1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
"""
Models
======
This is an introduction and overview on how to work with models in
Gammapy.
The sub-package `~gammapy.modeling` contains all the functionality
related to modeling and fitting data. This includes spectral, spatial
and temporal model classes, as well as the fit and parameter API.The
models follow a naming scheme which contains the category as a suffix to
the class name. An overview of all the available models can be found in
the :ref:`model-gallery`.
Note that there are separate tutorials,
:doc:`/tutorials/details/model_management` and
:doc:`/tutorials/details/fitting` that explains about
`~gammapy.modeling`, the Gammapy modeling and fitting framework. You
have to read that to learn how to work with models in order to analyse
data.
"""
######################################################################
# Setup
# -----
#
# %matplotlib inline
import numpy as np
from astropy import units as u
import matplotlib.pyplot as plt
from IPython.display import display
from gammapy.maps import Map, MapAxis, WcsGeom
######################################################################
# Spectral models
# ---------------
#
# All models are imported from the `~gammapy.modeling.models` namespace.
# Let’s start with a `~gammapy.modeling.models.PowerLawSpectralModel`:
#
from gammapy.modeling.models import PowerLawSpectralModel
pwl = PowerLawSpectralModel()
print(pwl)
######################################################################
# To get a list of all available spectral models you can import and print
# the spectral model registry or take a look at the :ref:`model-gallery`
#
from gammapy.modeling.models import SPECTRAL_MODEL_REGISTRY
print(SPECTRAL_MODEL_REGISTRY)
######################################################################
# Spectral models all come with default parameters. Different parameter
# values can be passed on creation of the model, either as a string
# defining the value and unit or as an `astropy.units.Quantity` object
# directly:
#
amplitude = 1e-12 * u.Unit("TeV-1 cm-2 s-1")
pwl = PowerLawSpectralModel(amplitude=amplitude, index=2.2)
######################################################################
# For convenience a `str` specifying the value and unit can be passed as
# well:
#
pwl = PowerLawSpectralModel(amplitude="2.7e-12 TeV-1 cm-2 s-1", index=2.2)
print(pwl)
######################################################################
# The model can be evaluated at given energies by calling the model
# instance:
#
energy = [1, 3, 10, 30] * u.TeV
dnde = pwl(energy)
print(dnde)
######################################################################
# The returned quantity is a differential photon flux.
#
# For spectral models you can additionally compute the integrated and
# energy flux in a given energy range:
#
flux = pwl.integral(energy_min=1 * u.TeV, energy_max=10 * u.TeV)
print(flux)
eflux = pwl.energy_flux(energy_min=1 * u.TeV, energy_max=10 * u.TeV)
print(eflux)
######################################################################
# This also works for a list or an array of integration boundaries:
#
energy = [1, 3, 10, 30] * u.TeV
flux = pwl.integral(energy_min=energy[:-1], energy_max=energy[1:])
print(flux)
######################################################################
# In some cases it can be useful to find use the inverse of a spectral
# model, to find the energy at which a given flux is reached:
#
dnde = 2.7e-12 * u.Unit("TeV-1 cm-2 s-1")
energy = pwl.inverse(dnde)
print(energy)
######################################################################
# As a convenience you can also plot any spectral model in a given energy
# range:
#
pwl.plot(energy_bounds=[1, 100] * u.TeV)
plt.show()
