1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
"""
Bayesian analysis with nested sampling
======================================
A demonstration of a Bayesian analysis using the nested sampling technique.
"""
######################################################################
# Context
# -------
#
# 1. Bayesian analysis
# ~~~~~~~~~~~~~~~~~~~~
#
# Bayesian inference uses prior knowledge, in the form of a prior
# distribution, in order to estimate posterior probabilities which we
# traditionally visualise in the form of corner plots. These distributions
# contain more information than a maximum likelihood fit as they reveal not
# only the “best model” but provide a more accurate representation of errors and
# correlation between parameters. In particular, non-Gaussian degeneracies are
# complex to estimate with a maximum likelihood approach.
#
# 2. Limitations of the Markov Chain Monte Carlo approach
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# A well-known approach to estimate this posterior distribution is the
# Markov Chain Monte Carlo (MCMC). This uses an ensemble of walkers to
# produce a chain of samples that after a convergence period will reach a
# stationary state. *Once convergence* is reached, the successive elements
# of the chain are samples of the target posterior distribution. However,
# the weakness of the MCMC approach lies in the "*Once convergence*" part.
# If the walkers are started far from the best likelihood region, the convergence time can be
# long or never reached if the walkers fall in a local minima. The choice
# of the initialisation point can become critical for complex models with
# a high number of dimensions and the ability of these walkers to escape a
# local minimum or to accurately describe a complex likelihood space is
# not guaranteed.
#
# 3. Nested sampling approach
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# To overcome these issues, the nested sampling (NS) algorithm has
