File: fitting.py

package info (click to toggle)
gammapy 2.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,800 kB
  • sloc: python: 81,999; makefile: 211; sh: 11; javascript: 10
file content (524 lines) | stat: -rw-r--r-- 19,033 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
"""
Fitting
=======

Learn how the model, dataset and fit Gammapy classes work together in a detailed modeling and fitting use-case.

Note
----
This tutorial describes the fitting steps using a maximum likelihood (Frequentist approach).

Alternatively, we could have a Bayesian approach by assigning a prior probability distribution over
the parameters and compute the posterior distribution to fit the parameters. This is described in the
:doc:`/tutorials/details/priors` tutorial.

One can also perform a Bayesian analysis using a nested sampling technique. This is described
in the :doc:`/tutorials/details/nested_sampling_Crab` tutorial.

Prerequisites
-------------

-  Knowledge of spectral analysis to produce 1D On-Off datasets, see
   the :doc:`/tutorials/analysis-1d/spectral_analysis` tutorial.
-  Reading of pre-computed datasets see e.g.
   :doc:`/tutorials/analysis-3d/analysis_mwl` tutorial.
-  General knowledge on statistics and optimization methods

Proposed approach
-----------------

This is a hands-on tutorial to `~gammapy.modeling`, showing how to do
perform a Fit in gammapy. The emphasis here is on interfacing the
`~gammapy.modeling.Fit` class and inspecting the errors. To see an analysis example of
how datasets and models interact, see the :doc:`/tutorials/details/model_management` tutorial.
As an example, in this notebook, we are going to work with H.E.S.S. data of the Crab Nebula and show in
particular how to :

- perform a spectral analysis
- use different fitting backends
- access covariance matrix information and parameter errors
- compute likelihood profile - compute confidence contours

See also: :doc:`/tutorials/details/models` and :ref:`modeling`.

The setup
---------

"""

from itertools import combinations
import numpy as np
from astropy import units as u
import matplotlib.pyplot as plt
from IPython.display import display
from gammapy.datasets import Datasets, SpectrumDatasetOnOff
from gammapy.modeling import Fit
from gammapy.modeling.models import LogParabolaSpectralModel, SkyModel
from gammapy.visualization.utils import plot_contour_line

######################################################################
# Model and dataset
# -----------------
#
# First we define the source model, here we need only a spectral model for
# which we choose a log-parabola
#

crab_spectrum = LogParabolaSpectralModel(
    amplitude=1e-11 / u.cm**2 / u.s / u.TeV,
    reference=1 * u.TeV,
    alpha=2.3,
    beta=0.2,
)

crab_spectrum.alpha.max = 3
crab_spectrum.alpha.min = 1
crab_model = SkyModel(spectral_model=crab_spectrum, name="crab")


######################################################################
# The data and background are read from pre-computed ON/OFF datasets of
# H.E.S.S. observations, for simplicity we stack them together. Then we set
# the model and fit range to the resulting dataset.
#

datasets = []
for obs_id in [23523, 23526]:
    dataset = SpectrumDatasetOnOff.read(
        f"$GAMMAPY_DATA/joint-crab/spectra/hess/pha_obs{obs_id}.fits"
    )
    datasets.append(dataset)

dataset_hess = Datasets(datasets).stack_reduce(name="HESS")
datasets = Datasets(datasets=[dataset_hess])

# Set model and fit range
dataset_hess.models = crab_model
e_min = 0.66 * u.TeV
e_max = 30 * u.TeV
dataset_hess.mask_fit = dataset_hess.counts.geom.energy_mask(e_min, e_max)


######################################################################
# Fitting options
# ---------------
#
# First let’s create a `~gammapy.modeling.Fit` instance:
#

scipy_opts = {
    "method": "L-BFGS-B",
    "options": {"ftol": 1e-4, "gtol": 1e-05},
    "backend": "scipy",
}
fit_scipy = Fit(store_trace=True, optimize_opts=scipy_opts)


######################################################################
# By default the fit is performed using MINUIT, you can select alternative
# optimizers and set their option using the ``optimize_opts`` argument of
# the `~gammapy.modeling.Fit.run()` method. In addition we have specified to store the
# trace of parameter values of the fit.
#
# Note that, for now, covariance matrix and errors are computed only for
# the fitting with MINUIT. However, depending on the problem other
# optimizers can better perform, so sometimes it can be useful to run a
# pre-fit with alternative optimization methods.
#
# | For the “scipy” backend the available options are described in detail
#   here:
# | https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
#

result_scipy = fit_scipy.run(datasets)


