1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
|
<Chapter Label="non-interact">
<Heading>Non-interactive ANUPQ functions</Heading>
Here we describe all the non-interactive functions of the &ANUPQ;
package; i.e. <Q>one-shot</Q> functions that invoke the <C>anu-pq</C> program in such
a way that once &GAP; has got what it needs, the <C>anu-pq</C> program is allowed
to exit. It is expected that most of the time users will only need these
functions. The functions interface with three of the four algorithms (see
Chapter <Ref Chap="Introduction" Style="Text"/>) provided by the ANU <C>anu-pq</C> C program, and are
mainly grouped according to the algorithm of the <C>anu-pq</C> program they relate
to.
<P/>
In Section <Ref Sect="Computing p-Quotients" Style="Text"/>, we describe the functions that give
access to the <M>p</M>-quotient algorithm.
<P/>
Section <Ref Sect="Computing Standard Presentations" Style="Text"/> describe functions that give
access to the standard presentation algorithm.
<P/>
Section <Ref Sect="Testing p-Groups for Isomorphism" Style="Text"/> describe functions that
implement an isomorphism test for <M>p</M>-groups using the standard
presentation algorithm.
<P/>
In Section <Ref Sect="Computing Descendants of a p-Group" Style="Text"/>, we describe functions
that give access to the <M>p</M>-group generation algorithm.
<P/>
To use any of the functions one must have at some stage previously typed:
<Log><![CDATA[
gap> LoadPackage("anupq");
]]></Log>
(the response of which we have omitted; see <Ref Sect="Loading the ANUPQ Package" Style="Text"/>).
<P/>
It is strongly recommended that the user try the examples provided. To
save typing there is a <C>PqExample</C> equivalent for each manual example. We
also suggest that to start with you may find the examples more
instructive if you set the <C>InfoANUPQ</C> level to 2 (see <Ref Func="InfoANUPQ" Style="Text"/>).
<Section Label="Computing p-Quotients">
<Heading>Computing p-Quotients</Heading>
<ManSection>
<Func Name="Pq" Arg="F : options"/>
<Description>
returns for the fp or pc group <A>F</A>, the <M>p</M>-quotient of <A>F</A> specified by
<A>options</A>, as a pc group. Following the colon, <A>options</A> is a selection
of the options from the following list, separated by commas like record
components (see Section <Ref BookName="ref" Label="Function Call With Options" Style="Text"/> in the &GAP;
Reference Manual). As a minimum the user <E>must</E> supply a value for the
<C>Prime</C> option. Below we list the options recognised by <C>Pq</C> (see
Chapter <Ref Chap="ANUPQ Options" Style="Text"/> for detailed descriptions).
<List>
<Item>
<C>Prime := <A>p</A></C><Index>option Prime</Index>
</Item>
<Item>
<C>ClassBound := <A>n</A></C><Index>option ClassBound</Index>
</Item>
<Item>
<C>Exponent := <A>n</A></C><Index>option Exponent</Index>
</Item>
<Item>
<C>Relators := <A>rels</A></C><Index>option Relators</Index>
</Item>
<Item>
<C>Metabelian</C><Index>option Metabelian</Index>
</Item>
<Item>
<C>Identities := <A>funcs</A></C><Index>option Identities</Index>
</Item>
<Item>
<C>GroupName := <A>name</A></C><Index>option GroupName</Index>
</Item>
<Item>
<C>OutputLevel := <A>n</A></C><Index>option OutputLevel</Index>
</Item>
<Item>
<C>SetupFile := <A>filename</A></C><Index>option SetupFile</Index>
</Item>
<Item>
<C>PqWorkspace := <A>workspace</A></C><Index>option PqWorkspace</Index>
</Item>
</List>
<E>Notes:</E> <C>Pq</C> may also be called with no arguments or one integer
argument, in which case it is being used interactively
(see <Ref Func="Pq" Label="interactive" Style="Text"/>); the same options may be used, except that
<C>SetupFile</C> and <C>PqWorkspace</C> are ignored by the interactive <C>Pq</C>
function.
<P/>
See Section <Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/> for the
attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> which may be applied to the group returned by <C>Pq</C>.
<P/>
See also <C>PqEpimorphism</C> (<Ref Func="PqEpimorphism" Style="Text"/>).
<P/>
We now give a few examples of the use of <C>Pq</C>. Except for the addition of
a few comments and the non-suppression of output (by not using duplicated
semicolons) the next 3 examples may be run by typing: <C>PqExample( "Pq" );</C>
(see <Ref Func="PqExample" Style="Text"/>).
