1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
|
<Appendix Label="Examples">
<Heading>Examples</Heading>
There are a large number of examples provided with the &ANUPQ; package.
These may be executed or displayed via the function <C>PqExample</C>
(see <Ref Func="PqExample" Style="Text"/>). Each example resides in a file of the same name in the
directory <C>examples</C>. Most of the examples are translations to &GAP; of
examples provided for the <C>anu-pq</C> standalone by Eamonn O'Brien; the
standalone examples are found in directories <C>standalone/examples</C>
(<M>p</M>-quotient and <M>p</M>-group generation examples) and <C>standalone/isom</C>
(standard presentation examples). The first line of each example
indicates its origin. All the examples seen in earlier chapters of this
manual are also available as examples, in a slightly modified form (the
example which one can run in order to see something very close to the
text example <Q>live</Q> is always indicated near -- usually immediately
after -- the text example). The format of the (<C>PqExample</C>) examples is
such that they can be read by the standard <C>Read</C> function of &GAP;, but
certain features and comments are interpreted by the function <C>PqExample</C>
to do somewhat more than <C>Read</C> does. In particular, any function without
a <C>-i</C>, <C>-ni</C> or <C>.g</C> suffix has both a non-interactive and interactive
form; in these cases, the default form is the non-interactive form, and
giving <C>PqStart</C> as second argument generates the interactive form.
<P/>
Running <C>PqExample</C> without an argument or with a non-existent example
<C>Info</C>s the available examples and some hints on usage:
<Example><![CDATA[
gap> PqExample();
#I PqExample Index (Table of Contents)
#I -----------------------------------
#I This table of possible examples is displayed when calling `PqExample'
#I with no arguments, or with the argument: "index" (meant in the sense
#I of ``list''), or with a non-existent example name.
#I
#I Examples that have a name ending in `-ni' are non-interactive only.
#I Examples that have a name ending in `-i' are interactive only.
#I Examples with names ending in `.g' also have only one form. Other
#I examples have both a non-interactive and an interactive form; call
#I `PqExample' with 2nd argument `PqStart' to get the interactive form
#I of the example. The substring `PG' in an example name indicates a
#I p-Group Generation example, `SP' indicates a Standard Presentation
#I example, `Rel' indicates it uses the `Relators' option, and `Id'
#I indicates it uses the `Identities' option.
#I
#I The following ANUPQ examples are available:
#I
#I p-Quotient examples:
#I general:
#I "Pq" "Pq-ni" "PqEpimorphism"
#I "PqPCover" "PqSupplementInnerAutomorphisms"
#I 2-groups:
#I "2gp-Rel" "2gp-Rel-i" "2gp-a-Rel-i"
#I "B2-4" "B2-4-Id" "B2-8-i"
#I "B4-4-i" "B4-4-a-i" "B5-4.g"
#I 3-groups:
#I "3gp-Rel-i" "3gp-a-Rel" "3gp-a-Rel-i"
#I "3gp-a-x-Rel-i" "3gp-maxoccur-Rel-i"
#I 5-groups:
#I "5gp-Rel-i" "5gp-a-Rel-i" "5gp-b-Rel-i"
#I "5gp-c-Rel-i" "5gp-metabelian-Rel-i" "5gp-maxoccur-Rel-i"
#I "F2-5-i" "B2-5-i" "R2-5-i"
#I "R2-5-x-i" "B5-5-Engel3-Id"
#I 7-groups:
#I "7gp-Rel-i"
#I 11-groups:
#I "11gp-i" "11gp-Rel-i" "11gp-a-Rel-i"
#I "11gp-3-Engel-Id" "11gp-3-Engel-Id-i"
#I
