File: non-interact.xml

package info (click to toggle)
gap-anupq 3.3.3-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 8,328 kB
  • sloc: ansic: 15,243; xml: 5,186; sh: 1,259; makefile: 281; perl: 260; javascript: 155
file content (830 lines) | stat: -rw-r--r-- 34,484 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
<Chapter Label="non-interact">
<Heading>Non-interactive ANUPQ functions</Heading>

Here we describe all the non-interactive functions of the &ANUPQ;
package; i.e.&nbsp;<Q>one-shot</Q> functions that invoke the <C>anu-pq</C> program in such
a way that once &GAP; has got what it needs, the <C>anu-pq</C> program is allowed
to exit. It is expected that most of the time users will only need these
functions. The functions interface with three of the four algorithms (see
Chapter&nbsp;<Ref Chap="Introduction" Style="Text"/>) provided by the ANU <C>anu-pq</C> C program, and are
mainly grouped according to the algorithm of the <C>anu-pq</C> program they relate
to.
<P/>

In Section&nbsp;<Ref Sect="Computing p-Quotients" Style="Text"/>, we describe the functions that give
access to the <M>p</M>-quotient algorithm.
<P/>

Section&nbsp;<Ref Sect="Computing Standard Presentations" Style="Text"/> describe functions that give
access to the standard presentation algorithm.
<P/>

Section&nbsp;<Ref Sect="Testing p-Groups for Isomorphism" Style="Text"/> describe functions that
implement an isomorphism test for <M>p</M>-groups using the standard
presentation algorithm.
<P/>

In Section&nbsp;<Ref Sect="Computing Descendants of a p-Group" Style="Text"/>, we describe functions
that give access to the <M>p</M>-group generation algorithm.
<P/>

To use any of the functions one must have at some stage previously typed:

<Log><![CDATA[
gap> LoadPackage("anupq");
]]></Log>

(the response of which we have omitted; see&nbsp;<Ref Sect="Loading the ANUPQ Package" Style="Text"/>).
<P/>

It is strongly recommended that the user try the examples provided. To
save typing there is a <C>PqExample</C> equivalent for each manual example. We
also suggest that to start with you may find the examples more
instructive if you set the <C>InfoANUPQ</C> level to 2 (see&nbsp;<Ref Func="InfoANUPQ" Style="Text"/>).

<Section Label="Computing p-Quotients">
<Heading>Computing p-Quotients</Heading>

<ManSection>
<Func Name="Pq" Arg="F : options"/>
<Description>
returns for the fp or pc group <A>F</A>, the <M>p</M>-quotient of <A>F</A> specified by
<A>options</A>, as a pc group. Following the colon, <A>options</A> is a selection
of the options from the following list, separated by commas like record
components (see Section&nbsp;<Ref BookName="ref" Label="Function Call With Options" Style="Text"/> in the &GAP;
Reference Manual). As a minimum the user <E>must</E> supply a value for the
<C>Prime</C> option. Below we list the options recognised by <C>Pq</C> (see
Chapter&nbsp;<Ref Chap="ANUPQ Options" Style="Text"/> for detailed descriptions).

<List>
<Item>
  <C>Prime := <A>p</A></C><Index>option Prime</Index>
</Item>
<Item>
  <C>ClassBound := <A>n</A></C><Index>option ClassBound</Index>
</Item>
<Item>
  <C>Exponent := <A>n</A></C><Index>option Exponent</Index>
</Item>
<Item>
  <C>Relators := <A>rels</A></C><Index>option Relators</Index>
</Item>
<Item>
  <C>Metabelian</C><Index>option Metabelian</Index>
</Item>
<Item>
  <C>Identities := <A>funcs</A></C><Index>option Identities</Index>
</Item>
<Item>
  <C>GroupName := <A>name</A></C><Index>option GroupName</Index>
</Item>
<Item>
  <C>OutputLevel := <A>n</A></C><Index>option OutputLevel</Index>
</Item>
<Item>
  <C>SetupFile := <A>filename</A></C><Index>option SetupFile</Index>
</Item>
<Item>
  <C>PqWorkspace := <A>workspace</A></C><Index>option PqWorkspace</Index>
</Item>
</List>

<E>Notes:</E> <C>Pq</C> may also be called with no arguments or one integer
argument, in which case it is being used interactively
(see&nbsp;<Ref Func="Pq" Label="interactive" Style="Text"/>); the same options may be used, except that
<C>SetupFile</C> and <C>PqWorkspace</C> are ignored by the interactive <C>Pq</C>
function.
<P/>

See Section&nbsp;<Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/> for the
attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> which may be applied to the group returned by <C>Pq</C>.
<P/>

See also <C>PqEpimorphism</C> (<Ref Func="PqEpimorphism" Style="Text"/>).
<P/>

We now give a few examples of the use of <C>Pq</C>. Except for the addition of
a few comments and the non-suppression of output (by not using duplicated
semicolons) the next 3 examples may be run by typing: <C>PqExample( "Pq" );</C>
(see&nbsp;<Ref Func="PqExample" Style="Text"/>).