######################################################################
# Norm Spectral Models
# ~~~~~~~~~~~~~~~~~~~~
#
######################################################################
# Normed spectral models are a special class of Spectral Models, which
# have a dimension-less normalisation. These spectral models feature a
# norm parameter instead of amplitude and are named using the
# ``NormSpectralModel`` suffix. They **must** be used along with another
# spectral model, as a multiplicative correction factor according to their
# spectral shape. They can be typically used for adjusting template based
# models, or adding a EBL correction to some analytic model.
#
# To check if a given `~gammapy.modeling.models.SpectralModel` is a norm model, you can simply
# look at the ``is_norm_spectral_model`` property
#
# To see the available norm models shipped with gammapy:
for model in SPECTRAL_MODEL_REGISTRY:
if model.is_norm_spectral_model:
print(model)
######################################################################
# As an example, we see the `~gammapy.modeling.models.PowerLawNormSpectralModel`
#
from gammapy.modeling.models import PowerLawNormSpectralModel
pwl_norm = PowerLawNormSpectralModel(tilt=0.1)
print(pwl_norm)
######################################################################
# We can check the correction introduced at each energy
#
energy = [0.3, 1, 3, 10, 30] * u.TeV
print(pwl_norm(energy))
######################################################################
# A typical use case of a norm model would be in applying spectral
# correction to a `~gammapy.modeling.models.TemplateSpectralModel`. A template model is defined
# by custom tabular values provided at initialization.
#
from gammapy.modeling.models import TemplateSpectralModel
energy = [0.3, 1, 3, 10, 30] * u.TeV
values = [40, 30, 20, 10, 1] * u.Unit("TeV-1 s-1 cm-2")
template = TemplateSpectralModel(energy, values)
template.plot(energy_bounds=[0.2, 50] * u.TeV, label="template model")
normed_template = template * pwl_norm
normed_template.plot(energy_bounds=[0.2, 50] * u.TeV, label="normed_template model")
plt.legend()
plt.show()
######################################################################
# Compound Spectral Model
# ~~~~~~~~~~~~~~~~~~~~~~~
#
# A `~gammapy.modeling.models.CompoundSpectralModel` is an arithmetic combination of two spectral
# models. The model ``normed_template`` created in the preceding example
# is an example of a `~gammapy.modeling.models.CompoundSpectralModel`
#
print(normed_template)
######################################################################
# To create an additive model, you can do simply:
#
model_add = pwl + template
print(model_add)
######################################################################
# Spatial models
# --------------
#
######################################################################
# Spatial models are imported from the same `~gammapy.modeling.models`
# namespace, let’s start with a `~gammapy.modeling.models.GaussianSpatialModel`:
#
from gammapy.modeling.models import GaussianSpatialModel
gauss = GaussianSpatialModel(lon_0="0 deg", lat_0="0 deg", sigma="0.2 deg")
print(gauss)
######################################################################
# Again you can check the ``SPATIAL_MODELS`` registry to see which models
# are available or take a look at the :ref:`model-gallery`
#
from gammapy.modeling.models import SPATIAL_MODEL_REGISTRY
print(SPATIAL_MODEL_REGISTRY)
######################################################################
# The default coordinate frame for all spatial models is ``"icrs"``, but
# the frame can be modified using the ``frame`` argument:
#
gauss = GaussianSpatialModel(
lon_0="0 deg", lat_0="0 deg", sigma="0.2 deg", frame="galactic"
)
######################################################################
# You can specify any valid `astropy.coordinates` frame. The center
# position of the model can be retrieved as a
# `astropy.coordinates.SkyCoord` object using `~gammapy.modeling.models.SpatialModel.position`:
#
print(gauss.position)
######################################################################
# Spatial models can be evaluated again by calling the instance:
#
lon = [0, 0.1] * u.deg
lat = [0, 0.1] * u.deg
flux_per_omega = gauss(lon, lat)
print(flux_per_omega)
######################################################################
# The returned quantity corresponds to a surface brightness. Spatial model
# can be also evaluated using `~gammapy.maps.Map` and
# `~gammapy.maps.Geom` objects:
#
m = Map.create(skydir=(0, 0), width=(1, 1), binsz=0.02, frame="galactic")
m.quantity = gauss.evaluate_geom(m.geom)
m.plot(add_cbar=True)
plt.show()
######################################################################
# Again for convenience the model can be plotted directly:
#
gauss.plot(add_cbar=True)
plt.show()
######################################################################