#I p-Group Generation examples:
#I general:
#I "PqDescendants-1" "PqDescendants-2" "PqDescendants-3"
#I "PqDescendants-1-i"
#I 2-groups:
#I "2gp-PG-i" "2gp-PG-2-i" "2gp-PG-3-i"
#I "2gp-PG-4-i" "2gp-PG-e4-i"
#I "PqDescendantsTreeCoclassOne-16-i"
#I 3-groups:
#I "3gp-PG-i" "3gp-PG-4-i" "3gp-PG-x-i"
#I "3gp-PG-x-1-i" "PqDescendants-treetraverse-i"
#I "PqDescendantsTreeCoclassOne-9-i"
#I 5-groups:
#I "5gp-PG-i" "Nott-PG-Rel-i" "Nott-APG-Rel-i"
#I "PqDescendantsTreeCoclassOne-25-i"
#I 7,11-groups:
#I "7gp-PG-i" "11gp-PG-i"
#I
#I Standard Presentation examples:
#I general:
#I "StandardPresentation" "StandardPresentation-i"
#I "EpimorphismStandardPresentation"
#I "EpimorphismStandardPresentation-i" "IsIsomorphicPGroup-ni"
#I 2-groups:
#I "2gp-SP-Rel-i" "2gp-SP-1-Rel-i" "2gp-SP-2-Rel-i"
#I "2gp-SP-3-Rel-i" "2gp-SP-4-Rel-i" "2gp-SP-d-Rel-i"
#I "gp-256-SP-Rel-i" "B2-4-SP-i" "G2-SP-Rel-i"
#I 3-groups:
#I "3gp-SP-Rel-i" "3gp-SP-1-Rel-i" "3gp-SP-2-Rel-i"
#I "3gp-SP-3-Rel-i" "3gp-SP-4-Rel-i" "G3-SP-Rel-i"
#I 5-groups:
#I "5gp-SP-Rel-i" "5gp-SP-a-Rel-i" "5gp-SP-b-Rel-i"
#I "5gp-SP-big-Rel-i" "5gp-SP-d-Rel-i" "G5-SP-Rel-i"
#I "G5-SP-a-Rel-i" "Nott-SP-Rel-i"
#I 7-groups:
#I "7gp-SP-Rel-i" "7gp-SP-a-Rel-i" "7gp-SP-b-Rel-i"
#I 11-groups:
#I "11gp-SP-a-i" "11gp-SP-a-Rel-i" "11gp-SP-a-Rel-1-i"
#I "11gp-SP-b-i" "11gp-SP-b-Rel-i" "11gp-SP-c-Rel-i"
#I
#I Notes
#I -----
#I 1. The example (first) argument of `PqExample' is a string; each
#I example above is in double quotes to remind you to include them.
#I 2. Some examples accept options. To find out whether a particular
#I example accepts options, display it first (by including `Display'
#I as last argument) which will also indicate how `PqExample'
#I interprets the options, e.g. `PqExample("11gp-SP-a-i", Display);'.
#I 3. Try `SetInfoLevel(InfoANUPQ, <n>);' for some <n> in [2 .. 4]
#I before calling PqExample, to see what's going on behind the scenes.
#I
]]></Example>
If on your terminal you are unable to scroll back, an alternative to
typing <C>PqExample();</C> to see the displayed examples is to use on-line
help, i.e. you may type:
<Log><![CDATA[
gap> ?anupq:examples
]]></Log>
which will display this appendix in a &GAP; session. If you are not
fussed about the order in which the examples are organised,
<C>AllPqExamples();</C> lists the available examples relatively compactly
(see <Ref Func="AllPqExamples" Style="Text"/>).
<P/>
In the remainder of this appendix we will discuss particular aspects
related to the <C>Relators</C> (see <Ref Label="option Relators" Style="Text"/>) and <C>Identities</C>
(see <Ref Label="option Identities" Style="Text"/>) options, and the construction of the Burnside
group <M>B(5, 4)</M>.
<Section Label="The Relators Option">
<Heading>The Relators Option</Heading>
The <C>Relators</C> option was included because computations involving words
containing commutators that are pre-expanded by &GAP; before being
passed to the <C>anu-pq</C> program may run considerably more slowly, than the
same computations being run with &GAP; pre-expansions avoided. The
following examples demonstrate a case where the performance hit due to
pre-expansion of commutators by &GAP; is a factor of order 100 (in order
to see timing information from the <C>anu-pq</C> program, we set the <C>InfoANUPQ</C>
level to 2).
