File: tutorial.xml

package info (click to toggle)
gap-atlasrep 2.1.0-3
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 6,968 kB
  • sloc: xml: 20,739; javascript: 154; makefile: 139
file content (1466 lines) | stat: -rwxr-xr-x 48,645 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466

<!-- %W  tutorial.xml    GAP 4 package AtlasRep             Thomas Breuer -->
<!-- %Y  Copyright 2008, Lehrstuhl D für Mathematik, RWTH Aachen, Germany -->


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Chapter Label="chap:tutorial">
<Heading>Tutorial for the &AtlasRep; Package</Heading>

This chapter gives an overview of the basic functionality
provided by the &AtlasRep; package.
The main concepts and interface functions are presented in the first three
sections,
and Section&nbsp;<Ref Sect="sect:Examples of Using the AtlasRep Package"/>
shows a few small examples.

<P/>

Let us first fix the setup for the examples shown in the package manual.

<P/>

<Enum>
<Item>
First of all, we load the &AtlasRep; package.
Some of the examples require also the &GAP; packages
<Package>CTblLib</Package> and <Package>TomLib</Package>,
so we load also these packages.

<P/>

<Example><![CDATA[
gap> LoadPackage( "AtlasRep", false );
true
gap> LoadPackage( "CTblLib", false );
true
gap> LoadPackage( "TomLib", false );
true
]]></Example>
</Item>
<Item>
Depending on the terminal capabilities,
the output of <Ref Func="DisplayAtlasInfo"/>
may contain non-ASCII characters,
which are not supported by the &LaTeX; and HTML versions
of &GAPDoc; documents.
The examples in this manual are used for tests of the package's
functionality,
thus we set the user preference <C>DisplayFunction</C>
(see Section <Ref Subsect="subsect:DisplayFunction"/>)
to the value <C>"Print"</C>
in order to produce output consisting only of ASCII characters,
which is assumed to work in any terminal.

<P/>

<Example><![CDATA[
gap> origpref:= UserPreference( "AtlasRep", "DisplayFunction" );;
gap> SetUserPreference( "AtlasRep", "DisplayFunction", "Print" );
]]></Example>
</Item>
<Item>
The &GAP; output for the examples may look differently if data extensions
have been loaded.
In order to ignore these extensions in the examples,
we unload them.

<P/>

<Example><![CDATA[
gap> priv:= Difference(
>     List( AtlasOfGroupRepresentationsInfo.notified, x -> x.ID ),
>     [ "core", "internal" ] );;
gap> Perform( priv, AtlasOfGroupRepresentationsForgetData );
]]></Example>
</Item>
<Item>
If the info level of <Ref Var="InfoAtlasRep"/> is larger than zero then
additional output appears on the screen.
In order to avoid this output, we set the level to zero.

<Example><![CDATA[
gap> globallevel:= InfoLevel( InfoAtlasRep );;
gap> SetInfoLevel( InfoAtlasRep, 0 );
]]></Example>
</Item>
</Enum>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:tutaccessgroup">
<Heading>Accessing a Specific Group in &AtlasRep;</Heading>

An important database to which the &AtlasRep; package gives access
is the &ATLAS; of Group Representations <Cite Key="AGRv3"/>.
It contains generators and related data for several groups,
mainly for extensions of simple groups
(see Section&nbsp;<Ref Subsect="sect:tutnearlysimple"/>)
and for their maximal subgroups
(see Section&nbsp;<Ref Subsect="sect:tutmaxes"/>).

<P/>

In general, these data are not part of the package.
They are downloaded as soon as they are needed for the first time,
see Section&nbsp;<Ref Subsect="subsect:AtlasRepAccessRemoteFiles"/>.


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:tutnearlysimple">
<Heading>Accessing a Group in &AtlasRep; via its Name</Heading>

Each group that occurs in this database is specified by a <E>name</E>,
which is a string similar to the name used in the &ATLAS; of Finite Groups
<Cite Key="CCN85"/>.
For those groups whose character tables are contained in the
&GAP; Character Table Library&nbsp;<Cite Key="CTblLib"/>,
the names are equal to the
<Ref Func="Identifier" Label="for character tables" BookName="ref"/>
values of these character tables.
Examples of such names are
<C>"M24"</C> for the Mathieu group <M>M_{24}</M>,
<C>"2.A6"</C> for the double cover of the alternating group <M>A_6</M>, and
<C>"2.A6.2_1"</C> for the double cover of the symmetric group <M>S_6</M>.
The names that actually occur are listed in the first column of the
overview table that is printed by the function
<Ref Func="DisplayAtlasInfo"/>, called without arguments, see below.
The other columns of the table describe the data that are available in the
database.

<P/>

For example, <Ref Func="DisplayAtlasInfo"/> may print the following lines.
Omissions are indicated with <Q><C>...</C></Q>.

