1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
|
<Chapter Label="Interactive ANUPQ functions">
<Heading>Interactive ANUPQ functions</Heading>
Here we describe the interactive functions defined by the &ANUPQ;
package, i.e. the functions that manipulate and initiate interactive
&ANUPQ; processes. These are functions that extract information via a
dialogue with a running <C>anu-pq</C> process (process used in the UNIX sense).
Occasionally, a user needs the <Q>next step</Q>; the functions provided in
this chapter make use of data from previous steps retained by the <C>anu-pq</C>
program, thus allowing the user to interact with the <C>anu-pq</C> program like
one can when one uses the <C>anu-pq</C> program as a stand-alone (see <C>guide.dvi</C>
in the <C>standalone-doc</C> directory).
<P/>
An interactive &ANUPQ; process is initiated by <C>PqStart</C> and terminated
via <C>PqQuit</C>; these functions are described in
ection <Ref Sect="Starting and Stopping Interactive ANUPQ Processes" Style="Text"/>.
<P/>
Each interactive &ANUPQ; function that manipulates an already started
interactive &ANUPQ; process, has a form where the first argument is the
integer <A>i</A> returned by the initiating <C>PqStart</C> command, and a second
form with one argument fewer (where the integer <A>i</A> is discovered by a
default mechanism, namely by determining the least integer <A>i</A> for which
there is a currently active interactive &ANUPQ; process). We will thus
commonly say that <Q>for the <A>i</A>th (or default) interactive &ANUPQ;
process</Q> a certain function performs a given action. In each case, it is
an error if <A>i</A> is not the index of an active interactive process, or
there are no current active interactive processes.
<P/>
<E>Notes</E>:
The global method of passing options (via <C>PushOptions</C>), should not be
used with any of the interactive functions. In fact, the <C>OptionsStack</C>
should be empty at the time any of the interactive functions is called.
<P/>
On <K>quit</K>ting &GAP;, <C>PqQuitAll();</C> is executed, which terminates all
active interactive &ANUPQ; processes. If &GAP; is killed without
<K>quit</K>ting, before all interactive &ANUPQ; processes are terminated,
<E>zombie</E> processes (still living <E>child</E> processes whose <E>parents</E> have
died), may result. Since zombie processes do consume resources, in such
an event, the responsible computer user should seek out and terminate
those zombie processes (e.g. on Linux: <C>ps xw | grep pq</C> gives you
information on the <C>anu-pq</C> processes corresponding to any interactive
&ANUPQ; processes started in a &GAP; session; you can then do <C>kill
<A>N</A></C> for each number <A>N</A> appearing in the first column of this output).
<Section Label="Starting and Stopping Interactive ANUPQ Processes">
<Heading>Starting and Stopping Interactive ANUPQ Processes</Heading>
<ManSection>
<Func Name="PqStart" Arg="G, workspace : options" Label="with group and workspace size"/>
<Func Name="PqStart" Arg="G : options" Label="with group"/>
<Func Name="PqStart" Arg="workspace : options" Label="with workspace size"/>
<Func Name="PqStart" Arg=": options"/>
<Description>
activate an iostream for an interactive &ANUPQ; process (i.e. <C>PqStart</C>
starts up a <C>anu-pq</C> process and opens a &GAP; iostream to <Q>talk</Q> to that
process) and returns an integer <A>i</A> that can be used to identify that
process. The argument <A>G</A> should be an <E>fp group</E> or <E>pc group</E> that the
user intends to manipulate using interactive &ANUPQ; functions. If the
function is called without specifying <A>G</A>, a group can be read in by
using the function <C>PqRestorePcPresentation</C> (see <Ref Func="PqRestorePcPresentation" Style="Text"/>).
If <C>PqStart</C> is given an integer argument <A>workspace</A>, then the <C>anu-pq</C>
program is started up with a workspace (an integer array) of size
<A>workspace</A> (i.e. <M>4 \times <A>workspace</A></M> bytes in a 32-bit environment);
otherwise, the <C>anu-pq</C> program sets a default workspace of <M>10000000</M>.
<P/>
The only <A>options</A> currently recognised by <C>PqStart</C> are <C>Prime</C>,
<C>Exponent</C> and <C>Relators</C> (see Chapter <Ref Chap="ANUPQ Options" Style="Text"/> for detailed
descriptions of these options) and if provided they are essentially
global for the interactive &ANUPQ; process, except that any interactive
function interacting with the process and passing new values for these
options will over-ride the global values.
</Description>
</ManSection>
<ManSection>
<Func Name="PqQuit" Arg="i"/>
<Func Name="PqQuit" Arg="" Label="for default process"/>
<Description>
closes the stream of the <A>i</A>th or default interactive &ANUPQ; process
and unbinds its <C>ANUPQData.io</C> record.
<P/>
<E>Note:</E>
It can happen that the <C>anu-pq</C> process, and hence the &GAP; iostream
assigned to communicate with it, can die, e.g. by the user typing a
<C>Ctrl-C</C> while the <C>anu-pq</C> process is engaged in a long calculation.
<C>IsPqProcessAlive</C> (see <Ref Func="IsPqProcessAlive" Style="Text"/>) is provided to check the
status of the &GAP; iostream (and hence the status of the <C>anu-pq</C> process
it was communicating with).
</Description>
</ManSection>
<ManSection>
<Func Name="PqQuitAll" Arg=""/>
<Description>
is provided as a convenience, to terminate all active interactive
&ANUPQ; processes with a single command. It is equivalent to executing
<C>PqQuit(<A>i</A>)</C> for all active interactive &ANUPQ; processes <A>i</A>
(see <Ref Func="PqQuit" Style="Text"/>).
</Description>
</ManSection>
</Section>
<Section Label="Interactive ANUPQ Process Utility Functions">
<Heading>Interactive ANUPQ Process Utility Functions</Heading>
<ManSection>
<Func Name="PqProcessIndex" Arg="i"/>
<Func Name="PqProcessIndex" Arg="" Label="for default process"/>
<Description>
With argument <A>i</A>, which must be a positive integer, <C>PqProcessIndex</C>
returns <A>i</A> if it corresponds to an active interactive process, or raises
an error. With no arguments it returns the default active interactive
process or returns <K>fail</K> and emits a warning message to <C>Info</C> at
<C>InfoANUPQ</C> or <C>InfoWarning</C> level 1.
<P/>
<E>Note:</E>
Essentially, an interactive &ANUPQ; process <A>i</A> is <Q>active</Q> if
<C>ANUPQData.io[<A>i</A>]</C> is bound (i.e. we still have some data telling us
about it). Also see <Ref Func="PqStart" Style="Text"/>.
</Description>
</ManSection>
<ManSection>
<Func Name="PqProcessIndices" Arg=""/>
<Description>
returns the list of integer indices of all active interactive &ANUPQ;
processes (see <Ref Func="PqProcessIndex" Style="Text"/> for the meaning of <Q>active</Q>).
</Description>
</ManSection>
<ManSection>
<Func Name="IsPqProcessAlive" Arg="i"/>
<Func Name="IsPqProcessAlive" Arg="" Label="for default process"/>
<Description>
return <K>true</K> if the &GAP; iostream of the <A>i</A>th (or default)
interactive &ANUPQ; process started by <C>PqStart</C> is alive (i.e. can
still be written to), or <K>false</K>, otherwise. (See the notes for <Ref Func="PqStart" Style="Text"/>
and <Ref Func="PqQuit" Style="Text"/>.)
<P/>
<Index>interruption</Index><!-- @interruption of an interactive ANUPQ process -->
If the user does not yet have a <C>gap></C> prompt then usually the <C>anu-pq</C>
program is still away doing something and an &ANUPQ; interface function
is still waiting for a reply. Typing a <C>Ctrl-C</C> (i.e. holding down the
<C>Ctrl</C> key and typing <C>c</C>) will stop the waiting and send &GAP; into a
<C>break</C>-loop, from which one has no option but to <C>quit;</C>. The typing of
<C>Ctrl-C</C>, in such a circumstance, usually causes the stream of the
interactive &ANUPQ; process to die; to check this we provide
<C>IsPqProcessAlive</C> (see <Ref Func="IsPqProcessAlive" Style="Text"/>).
<P/>
The &GAP; iostream of an interactive &ANUPQ; process will also die if
the <C>anu-pq</C> program has a segmentation fault. We do hope that this never
happens to you, but if it does and the failure is reproducible, then it's
a bug and we'd like to know about it. Please read the <C>README</C> that comes
with the &ANUPQ; package to find out what to include in a bug report and
who to email it to.
</Description>
</ManSection>
</Section>
<Section Label="Interactive Versions of Non-interactive ANUPQ Functions">
<Heading>Interactive Versions of Non-interactive ANUPQ Functions</Heading>
<ManSection>
<Func Name="Pq" Arg="i : options" Label="interactive"/>
<Func Name="Pq" Arg=": options" Label="interactive, for default process"/>
<Description>
return, for the fp or pc group (let us call it <A>F</A>), of the <A>i</A>th or
default interactive &ANUPQ; process, the <M>p</M>-quotient of <A>F</A>
specified by <A>options</A>, as a pc group; <A>F</A> must previously have been
given (as first argument) to <C>PqStart</C> to start the interactive
&ANUPQ; process (see <Ref Func="PqStart" Style="Text"/>) or restored from file using the
function <C>PqRestorePcPresentation</C> (see <Ref Func="PqRestorePcPresentation" Style="Text"/>).
Following the colon <A>options</A> is a selection of the options listed for
the non-interactive <C>Pq</C> function (see <Ref Func="Pq" Style="Text"/>), separated by commas like
record components (see Section <Ref BookName="ref" Label="Function Call With Options" Style="Text"/> in the
&GAP; Reference Manual), except that the options <C>SetupFile</C> or
<C>PqWorkspace</C> are ignored by the interactive <C>Pq</C>, and <C>RedoPcp</C> is an
option only recognised by the interactive <C>Pq</C> i.e. the following
options are recognised by the interactive <C>Pq</C> function:
<List>
<Item>
<C>Prime := <A>p</A></C><Index>option Prime</Index>
</Item>
<Item>
<C>ClassBound := <A>n</A></C><Index>option ClassBound</Index>
</Item>
<Item>
<C>Exponent := <A>n</A></C><Index>option Exponent</Index>
</Item>
<Item>
<C>Relators := <A>rels</A></C><Index>option Relators</Index>
</Item>
<Item>
<C>Metabelian</C><Index>option Metabelian</Index>
</Item>
<Item>
<C>Identities := <A>funcs</A></C><Index>option Identities</Index>
</Item>
<Item>
<C>GroupName := <A>name</A></C><Index>option GroupName</Index>
</Item>
<Item>
<C>OutputLevel := <A>n</A></C><Index>option OutputLevel</Index>
</Item>
<Item>
<C>RedoPcp</C><Index>option RedoPcp</Index>
</Item>
</List>
Detailed descriptions of the above options may be found in Chapter <Ref Chap="ANUPQ Options" Style="Text"/>.
<P/>
As a minimum the <C>Pq</C> function <E>must</E> have a value for the <C>Prime</C>
option, though <C>Prime</C> need not be passed again in the case it has
previously been provided, e.g. to <C>PqStart</C> (see <Ref Func="PqStart" Style="Text"/>) when starting
the interactive process.