# All spatial models have an associated sky region to it e.g. to
# illustrate the extension of the model on a sky image. The returned object
# is an `~regions.SkyRegion` object:
#
print(gauss.to_region())
######################################################################
# Now we can plot the region on a sky image:
#
plt.figure()
gauss_elongated = GaussianSpatialModel(
lon_0="0 deg", lat_0="0 deg", sigma="0.2 deg", e=0.7, phi="45 deg"
)
ax = gauss_elongated.plot(add_cbar=True)
region = gauss_elongated.to_region()
region_pix = region.to_pixel(ax.wcs)
ax.add_artist(region_pix.as_artist(ec="w", fc="None"))
plt.show()
######################################################################
# The `~gammapy.modeling.models.GaussianSpatialModel.to_region()` method can also be useful to write e.g. ds9 region
# files using ``write_ds9`` from the `regions` package:
#
from regions import Regions
regions = Regions([gauss.to_region(), gauss_elongated.to_region()])
filename = "regions.reg"
regions.write(
filename,
format="ds9",
overwrite=True,
)
# !cat regions.reg
######################################################################
# Temporal models
# ---------------
#
######################################################################
# Temporal models are imported from the same `~gammapy.modeling.models`
# namespace, let’s start with a `~gammapy.modeling.models.GaussianTemporalModel`:
#
from gammapy.modeling.models import GaussianTemporalModel
gauss_temp = GaussianTemporalModel(t_ref=59240.0 * u.d, sigma=2.0 * u.d)
print(gauss_temp)
######################################################################
# To check the ``TEMPORAL_MODELS`` registry to see which models are
# available:
#
from gammapy.modeling.models import TEMPORAL_MODEL_REGISTRY
print(TEMPORAL_MODEL_REGISTRY)
######################################################################
# Temporal models can be evaluated on `astropy.time.Time` objects. The
# returned quantity is a dimensionless number
#
from astropy.time import Time
time = Time("2021-01-29 00:00:00.000")
gauss_temp(time)
######################################################################
# As for other models, they can be plotted in a given time range
#
time = Time([59233.0, 59250], format="mjd")
gauss_temp.plot(time)
plt.show()
######################################################################
# `~gammapy.modeling.models.SkyModel`
# -----------------------------------
#
# The `~gammapy.modeling.models.SkyModel` class combines a spectral, and
# optionally, a spatial model and a temporal. It can be created from
# existing spectral, spatial and temporal model components:
#
from gammapy.modeling.models import SkyModel
model = SkyModel(
spectral_model=pwl,
spatial_model=gauss,
temporal_model=gauss_temp,
name="my-source",
)
print(model)
######################################################################
# It is good practice to specify a name for your sky model, so that you
# can access it later by name and have meaningful identifier you
# serialisation. If you don’t define a name, a unique random name is
# generated:
#
model_without_name = SkyModel(spectral_model=pwl, spatial_model=gauss)
print(model_without_name.name)
######################################################################
# The individual components of the source model can be accessed using
# ``.spectral_model``, ``.spatial_model`` and ``.temporal_model``:
#
print(model.spectral_model)
# %%
print(model.spatial_model)
# %%
print(model.temporal_model)
######################################################################
# And can be used as you have seen already seen above:
#
model.spectral_model.plot(energy_bounds=[1, 10] * u.TeV)
plt.show()
######################################################################
# Note that the gammapy fitting can interface only with a `~gammapy.modeling.models.SkyModel` and
# **not** its individual components. So, it is customary to work with
# `~gammapy.modeling.models.SkyModel` even if you are not doing a 3D fit. Since the amplitude
# parameter resides on the `~gammapy.modeling.models.SpectralModel`, specifying a spectral
# component is compulsory. The temporal and spatial components are
# optional. The temporal model needs to be specified only for timing
# analysis. In some cases (e.g. when doing a spectral analysis) there is
# no need for a spatial component either, and only a spectral model is
# associated with the source.
#
model_spectrum = SkyModel(spectral_model=pwl, name="source-spectrum")
print(model_spectrum)
######################################################################
# Additionally the spatial model of `~gammapy.modeling.models.SkyModel`
# can be used to represent source models based on templates, where the
# spatial and energy axes are correlated. It can be created e.g. from an
# existing FITS file:
#
from gammapy.modeling.models import PowerLawNormSpectralModel, TemplateSpatialModel
diffuse_cube = TemplateSpatialModel.read(
"$GAMMAPY_DATA/fermi-3fhl-gc/gll_iem_v06_gc.fits.gz", normalize=False
)
diffuse = SkyModel(PowerLawNormSpectralModel(), diffuse_cube)
print(diffuse)
