File: CHAP003.htm

package info (click to toggle)
gap-aclib 1.3.2-2
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye
  • size: 860 kB
  • sloc: makefile: 110; sh: 17
file content (297 lines) | stat: -rw-r--r-- 30,205 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
<html><head><title>[aclib] 3 The catalog of almost crystallographic groups</title></head>
<body text="#000000" bgcolor="#ffffff">
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP002.htm">Previous</a>] [<a href ="CHAP004.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
<h1>3 The catalog of almost crystallographic groups</h1><p>
<P>
<H3>Sections</H3>
<oL>
<li> <A HREF="CHAP003.htm#SECT001">Rational matrix groups</a>
<li> <A HREF="CHAP003.htm#SECT002">Polycyclically presented groups</a>
<li> <A HREF="CHAP003.htm#SECT003">More about the type and the defining parameters</a>
<li> <A HREF="CHAP003.htm#SECT004">The electronic versus the printed library</a>
</ol><p>
<p>
This chapter introduces the access functions to the catalog of
3- and 4-dimensional crystallographic groups. This catalog is an
electronic version of the classification obtained in <a href="biblio.htm#KD"><cite>KD</cite></a>.
<p>
<p>
<h2><a name="SECT001">3.1 Rational matrix groups</a></h2>
<p><p>
The following three main functions are available to access the library 
of almost crystallographic groups as rational matrix groups.
<p>
<a name = "SSEC001.1"></a>
<li><code>AlmostCrystallographicGroup( </code><var>dim</var><code>, </code><var>type</var><code>, </code><var>parameters</var><code> )</code>
<a name = "SSEC001.1"></a>
<li><code>AlmostCrystallographicDim3( </code><var>type</var><code>, </code><var>parameters</var><code> )</code>
<a name = "SSEC001.1"></a>
<li><code>AlmostCrystallographicDim4( </code><var>type</var><code>, </code><var>parameters</var><code> )</code>
<p>
<var>dim</var> is the dimension of the required group. Thus <var>dim</var> must be 
either 3 or 4. The inputs <var>type</var> and <var>parameters</var> are used to define
the desired group as described in <a href="biblio.htm#KD"><cite>KD</cite></a>. We outline the possible
choices for <var>type</var> and <var>parameters</var> here briefly. A more extended 
description is given later in Section <a href="CHAP001.htm#SECT001">More about almost crystallographic  groups</a> or can be obtained from <a href="biblio.htm#KD"><cite>KD</cite></a>.
<p>
<var>type</var> specifies the type of the required group. There are 17 types
in dimension 3 and 95 types in dimension 4. The input <var>type</var> can either
be an integer  defining the position of the desired type among all types;
that is, in this case <var>type</var> is a number in [1..17] in dimension 3 or a
number in [1..95] in dimension 4. Alternatively, <var>type</var> can be a string
defining the desired type. In dimension 3 the possible strings are 
<code>"01"</code>, <code>"02"</code>, &#8230;, <code>"17"</code>. In dimension 4 the possible strings 
are listed in the list <code>ACDim4Types</code> and thus can be accessed from <font face="Gill Sans,Helvetica,Arial">GAP</font>.
<p>
<var>parameters</var> is a list of integers. Its length depends on the type of 
the chosen group. The lists <code>ACDim3Param</code> and <code>ACDim4Param</code> contain
at position <i>i</i> the length of the parameter list for the type number <i>i</i>.
Every list of integers of this length is a valid <var>parameter</var> input.
Alternatively, one can input <code>false</code> instead of a parameter list. Then 
<font face="Gill Sans,Helvetica,Arial">GAP</font> will chose a random parameter list of suitable length.