<Example><![CDATA[
gap> LoadPackage("anupq");; # does nothing if ANUPQ is already loaded
gap> # First we get a p-quotient of a free group of rank 2
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> Pq( F : Prime := 2, ClassBound := 3 );
<pc group of size 1024 with 10 generators>
gap> # Now let us get a p-quotient of an fp group
gap> G := F / [a^4, b^4];
<fp group on the generators [ a, b ]>
gap> Pq( G : Prime := 2, ClassBound := 3 );
<pc group of size 256 with 8 generators>
gap> # Now let's get a different p-quotient of the same group
gap> Pq( G : Prime := 2, ClassBound := 3, Exponent := 4 );
<pc group of size 128 with 7 generators>
gap> # Now we'll get a p-quotient of another fp group
gap> # which we will redo using the `Relators' option
gap> R := [ a^25, Comm(Comm(b, a), a), b^5 ];
[ a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5 ]
gap> H := F / R;
<fp group on the generators [ a, b ]>
gap> Pq( H : Prime := 5, ClassBound := 5, Metabelian );
<pc group of size 78125 with 7 generators>
]]></Example>
<Index Subkey="example of usage">option Relators</Index>
Now we redo the last example to show how one may use the <C>Relators</C>
option. Observe that <C>Comm(Comm(b, a), a)</C> is a left normed commutator
which must be written in square bracket notation for the <C>anu-pq</C> program and
embedded in a pair of double quotes. The function <C>PqGAPRelators</C>
(see <Ref Func="PqGAPRelators" Style="Text"/>) can be used to translate a list of strings prepared
for the <C>Relators</C> option into &GAP; format. Below we use it. Observe
that the value of <C>R</C> is the same as before.
<Example><![CDATA[
gap> F := FreeGroup("a", "b");;
gap> # `F' was defined for `Relators'. We use the same strings that GAP uses
gap> # for printing the free group generators. It is *not* necessary to
gap> # predefine: a := F.1; etc. (as it was above).
gap> rels := [ "a^25", "[b, a, a]", "b^5" ];
[ "a^25", "[b, a, a]", "b^5" ]
gap> R := PqGAPRelators(F, rels);
[ a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5 ]
gap> H := F / R;
<fp group on the generators [ a, b ]>
gap> Pq( H : Prime := 5, ClassBound := 5, Metabelian,
> Relators := rels );
<pc group of size 78125 with 7 generators>
]]></Example>
In fact, above we could have just passed <C>F</C> (rather than <C>H</C>), i.e. we
could have done:
<Example><![CDATA[
gap> F := FreeGroup("a", "b");;
gap> rels := [ "a^25", "[b, a, a]", "b^5" ];
[ "a^25", "[b, a, a]", "b^5" ]
gap> Pq( F : Prime := 5, ClassBound := 5, Metabelian,
> Relators := rels );
<pc group of size 78125 with 7 generators>
]]></Example>
The non-interactive <C>Pq</C> function also allows the options to be passed in
two other ways; these alternatives have been included for those familiar
with the &GAP; 3 version of the &ANUPQ; package; the preferred method
of passing options is the one already described. Firstly, they may be
passed in a record as a second argument; note that any boolean options
must be set explicitly e.g.
<Example><![CDATA[
gap> Pq( H, rec( Prime := 5, ClassBound := 5, Metabelian := true ) );
<pc group of size 78125 with 7 generators>
]]></Example>
It is also possible to pass them as extra arguments, where each option
name appears as a string followed immediately by its value (if not a
boolean option) e.g.
<Example><![CDATA[
gap> Pq( H, "Prime", 5, "ClassBound", 5, "Metabelian" );
<pc group of size 78125 with 7 generators>
]]></Example>
The preceding two examples can be run from &GAP; via <C>PqExample( "Pq-ni" );</C>
(see <Ref Func="PqExample" Style="Text"/>).
<P/>
This method of passing options permits abbreviation; the only restriction
is that the abbreviation must be unique. So <C>"Pr"</C> may be used for
<C>"Prime"</C>, <C>"Class"</C> or even just <C>"C"</C> for <C>"ClassBound"</C>, etc.
<P/>
<Index Subkey="example of usage">option Identities</Index>
The following example illustrates the use of the option <C>Identities</C>. We
compute the largest finite Burnside group of exponent <M>5</M> that also
satisfies the <M>3</M>-Engel identity. Each identity is defined by a function
whose arguments correspond to the variables of the identity. The return
value of each of those functions is the identity evaluated on the
arguments of the function.
<Example><![CDATA[
gap> F := FreeGroup(2);
<free group on the generators [ f1, f2 ]>
gap> Burnside5 := x->x^5;
function( x ) ... end
gap> Engel3 := function( x,y ) return PqLeftNormComm( [x,y,y,y] ); end;
function( x, y ) ... end
gap> Pq( F : Prime := 5, Identities := [ Burnside5, Engel3 ] );
#I Class 1 with 2 generators.