<P/>
Firstly, we run the example that allows pre-expansion of commutators (the
function <C>PqLeftNormComm</C> is provided by the &ANUPQ; package;
see <Ref Func="PqLeftNormComm" Style="Text"/>). Note that since the two commutators of this
example are <E>very</E> long (taking more than an page to print), we have
edited the output at this point.
<Log><![CDATA[
gap> SetInfoLevel(InfoANUPQ, 2); #to see timing information
gap> PqExample("11gp-i");
#I #Example: "11gp-i" . . . based on: examples/11gp
#I F, a, b, c, R, procId are local to `PqExample'
gap> F := FreeGroup("a", "b", "c"); a := F.1; b := F.2; c := F.3;
<free group on the generators [ a, b, c ]>
a
b
c
gap> R := [PqLeftNormComm([b, a, a, b, c])^11,
> PqLeftNormComm([a, b, b, a, b, c])^11, (a * b)^11];;
gap> procId := PqStart(F/R : Prime := 11);
1
gap> PqPcPresentation(procId : ClassBound := 7,
> OutputLevel := 1);
#I Lower exponent-11 central series for [grp]
#I Group: [grp] to lower exponent-11 central class 1 has order 11^3
#I Group: [grp] to lower exponent-11 central class 2 has order 11^8
#I Group: [grp] to lower exponent-11 central class 3 has order 11^19
#I Group: [grp] to lower exponent-11 central class 4 has order 11^42
#I Group: [grp] to lower exponent-11 central class 5 has order 11^98
#I Group: [grp] to lower exponent-11 central class 6 has order 11^228
#I Group: [grp] to lower exponent-11 central class 7 has order 11^563
#I Computation of presentation took 27.04 seconds
gap> PqSavePcPresentation(procId, ANUPQData.outfile);
#I Variables used in `PqExample' are saved in `ANUPQData.example.vars'.
]]></Log>
Now we do the same calculation using the <C>Relators</C> option. In this way,
the commutators are passed directly as strings to the <C>anu-pq</C> program, so
that &GAP; does not <Q>see</Q> them and pre-expand them.
<Log><![CDATA[
gap> PqExample("11gp-Rel-i");
#I #Example: "11gp-Rel-i" . . . based on: examples/11gp
#I #(equivalent to "11gp-i" example but uses `Relators' option)
#I F, rels, procId are local to `PqExample'
gap> F := FreeGroup("a", "b", "c");
<free group on the generators [ a, b, c ]>
gap> rels := ["[b, a, a, b, c]^11", "[a, b, b, a, b, c]^11", "(a * b)^11"];
[ "[b, a, a, b, c]^11", "[a, b, b, a, b, c]^11", "(a * b)^11" ]
gap> procId := PqStart(F : Prime := 11, Relators := rels);
2
gap> PqPcPresentation(procId : ClassBound := 7,
> OutputLevel := 1);
#I Relators parsed ok.
#I Lower exponent-11 central series for [grp]
#I Group: [grp] to lower exponent-11 central class 1 has order 11^3
#I Group: [grp] to lower exponent-11 central class 2 has order 11^8
#I Group: [grp] to lower exponent-11 central class 3 has order 11^19
#I Group: [grp] to lower exponent-11 central class 4 has order 11^42
#I Group: [grp] to lower exponent-11 central class 5 has order 11^98
#I Group: [grp] to lower exponent-11 central class 6 has order 11^228
#I Group: [grp] to lower exponent-11 central class 7 has order 11^563
#I Computation of presentation took 0.27 seconds
gap> PqSavePcPresentation(procId, ANUPQData.outfile);
#I Variables used in `PqExample' are saved in `ANUPQData.example.vars'.