######################################################################
# | For the “sherpa” backend you can choose the optimization algorithm
#   between method = {“simplex”, “levmar”, “moncar”, “gridsearch”}.
# | Those methods are described and compared in detail on
#   http://cxc.cfa.harvard.edu/sherpa/methods/index.html The available
#   options of the optimization methods are described on the following
#   page https://cxc.cfa.harvard.edu/sherpa/methods/opt_methods.html
#

sherpa_opts = {"method": "simplex", "ftol": 1e-3, "maxfev": int(1e4)}
fit_sherpa = Fit(store_trace=True, backend="sherpa", optimize_opts=sherpa_opts)
results_simplex = fit_sherpa.run(datasets)


######################################################################
# For the “minuit” backend see
# https://iminuit.readthedocs.io/en/latest/reference.html for a detailed
# description of the available options. If there is an entry
# ‘migrad_opts’, those options will be passed to
# `iminuit.Minuit.migrad <https://iminuit.readthedocs.io/en/latest/reference.html#iminuit.Minuit.migrad>`__.
# Additionally you can set the fit tolerance using the
# `tol <https://iminuit.readthedocs.io/en/latest/reference.html#iminuit.Minuit.tol>`__
# option. The minimization will stop when the estimated distance to the
# minimum is less than 0.001*tol (by default tol=0.1). The
# `strategy <https://iminuit.readthedocs.io/en/latest/reference.html#iminuit.Minuit.strategy>`__
# option change the speed and accuracy of the optimizer: 0 fast, 1
# default, 2 slow but accurate. If you want more reliable error estimates,
# you should run the final fit with strategy 2.
#

fit = Fit(store_trace=True)
minuit_opts = {"tol": 0.001, "strategy": 1}
fit.backend = "minuit"
fit.optimize_opts = minuit_opts
result_minuit = fit.run(datasets)


######################################################################
# Fit quality assessment
# ----------------------
#
# There are various ways to check the convergence and quality of a fit.
# Among them:
#
# Refer to the automatically-generated results dictionary:
#

print(result_scipy)

# %%

print(results_simplex)

# %%

print(result_minuit)


######################################################################
# If the fit is performed with minuit you can print detailed information
# to check the convergence
#

print(result_minuit.minuit)


######################################################################
# Check the trace of the fit e.g.  in case the fit did not converge
# properly
#

display(result_minuit.trace)


######################################################################
# The fitted models are copied on the `~gammapy.modeling.FitResult` object.
# They can be inspected to check that the fitted values and errors
# for all parameters are reasonable, and no fitted parameter value is “too close”
# - or even outside - its allowed min-max range
#

display(result_minuit.models.to_parameters_table())


######################################################################
# Plot fit statistic profiles for all fitted parameters, using
# `~gammapy.modeling.Fit.stat_profile`. For a good fit and error
# estimate each profile should be parabolic. The specification for each
# fit statistic profile can be changed on the
# `~gammapy.modeling.Parameter` object, which has `~gammapy.modeling.Parameter.scan_min`,
# `~gammapy.modeling.Parameter.scan_max`, `~gammapy.modeling.Parameter.scan_n_values` and `~gammapy.modeling.Parameter.scan_n_sigma` attributes.
#

total_stat = result_minuit.total_stat

fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 4))

for ax, par in zip(axes, crab_model.parameters.free_parameters):
    par.scan_n_values = 17
    idx = crab_model.parameters.index(par)
    name = crab_model.parameters_unique_names[idx]
    profile = fit.stat_profile(datasets=datasets, parameter=par)
    ax.plot(
        profile[f"{crab_model.name}.{name}_scan"], profile["stat_scan"] - total_stat
    )
    ax.set_xlabel(f"{par.name} [{par.unit}]")
    ax.set_ylabel("Delta TS")
    ax.set_title(f"{name}:\n {par.value:.1e} +- {par.error:.1e}")
plt.show()


######################################################################
# Inspect model residuals. Those can always be accessed using
# `~gammapy.datasets.Dataset.residuals()`. For more details, we refer here to the dedicated
# :doc:`/tutorials/analysis-3d/analysis_3d` (for `~gammapy.datasets.MapDataset` fitting) and
# :doc:`/tutorials/analysis-1d/spectral_analysis` (for `SpectrumDataset` fitting).
#