<Example><![CDATA[
gap> LoadPackage("anupq");; # does nothing if ANUPQ is already loaded
gap> # First we get a p-quotient of a free group of rank 2
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> Pq( F : Prime := 2, ClassBound := 3 ); 
<pc group of size 1024 with 10 generators>
gap> # Now let us get a p-quotient of an fp group
gap> G := F / [a^4, b^4];
<fp group on the generators [ a, b ]>
gap> Pq( G : Prime := 2, ClassBound := 3 ); 
<pc group of size 256 with 8 generators>
gap> # Now let's get a different p-quotient of the same group
gap> Pq( G : Prime := 2, ClassBound := 3, Exponent := 4 ); 
<pc group of size 128 with 7 generators>
gap> # Now we'll get a p-quotient of another fp group
gap> # which we will redo using the `Relators' option
gap> R := [ a^25, Comm(Comm(b, a), a), b^5 ];
[ a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5 ]
gap> H := F / R;
<fp group on the generators [ a, b ]>
gap> Pq( H : Prime := 5, ClassBound := 5, Metabelian );
<pc group of size 78125 with 7 generators>
]]></Example>

<Index Subkey="example of usage">option Relators</Index>

Now we redo the last example to show how one may use the <C>Relators</C>
option. Observe that <C>Comm(Comm(b, a), a)</C> is a left normed commutator
which must be written in square bracket notation for the <C>anu-pq</C> program and
embedded in a pair of double quotes. The function <C>PqGAPRelators</C>
(see&nbsp;<Ref Func="PqGAPRelators" Style="Text"/>) can be used to translate a list of strings prepared
for the <C>Relators</C> option into &GAP; format. Below we use it. Observe
that the value of <C>R</C> is the same as before.

<Example><![CDATA[
gap> F := FreeGroup("a", "b");;
gap> # `F' was defined for `Relators'. We use the same strings that GAP uses
gap> # for printing the free group generators. It is *not* necessary to
gap> # predefine: a := F.1; etc. (as it was above).
gap> rels := [ "a^25", "[b, a, a]", "b^5" ];
[ "a^25", "[b, a, a]", "b^5" ]
gap> R := PqGAPRelators(F, rels);
[ a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5 ]
gap> H := F / R;
<fp group on the generators [ a, b ]>
gap> Pq( H : Prime := 5, ClassBound := 5, Metabelian, 
>            Relators := rels );
<pc group of size 78125 with 7 generators>
]]></Example>

In fact, above we could have just passed <C>F</C> (rather than <C>H</C>), i.e.&nbsp;we
could have done:

<Example><![CDATA[
gap> F := FreeGroup("a", "b");;
gap> rels := [ "a^25", "[b, a, a]", "b^5" ];
[ "a^25", "[b, a, a]", "b^5" ]
gap> Pq( F : Prime := 5, ClassBound := 5, Metabelian, 
>            Relators := rels );
<pc group of size 78125 with 7 generators>
]]></Example>

The non-interactive <C>Pq</C> function also allows the options to be passed in
two other ways; these alternatives have been included for those familiar
with the &GAP;&nbsp;3 version of the &ANUPQ; package; the preferred method
of passing options is the one already described. Firstly, they may be
passed in a record as a second argument; note that any boolean options
must be set explicitly e.g.

<Example><![CDATA[
gap> Pq( H, rec( Prime := 5, ClassBound := 5, Metabelian := true ) );
<pc group of size 78125 with 7 generators>
]]></Example>

It is also possible to pass them as extra arguments, where each option
name appears as a string followed immediately by its value (if not a
boolean option) e.g.

<Example><![CDATA[
gap> Pq( H, "Prime", 5, "ClassBound", 5, "Metabelian" );
<pc group of size 78125 with 7 generators>
]]></Example>

The preceding two examples can be run from &GAP; via <C>PqExample( "Pq-ni" );</C>
(see&nbsp;<Ref Func="PqExample" Style="Text"/>).
<P/>

This method of passing options permits abbreviation; the only restriction
is that the abbreviation must be unique. So <C>"Pr"</C> may be used for
<C>"Prime"</C>, <C>"Class"</C> or even just <C>"C"</C> for <C>"ClassBound"</C>, etc.
<P/>

<Index Subkey="example of usage">option Identities</Index>
The following example illustrates the use of the option <C>Identities</C>. We
compute the largest finite Burnside group of exponent <M>5</M> that also
satisfies the <M>3</M>-Engel identity. Each identity is defined by a function
whose arguments correspond to the variables of the identity. The return
value of each of those functions is the identity evaluated on the
arguments of the function.

