1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
"""
High level interface
====================
Introduction to 3D analysis using the Gammapy high level interface.
Prerequisites
-------------
- Understanding the gammapy data workflow, in particular what are DL3
events and instrument response functions (IRF).
Context
-------
This notebook is an introduction to gammapy analysis using the high
level interface.
Gammapy analysis consists in two main steps.
The first one is data reduction: user selected observations are reduced
to a geometry defined by the user. It can be 1D (spectrum from a given
extraction region) or 3D (with a sky projection and an energy axis). The
resulting reduced data and instrument response functions (IRF) are
called datasets in Gammapy.
The second step consists in setting a physical model on the datasets and
fitting it to obtain relevant physical information.
**Objective: Create a 3D dataset of the Crab using the H.E.S.S. DL3 data
release 1 and perform a simple model fitting of the Crab nebula.**
Proposed approach
-----------------
This notebook uses the high level `~gammapy.analysis.Analysis` class to orchestrate data
reduction. In its current state, `~gammapy.analysis.Analysis` supports the standard
analysis cases of joint or stacked 3D and 1D analyses. It is
instantiated with an `~gammapy.analysis.AnalysisConfig` object that gives access to
analysis parameters either directly or via a YAML config file.
To see what is happening under-the-hood and to get an idea of the
internal API, a second notebook performs the same analysis without using
the `~gammapy.analysis.Analysis` class.
In summary, we have to:
- Create an `~gammapy.analysis.AnalysisConfig` object and edit it to
define the analysis configuration:
- Define what observations to use
- Define the geometry of the dataset (data and IRFs)
- Define the model we want to fit on the dataset.
- Instantiate a `~gammapy.analysis.Analysis` from this configuration
and run the different analysis steps
- Observation selection
- Data reduction
- Model fitting
- Estimating flux points
Finally, we will compare the results against a reference model.
"""
######################################################################
# Setup
# -----
#
from pathlib import Path
from astropy import units as u
# %matplotlib inline
import matplotlib.pyplot as plt
from gammapy.analysis import Analysis, AnalysisConfig
######################################################################
# Check setup
# -----------
from gammapy.utils.check import check_tutorials_setup
check_tutorials_setup()
######################################################################
# Analysis configuration
# ----------------------
#
# For configuration of the analysis we use the
# `YAML <https://en.wikipedia.org/wiki/YAML>`__ data format. YAML is a
# machine readable serialisation format, that is also friendly for humans
# to read. In this tutorial we will write the configuration file just
# using Python strings, but of course the file can be created and modified
# with any text editor of your choice.
#
# Here is what the configuration for our analysis looks like:
#
config = AnalysisConfig()
# the AnalysisConfig gives access to the various parameters used from logging to reduced dataset geometries
print(config)