<P/>
The behaviour of the interactive <C>Pq</C> function depends on the current
state of the pc presentation stored by the <C>anu-pq</C> program:
<Enum>
<Item>
If no pc presentation has yet been computed (the case immediately after
the <C>PqStart</C> call initiating the process) then the quotient group of the
input group of the process of largest lower exponent-<A>p</A> class bounded by
the value of the <C>ClassBound</C> option (see <Ref Label="option ClassBound" Style="Text"/>) is
returned.
</Item>
<Item>
If the current pc presentation of the process was determined by a
previous call to <C>Pq</C> or <C>PqEpimorphism</C>, and the current call has a
larger value <C>ClassBound</C> then the class is extended as much as is
possible and the quotient group of the input group of the process of the
new lower exponent-<A>p</A> class is returned.
</Item>
<Item>
If the current pc presentation of the process was determined by a
previous call to <C>PqPCover</C> then a consistent pc presentation of a
quotient for the current class is determined before proceeding as in 2.
</Item>
<Item>
If the <C>RedoPcp</C> option is supplied the current pc presentation is
scrapped, all options must be re-supplied (in particular, <C>Prime</C> <E>must</E>
be supplied) and then the <C>Pq</C> function proceeds as in 1.
</Item>
</Enum>
See Section <Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/> for the
attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> which may be applied to the group returned by <C>Pq</C>.
<P/>
The following is one of the examples for the non-interactive <C>Pq</C> redone
with the interactive version. Also, we set the option <C>OutputLevel</C> to 1
(see <Ref Label="option OutputLevel" Style="Text"/>), in order to see the orders of the quotients
of all the classes determined, and we set the <C>InfoANUPQ</C> level to 2
(see <Ref Func="InfoANUPQ" Style="Text"/>), so that we catch the timing information.
<!-- The next log is not an <Example> because it contains timing data -->
<Log><![CDATA[
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> G := F / [a^4, b^4];
<fp group on the generators [ a, b ]>
gap> PqStart(G);
1
gap> SetInfoLevel(InfoANUPQ, 2); #To see timing information
gap> Pq(: Prime := 2, ClassBound := 3, OutputLevel := 1 );
#I Lower exponent-2 central series for [grp]
#I Group: [grp] to lower exponent-2 central class 1 has order 2^2
#I Group: [grp] to lower exponent-2 central class 2 has order 2^5
#I Group: [grp] to lower exponent-2 central class 3 has order 2^8
#I Computation of presentation took 0.00 seconds
<pc group of size 256 with 8 generators>
]]></Log>
</Description>
</ManSection>
<ManSection>
<Func Name="PqEpimorphism" Arg="i : options" Label="interactive"/>
<Func Name="PqEpimorphism" Arg=": options" Label="interactive, for default process"/>
<Description>
return, for the fp or pc group (let us call it <A>F</A>), of the <A>i</A>th or
default interactive &ANUPQ; process, an epimorphism from <A>F</A> onto the
<M>p</M>-quotient of <A>F</A> specified by <A>options</A>; <A>F</A> must previously have been
given (as first argument) to <C>PqStart</C> to start the interactive &ANUPQ;
process (see <Ref Func="PqStart" Style="Text"/>). Since the underlying interactions with the <C>anu-pq</C>
program effected by the interactive <C>PqEpimorphism</C> are identical to
those effected by the interactive <C>Pq</C>, everything said regarding the
requirements and behaviour of the interactive <C>Pq</C> function
(see <Ref Func="Pq" Label="interactive" Style="Text"/>) is also the case for the interactive
<C>PqEpimorphism</C>.
<P/>
<E>Note:</E>
See Section <Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/> for the
attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> which may be applied to the image group of the epimorphism
returned by <C>PqEpimorphism</C>.
</Description>
</ManSection>
<ManSection>
<Func Name="PqPCover" Arg="i : options" Label="interactive"/>
<Func Name="PqPCover" Arg=": options" Label="interactive, for default process"/>
<Description>
return, for the fp or pc group of the <A>i</A>th or default interactive
&ANUPQ; process, the <M>p</M>-covering group of the <M>p</M>-quotient <C>Pq(<A>i</A> :
<A>options</A>)</C> or <C>Pq(: <A>options</A>)</C>, modulo the following:
<Enum>
<Item>
If no pc presentation has yet been computed (the case immediately after
the <C>PqStart</C> call initiating the process) and the group <A>F</A> of the
process is already a <M>p</M>-group, in the sense that <C>HasIsPGroup(<A>F</A>) and
IsPGroup(<A>F</A>)</C> is <K>true</K>, then
<List>
<Mark><C>Prime</C></Mark>
<Item>
defaults to <C>PrimePGroup(<A>F</A>)</C>, if not supplied and <C>HasPrimePGroup(<A>F</A>)
= true</C>; and
</Item>
<Mark><C>ClassBound</C></Mark>
<Item>
defaults to <C>PClassPGroup(<A>F</A>)</C> if <C>HasPClassPGroup(<A>F</A>) = true</C> if not
supplied, or to the usual default of 63, otherwise.
</Item>
</List>
</Item>
<Item>
If a pc presentation has been computed and none of <A>options</A> is <C>RedoPcp</C>
or if no pc presentation has yet been computed but 1. does not apply then
<C>PqPCover(<A>i</A> : <A>options</A>);</C> is equivalent to:
<Listing><![CDATA[
Pq(i : options);
PqPCover(i);
]]></Listing>
</Item>
<Item>
If the <C>RedoPcp</C> option is supplied the current pc presentation is
scrapped, and <C>PqPCover</C> proceeds as in 1. or 2. but without the
<C>RedoPcp</C> option.
</Item>
</Enum>
</Description>
</ManSection>
<Index>automorphisms<Subkey>of <M>p</M>-groups</Subkey></Index>
<ManSection>
<Func Name="PqStandardPresentation" Arg="[ i ]: options" Label="interactive"/>
<Func Name="StandardPresentation" Arg="[ i ]: options" Label="interactive"/>
<Description>
return, for the <A>i</A>th or default interactive &ANUPQ; process, the
<A>p</A>-quotient of the group <A>F</A> of the process, specified by <A>options</A>, as
an <E>fp group</E> which has a standard presentation. Here <A>options</A> is a
selection of the options from the following list (see Chapter <Ref Chap="ANUPQ Options" Style="Text"/> for detailed descriptions); this list is the same as for the
non-interactive version of <C>PqStandardPresentation</C> except for the
omission of options <C>SetupFile</C> and <C>PqWorkspace</C>
(see <Ref Func="PqStandardPresentation" Style="Text"/>).
<List>
<Item>
<C>Prime := <A>p</A></C><Index>option Prime</Index>
</Item>
<Item>
<C>pQuotient := <A>Q</A></C><Index>option pQuotient</Index>
</Item>
<Item>
<C>ClassBound := <A>n</A></C><Index>option ClassBound</Index>
</Item>
<Item>
<C>Exponent := <A>n</A></C><Index>option Exponent</Index>
</Item>
<Item>
<C>Metabelian</C><Index>option Metabelian</Index>
</Item>
<Item>
<C>GroupName := <A>name</A></C><Index>option GroupName</Index>
</Item>
<Item>
<C>OutputLevel := <A>n</A></C><Index>option OutputLevel</Index>
</Item>
<Item>
<C>StandardPresentationFile := <A>filename</A></C><Index>option StandardPresentationFile</Index>
</Item>
</List>
Unless <A>F</A> is a pc <A>p</A>-group, or the option <C>Prime</C> has been passed to a
previous interactive function for the process to compute a <A>p</A>-quotient
for <A>F</A>, the user <E>must</E> supply either the option <C>Prime</C> or the option
<C>pQuotient</C> (if both <C>Prime</C> and <C>pQuotient</C> are supplied, the prime <A>p</A>
is determined by applying <C>PrimePGroup</C> (see <Ref BookName="ref" Attr="PrimePGroup" Style="Text"/> in the
Reference Manual) to the value of <C>pQuotient</C>).
<P/>
Taking one of the examples for the non-interactive version of
<C>StandardPresentation</C> (see <Ref Func="StandardPresentation" Style="Text"/>) that required two
separate calls to the <C>anu-pq</C> program, we now show how it can be done by
setting up a dialogue with just the one <C>anu-pq</C> process, using the
interactive version of <C>StandardPresentation</C>:
<Example><![CDATA[
gap> F4 := FreeGroup( "a", "b", "c", "d" );;
gap> a := F4.1;; b := F4.2;; c := F4.3;; d := F4.4;;
gap> G4 := F4 / [ b^4, b^2 / Comm(Comm (b, a), a), d^16,
> a^16 / (c * d), b^8 / (d * c^4) ];
<fp group on the generators [ a, b, c, d ]>
gap> SetInfoLevel(InfoANUPQ, 1); #Only essential Info please
gap> procId := PqStart(G4);; #Start a new interactive process for a new group
gap> K := Pq( procId : Prime := 2, ClassBound := 1 );
<pc group of size 4 with 2 generators>
gap> StandardPresentation( procId : pQuotient := K, ClassBound := 14 );
<fp group with 53 generators>
]]></Example>
<E>Notes</E>
<P/>
In contrast to the function <C>Pq</C> (see <Ref Func="Pq" Style="Text"/>) which returns a pc group,
<C>PqStandardPresentation</C> or <C>StandardPresentation</C> returns an fp group.
This is because the output is mainly used for isomorphism testing for
which an fp group is enough. However, the presentation is a polycyclic
presentation and if you need to do any further computation with this
group (e.g. to find the order) you can use the function <C>PcGroupFpGroup</C>
(see <Ref BookName="ref" Func="PcGroupFpGroup" Style="Text"/> in the
&GAP; Reference Manual) to form a pc group.
<P/>
If the user does not supply a <A>p</A>-quotient <A>Q</A> via the
<C>pQuotient</C> option, and the prime <A>p</A> is either supplied, stored, or
<A>F</A> is a pc <A>p</A>-group, then a <A>p</A>-quotient <A>Q</A> is
computed. (The value of the prime <A>p</A> is stored if passed initially to
<C>PqStart</C> or to a subsequent interactive process.) Note that a stored
value for <C>pQuotient</C> (from a prior call to <C>Pq</C>) does <E>not</E>
have precedence over a value for the prime <A>p</A>. If the user does supply a
<A>p</A>-quotient <A>Q</A> via the <C>pQuotient</C> option, the package
&AutPGrp; is called to compute the automorphism group of <A>Q</A>; an error
will occur that asks the user to install the package &AutPGrp; if the
automorphism group cannot be computed.
<P/>
If any of the interactive functions <C>PqStandardPresentation</C>,
<C>StandardPresentation</C>, <C>EpimorphismPqStandardPresentation</C> or
<C>EpimorphismStandardPresentation</C> has been called previously for an
interactive process, a subsequent call to any of these functions for the same
process returns the previously computed value. Note that all these functions
compute both an epimorphism and an fp group and store the results in the
<C>SPepi</C> and <C>SP</C> fields of the data record associated with the
process. See the example for the interactive
<C>EpimorphismStandardPresentation</C>
(<Ref Func="EpimorphismStandardPresentation" Label="interactive" Style="Text"/>).
<P/>
The attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> are set for the group returned by <C>PqStandardPresentation</C> or
<C>StandardPresentation</C> (see Section <Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/>).