######################################################################
# Note that if the spatial model is not normalized over the sky it has to
# be combined with a normalized spectral model, for example
# `~gammapy.modeling.models.PowerLawNormSpectralModel`. This is the only
# case in `~gammapy.modeling.models.SkyModel` where the unit is fully attached to
# the spatial model.
#
######################################################################
# .. _modifying-model-parameters:
#
# Modifying model parameters
# --------------------------
#
# Model parameters can be modified (eg: frozen, values changed, etc at any
# point), eg:
#
# Freezing a parameter
model.spectral_model.index.frozen = True
# Making a parameter free
model.spectral_model.index.frozen = False
# Changing a value
model.spectral_model.index.value = 3
# Setting min and max ranges on parameters
model.spectral_model.index.min = 1.0
model.spectral_model.index.max = 5.0
# Visualise the model as a table
display(model.parameters.to_table())
######################################################################
# You can use the interactive boxes to choose model parameters by name,
# type or other attributes mentioned in the column names.
#
######################################################################
# Model lists and serialisation
# -----------------------------
#
# In a typical analysis scenario a model consists of multiple model
# components, or a “catalog” or “source library”. To handle this list of
# multiple model components, Gammapy has a `~gammapy.modeling.models.Models` class:
#
from gammapy.modeling.models import Models
models = Models([model, diffuse])
print(models)
######################################################################
# Individual model components in the list can be accessed by their name:
#
print(models["my-source"])
######################################################################
# **Note:** To make the access by name unambiguous, models are required to
# have a unique name, otherwise an error will be thrown.
#
# To see which models are available you can use the ``.names`` attribute:
#
print(models.names)
######################################################################
# Note that a `~gammapy.modeling.models.SkyModel` object can be evaluated for a given longitude,
# latitude, and energy, but the `~gammapy.modeling.models.Models` object cannot.
# This `~gammapy.modeling.models.Models`
# container object will be assigned to `~gammapy.datasets.Dataset` or `~gammapy.datasets.Datasets`
# together with the data to be fitted. Checkout e.g. the
# :doc:`/tutorials/details/model_management` tutorial for details.
#
# The `~gammapy.modeling.models.Models` class also has in place ``.append()`` and ``.extend()``
# methods:
#
model_copy = model.copy(name="my-source-copy")
models.append(model_copy)
######################################################################
# This list of models can be also serialised to a custom YAML based
# format:
#
models_yaml = models.to_yaml()
print(models_yaml)
######################################################################
# The structure of the yaml files follows the structure of the python
# objects. The ``components`` listed correspond to the `~gammapy.modeling.models.SkyModel` and
# components of the `~gammapy.modeling.models.Models`. For each `~gammapy.modeling.models.SkyModel`
# we have information about its ``name``, ``type`` (corresponding to the
# tag attribute) and sub-models (i.e ``spectral`` model and eventually
# ``spatial`` model). Then the spatial and spectral models are defined by
# their type and parameters. The ``parameters`` keys name/value/unit are
# mandatory, while the keys min/max/frozen are optional (so you can
# prepare shorter files).
#
# If you want to write this list of models to disk and read it back later
# you can use:
#
models.write("models.yaml", overwrite=True)
models_read = Models.read("models.yaml")