<p>
<pre>
gap&gt; G := AlmostCrystallographicGroup( 4, 50, [ 1, -4, 1, 2 ] );
&lt;matrix group of size infinity with 5 generators&gt;
gap&gt; DimensionOfMatrixGroup( G );
5
gap&gt; FieldOfMatrixGroup( G );
Rationals
gap&gt; GeneratorsOfGroup( G );
[ [ [ 1, 0, -1/2, 0, 0 ], [ 0, 1, 0, 0, 1 ], [ 0, 0, 1, 0, 0 ], 
      [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ], 
  [ [ 1, 1/2, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 1 ], 
      [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ], 
  [ [ 1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ], 
      [ 0, 0, 0, 1, 1 ], [ 0, 0, 0, 0, 1 ] ], 
  [ [ 1, 0, 0, 0, 1 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ], 
      [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ], 
  [ [ 1, -4, 1, 0, 1/2 ], [ 0, 0, -1, 0, 0 ], [ 0, 1, 0, 0, 0 ], 
      [ 0, 0, 0, 1, 1/4 ], [ 0, 0, 0, 0, 1 ] ] ]
gap&gt; G.1;
[ [ 1, 0, -1/2, 0, 0 ], [ 0, 1, 0, 0, 1 ], [ 0, 0, 1, 0, 0 ], 
  [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ]
gap&gt; ACDim4Types[50];
"076"
gap&gt; ACDim4Param[50];
4
</pre>
<p>
<p>
<h2><a name="SECT002">3.2 Polycyclically presented groups</a></h2>
<p><p>
All the almost crystallographic groups considered in this package are
polycyclic. Hence they have a polycyclic presentation and this can be
used to facilitate efficient computations with the groups. To obtain the
polycyclic presentation of an almost crystallographic group we supply the
following functions. Note that the share package <font face="Gill Sans,Helvetica,Arial">Polycyclic</font> must be 
installed to use these functions.
<p>
<a name = "SSEC002.1"></a>
<li><code>AlmostCrystallographicPcpGroup( </code><var>dim</var><code>, </code><var>type</var><code>, </code><var>parameters</var><code> )</code>
<a name = "SSEC002.1"></a>
<li><code>AlmostCrystallographicPcpDim3( </code><var>type</var><code>, </code><var>parameters</var><code> )</code>
<a name = "SSEC002.1"></a>
<li><code>AlmostCrystallographicPcpDim4( </code><var>type</var><code>, </code><var>parameters</var><code> )</code>
<p>
The input is the same as for the corresponding matrix group functions.
The output is a pcp group isomorphic to the corresponding matrix group.
An explicit isomorphism from an almost crystallographic matrix group
to the corresponding pcp group can be obtained by the following function.
<p>
<a name = "SSEC002.2"></a>
<li><code>IsomorphismPcpGroup( </code><var>G</var><code> )</code>
<p>
We can use the polycyclic presentations of almost crystallographic
groups to exhibit structure information on these groups. For example,
we can determine their Fitting subgroup and ask group-theoretic 
questions about this nilpotent group. The factor <i>G</i> / <i>Fit</i>(<i>G</i>) of an
almost crystallographic group <i>G</i> is called <strong>holonomy group</strong>. We 
provide access to this factor of a pcp group via the following 
functions. Let <i>G</i> be an almost crystallographic pcp group.
<p>
<a name = "SSEC002.3"></a>
<li><code>HolonomyGroup( </code><var>G</var><code> )</code>
<a name = "SSEC002.3"></a>
<li><code>NaturalHomomorphismOnHolonomyGroup( </code><var>G</var><code> )</code>
<p>
The following example shows applications of these functions.