#I Class 2 with 3 generators.
#I Class 3 with 5 generators.
#I Class 3 with 5 generators.
<pc group of size 3125 with 5 generators>
]]></Example>
The above example can be run from &GAP; via <C>PqExample( "B5-5-Engel3-Id"
);</C> (see <Ref Func="PqExample" Style="Text"/>).
</Description>
</ManSection>
<ManSection>
<Func Name="PqEpimorphism" Arg="F : options"/>
<Description>
returns for the fp or pc group <A>F</A> an epimorphism from <A>F</A> onto the
<M>p</M>-quotient of <A>F</A> specified by <A>options</A>; the possible options
<A>options</A> and <E>required</E> option (<C>"Prime"</C>) are as for <C>Pq</C> (see <Ref Func="Pq" Style="Text"/>).
<C>PqEpimorphism</C> only differs from <C>Pq</C> in what it outputs; everything
about what must/may be passed as input to <C>PqEpimorphism</C> is the same as
for <C>Pq</C>. The same alternative methods of passing options to the
non-interactive <C>Pq</C> function are available to the non-interactive
version of <C>PqEpimorphism</C>.
<P/>
<E>Notes:</E> <C>PqEpimorphism</C> may also be called with no arguments or one
integer argument, in which case it is being used interactively
(see <Ref Func="PqEpimorphism" Label="interactive" Style="Text"/>), and the options <C>SetupFile</C> and
<C>PqWorkspace</C> are ignored by the interactive <C>PqEpimorphism</C> function.
<P/>
See Section <Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/> for the
attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> which may be applied to the image group of the epimorphism
returned by <C>PqEpimorphism</C>.
<Example><![CDATA[
gap> F := FreeGroup (2, "F");
<free group on the generators [ F1, F2 ]>
gap> phi := PqEpimorphism( F : Prime := 5, ClassBound := 2 );
[ F1, F2 ] -> [ f1, f2 ]
gap> Image( phi );
<pc group of size 3125 with 5 generators>
]]></Example>
Typing: <C>PqExample( "PqEpimorphism" );</C> runs the above example in &GAP;
(see <Ref Func="PqExample" Style="Text"/>).
</Description>
</ManSection>
<ManSection>
<Func Name="PqPCover" Arg="F : options"/>
<Description>
returns for the fp or pc group <A>F</A>, the <M>p</M>-covering group of the
<M>p</M>-quotient of <A>F</A> specified by <A>options</A>, as a pc group, i.e. the
<M>p</M>-covering group of the <M>p</M>-quotient <C>Pq( <A>F</A> : <A>options</A> )</C>. Thus the
options that <C>PqPCover</C> accepts are exactly those expected for <C>Pq</C> (and
hence as a minimum the user <E>must</E> supply a value for the <C>Prime</C> option;
see <Ref Func="Pq" Style="Text"/> for more details), except in the following special case.
<P/>
If <A>F</A> is already a <M>p</M>-group, in the sense that <C>IsPGroup(<A>F</A>)</C> is <K>true</K>, then
<List>
<Mark><C>Prime</C></Mark>
<Item>
defaults to <C>PrimePGroup(<A>F</A>)</C>, if not supplied and <C>HasPrimePGroup(<A>F</A>)
= true</C>; and
</Item>
<Mark><C>ClassBound</C></Mark>
<Item>
defaults to <C>PClassPGroup(<A>F</A>)</C> if <C>HasPClassPGroup(<A>F</A>) = true</C> if not
supplied, or to the usual default of 63, otherwise.
</Item>
</List>
The same alternative methods of passing options to the non-interactive
<C>Pq</C> function are available to the non-interactive version of <C>PqPCover</C>.
<P/>
We now give a few examples of the use of <C>PqPCover</C>. These examples are
just a subset of the ones we gave for <C>Pq</C> (see <Ref Func="Pq" Style="Text"/>), except that in
each instance the command <C>Pq</C> has been replaced with <C>PqPCover</C>.
Essentially the same examples may be run by typing: <C>PqExample( "PqPCover" );</C> (see <Ref Func="PqExample" Style="Text"/>).