######################################################################
# Additionally the models can be exported and imported together with the data
# using the `~gammapy.datasets.Datasets.read()` and `~gammapy.datasets.Datasets.write()` methods as shown
# in the :doc:`/tutorials/analysis-3d/analysis_mwl`
# notebook.
#
# Models with shared parameter
# ----------------------------
#
# A model parameter can be shared with other models, for example we can
# define two power-law models with the same spectral index but different
# amplitudes:
#
pwl2 = PowerLawSpectralModel()
pwl2.index = pwl.index
pwl.index.value = (
2.3 # also update pwl2 as the parameter object is now the same as shown below
)
print(pwl.index)
print(pwl2.index)
######################################################################
# In the YAML files the shared parameter is flagged by the additional
# ``link`` entry that follows the convention ``parameter.name@unique_id``:
#
models = Models([SkyModel(pwl, name="source1"), SkyModel(pwl2, name="source2")])
models_yaml = models.to_yaml()
print(models_yaml)
######################################################################
# .. _custom-model:
#
# Implementing a custom model
# ---------------------------
#
# In order to add a user defined spectral model you have to create a
# `~gammapy.modeling.models.SpectralModel` subclass. This new model class should include:
#
# - a tag used for serialization (it can be the same as the class name)
# - an instantiation of each Parameter with their unit, default values
# and frozen status
# - the evaluate function where the mathematical expression for the model
# is defined.
#
# As an example we will use a PowerLawSpectralModel plus a Gaussian (with
# fixed width). First we define the new custom model class that we name
# ``MyCustomSpectralModel``:
#
from gammapy.modeling import Parameter
from gammapy.modeling.models import SpectralModel
class MyCustomSpectralModel(SpectralModel):
"""My custom spectral model, parametrizing a power law plus a Gaussian spectral line.
Parameters
----------
amplitude : `astropy.units.Quantity`
Amplitude of the spectra model.
index : `astropy.units.Quantity`
Spectral index of the model.
reference : `astropy.units.Quantity`
Reference energy of the power law.
mean : `astropy.units.Quantity`
Mean value of the Gaussian.
width : `astropy.units.Quantity`
Sigma width of the Gaussian line.
"""
tag = "MyCustomSpectralModel"
amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1", min=0)
index = Parameter("index", 2, min=0)
reference = Parameter("reference", "1 TeV", frozen=True)
mean = Parameter("mean", "1 TeV", min=0)
width = Parameter("width", "0.1 TeV", min=0, frozen=True)
@staticmethod
def evaluate(energy, index, amplitude, reference, mean, width):
pwl = PowerLawSpectralModel.evaluate(
energy=energy,
index=index,
amplitude=amplitude,
reference=reference,
)
gauss = amplitude * np.exp(-((energy - mean) ** 2) / (2 * width**2))
return pwl + gauss
######################################################################
# It is good practice to also implement a docstring for the model,
# defining the parameters and also defining a ``.tag``, which specifies the
# name of the model for serialisation. Also note that gammapy assumes that
# all `~gammapy.modeling.models.SpectralModel` evaluate functions return a flux in unit of
# `"cm-2 s-1 TeV-1"` (or equivalent dimensions).
#
# This model can now be used as any other spectral model in Gammapy:
#
my_custom_model = MyCustomSpectralModel(mean="3 TeV")
print(my_custom_model)
print(my_custom_model.integral(1 * u.TeV, 10 * u.TeV))
my_custom_model.plot(energy_bounds=[1, 10] * u.TeV)
plt.show()
######################################################################
# As a next step we can also register the custom model in the
# ``SPECTRAL_MODELS`` registry, so that it becomes available for
# serialization:
#
SPECTRAL_MODEL_REGISTRY.append(MyCustomSpectralModel)
model = SkyModel(spectral_model=my_custom_model, name="my-source")
models = Models([model])
models.write("my-custom-models.yaml", overwrite=True)