<p>
<pre>
gap&gt; G := AlmostCrystallographicPcpGroup( 4, 50, [ 1, -4, 1, 2 ] );
Pcp-group with orders [ 4, 0, 0, 0, 0 ]
gap&gt; Cgs(G);
[ g1, g2, g3, g4, g5 ]

gap&gt; F := FittingSubgroup( G );
Pcp-group with orders [ 0, 0, 0, 0 ]
gap&gt; Centre(F);
Pcp-group with orders [ 0, 0 ]
gap&gt; LowerCentralSeries(F);
[ Pcp-group with orders [ 0, 0, 0, 0 ], Pcp-group with orders [ 0 ], 
  Pcp-group with orders [  ] ]
gap&gt; UpperCentralSeries(F);
[ Pcp-group with orders [ 0, 0, 0, 0 ], Pcp-group with orders [ 0, 0 ], 
  Pcp-group with orders [  ] ]
gap&gt; MinimalGeneratingSet(F);
[ g2, g3, g4 ]

gap&gt; H := HolonomyGroup( G );
Pcp-group with orders [ 4 ]
gap&gt; hom := NaturalHomomorphismOnHolonomyGroup( G );
[ g1, g2, g3, g4, g5 ] -&gt; [ g1, identity, identity, identity, identity ]
gap&gt; U := Subgroup( H, [Pcp(H)[1]^2] );
Pcp-group with orders [ 2 ]
gap&gt; PreImage( hom, U );
Pcp-group with orders [ 2, 0, 0, 0, 0 ]
</pre>
<p>
<p>
<h2><a name="SECT003">3.3 More about the type and the defining parameters</a></h2>
<p><p>
Each group from this library knows that it is almost crystallographic and,
additionally, it knows its type and defining parameters.
<p>
<a name = "SSEC003.1"></a>
<li><code>AlmostCrystallographicInfo( </code><var>G</var><code> )</code>
<p>
This attribute is set for groups from the library only. It is not possible
at current to determine the type and the defining parameters for an arbitrary 
almost crystallographic groups which is not defined by the library access 
functions. 
<p>
<pre>
gap&gt; G := AlmostCrystallographicGroup( 4, 70, false );   
&lt;matrix group of size infinity with 5 generators&gt;
gap&gt; IsAlmostCrystallographic(G);
true
gap&gt; AlmostCrystallographicInfo(G);
rec( dim := 4, type := 70, param := [ 1, -4, 1, 2, -3 ] )
</pre>
<p>
<pre>
gap&gt; G := AlmostCrystallographicPcpGroup( 4, 70, false );
Pcp-group with orders [ 6, 0, 0, 0, 0 ]
gap&gt; IsAlmostCrystallographic(G);
true
gap&gt; AlmostCrystallographicInfo(G);
rec( dim := 4, type := 70, param := [ -3, 2, 5, 1, 0 ] )
</pre>
<p>
We consider the types of almost crystallographic groups in more detail. The 
almost crystallographic groups in dimensions 3 and 4 fall into three families
<p>
<dl compact>
<dt>(1)<dd>3-dimensional almost crystallographic groups.
<dt>(2)<dd>4-dimensional almost crystallographic groups with a
           Fitting subgroup of class 2.
<dt>(3)<dd>4-dimensional almost crystallographic groups with a
           Fitting subgroup of class 3.
</dl>
<p>
These families are split up further into subfamilies in <a href="biblio.htm#KD"><cite>KD</cite></a> and to 
each subfamily is assigned a type; that is, a string which is used to 
identify the subfamily. As mentioned above, for the 3-dimensional almost 
crystallographic groups the type is a string representing the numbers from 
1 to 17, i.e. the available types are <code>"01"</code>, <code>"02"</code>, &#8230;, <code>"17"</code>. 
<p>
For the 4-dimensional almost crystallographic groups with a Fitting subgroup 
of class 2 the type is a string of 3 or 4 characters. In general, a string of 
3 characters representing
the number of the table entry in <a href="biblio.htm#KD"><cite>KD</cite></a> is used. So possible types are 
<code>"001"</code>, <code>"002"</code>, &#8230;. The reader is warned however that not all 
possible numbers are used, e.g. there are no groups of type <code>"016"</code>. Also, 
the types do not appear in their natural order in <a href="biblio.htm#KD"><cite>KD</cite></a>. Moreover, for 
certain numbers there is more than one family of groups listed in <a href="biblio.htm#KD"><cite>KD</cite></a>. 