######################################################################
# Setting the data to use
# ~~~~~~~~~~~~~~~~~~~~~~~
#
######################################################################
# We want to use Crab runs from the H.E.S.S. DL3-DR1. We define here the
# datastore and a cone search of observations pointing with 5 degrees of
# the Crab nebula. Parameters can be set directly or as a python dict.
#
# PS: do not forget to setup your environment variable `$GAMMAPY_DATA` to
# your local directory containing the H.E.S.S. DL3-DR1 as described in
# :ref:`quickstart-setup`.
#
# We define the datastore containing the data
config.observations.datastore = "$GAMMAPY_DATA/hess-dl3-dr1"
# We define the cone search parameters
config.observations.obs_cone.frame = "icrs"
config.observations.obs_cone.lon = "83.633 deg"
config.observations.obs_cone.lat = "22.014 deg"
config.observations.obs_cone.radius = "5 deg"
# Equivalently we could have set parameters with a python dict
# config.observations.obs_cone = {"frame": "icrs", "lon": "83.633 deg", "lat": "22.014 deg", "radius": "5 deg"}
######################################################################
# Setting the reduced datasets geometry
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# We want to perform a 3D analysis
config.datasets.type = "3d"
# We want to stack the data into a single reduced dataset
config.datasets.stack = True
# We fix the WCS geometry of the datasets
config.datasets.geom.wcs.skydir = {
"lon": "83.633 deg",
"lat": "22.014 deg",
"frame": "icrs",
}
config.datasets.geom.wcs.width = {"width": "2 deg", "height": "2 deg"}
config.datasets.geom.wcs.binsize = "0.02 deg"
# We now fix the energy axis for the counts map
config.datasets.geom.axes.energy.min = "1 TeV"
config.datasets.geom.axes.energy.max = "10 TeV"
config.datasets.geom.axes.energy.nbins = 10
# We now fix the energy axis for the IRF maps (exposure, etc)
config.datasets.geom.axes.energy_true.min = "0.5 TeV"
config.datasets.geom.axes.energy_true.max = "20 TeV"
config.datasets.geom.axes.energy_true.nbins = 20
######################################################################
# Setting the background normalization maker
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
config.datasets.background.method = "fov_background"
config.datasets.background.parameters = {"method": "scale"}
######################################################################
# Setting the exclusion mask
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
#
######################################################################
# In order to properly adjust the background normalisation on regions
# without gamma-ray signal, one needs to define an exclusion mask for the
# background normalisation. For this tutorial, we use the following one
# ``$GAMMAPY_DATA/joint-crab/exclusion/exclusion_mask_crab.fits.gz``
#
config.datasets.background.exclusion = (
"$GAMMAPY_DATA/joint-crab/exclusion/exclusion_mask_crab.fits.gz"
)
######################################################################
# Setting modeling and fitting parameters
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# `~gammapy.analysis.Analysis` can perform a few modeling and fitting tasks besides data
# reduction. Parameters have then to be passed to the configuration
# object.
#
# Here we define the energy range on which to perform the fit. We also set
# the energy edges used for flux point computation as well as the
# correlation radius to compute excess and significance maps.
#
config.fit.fit_range.min = 1 * u.TeV
config.fit.fit_range.max = 10 * u.TeV
config.flux_points.energy = {"min": "1 TeV", "max": "10 TeV", "nbins": 4}
config.excess_map.correlation_radius = 0.1 * u.deg
######################################################################
# We’re all set. But before we go on let’s see how to save or import
# `~gammapy.analysis.AnalysisConfig` objects though YAML files.
#
######################################################################
# Using YAML configuration files
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# One can export/import the `~gammapy.analysis.AnalysisConfig` to/from a YAML file.
#
config.write("config.yaml", overwrite=True)
config = AnalysisConfig.read("config.yaml")
print(config)
######################################################################
# Running the analysis
# --------------------
#
# We first create an `~gammapy.analysis.Analysis` object from our
# configuration.
#
analysis = Analysis(config)
######################################################################
# Observation selection
# ~~~~~~~~~~~~~~~~~~~~~
#
# We can directly select and load the observations from disk using
# `~gammapy.analysis.Analysis.get_observations()`:
#
analysis.get_observations()
######################################################################
# The observations are now available on the `~gammapy.analysis.Analysis` object. The
# selection corresponds to the following ids:
#
print(analysis.observations.ids)
######################################################################
# To see how to explore observations, please refer to the following
# notebook: :doc:`CTAO with Gammapy </tutorials/data/cta>` or :doc:`H.E.S.S. with
# Gammapy </tutorials/data/hess>`
#
######################################################################
# Data reduction
# --------------
#
# Now we proceed to the data reduction. In the config file we have chosen
# a WCS map geometry, energy axis and decided to stack the maps. We can
# run the reduction using `~gammapy.analysis.Analysis.get_datasets()`:
#
analysis.get_datasets()
######################################################################
# As we have chosen to stack the data, there is finally one dataset
# contained which we can print:
#
print(analysis.datasets["stacked"])