</Description>
</ManSection>
<ManSection>
<Func Name="EpimorphismPqStandardPresentation" Arg="[ i ]: options" Label="interactive"/>
<Meth Name="EpimorphismStandardPresentation" Arg="[ i ]: options" Label="interactive"/>
<Description>
Each of the above functions accepts the same arguments and options as the
interactive form of <C>StandardPresentation</C>
(see <Ref Func="StandardPresentation" Label="interactive" Style="Text"/>) and returns an epimorphism from
the fp or pc group <A>F</A> of the <A>i</A>th or default interactive &ANUPQ;
process onto the finitely presented group given by a standard
presentation, i.e. if <A>S</A> is the standard presentation computed for the
<M>p</M>-quotient of <A>F</A> by <C>StandardPresentation</C> then
<C>EpimorphismStandardPresentation</C> returns the epimorphism from <A>F</A> to the
group with presentation <A>S</A>. The group <A>F</A> must have been given (as first
argument) to <C>PqStart</C> to start the interactive &ANUPQ; process
(see <Ref Func="PqStart" Style="Text"/>).
<P/>
Taking our earlier non-interactive example
(see <Ref Func="EpimorphismPqStandardPresentation" Style="Text"/>) and modifying it a little, we
illustrate, as for the interactive <C>StandardPresentation</C>
(see <Ref Func="StandardPresentation" Label="interactive" Style="Text"/>), how something that required two
separate calls to the <C>anu-pq</C> program can now be achieved with a dialogue
with just one <C>anu-pq</C> process. Also, observe that calls to one of the
standard presentation functions (as mentioned in the notes
of <Ref Func="StandardPresentation" Label="interactive" Style="Text"/>) computes and stores both an fp
group with a standard presentation and an epimorphism; subsequent calls
to a standard presentation function for the same process simply return
the appropriate stored value.
<!-- The next log is not an <Example> because it contains timing data -->
<Log><![CDATA[
gap> F := FreeGroup(6, "F");;
gap> x := F.1;; y := F.2;; z := F.3;; w := F.4;; a := F.5;; b := F.6;;
gap> R := [x^3 / w, y^3 / w * a^2 * b^2, w^3 / b,
> Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z^3 ];
[ F1^3*F4^-1, F2^3*F4^-1*F5^2*F6^2, F4^3*F6^-1, F2^-1*F1^-1*F2*F1*F3^-1,
F3^-1*F1^-1*F3*F1, F3^-1*F2^-1*F3*F2*F5^-1, F3^3 ]
gap> Q := F / R;
<fp group on the generators [ F1, F2, F3, F4, F5, F6 ]>
gap> procId := PqStart( Q );;
gap> G := Pq( procId : Prime := 3, ClassBound := 3 );
<pc group of size 729 with 6 generators>
gap> lev := InfoLevel(InfoANUPQ);; # Save current InfoANUPQ level
gap> SetInfoLevel(InfoANUPQ, 2); # To see computation times
gap> # It is not necessary to pass the `Prime' option to
gap> # `EpimorphismStandardPresentation' since it was previously
gap> # passed to `Pq':
gap> phi := EpimorphismStandardPresentation( 3 : ClassBound := 3 );
#I Class 1 3-quotient and its 3-covering group computed in 0.00 seconds
#I Order of GL subgroup is 48
#I No. of soluble autos is 0
#I dim U = 1 dim N = 3 dim M = 3
#I nice stabilizer with perm rep
#I Computing standard presentation for class 2 took 0.00 seconds
#I Computing standard presentation for class 3 took 0.01 seconds
[ F1, F2, F3, F4, F5, F6 ] -> [ f1*f2^2*f3*f4^2*f5^2, f1*f2*f3*f5, f3^2,
f4*f6^2, f5, f6 ]
gap> # Image of phi should be isomorphic to G ...
gap> # let's check the order is correct:
gap> Size( Image(phi) );
729
gap> # `StandardPresentation' and `EpimorphismStandardPresentation'
gap> # behave like attributes, so no computation is done when
gap> # either is called again for the same process ...
gap> StandardPresentation( 3 : ClassBound := 3 );
<fp group of size 729 on the generators [ f1, f2, f3, f4, f5, f6 ]>
gap> # No timing data was Info-ed since no computation was done
gap> SetInfoLevel(InfoANUPQ, lev); # Restore previous InfoANUPQ level
]]></Log>
A very similar (essential details are the same) example to the above may
be executed live, by typing:
<C>PqExample( "EpimorphismStandardPresentation-i" );</C>.
<P/>
<E>Note:</E>
The notes for <C>PqStandardPresentation</C> or <C>StandardPresentation</C>
(see <Ref Func="PqStandardPresentation" Label="interactive" Style="Text"/>) apply also to
<C>EpimorphismPqStandardPresentation</C> or <C>EpimorphismStandardPresentation</C>
except that their return value is an <E>epimorphism onto</E> an fp group,
i.e. one should interpret the phrase <Q>returns an fp group</Q> as <Q>returns
an epimorphism onto an fp group</Q> etc.
</Description>
</ManSection>
<ManSection>
<Func Name="PqDescendants" Arg="i : options" Label="interactive"/>
<Func Name="PqDescendants" Arg=": options" Label="interactive, for default process"/>
<Description>
return for the pc group <A>G</A> of the <A>i</A>th or default interactive &ANUPQ;
process, which must be of prime power order with a confluent pc
presentation (see <Ref BookName="ref" Func="IsConfluent" Label="for pc groups" Style="Text"/> in the &GAP; Reference
Manual), a list of proper descendants (pc groups) of <A>G</A>. The group <A>G</A> is
usually given as first argument to <C>PqStart</C> when starting the
interactive &ANUPQ; process (see <Ref Func="PqStart" Style="Text"/>). Alternatively, one may
initiate the process with an fp group, use <C>Pq</C> interactively
(see <Ref Func="Pq" Label="interactive" Style="Text"/>) to create a pc group and use
<C>PqSetPQuotientToGroup</C> (see <Ref Func="PqSetPQuotientToGroup" Style="Text"/>), which involves
<E>no</E> computation, to set the pc group returned by <C>Pq</C> as the group of
the process. Note that repeating a call to <C>PqDescendants</C> for the same
interactive &ANUPQ; process simply returns the list of descendants
originally calculated; a warning is emitted at <C>InfoANUPQ</C> level 1
reminding you of this should you do this.
<P/>
After the colon, <A>options</A> a selection of the options listed for the
non-interactive <C>PqDescendants</C> function (see <Ref Func="PqDescendants" Style="Text"/>), should be
given, separated by commas like record components (see
Section <Ref BookName="ref" Label="Function Call With Options" Style="Text"/> in the &GAP; Reference Manual),
except that the options <C>SetupFile</C> or <C>PqWorkspace</C> are ignored by the
interactive <C>PqDescendants</C>, i.e. the following options are recognised by
the interactive <C>PqDescendants</C> function:
<List>
<Item>
<C>ClassBound := <A>n</A></C><Index>option ClassBound</Index>
</Item>
<Item>
<C>Relators := <A>rels</A></C><Index>option Relators</Index>
</Item>
<Item>
<C>OrderBound := <A>n</A></C><Index>option OrderBound</Index>
</Item>
<Item>
<C>StepSize := <A>n</A></C>, <C>StepSize := <A>list</A></C>
<Index>option StepSize</Index>
</Item>
<Item>
<C>RankInitialSegmentSubgroups := <A>n</A></C><Index>option RankInitialSegmentSubgroups</Index>
</Item>
<Item>
<C>SpaceEfficient</C><Index>option SpaceEfficient</Index>
</Item>
<Item>
<C>CapableDescendants</C><Index>option CapableDescendants</Index>
</Item>
<Item>
<C>AllDescendants := false</C><Index>option AllDescendants</Index>
</Item>
<Item>
<C>Exponent := <A>n</A></C><Index>option Exponent</Index>
</Item>
<Item>
<C>Metabelian</C><Index>option Metabelian</Index>
</Item>
<Item>
<C>GroupName := <A>name</A></C><Index>option GroupName</Index>
</Item>
<Item>
<C>SubList := <A>sub</A></C><Index>option SubList</Index>
</Item>
<Item>
<C>BasicAlgorithm</C><Index>option BasicAlgorithm</Index>
</Item>
<Item>
<C>CustomiseOutput := <A>rec</A></C><Index>option CustomiseOutput</Index>
</Item>
</List>
<E>Notes:</E> The function <C>PqDescendants</C> uses the automorphism group of <A>G</A>
which it computes via the package &AutPGrp; if the automorphism group of
<A>G</A> is not already present. If &AutPGrp; is not installed an error may
be raised. If the automorphism group of <A>G</A> is insoluble the <C>anu-pq</C>
program will call &GAP; together with the &AutPGrp; package for certain
orbit-stabilizer calculations.
<P/>
The attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> are set for each group of the list returned by
<C>PqDescendants</C> (see Section <Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/>).
<P/>
Let us now repeat the examples previously given for the non-interactive
<C>PqDescendants</C>, but this time with the interactive version of
<C>PqDescendants</C>:
<Example><![CDATA[
gap> F := FreeGroup( "a", "b" );; a := F.1;; b := F.2;;
gap> G := PcGroupFpGroup( F / [ a^2, b^2, Comm(b, a) ] );
<pc group of size 4 with 2 generators>
gap> procId := PqStart(G);;
gap> des := PqDescendants( procId : OrderBound := 6, ClassBound := 5 );;
gap> Length(des);
83
gap> List(des, Size);
[ 8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32,
32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64 ]
gap> List(des, d -> Length( PCentralSeries( d, 2 ) ) - 1 );
[ 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 5, 5, 5, 5, 5 ]
]]></Example>
In the second example we compute all capable descendants of order 27 of
the elementary abelian group of order 9.
<Example><![CDATA[
gap> F := FreeGroup( 2, "g" );;
gap> G := PcGroupFpGroup( F / [ F.1^3, F.2^3, Comm(F.1, F.2) ] );
<pc group of size 9 with 2 generators>
gap> procId := PqStart(G);;
gap> des := PqDescendants( procId : OrderBound := 3, ClassBound := 2,
> CapableDescendants );
[ <pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators> ]
gap> List(des, d -> Length( PCentralSeries( d, 3 ) ) - 1 );
[ 2, 2 ]
gap> # For comparison let us now compute all proper descendants
gap> # (using the non-interactive Pq function)
gap> PqDescendants( G : OrderBound := 3, ClassBound := 2);
[ <pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators> ]
]]></Example>
In the third example, we compute all proper capable descendants of the
elementary abelian group of order <M>5^2</M> which have exponent-<M>5</M> class at
most <M>3</M>, exponent <M>5</M>, and are metabelian.
<Example><![CDATA[
gap> F := FreeGroup( 2, "g" );;
gap> G := PcGroupFpGroup( F / [ F.1^5, F.2^5, Comm(F.2, F.1) ] );
<pc group of size 25 with 2 generators>
gap> procId := PqStart(G);;
gap> des := PqDescendants( procId : Metabelian, ClassBound := 3,
> Exponent := 5, CapableDescendants );
[ <pc group of size 125 with 3 generators>,
<pc group of size 625 with 4 generators>,
<pc group of size 3125 with 5 generators> ]
gap> List(des, d -> Length( PCentralSeries( d, 5 ) ) - 1 );
[ 2, 3, 3 ]
gap> List(des, d -> Length( DerivedSeries( d ) ) );
[ 3, 3, 3 ]
gap> List(des, d -> Maximum( List( d, Order ) ) );
[ 5, 5, 5 ]
]]></Example>
</Description>
</ManSection>
<ManSection>
<Func Name="PqSetPQuotientToGroup" Arg="i"/>
<Func Name="PqSetPQuotientToGroup" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, set the
<M>p</M>-quotient previously computed by the interactive <C>Pq</C> function
(see <Ref Func="Pq" Label="interactive" Style="Text"/>) to be the group of the process. This function is
supplied to enable the computation of descendants of a <M>p</M>-quotient that
is already known to the <C>anu-pq</C> program, via the interactive <C>PqDescendants</C>
function (see <Ref Func="PqDescendants" Label="interactive" Style="Text"/>), thus avoiding the need to
re-submit it and have the <C>anu-pq</C> program recompute it.
