File: CHAP004.htm

package info (click to toggle)
gap-aclib 1.3.3-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 836 kB
  • sloc: makefile: 110; sh: 17
file content (233 lines) | stat: -rw-r--r-- 12,008 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
<html><head><title>[aclib] 4 Example computations with almost crystallographic groups</title></head>
<body text="#000000" bgcolor="#ffffff">
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP003.htm">Previous</a>] [<a href = "theindex.htm">Index</a>]
<h1>4 Example computations with almost crystallographic groups</h1><p>
<P>
<H3>Sections</H3>
<oL>
<li> <A HREF="CHAP004.htm#SECT001">Example computations I</a>
<li> <A HREF="CHAP004.htm#SECT002">Example computations II</a>
<li> <A HREF="CHAP004.htm#SECT003">Example computations III</a>
</ol><p>
<p>
<p>
<h2><a name="SECT001">4.1 Example computations I</a></h2>
<p><p>
Using the functions available for pcp groups in the share package 
<font face="Gill Sans,Helvetica,Arial">polycyclic</font> it is now easy to redo some of the calculations of 
<a href="biblio.htm#KD"><cite>KD</cite></a>. As a first example we check whether the groups indicated 
as torsion free in <a href="biblio.htm#KD"><cite>KD</cite></a> are also determined as torsion free
ones by <font face="Gill Sans,Helvetica,Arial">GAP</font>. In <a href="biblio.htm#KD"><cite>KD</cite></a> these almost Bieberbach groups are listed as 
``AB-groups''. So for type ``013'' these are the groups with parameters 
<var>(k,0,1,0,1,0)</var> where <var>k</var> is an even integer. Let's look at some examples 
in <font face="Gill Sans,Helvetica,Arial">GAP</font>:
<p>
<pre>
gap&gt; G:=AlmostCrystallographicPcpDim4("013",[8,0,1,0,1,0]);
Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ]
gap&gt; IsTorsionFree(G);
true
gap&gt; G:=AlmostCrystallographicPcpDim4("013",[9,0,1,0,1,0]);
Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ]
gap&gt; IsTorsionFree(G);
false
</pre>
<p>
Further, there is also some cohomology information in the tables 
of <a href="biblio.htm#KD"><cite>KD</cite></a>. In fact, the groups in this library were obtained
as extensions <var>E</var> of the form
<p>
<p><var>
1 rightarrow<font face="helvetica,arial">Z</font>rightarrowE rightarrowQ rightarrow1
<p></var>
<p>
where, in the 4-dimensional case <var>Q = E/langled rangle</var>. The 
cohomology information for the particular example above shows that 
the groups determined by a parameter set <var>(k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>,k<sub>4</sub>,k<sub>4</sub>,k<sub>6</sub>)</var> 
are equivalent as extensions to the groups determined by the parameters 
<var>(k<sub>1</sub>, k<sub>2</sub> bmod2, k<sub>3</sub> bmod2, k<sub>4</sub> bmod2, k<sub>5</sub> bmod2, 0)</var>. This is 
also visible in finding torsion:
<p>
<pre>
gap&gt; G:=AlmostCrystallographicPcpDim4("013",[10,0,2,0,1,0]);
Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ]
gap&gt; IsTorsionFree(G);
false
gap&gt; G:=AlmostCrystallographicPcpDim4("013",[10,0,3,0,1,9]);
Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ]
gap&gt; IsTorsionFree(G);
true
</pre>
<p>
<p>
<h2><a name="SECT002">4.2 Example computations II</a></h2>
<p><p>
The computation of cohomology groups played an important role in the 
classification of the almost Bieberbach groups in <a href="biblio.htm#KD"><cite>KD</cite></a>. Using 
<font face="Gill Sans,Helvetica,Arial">GAP</font>, it is now possible to check these computations. As an example we 
consider the 4-dimensional almost crystallographic groups of type 85 on 
page 202 of <a href="biblio.htm#KD"><cite>KD</cite></a>. This group <var>E</var> has 6 generators. In the table, one 
also finds the information
<p>
<p><var>
H<sup>2</sup>(Q,<font face="helvetica,arial">Z</font>) = <font face="helvetica,arial">Z</font>oplus(<font face="helvetica,arial">Z</font><sub>2</sub>)<sup>2</sup> oplus<font face="helvetica,arial">Z</font><sub>4</sub>
<p></var>
<p>
for <var>Q=E/langled rangle</var> as above. Moreover, the <var>Q</var>--module <var><font face="helvetica,arial">Z</font></var> is 
in fact the group <var>langled rangle</var>, where the <var>Q</var>-action comes from 
conjugation inside <var>E</var>. In the case of groups of type 85, <var><font face="helvetica,arial">Z</font></var> is a 
trivial <var>Q</var>-module. The following example demonstrates how to (re)compute 
this two-cohomology group <var>H<sup>2</sup>(Q,<font face="helvetica,arial">Z</font>)</var>. 