<Example><![CDATA[
gap> F := FreeGroup(2);
<free group on the generators [ f1, f2 ]>
gap> Burnside5 := x->x^5;
function( x ) ... end
gap> Engel3 := function( x,y ) return PqLeftNormComm( [x,y,y,y] ); end;
function( x, y ) ... end
gap> Pq( F : Prime := 5, Identities := [ Burnside5, Engel3 ] );
#I  Class 1 with 2 generators.
#I  Class 2 with 3 generators.
#I  Class 3 with 5 generators.
#I  Class 3 with 5 generators.
<pc group of size 3125 with 5 generators>
]]></Example>

The above example can be run from &GAP; via <C>PqExample( "B5-5-Engel3-Id"
);</C> (see&nbsp;<Ref Func="PqExample" Style="Text"/>).
</Description>
</ManSection>

<ManSection>
<Func Name="PqEpimorphism" Arg="F : options"/>
<Description>
returns for the fp or pc group <A>F</A> an epimorphism from <A>F</A> onto the
<M>p</M>-quotient of <A>F</A> specified by <A>options</A>; the possible options
<A>options</A> and <E>required</E> option (<C>"Prime"</C>) are as for <C>Pq</C> (see&nbsp;<Ref Func="Pq" Style="Text"/>).
<C>PqEpimorphism</C> only differs from <C>Pq</C> in what it outputs; everything
about what must/may be passed as input to <C>PqEpimorphism</C> is the same as
for <C>Pq</C>. The same alternative methods of passing options to the
non-interactive <C>Pq</C> function are available to the non-interactive
version of <C>PqEpimorphism</C>.
<P/>

<E>Notes:</E> <C>PqEpimorphism</C> may also be called with no arguments or one
integer argument, in which case it is being used interactively
(see&nbsp;<Ref Func="PqEpimorphism" Label="interactive" Style="Text"/>), and the options <C>SetupFile</C> and
<C>PqWorkspace</C> are ignored by the interactive <C>PqEpimorphism</C> function.
<P/>

See Section&nbsp;<Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/> for the
attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> which may be applied to the image group of the epimorphism
returned by <C>PqEpimorphism</C>.

<Example><![CDATA[
gap> F := FreeGroup (2, "F");
<free group on the generators [ F1, F2 ]>
gap> phi := PqEpimorphism( F : Prime := 5, ClassBound := 2 );
[ F1, F2 ] -> [ f1, f2 ]
gap> Image( phi );
<pc group of size 3125 with 5 generators>
]]></Example>

Typing: <C>PqExample( "PqEpimorphism" );</C> runs the above example in &GAP;
(see&nbsp;<Ref Func="PqExample" Style="Text"/>).
</Description>
</ManSection>

<ManSection>
<Func Name="PqPCover" Arg="F : options"/>
<Description>
returns for the fp or pc group <A>F</A>, the <M>p</M>-covering group of the
<M>p</M>-quotient of <A>F</A> specified by <A>options</A>, as a pc group, i.e.&nbsp;the
<M>p</M>-covering group of the <M>p</M>-quotient <C>Pq( <A>F</A> : <A>options</A> )</C>. Thus the
options that <C>PqPCover</C> accepts are exactly those expected for <C>Pq</C> (and
hence as a minimum the user <E>must</E> supply a value for the <C>Prime</C> option;
see&nbsp;<Ref Func="Pq" Style="Text"/> for more details), except in the following special case.
<P/>

If <A>F</A> is already a <M>p</M>-group, in the sense that <C>IsPGroup(<A>F</A>)</C> is <K>true</K>, then

<List>
<Mark><C>Prime</C></Mark>
<Item>
defaults to <C>PrimePGroup(<A>F</A>)</C>, if not supplied and <C>HasPrimePGroup(<A>F</A>)
= true</C>; and
</Item>

<Mark><C>ClassBound</C></Mark>
<Item>
defaults to <C>PClassPGroup(<A>F</A>)</C> if <C>HasPClassPGroup(<A>F</A>) = true</C> if not
supplied, or to the usual default of 63, otherwise.
</Item>
</List>

The same alternative methods of passing options to the non-interactive
<C>Pq</C> function are available to the non-interactive version of <C>PqPCover</C>.
<P/>

We now give a few examples of the use of <C>PqPCover</C>. These examples are
just a subset of the ones we gave for <C>Pq</C> (see&nbsp;<Ref Func="Pq" Style="Text"/>), except that in
each instance the command <C>Pq</C> has been replaced with <C>PqPCover</C>.
Essentially the same examples may be run by typing: <C>PqExample( "PqPCover" );</C> (see&nbsp;<Ref Func="PqExample" Style="Text"/>).

