File: veritas.py

package info (click to toggle)
gammapy 2.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,800 kB
  • sloc: python: 81,999; makefile: 211; sh: 11; javascript: 10
file content (447 lines) | stat: -rw-r--r-- 15,721 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
"""
VERITAS with Gammapy
====================

Explore VERITAS point-like DL3 files, including event lists and IRFs and
calculate Li & Ma significance, spectra, and fluxes.


Introduction
------------

`VERITAS <https://veritas.sao.arizona.edu/>`__ (Very Energetic Radiation
Imaging Telescope Array System) is a ground-based gamma-ray instrument
operating at the Fred Lawrence Whipple Observatory (FLWO) in southern
Arizona, USA. It is an array of four 12m optical reflectors for
gamma-ray astronomy in the ~ 100 GeV to > 30 TeV energy range.

VERITAS data are private and lower level analysis is done using either
the
`Eventdisplay <https://github.com/VERITAS-Observatory/EventDisplay_v4>`__
or `VEGAS (internal access
only) <https://github.com/VERITAS-Observatory/VEGAS>`__ analysis
packages to produce DL3 files (using
`V2DL3 <https://github.com/VERITAS-Observatory/V2DL3>`__), which can be
used in Gammapy to produce high-level analysis products. A small sub-set
of archival Crab nebula data has been publicly released to accompany
this tutorial, which provides an introduction to VERITAS data analysis
using gammapy for VERITAS members and external users alike.

This notebook is only intended for use with these publicly released Crab
nebula files and the use of other sources or datasets may require
modifications to this notebook.

"""

import numpy as np
from matplotlib import pyplot as plt

import astropy.units as u

from gammapy.maps import MapAxis, WcsGeom, RegionGeom

from regions import CircleSkyRegion, PointSkyRegion
from gammapy.data import DataStore
from gammapy.modeling.models import SkyModel, LogParabolaSpectralModel
from gammapy.modeling import Fit
from gammapy.datasets import Datasets, SpectrumDataset
from gammapy.estimators import FluxPointsEstimator, LightCurveEstimator
from gammapy.makers import (
    ReflectedRegionsBackgroundMaker,
    SafeMaskMaker,
    SpectrumDatasetMaker,
    WobbleRegionsFinder,
)
from astropy.coordinates import SkyCoord
from gammapy.visualization import plot_spectrum_datasets_off_regions
from gammapy.utils.regions import extract_bright_star_regions

######################################################################
# Data exploration
# ----------------
#


######################################################################
# Load in files
# ~~~~~~~~~~~~~
#
# First, we select and load VERITAS observations of the Crab Nebula. These
# files are processed with EventDisplay, but VEGAS analysis should be
# identical apart from the integration region size, which is handled by ``RAD_MAX``.
#

data_store = DataStore.from_dir("$GAMMAPY_DATA/veritas/crab-point-like-ED")
data_store.info()


######################################################################
# We filter our data by only taking observations within :math:`5^\circ`
# of the Crab Nebula. Further details on how to filter observations can be
# found in :doc:`../../user-guide/dl3`.
#

target_position = SkyCoord(83.6333, 22.0145, unit="deg")

selected_obs_table = data_store.obs_table.select_sky_circle(target_position, 5 * u.deg)
obs_ids = selected_obs_table["OBS_ID"]

observations = data_store.get_observations(obs_id=obs_ids, required_irf="point-like")


######################################################################
# Peek the first run in the data release
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#

######################################################################
# Peek the events and their time/energy/spatial distributions.
#

observations[0].events.peek()
plt.show()

######################################################################
# Peek at the IRFs included. You should verify that
# the IRFs are filled correctly and that there are no values set to zero
# within your analysis range. We can also peek at the effective area
# (``aeff``) or energy migration matrices (``edisp``) with the ``peek()``
# method.
#

observations[0].peek(figsize=(25, 5))
plt.show()

######################################################################
# Estimate counts and significance
# --------------------------------
#


######################################################################
# Set the energy binning
# ~~~~~~~~~~~~~~~~~~~~~~
#
# The energy axis will determine the bins in which energy is calculated,
# while the true energy axis defines the binning of the energy dispersion
# matrix and the effective area. Generally, the true energy axis should be
# more finely binned than the energy axis and span a larger range of
# energies, and the energy axis should be binned to match the needs of
# spectral reconstruction.
#
# Note that if the `~gammapy.makers.SafeMaskMaker` (which we will define
# later) is set to exclude events below a given percentage of the
# effective area, it will remove the entire bin containing the energy that
# corresponds to that percentage. Additionally, spectral bins are
# determined based on the energy axis and cannot be finer or offset from
# the energy axis bin edges. See
# :ref:`Safe Data Range <safe-data-range>` for more
# information on how the safe mask maker works.
#

energy_axis = MapAxis.from_energy_bounds("0.05 TeV", "100 TeV", nbin=50)
energy_axis_true = MapAxis.from_energy_bounds(
    "0.01 TeV", "110 TeV", nbin=200, name="energy_true"
)