<p>
<pre>
gap&gt; G:=AlmostCrystallographicPcpGroup(4, "085", false);
Pcp group with orders [ 2, 4, 0, 0, 0, 0 ]
gap&gt; GroupGeneratedByd:=Subgroup(G, [G.6] );
Pcp group with orders [ 0 ]
gap&gt; Q:=G/GroupGeneratedByd;
Pcp group with orders [ 2, 4, 0, 0, 0 ]
gap&gt; action:=List( Pcp(Q), x -&gt; [[1]] );
[ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ]
gap&gt; C:=CRRecordByMats( Q, action);;
gap&gt; TwoCohomologyCR( C ).factor.rels;
[ 2, 2, 4, 0 ]
</pre>
<p>
This last line gives us the abelian invariants of the second 
cohomology group <var>H<sup>2</sup>(Q,<font face="helvetica,arial">Z</font>)</var>. So we should read this line as 
<p>
<p><var>
H<sup>2</sup>(Q,<font face="helvetica,arial">Z</font>) = <font face="helvetica,arial">Z</font><sub>2</sub> oplus<font face="helvetica,arial">Z</font><sub>2</sub> oplus<font face="helvetica,arial">Z</font><sub>4</sub> oplus<font face="helvetica,arial">Z</font>
<p></var>
<p>
which indeed coincides with the information in <a href="biblio.htm#KD"><cite>KD</cite></a>.
<p>
<p>
<h2><a name="SECT003">4.3 Example computations III</a></h2>
<p><p>
As another application of the capabilities of the combination of
<code>aclib</code> and <font face="Gill Sans,Helvetica,Arial">polycyclic</font> we check some computations of <a href="biblio.htm#DM"><cite>DM</cite></a>.
<p>
Section 5 of the paper <a href="biblio.htm#DM"><cite>DM</cite></a> is completely devoted to an example
of the computation of the <var>P</var>-localization of a virtually nilpotent group,
where <var>P</var> is a set of primes. Although it is not our intention to 
develop the theory of <var>P</var>-localization of groups at this place, let us
summarize some of the main results concerning this topic here.
<p>
For a set of primes <var>P</var>, we say that <var>n inP</var> if and only if <var>n</var> is
a product of primes in <var>P</var>. A group <var>G</var> is said to be <var>P</var>-local if and 
only if the map <var>mu<sub>n</sub>:GrightarrowG: g mapstog<sup>n</sup></var> is bijective for 
all <var>n inP'</var>, where <var>P'</var> is the set of all primes not in <var>P</var>. The 
<var>P</var>-localization of a group <var>G</var>, is a <var>P</var>-local group <var>G<sub>P</sub></var> together 
with a morphism <var>alpha:G rightarrowG<sub>P</sub></var> which satisfy the following 
universal property: For each <var>P</var>-local group <var>L</var> and any morphism 
<var>varphi: G rightarrowL</var>, there exists a unique morphism <var>psi:G<sub>P</sub> 
rightarrowL</var>, such that <var>psicircalpha= varphi</var>.
<p>
This concept of localization is well developed for finite groups and 
for nilpotent groups. For a finite group <var>G</var>, the <var>P</var>-localization is 
the largest quotient of <var>G</var>, having no elements with an order belonging to 
<var>P'</var> (the morphism <var>alpha</var>, mentioned above is the natural projection).
<p>
In <a href="biblio.htm#DM"><cite>DM</cite></a> a contribution is made towards the localization of virtually 
nilpotent groups. The theory developed in the paper is then illustrated 
in the last section of the paper by means of the computation of the 
<var>P</var>-localization of an almost crystallographic group. For their example
the authors have chosen an almost crystallographic group <var>G</var> of dimension 3
and type 17. For the set of parameters <var>(k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>,k<sub>4</sub>)</var> they have
considered all cases of the form <var>(k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>,k<sub>4</sub>)=(2,0,0,k<sub>4</sub>)</var>. 
<p>
Here we will check their computations in two cases <var>k<sub>4</sub>=0</var> and <var>k<sub>4</sub>=1</var>
using the set of primes <var>P={2}</var>. The holonomy group of these almost 
crystallographic groups <var>G</var> is the dihedral group <var>calD<sub>6</sub></var> of order 
12. Thus there is a short exact sequence of the form 
<p><var> 1 rightarrowFitt(G) rightarrowG 
     rightarrowcalD<sub>6</sub> rightarrow1. <p></var>
<p>
As a first step in their computation, Descheemaeker and Malfait determine
the group <var>I<sub>P'</sub>calD<sub>6</sub></var>, which is the unique subgroup of order 3 in
<var>calD<sub>6</sub></var>. One of the main objects in <a href="biblio.htm#DM"><cite>DM</cite></a> is the group <var>K=p<sup>-1</sup> 
(I<sub>P'</sub>calD<sub>6</sub>)</var>, where <var>p</var> is the natural projection of <var>G</var> onto its 
holonomy group. It is known that the <var>P</var>-localization of <var>G</var> coincides 
with the <var>P</var>-localization of <var>G/gamma<sub>3</sub>(K)</var>, where <var>gamma<sub>3</sub>(K)</var> is the 
third term in the lower central series of <var>K</var>. As <var>G/gamma<sub>3</sub>(K)</var> is 
finite in this example, we exactly know what this <var>P</var>-localization is. 