######################################################################
# Covariance and parameters errors
# --------------------------------
#
# After the fit the covariance matrix is attached to the models copy
# stored on the `~gammapy.modeling.FitResult` object.
# You can access it directly with:

print(result_minuit.models.covariance)

######################################################################
# And you can plot the total parameter correlation as well:
#
result_minuit.models.covariance.plot_correlation(figsize=(7, 5))
plt.show()


######################################################################
# The covariance information is also propagated to the individual models
# Therefore, one can also get the error on a specific parameter by directly
# accessing the `~gammapy.modeling.Parameter.error` attribute:
#

print(crab_model.spectral_model.alpha.error)


######################################################################
# As an example, this step is needed to produce a butterfly plot showing
# the envelope of the model taking into account parameter uncertainties.
#

energy_bounds = [1, 10] * u.TeV
crab_spectrum.plot(energy_bounds=energy_bounds, energy_power=2)
ax = crab_spectrum.plot_error(energy_bounds=energy_bounds, energy_power=2)
plt.show()


######################################################################
# Confidence contours
# -------------------
#
# In most studies, one wishes to estimate parameters distribution using
# observed sample data. A 1-dimensional confidence interval gives an
# estimated range of values which is likely to include an unknown
# parameter. A confidence contour is a 2-dimensional generalization of a
# confidence interval, often represented as an ellipsoid around the
# best-fit value.
#
# Gammapy offers two ways of computing confidence contours, in the
# dedicated methods `~gammapy.modeling.Fit.stat_contour` and `~gammapy.modeling.Fit.stat_profile`. In
# the following sections we will describe them.
#


######################################################################
# An important point to keep in mind is: *what does a* :math:`N\sigma`
# *confidence contour really mean?* The answer is it represents the points
# of the parameter space for which the model likelihood is :math:`N\sigma`
# above the minimum. But one always has to keep in mind that **1 standard
# deviation in two dimensions has a smaller coverage probability than
# 68%**, and similarly for all other levels. In particular, in
# 2-dimensions the probability enclosed by the :math:`N\sigma` confidence
# contour is :math:`P(N)=1-e^{-N^2/2}`.
#


######################################################################
# Computing contours using `~gammapy.modeling.Fit.stat_contour`
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# After the fit, MINUIT offers the possibility to compute the confidence
# contours. gammapy provides an interface to this functionality through
# the `~gammapy.modeling.Fit` object using the `~gammapy.modeling.Fit.stat_contour` method. Here we defined a
# function to automate the contour production for the different
# parameter and confidence levels (expressed in terms of sigma):
#


def make_contours(fit, datasets, model, params, npoints, sigmas):
    cts_sigma = []
    for sigma in sigmas:
        contours = dict()
        for par_1, par_2 in combinations(params, r=2):
            idx1, idx2 = model.parameters.index(par_1), model.parameters.index(par_2)
            name1 = model.parameters_unique_names[idx1]
            name2 = model.parameters_unique_names[idx2]
            contour = fit.stat_contour(
                datasets=datasets,
                x=model.parameters[par_1],
                y=model.parameters[par_2],
                numpoints=npoints,
                sigma=sigma,
            )
            contours[f"contour_{par_1}_{par_2}"] = {
                par_1: contour[f"{model.name}.{name1}"].tolist(),
                par_2: contour[f"{model.name}.{name2}"].tolist(),
            }
        cts_sigma.append(contours)
    return cts_sigma


######################################################################
# Now we can compute few contours.
#

params = ["alpha", "beta", "amplitude"]
sigmas = [1, 2]
cts_sigma = make_contours(
    fit=fit,
    datasets=datasets,
    model=crab_model,
    params=params,
    npoints=10,
    sigmas=sigmas,
)

#####################################################################
#
# Define the combinations of parameters to plot
param_pairs = list(combinations(params, r=2))

#####################################################################
#
# Labels for plotting
labels = {
    "amplitude": r"$\phi_0 \,/\,({\rm TeV}^{-1} \, {\rm cm}^{-2} {\rm s}^{-1})$",
    "alpha": r"$\alpha$",
    "beta": r"$\beta$",
}


#####################################################################
# Produce the confidence contours figures.
#

fig, axes = plt.subplots(1, 3, figsize=(10, 3))
colors = ["m", "b", "c"]

for (par_1, par_2), ax in zip(param_pairs, axes):
    for ks, sigma in enumerate(sigmas):
        contour = cts_sigma[ks][f"contour_{par_1}_{par_2}"]
        plot_contour_line(
            ax,
            contour[par_1],
            contour[par_2],
            lw=2.5,
            color=colors[ks],
            label=f"{sigmas[ks]}" + r"$\sigma$",
        )
    ax.set_xlabel(labels[par_1])
    ax.set_ylabel(labels[par_2])
plt.legend()
plt.tight_layout()