<Example><![CDATA[
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> PqPCover( F : Prime := 2, ClassBound := 3 );
<pc group of size 262144 with 18 generators>
gap>
gap> # Now let's get a p-cover of a p-quotient of an fp group
gap> G := F / [a^4, b^4];
<fp group on the generators [ a, b ]>
gap> PqPCover( G : Prime := 2, ClassBound := 3 );
<pc group of size 16384 with 14 generators>
gap>
gap> # Now let's get a p-cover of a different p-quotient of the same group
gap> PqPCover( G : Prime := 2, ClassBound := 3, Exponent := 4 );
<pc group of size 8192 with 13 generators>
gap>
gap> # Now we'll get a p-cover of a p-quotient of another fp group
gap> # which we will redo using the `Relators' option
gap> R := [ a^25, Comm(Comm(b, a), a), b^5 ];
[ a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5 ]
gap> H := F / R;
<fp group on the generators [ a, b ]>
gap> PqPCover( H : Prime := 5, ClassBound := 5, Metabelian );
<pc group of size 48828125 with 11 generators>
gap>
gap> # Now we redo the previous example using the `Relators' option
gap> F := FreeGroup("a", "b");;
gap> rels := [ "a^25", "[b, a, a]", "b^5" ];
[ "a^25", "[b, a, a]", "b^5" ]
gap> PqPCover( F : Prime := 5, ClassBound := 5, Metabelian,
> Relators := rels );
<pc group of size 48828125 with 11 generators>
]]></Example>
</Description>
</ManSection>
</Section>
<Section Label="Computing Standard Presentations">
<Heading>Computing Standard Presentations</Heading>
<Index>automorphisms<Subkey>of <M>p</M>-groups</Subkey></Index>
<ManSection>
<Func Name="PqStandardPresentation" Arg="F : options"/>
<Meth Name="StandardPresentation" Arg="F : options"/>
<Description>
return the <A>p</A>-quotient specified by <A>options</A> of the fp or pc <M>p</M>-group
<A>F</A>, as an <E>fp group</E> which has a standard presentation. Here <A>options</A>
is a selection of the options from the following list (see
Chapter <Ref Chap="ANUPQ Options" Style="Text"/> for detailed descriptions).
Section <Ref Sect="Hints and Warnings regarding the use of Options" Style="Text"/>
gives some important hints and warnings
regarding option usage, and Section <Ref BookName="ref" Label="Function Call With Options" Style="Text"/> in
the &GAP; Reference Manual describes their <Q>record</Q>-like syntax.
<List>
<Item>
<C>Prime := <A>p</A></C><Index>option Prime</Index>
</Item>
<Item>
<C>pQuotient := <A>Q</A></C><Index>option pQuotient</Index>
</Item>
<Item>
<C>ClassBound := <A>n</A></C><Index>option ClassBound</Index>
</Item>
<Item>
<C>Exponent := <A>n</A></C><Index>option Exponent</Index>
</Item>
<Item>
<C>Metabelian</C><Index>option Metabelian</Index>
</Item>
<Item>
<C>GroupName := <A>name</A></C><Index>option GroupName</Index>
</Item>
<Item>
<C>OutputLevel := <A>n</A></C><Index>option OutputLevel</Index>
</Item>
<Item>
<C>StandardPresentationFile := <A>filename</A></C><Index>option StandardPresentationFile</Index>
</Item>
<Item>
<C>SetupFile := <A>filename</A></C><Index>option SetupFile</Index>
</Item>
<Item>
<C>PqWorkspace := <A>workspace</A></C><Index>option PqWorkspace</Index>
</Item>
</List>
Unless <A>F</A> is a pc <A>p</A>-group, the user <E>must</E> supply either the option
<C>Prime</C> or the option <C>pQuotient</C> (if both <C>Prime</C> and <C>pQuotient</C> are
supplied, the prime <A>p</A> is determined by applying <C>PrimePGroup</C>
(see <Ref BookName="ref" Attr="PrimePGroup" Style="Text"/> in the Reference Manual) to the value of
<C>pQuotient</C>).
<P/>
The options for <C>PqStandardPresentation</C> may also be passed in the two
other alternative ways described for <C>Pq</C> (see <Ref Func="Pq" Style="Text"/>). <C>StandardPresentation</C>
does not provide these alternative ways of passing options.
<P/>
<E>Notes:</E>
In contrast to the function <C>Pq</C> (see <Ref Func="Pq" Style="Text"/>) which returns a pc group,
<C>PqStandardPresentation</C> or <C>StandardPresentation</C> returns an fp group.
This is because the output is mainly used for isomorphism testing for
which an fp group is enough. However, the presentation is a polycyclic
presentation and if you need to do any further computation with this
group (e.g. to find the order) you can use the function <C>PcGroupFpGroup</C>
(see <Ref BookName="ref" Func="PcGroupFpGroup" Style="Text"/> in the &GAP; Reference Manual) to form a pc
group.
