File: example.tex

package info (click to toggle)
gap-alnuth 3.2.1-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,000 kB
  • sloc: makefile: 117; sh: 13
file content (124 lines) | stat: -rw-r--r-- 3,058 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

\Chapter{An example application}

In this section we outline two example computations with the functions
of the previous chapter. The first example uses number fields defined 
by matrices and the second example considers number fields defined by
a polynomial.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Number fields defined by matrices}

\beginexample
gap> m1 := [ [ 1, 0, 0, -7 ], 
             [ 7, 1, 0, -7 ], 
             [ 0, 7, 1, -7 ],
             [ 0, 0, 7, -6 ] ];;

gap> m2 := [ [ 0, 0, -13, 14 ], 
             [ -1, 0, -13, 1 ], 
             [ 13, -1, -13, 1 ], 
             [ 0, 13, -14, 1 ] ];;

gap> F := FieldByMatricesNC( [m1, m2] );
<rational matrix field of unknown degree>

gap> DegreeOverPrimeField(F);
4
gap> PrimitiveElement(F);
[ [ -1, 1, 1, 0 ], [ -2, 0, 2, 1 ], [ -2, -1, 1, 2 ], [ -1, -1, 0, 1 ] ]

gap> Basis(F);
Basis( <rational matrix field of degree 4>, 
[ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], 
  [ [ 0, 1, 0, 0 ], [ -1, 1, 1, 0 ], [ -1, 0, 1, 1 ], [ -1, 0, 0, 1 ] ], 
  [ [ 0, 0, 1, 0 ], [ -1, 0, 1, 1 ], [ -1, -1, 1, 1 ], [ 0, -1, 0, 1 ] ], 
  [ [ 0, 0, 0, 1 ], [ -1, 0, 0, 1 ], [ 0, -1, 0, 1 ], [ 0, 0, -1, 1 ] ] ] )

gap> MaximalOrderBasis(F);
Basis( <rational matrix field of degree 4>, 
[ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
  [ [ -1, 1, 1, 0 ], [ -2, 0, 2, 1 ], [ -2, -1, 1, 2 ], [ -1, -1, 0, 1 ] ],
  [ [ -3, -2, 2, 3 ], [ -3, -5, 0, 5 ], [ 0, -5, -3, 3 ], [ 2, -2, -3, 0 ] ],
  [ [ -1, -1, 0, 1 ], [ 0, -2, -1, 1 ], [ 1, -1, -2, 0 ], [ 1, 0, -1, -1 ] ]
 ] )

gap> U := UnitGroup(F);
<matrix group with 2 generators>

gap> u := GeneratorsOfGroup( U );;

gap> nat := IsomorphismPcpGroup(U);;
gap> H := Image(nat);
Pcp-group with orders [ 10, 0 ]
gap> ImageElm( nat, u[1] );
g1
gap> ImageElm( nat, u[2] );
g2
gap> ImageElm( nat, u[1]*u[2] );
g1*g2
gap> u[1] = PreImagesRepresentative(nat, GeneratorsOfGroup(H)[1] );
true
\endexample

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Number fields defined by a polynomial}

\beginexample
gap> g := UnivariatePolynomial( Rationals, [ 16, 64, -28, -4, 1 ] );
x_1^4-4*x_1^3-28*x_1^2+64*x_1+16

gap> F := FieldByPolynomialNC(g);
<algebraic extension over the Rationals of degree 4>
gap> PrimitiveElement(F);
a
gap> MaximalOrderBasis(F);
Basis( <algebraic extension over the Rationals of degree 4>,
[ !1, 1/2*a, 1/4*a^2, 1/56*a^3+1/14*a^2+1/14*a-2/7 ] )

gap> U := UnitGroup(F);
<group with 4 generators>

gap> natU := IsomorphismPcpGroup(U);;
gap> elms := List( [1..10], x-> Random(F) );;

gap>  PcpPresentationOfMultiplicativeSubgroup( F, elms );
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

gap> isom := IsomorphismPcpGroup( F, elms );;
gap> y := RandomGroupElement( elms );;
gap> z := ImageElm( isom, y );;
gap> y = PreImagesRepresentative( isom, z );
true

gap> FactorsPolynomialAlgExt( F, g );
[ x_1+(-a), x_1+(a-2), x_1+(-1/7*a^3+3/7*a^2+31/7*a-40/7),
  x_1+(1/7*a^3-3/7*a^2-31/7*a+26/7) ]
\endexample