# gained traction in physics and astronomy. It is a Monte Carlo
# algorithm for computing an integral of the likelihood function over
# the prior model parameter space introduced in
# `Skilling, 2004 <https://ui.adsabs.harvard.edu/abs/2004AIPC..735..395S>`__.
# The method performs this integral by evolving a collection of points
# through the parameter space (see recent reviews from `Ashton et al.,
# 2022 <https://ui.adsabs.harvard.edu/abs/2022NRvMP...2...39A>`__, and
# `Buchner, 2023 <http://arxiv.org/abs/2101.09675>`__). Without going
# into too many details, one important specificity of the NS method is
# that it starts from the entire parameter space and evolves a
# collection of live points to map all minima (including multiple modes
# if any), whereas Markov Chain Monte Carlo methods require an
# initialisation point and the walkers will explore the local
# likelihood. The ability of these walkers to escape a local minimum or
# to accurately describe a complex likelihood space is not guaranteed.
# This is a fundamental difference with MCMC or Minuit which will
# only ever probe the vicinity along their minimisation paths and do not
# have an overview of the global likelihood landscape. The analysis
# using the NS framework is more CPU time consuming than a standard
# classical fit, but it provides the full posterior distribution for all
# parameters, which is out of reach with traditional fitting techniques
# (N*(N-1)/2 contour plots to generate). In addition, it is more robust
# to the choice of initialisation, requires less human intervention and
# is therefore readily integrated in pipeline analysis. In Gammapy, we
# used the NS implementation of the UltraNest package
# (see `here <https://johannesbuchner.github.io/UltraNest/>`__ for more information), one of the
# leading package in Astronomy (already used in Cosmology and in
# X-rays).
# For a nice visualisation of the NS method see here : `sampling
# visualisation <https://johannesbuchner.github.io/UltraNest/method.html#visualisation>`__.
# And for a tutorial of UltraNest applied to X-ray fitting with concrete examples and questions see : `BXA
# Tutorial <https://peterboorman.com/tutorial_bxa.html>`__.
#
#
# **Note: please cite UltraNest if used for a paper**
#
# If you are using the "UltraNest" library for a paper, please follow its citation scheme:
# `Cite UltraNest <https://johannesbuchner.github.io/UltraNest/issues.html#how-should-i-cite-ultranest>`__.
#
#
######################################################################
# Proposed approach
# -----------------
#
# In this example, we will perform a Bayesian analysis with multiple 1D
# spectra of the Crab nebula data and investigate their posterior
# distributions.
#
######################################################################
# Setup
# -----
#
# As usual, we’ll start with some setup …
#
import matplotlib.pyplot as plt
import numpy as np
import astropy.units as u
from gammapy.datasets import Datasets
from gammapy.datasets import SpectrumDatasetOnOff
from gammapy.modeling.models import (
SkyModel,
UniformPrior,
LogUniformPrior,
)
from gammapy.modeling.sampler import Sampler
######################################################################
# Loading the spectral datasets
# -----------------------------
#
# Here we will load a few Crab 1D spectral data for which we will do a
# fit.
#
path = "$GAMMAPY_DATA/joint-crab/spectra/hess/"
datasets = Datasets()
for id in ["23526", "23559", "23592"]:
dataset = SpectrumDatasetOnOff.read(f"{path}pha_obs{id}.fits")
datasets.append(dataset)
######################################################################
# Model definition
# ----------------
#
# Now we want to define the spectral model that will be fitted to the
# data.
# The Crab spectra will be fitted here with a simple powerlaw for
# simplicity.
#
model = SkyModel.create(spectral_model="pl", name="crab")
######################################################################
#
# .. WARNING:: Priors definition:
# Unlike a traditional fit where priors on the
# parameters are optional, here it is inherent to the Bayesian approach and
# are therefore mandatory.
#
# In this case we will set (min,max) prior that will define the
# boundaries in which the sampling will be performed.
# Note that it is usually recommended to use a `~gammapy.modeling.models.LogUniformPrior` for
# the parameters that have a large amplitude range like the
# ``amplitude`` parameter.
# A `~gammapy.modeling.models.UniformPrior` means that the samples will be drawn with uniform
# probability between the (min,max) values in the linear or log space
# in the case of a `~gammapy.modeling.models.LogUniformPrior`.
#
model.spectral_model.amplitude.prior = LogUniformPrior(min=1e-12, max=1e-10)
model.spectral_model.index.prior = UniformPrior(min=1, max=5)
datasets.models = [model]
print(datasets.models)
######################################################################
# Defining the sampler and options
# --------------------------------
#
# As for the `~gammapy.modeling.Fit` object, the `~gammapy.modeling.Sampler` object can receive
# different backend (although just one is available for now).
# The `~gammapy.modeling.Sampler` comes with “reasonable” default parameters, but you can
# change them via the ``sampler_opts`` dictionary.
# Here is a short description of the most relevant parameters that you
# could change :
#
# - ``live_points``: minimum number of live points throughout the run.
# More points allow to discover multiple peaks if existing, but is
# slower. To test the Prior boundaries and for debugging, a lower
# number (~100) can be used before a production run with more points
# (~400 or more).
# - ``frac_remain``: the cut-off condition for the integration, set by the maximum
# allowed fraction of posterior mass left in the live points vs the dead points. High
# values (e.g., 0.5) are faster and can be used if the posterior
# distribution is a relatively simple shape. A low value (1e-1, 1e-2)
# is optimal for finding peaks, but slower.
# - ``log_dir``: directory where the output files will be stored.
# If set to None, no files will be written. If set to a string, a directory
# will be created containing the ongoing status of the run and final results.
# For time consuming analysis, it is highly recommended to use that option to monitor
# the run and restart it in case of a crash (with ``resume=True``).
#
# **Important note:** unlike the MCMC method, you don’t need to define the
# number of steps for which the sampler will run. The algorithm will
# automatically stop once a convergence criteria has been reached.
#
sampler_opts = {
"live_points": 300,
"frac_remain": 0.3,
"log_dir": None,
}
sampler = Sampler(backend="ultranest", sampler_opts=sampler_opts)