<P/>
If the user does not supply a <A>p</A>-quotient <A>Q</A> via the <C>pQuotient</C> option
and the prime <A>p</A> is either supplied or <A>F</A> is a pc <A>p</A>-group, then a
<A>p</A>-quotient <A>Q</A> is computed. If the user does supply a <A>p</A>-quotient <A>Q</A>
via the <C>pQuotient</C> option, the package &AutPGrp; is called to compute
the automorphism group of <A>Q</A>; an error will occur that asks the user to
install the package &AutPGrp; if the automorphism group cannot be
computed.
<P/>
The attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> are set for the group returned by <C>PqStandardPresentation</C> or
<C>StandardPresentation</C> (see Section <Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/>).
<P/>
We illustrate the method with the following examples.
<Example><![CDATA[
gap> F := FreeGroup( "a", "b" );; a := F.1;; b := F.2;;
gap> G := F / [a^25, Comm(Comm(b, a), a), b^5];
<fp group on the generators [ a, b ]>
gap> S := StandardPresentation( G : Prime := 5, ClassBound := 10 );
<fp group on the generators [ f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26 ]>
gap> IsPcGroup( S );
false
gap> # if we need to compute with S we should convert it to a pc group
gap> Spc := PcGroupFpGroup( S );
<pc group of size 1490116119384765625 with 26 generators>
gap>
gap> H := F / [ a^625, Comm(Comm(Comm(Comm(b, a), a), a), a)/Comm(b, a)^5,
> Comm(Comm(b, a), b), b^625 ];;
gap> StandardPresentation( H : Prime := 5, ClassBound := 15, Metabelian );
<fp group on the generators [ f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
f12, f13, f14, f15, f16, f17, f18, f19, f20 ]>
gap>
gap> F4 := FreeGroup( "a", "b", "c", "d" );;
gap> a := F4.1;; b := F4.2;; c := F4.3;; d := F4.4;;
gap> G4 := F4 / [ b^4, b^2 / Comm(Comm (b, a), a), d^16,
> a^16 / (c * d), b^8 / (d * c^4) ];
<fp group on the generators [ a, b, c, d ]>
gap> K := Pq( G4 : Prime := 2, ClassBound := 1 );
<pc group of size 4 with 2 generators>
gap> StandardPresentation( G4 : pQuotient := K, ClassBound := 14 );
<fp group with 53 generators>
]]></Example>
Typing: <C>PqExample( "StandardPresentation" );</C> runs the above example in
&GAP; (see <Ref Func="PqExample" Style="Text"/>).
</Description>
</ManSection>
<ManSection>
<Func Name="EpimorphismPqStandardPresentation" Arg="F : options"/>
<Meth Name="EpimorphismStandardPresentation" Arg="F : options"/>
<Description>
Each of the above functions accepts the same arguments and options as the
function <C>StandardPresentation</C> (see <Ref Func="StandardPresentation" Style="Text"/>) and returns
an epimorphism from the fp or pc group <A>F</A> onto the finitely presented
group given by a standard presentation, i.e. if <A>S</A> is the standard
presentation computed for the <M>p</M>-quotient of <A>F</A> by
<C>StandardPresentation</C> then <C>EpimorphismStandardPresentation</C> returns the
epimorphism from <A>F</A> to the group with presentation <A>S</A>.
<P/>
<E>Note:</E>
The attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> are set for the image group of the epimorphism returned by
<C>EpimorphismPqStandardPresentation</C> or <C>EpimorphismStandardPresentation</C>
(see Section <Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/>).
<P/>
We illustrate the function with the following example.
<Example><![CDATA[
gap> F := FreeGroup(6, "F");
<free group on the generators [ F1, F2, F3, F4, F5, F6 ]>
gap> # For printing GAP uses the symbols F1, ... for the generators of F
gap> x := F.1;; y := F.2;; z := F.3;; w := F.4;; a := F.5;; b := F.6;;
gap> R := [x^3 / w, y^3 / w * a^2 * b^2, w^3 / b,
> Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z^3 ];;
gap> Q := F / R;
<fp group on the generators [ F1, F2, F3, F4, F5, F6 ]>
gap> # For printing GAP also uses the symbols F1, ... for the generators of Q
gap> # (the same as used for F) ... but the gen'rs of Q and F are different:
gap> GeneratorsOfGroup(F) = GeneratorsOfGroup(Q);
false
gap> G := Pq( Q : Prime := 3, ClassBound := 3 );
<pc group of size 729 with 6 generators>
gap> phi := EpimorphismStandardPresentation( Q : Prime := 3,
> ClassBound := 3 );
[ F1, F2, F3, F4, F5, F6 ] -> [ f1*f2^2*f3*f4^2*f5^2, f1*f2*f3*f5, f3^2,
f4*f6^2, f5, f6 ]
gap> Source(phi); # This is the group Q (GAP uses F1, ... for gen'r symbols)
<fp group of size infinity on the generators [ F1, F2, F3, F4, F5, F6 ]>
gap> Range(phi); # This is the group G (GAP uses f1, ... for gen'r symbols)
<fp group on the generators [ f1, f2, f3, f4, f5, f6 ]>
gap> AssignGeneratorVariables(G);
#I Assigned the global variables [ f1, f2, f3, f4, f5, f6 ]
gap> # Just to see that the images of [F1, ..., F6] do generate G
gap> Group([ f1*f2^2*f3, f1*f2*f3*f4*f5^2*f6^2, f3^2, f4, f5, f6 ]) = G;
true
gap> Size( Image(phi) );
729
]]></Example>
Typing: <C>PqExample( "EpimorphismStandardPresentation" );</C> runs the above
example in &GAP; (see <Ref Func="PqExample" Style="Text"/>). Note that <C>AssignGeneratorVariables</C>
(see <Ref BookName="ref" Func="AssignGeneratorVariables" Style="Text"/>)
has only been available since &GAP; 4.3.