######################################################################
# Create an exclusion mask
# ~~~~~~~~~~~~~~~~~~~~~~~~
#
# Here, we create a spatial mask and append exclusion regions for the
# source region and stars (< 6th magnitude) contained within the ``exclusion_geom``.
# We define a star exclusion region of 0.3 deg, which should contain bright stars
# within the VERITAS optical PSF.

exclusion_geom = WcsGeom.create(
    skydir=(target_position.ra.value, target_position.dec.value),
    binsz=0.01,
    width=(4, 4),
    frame="icrs",
    proj="CAR",
)

source_exclusion_region = CircleSkyRegion(center=target_position, radius=0.35 * u.deg)
exclusion_regions = extract_bright_star_regions(exclusion_geom)
exclusion_regions.append(source_exclusion_region)

exclusion_mask = ~exclusion_geom.region_mask(exclusion_regions)

######################################################################
# Define the integration region
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# Point-like DL3 files can only be analyzed using the reflected regions
# background method and for a pre-determined integration region (which is
# the :math:`\sqrt{\theta^2}` used in IRF simulations).
#
# The default values for moderate/medium cuts are determined by the DL3
# file’s ``RAD_MAX`` keyword. For VERITAS data (ED and VEGAS), ``RAD_MAX``
# is not energy dependent.
#
# Note that full-enclosure files are required to use any non-point-like
# integration region.
#

on_region = PointSkyRegion(target_position)
geom = RegionGeom.create(region=on_region, axes=[energy_axis])

######################################################################
# Define the `~gammapy.makers.SafeMaskMaker`
# ------------------------------------------
#
# The `~gammapy.makers.SafeMaskMaker` sets the boundaries of our analysis based on the
# uncertainties contained in the instrument response functions (IRFs).
#
# For VERITAS point-like analysis (both ED and VEGAS), the following
# methods are strongly recommended:
#
# * ``offset-max``: Sets the maximum radial offset from the camera center within which we accept events. This is set to the edge of the VERITAS FoV.
#
# * ``edisp-bias``: Removes events which are reconstructed with energies that have :math:`>5\%` energy bias.
#
# * ``aeff-max``: Removes events which are reconstructed to :math:`<10\%` of the maximum value of the effective area. These are important to remove for spectral analysis, since they have large uncertainties on their reconstructed energies.
#

safe_mask_maker = SafeMaskMaker(
    methods=["offset-max", "aeff-max", "edisp-bias"],
    aeff_percent=10,
    bias_percent=5,
    offset_max=1.75 * u.deg,
)


######################################################################
# Data reduction
# --------------
#
# We will now run the data reduction chain to calculate our ON and OFF
# counts. To get a significance for the whole energy range (to match VERITAS packages),
# remove the `~gammapy.makers.SafeMaskMaker` from being applied to ``dataset_on_off``.
#
# The parameters of the reflected background regions can be changed using
# the `~gammapy.makers.WobbleRegionsFinder`, which is passed as an
# argument to the
# `~gammapy.makers.ReflectedRegionsBackgroundMaker`.
#

dataset_maker = SpectrumDatasetMaker(selection=["counts", "exposure", "edisp"])
dataset_empty = SpectrumDataset.create(geom=geom, energy_axis_true=energy_axis_true)

region_finder = WobbleRegionsFinder(n_off_regions=16)
bkg_maker = ReflectedRegionsBackgroundMaker(
    exclusion_mask=exclusion_mask, region_finder=region_finder
)

datasets = Datasets()

for obs_id, observation in zip(obs_ids, observations):
    dataset = dataset_maker.run(dataset_empty.copy(name=str(obs_id)), observation)
    dataset = safe_mask_maker.run(dataset, observation)
    dataset_on_off = bkg_maker.run(dataset, observation)
    datasets.append(dataset_on_off)


######################################################################
# The plot below will show your exclusion regions in black and the center of your
# background regions with coloured stars. You should check to make sure
# these regions are sensible and that none of your background regions
# overlap with your exclusion regions.
#

plt.figure()
ax = exclusion_mask.plot()
plot_spectrum_datasets_off_regions(ax=ax, datasets=datasets)
plt.show()


######################################################################
# Significance analysis results
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#


######################################################################
# Here, we display the results of the significance analysis.
# ``info_table`` can be modified with ``cumulative = False`` to display a
# table with rows that correspond to the values for each run separately.
#
# However, ``cumulative = True`` is needed to produce the combined values
# in the next cell.
#

info_table = datasets.info_table(cumulative=True)
print(info_table)

print(f"ON: {info_table['counts'][-1]}")
print(f"OFF: {info_table['counts_off'][-1]}")
print(f"Significance: {info_table['sqrt_ts'][-1]:.2f} sigma")
print(f"Alpha: {info_table['alpha'][-1]:.2f}")