# !cat my-custom-models.yaml
######################################################################
# Similarly you can also create custom spatial models and add them to the
# ``SPATIAL_MODELS`` registry. In that case gammapy assumes that the
# evaluate function return a normalized quantity in “sr-1” such as the
# model integral over the whole sky is one.
#
######################################################################
# Models with energy dependent morphology
# ---------------------------------------
#
# A common science case in the study of extended sources is to probe for
# energy dependent morphology, eg: in Supernova Remnants or Pulsar Wind
# Nebulae. Traditionally, this has been done by splitting the data into
# energy bands and doing individual fits of the morphology in these energy
# bands.
#
# `~gammapy.modeling.models.SkyModel` offers a natural framework to simultaneously model the
# energy and morphology, e.g. spatial extent described by a parametric
# model expression with energy dependent parameters.
#
# The models shipped within gammapy use a “factorised” representation of
# the source model, where the spatial (:math:`l,b`), energy (:math:`E`)
# and time (:math:`t`) dependence are independent model components and not
# correlated:
#
# .. math::
# \begin{align}f(l, b, E, t) = F(l, b) \cdot G(E) \cdot H(t)\end{align}
#
# To use full 3D models, ie :math:`f(l, b, E) = F(l, b, E) \cdot \ G(E)`,
# you have to implement your own custom
# `~gammapy.modeling.models.SpatialModel`. Note that it is still necessary to multiply by a
# `~gammapy.modeling.models.SpectralModel`, :math:`G(E)` to be dimensionally consistent.
#
# In this example, we create Gaussian Spatial Model with the extension
# varying with energy. For simplicity, we assume a linear dependency on
# energy and parameterize this by specifying the extension at 2 energies.
# You can add more complex dependencies, probably motivated by physical
# models.
#
from astropy.coordinates import angular_separation
from gammapy.modeling.models import SpatialModel
class MyCustomGaussianModel(SpatialModel):
"""My custom Energy Dependent Gaussian model.
Parameters
----------
lon_0, lat_0 : `~astropy.coordinates.Angle`
Center position
sigma_1TeV : `~astropy.coordinates.Angle`
Width of the Gaussian at 1 TeV
sigma_10TeV : `~astropy.coordinates.Angle`
Width of the Gaussian at 10 TeV
"""
tag = "MyCustomGaussianModel"
is_energy_dependent = True
lon_0 = Parameter("lon_0", "0 deg")
lat_0 = Parameter("lat_0", "0 deg", min=-90, max=90)
sigma_1TeV = Parameter("sigma_1TeV", "2.0 deg", min=0)
sigma_10TeV = Parameter("sigma_10TeV", "0.2 deg", min=0)
@staticmethod
def evaluate(lon, lat, energy, lon_0, lat_0, sigma_1TeV, sigma_10TeV):
sep = angular_separation(lon, lat, lon_0, lat_0)
# Compute sigma for the given energy using linear interpolation in log energy
sigma_nodes = u.Quantity([sigma_1TeV, sigma_10TeV])
energy_nodes = [1, 10] * u.TeV
log_s = np.log(sigma_nodes.to("deg").value)
log_en = np.log(energy_nodes.to("TeV").value)
log_e = np.log(energy.to("TeV").value)
sigma = np.exp(np.interp(log_e, log_en, log_s)) * u.deg
exponent = -0.5 * (sep / sigma) ** 2
norm = 1 / (2 * np.pi * sigma**2)
return norm * np.exp(exponent)
######################################################################
# Serialisation of this model can be achieved as explained in the previous
# section. You can now use it as standard `~gammapy.modeling.models.SpatialModel` in your
# analysis. Note that this is still a `~gammapy.modeling.models.SpatialModel` and not a
# `~gammapy.modeling.models.SkyModel`, so it needs to be multiplied by a
# `~gammapy.modeling.models.SpectralModel` as before.
#
spatial_model = MyCustomGaussianModel()
spectral_model = PowerLawSpectralModel()
sky_model = SkyModel(spatial_model=spatial_model, spectral_model=spectral_model)
print(spatial_model.evaluation_radius)
######################################################################
# To visualise it, we evaluate it on a 3D geom.
#
energy_axis = MapAxis.from_energy_bounds(
energy_min=0.1 * u.TeV, energy_max=10.0 * u.TeV, nbin=3, name="energy_true"
)
geom = WcsGeom.create(skydir=(0, 0), width=5.0 * u.deg, binsz=0.1, axes=[energy_axis])
spatial_model.plot_grid(geom=geom, add_cbar=True, figsize=(14, 3))
plt.show()
######################################################################
# For computational purposes, it is useful to specify a
# ``evaluation_radius`` for `~gammapy.modeling.models.SpatialModel` - this gives a size on which
# to compute the model. Though optional, it is highly recommended for
# Custom Spatial Models. This can be done, for ex, by defining the
# following function inside the above class:
#
@property
def evaluation_radius(self):
"""Evaluation radius (`~astropy.coordinates.Angle`)."""
return 5 * np.max([self.sigma_1TeV.value, self.sigma_10TeV.value]) * u.deg
|