For example, the 3 families of groups corresponding to number 19 on pages 
179-180 of <a href="biblio.htm#KD"><cite>KD</cite></a> have types <code>"019"</code>, <code>"019b"</code> and <code>"019c"</code> (the order is 
the one given in <a href="biblio.htm#KD"><cite>KD</cite></a>).
<p>
For the last category of groups, the 4-dimensional almost crystallographic
groups with a Fitting subgroup of class 3, the type is a string of 2 or 3
characters, where the first character is always the letter <code>"B"</code>. This <code>"B"</code>
is followed by the number of the table entry as found in <a href="biblio.htm#KD"><cite>KD</cite></a>,
eventually followed by a <code>"b"</code> or <code>"c"</code> as in the previous case.
<p>
For each type of almost crystallographic group contained in the library
there exists a function taking a parameter list as input and returning
the desired matrix or pcp group. These functions can be accessed
from <font face="Gill Sans,Helvetica,Arial">GAP</font> using the lists <code>ACDim3Funcs</code>, <code>ACDim4Funcs</code>, <code>ACPcpDim3Funcs</code>
and <code>ACPcpDim4Funcs</code> which consist of the corresponding functions.
<p>
Although we include these direct access functions here for completeness,
we note that the user should in general use the higher-level functions
introduced above to obtain almost crystallographic groups from the
library. In particular, these low-level access functions return matrix
or pcp groups, but the almost crystallographic info flags will not be
attached to them.
<p>
<pre>
gap&gt; ACDim3Funcs[15];
function( k1, k2, k3, k4 ) ... end
gap&gt; ACDim3Funcs[15](1,1,1,1);
&lt;matrix group with 5 generators&gt;
gap&gt; ACPcpDim3Funcs[1](1);
Pcp-group with orders [ 0, 0, 0 ]
</pre>
<p>
<p>
<h2><a name="SECT004">3.4 The electronic versus the printed library</a></h2>
<p><p>
The package <code>aclib</code> can be considered as the electronic version of 
Chapter 7 of <a href="biblio.htm#KD"><cite>KD</cite></a>. In this section we outline the relationship 
between the library presented in this manual and the printed version 
in <a href="biblio.htm#KD"><cite>KD</cite></a>. First we consider an example. At page 175 of <a href="biblio.htm#KD"><cite>KD</cite></a>, 
we find the following groups in the table starting with entry ``13''.
<p>
<p>
13. <i>Q</i>=<i>P</i>2/<i>c</i>
<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" align="center"> </td><td nowrap="nowrap"><table border="0" align="left" cellspacing="0" cellpadding="0"><tr><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> <i>E</i>:&nbsp;&nbsp;&#9001;<i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>,&#945;,&#946;&nbsp;&nbsp;&#124;&#124;&nbsp;&nbsp;</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">&nbsp;[<i>b</i>,<i>a</i>]=1&#183;61<i>cm</i> [<i>d</i>,<i>a</i>]=1  </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">&#9002;</td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"></td><td nowrap="nowrap"><table border="0" align="left" cellspacing="0" cellpadding="0"><tr><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> [<i>c</i>,<i>a</i>]=<i>d</i><sup>2 <i>k</i><sub>1</sub></sup> </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">[<i>d</i>,<i>b</i>]=1 </td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> [<i>c</i>,<i>b</i>]=1 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">[<i>d</i>,<i>c</i>]=1 </td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> &#945;<i>a</i>=<i>a</i><sup>&#8722;1</sup>&#945;<i>d</i><sup><i>k</i><sub>2</sub></sup> </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">&#945;<sup>2</sup>=<i>d</i><sup><i>k</i><sub>3</sub></sup> </td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> &#945;<i>b</i>=<i>b</i>&#945; </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">&#945;<i>d</i> = <i>d</i> &#945; </td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> &#945;<i>c</i>=<i>c</i><sup>&#8722;1</sup>&#945;<i>d</i><sup>&#8722;2 <i>k</i><sub>6</sub></sup> </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left"></td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> &#946;<i>a</i>=<i>a</i><sup>&#8722;1</sup>&#946;<i>d</i><sup><i>k</i><sub>1</sub>+<i>k</i><sub>2</sub></sup>  </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">&#946;<sup>2</sup>=<i>d</i><sup><i>k</i><sub>5</sub></sup> </td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> &#946;<i>b</i>=<i>b</i><sup>&#8722;1</sup>&#946;<i>d</i><sup><i>k</i><sub>4</sub></sup> </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">&#946;<i>d</i> = <i>d</i> &#946; </td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> &#946;<i>c</i>=<i>c</i><sup>&#8722;1</sup>&#946;<i>d</i><sup>&#8722;2 <i>k</i><sub>6</sub></sup> </td></tr></table></td><td nowrap="nowrap" align="center"><table><tr><td nowrap="nowrap" align="center" colspan="1">&#945;&#946; = <i>c</i>&#946;&#945;<i>d</i><sup><i>k</i><sub>6</sub></sup>  </td></tr></table></td></tr></table></td><td nowrap="nowrap"> </td></tr></table></td><td nowrap="nowrap" align="center"><table><tr><td nowrap="nowrap" align="center" colspan="1"></td></tr></table></td></tr></table></td><td nowrap="nowrap"> </td></tr></table></td></tr></table>
<p>
<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" align="center">&#955;(&#945;)=</td><td align="left" class="cl">&#x239B;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239D;</td><td nowrap="nowrap"><table border="0" align="left" cellspacing="0" cellpadding="0"><tr><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 1</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"></td><td nowrap="nowrap" align="center"><i>k</i><sub>1</sub><div class="hrcomp"><hr noshade="noshade" size="1"/></div>2<br /></td><td nowrap="nowrap" align="center">+<i>k</i><sub>2</sub> </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">&#8722;2 <i>k</i><sub>6</sub> </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left"></td><td nowrap="nowrap" align="center"><i>k</i><sub>3</sub><div class="hrcomp"><hr noshade="noshade" size="1"/></div>2<br /></td><td nowrap="nowrap" align="center">+</td><td nowrap="nowrap" align="center"><i>k</i><sub>6</sub><div class="hrcomp"><hr noshade="noshade" size="1"/></div>2<br /></td><td nowrap="nowrap" align="center"></td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 0</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">&#8722;1 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">0 </td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">1 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">0 </td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">&#8722;1 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left"></td><td nowrap="nowrap" align="center">1<div class="hrcomp"><hr noshade="noshade" size="1"/></div>2<br /></td><td nowrap="nowrap" align="center"></td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table><tr><td nowrap="nowrap" align="center" colspan="1">1 </td></tr></table></td></tr></table></td><td nowrap="nowrap"></td><td align="left" class="cl">&#x239E;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x23A0;</td><td nowrap="nowrap" align="center">&nbsp;&nbsp;&nbsp;&nbsp;&#955;(&#946;)=</td><td align="left" class="cl">&#x239B;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239D;</td><td nowrap="nowrap"><table border="0" align="left" cellspacing="0" cellpadding="0"><tr><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 1</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"><i>k</i><sub>1</sub>+<i>k</i><sub>2</sub> </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"><i>k</i><sub>4</sub> </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">&#8722;2 <i>k</i><sub>6</sub> </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left"></td><td nowrap="nowrap" align="center"><i>k</i><sub>5</sub><div class="hrcomp"><hr