<P/>
<E>Note:</E> See the function <C>PqPGSetDescendantToPcp</C>
(<Ref Func="PqPGSetDescendantToPcp" Style="Text"/>) for a mechanism to make (the <M>p</M>-cover of) a
particular descendants the current group of the process.
<P/>
The following example of the usage of <C>PqSetPQuotientToGroup</C>, which is
essentially equivalent to what is obtained by running
<C>PqExample("PqDescendants-1-i");</C>, redoes the first example of
<Ref Func="PqDescendants" Label="interactive" Style="Text"/> (which computes the descendants of the Klein
four group).
<Example><![CDATA[
gap> F := FreeGroup( "a", "b" );
<free group on the generators [ a, b ]>
gap> procId := PqStart( F : Prime := 2 );;
gap> Pq( procId : ClassBound := 1 );
<pc group of size 4 with 2 generators>
gap> PqSetPQuotientToGroup( procId );
gap> des := PqDescendants( procId : OrderBound := 6, ClassBound := 5 );;
gap> Length(des);
83
gap> List(des, Size);
[ 8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32,
32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64 ]
gap> List(des, d -> Length( PCentralSeries( d, 2 ) ) - 1 );
[ 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 5, 5, 5, 5, 5 ]
]]></Example>
</Description>
</ManSection>
</Section>
<Section Label="Low-level Interactive ANUPQ functions based on menu items of the pq program">
<Heading>Low-level Interactive ANUPQ functions based on menu items of the
pq program</Heading>
The <C>anu-pq</C> program has 5 menus, the details of which the reader will not
normally need to know, but if she wishes to know the details they may be
found in the standalone manual: <C>guide.dvi</C>. Both <C>guide.dvi</C> and the
<C>anu-pq</C> program refer to the items of these 5 menus as <Q>options</Q>, which do
<E>not</E> correspond in any way to the options used by any of the &GAP;
functions that interface with the <C>anu-pq</C> program.
<P/>
<E>Warning:</E>
The commands provided in this section are intended to provide something
like the interactive functionality one has when running the standalone,
from within &GAP;. The <C>anu-pq</C> standalone (in particular, its <Q>advanced</Q>
menus) assumes some expertise of the user; doing the <Q>wrong</Q> thing can
cause the program to crash. While a number of safeguards have been
provided in the &GAP; interface to the <C>anu-pq</C> program, these are <E>not</E>
foolproof, and the user should exercise care and ensure pre-requisites of
the various commands are met.
</Section>
<Section><Heading>General commands</Heading>
The following commands either use a menu item from whatever menu is
<Q>current</Q> for the <C>anu-pq</C> program, or have general application and are not
associated with just one menu item of the <C>anu-pq</C> program.
<ManSection>
<Func Name="PqNrPcGenerators" Arg="i"/>
<Func Name="PqNrPcGenerators" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, return the number
of pc generators of the lower exponent <M>p</M>-class quotient of the group
currently determined by the process. This also applies if the pc
presentation is not consistent.
</Description>
</ManSection>
<ManSection>
<Func Name="PqFactoredOrder" Arg="i"/>
<Func Name="PqFactoredOrder" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, return an integer
pair <C>[<A>p</A>, <A>n</A>]</C> where <A>p</A> is a prime and <A>n</A> is the number of pc
generators (see <Ref Func="PqNrPcGenerators" Style="Text"/>) in the pc presentation of the
quotient group currently determined by the process. If this presentation
is consistent, then <M>p^n</M> is the order of the quotient group. Otherwise
(if tails have been added but the necessary consistency checks, relation
collections, exponent law checks and redundant generator eliminations
have not yet been done), <M>p^n</M> is an upper bound for the order of the
group.
</Description>
</ManSection>
<ManSection>
<Func Name="PqOrder" Arg="i"/>
<Func Name="PqOrder" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, return <M>p^n</M>
where <C>[<A>p</A>, <A>n</A>]</C> is the pair as returned by <C>PqFactoredOrder</C>
(see <Ref Func="PqFactoredOrder" Style="Text"/>).
</Description>
</ManSection>
<ManSection>
<Func Name="PqPClass" Arg="i"/>
<Func Name="PqPClass" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, return the lower
exponent <M>p</M>-class of the quotient group currently determined by the
process.
</Description>
</ManSection>
<ManSection>
<Func Name="PqWeight" Arg="i, j"/>
<Func Name="PqWeight" Arg="j" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, return the weight
of the <A>j</A>th pc generator of the lower exponent <M>p</M>-class quotient of the
group currently determined by the process, or <K>fail</K> if there is no such
numbered pc generator.
</Description>
</ManSection>
<ManSection>
<Func Name="PqCurrentGroup" Arg="i"/>
<Func Name="PqCurrentGroup" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, return the group
whose pc presentation is determined by the process as a &GAP; pc group
(either a lower exponent <M>p</M>-class quotient of the start group or the
<M>p</M>-cover of such a quotient).
<P/>
<E>Notes:</E>
See Section <Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/> for the
attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> which may be applied to the group returned by
<C>PqCurrentGroup</C>.
</Description>
</ManSection>
<ManSection>
<Func Name="PqDisplayPcPresentation" Arg="i : [OutputLevel := lev ]"/>
<Func Name="PqDisplayPcPresentation" Arg=": [OutputLevel := lev ]" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to display the pc presentation of the lower exponent <M>p</M>-class
quotient of the group currently determined by the process.
<P/>
Except if the last command communicating with the <C>anu-pq</C> program was a
<M>p</M>-group generation command (for which there is only a verbose output
level), to set the amount of information this command displays you may
wish to call <C>PqSetOutputLevel</C> first (see <Ref Func="PqSetOutputLevel" Style="Text"/>), or
equivalently pass the option <C>OutputLevel</C> (see <Ref Label="option OutputLevel" Style="Text"/>).
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqDisplayPcPresentation</C>
performs menu item 4 of the current menu of the <C>anu-pq</C> program.
</Description>
</ManSection>
<ManSection>
<Func Name="PqSetOutputLevel" Arg="i, lev"/>
<Func Name="PqSetOutputLevel" Arg="lev" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to set the output level of the <C>anu-pq</C> program to <A>lev</A>.
<P/>
<E>Note:</E> For those familiar with the <C>anu-pq</C> program, <C>PqSetOutputLevel</C>
performs menu item 5 of the main (or advanced) <M>p</M>-Quotient menu, or the
Standard Presentation menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqEvaluateIdentities" Arg="i : [ Identities := funcs ]"/>
<Func Name="PqEvaluateIdentities" Arg=": [ Identities := funcs ]" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, invoke the
evaluation of identities defined by the <C>Identities</C> option, and
eliminate any redundant pc generators formed. Since a previous value of
<C>Identities</C> is saved in the data record of the process, it is
unnecessary to pass the <C>Identities</C> if set previously.
<P/>
<E>Note:</E> This function is mainly implemented at the &GAP; level. It does
not correspond to a menu item of the <C>anu-pq</C> program.
</Description>
</ManSection>
</Section>
<Section><Heading>Commands from the Main <M>p</M>-Quotient menu</Heading>
<ManSection>
<Func Name="PqPcPresentation" Arg="i : options"/>
<Func Name="PqPcPresentation" Arg=": options" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to compute the pc presentation of the quotient (determined by
<A>options</A>) of the group of the process, which for process <A>i</A> is stored
as <C>ANUPQData.io[<A>i</A>].group</C>.
<P/>
The possible <A>options</A> are the same as for the interactive <C>Pq</C>
(see <Ref Func="Pq" Label="interactive" Style="Text"/>) function, except for <C>RedoPcp</C> (which, in any
case, would be superfluous), namely: <C>Prime</C>, <C>ClassBound</C>, <C>Exponent</C>,
<C>Relators</C>, <C>GroupName</C>, <C>Metabelian</C>, <C>Identities</C> and <C>OutputLevel</C>
(see Chapter <Ref Chap="ANUPQ Options" Style="Text"/> for a detailed description for these
options). The option <C>Prime</C> is required unless already provided to
<C>PqStart</C>.
<P/>
<E>Notes</E>
<P/>
The pc presentation is held by the <C>anu-pq</C> program. In contrast to <C>Pq</C>
(see <Ref Func="Pq" Label="interactive" Style="Text"/>), no &GAP; pc group is returned;
see <C>PqCurrentGroup</C> (<Ref Func="PqCurrentGroup" Style="Text"/>) if you need the corresponding
&GAP; pc group.
<P/>
<C>PqPcPresentation(<A>i</A>: <A>options</A>);</C> is roughly equivalent to the
following sequence of low-level commands:
<P/>
<Listing><![CDATA[
PqPcPresentation(i: opts); #class 1 call
for c in [2 .. class] do
PqNextClass(i);
od;
]]></Listing>
where <A>opts</A> is <A>options</A> except with the <C>ClassBound</C> option set to 1,
and <A>class</A> is either the maximum class of a <A>p</A>-quotient of the group of
the process or the user-supplied value of the option <C>ClassBound</C>
(whichever is smaller). If the <C>Identities</C> option has been set, both the
first <C>PqPcPresentation</C> class 1 call and the <C>PqNextClass</C> calls invoke
<C>PqEvaluateIdentities(<A>i</A>);</C> as their final step.
<P/>
For those familiar with the <C>anu-pq</C> program, <C>PqPcPresentation</C> performs
menu item 1 of the main <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqSavePcPresentation" Arg="i, filename"/>
<Func Name="PqSavePcPresentation" Arg="filename" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to save the pc presentation previously computed for the quotient
of the group of that process to the file with name <A>filename</A>. If the
first character of the string <A>filename</A> is not <C>/</C>, <A>filename</A> is
assumed to be the path of a writable file relative to the directory in
which &GAP; was started. A saved file may be restored by
<C>PqRestorePcPresentation</C> (see <Ref Func="PqRestorePcPresentation" Style="Text"/>).
<P/>
<E>Note:</E> For those familiar with the <C>anu-pq</C> program, <C>PqSavePcPresentation</C>
performs menu item 2 of the main <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqRestorePcPresentation" Arg="i, filename"/>
<Func Name="PqRestorePcPresentation" Arg="filename" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to restore the pc presentation previously saved to <A>filename</A>, by
<C>PqSavePcPresentation</C> (see <Ref Func="PqSavePcPresentation" Style="Text"/>). If the first
character of the string <A>filename</A> is not <C>/</C>, <A>filename</A> is assumed to
be the path of a readable file relative to the directory in which &GAP;
was started.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqRestorePcPresentation</C>
performs menu item 3 of the main <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqNextClass" Arg="i : [ QueueFactor ]"/>
<Func Name="PqNextClass" Arg=": [ QueueFactor ]" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to calculate the next class of <C>ANUPQData.io[<A>i</A>].group</C>.
<P/>
<Index>option QueueFactor</Index>
<C>PqNextClass</C> accepts the option <C>QueueFactor</C> (see also <Ref Label="option QueueFactor" Style="Text"/>) which should be a positive integer if automorphisms have
been previously supplied. If the <C>anu-pq</C> program requires a queue factor and
none is supplied via the option <C>QueueFactor</C> a default of 15 is taken.
