------
As described in the :doc:`/tutorials/analysis-1d/spectral_analysis`
tutorial, the background is estimated from the field of view (FoV) of the observation.
Since the MAGIC data release does not include a dedicated background IRF, this estimation
must be performed directly from the FoV.
In particular, the source and background events are counted within a circular
ON region enclosing the source. The background to be subtracted is then estimated
from one or more OFF regions with an expected background rate similar to the one
in the ON region (i.e. from regions with similar acceptance).
*Full-containment* IRFs have no directional cut applied, when employed
for a 1D analysis, it is required to apply a correction to the IRF
accounting for flux leaking out of the ON region. This correction is
typically obtained by integrating the PSF within the ON region.
When computing a *point-like* IRFs, a directional cut around the assumed
source position is applied to the simulated events. For this IRF type,
no PSF component is provided. The size of the ON and OFF regions used
for the spectrum extraction should then reflect this cut, since a
response computed within a specific region around the source is being
provided.
The directional cut is typically an angular distance from the assumed
source position, :math:`\\theta`. The
`gamma-astro-data-format <https://gamma-astro-data-formats.readthedocs.io/en/latest/>`__
specifications offer two different ways to store this information:
* if the same :math:`\\theta` cut is applied at all energies and offsets, a
`RAD_MAX <https://gamma-astro-data-formats.readthedocs.io/en/latest/irfs/point_like/#rad-max>`__
keyword is added to the header of the data units containing IRF components. This
should be used to define the size of the ON and OFF regions;
* in case an energy-dependent (and offset-dependent) :math:`\\theta` cut is applied, its
values are stored in additional ``FITS`` data unit, named
`RAD_MAX_2D <https://gamma-astro-data-formats.readthedocs.io/en/latest/irfs/point_like/#rad-max-2d>`__.
Gammapy provides a class to automatically read these values,
`~gammapy.irf.RadMax2D`, for both cases (fixed or energy-dependent
:math:`\\theta` cut). In this notebook we will focus on how to perform a
spectral extraction with a point-like IRF with an energy-dependent
:math:`\\theta` cut. We remark that in this case a
`~regions.PointSkyRegion` (and not a `~regions.CircleSkyRegion`)
should be used to define the ON region. If a geometry based on a
`~regions.PointSkyRegion` is fed to the spectra and the background
`~gammapy.makers.Maker`, the latter will automatically use the values stored in the
``RAD_MAX`` keyword / table for defining the size of the ON and OFF
regions.
Beside the definition of the ON region during the data reduction, the
remaining steps are identical to the other :doc:`/tutorials/analysis-1d/spectral_analysis`
tutorial, so we will not detail the data reduction steps already
presented in the other tutorial.
**Objective: perform the data reduction and analysis of 2 Crab Nebula
observations of MAGIC and fit the resulting datasets.**
"""
######################################################################
# Setup
# -----
#
# As usual, we’ll start with some setup …
#
from IPython.display import display
import astropy.units as u
from astropy.coordinates import SkyCoord
from regions import PointSkyRegion
# %matplotlib inline
import matplotlib.pyplot as plt
from gammapy.data import DataStore
from gammapy.datasets import Datasets, SpectrumDataset
from gammapy.makers import (
ReflectedRegionsBackgroundMaker,
SafeMaskMaker,
SpectrumDatasetMaker,
WobbleRegionsFinder,
)
from gammapy.maps import Map, MapAxis, RegionGeom
from gammapy.modeling import Fit
from gammapy.modeling.models import (
LogParabolaSpectralModel,
SkyModel,
create_crab_spectral_model,
)
from gammapy.visualization import plot_spectrum_datasets_off_regions
######################################################################
# Load data
# ---------
#
# We load the two MAGIC observations of the Crab Nebula which contain a
# ``RAD_MAX_2D`` table.
#
data_store = DataStore.from_dir("$GAMMAPY_DATA/magic/rad_max/data")
observations = data_store.get_observations(required_irf="point-like")
######################################################################
# We can take a look at the MAGIC IRFs:
#
observations[0].peek()
plt.show()
# sphinx_gallery_thumbnail_number = 1
######################################################################
# The ``rad_max`` attribute, containing the ``RAD_MAX_2D`` table, is
# automatically loaded in the observation. As we can see from the IRF
# component axes, the table has a single offset value and 28 estimated
# energy values.
#
rad_max = observations["5029747"].rad_max
print(rad_max)
######################################################################
# Plotting the rad max value against the energy:
#
fig, ax = plt.subplots()
rad_max.plot_rad_max_vs_energy(ax=ax)
plt.show()
######################################################################
# Define the ON region
# --------------------
#
# To use the ``RAD_MAX_2D`` values to define the sizes of the ON and OFF
# regions it is necessary to specify the ON region as
# a `~regions.PointSkyRegion` i.e. we specify only the center of our ON region.
#
target_position = SkyCoord(ra=83.63, dec=22.01, unit="deg", frame="icrs")
on_region = PointSkyRegion(target_position)
######################################################################
# Run data reduction chain
# ------------------------
#
# We begin by configuring the dataset maker classes.
# First, we define the reconstructed and true energy axes:
energy_axis = MapAxis.from_energy_bounds(
50, 1e5, nbin=5, per_decade=True, unit="GeV", name="energy"
)
energy_axis_true = MapAxis.from_energy_bounds(
10, 1e5, nbin=10, per_decade=True, unit="GeV", name="energy_true"
)