<Example><![CDATA[
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> PqPCover( F : Prime := 2, ClassBound := 3 );
<pc group of size 262144 with 18 generators>
gap> 
gap> # Now let's get a p-cover of a p-quotient of an fp group
gap> G := F / [a^4, b^4];
<fp group on the generators [ a, b ]>
gap> PqPCover( G : Prime := 2, ClassBound := 3 );
<pc group of size 16384 with 14 generators>
gap> 
gap> # Now let's get a p-cover of a different p-quotient of the same group
gap> PqPCover( G : Prime := 2, ClassBound := 3, Exponent := 4 );
<pc group of size 8192 with 13 generators>
gap> 
gap> # Now we'll get a p-cover of a p-quotient of another fp group
gap> # which we will redo using the `Relators' option
gap> R := [ a^25, Comm(Comm(b, a), a), b^5 ];
[ a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5 ]
gap> H := F / R;
<fp group on the generators [ a, b ]>
gap> PqPCover( H : Prime := 5, ClassBound := 5, Metabelian );
<pc group of size 48828125 with 11 generators>
gap> 
gap> # Now we redo the previous example using the `Relators' option
gap> F := FreeGroup("a", "b");;
gap> rels := [ "a^25", "[b, a, a]", "b^5" ];
[ "a^25", "[b, a, a]", "b^5" ]
gap> PqPCover( F : Prime := 5, ClassBound := 5, Metabelian, 
>                  Relators := rels );
<pc group of size 48828125 with 11 generators>
]]></Example>
</Description>
</ManSection>


</Section>


<Section Label="Computing Standard Presentations">
<Heading>Computing Standard Presentations</Heading>

<Index>automorphisms<Subkey>of <M>p</M>-groups</Subkey></Index>
<ManSection>
<Func Name="PqStandardPresentation" Arg="F : options"/>
<Meth Name="StandardPresentation" Arg="F : options"/>
<Description>
return the <A>p</A>-quotient specified by <A>options</A> of the fp or pc <M>p</M>-group
<A>F</A>, as an <E>fp group</E> which has a standard presentation. Here <A>options</A>
is a selection of the options from the following list (see
Chapter&nbsp;<Ref Chap="ANUPQ Options" Style="Text"/> for detailed descriptions).
Section&nbsp;<Ref Sect="Hints and Warnings regarding the use of Options" Style="Text"/>
gives some important hints and warnings
regarding option usage, and Section&nbsp;<Ref BookName="ref" Label="Function Call With Options" Style="Text"/> in
the &GAP; Reference Manual describes their <Q>record</Q>-like syntax.

<List>
<Item>
  <C>Prime := <A>p</A></C><Index>option Prime</Index>
</Item>
<Item>
  <C>pQuotient := <A>Q</A></C><Index>option pQuotient</Index>
</Item>
<Item>
  <C>ClassBound := <A>n</A></C><Index>option ClassBound</Index>
</Item>
<Item>
  <C>Exponent := <A>n</A></C><Index>option Exponent</Index>
</Item>
<Item>
  <C>Metabelian</C><Index>option Metabelian</Index>
</Item>
<Item>
  <C>GroupName := <A>name</A></C><Index>option GroupName</Index>
</Item>
<Item>
  <C>OutputLevel := <A>n</A></C><Index>option OutputLevel</Index>
</Item>
<Item>
  <C>StandardPresentationFile := <A>filename</A></C><Index>option StandardPresentationFile</Index>
</Item>
<Item>
  <C>SetupFile := <A>filename</A></C><Index>option SetupFile</Index>
</Item>
<Item>
  <C>PqWorkspace := <A>workspace</A></C><Index>option PqWorkspace</Index>
</Item>
</List>

Unless <A>F</A> is a pc <A>p</A>-group, the user <E>must</E> supply either the option
<C>Prime</C> or the option <C>pQuotient</C> (if both <C>Prime</C> and <C>pQuotient</C> are
supplied, the prime <A>p</A> is determined by applying <C>PrimePGroup</C>
(see&nbsp;<Ref BookName="ref" Attr="PrimePGroup" Style="Text"/> in the Reference Manual) to the value of
<C>pQuotient</C>).
<P/>

The options for <C>PqStandardPresentation</C> may also be passed in the two
other alternative ways described for <C>Pq</C> (see&nbsp;<Ref Func="Pq" Style="Text"/>). <C>StandardPresentation</C>
does not provide these alternative ways of passing options.
<P/>

<E>Notes:</E>
In contrast to the function <C>Pq</C> (see&nbsp;<Ref Func="Pq" Style="Text"/>) which returns a pc group,
<C>PqStandardPresentation</C> or <C>StandardPresentation</C> returns an fp group.
This is because the output is mainly used for isomorphism testing for
which an fp group is enough. However, the presentation is a polycyclic
presentation and if you need to do any further computation with this
group (e.g.&nbsp;to find the order) you can use the function <C>PcGroupFpGroup</C>
(see&nbsp;<Ref BookName="ref" Func="PcGroupFpGroup" Style="Text"/> in the &GAP; Reference Manual) to form a pc
group.
<P/>

If the user does not supply a <A>p</A>-quotient <A>Q</A> via the <C>pQuotient</C> option
and the prime <A>p</A> is either supplied or <A>F</A> is a pc <A>p</A>-group, then a
<A>p</A>-quotient <A>Q</A> is computed. If the user does supply a <A>p</A>-quotient <A>Q</A>
via the <C>pQuotient</C> option, the package &AutPGrp; is called to compute
the automorphism group of <A>Q</A>; an error will occur that asks the user to
install the package &AutPGrp; if the automorphism group cannot be
computed.
<P/>

The attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> are set for the group returned by <C>PqStandardPresentation</C> or
<C>StandardPresentation</C> (see Section&nbsp;<Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/>).
<P/>

We illustrate the method with the following examples.