]]></Log>
</Section>
<Section Label="The Identities Option and PqEvaluateIdentities Function">
<Heading>The Identities Option and PqEvaluateIdentities Function</Heading>
Please pay heed to the warnings given for the <C>Identities</C> option
(see <Ref Label="option Identities" Style="Text"/>); it is written mainly at the &GAP; level and
is not particularly optimised. The <C>Identities</C> option allows one to
compute <M>p</M>-quotients that satisfy an identity. A trivial example better
done using the <C>Exponent</C> option, but which nevertheless demonstrates the
usage of the <C>Identities</C> option, is as follows:
<Log><![CDATA[
gap> SetInfoLevel(InfoANUPQ, 1);
gap> PqExample("B2-4-Id");
#I #Example: "B2-4-Id" . . . alternative way to generate B(2, 4)
#I #Generates B(2, 4) by using the `Identities' option
#I #... this is not as efficient as using `Exponent' but
#I #demonstrates the usage of the `Identities' option.
#I F, f, procId are local to `PqExample'
gap> F := FreeGroup("a", "b");
<free group on the generators [ a, b ]>
gap> # All words w in the pc generators of B(2, 4) satisfy f(w) = 1
gap> f := w -> w^4;
function( w ) ... end
gap> Pq( F : Prime := 2, Identities := [ f ] );
#I Class 1 with 2 generators.
#I Class 2 with 5 generators.
#I Class 3 with 7 generators.
#I Class 4 with 10 generators.
#I Class 5 with 12 generators.
#I Class 5 with 12 generators.
<pc group of size 4096 with 12 generators>
#I Variables used in `PqExample' are saved in `ANUPQData.example.vars'.
gap> time;
1400
]]></Log>
Note that the <C>time</C> statement gives the time in milliseconds spent by
&GAP; in executing the <C>PqExample("B2-4-Id");</C> command (i.e. everything
up to the <C>Info</C>-ing of the variables used), but over 90% of that time
is spent in the final <C>Pq</C> statement. The time spent by the <C>anu-pq</C> program,
which is negligible anyway (you can check this by running the example
while the <C>InfoANUPQ</C> level is set to 2), is not counted by <C>time</C>.
<P/>
Since the identity used in the above construction of <M>B(2, 4)</M> is just an
exponent law, the <Q>right</Q> way to compute it is via the <C>Exponent</C>
option (see <Ref Label="option Exponent" Style="Text"/>), which is implemented at the C level and
<E>is</E> highly optimised. Consequently, the <C>Exponent</C> option is
significantly faster, generally by several orders of magnitude:
<Log><![CDATA[
gap> SetInfoLevel(InfoANUPQ, 2); # to see time spent by the `pq' program
gap> PqExample("B2-4");
#I #Example: "B2-4" . . . the ``right'' way to generate B(2, 4)
#I #Generates B(2, 4) by using the `Exponent' option
#I F, procId are local to `PqExample'
gap> F := FreeGroup("a", "b");
<free group on the generators [ a, b ]>
gap> Pq( F : Prime := 2, Exponent := 4 );
#I Computation of presentation took 0.00 seconds
<pc group of size 4096 with 12 generators>
#I Variables used in `PqExample' are saved in `ANUPQData.example.vars'.
gap> time; # time spent by GAP in executing `PqExample("B2-4");'
50
]]></Log>
The following example uses the <C>Identities</C> option to compute a 3-Engel
group for the prime 11. As is the case for the example <C>"B2-4-Id"</C>, the
example has both a non-interactive and an interactive form; below, we
demonstrate the interactive form.