######################################################################
# We can also plot the cumulative excess counts and significance over
# time. For a steady source, we generally expect excess to increase
# linearly with time and for significance to increase as
# :math:`\sqrt{\textrm{time}}`.
#

fig, (ax_excess, ax_sqrt_ts) = plt.subplots(figsize=(10, 4), ncols=2, nrows=1)
ax_excess.plot(
    info_table["livetime"].to("h"),
    info_table["excess"],
    marker="o",
)

ax_excess.set_title("Excess")
ax_excess.set_xlabel("Livetime [h]")
ax_excess.set_ylabel("Excess events")

ax_sqrt_ts.plot(
    info_table["livetime"].to("h"),
    info_table["sqrt_ts"],
    marker="o",
)

ax_sqrt_ts.set_title("Significance")
ax_sqrt_ts.set_xlabel("Livetime [h]")
ax_sqrt_ts.set_ylabel("Significance [sigma]")
plt.show()


######################################################################
# Make a spectrum
# ---------------
#

######################################################################
# Now, we’ll calculate the source spectrum. This uses a forward-folding
# approach that will assume a given spectrum and fit the counts calculated
# above to that spectrum in each energy bin specified by the
# ``energy_axis``.
#
# For this reason, it’s important that spectral model be set as closely as
# possible to the expected spectrum - for the Crab nebula, this is a
# `~gammapy.modeling.models.LogParabolaSpectralModel`.
#

spectral_model = LogParabolaSpectralModel(
    amplitude=3.75e-11 * u.Unit("cm-2 s-1 TeV-1"),
    alpha=2.45,
    beta=0.15,
    reference=1 * u.TeV,
)

model = SkyModel(spectral_model=spectral_model, name="crab")

datasets.models = [model]

fit_joint = Fit()
result_joint = fit_joint.run(datasets=datasets)


######################################################################
# The best-fit spectral parameters are shown in this table.
#

print(datasets.models.to_parameters_table())


######################################################################
# We can inspect how well our data fit the model’s predicted counts in
# each energy bin.
#

ax_spectrum, ax_residuals = datasets[0].plot_fit()
ax_spectrum.set_ylim(0.1, 40)
plt.show()


######################################################################
# We can now calculate flux points to get a spectrum by fitting the
# ``result_joint`` model’s amplitude in selected energy bands (defined by
# ``energy_edges``). We set ``selection_optional = "all"`` in
# `~gammapy.estimators.FluxPointsEstimator`, which will include a calculation for the upper
# limits in bins with a significance :math:`< 2\sigma`.
#
# In the case of a non-detection or to obtain better upper limits,
# consider expanding the scan range for the norm parameter in
# `~gammapy.estimators.FluxPointsEstimator`. See
# :doc:`/tutorials/details/estimators` for more details on how to do this.
#

fpe = FluxPointsEstimator(
    energy_edges=np.logspace(-0.7, 1.5, 12) * u.TeV,
    source="crab",
    selection_optional="all",
)
flux_points = fpe.run(datasets=datasets)


######################################################################
# Now, we can plot our flux points along with the best-fit spectral model.
#

ax = flux_points.plot()
spectral_model.plot(ax=ax, energy_bounds=(0.1, 30) * u.TeV)
spectral_model.plot_error(ax=ax, energy_bounds=(0.1, 30) * u.TeV)

plt.show()


######################################################################
# Make a lightcurve and calculate integral flux
# ---------------------------------------------
#


######################################################################
# Integral flux can be calculated by integrating the spectral model we fit
# earlier. This will be a model-dependent flux estimate, so the choice of
# spectral model should match the data as closely as possible.
#
# ``e_min`` and ``e_max`` should be adjusted depending on the analysis
# requirements. Note that the actual energy threshold will use the closest
# bin defined by the ``energy_axis`` binning.
#

e_min = 0.25 * u.TeV
e_max = 30 * u.TeV

flux, flux_errp, flux_errn = result_joint.models["crab"].spectral_model.integral_error(
    e_min, e_max
)
print(
    f"Integral flux > {e_min}: {flux.value:.2} + {flux_errp.value:.2} {flux.unit} - {flux_errn.value:.2} {flux.unit}"
)


######################################################################
# Finally, we’ll create a run-wise binned light curve. See the
# :doc:`../analysis-time/light_curve_flare` tutorial for instructions on
# how to set up sub-run binning. Here, we set our energy edges so that the
# light curve has an energy threshold of 0.25 TeV and will plot upper
# limits for time bins with significance :math:`<2 \sigma`.
#

lc_maker = LightCurveEstimator(
    energy_edges=[0.25, 30] * u.TeV, source="crab", reoptimize=False
)
lc_maker.n_sigma_ul = 2
lc_maker.selection_optional = ["ul"]
lc = lc_maker.run(datasets)


######################################################################
# We can look at our results by printing the light curve as a table (with
# each line corresponding to a light curve bin) and plotting the light
# curve.
#

fig, ax = plt.subplots()
lc.sqrt_ts_threshold_ul = 2
lc.plot(ax=ax, axis_name="time", sed_type="flux")
plt.tight_layout()

table = lc.to_table(format="lightcurve", sed_type="flux")
print(table["time_min", "time_max", "flux", "flux_err"])