<Example><![CDATA[
gap> F := FreeGroup( "a", "b" );; a := F.1;; b := F.2;;
gap> G := F / [a^25, Comm(Comm(b, a), a), b^5];
<fp group on the generators [ a, b ]>
gap> S := StandardPresentation( G : Prime := 5, ClassBound := 10 );
<fp group on the generators [ f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, 
  f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26 ]>
gap> IsPcGroup( S );
false
gap> # if we need to compute with S we should convert it to a pc group
gap> Spc := PcGroupFpGroup( S );
<pc group of size 1490116119384765625 with 26 generators>
gap> 
gap> H := F / [ a^625, Comm(Comm(Comm(Comm(b, a), a), a), a)/Comm(b, a)^5,
>               Comm(Comm(b, a), b), b^625 ];;
gap> StandardPresentation( H : Prime := 5, ClassBound := 15, Metabelian );
<fp group on the generators [ f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, 
  f12, f13, f14, f15, f16, f17, f18, f19, f20 ]>
gap> 
gap> F4 := FreeGroup( "a", "b", "c", "d" );;
gap> a := F4.1;; b := F4.2;; c := F4.3;; d := F4.4;;
gap> G4 := F4 / [ b^4, b^2 / Comm(Comm (b, a), a), d^16,
>                 a^16 / (c * d), b^8 / (d * c^4) ];
<fp group on the generators [ a, b, c, d ]>
gap> K := Pq( G4 : Prime := 2, ClassBound := 1 );
<pc group of size 4 with 2 generators>
gap> StandardPresentation( G4 : pQuotient := K, ClassBound := 14 );
<fp group with 53 generators>
]]></Example>

Typing: <C>PqExample( "StandardPresentation" );</C> runs the above example in
&GAP; (see&nbsp;<Ref Func="PqExample" Style="Text"/>).
</Description>
</ManSection>

<ManSection>
<Func Name="EpimorphismPqStandardPresentation" Arg="F : options"/>
<Meth Name="EpimorphismStandardPresentation" Arg="F : options"/>
<Description>
Each of the above functions accepts the same arguments and options as the
function <C>StandardPresentation</C> (see&nbsp;<Ref Func="StandardPresentation" Style="Text"/>) and returns
an epimorphism from the fp or pc group <A>F</A> onto the finitely presented
group given by a standard presentation, i.e.&nbsp;if <A>S</A> is the standard
presentation computed for the <M>p</M>-quotient of <A>F</A> by
<C>StandardPresentation</C> then <C>EpimorphismStandardPresentation</C> returns the
epimorphism from <A>F</A> to the group with presentation <A>S</A>.
<P/>

<E>Note:</E>
The attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> are set for the image group of the epimorphism returned by
<C>EpimorphismPqStandardPresentation</C> or <C>EpimorphismStandardPresentation</C>
(see Section&nbsp;<Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/>).
<P/>

We illustrate the function with the following example.

<Example><![CDATA[
gap> F := FreeGroup(6, "F");
<free group on the generators [ F1, F2, F3, F4, F5, F6 ]>
gap> # For printing GAP uses the symbols F1, ... for the generators of F
gap> x := F.1;; y := F.2;; z := F.3;; w := F.4;; a := F.5;; b := F.6;;
gap> R := [x^3 / w, y^3 / w * a^2 * b^2, w^3 / b,
>          Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z^3 ];;
gap> Q := F / R;
<fp group on the generators [ F1, F2, F3, F4, F5, F6 ]>
gap> # For printing GAP also uses the symbols F1, ... for the generators of Q
gap> # (the same as used for F) ... but the gen'rs of Q and F are different:
gap> GeneratorsOfGroup(F) = GeneratorsOfGroup(Q);
false
gap> G := Pq( Q : Prime := 3, ClassBound := 3 );
<pc group of size 729 with 6 generators>
gap> phi := EpimorphismStandardPresentation( Q : Prime := 3,
>                                                ClassBound := 3 );
[ F1, F2, F3, F4, F5, F6 ] -> [ f1*f2^2*f3*f4^2*f5^2, f1*f2*f3*f5, f3^2, 
  f4*f6^2, f5, f6 ]
gap> Source(phi); # This is the group Q (GAP uses F1, ... for gen'r symbols)
<fp group of size infinity on the generators [ F1, F2, F3, F4, F5, F6 ]>
gap> Range(phi);  # This is the group G (GAP uses f1, ... for gen'r symbols)
<fp group on the generators [ f1, f2, f3, f4, f5, f6 ]>
gap> AssignGeneratorVariables(G);
#I  Assigned the global variables [ f1, f2, f3, f4, f5, f6 ]
gap> # Just to see that the images of [F1, ..., F6] do generate G
gap> Group([ f1*f2^2*f3, f1*f2*f3*f4*f5^2*f6^2, f3^2, f4, f5, f6 ]) = G;
true
gap> Size( Image(phi) );
729
]]></Example>