<Log><![CDATA[
gap> SetInfoLevel(InfoANUPQ, 1); # reset InfoANUPQ to default level
gap> PqExample("11gp-3-Engel-Id", PqStart);
#I #Example: "11gp-3-Engel-Id" . . . 3-Engel group for prime 11
#I #Non-trivial example of using the `Identities' option
#I F, a, b, G, f, procId, Q are local to `PqExample'
gap> F := FreeGroup("a", "b"); a := F.1; b := F.2;
<free group on the generators [ a, b ]>
a
b
gap> G := F/[ a^11, b^11 ];
<fp group on the generators [ a, b ]>
gap> # All word pairs u, v in the pc generators of the 11-quotient Q of G
gap> # must satisfy the Engel identity: [u, v, v, v] = 1.
gap> f := function(u, v) return PqLeftNormComm( [u, v, v, v] ); end;
function( u, v ) ... end
gap> procId := PqStart( G );
3
gap> Q := Pq( procId : Prime := 11, Identities := [ f ] );
#I Class 1 with 2 generators.
#I Class 2 with 3 generators.
#I Class 3 with 5 generators.
#I Class 3 with 5 generators.
<pc group of size 161051 with 5 generators>
gap> # We do a ``sample'' check that pairs of elements of Q do satisfy
gap> # the given identity:
gap> f( Random(Q), Random(Q) );
<identity> of ...
gap> f( Q.1, Q.2 );
<identity> of ...
#I Variables used in `PqExample' are saved in `ANUPQData.example.vars'.
]]></Log>
The (interactive) call to <C>Pq</C> above is essentially equivalent to a call
to <C>PqPcPresentation</C> with the same arguments and options followed by a
call to <C>PqCurrentGroup</C>. Moreover, the call to <C>PqPcPresentation</C> (as
described in <Ref Func="PqPcPresentation" Style="Text"/>) is equivalent to a <Q>class 1</Q> call to
<C>PqPcPresentation</C> followed by the requisite number of calls to
<C>PqNextClass</C>, and with the <C>Identities</C> option set, both
<C>PqPcPresentation</C> and <C>PqNextClass</C> <Q>quietly</Q> perform the equivalent
of a <C>PqEvaluateIdentities</C> call. In the following example we break down
the <C>Pq</C> call into its low-level equivalents, and set and unset the
<C>Identities</C> option to show where <C>PqEvaluateIdentities</C> fits into this
scheme.
<Log><![CDATA[
gap> PqExample("11gp-3-Engel-Id-i");
#I #Example: "11gp-3-Engel-Id-i" . . . 3-Engel grp for prime 11
#I #Variation of "11gp-3-Engel-Id" broken down into its lower-level component
#I #command parts.
#I F, a, b, G, f, procId, Q are local to `PqExample'
gap> F := FreeGroup("a", "b"); a := F.1; b := F.2;
<free group on the generators [ a, b ]>
a
b
gap> G := F/[ a^11, b^11 ];
<fp group on the generators [ a, b ]>
gap> # All word pairs u, v in the pc generators of the 11-quotient Q of G
gap> # must satisfy the Engel identity: [u, v, v, v] = 1.
gap> f := function(u, v) return PqLeftNormComm( [u, v, v, v] ); end;
function( u, v ) ... end
gap> procId := PqStart( G : Prime := 11 );
4
gap> PqPcPresentation( procId : ClassBound := 1);
gap> PqEvaluateIdentities( procId : Identities := [f] );
#I Class 1 with 2 generators.
gap> for c in [2 .. 4] do
> PqNextClass( procId : Identities := [] ); #reset `Identities' option
> PqEvaluateIdentities( procId : Identities := [f] );
> od;
#I Class 2 with 3 generators.
#I Class 3 with 5 generators.
#I Class 3 with 5 generators.
gap> Q := PqCurrentGroup( procId );
<pc group of size 161051 with 5 generators>
gap> # We do a ``sample'' check that pairs of elements of Q do satisfy
gap> # the given identity:
gap> f( Random(Q), Random(Q) );
<identity> of ...
gap> f( Q.1, Q.2 );
<identity> of ...
#I Variables used in `PqExample' are saved in `ANUPQData.example.vars'.
