1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
#############################################################################
##
#W union.gi Karel Dekimpe
#W Bettina Eick
##
#############################################################################
##
#F GenericDeterminantMat( mat )
##
GenericDeterminantMat := function( mat )
local d, det, sig, i, sub;
# set up
d := Length( mat );
if ForAny( mat, x -> Length(x) <> d ) then return fail; fi;
# the trivial cases
if d = 1 then return mat[1][1]; fi;
if d = 2 then return mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]; fi;
# otherwise use first row and recursion
det := 0;
sig := 1;
for i in [1..d] do
sub := Concatenation( [1..i-1], [i+1..d] );
sub := mat{[2..d]}{sub};
det := det + sig * mat[1][i] * GenericDeterminantMat( sub );
sig := - sig;
od;
return det;
end;
#############################################################################
##
#F NullspaceIntMod( base, vec, p ) . . . . . . . . . . . . b * vec = 0 mod p
##
## computes those elements b in <base> with b * vec = 0 mod p. Returns a
## triangulized basis with respect to <base>.
##
NullspaceIntMod := function( base, vec, p )
local imgs, d, null;
# get images
imgs := List( base, x -> x * vec );
imgs := List( imgs, x -> x mod p );
d := Length( imgs );
if ForAll( imgs, x -> x = 0 ) then return IdentityMat( d ); fi;
# compute kernel of imgs vector - must have rank d-1
Add( imgs, p );
null := NullspaceIntMat( TransposedMat( [imgs] ) );
null := List( null, x -> x{[1..d]} );
null := NormalFormIntMat( null, 0 ).normal;
# return this images nullspace
return Filtered( null, x -> PositionNonZero(x) <= d );
end;
#############################################################################
##
#F FindMaximals( sub ) . . . . . . . .subgroups which are maximal within sub
##
FindMaximals := function( sub )
local new, i, tmp;
new := [];
for i in [1..Length(sub)] do
if Size( sub[i] ) > 1 then
if Length(new) = 0 then
Add( new, sub[i] );
elif not ForAny( new, x -> IsSubset( x, sub[i] ) ) then
tmp := Filtered( new, x -> not IsSubset( sub[i], x ) );
Add( new, sub[i] );
fi;
fi;
od;
return new;
end;
if not IsBound( SizeOfUnion ) then SizeOfUnion := false; fi;
#############################################################################
##
#F SizeOfUnionRec( sub ) -- recursive version
##
SizeOfUnionRec := function( list )
local s, i, int, t, n;
if Length( list ) = 0 then return 1; fi;
s := Size( list[1] );
n := Length( list );
for i in [2..n] do
int := List( list{[1..i-1]}, x -> Intersection( x, list[i]));
t := SizeOfUnion( int );
s := s + Size( list[i] ) - t;
od;
return s;
end;
#############################################################################
##
#F SizeOfUnionTriv -- trivial version
##
SizeOfUnionTriv := function( list )
return Length( Union( List( list, Elements ) ) );
end;
#############################################################################
##
#F SizeOfUnion -- main function
##
SizeOfUnion := function( sub )
local list;
list := FindMaximals( sub );
if Length(list) = 0 then return 1; fi;
if Length(list) = 1 then return Size(list[1]); fi;
if Sum(List(list, Size)) < 2000 then
return SizeOfUnionTriv(list);
fi;
return SizeOfUnionRec(list);
end;
#############################################################################
##
#F SizeOfUnionMod( subs, e ) . . . . . . . . .size of the union of subs mod e
##
## <subs> is a list of bases containing (eZ)^d. Compute the size of the union
## of <subs> in (Z/eZ)^d.
##
## This function needs to be profiled.
##
SizeOfUnionMod := function( subs, e )
local d, F, V, b, news;
# the trivial case
if Length( subs ) = 0 then return 1; fi;
d := Length( subs[1] );
if IsPrimeInt( e ) then
F := GF(e);
V := F^d;
b := BasisVectors( Basis( V ) );
news := List( subs, x -> x * b );
news := List( news, x -> Subspace( V, x ) );
if ForAny( news, x -> Size(x) = e^d ) then return e^d; fi;
# return SizeOfUnion( news );
return Length( Union( List( news, Elements ) ) );
fi;
V := AbelianGroup( List( [1..d], x -> e ) );
b := GeneratorsOfGroup(V);
news := List( subs, x -> List( x, y -> MappedVector( y, b ) ) );
news := List( news, x -> Subgroup( V, x ) );
if ForAny( news, x -> Size(x) = e^d ) then return e^d; fi;
# return SizeOfUnion( news );
return Length( Union( List( news, Elements ) ) );
end;
|