######################################################################
# Computing contours using `~gammapy.modeling.Fit.stat_surface`
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# This alternative method for the computation of confidence contours,
# although more time consuming than `~gammapy.modeling.Fit.stat_contour()`, is expected
# to be more stable. It consists of a generalization of
# `~gammapy.modeling.Fit.stat_profile()` to a 2-dimensional parameter space. The algorithm
# is very simple: - First, passing two arrays of parameters values, a
# 2-dimensional discrete parameter space is defined; - For each node of
# the parameter space, the two parameters of interest are frozen. This
# way, a likelihood value (:math:`-2\mathrm{ln}\,\mathcal{L}`, actually)
# is computed, by either freezing (default) or fitting all nuisance
# parameters; - Finally, a 2-dimensional surface of
# :math:`-2\mathrm{ln}(\mathcal{L})` values is returned. Using that
# surface, one can easily compute a surface of
# :math:`TS = -2\Delta\mathrm{ln}(\mathcal{L})` and compute confidence
# contours.
#
# Let’s see it step by step.
#
# First of all, we can notice that this method is “backend-agnostic”,
# meaning that it can be run with MINUIT, sherpa or scipy as fitting
# tools. Here we will stick with MINUIT, which is the default choice:
#
# As an example, we can compute the confidence contour for the ``alpha``
# and ``beta`` parameters of the ``dataset_hess``. Here we define the
# parameter space:
#

result = result_minuit
par_alpha = crab_model.parameters["alpha"]
par_beta = crab_model.parameters["beta"]

par_alpha.scan_values = np.linspace(1.55, 2.7, 20)
par_beta.scan_values = np.linspace(-0.05, 0.55, 20)


######################################################################
# Then we run the algorithm, by choosing ``reoptimize=False`` for the sake
# of time saving. In real life applications, we strongly recommend to use
# ``reoptimize=True``, so that all free nuisance parameters will be fit at
# each grid node. This is the correct way, statistically speaking, of
# computing confidence contours, but is expected to be time consuming.
#

fit = Fit(backend="minuit", optimize_opts={"print_level": 0})
stat_surface = fit.stat_surface(
    datasets=datasets,
    x=par_alpha,
    y=par_beta,
    reoptimize=False,
)


######################################################################
# In order to easily inspect the results, we can convert the
# :math:`-2\mathrm{ln}(\mathcal{L})` surface to a surface of statistical
# significance (in units of Gaussian standard deviations from the surface
# minimum):
#

# Compute TS
TS = stat_surface["stat_scan"] - result.total_stat

# Compute the corresponding statistical significance surface
stat_surface = np.sqrt(TS.T)


######################################################################
# Notice that, as explained before, :math:`1\sigma` contour obtained this
# way will not contain 68% of the probability, but rather
#

# Compute the corresponding statistical significance surface
# p_value = 1 - st.chi2(df=1).cdf(TS)
# gaussian_sigmas = st.norm.isf(p_value / 2).T


######################################################################
# Finally, we can plot the surface values together with contours:
#

fig, ax = plt.subplots(figsize=(8, 6))
x_values = par_alpha.scan_values
y_values = par_beta.scan_values

# plot surface
im = ax.pcolormesh(x_values, y_values, stat_surface, shading="auto")
fig.colorbar(im, label="sqrt(TS)")
ax.set_xlabel(f"{par_alpha.name}")
ax.set_ylabel(f"{par_beta.name}")

# We choose to plot 1 and 2 sigma confidence contours
levels = [1, 2]
contours = ax.contour(x_values, y_values, stat_surface, levels=levels, colors="white")
ax.clabel(contours, fmt="%.0f $\\sigma$", inline=3, fontsize=15)

plt.show()

######################################################################
# Note that, if computed with ``reoptimize=True``, this plot would be
# completely consistent with the third panel of the plot produced with
# `~gammapy.modeling.Fit.stat_contour` (try!).
#


######################################################################
# Finally, it is always remember that confidence contours are
# approximations. In particular, when the parameter range boundaries are
# close to the contours lines, it is expected that the statistical meaning
# of the contours is not well defined. That’s why we advise to always
# choose a parameter space that contains the contours you’re interested
# in.
#