</Description>
</ManSection>
</Section>
<Section Label="Testing p-Groups for Isomorphism">
<Heading>Testing p-Groups for Isomorphism</Heading>
<ManSection>
<Func Name="IsPqIsomorphicPGroup" Arg="G, H"/>
<Meth Name="IsIsomorphicPGroup" Arg="G, H"/>
<Description>
each return true if <A>G</A> is isomorphic to <A>H</A>, where both <A>G</A> and <A>H</A> must
be pc groups of prime power order. These functions compute and compare
in &GAP; the fp groups given by standard presentations for <A>G</A> and <A>H</A>
(see <Ref Func="StandardPresentation" Style="Text"/>).
<Example><![CDATA[
gap> G := Group( (1,2,3,4), (1,3) );
Group([ (1,2,3,4), (1,3) ])
gap> P1 := Image( IsomorphismPcGroup( G ) );
Group([ f1, f2, f3 ])
gap> P2 := ElementaryAbelianGroup( 8 );
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup( P1, P2 );
false
gap> P3 := QuaternionGroup( 8 );
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup( P1, P3 );
false
gap> P4 := DihedralGroup( 8 );
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup( P1, P4 );
true
]]></Example>
Typing: <C>PqExample( "IsIsomorphicPGroup" );</C> runs the above example in
&GAP; (see <Ref Func="PqExample" Style="Text"/>).
</Description>
</ManSection>
</Section>
<Section Label="Computing Descendants of a p-Group">
<Heading>Computing Descendants of a p-Group</Heading>
<ManSection>
<Func Name="PqDescendants" Arg="G : options"/>
<Description>
returns, for the pc group <A>G</A> which must be of prime power order with a
confluent pc presentation (see <Ref BookName="ref" Func="IsConfluent" Label="for pc groups" Style="Text"/> in the
&GAP; Reference Manual), a list of proper descendants (pc groups) of <A>G</A>.
Following the colon <A>options</A> a selection of the options listed below
should be given, separated by commas like record components (see
Section <Ref BookName="ref" Label="Function Call With Options" Style="Text"/> in the &GAP; Reference Manual).
See Chapter <Ref Chap="ANUPQ Options" Style="Text"/> for detailed descriptions of the options.
<P/>
The automorphism group of each descendant <A>D</A> is also computed via a call
to the <C>AutomorphismGroupPGroup</C> function of the &AutPGrp; package.
<!-- %For each descendant <A>D</A>, a subgroup of the automorphism group of <A>D</A> is -->
<!-- %computed which is a supplement to the inner automorphisms of <A>D</A> in the -->
<!-- %whole automorphism group of <A>D</A>. This subgroup can be accessed via the -->
<!-- %function <C>PqSupplementInnerAutomorphisms</C> -->
<!-- %(see <Ref Func="PqSupplementInnerAutomorphisms" Style="Text"/>). -->
<List>
<Item>
<C>ClassBound := <A>n</A></C><Index>option ClassBound</Index>
</Item>
<Item>
<C>Relators := <A>rels</A></C><Index>option Relators</Index>
</Item>
<Item>
<C>OrderBound := <A>n</A></C><Index>option OrderBound</Index>
</Item>
<Item>
<C>StepSize := <A>n</A></C>, <C>StepSize := <A>list</A></C>
<Index>option StepSize</Index>
</Item>
<Item>
<C>RankInitialSegmentSubgroups := <A>n</A></C><Index>option RankInitialSegmentSubgroups</Index>
</Item>
<Item>
<C>SpaceEfficient</C><Index>option SpaceEfficient</Index>
</Item>
<Item>
<C>CapableDescendants</C><Index>option CapableDescendants</Index>
</Item>
<Item>
<C>AllDescendants := false</C><Index>option AllDescendants</Index>
</Item>
<Item>
<C>Exponent := <A>n</A></C><Index>option Exponent</Index>
</Item>
<Item>
<C>Metabelian</C><Index>option Metabelian</Index>
</Item>
<Item>
<C>GroupName := <A>name</A></C><Index>option GroupName</Index>
</Item>
<Item>
<C>SubList := <A>sub</A></C><Index>option SubList</Index>
</Item>
<Item>
<C>BasicAlgorithm</C><Index>option BasicAlgorithm</Index>
</Item>
<Item>
<C>CustomiseOutput := <A>rec</A></C><Index>option CustomiseOutput</Index>
</Item>
<Item>
<C>SetupFile := <A>filename</A></C><Index>option SetupFile</Index>
</Item>
<Item>
<C>PqWorkspace := <A>workspace</A></C><Index>option PqWorkspace</Index>
</Item>
</List>
<E>Notes:</E>
The function <C>PqDescendants</C> uses the automorphism group of <A>G</A> which it
computes via the package &AutPGrp;. If this package is not installed an
error may be raised. If the automorphism group of <A>G</A> is insoluble, the
<C>anu-pq</C> program will call &GAP; together with the &AutPGrp; package for
certain orbit-stabilizer calculations. (So, in any case, one should
ensure the &AutPGrp; package is installed.)