######################################################################
# Next we can run the sampler on a given dataset.
# No options are accepted in the run method.
#
result_joint = sampler.run(datasets)
######################################################################
# Understanding the outputs
# -------------------------
#
# In the Jupyter notebook, you should be able to see an interactive
# visualisation of how the parameter space shrinks which starts from the
# (min,max) shrinks down towards the optimal parameters.
#
# The output above is filled with interesting information. Here we
# provide a short description of the most relevant information provided
# above.
# For more detailed information see the `UltraNest
# docs <https://johannesbuchner.github.io/UltraNest/issues.html#what-does-the-status-line-mean>`__.
#
# **During the sampling**
#
# ``Z=-68.8(0.53%) | Like=-63.96..-58.75 [-63.9570..-63.9539]*| it/evals=640/1068 eff=73.7327% N=300``
#
# Some important information here is:
#
# - Progress (0.53%): the completed fraction of the integral. This is not a time progress bar.
# Stays at zero for a good fraction of the run.
#
# - Efficiency (eff value) of the sampling: this indicates out of the proposed new points,
# how many were accepted. If your efficiency is too small (<<1%), maybe
# you should revise your priors (e.g use a LogUniform prior for the
# normalisation).
#
# **Final outputs**
#
# The final lines indicate that all three “convergence” strategies are
# satisfied (samples, posterior uncertainty, and evidence uncertainty).
#
# ``logZ = -65.104 +- 0.292``
#
# The main goal of the Nested sampling algorithm is to estimate Z (the
# Bayesian evidence) which is given above together with an uncertainty.
# In a similar way to deltaLogLike and deltaAIC, deltaLogZ values can be
# used for model comparison.
# For more information see : `on the use of the evidence for model comparison
# <https://ned.ipac.caltech.edu/level5/Sept13/Trotta/Trotta4.html>`__.
# An interesting comparison of the efficiency and false discovery rate of
# model selection with deltaLogLike and deltaLogZ is given in Appendix C of
# `Buchner et al., 2014 <https://ui.adsabs.harvard.edu/abs/2014A%26A...564A.125B>`__.
#
# **Results stored on disk**
#
# if ``log_dir`` is set to a name where the results will be stored, then
# a directory is created containing many useful results and plots.
# A description of these outputs is given in the `Ultranest
# docs <https://johannesbuchner.github.io/UltraNest/performance.html#output-files>`__.
#
######################################################################
# Results
# -------
#
######################################################################
# Within a Bayesian analysis, the concept of best-fit has to be viewed
# differently from what is done in a gradient descent fit.
#
# The output of the Bayesian analysis is the posterior distribution and
# there is no “best-fit” output.
# One has to define, based on the posteriors, what we want to consider
# as “best-fit” and several options are possible:
#
# - the mean of the distribution
# - the median
# - the lowest likelihood value
#
# By default the `~gammapy.modeling.models.DatasetModels` will be updated with the ``mean`` of
# the posterior distributions.
#
print(result_joint.models)
######################################################################
# The `~gammapy.modeling.Sampler` class returns a very rich dictionary.
# The most “standard” information about the posterior distributions can
# be found in :
#
print(result_joint.sampler_results["posterior"])
######################################################################
# Besides mean, errors, etc, an interesting value is the
# ``information gain`` which estimates how much the posterior
# distribution has shrunk with respect to the prior (i.e. how much
# we’ve learned). A value < 1 means that the parameter is poorly
# constrained within the prior range (we haven't learned much with respect to our prior assumption).
# For a physical example see this
# `example <https://arxiv.org/abs/2205.00009>`__.
#
# The `~gammapy.modeling.SamplerResult` dictionary contains also other interesting
# information :
#
print(result_joint.sampler_results.keys())
######################################################################
# Of particular interest, the samples used in the process to approximate
# the posterior distribution can be accessed via :
#
for i, n in enumerate(model.parameters.free_parameters.names):
s = result_joint.samples[:, i]
fig, ax = plt.subplots()
ax.hist(s, bins=30)
ax.axvline(np.mean(s), ls="--", color="red")
ax.set_xlabel(n)
plt.show()