]]></Log>
</Section>
<Section Label="A Large Example">
<Heading>A Large Example</Heading>
<Index Key="B(5,4)"><M>B(5,4)</M></Index>
An example demonstrating how a large computation can be organised with the
&ANUPQ; package is the computation of the Burnside group <M>B(5, 4)</M>, the
largest group of exponent 4 generated by 5 elements. It has order
<M>2^{2728}</M> and lower exponent-<M>p</M> central class 13. The example
<C>"B5-4.g"</C> computes <M>B(5, 4)</M>; it is based on a <C>anu-pq</C> standalone input
file written by M. F. Newman.
<P/>
To be able to do examples like this was part of the motivation to provide
access to the low-level functions of the standalone program from within
&GAP;.
<P/>
Please note that the construction uses the knowledge gained by Newman and
O'Brien in their initial construction of <M>B(5, 4)</M>, in particular,
insight into the commutator structure of the group and the knowledge of
the <M>p</M>-central class and the order of <M>B(5, 4)</M>. Therefore, the
construction cannot be used to prove that <M>B(5, 4)</M> has the order and
class mentioned above. It is merely a reconstruction of the group. More
information is contained in the header of the file <C>examples/B5-4.g</C>.
<Log><![CDATA[
procId := PqStart( FreeGroup(5) : Exponent := 4, Prime := 2 );
Pq( procId : ClassBound := 2 );
PqSupplyAutomorphisms( procId,
[
[ [ 1, 1, 0, 0, 0], # first automorphism
[ 0, 1, 0, 0, 0],
[ 0, 0, 1, 0, 0],
[ 0, 0, 0, 1, 0],
[ 0, 0, 0, 0, 1] ],
[ [ 0, 0, 0, 0, 1], # second automorphism
[ 1, 0, 0, 0, 0],
[ 0, 1, 0, 0, 0],
[ 0, 0, 1, 0, 0],
[ 0, 0, 0, 1, 0] ]
] );;
Relations :=
[ [], ## class 1
[], ## class 2
[], ## class 3
[], ## class 4
[], ## class 5
[], ## class 6
## class 7
[ [ "x2","x1","x1","x3","x4","x4","x4" ] ],
## class 8
[ [ "x2","x1","x1","x3","x4","x5","x5","x5" ] ],
## class 9
[ [ "x2","x1","x1","x3","x4","x4","x5","x5","x5" ],
[ "x2","x1","x1","x2","x3","x4","x5","x5","x5" ],
[ "x2","x1","x1","x3","x3","x4","x5","x5","x5" ] ],
## class 10
[ [ "x2","x1","x1","x2","x3","x3","x4","x5","x5","x5" ],
[ "x2","x1","x1","x3","x3","x4","x4","x5","x5","x5" ] ],
## class 11
[ [ "x2","x1","x1","x2","x3","x3","x4","x4","x5","x5","x5" ],
[ "x2","x1","x1","x2","x3","x1","x3","x4","x2","x4","x3" ] ],
## class 12
[ [ "x2","x1","x1","x2","x3","x1","x3","x4","x2","x5","x5","x5" ],
[ "x2","x1","x1","x3","x2","x4","x3","x5","x4","x5","x5","x5" ] ],
## class 13
[ [ "x2","x1","x1","x2","x3","x1","x3","x4","x2","x4","x5","x5","x5"
] ]
];
for class in [ 3 .. 13 ] do
Print( "Computing class ", class, "\n" );
PqSetupTablesForNextClass( procId );
for w in [ class, class-1 .. 7 ] do
PqAddTails( procId, w );
PqDisplayPcPresentation( procId );
if Relations[ w ] <> [] then
# recalculate automorphisms
PqExtendAutomorphisms( procId );
for r in Relations[ w ] do
Print( "Collecting ", r, "\n" );
PqCommutator( procId, r, 1 );
PqEchelonise( procId );
PqApplyAutomorphisms( procId, 15 ); #queue factor = 15
od;
PqEliminateRedundantGenerators( procId );
fi;
PqComputeTails( procId, w );
od;
PqDisplayPcPresentation( procId );
smallclass := Minimum( class, 6 );
for w in [ smallclass, smallclass-1 .. 2 ] do
PqTails( procId, w );
od;
# recalculate automorphisms
PqExtendAutomorphisms( procId );
PqCollect( procId, "x5^4" );
PqEchelonise( procId );
PqApplyAutomorphisms( procId, 15 ); #queue factor = 15
PqEliminateRedundantGenerators( procId );
PqDisplayPcPresentation( procId );
od;
]]></Log>
</Section>
<Section Label="Developing descendants trees">
<Heading>Developing descendants trees</Heading>
In the following example we will explore the 3-groups of rank 2 and
3-coclass 1 up to 3-class 5. This will be done using the <M>p</M>-group
generation machinery of the package. We start with the elementary abelian
3-group of rank 2. From within &GAP;, run the example
<C>"PqDescendants-treetraverse-i"</C> via <C>PqExample</C> (see <Ref Func="PqExample" Style="Text"/>).