<P/>
The attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> are set for each group of the list returned by
<C>PqDescendants</C> (see Section <Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/>).
<P/>
The options <A>options</A> for <C>PqDescendants</C> may be passed in an alternative
manner to that already described, namely you can pass <C>PqDescendants</C> a
record as an argument, which contains as entries some (or all) of the
above mentioned. Those parameters which do not occur in the record are
set to their default values.
<P/>
Note that you cannot set both <C>OrderBound</C> and <C>StepSize</C>.
<P/>
In the first example we compute all proper descendants of the Klein four group
which have exponent-2 class at most 5 and order at most <M>2^6</M>.
<Example><![CDATA[
gap> F := FreeGroup( "a", "b" );; a := F.1;; b := F.2;;
gap> G := PcGroupFpGroup( F / [ a^2, b^2, Comm(b, a) ] );
<pc group of size 4 with 2 generators>
gap> des := PqDescendants( G : OrderBound := 6, ClassBound := 5 );;
gap> Length(des);
83
gap> List(des, Size);
[ 8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32,
32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64 ]
gap> List(des, d -> Length( PCentralSeries( d, 2 ) ) - 1 );
[ 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 5, 5, 5, 5, 5 ]
]]></Example>
Below, we compute all capable descendants of order 27 of the elementary
abelian group of order 9.
<Example><![CDATA[
gap> F := FreeGroup( 2, "g" );
<free group on the generators [ g1, g2 ]>
gap> G := PcGroupFpGroup( F / [ F.1^3, F.2^3, Comm(F.1, F.2) ] );
<pc group of size 9 with 2 generators>
gap> des := PqDescendants( G : OrderBound := 3, ClassBound := 2,
> CapableDescendants );
[ <pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators> ]
gap> List(des, d -> Length( PCentralSeries( d, 3 ) ) - 1 );
[ 2, 2 ]
gap> # For comparison let us now compute all proper descendants
gap> PqDescendants( G : OrderBound := 3, ClassBound := 2);
[ <pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators> ]
]]></Example>
In the third example, we compute all proper capable descendants of the
elementary abelian group of order <M>5^2</M> which have exponent-<M>5</M> class at
most <M>3</M>, exponent <M>5</M>, and are metabelian.
<Example><![CDATA[
gap> F := FreeGroup( 2, "g" );;
gap> G := PcGroupFpGroup( F / [ F.1^5, F.2^5, Comm(F.2, F.1) ] );
<pc group of size 25 with 2 generators>
gap> des := PqDescendants( G : Metabelian, ClassBound := 3,
> Exponent := 5, CapableDescendants );
[ <pc group of size 125 with 3 generators>,
<pc group of size 625 with 4 generators>,
<pc group of size 3125 with 5 generators> ]
gap> List(des, d -> Length( PCentralSeries( d, 5 ) ) - 1 );
[ 2, 3, 3 ]
gap> List(des, d -> Length( DerivedSeries( d ) ) );
[ 3, 3, 3 ]
gap> List(des, d -> Maximum( List( d, Order ) ) );
[ 5, 5, 5 ]
]]></Example>
The examples <C>"PqDescendants-1"</C>, <C>"PqDescendants-2"</C> and
<C>"PqDescendants-3"</C> (in order) are essentially the same as the above
three examples (see <Ref Func="PqExample" Style="Text"/>).