<P/>
<E>Notes</E>
<P/>
The single command: <C>PqNextClass(<A>i</A>);</C> is equivalent to executing
<Listing><![CDATA[
PqComputePCover(i);
PqCollectDefiningRelations(i);
PqDoExponentChecks(i);
PqEliminateRedundantGenerators(i);
]]></Listing>
If the <C>Identities</C> option is set the <C>PqEliminateRedundantGenerators(<A>i</A>);</C>
step is essentially replaced by <C>PqEvaluateIdentities(<A>i</A>);</C> (which invokes
its own elimination of redundant generators).
<P/>
For those familiar with the <C>anu-pq</C> program, <C>PqNextClass</C> performs menu item
6 of the main <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqComputePCover" Arg="i"/>
<Func Name="PqComputePCover" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; processi, directi, the <C>anu-pq</C>
program to compute the <M>p</M>-covering group of <C>ANUPQData.io[<A>i</A>].group</C>.
In contrast to the function <C>PqPCover</C> (see <Ref Func="PqPCover" Style="Text"/>), this function does
not return a &GAP; pc group.
<P/>
<E>Notes</E>
<P/>
The single command: <C>PqComputePCover(<A>i</A>);</C> is equivalent to executing
<Listing><![CDATA[
PqSetupTablesForNextClass(i);
PqTails(i, 0);
PqDoConsistencyChecks(i, 0, 0);
PqEliminateRedundantGenerators(i);
]]></Listing>
For those familiar with the <C>anu-pq</C> program, <C>PqComputePCover</C> performs menu
item 7 of the main <M>p</M>-Quotient menu.
</Description>
</ManSection>
</Section>
<Section><Heading>Commands from the Advanced <M>p</M>-Quotient menu</Heading>
<ManSection>
<Func Name="PqCollect" Arg="i, word"/>
<Func Name="PqCollect" Arg="word" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, instruct the <C>anu-pq</C>
program to do a collection on <A>word</A>, a word in the current pc generators
(the form of <A>word</A> required is described below). <C>PqCollect</C> returns the
resulting word of the collection as a list of generator number, exponent
pairs (the same form as the second allowed input form of <A>word</A>; see
below).
<P/>
The argument <A>word</A> may be input in either of the following ways:
<Enum>
<Item>
<A>word</A> may be a string, where the <A>i</A>th pc generator is represented by
<C>x<A>i</A></C>, e.g. <C>"x3*x2^2*x1"</C>. This way is quite versatile as parentheses
and left-normed commutators -- using square brackets, in the same way as
<C>PqGAPRelators</C> (see <Ref Func="PqGAPRelators" Style="Text"/>) -- are permitted; <A>word</A> is checked
for correct syntax via <C>PqParseWord</C> (see <Ref Func="PqParseWord" Style="Text"/>).
</Item>
<Item>
Otherwise, <A>word</A> must be a list of generator number, exponent pairs of
integers, i.e. each pair represents a <Q>syllable</Q> so that <C>[ [3, 1],
[2, 2], [1, 1] ]</C> represents the same word as that of the example given
for the first allowed form of <A>word</A>.
</Item>
</Enum>
<E>Note:</E> For those familiar with the <C>anu-pq</C> program, <C>PqCollect</C> performs
menu item 1 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqSolveEquation" Arg="i, a, b"/>
<Func Name="PqSolveEquation" Arg="a, b" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to solve <M><A>a</A> * <A>x</A> = <A>b</A></M> for <A>x</A>, where <A>a</A> and <A>b</A> are words
in the pc generators. For the representation of these words see the
description of the function <C>PqCollect</C> (<Ref Func="PqCollect" Style="Text"/>).
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqSolveEquation</C> performs
menu item 2 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqCommutator" Arg="i, words, pow"/>
<Func Name="PqCommutator" Arg="words, pow" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, instruct the <C>anu-pq</C>
program to compute the left normed commutator of the list <A>words</A> of
words in the current pc generators raised to the integer power <A>pow</A>, and
return the resulting word as a list of generator number, exponent pairs.
The form required for each word of <A>words</A> is the same as that required
for the <A>word</A> argument of <C>PqCollect</C> (see <Ref Func="PqCollect" Style="Text"/>). The form of the
output word is also the same as for <C>PqCollect</C>.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqCommutator</C> performs menu
item 3 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqSetupTablesForNextClass" Arg="i"/>
<Func Name="PqSetupTablesForNextClass" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to set up tables for the next class. As as side-effect,
after <C>PqSetupTablesForNextClass(<A>i</A>)</C> the value returned by
<C>PqPClass(<A>i</A>)</C> will be one more than it was previously.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqSetupTablesForNextClass</C>
performs menu item 6 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqTails" Arg="i, weight"/>
<Func Name="PqTails" Arg="weight" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to compute and add tails of weight <A>weight</A> if <A>weight</A> is in the
integer range <C>[2 .. PqPClass(<A>i</A>)]</C> (assuming <A>i</A> is the number of the
process, even in the default case) or for all weights if <C><A>weight</A> = 0</C>.
<P/>
If <A>weight</A> is non-zero, then tails that introduce new generators for
only weight <A>weight</A> are computed and added, and in this case and if
<C><A>weight</A> < PqPClass(<A>i</A>)</C>, it is assumed that the tails that introduce
new generators for each weight from <C>PqPClass(<A>i</A>)</C> down to weight
<C><A>weight</A> + 1</C> have already been added. You may wish to call
<C>PqSetMetabelian</C> (see <Ref Func="PqSetMetabelian" Style="Text"/>) prior to calling <C>PqTails</C>.
<P/>
<E>Notes</E>
<P/>
For its use in the context of finding the next class see <Ref Func="PqNextClass" Style="Text"/>;
in particular, a call to <C>PqSetupTablesForNextClass</C>
(see <Ref Func="PqSetupTablesForNextClass" Style="Text"/>) needs to have been made prior to
calling <C>PqTails</C>.
<P/>
The single command: <C>PqTails(<A>i</A>, <A>weight</A>);</C> is equivalent to
<Listing><![CDATA[
PqComputeTails(i, weight);
PqAddTails(i, weight);
]]></Listing>
For those familiar with the <C>anu-pq</C> program, <C>PqTails</C> uses menu item 7 of
the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqComputeTails" Arg="i, weight"/>
<Func Name="PqComputeTails" Arg="weight" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to compute tails of weight <A>weight</A> if <A>weight</A> is in the integer
range <C>[2 .. PqPClass(<A>i</A>)]</C> (assuming <A>i</A> is the number of the process,
even in the default case) or for all weights if <C><A>weight</A> = 0</C>. See
<C>PqTails</C> (<Ref Func="PqTails" Style="Text"/>) for more details.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqComputeTails</C> uses menu item
7 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqAddTails" Arg="i, weight"/>
<Func Name="PqAddTails" Arg="weight" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to add the tails of weight <A>weight</A>, previously computed by
<C>PqComputeTails</C> (see <Ref Func="PqComputeTails" Style="Text"/>), if <A>weight</A> is in the integer
range <C>[2 .. PqPClass(<A>i</A>)]</C> (assuming <A>i</A> is the number of the process,
even in the default case) or for all weights if <C><A>weight</A> = 0</C>. See
<C>PqTails</C> (<Ref Func="PqTails" Style="Text"/>) for more details.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqAddTails</C> uses menu item 7 of
the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqDoConsistencyChecks" Arg="i, weight, type"/>
<Func Name="PqDoConsistencyChecks" Arg="weight, type" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, do consistency
checks for weight <A>weight</A> if <A>weight</A> is in the integer range <C>[3 ..
PqPClass(<A>i</A>)]</C> (assuming <A>i</A> is the number of the process) or for all
weights if <C><A>weight</A> = 0</C>, and for type <A>type</A> if <A>type</A> is in the range
<C>[1, 2, 3]</C> (see below) or for all types if <C><A>type</A> = 0</C>. (For its use in
the context of finding the next class see <Ref Func="PqNextClass" Style="Text"/>.)
<P/>
The <E>type</E> of a consistency check is defined as follows.
<C>PqDoConsistencyChecks(<A>i</A>, <A>weight</A>, <A>type</A>)</C> for <A>weight</A> in <C>[3 ..
PqPClass(<A>i</A>)]</C> and the given value of <A>type</A> invokes the equivalent of
the following <C>PqDoConsistencyCheck</C> calls (see <Ref Func="PqDoConsistencyCheck" Style="Text"/>):
<List>
<Mark><C><A>type</A> = 1</C>:</Mark>
<Item>
<C>PqDoConsistencyCheck(<A>i</A>, <A>a</A>, <A>a</A>, <A>a</A>)</C> checks <C>2 * PqWeight(<A>i</A>, <A>a</A>)
+ 1 = <A>weight</A></C>, for pc generators of index <A>a</A>.
</Item>
<Mark><C><A>type</A> = 2</C>:</Mark>
<Item>
<C>PqDoConsistencyCheck(<A>i</A>, <A>b</A>, <A>b</A>, <A>a</A>)</C> checks for pc generators of
indices <A>b</A>, <A>a</A> satisfyingx both <C><A>b</A> > <A>a</A></C> and <C>PqWeight(<A>i</A>, <A>b</A>) +
PqWeight(<A>i</A>, <A>a</A>) + 1 = <A>weight</A></C>.
</Item>
<Mark><C><A>type</A> = 3</C>:</Mark>
<Item>
<C>PqDoConsistencyCheck(<A>i</A>, <A>c</A>, <A>b</A>, <A>a</A>)</C> checks for pc generators of
indices <A>c</A>, <A>b</A>, <A>a</A> satisfying <C><A>c</A> > <A>b</A> > <A>a</A></C> and the sum of the
weights of these generators equals <A>weight</A>.
</Item>
</List>
<E>Notes</E>
<P/>
<C>PqWeight(<A>i</A>, <A>j</A>)</C> returns the weight of the <A>j</A>th pc generator, for
process <A>i</A> (see <Ref Func="PqWeight" Style="Text"/>).
<P/>
It is assumed that tails for the given weight (or weights) have already
been added (see <Ref Func="PqTails" Style="Text"/>).
<P/>
For those familiar with the <C>anu-pq</C> program, <C>PqDoConsistencyChecks</C> performs
menu item 8 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqCollectDefiningRelations" Arg="i"/>
<Func Name="PqCollectDefiningRelations" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to collect the images of the defining relations of the original fp
group of the process, with respect to the current pc presentation, in the
context of finding the next class (see <Ref Func="PqNextClass" Style="Text"/>). If the tails
operation is not complete then the relations may be evaluated
incorrectly.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqCollectDefiningRelations</C>
performs menu item 9 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqCollectWordInDefiningGenerators" Arg="i, word"/>
<Func Name="PqCollectWordInDefiningGenerators" Arg="word" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, take a
user-defined word <A>word</A> in the defining generators of the original
presentation of the fp or pc group of the process. Each generator is
mapped into the current pc presentation, and the resulting word is
collected with respect to the current pc presentation. The result of the
collection is returned as a list of generator number, exponent pairs.
<P/>
The <A>word</A> argument may be input in either of the two ways described for
<C>PqCollect</C> (see <Ref Func="PqCollect" Style="Text"/>).
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqCollectDefiningGenerators</C>
performs menu item 23 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqCommutatorDefiningGenerators" Arg="i, words, pow"/>
<Func Name="PqCommutatorDefiningGenerators" Arg="words, pow" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, take a list
<A>words</A> of user-defined words in the defining generators of the original
presentation of the fp or pc group of the process, and an integer power
<A>pow</A>. Each generator is mapped into the current pc presentation. The
list <A>words</A> is interpreted as a left-normed commutator which is then
raised to <A>pow</A> and collected with respect to the current pc
presentation. The result of the collection is returned as a list of
generator number, exponent pairs.