Typing: <C>PqExample( "EpimorphismStandardPresentation" );</C> runs the above
example in &GAP; (see&nbsp;<Ref Func="PqExample" Style="Text"/>). Note that <C>AssignGeneratorVariables</C>
(see&nbsp;<Ref BookName="ref" Func="AssignGeneratorVariables" Style="Text"/>)
has only been available since &GAP;&nbsp;4.3.
</Description>
</ManSection>

</Section>


<Section Label="Testing p-Groups for Isomorphism">
<Heading>Testing p-Groups for Isomorphism</Heading>

<ManSection>
<Func Name="IsPqIsomorphicPGroup" Arg="G, H"/>
<Meth Name="IsIsomorphicPGroup" Arg="G, H"/>
<Description>
each return true if <A>G</A> is isomorphic to <A>H</A>, where both <A>G</A> and <A>H</A> must
be pc groups of prime power order. These functions compute and compare
in &GAP; the fp groups given by standard presentations for <A>G</A> and <A>H</A>
(see <Ref Func="StandardPresentation" Style="Text"/>).

<Example><![CDATA[
gap> G := Group( (1,2,3,4), (1,3) );
Group([ (1,2,3,4), (1,3) ])
gap> P1 := Image( IsomorphismPcGroup( G ) );
Group([ f1, f2, f3 ])
gap> P2 := ElementaryAbelianGroup( 8 );
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup( P1, P2 );
false
gap> P3 := QuaternionGroup( 8 );
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup( P1, P3 );
false
gap> P4 := DihedralGroup( 8 );
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup( P1, P4 );
true
]]></Example>

Typing: <C>PqExample( "IsIsomorphicPGroup" );</C> runs the above example in
&GAP; (see&nbsp;<Ref Func="PqExample" Style="Text"/>).
</Description>
</ManSection>

</Section>


<Section Label="Computing Descendants of a p-Group">
<Heading>Computing Descendants of a p-Group</Heading>

<ManSection>
<Func Name="PqDescendants" Arg="G : options"/>
<Description>
returns, for the pc group <A>G</A> which must be of prime power order with a
confluent pc presentation (see&nbsp;<Ref BookName="ref" Func="IsConfluent" Label="for pc groups" Style="Text"/> in the
&GAP; Reference Manual), a list of proper descendants (pc groups) of <A>G</A>.
Following the colon <A>options</A> a selection of the options listed below
should be given, separated by commas like record components (see
Section&nbsp;<Ref BookName="ref" Label="Function Call With Options" Style="Text"/> in the &GAP; Reference Manual).
See Chapter&nbsp;<Ref Chap="ANUPQ Options" Style="Text"/> for detailed descriptions of the options.
<P/>

The automorphism group of each descendant <A>D</A> is also computed via a call
to the <C>AutomorphismGroupPGroup</C> function of the &AutPGrp; package.
<!-- %For each descendant <A>D</A>, a subgroup of the automorphism group of <A>D</A> is -->
<!-- %computed which is a supplement to the inner automorphisms of <A>D</A> in the -->
<!-- %whole automorphism group of <A>D</A>. This subgroup can be accessed via the -->
<!-- %function <C>PqSupplementInnerAutomorphisms</C> -->
<!-- %(see&nbsp;<Ref Func="PqSupplementInnerAutomorphisms" Style="Text"/>). -->

<List>
<Item>
  <C>ClassBound := <A>n</A></C><Index>option ClassBound</Index>
</Item>
<Item>
  <C>Relators := <A>rels</A></C><Index>option Relators</Index>
</Item>
<Item>
  <C>OrderBound := <A>n</A></C><Index>option OrderBound</Index>
</Item>
<Item>
  <C>StepSize := <A>n</A></C>, <C>StepSize := <A>list</A></C>
  <Index>option StepSize</Index>
</Item>
<Item>
  <C>RankInitialSegmentSubgroups := <A>n</A></C><Index>option RankInitialSegmentSubgroups</Index>
</Item>
<Item>
  <C>SpaceEfficient</C><Index>option SpaceEfficient</Index>
</Item>
<Item>
  <C>CapableDescendants</C><Index>option CapableDescendants</Index>
</Item>
<Item>
  <C>AllDescendants := false</C><Index>option AllDescendants</Index>
</Item>
<Item>
  <C>Exponent := <A>n</A></C><Index>option Exponent</Index>
</Item>
<Item>
  <C>Metabelian</C><Index>option Metabelian</Index>
</Item>
<Item>
  <C>GroupName := <A>name</A></C><Index>option GroupName</Index>
</Item>
<Item>
  <C>SubList := <A>sub</A></C><Index>option SubList</Index>
</Item>
<Item>
  <C>BasicAlgorithm</C><Index>option BasicAlgorithm</Index>
</Item>
<Item>
  <C>CustomiseOutput := <A>rec</A></C><Index>option CustomiseOutput</Index>
</Item>
<Item>
  <C>SetupFile := <A>filename</A></C><Index>option SetupFile</Index>
</Item>
<Item>
  <C>PqWorkspace := <A>workspace</A></C><Index>option PqWorkspace</Index>
</Item>
</List>