noshade="noshade" size="1"/></div>2<br /></td><td nowrap="nowrap" align="center"></td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 0</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">&#8722;1 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">0 </td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">&#8722;1 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">0 </td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">&#8722;1 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">0</td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" align="center"><table><tr><td nowrap="nowrap" align="center" colspan="1">1 </td></tr></table></td></tr></table></td><td nowrap="nowrap"></td><td align="left" class="cl">&#x239E;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x23A0;</td><td nowrap="nowrap" align="center"></td></tr></table></td></tr></table>
<p>
<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" align="center"><i>H</i><sup>2</sup>(<i>Q</i>,<b>Z</b>)=<b>Z</b>&#8853;(<b>Z</b><sub>2</sub>)<sup>4</sup>=<b>Z</b><sup>6</sup>/<i>A</i>,</td></tr></table></td></tr></table>
<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" align="center"><i>A</i>={(<i>k</i><sub>1</sub>,&#8230;,<i>k</i><sub>6</sub>)&#124;&#124; <i>k</i><sub>1</sub>=0,&nbsp;&nbsp;<i>k</i><sub>2</sub>,&#8230;, <i>k</i><sub>5</sub> &#8712; 2<b>Z</b>,&nbsp;&nbsp;<i>k</i><sub>6</sub> &#8712; <b>Z</b>}</td></tr></table></td></tr></table>
AB-groups:
<p>
&#8704;<i>k</i> &gt; 0,&nbsp;&nbsp;<i>k</i> &#8801; 0 mod 2,&nbsp;&nbsp;(<i>k</i>,0,1,0,1,0) 
<p>
<p>
The number ``13'' at the beginning of this entry is the type of the 
almost crystallographic group in this library. This family of groups 
with type 13 depends on 6 parameters <i>k</i><sub>1</sub>, <i>k</i><sub>2</sub>, &#8230;, <i>k</i><sub>6</sub> and these 
are the <var>parameters</var> list in this library. The rational matrix 
representation in <font face="Gill Sans,Helvetica,Arial">GAP</font> corresponds exactly to the printed version in 
<a href="biblio.htm#KD"><cite>KD</cite></a> where it is named &#955;.  In the example below, we consider 
the group with parameters (<i>k</i><sub>1</sub>,<i>k</i><sub>2</sub>,<i>k</i><sub>3</sub>,<i>k</i><sub>4</sub>,<i>k</i><sub>5</sub>,<i>k</i><sub>6</sub>)=(8,0,1,0,1,0).
<p>
<pre>
gap&gt; G:=AlmostCrystallographicDim4("013",[8,0,1,0,1,0]);
&lt;matrix group with 6 generators&gt;
gap&gt; G.5;
[ [ 1, 4, 0, 0, 1/2 ], [ 0, -1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ], 
  [ 0, 0, 0, -1, 1/2 ], [ 0, 0, 0, 0, 1 ] ]
gap&gt; G.6;
[ [ 1, 8, 0, 0, 1/2 ], [ 0, -1, 0, 0, 0 ], [ 0, 0, -1, 0, 0 ], 
  [ 0, 0, 0, -1, 0 ], [ 0, 0, 0, 0, 1 ] ]
</pre>
<p>
For a 4-dimensional almost crystallographic group the matrix group is 
built up such that { <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i>, &#945;, &#946;, &#947;} as described 
in <a href="biblio.htm#KD"><cite>KD</cite></a> forms the defining generating set of <i>G</i>. For certain types 
the elements &#945;, &#946; or &#947; may not be present.
Similarly, for a 3-dimensional group we have the generating set { <i>a</i>, <i>b</i>, <i>c</i>, &#945;, &#946;} and &#945; and &#946; may be absent.
<p>
<p>
To obtain a polycyclic generating sequence from the defining generators
of the matrix group we have to order the elements in the generating set
suitably. For this purpose we take the subsequence of (&#947;, &#946;, &#945;, <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i>) of those generators which are present in the 
defining generating set of the matrix group.  This new ordering of the 
generators is then used to define a polycyclic presentation of the given 
almost crystallographic group. 
<p>
<p>
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP002.htm">Previous</a>] [<a href ="CHAP004.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
<P>
<address>aclib manual<br>January 2020
</address></body></html>