<Example><![CDATA[
gap> G := ElementaryAbelianGroup( 9 );
<pc group of size 9 with 2 generators>
gap> procId := PqStart( G );
5
gap> #
gap> # Below, we use the option StepSize in order to construct descendants
gap> # of coclass 1. This is equivalent to setting the StepSize to 1 in
gap> # each descendant calculation.
gap> #
gap> # The elementary abelian group of order 9 has 3 descendants of
gap> # 3-class 2 and 3-coclass 1, as the result of the next command
gap> # shows.
gap> #
gap> PqDescendants( procId : StepSize := 1 );
[ <pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators> ]
gap> #
gap> # Now we will compute the descendants of coclass 1 for each of the
gap> # groups above. Then we will compute the descendants of coclass 1
gap> # of each descendant and so on. Note that the pq program keeps
gap> # one file for each class at a time. For example, the descendants
gap> # calculation for the second group of class 2 overwrites the
gap> # descendant file obtained from the first group of class 2.
gap> # Hence, we have to traverse the descendants tree in depth first
gap> # order.
gap> #
gap> PqPGSetDescendantToPcp( procId, 2, 1 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
2
gap> PqPGSetDescendantToPcp( procId, 3, 1 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
2
gap> PqPGSetDescendantToPcp( procId, 4, 1 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
2
gap> #
gap> # At this point we stop traversing the ``left most'' branch of the
gap> # descendants tree and move upwards.
gap> #
gap> PqPGSetDescendantToPcp( procId, 4, 2 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
gap> PqPGSetDescendantToPcp( procId, 3, 2 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
gap> #
gap> # The computations above indicate that the descendants subtree under
gap> # the first descendant of the elementary abelian group of order 9
gap> # will have only one path of infinite length.
gap> #
gap> PqPGSetDescendantToPcp( procId, 2, 2 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
4
gap> #
gap> # We get four descendants here, three of which will turn out to be
gap> # incapable, i.e., they have no descendants and are terminal nodes
gap> # in the descendants tree.
gap> #
gap> PqPGSetDescendantToPcp( procId, 2, 3 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
gap> #
gap> # The third descendant of class three is incapable. Let us return
gap> # to the second descendant of class 2.
gap> #
gap> PqPGSetDescendantToPcp( procId, 2, 2 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
4
gap> PqPGSetDescendantToPcp( procId, 3, 1 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
gap> PqPGSetDescendantToPcp( procId, 3, 2 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
gap> #
gap> # We skip the third descendant for the moment ...
gap> #
gap> PqPGSetDescendantToPcp( procId, 3, 4 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
gap> #
gap> # ... and look at it now.
gap> #
gap> PqPGSetDescendantToPcp( procId, 3, 3 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
6
gap> #
gap> # In this branch of the descendant tree we get 6 descendants of class
gap> # three. Of those 5 will turn out to be incapable and one will have
gap> # 7 descendants.