<P/>
<E>Note</E>
For those familiar with the <C>anu-pq</C> program, <C>PqCommutatorDefiningGenerators</C>
performs menu item 24 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqDoExponentChecks" Arg="i : [ Bounds := list ]"/>
<Func Name="PqDoExponentChecks" Arg=": [ Bounds := list ]" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to do exponent checks for weights (inclusively) between the bounds
of <C>Bounds</C> or for all weights if <C>Bounds</C> is not given. The value <A>list</A>
of <C>Bounds</C> (assuming the interactive process is numbered <A>i</A>) should be a
list of two integers <A>low</A>, <A>high</A> satisfying
<!-- FIXME: hack to move C outside of M -->
<M>1 \le <A>low</A> \le <A>high</A> \le </M>
<C>PqPClass(<A>i</A>)</C> (see <Ref Func="PqPClass" Style="Text"/>). If no exponent law has been specified,
no exponent checks are performed.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqDoExponentChecks</C> performs
menu item 10 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqEliminateRedundantGenerators" Arg="i"/>
<Func Name="PqEliminateRedundantGenerators" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to eliminate redundant generators of the current <M>p</M>-quotient.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqEliminateRedundantGenerators</C>
performs menu item 11 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqRevertToPreviousClass" Arg="i"/>
<Func Name="PqRevertToPreviousClass" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to abandon the current class and revert to the previous class.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqRevertToPreviousClass</C>
performs menu item 12 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqSetMaximalOccurrences" Arg="i, noccur"/>
<Func Name="PqSetMaximalOccurrences" Arg="noccur" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to set maximal occurrences of the weight 1 generators in the
definitions of pcp generators of the group of the process. This can be
used to avoid the definition of generators of which one knows for
theoretical reasons that they would be eliminated later on.
<P/>
The argument <A>noccur</A> must be a list of non-negative integers of length
the number of weight 1 generators (i.e. the rank of the class 1
<M>p</M>-quotient of the group of the process). An entry of <C>0</C> for a
particular generator indicates that there is no limit on the number of
occurrences for the generator.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqSetMaximalOccurrences</C>
performs menu item 13 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqSetMetabelian" Arg="i"/>
<Func Name="PqSetMetabelian" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to enforce metabelian-ness.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqSetMetabelian</C> performs
menu item 14 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqDoConsistencyCheck" Arg="i, c, b, a"/>
<Func Name="PqDoConsistencyCheck" Arg="c, b, a" Label="for default process"/>
<Func Name="PqJacobi" Arg="i, c, b, a"/>
<Func Name="PqJacobi" Arg="c, b, a" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to do the consistency check for the pc generators with indices
<A>c</A>, <A>b</A>, <A>a</A> which should be non-increasing positive integers, i.e. <M><A>c</A>
\ge <A>b</A> \ge <A>a</A></M>.
<P/>
There are 3 types of consistency checks:
<Display>
\begin{array}{rclrl}
(a^n)a &=& a(a^n) && {\rm (Type\ 1)} \\
(b^n)a &=& b^{(n-1)}(ba), b(a^n) = (ba)a^{(n-1)} && {\rm (Type\ 2)} \\
c(ba) &=& (cb)a && {\rm (Type\ 3)} \\
\end{array}
</Display>
The reason some people talk about Jacobi relations instead of consistency
checks becomes clear when one looks at the consistency check of type 3:
<Display>
\begin{array}{rcl}
c(ba) &=& a c[c,a] b[b,a] = acb [c,a][c,a,b][b,a] = \dots \\
(cb)a &=& b c[c,b] a = a b[b,a] c[c,a] [c,b][c,b,a] \\
&=& abc [b,a] [b,a,c] [c,a] [c,b] [c,b,a] = \dots \\
\end{array}
</Display>
Each collection would normally carry on further. But one can see
already that no other commutators of weight 3 will occur. After all terms
of weight one and weight two have been moved to the left we end up with:
<Display>
\begin{array}{rcl}
& &abc [b,a] [c,a] [c,b] [c,a,b] \dots \\
&=&abc [b,a] [c,a] [c,b] [c,b,a] [b,a,c] \dots \\
\end{array}
</Display>
Modulo terms of weight 4 this is equivalent to
<Display>
[c,a,b] [b,c,a] [a,b,c] = 1
</Display>
which is the Jacobi identity.
<P/>
See also <C>PqDoConsistencyChecks</C> (<Ref Func="PqDoConsistencyChecks" Style="Text"/>).
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqDoConsistencyCheck</C> and
<C>PqJacobi</C> perform menu item 15 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqCompact" Arg="i"/>
<Func Name="PqCompact" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to do a compaction of its work space. This function is safe to
perform only at certain points in time.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqCompact</C> performs menu item
16 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqEchelonise" Arg="i"/>
<Func Name="PqEchelonise" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to echelonise the word most recently collected by <C>PqCollect</C> or
<C>PqCommutator</C> against the relations of the current pc presentation, and
return the number of the generator made redundant or <K>fail</K> if no
generator was made redundant. A call to <C>PqCollect</C> (see <Ref Func="PqCollect" Style="Text"/>) or
<C>PqCommutator</C> (see <Ref Func="PqCommutator" Style="Text"/>) needs to be performed prior to using
this command.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqEchelonise</C> performs menu
item 17 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqSupplyAutomorphisms" Arg="i, mlist"/>
<Func Name="PqSupplyAutomorphisms" Arg="mlist" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, supply the
automorphism data provided by the list <A>mlist</A> of matrices with
non-negative integer coefficients. Each matrix in <A>mlist</A> describes one
automorphism in the following way.
<List>
<Item>
The rows of each matrix correspond to the pc generators of
weight one.
</Item>
<Item>
Each row is the exponent vector of the image of the
corresponding weight one generator under the respective automorphism.
</Item>
</List>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqSupplyAutomorphisms</C> uses
menu item 18 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqExtendAutomorphisms" Arg="i"/>
<Func Name="PqExtendAutomorphisms" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to extend automorphisms of the <M>p</M>-quotient of the previous class
to the <M>p</M>-quotient of the present class.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqExtendAutomorphisms</C> uses
menu item 18 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqApplyAutomorphisms" Arg="i, qfac"/>
<Func Name="PqApplyAutomorphisms" Arg="qfac" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to apply automorphisms; <A>qfac</A> is the queue factor e.g. <C>15</C>.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqCloseRelations</C> performs
menu item 19 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqDisplayStructure" Arg="i : [ Bounds := list ]"/>
<Func Name="PqDisplayStructure" Arg=": [ Bounds := list ]" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to display the structure for the pcp generators numbered
(inclusively) between the bounds of <C>Bounds</C> or for all generators if
<C>Bounds</C> is not given. The value <A>list</A> of <C>Bounds</C> (assuming the
interactive process is numbered <A>i</A>) should be a list of two integers
<!-- FIXME: hack to move C outside of M -->
<A>low</A>, <A>high</A> satisfying <M>1 \le <A>low</A> \le <A>high</A> \le </M>
<C>PqNrPcGenerators(<A>i</A>)</C> (see <Ref Func="PqNrPcGenerators" Style="Text"/>). <C>PqDisplayStructure</C>
also accepts the option <C>OutputLevel</C> (see <Ref Label="option OutputLevel" Style="Text"/>).
<P/>
<E>Explanation of output</E>
<P/>
New generators are defined as commutators of previous generators and
generators of class 1 or as <M>p</M>-th powers of generators that have
themselves been defined as <M>p</M>-th powers. A generator is never defined as
<M>p</M>-th power of a commutator.
<P/>
Therefore, there are two cases: all the numbers on the righthand side are
either the same or they differ. Below, <C>g<A>i</A></C> refers to the <A>i</A>th
defining generator.
<List>
<Item>
If the righthand side numbers are all the same, then the generator is a
<M>p</M>-th power (of a <M>p</M>-th power of a <M>p</M>-th power, etc.). The number of
repeated digits say how often a <M>p</M>-th power has to be taken.
<P/>
In the following example, the generator number 31 is the eleventh power
of generator 17 which in turn is an eleventh power and so on:
<P/>
\begintt
#I 31 is defined on 17^11 = 1 1 1 1 1
\endtt
So generator 31 is obtained by taking the eleventh power of generator 1
five times.
</Item>
<Item>
If the numbers are not all the same, the generator is defined by a
commutator. If the first two generator numbers differ, the generator is
defined as a left-normed commutator of the weight one generators, e.g.
<P/>
\begintt
#I 19 is defined on [11, 1] = 2 1 1 1 1
\endtt
Here, generator 19 is defined as the commutator of generator 11 and
generator 1 which is the same as the left-normed commutator
<C>[x2, x1, x1, x1, x1]</C>. One can check this by tracing back the definition
of generator 11 until one gets to a generator of class 1.
</Item>
<Item>
If the first two generator numbers are identical, then the left most
component of the left-normed commutator is a <M>p</M>-th power, e.g.
<P/>
\begintt
#I 25 is defined on [14, 1] = 1 1 2 1 1
\endtt
<P/>
In this example, generator 25 is defined as commutator of generator 14
and generator 1. The left-normed commutator is
<Display>
[(x1^{11})^{11}, x2, x1, x1]
</Display>
Again, this can be verified by tracing back the definitions.
</Item>
</List>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqDisplayStructure</C> performs
menu item 20 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqDisplayAutomorphisms" Arg="i : [ Bounds := list ]"/>
<Func Name="PqDisplayAutomorphisms" Arg=": [ Bounds := list ]" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to display the automorphism actions on the pcp generators numbered
(inclusively) between the bounds of <C>Bounds</C> or for all generators if
<C>Bounds</C> is not given. The value <A>list</A> of <C>Bounds</C> (assuming the
interactive process is numbered <A>i</A>) should be a list of two integers
<!-- FIXME: hack to move C outside of M -->
<A>low</A>, <A>high</A> satisfying <M>1 \le <A>low</A> \le <A>high</A> \le </M>
<C>PqNrPcGenerators(<A>i</A>)</C> (see <Ref Func="PqNrPcGenerators" Style="Text"/>). <C>PqDisplayStructure</C>
also accepts the option <C>OutputLevel</C> (see <Ref Label="option OutputLevel" Style="Text"/>).
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqDisplayAutomorphisms</C>
performs menu item 21 of the Advanced <M>p</M>-Quotient menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqWritePcPresentation" Arg="i, filename"/>
<Func Name="PqWritePcPresentation" Arg="filename" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to write a pc presentation of a previously-computed quotient of
the group of that process, to the file with name <A>filename</A>. Here the
group of a process is the one given as first argument when <C>PqStart</C> was
called to initiate that process (for process <A>i</A> the group is stored as
<C>ANUPQData.io[<A>i</A>].group</C>). If the first character of the string
<A>filename</A> is not <C>/</C>, <A>filename</A> is assumed to be the path of a writable
file relative to the directory in which &GAP; was started. If a pc
presentation has not been previously computed by the <C>anu-pq</C> program, then
<C>anu-pq</C> is called to compute it first, effectively invoking
<C>PqPcPresentation</C> (see <Ref Func="PqPcPresentation" Style="Text"/>).
<P/>
<E>Note:</E> For those familiar with the <C>anu-pq</C> program, <C>PqPcWritePresentation</C>
performs menu item 25 of the Advanced <M>p</M>-Quotient menu.