######################################################################
# As you can see the dataset comes with a predefined background model out
# of the data reduction, but no source model has been set yet.
#
# The counts, exposure and background model maps are directly available on
# the dataset and can be printed and plotted:
#
counts = analysis.datasets["stacked"].counts
counts.smooth("0.05 deg").plot_interactive()
######################################################################
# We can also compute the map of the sqrt_ts (significance) of the excess
# counts above the background. The correlation radius to sum counts is
# defined in the config file.
#
analysis.get_excess_map()
analysis.excess_map["sqrt_ts"].plot(add_cbar=True)
plt.show()
######################################################################
# Save dataset to disk
# --------------------
#
# It is common to run the preparation step independent of the likelihood
# fit, because often the preparation of maps, PSF and energy dispersion is
# slow if you have a lot of data. We first create a folder:
#
path = Path("analysis_1")
path.mkdir(exist_ok=True)
######################################################################
# And then write the maps and IRFs to disk by calling the dedicated
# `~gammapy.datasets.Datasets.write` method:
#
filename = path / "crab-stacked-dataset.fits.gz"
analysis.datasets[0].write(filename, overwrite=True)
######################################################################
# Model fitting
# -------------
#
# Now we define a model to be fitted to the dataset. Here we use its YAML
# definition to load it:
#
model_config = """
components:
- name: crab
type: SkyModel
spatial:
type: PointSpatialModel
frame: icrs
parameters:
- name: lon_0
value: 83.63
unit: deg
- name: lat_0
value: 22.014
unit: deg
spectral:
type: PowerLawSpectralModel
parameters:
- name: amplitude
value: 1.0e-12
unit: cm-2 s-1 TeV-1
- name: index
value: 2.0
unit: ''
- name: reference
value: 1.0
unit: TeV
frozen: true
"""
######################################################################
# Now we set the model on the analysis object:
#
analysis.set_models(model_config)
######################################################################
# Finally we run the fit:
#
analysis.run_fit()
print(analysis.fit_result)
######################################################################
# This is how we can write the model back to file again:
#
filename = path / "model-best-fit.yaml"
analysis.models.write(filename, overwrite=True)
with filename.open("r") as f:
print(f.read())
######################################################################
# Flux points
# ~~~~~~~~~~~
#
analysis.config.flux_points.source = "crab"
# Example showing how to change the FluxPointsEstimator parameters:
analysis.config.flux_points.energy.nbins = 5
config_dict = {
"selection_optional": "all",
"n_sigma": 2, # Number of sigma to use for asymmetric error computation
"n_sigma_ul": 3, # Number of sigma to use for upper limit computation
}
analysis.config.flux_points.parameters = config_dict
analysis.get_flux_points()
# Example showing how to change just before plotting the threshold on the signal significance
# (points vs upper limits), even if this has no effect with this data set.
fp = analysis.flux_points.data
fp.sqrt_ts_threshold_ul = 5
ax_sed, ax_residuals = analysis.flux_points.plot_fit()
plt.show()
######################################################################
# The flux points can be exported to a fits table following the format
# defined
# `here <https://gamma-astro-data-formats.readthedocs.io/en/latest/spectra/flux_points/index.html>`_
#
filename = path / "flux-points.fits"
analysis.flux_points.write(filename, overwrite=True)
######################################################################
# To check the fit is correct, we compute the map of the sqrt_ts of the
# excess counts above the current model.
#
analysis.get_excess_map()
analysis.excess_map["sqrt_ts"].plot(add_cbar=True, cmap="RdBu", vmin=-5, vmax=5)
plt.show()
######################################################################
# What’s next
# -----------
#
# You can look at the same analysis without the high level interface in
# :doc:`/tutorials/starting/analysis_2`.
#
# You can see how to perform a 1D spectral analysis of the same data in
# :doc:`/tutorials/analysis-1d/spectral_analysis`.
#
|