gap> #
gap> PqPGSetDescendantToPcp( procId, 4, 1 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
gap> PqPGSetDescendantToPcp( procId, 4, 2 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
7
gap> PqPGSetDescendantToPcp( procId, 4, 3 );
gap> PqPGExtendAutomorphisms( procId );
gap> PqPGConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
]]></Example>
To automate the above procedure to some extent we provide:
<ManSection>
<Func Name="PqDescendantsTreeCoclassOne" Arg="i"/>
<Func Name="PqDescendantsTreeCoclassOne" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, generate a
descendant tree for the group of the process (which must be a pc
<M>p</M>-group) consisting of descendants of <M>p</M>-coclass 1 and extending to
the class determined by the option <C>TreeDepth</C> (or 6 if the option is
omitted). In an &XGAP; session, a graphical representation of the
descendants tree appears in a separate window. Subsequent calls to
<C>PqDescendantsTreeCoclassOne</C> for the same process may be used to extend
the descendant tree from the last descendant computed that itself has
more than one descendant. <C>PqDescendantsTreeCoclassOne</C> also accepts the
options <C>CapableDescendants</C> (or <C>AllDescendants</C>) and any options
accepted by the interactive <C>PqDescendants</C> function
(see <Ref Func="PqDescendants" Label="interactive" Style="Text"/>).
<P/>
<E>Notes</E>
<Enum>
<Item>
<C>PqDescendantsTreeCoclassOne</C> first calls <C>PqDescendants</C>. If
<C>PqDescendants</C> has already been called for the process, the previous
value computed is used and a warning is <C>Info</C>-ed at <C>InfoANUPQ</C> level 1.
</Item>
<Item>
As each descendant is processed its unique label defined by the <C>anu-pq</C>
program and number of descendants is <C>Info</C>-ed at <C>InfoANUPQ</C> level 1.
</Item>
<Item>
<C>PqDescendantsTreeCoclassOne</C> is an <Q>experimental</Q> function that is
included to demonstrate the sort of things that are possible with the
<M>p</M>-group generation machinery.
</Item>
</Enum>
Ignoring the extra functionality provided in an &XGAP; session,
<C>PqDescendantsTreeCoclassOne</C>, with one argument that is the index of an
interactive &ANUPQ; process, is approximately equivalent to:
<Listing><![CDATA[
PqDescendantsTreeCoclassOne := function( procId )
local des, i;
des := PqDescendants( procId : StepSize := 1 );
RecurseDescendants( procId, 2, Length(des) );
end;
]]></Listing>
where <C>RecurseDescendants</C> is (approximately) defined as follows:
<Listing><![CDATA[
RecurseDescendants := function( procId, class, n )
local i, nr;
if class > ValueOption("TreeDepth") then return; fi;
for i in [1..n] do
PqPGSetDescendantToPcp( procId, class, i );
PqPGExtendAutomorphisms( procId );
nr := PqPGConstructDescendants( procId : StepSize := 1 );
Print( "Number of descendants of group ", i,
" at class ", class, ": ", nr, "\n" );
RecurseDescendants( procId, class+1, nr );
od;
return;
end;
]]></Listing>
The following examples (executed via <C>PqExample</C>; see <Ref Func="PqExample" Style="Text"/>),
demonstrate the use of <C>PqDescendantsTreeCoclassOne</C>:
<List>
<Mark><C>"PqDescendantsTreeCoclassOne-9-i"</C></Mark>
<Item>
approximately does example <C>"PqDescendants-treetraverse-i"</C> again using
<C>PqDescendantsTreeCoclassOne</C>;
</Item>
<Mark><C>"PqDescendantsTreeCoclassOne-16-i"</C></Mark>
<Item>
uses the option <C>CapableDescendants</C>; and
</Item>
<Mark><C>"PqDescendantsTreeCoclassOne-25-i"</C></Mark>
<Item>
calculates all descendants by omitting the <C>CapableDescendants</C> option.
</Item>
</List>
The numbers <C>9</C>, <C>16</C> and <C>25</C> respectively, indicate the order of the
elementary abelian group to which <C>PqDescendantsTreeCoclassOne</C> is
applied for these examples.
</Description>
</ManSection>
</Section>
</Appendix>
|