<E>Notes:</E>
The function <C>PqDescendants</C> uses the automorphism group of <A>G</A> which it
computes via the package &AutPGrp;. If this package is not installed an
error may be raised. If the automorphism group of <A>G</A> is insoluble, the
<C>anu-pq</C> program will call &GAP; together with the &AutPGrp; package for
certain orbit-stabilizer calculations. (So, in any case, one should
ensure the &AutPGrp; package is installed.)
<P/>

The attributes and property <C>NuclearRank</C>, <C>MultiplicatorRank</C> and
<C>IsCapable</C> are set for each group of the list returned by
<C>PqDescendants</C> (see Section&nbsp;<Ref Sect="Attributes and a Property for fp and pc p-groups" Style="Text"/>).
<P/>

The options <A>options</A> for <C>PqDescendants</C> may be passed in an alternative
manner to that already described, namely you can pass <C>PqDescendants</C> a
record as an argument, which contains as entries some (or all) of the
above mentioned. Those parameters which do not occur in the record are
set to their default values.
<P/>

Note that you cannot set both <C>OrderBound</C> and <C>StepSize</C>.
<P/>

In the first example we compute all proper descendants of the Klein four group
which have exponent-2 class at most 5 and order at most <M>2^6</M>.

<Example><![CDATA[
gap> F := FreeGroup( "a", "b" );; a := F.1;; b := F.2;;
gap> G := PcGroupFpGroup( F / [ a^2, b^2, Comm(b, a) ] );
<pc group of size 4 with 2 generators>
gap> des := PqDescendants( G : OrderBound := 6, ClassBound := 5 );;
gap> Length(des);
83
gap> List(des, Size); 
[ 8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32, 
  32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 
  64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64, 
  64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 
  64, 64, 64, 64, 64, 64, 64 ]
gap> List(des, d -> Length( PCentralSeries( d, 2 ) ) - 1 );
[ 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 
  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
  4, 4, 4, 5, 5, 5, 5, 5 ]
]]></Example>

Below, we compute all capable descendants of order 27 of the elementary
abelian group of order 9.

<Example><![CDATA[
gap> F := FreeGroup( 2, "g" );
<free group on the generators [ g1, g2 ]>
gap> G := PcGroupFpGroup( F / [ F.1^3, F.2^3, Comm(F.1, F.2) ] );
<pc group of size 9 with 2 generators>
gap> des := PqDescendants( G : OrderBound := 3, ClassBound := 2,
>                              CapableDescendants );
[ <pc group of size 27 with 3 generators>, 
  <pc group of size 27 with 3 generators> ]
gap> List(des, d -> Length( PCentralSeries( d, 3 ) ) - 1 );
[ 2, 2 ]
gap> # For comparison let us now compute all proper descendants
gap> PqDescendants( G : OrderBound := 3, ClassBound := 2);
[ <pc group of size 27 with 3 generators>, 
  <pc group of size 27 with 3 generators>, 
  <pc group of size 27 with 3 generators> ]
]]></Example>

In the third example, we compute all proper capable descendants of the
elementary abelian group of order <M>5^2</M> which have exponent-<M>5</M> class at
most <M>3</M>, exponent <M>5</M>, and are metabelian.

<Example><![CDATA[
gap> F := FreeGroup( 2, "g" );;
gap> G := PcGroupFpGroup( F / [ F.1^5, F.2^5, Comm(F.2, F.1) ] );
<pc group of size 25 with 2 generators>
gap> des := PqDescendants( G : Metabelian, ClassBound := 3,
>                              Exponent := 5, CapableDescendants );
[ <pc group of size 125 with 3 generators>, 
  <pc group of size 625 with 4 generators>, 
  <pc group of size 3125 with 5 generators> ]
gap> List(des, d -> Length( PCentralSeries( d, 5 ) ) - 1 );
[ 2, 3, 3 ]
gap> List(des, d -> Length( DerivedSeries( d ) ) );
[ 3, 3, 3 ]
gap> List(des, d -> Maximum( List( d, Order ) ) );
[ 5, 5, 5 ]
]]></Example>

The examples <C>"PqDescendants-1"</C>, <C>"PqDescendants-2"</C> and
<C>"PqDescendants-3"</C> (in order) are essentially the same as the above
three examples (see&nbsp;<Ref Func="PqExample" Style="Text"/>).
</Description>
</ManSection>