######################################################################
# We create a `~gammapy.maps.RegionGeom` by combining the ON region with the
# estimated energy axis of the `~gammapy.datasets.SpectrumDataset` we want to produce.
# This geometry in used to create the `~gammapy.datasets.SpectrumDataset`.
geom = RegionGeom.create(region=on_region, axes=[energy_axis])
dataset_empty = SpectrumDataset.create(geom=geom, energy_axis_true=energy_axis_true)
######################################################################
# The `~gammapy.makers.SpectrumDatasetMaker` and `~gammapy.makers.ReflectedRegionsBackgroundMaker`
# will utilise the :math:`\theta` values in `~gammapy.data.Observation.rad_max` to define
# the sizes of the OFF regions.
#
dataset_maker = SpectrumDatasetMaker(
containment_correction=False, selection=["counts", "exposure", "edisp"]
)
######################################################################
# In order to define the OFF regions it is recommended to use a
# `~gammapy.makers.WobbleRegionsFinder`, that uses fixed positions for
# the OFF regions. In the different estimated energy bins we will have OFF
# regions centered at the same positions, but with changing size.
#
# The parameter ``n_off_regions`` specifies the number of OFF regions to be considered.
# In this case we use 3.
#
region_finder = WobbleRegionsFinder(n_off_regions=3)
bkg_maker = ReflectedRegionsBackgroundMaker(region_finder=region_finder)
######################################################################
# Use the energy threshold specified in the DL3 files for the safe mask:
safe_mask_masker = SafeMaskMaker(methods=["aeff-default"])
datasets = Datasets()
######################################################################
# Create a counts map for visualisation later:
counts = Map.create(skydir=target_position, width=3)
######################################################################
# Perform the data reduction loop:
for observation in observations:
dataset = dataset_maker.run(
dataset_empty.copy(name=str(observation.obs_id)), observation
)
counts.fill_events(observation.events)
dataset_on_off = bkg_maker.run(dataset, observation)
dataset_on_off = safe_mask_masker.run(dataset_on_off, observation)
datasets.append(dataset_on_off)
######################################################################
# Now we can plot the off regions and target positions on top of the counts
# map:
#
ax = counts.plot(cmap="viridis")
geom.plot_region(ax=ax, kwargs_point={"color": "k", "marker": "*"})
plot_spectrum_datasets_off_regions(ax=ax, datasets=datasets)
plt.show()
######################################################################
# Fit spectrum
# ------------
#
# We perform a joint likelihood fit of the two datasets. For this particular datasets
# we select a fit range between :math:`80\,{\rm GeV}` and :math:`20\,{\rm TeV}`.
#
e_min = 80 * u.GeV
e_max = 20 * u.TeV
for dataset in datasets:
dataset.mask_fit = dataset.counts.geom.energy_mask(e_min, e_max)
spectral_model = LogParabolaSpectralModel(
amplitude=1e-12 * u.Unit("cm-2 s-1 TeV-1"),
alpha=2,
beta=0.1,
reference=1 * u.TeV,
)
model = SkyModel(spectral_model=spectral_model, name="crab")
datasets.models = [model]
fit = Fit()
result = fit.run(datasets=datasets)
# we make a copy here to compare it later
best_fit_model = model.copy()
######################################################################
# Fit quality and model residuals
# -------------------------------
#
######################################################################
# We can access the results dictionary to see if the fit converged:
#
print(result)
######################################################################
# and check the best-fit parameters
#
display(datasets.models.to_parameters_table())
######################################################################
# A simple way to inspect the model residuals is using the function
# `~SpectrumDatasetOnOff.plot_fit()`
#
ax_spectrum, ax_residuals = datasets[0].plot_fit()
ax_spectrum.set_ylim(0.1, 120)
plt.show()
######################################################################
# For more ways of assessing fit quality, please refer to the dedicated
# :doc:`/tutorials/details/fitting` tutorial.
#
######################################################################
# Compare against the literature
# ------------------------------
#
# Let us compare the spectrum we obtained against a `previous measurement
# by
# MAGIC <https://ui.adsabs.harvard.edu/abs/2015JHEAp...5...30A/abstract>`__.
#
fig, ax = plt.subplots()
plot_kwargs = {
"energy_bounds": [0.08, 20] * u.TeV,
"sed_type": "e2dnde",
"ax": ax,
}
ax.yaxis.set_units(u.Unit("TeV cm-2 s-1"))
ax.xaxis.set_units(u.Unit("GeV"))
crab_magic_lp = create_crab_spectral_model("magic_lp")
best_fit_model.spectral_model.plot(
ls="-", lw=1.5, color="crimson", label="best fit", **plot_kwargs
)
best_fit_model.spectral_model.plot_error(facecolor="crimson", alpha=0.4, **plot_kwargs)
crab_magic_lp.plot(ls="--", lw=1.5, color="k", label="MAGIC reference", **plot_kwargs)
ax.legend()
ax.set_ylim([1e-13, 1e-10])
plt.show()
######################################################################
# .. _magic-dataset_sims:
#
# Dataset simulations
# -------------------
#
# A common way to check if a fit is biased is to simulate multiple datasets with
# the obtained best fit model, and check the distribution of the fitted parameters.
# Here, we show how to perform one such simulation assuming the measured off counts
# provide a good distribution of the background.
#
dataset_simulated = datasets.stack_reduce().copy(name="simulated_ds")
simulated_model = best_fit_model.copy(name="simulated")
dataset_simulated.models = simulated_model
dataset_simulated.fake(
npred_background=dataset_simulated.counts_off * dataset_simulated.alpha
)
dataset_simulated.peek()
plt.show()
######################################################################
# The important thing to note here is that while this samples the on-counts, the off counts are
# not sampled. If you have multiple measurements of the off counts, they should be used.
# Alternatively, you can try to create a parametric model of the background.
result = fit.run(datasets=[dataset_simulated])
print(result.models.to_parameters_table())
|