<Log><![CDATA[
gap> DisplayAtlasInfo();
group                    |  # | maxes | cl | cyc | out | fnd | chk | prs
-------------------------+----+-------+----+-----+-----+-----+-----+----
...
2.A5                     | 26 |     3 |    |     |     |     |  +  |  + 
2.A5.2                   | 11 |     4 |    |     |     |     |  +  |  + 
2.A6                     | 18 |     5 |    |     |     |     |     |    
2.A6.2_1                 |  3 |     6 |    |     |     |     |     |    
2.A7                     | 24 |     2 |    |     |     |     |     |    
2.A7.2                   |  7 |       |    |     |     |     |     |    
...
M22                      | 58 |     8 |  + |  +  |     |  +  |  +  |  + 
M22.2                    | 46 |     7 |  + |  +  |     |  +  |  +  |  + 
M23                      | 66 |     7 |  + |  +  |     |  +  |  +  |  + 
M24                      | 62 |     9 |  + |  +  |     |  +  |  +  |  + 
McL                      | 46 |    12 |  + |  +  |     |  +  |  +  |  + 
McL.2                    | 27 |    10 |    |  +  |     |  +  |  +  |  + 
O7(3)                    | 28 |       |    |     |     |     |     |    
O7(3).2                  |  3 |       |    |     |     |     |     |    
...
Suz                      | 30 |    17 |    |  +  |   2 |  +  |  +  |    
...
]]></Log>

<P/>

Called with a group name as the only argument,
the function <Ref Func="AtlasGroup" Label="for various arguments"/> returns
a group isomorphic to the group with the given name, or <K>fail</K>.
If permutation generators are available in the database
then a permutation group (of smallest available degree) is returned,
otherwise a matrix group.

<Example><![CDATA[
gap> g:= AtlasGroup( "M24" );
Group([ (1,4)(2,7)(3,17)(5,13)(6,9)(8,15)(10,19)(11,18)(12,21)(14,16)
  (20,24)(22,23), (1,4,6)(2,21,14)(3,9,15)(5,18,10)(13,17,16)
  (19,24,23) ])
gap> IsPermGroup( g );  NrMovedPoints( g );  Size( g );
true
24
244823040
gap> AtlasGroup( "J5" );
fail
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:tutmaxes">
<Heading>Accessing a Maximal Subgroup of a Group in &AtlasRep;</Heading>

Many maximal subgroups of extensions of simple groups can be constructed
using the function
<Ref Func="AtlasSubgroup"
 Label="for a group name (and various arguments) and a number"/>.
Given the name of the extension of the simple group
and the number of the conjugacy class of maximal subgroups,
this function returns a representative from this class.

<Example><![CDATA[
gap> g:= AtlasSubgroup( "M24", 1 );
Group([ (2,10)(3,12)(4,14)(6,9)(8,16)(15,18)(20,22)(21,24), (1,7,2,9)
  (3,22,10,23)(4,19,8,12)(5,14)(6,18)(13,16,17,24) ])
gap> IsPermGroup( g );  NrMovedPoints( g );  Size( g );
true
23
10200960
gap> AtlasSubgroup( "M24", 100 );
fail
]]></Example>

The classes of maximal subgroups are ordered
w.&nbsp;r.&nbsp;t.&nbsp;decreasing subgroup order.
So the first class contains maximal subgroups of smallest index.

<P/>

Note that groups obtained by <Ref Func="AtlasSubgroup"
 Label="for a group name (and various arguments) and a number"/> may be
not very suitable for computations in the sense that much nicer
representations exist.
For example, the sporadic simple O'Nan group <M>O'N</M> contains a
maximal subgroup <M>S</M> isomorphic with the Janko group <M>J_1</M>;
the smallest permutation representation of <M>O'N</M> has degree <M>122760</M>,
and restricting this representation to <M>S</M> yields a representation of
<M>J_1</M> of that degree.
However,
<M>J_1</M> has a faithful permutation representation of degree <M>266</M>,
which admits much more efficient computations.
If you are just interested in <M>J_1</M> and not in
its embedding into <M>O'N</M>
then one possibility to get a <Q>nicer</Q> faithful representation is to call
<Ref Func="SmallerDegreePermutationRepresentation" BookName="ref"/>.
In the abovementioned example, this works quite well;
note that in general,
we cannot expect that we get a representation of smallest degree in this way.

<Example><![CDATA[
gap> s:= AtlasSubgroup( "ON", 3 );
<permutation group of size 175560 with 2 generators>
gap> NrMovedPoints( s );  Size( s );
122760
175560
gap> hom:= SmallerDegreePermutationRepresentation( s );;
gap> NrMovedPoints( Image( hom ) );
1540
]]></Example>

<!-- in earlier times, one got the degree 266 representation -->

<P/>

In this particular case, one could of course also ask directly for the group
<M>J_1</M>.

<Example><![CDATA[
gap> j1:= AtlasGroup( "J1" );
<permutation group of size 175560 with 2 generators>
gap> NrMovedPoints( j1 );
266
]]></Example>

If you have a group <M>G</M>, say,
and you are really interested in the embedding of a maximal subgroup of
<M>G</M> into <M>G</M> then an easy way to get compatible generators is to
create <M>G</M> with <Ref Func="AtlasGroup" Label="for various arguments"/>
and then to call <Ref Func="AtlasSubgroup" Label="for a group and a number"/>
with first argument the group <M>G</M>.