<ManSection>
<Func Name="PqSupplementInnerAutomorphisms" Arg="D"/>
<Description>
returns a generating set for a supplement to the inner automorphisms of
<A>D</A>, in the form of a record with fields <C>agAutos</C>, <C>agOrder</C> and
<C>glAutos</C>, as provided by the <C>anu-pq</C> program. One should be very careful in
using these automorphisms for a descendant calculation.
<!-- %The automorphisms generate a subgroup of the automorphism group of the pc -->
<!-- %group <A>D</A> that supplements the inner automorphism group of <A>D</A> in the -->
<!-- %whole automorphism group of <A>D</A>. The group of automorphisms returned may -->
<!-- %be a proper subgroup of the full automorphism group. The descendant <A>D</A> -->
<!-- %must have been computed by the function <C>PqDescendants</C> -->
<!-- %(see&nbsp;<Ref Func="PqDescendants" Style="Text"/>). -->
<P/>

<E>Note:</E>
In principle there must be a way to use those automorphisms in order to
compute descendants but there does not seem to be a way to hand back
these automorphisms properly to the <C>anu-pq</C> program.

<Example><![CDATA[
gap> Q := Pq( FreeGroup(2) : Prime := 3, ClassBound := 1 );
<pc group of size 9 with 2 generators>
gap> des := PqDescendants( Q : StepSize := 1 );
[ <pc group of size 27 with 3 generators>, 
  <pc group of size 27 with 3 generators>, 
  <pc group of size 27 with 3 generators> ]
gap> S := PqSupplementInnerAutomorphisms( des[3] );
rec( agAutos := [  ], agOrder := [ 3, 2, 2, 2 ], 
  glAutos := [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2^2, f2, f3 ], 
      Pcgs([ f1, f2, f3 ]) -> [ f1^2, f2, f3^2 ], 
      Pcgs([ f1, f2, f3 ]) -> [ f1^2, f2, f3^2 ] ] )
gap> A := AutomorphismGroupPGroup( des[3] );
rec( 
  agAutos := [ Pcgs([ f1, f2, f3 ]) -> [ f1^2, f2, f3^2 ], 
      Pcgs([ f1, f2, f3 ]) -> [ f1*f2^2, f2, f3 ], 
      Pcgs([ f1, f2, f3 ]) -> [ f1*f3, f2, f3 ], 
      Pcgs([ f1, f2, f3 ]) -> [ f1, f2*f3, f3 ] ], agOrder := [ 2, 3, 3, 3 ], 
  glAutos := [  ], glOper := [  ], glOrder := 1, 
  group := <pc group of size 27 with 3 generators>, 
  one := IdentityMapping( <pc group of size 27 with 3 generators> ), 
  size := 54 )
]]></Example>

Typing: <C>PqExample( "PqSupplementInnerAutomorphisms" );</C> runs the above
example in &GAP; (see&nbsp;<Ref Func="PqExample" Style="Text"/>).
<P/>

Note that by also including <C>PqStart</C> as a second argument to <C>PqExample</C>
one can see how it is possible, with the aid of <C>PqSetPQuotientToGroup</C>
(see&nbsp;<Ref Func="PqSetPQuotientToGroup" Style="Text"/>), to do the equivalent computations with the
interactive versions of <C>Pq</C> and <C>PqDescendants</C> and a single <C>anu-pq</C>
process (recall <C>anu-pq</C> is the name of the external C program).
</Description>
</ManSection>

<ManSection>
<Func Name="PqList" Arg="filename : [SubList := sub]"/>
<Description>
reads a file with name <A>filename</A> (a string) and returns the list <A>L</A> of
pc groups (or with option <C>SubList</C> a sublist of <A>L</A> or a single pc group
in <A>L</A>) defined in that file. If the option <C>SubList</C> is passed and has
the value <A>sub</A>, then it has the same meaning as for <C>PqDescendants</C>,
i.e.&nbsp;if <A>sub</A> is an integer then <C>PqList</C> returns <C><A>L</A>[<A>sub</A>]</C>;
otherwise, if <A>sub</A> is a list of integers <C>PqList</C> returns <C>Sublist(<A>L</A>,
<A>sub</A> )</C>.
<P/>

Both <C>PqList</C> and <C>SavePqList</C> (see <Ref Func="SavePqList" Style="Text"/>) can be used to save and
restore a list of descendants (see <Ref Func="PqDescendants" Style="Text"/>).
</Description>
</ManSection>

<ManSection>
<Func Name="SavePqList" Arg="filename, list"/>
<Description>
writes a list of descendants <A>list</A> to a file with name <A>filename</A> (a
string).
<P/>

<C>SavePqList</C> and <C>PqList</C> (see <Ref Func="PqList" Style="Text"/>) can be used to save and restore,
respectively, the results of <C>PqDescendants</C> (see <Ref Func="PqDescendants" Style="Text"/>).
</Description>
</ManSection>


</Section>

</Chapter>