<P/>
<!-- %We may include this in the future. -->
<!-- %\>PqWriteCompactDescription( <A>i</A> ) F -->
<!-- %\>PqWriteCompactDescription() F -->
<!-- % -->
<!-- %for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C> -->
<!-- %program to write a compact description -->
<!-- % -->
<!-- %<E>OF ....</E> -->
<!-- % -->
<!-- %to a file. -->
<!-- % -->
<!-- %<E>Note:</E> -->
<!-- %For those familiar with the <C>anu-pq</C> program, <C>PqWriteCompactDescription</C> -->
<!-- %performs menu item 26 of the Advanced <M>p</M>-Quotient menu. -->
</Description>
</ManSection>
</Section>
<Section><Heading>Commands from the Standard Presentation menu</Heading>
<ManSection>
<Func Name="PqSPComputePcpAndPCover" Arg="i : options"/>
<Func Name="PqSPComputePcpAndPCover" Arg=": options" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, directs the <C>anu-pq</C>
program to compute for the group of that process a pc presentation up to
the <M>p</M>-quotient of maximum class or the value of the option <C>ClassBound</C>
and the <M>p</M>-cover of that quotient, and sets up tabular information
required for computation of a standard presentation. Here the group of a
process is the one given as first argument when <C>PqStart</C> was called to
initiate that process (for process <A>i</A> the group is stored as
<C>ANUPQData.io[<A>i</A>].group</C>).
<P/>
The possible <A>options</A> are <C>Prime</C>, <C>ClassBound</C>, <C>Relators</C>, <C>Exponent</C>,
<C>Metabelian</C> and <C>OutputLevel</C> (see Chapter <Ref Chap="ANUPQ Options" Style="Text"/> for detailed
descriptions of these options). The option <C>Prime</C> is normally determined
via <C>PrimePGroup</C>, and so is not required unless the group doesn't know
it's a <M>p</M>-group and <C>HasPrimePGroup</C> returns <K>false</K>.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqSPComputePcpAndPCover</C>
performs option 1 of the Standard Presentation menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqSPStandardPresentation" Arg="i[, mlist] : [ options]"/>
<Func Name="PqSPStandardPresentation" Arg="[mlist] : [ options]" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, inputs data given
by <A>options</A> to compute a standard presentation for the group of that
process. If argument <A>mlist</A> is given it is assumed to be the
automorphism group data required. Otherwise it is assumed that a call to
either <C>Pq</C> (see <Ref Func="Pq" Label="interactive" Style="Text"/>) or <C>PqEpimorphism</C>
(see <Ref Func="PqEpimorphism" Label="interactive" Style="Text"/>) has generated a <M>p</M>-quotient and that
&GAP; can compute its automorphism group from which the necessary
automorphism group data can be derived. The group of the process is the
one given as first argument when <C>PqStart</C> was called to initiate the
process (for process <A>i</A> the group is stored as <C>ANUPQData.io[<A>i</A>].group</C>
and the <M>p</M>-quotient if existent is stored as
<C>ANUPQData.io[<A>i</A>].pQuotient</C>). If <A>mlist</A> is not given and a
<M>p</M>-quotient of the group has not been previously computed a class 1
<M>p</M>-quotient is computed.
<P/>
<C>PqSPStandardPresentation</C> accepts three options, all optional:
<List>
<Item>
<C>ClassBound := <A>n</A></C><Index>option ClassBound</Index>
</Item>
<Item>
<C>PcgsAutomorphisms</C><Index>option PcgsAutomorphisms</Index>
</Item>
<Item>
<C>StandardPresentationFile := <A>filename</A></C><Index>option StandardPresentationFile</Index>
</Item>
</List>
If <C>ClassBound</C> is omitted it defaults to 63.
<P/>
Detailed descriptions of the above options may be found in Chapter <Ref Chap="ANUPQ Options" Style="Text"/>.
<P/>
<E>Note:</E> For those familiar with the <C>anu-pq</C> program, <C>PqSPPcPresentation</C>
performs menu item 2 of the Standard Presentation menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqSPSavePresentation" Arg="i, filename"/>
<Func Name="PqSPSavePresentation" Arg="filename" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, directs the <C>anu-pq</C>
program to save the standard presentation previously computed for the
group of that process to the file with name <A>filename</A>, where the group
of a process is the one given as first argument when <C>PqStart</C> was called
to initiate that process. If the first character of the string <A>filename</A>
is not <C>/</C>, <A>filename</A> is assumed to be the path of a writable file
relative to the directory in which &GAP; was started.
<P/>
<E>Note:</E> For those familiar with the <C>anu-pq</C> program, <C>PqSPSavePresentation</C>
performs menu item 3 of the Standard Presentation menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqSPCompareTwoFilePresentations" Arg="i, f1, f2"/>
<Func Name="PqSPCompareTwoFilePresentations" Arg="f1, f2" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to compare the presentations in the files with names <A>f1</A> and <A>f2</A>
and returns <K>true</K> if they are identical and <K>false</K> otherwise. For each
of the strings <A>f1</A> and <A>f2</A>, if the first character is not a <C>/</C> then it
is assumed to be the path of a readable file relative to the directory in
which &GAP; was started.
<P/>
<E>Notes</E>
<P/>
The presentations in files <A>f1</A> and <A>f2</A> must have been generated by the
<C>anu-pq</C> program but they do <E>not</E> need to be <E>standard</E> presentations. If If
the presentations in files <A>f1</A> and <A>f2</A> <E>have</E> been generated by
<C>PqSPStandardPresentation</C> (see <Ref Func="PqSPStandardPresentation" Style="Text"/>) then a
<K>false</K> response from <C>PqSPCompareTwoFilePresentations</C> says the groups
defined by those presentations are <E>not</E> isomorphic.
<P/>
For those familiar with the <C>anu-pq</C> program,
<C>PqSPCompareTwoFilePresentations</C> performs menu item 6 of the Standard
Presentation menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqSPIsomorphism" Arg="i"/>
<Func Name="PqSPIsomorphism" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to compute the isomorphism mapping from the <M>p</M>-group of the
process to its standard presentation. This function provides a
description only; for a &GAP; object, use
<C>EpimorphismStandardPresentation</C>
(see <Ref Func="EpimorphismStandardPresentation" Label="interactive" Style="Text"/>).
<P/>
<E>Note:</E> For those familiar with the <C>anu-pq</C> program, <C>PqSPIsomorphism</C>
performs menu item 8 of the Standard Presentation menu.
</Description>
</ManSection>
</Section>
<Section><Heading>Commands from the Main <M>p</M>-Group Generation menu</Heading>
Note that the <M>p</M>-group generation commands can only be applied once the
<C>anu-pq</C> program has produced a pc presentation of some quotient group of the
<Q>group of the process</Q>.
<ManSection>
<Func Name="PqPGSupplyAutomorphisms" Arg="i[, mlist] : options"/>
<Func Name="PqPGSupplyAutomorphisms" Arg="[mlist] : options" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, supply the <C>anu-pq</C>
program with the automorphism group data needed for the current quotient
of the group of that process (for process <A>i</A> the group is stored as
<C>ANUPQData.io[<A>i</A>].group</C>). For a description of the format of <A>mlist</A>
see <Ref Func="PqSupplyAutomorphisms" Style="Text"/>. The options possible are
<C>NumberOfSolubleAutomorphisms</C> and <C>RelativeOrders</C>. (Detailed
descriptions of these options may be found in Chapter <Ref Chap="ANUPQ Options" Style="Text"/>.)
<P/>
If <A>mlist</A> is omitted, the automorphism data is determined from the group
of the process which must have been a <M>p</M>-group in pc presentation.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqPGSupplyAutomorphisms</C>
performs menu item 1 of the main <M>p</M>-Group Generation menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqPGExtendAutomorphisms" Arg="i"/>
<Func Name="PqPGExtendAutomorphisms" Arg="" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to compute the extensions of the automorphisms of the
<M>p</M>-quotient of the previous class to the <M>p</M>-quotient of the current
class. You may wish to set the <C>InfoLevel</C> of <C>InfoANUPQ</C> to 2 (or more)
in order to see the output from the <C>anu-pq</C> program (see <Ref Func="InfoANUPQ" Style="Text"/>).
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqPGExtendAutomorphisms</C>
performs menu item 2 of the main or advanced <M>p</M>-Group Generation menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqPGConstructDescendants" Arg="i : options"/>
<Func Name="PqPGConstructDescendants" Arg=": options" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to construct descendants prescribed by <A>options</A>, and return the
number of descendants constructed (compare function <Ref Func="PqDescendants" Style="Text"/> which
returns the list of descendants). The options possible are <C>ClassBound</C>,
<C>OrderBound</C>, <C>StepSize</C>, <C>PcgsAutomorphisms</C>,
<C>RankInitialSegmentSubgroups</C>, <C>SpaceEfficient</C>, <C>CapableDescendants</C>,
<C>AllDescendants</C>, <C>Exponent</C>, <C>Metabelian</C>, <C>BasicAlgorithm</C>,
<C>CustomiseOutput</C>. (Detailed descriptions of these options may be found
in Chapter <Ref Chap="ANUPQ Options" Style="Text"/>.)
<P/>
<C>PqPGConstructDescendants</C> requires that the <C>anu-pq</C> program has previously
computed a pc presentation and a <M>p</M>-cover for a <M>p</M>-quotient of some
class of the group of the process.
<P/>
<E>Note:</E>
For those familiar with the <C>anu-pq</C> program, <C>PqPGConstructDescendants</C>
performs menu item 5 of the main <M>p</M>-Group Generation menu.
</Description>
</ManSection>
<ManSection>
<Func Name="PqPGSetDescendantToPcp" Arg="i, cls, n" Label="with class"/>
<Func Name="PqPGSetDescendantToPcp" Arg="cls, n" Label="with class, for default process"/>
<Func Name="PqPGSetDescendantToPcp" Arg="i : [ Filename := name ]"/>
<Func Name="PqPGSetDescendantToPcp" Arg=": [ Filename := name ]" Label="for default process"/>
<Func Name="PqPGRestoreDescendantFromFile" Arg="i, cls, n" Label="with class"/>
<Func Name="PqPGRestoreDescendantFromFile" Arg="cls, n" Label="with class, for default process"/>
<Func Name="PqPGRestoreDescendantFromFile" Arg="i : [ Filename := name ]"/>
<Func Name="PqPGRestoreDescendantFromFile" Arg=": [ Filename := name ]" Label="for default process"/>
<Description>
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to restore group <A>n</A> of class <A>cls</A> from a temporary file, where
<A>cls</A> and <A>n</A> are positive integers, or the group stored in <A>name</A>.
<C>PqPGSetDescendantToPcp</C> and <C>PqPGRestoreDescendantFromFile</C> are
synonyms; they make sense only after a prior call to construct
descendants by say <C>PqPGConstructDescendants</C>
(see <Ref Func="PqPGConstructDescendants" Style="Text"/>) or the interactive <C>PqDescendants</C>
(see <Ref Func="PqDescendants" Label="interactive" Style="Text"/>). In the <C>Filename</C> option forms, the
option defaults to the last filename in which a presentation was stored
by the <C>anu-pq</C> program.
<P/>
<E>Notes</E>
<P/>
Since the <C>PqPGSetDescendantToPcp</C> and <C>PqPGRestoreDescendantFromFile</C>
are intended to be used in calculation of further descendants the <C>anu-pq</C>
program computes the <M>p</M>-cover of the restored descendant. Hence,
<C>PqCurrentGroup</C> used immediately after one of these commands returns the
<M>p</M>-cover of the restored descendant rather than the descendant itself.