######################################################################
# While the above plots are interesting, the real strength of the Bayesian
# analysis is to visualise all parameters correlations which is usually
# done using “corner plots”.
# Ultranest corner plot function is a wrapper around the `corner
# <https://corner.readthedocs.io/en/latest/api>`__ package.
# See the above link for optional keywords.
# Other packages exist for corner plots, like
# `chainconsumer <https://samreay.github.io/ChainConsumer>`__ which is discussed later in this tutorial.
from ultranest.plot import cornerplot
cornerplot(
result_joint.sampler_results,
plot_datapoints=True,
plot_density=True,
bins=20,
title_fmt=".2e",
smooth=False,
)
plt.show()
# sphinx_gallery_thumbnail_number = 3
######################################################################
# Spectral model error band from samples
# --------------------------------------
#
# To compute the spectral error band ("butterfly plots"), we will directly
# use the samples of the posterior distribution. This is more robust as
# compared to the traditional method of using the covariance matrix of
# the parameters which implicitly assumes Gaussian errors while for the posterior
# distribution there is no shape assumed.
# This difference can become significant when the parameter errors are non-Gaussian.
# For this we will need to convert the list of samples back to the spectral
# model parameters with the relevant units (e.g. normalisation units).
def get_samples_from_posterior(spectral_model, results):
"""
Create a list of spectral parameters with correct units
from the unitless parameters returned by the sampler.
"""
n_samples = results.samples.shape[0]
samples = []
for p in spectral_model.parameters:
try:
idx = spectral_model.parameters.free_unique_parameters.index(p)
samples.append(results.samples[:, idx] * p.unit)
except ValueError:
samples.append(np.ones(n_samples) * p.quantity)
return samples
samples = get_samples_from_posterior(datasets.models[0].spectral_model, result_joint)
######################################################################
# Next we can provide these samples to the `~gammapy.modeling.models.SpectralModel.plot_error`
# method.
datasets.models[0].spectral_model.plot_error(
energy_bounds=[0.5 * u.TeV, 50 * u.TeV], sed_type="e2dnde", samples=samples
)
plt.show()
######################################################################
# Individual run analysis
# -----------------------
#
# Now we’ll analyse several Crab runs individually so that we can compare
# them.
#
result_0 = sampler.run(datasets[0])
result_1 = sampler.run(datasets[1])
result_2 = sampler.run(datasets[2])
######################################################################
# Comparing the posterior distribution of all runs
# ------------------------------------------------
#
# For a comparison of different posterior distributions, we can use the
# package chainconsumer.
# As this is not a Gammapy dependency, you’ll need to install it.
# More info here : https://samreay.github.io/ChainConsumer/
#
# Uncomment this if you have installed `chainconsumer`.
# from chainconsumer import Chain, ChainConfig, ChainConsumer, PlotConfig, Truth, make_sample
# from pandas import DataFrame
# c = ChainConsumer()
# def create_chain(result, name, color="k"):
# return Chain(
# samples=DataFrame(result, columns=["index", "amplitude"]),
# name=name,
# color=color,
# smooth=7,
# shade=False,
# linewidth=1.0,
# cmap="magma",
# show_contour_labels=True,
# kde= True
# )
# c.add_chain(create_chain(result_joint.samples, "joint"))
# c.add_chain(create_chain(result_0.samples, "run0", "g"))
# c.add_chain(create_chain(result_1.samples, "run1", "b"))
# c.add_chain(create_chain(result_2.samples, "run2", "y"))
# fig = c.plotter.plot()
# plt.show()
######################################################################
#
# Corner plot comparison
# ----------------------
#
# .. figure:: ../../_static/cornerplot-multiple-runs-Crab.png
# :alt: Corner plot of Crab runs
#
# Corner plot comparing the three Crab runs.
#
#
# We can see the joint analysis allows to better constrain the
# parameters than the individual runs (more observation time is of
# course better).
# One can note as well that one of the run has a notably different
# amplitude (possibly due to calibrations or/and atmospheric issues).
#
|