Let us now show, how GAP can be used to compute this <var>P</var>-localization in 
two cases:
<p>
<p>
First case: The parameters are <var>(k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>,k<sub>4</sub>)=(2,0,0,0)</var>
<pre>
gap&gt; G := AlmostCrystallographicPcpGroup(3, 17, [2,0,0,0] );
Pcp group with orders [ 2, 6, 0, 0, 0 ]
gap&gt; projection := NaturalHomomorphismOnHolonomyGroup( G );
[ g1, g2, g3, g4, g5 ] -&gt; [ g1, g2, identity, identity, identity ]
gap&gt; F := HolonomyGroup( G );
Pcp group with orders [ 2, 6 ]
gap&gt; IPprimeD6 := Subgroup( F , [F.2^2] );
Pcp group with orders [ 3 ]
gap&gt; K := PreImage( projection, IPprimeD6 );
Pcp group with orders [ 3, 0, 0, 0 ]
gap&gt; PrintPcpPresentation( K );
pcp presentation on generators [ g2^2, g3, g4, g5 ]
g2^2 ^ 3 = identity
g3 ^ g2^2 = g3^-1*g4^-1
g3 ^ g2^2^-1 = g4*g5^-2
g4 ^ g2^2 = g3*g5^2
g4 ^ g2^2^-1 = g3^-1*g4^-1*g5^2
g4 ^ g3 = g4*g5^2
g4 ^ g3^-1 = g4*g5^-2
gap&gt; Gamma3K := CommutatorSubgroup( K, CommutatorSubgroup( K, K ));
Pcp group with orders [ 0, 0, 0 ]
gap&gt; quotient := G/Gamma3K;
Pcp group with orders [ 2, 6, 3, 3, 2 ]
gap&gt; S := SylowSubgroup( quotient, 3);
Pcp group with orders [ 3, 3, 3 ]
gap&gt; N := NormalClosure( quotient, S);
Pcp group with orders [ 3, 3, 3 ]
gap&gt; localization := quotient/N;
Pcp group with orders [ 2, 2, 2 ]
gap&gt; PrintPcpPresentation( localization );
pcp presentation on generators [ g1, g2, g3 ]
g1 ^ 2 = identity
g2 ^ 2 = identity
g3 ^ 2 = identity
</pre>
This shows that <var>G<sub>P</sub>cong<font face="helvetica,arial">Z</font><sub>2</sub><sup>3</sup></var>.
<p>
<p>
Second case: The parameters are <var>(k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>,k<sub>4</sub>)=(2,0,0,1)</var>
<pre>
gap&gt; G := AlmostCrystallographicPcpGroup(3, 17, [2,0,0,1]);;
gap&gt; projection := NaturalHomomorphismOnHolonomyGroup( G );;
gap&gt; F := HolonomyGroup( G );;
gap&gt; IPprimeD6 := Subgroup( F , [F.2^2] );;
gap&gt; K := PreImage( projection, IPprimeD6 );;
gap&gt; Gamma3K := CommutatorSubgroup( K, CommutatorSubgroup( K, K ));;
gap&gt; quotient := G/Gamma3K;;
gap&gt; S := SylowSubgroup( quotient, 3);;
gap&gt; N := NormalClosure( quotient, S);;
gap&gt; localization := quotient/N;
Pcp group with orders [ 2, 2, 2 ]
gap&gt; PrintPcpPresentation( localization );
pcp presentation on generators [ g1, g2, g3 ]
g1 ^ 2 = identity
g2 ^ 2 = g3
g3 ^ 2 = identity
g2 ^ g1 = g2*g3
g2 ^ g1^-1 = g2*g3
</pre>
<p>
In this case, we see that <var>G<sub>P</sub>=calD<sub>4</sub></var>.
<p>
<p>
The reader can check that these results coincide with those obtained in 
<a href="biblio.htm#DM"><cite>DM</cite></a>. Note also that we used a somewhat different scheme to compute 
this localization than the one used in <a href="biblio.htm#DM"><cite>DM</cite></a>. We invite the reader to
check the same computations, tracing exactly the steps made in <a href="biblio.htm#DM"><cite>DM</cite></a>.
<p>
<p>
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP003.htm">Previous</a>] [<a href = "theindex.htm">Index</a>]
<P>
<address>aclib manual<br>August 2025
</address></body></html>