</Description>
</ManSection>
<ManSection>
<Func Name="PqSupplementInnerAutomorphisms" Arg="D"/>
<Description>
returns a generating set for a supplement to the inner automorphisms of
<A>D</A>, in the form of a record with fields <C>agAutos</C>, <C>agOrder</C> and
<C>glAutos</C>, as provided by the <C>anu-pq</C> program. One should be very careful in
using these automorphisms for a descendant calculation.
<!-- %The automorphisms generate a subgroup of the automorphism group of the pc -->
<!-- %group <A>D</A> that supplements the inner automorphism group of <A>D</A> in the -->
<!-- %whole automorphism group of <A>D</A>. The group of automorphisms returned may -->
<!-- %be a proper subgroup of the full automorphism group. The descendant <A>D</A> -->
<!-- %must have been computed by the function <C>PqDescendants</C> -->
<!-- %(see <Ref Func="PqDescendants" Style="Text"/>). -->
<P/>
<E>Note:</E>
In principle there must be a way to use those automorphisms in order to
compute descendants but there does not seem to be a way to hand back
these automorphisms properly to the <C>anu-pq</C> program.
<Example><![CDATA[
gap> Q := Pq( FreeGroup(2) : Prime := 3, ClassBound := 1 );
<pc group of size 9 with 2 generators>
gap> des := PqDescendants( Q : StepSize := 1 );
[ <pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators> ]
gap> S := PqSupplementInnerAutomorphisms( des[3] );
rec( agAutos := [ ], agOrder := [ 3, 2, 2, 2 ],
glAutos := [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2^2, f2, f3 ],
Pcgs([ f1, f2, f3 ]) -> [ f1^2, f2, f3^2 ],
Pcgs([ f1, f2, f3 ]) -> [ f1^2, f2, f3^2 ] ] )
gap> A := AutomorphismGroupPGroup( des[3] );
rec(
agAutos := [ Pcgs([ f1, f2, f3 ]) -> [ f1^2, f2, f3^2 ],
Pcgs([ f1, f2, f3 ]) -> [ f1*f2^2, f2, f3 ],
Pcgs([ f1, f2, f3 ]) -> [ f1*f3, f2, f3 ],
Pcgs([ f1, f2, f3 ]) -> [ f1, f2*f3, f3 ] ], agOrder := [ 2, 3, 3, 3 ],
glAutos := [ ], glOper := [ ], glOrder := 1,
group := <pc group of size 27 with 3 generators>,
one := IdentityMapping( <pc group of size 27 with 3 generators> ),
size := 54 )
]]></Example>
Typing: <C>PqExample( "PqSupplementInnerAutomorphisms" );</C> runs the above
example in &GAP; (see <Ref Func="PqExample" Style="Text"/>).
<P/>
Note that by also including <C>PqStart</C> as a second argument to <C>PqExample</C>
one can see how it is possible, with the aid of <C>PqSetPQuotientToGroup</C>
(see <Ref Func="PqSetPQuotientToGroup" Style="Text"/>), to do the equivalent computations with the
interactive versions of <C>Pq</C> and <C>PqDescendants</C> and a single <C>anu-pq</C>
process (recall <C>anu-pq</C> is the name of the external C program).
</Description>
</ManSection>
<ManSection>
<Func Name="PqList" Arg="filename : [SubList := sub]"/>
<Description>
reads a file with name <A>filename</A> (a string) and returns the list <A>L</A> of
pc groups (or with option <C>SubList</C> a sublist of <A>L</A> or a single pc group
in <A>L</A>) defined in that file. If the option <C>SubList</C> is passed and has
the value <A>sub</A>, then it has the same meaning as for <C>PqDescendants</C>,
i.e. if <A>sub</A> is an integer then <C>PqList</C> returns <C><A>L</A>[<A>sub</A>]</C>;
otherwise, if <A>sub</A> is a list of integers <C>PqList</C> returns <C>Sublist(<A>L</A>,
<A>sub</A> )</C>.
<P/>
Both <C>PqList</C> and <C>SavePqList</C> (see <Ref Func="SavePqList" Style="Text"/>) can be used to save and
restore a list of descendants (see <Ref Func="PqDescendants" Style="Text"/>).
</Description>
</ManSection>
<ManSection>
<Func Name="SavePqList" Arg="filename, list"/>
<Description>
writes a list of descendants <A>list</A> to a file with name <A>filename</A> (a
string).
<P/>
<C>SavePqList</C> and <C>PqList</C> (see <Ref Func="PqList" Style="Text"/>) can be used to save and restore,
respectively, the results of <C>PqDescendants</C> (see <Ref Func="PqDescendants" Style="Text"/>).
</Description>
</ManSection>
</Section>
</Chapter>
|