<P/>
For those familiar with the <C>anu-pq</C> program, <C>PqPGSetDescendantToPcp</C> and
<C>PqPGRestoreDescendantFromFile</C> perform menu item 3 of the main or
advanced <M>p</M>-Group Generation menu.
</Description>
</ManSection>
</Section>
<Section><Heading>Commands from the Advanced <M>p</M>-Group Generation menu</Heading>
The functions below perform the component algorithms of
<C>PqPGConstructDescendants</C> (see <Ref Func="PqPGConstructDescendants" Style="Text"/>). You can get
some idea of their usage by trying <C>PqExample("Nott-APG-Rel-i");</C>. You
can get some idea of the breakdown of <C>PqPGConstructDescendants</C> into
these functions by comparing the previous output with
<C>PqExample("Nott-PG-Rel-i");</C>.
<P/>
These functions are intended for use only by <Q>experts</Q>; please contact
the authors of the package if you genuinely have a need for them and need
any amplified descriptions.
<ManSection>
<Func Name="PqAPGDegree" Arg="i, step, rank : [ Exponent := n ]"/>
<Func Name="PqAPGDegree" Arg="step, rank : [ Exponent := n ]" Label="for default process"/>
<Description>
<!-- %for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C> -->
<!-- %program to compute definition sets and return the degree of the -->
<!-- %permutation group. Here the step-size <A>step</A> and the rank <A>rank</A> of the -->
<!-- %initial segment subgroup are positive integers. See <Ref Label="option Exponent" Style="Text"/> for -->
<!-- %the one recognised option <C>Exponent</C>. -->
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to invoke menu item 6 of the Advanced <M>p</M>-Group Generation menu.
Here the step-size <A>step</A> and the rank <A>rank</A> are positive integers and
are the arguments required by the <C>anu-pq</C> program. See <Ref Label="option Exponent" Style="Text"/>
for the one recognised option <C>Exponent</C>.
<!-- %<E>Note:</E> For those familiar with the <C>anu-pq</C> program, <C>PqAPGDegree</C> performs -->
<!-- %menu item 6 of the Advanced <M>p</M>-Group Generation menu. -->
</Description>
</ManSection>
<ManSection>
<Func Name="PqAPGPermutations" Arg="i : options"/>
<Func Name="PqAPGPermutations" Arg=": options" Label="for default process"/>
<Description>
<!-- %for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C> -->
<!-- %program to compute permutations of subgroups. -->
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
program to perform menu item 7 of the Advanced <M>p</M>-Group Generation menu.
Here the options <A>options</A> recognised are <C>PcgsAutomorphisms</C>,
<C>SpaceEfficient</C>, <C>PrintAutomorphisms</C> and <C>PrintPermutations</C> (see
Chapter <Ref Chap="ANUPQ Options" Style="Text"/> for details).
<!-- %<E>Note:</E> For those familiar with the <C>anu-pq</C> program, <C>PqAPGPermutations</C> -->
<!-- %performs menu item 7 of the Advanced <M>p</M>-Group Generation menu. -->
</Description>
</ManSection>
<ManSection>
<Func Name="PqAPGOrbits" Arg="i : options"/>
<Func Name="PqAPGOrbits" Arg=": options" Label="for default process"/>
<Description>
<!-- %for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C> -->
<!-- %program to compute the orbits of the automorphism group, and return the -->
<!-- %number of orbits, if either a summary or a complete listing (or both) of -->
<!-- %orbit information was requested. -->
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
to perform menu item 8 of the Advanced <M>p</M>-Group Generation menu.
<P/>
Here the options <A>options</A> recognised are <C>PcgsAutomorphisms</C>,
<C>SpaceEfficient</C> and <C>CustomiseOutput</C> (see Chapter <Ref Chap="ANUPQ Options" Style="Text"/> for
details). For the <C>CustomiseOutput</C> option only the setting of the
<C>orbit</C> is recognised (all other fields if set are ignored).
<!-- %<E>Note:</E> For those familiar with the <C>anu-pq</C> program, <C>PqAPGOrbits</C> performs -->
<!-- %menu item 8 of the Advanced <M>p</M>-Group Generation menu. -->
</Description>
</ManSection>
<ManSection>
<Func Name="PqAPGOrbitRepresentatives" Arg="i : options"/>
<Func Name="PqAPGOrbitRepresentatives" Arg=": options" Label="for default process"/>
<Description>
<!-- %for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C> -->
<!-- %program to process the orbit representatives and output the reduced -->
<!-- %<M>p</M>-cover to a file. -->
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
to perform item 9 of the Advanced <M>p</M>-Group Generation menu.
<P/>
The options <A>options</A> may be any selection of the following:
<C>PcgsAutomorphisms</C>, <C>SpaceEfficient</C>, <C>Exponent</C>, <C>Metabelian</C>,
<C>CapableDescendants</C> (or <C>AllDescendants</C>), <C>CustomiseOutput</C> (where only
the <C>group</C> and <C>autgroup</C> fields are recognised) and <C>Filename</C> (see
Chapter <Ref Chap="ANUPQ Options" Style="Text"/> for details). If <C>Filename</C> is omitted the
reduced <M>p</M>-cover is written to the file <C>"redPCover"</C> in the temporary
directory whose name is stored in <C>ANUPQData.tmpdir</C>.
<!-- %<E>Note:</E> -->
<!-- %For those familiar with the <C>anu-pq</C> program, <C>PqAPGOrbitRepresentatives</C> -->
<!-- %performs option 9 of the Advanced <M>p</M>-Group Generation menu. -->
</Description>
</ManSection>
<ManSection>
<Func Name="PqAPGSingleStage" Arg="i : options"/>
<Func Name="PqAPGSingleStage" Arg=": options" Label="for default process"/>
<Description>
<!-- %for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C> -->
<!-- %program to do a single stage of the descendants construction algorithm as -->
<!-- %prescribed by <A>options</A>. -->
for the <A>i</A>th or default interactive &ANUPQ; process, direct the <C>anu-pq</C>
to perform option 5 of the Advanced <M>p</M>-Group Generation menu.
<P/>
The possible options are <C>StepSize</C>, <C>PcgsAutomorphisms</C>,
<C>RankInitialSegmentSubgroups</C>, <C>SpaceEfficient</C>, <C>CapableDescendants</C>,
<C>AllDescendants</C>, <C>Exponent</C>, <C>Metabelian</C>, <C>BasicAlgorithm</C> and
<C>CustomiseOutput</C>. (Detailed descriptions of these options may be found
in Chapter <Ref Chap="ANUPQ Options" Style="Text"/>.)
<!-- %<E>Note:</E> -->
<!-- %For those familiar with the <C>anu-pq</C> program, <C>PqAPGSingleStage</C> performs -->
<!-- %option 5 of the Advanced <M>p</M>-Group Generation menu. -->
</Description>
</ManSection>
</Section>
<Section Label="Primitive Interactive ANUPQ Process Read/Write Functions">
<Heading>Primitive Interactive ANUPQ Process Read/Write Functions</Heading>
For those familiar with using the <C>anu-pq</C> program as a standalone we provide
primitive read/write tools to communicate directly with an interactive
&ANUPQ; process, started via <C>PqStart</C>. For the most part, it is up to
the user to translate the output strings from <C>anu-pq</C> program into a form
useful in &GAP;.
<ManSection>
<Func Name="PqRead" Arg="i"/>
<Func Name="PqRead" Arg="" Label="for default process"/>
<Description>
read a complete line of &ANUPQ; output, from the <A>i</A>th or default
interactive &ANUPQ; process, if there is output to be read and returns
<K>fail</K> otherwise. When successful, the line is returned as a string
complete with trailing newline, colon, or question-mark character. Please
note that it is possible to be <Q>too quick</Q> (i.e. the return can be
<K>fail</K> purely because the output from &ANUPQ; is not there yet), but if
<C>PqRead</C> finds any output at all, it waits for a complete line. <C>PqRead</C>
also writes the line read via <C>Info</C> at <C>InfoANUPQ</C> level 2. It doesn't
try to distinguish banner and menu output from other output of the <C>anu-pq</C>
program.
</Description>
</ManSection>
<ManSection>
<Func Name="PqReadAll" Arg="i"/>
<Func Name="PqReadAll" Arg="" Label="for default process"/>
<Description>
read and return as many <E>complete</E> lines of &ANUPQ; output, from the
<A>i</A>th or default interactive &ANUPQ; process, as there are to be read,
<E>at the time of the call</E>, as a list of strings with any trailing
newlines removed and returns the empty list otherwise. <C>PqReadAll</C> also
writes each line read via <C>Info</C> at <C>InfoANUPQ</C> level 2. It doesn't try
to distinguish banner and menu output from other output of the <C>anu-pq</C>
program. Whenever <C>PqReadAll</C> finds only a partial line, it waits for the
complete line, thus increasing the probability that it has captured all
the output to be had from &ANUPQ;.
</Description>
</ManSection>
<ManSection>
<Func Name="PqReadUntil" Arg="i, IsMyLine"/>
<Func Name="PqReadUntil" Arg="IsMyLine" Label="for default process"/>
<Func Name="PqReadUntil" Arg="i, IsMyLine, Modify" Label="with modify map"/>
<Func Name="PqReadUntil" Arg="IsMyLine, Modify" Label="with modify map, for default process"/>
<Description>
read complete lines of &ANUPQ; output, from the <A>i</A>th or default
interactive &ANUPQ; process, <Q>chomps</Q> them (i.e. removes any trailing
newline character), emits them to <C>Info</C> at <C>InfoANUPQ</C> level 2 (without
trying to distinguish banner and menu output from other output of the
<C>anu-pq</C> program), and applies the function <A>Modify</A> (where <A>Modify</A> is just
the identity map/function for the first two forms) until a <Q>chomped</Q>
line <A>line</A> for which <C><A>IsMyLine</A>( <A>Modify</A>(<A>line</A>) )</C> is true.
<C>PqReadUntil</C> returns the list of <A>Modify</A>-ed <Q>chomped</Q> lines read.
<P/>
<E>Notes:</E>
When provided by the user, <A>Modify</A> should be a function that accepts a
single string argument.
<P/>
<A>IsMyLine</A> should be a function that is able to accept the output of
<A>Modify</A> (or take a single string argument when <A>Modify</A> is not provided)
and should return a boolean.
<P/>
If <C><A>IsMyLine</A>( <A>Modify</A>(<A>line</A>) )</C> is never true, <C>PqReadUntil</C> will
wait indefinitely.
</Description>
</ManSection>
<ManSection>
<Func Name="PqWrite" Arg="i, string"/>
<Func Name="PqWrite" Arg="string" Label="for default process"/>
<Description>
write <A>string</A> to the <A>i</A>th or default interactive &ANUPQ; process;
<A>string</A> must be in exactly the form the &ANUPQ; standalone expects. The
command is echoed via <C>Info</C> at <C>InfoANUPQ</C> level 3 (with a <Q><C>ToPQ> </C></Q>
prompt); i.e. do <C>SetInfoLevel(InfoANUPQ, 3);</C> to see what is transmitted
to the <C>anu-pq</C> program. <C>PqWrite</C> returns <K>true</K> if successful in writing to
the stream of the interactive &ANUPQ; process, and <K>fail</K> otherwise.
<P/>
<E>Note:</E>
If <C>PqWrite</C> returns <K>fail</K> it means that the &ANUPQ; process has died.
</Description>
</ManSection>
</Section>
</Chapter>
|