<Example><![CDATA[
gap> g:= AtlasGroup( "ON" );
<permutation group of size 460815505920 with 2 generators>
gap> s:= AtlasSubgroup( g, 3 );
<permutation group of size 175560 with 2 generators>
gap> IsSubset( g, s );
true
gap> IsSubset( g, j1 );
false
]]></Example>


</Subsection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:tutaccessrepres">
<Heading>Accessing Specific Generators in &AtlasRep;</Heading>

The function <Ref Func="DisplayAtlasInfo"/>, called with an admissible
name of a group as the only argument,
lists the &ATLAS; data available for this group.

<Example><![CDATA[
gap> DisplayAtlasInfo( "A5" );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 1: G <= Sym(5)                  3-trans., on cosets of A4 (1st max.)
 2: G <= Sym(6)                  2-trans., on cosets of D10 (2nd max.)
 3: G <= Sym(10)                 rank 3, on cosets of S3 (3rd max.)
 4: G <= GL(4a,2)                character 4a
 5: G <= GL(4b,2)                character 2ab
 6: G <= GL(4,3)                 character 4a
 7: G <= GL(6,3)                 character 3ab
 8: G <= GL(2a,4)                character 2a
 9: G <= GL(2b,4)                character 2b
10: G <= GL(3,5)                 character 3a
11: G <= GL(5,5)                 character 5a
12: G <= GL(3a,9)                character 3a
13: G <= GL(3b,9)                character 3b
14: G <= GL(4,Z)                 character 4a
15: G <= GL(5,Z)                 character 5a
16: G <= GL(6,Z)                 character 3ab
17: G <= GL(3a,Field([Sqrt(5)])) character 3a
18: G <= GL(3b,Field([Sqrt(5)])) character 3b

Programs for G = A5:    (all refer to std. generators 1)
--------------------
- class repres.*      
- presentation        
- maxes (all 3):
  1:  A4              
  2:  D10             
  3:  S3              
- std. gen. checker:
  (check)             
  (pres)              
]]></Example>

In order to fetch one of the listed permutation groups or matrix groups,
you can call <Ref Func="AtlasGroup" Label="for various arguments"/>
with second argument the function
<Ref Func="Position" BookName="ref"/> and third argument the position in
the list.

<Example><![CDATA[
gap> AtlasGroup( "A5", Position, 1 );
Group([ (1,2)(3,4), (1,3,5) ])
]]></Example>

Note that this approach may yield a different group after
a data extension has been loaded.

<P/>

Alternatively, you can describe the desired group by conditions,
such as the degree in the case of a permutation group,
and the dimension and the base ring in the case of a matrix group.

<Example><![CDATA[
gap> AtlasGroup( "A5", NrMovedPoints, 10 );
Group([ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ])
gap> AtlasGroup( "A5", Dimension, 4, Ring, GF(2) );
<matrix group of size 60 with 2 generators>
]]></Example>

<P/>

The same holds for the restriction to maximal subgroups:
Use
<Ref Func="AtlasSubgroup"
 Label="for a group name (and various arguments) and a number"/>
with the same arguments as
<Ref Func="AtlasGroup" Label="for various arguments"/>,
except that additionally the number of the class of maximal subgroups
is entered as the last argument.
Note that the conditions refer to the group, not to the subgroup;
it may happen that the subgroup moves fewer points than the big group.

<Example><![CDATA[
gap> AtlasSubgroup( "A5", Dimension, 4, Ring, GF(2), 1 );
<matrix group of size 12 with 2 generators>
gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 10, 3 );
Group([ (2,4)(3,5)(6,8)(7,10), (1,4)(3,8)(5,7)(6,10) ])
gap> Size( g );  NrMovedPoints( g );
6
9
]]></Example>


</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:tutconcepts">
<Heading>Basic Concepts used in &AtlasRep;</Heading>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:tutstdgens">
<Heading>Groups, Generators, and Representations</Heading>

Up to now, we have talked only about groups and subgroups.
The &AtlasRep; package provides access to
<E>group generators</E>,
and in fact these generators have the property that mapping one set of
generators to another set of generators for the same group defines an
isomorphism.
These generators are called <E>standard generators</E>,
see Section&nbsp;<Ref Sect="sect:Standard Generators Used in AtlasRep"/>.

<P/>

So instead of thinking about several generating sets of a group <M>G</M>,
say, we can think about one abstract group <M>G</M>, with one fixed set
of generators,
and mapping these generators to any set of generators provided by
&AtlasRep; defines a representation of <M>G</M>.
This viewpoint had motivated the name <Q>&ATLAS; of Group Representations</Q>
for the core part of the database.

<P/>

If you are interested in the generators provided by the database
rather than in the groups they generate,
you can use the function <Ref Func="OneAtlasGeneratingSetInfo"/>
instead of <Ref Func="AtlasGroup" Label="for various arguments"/>,
with the same arguments.
This will yield a record that describes the representation in question.
Calling the function <Ref Func="AtlasGenerators"/> with this record
will then yield a record with the additional component <C>generators</C>,
which holds the list of generators.

<P/>

<Example><![CDATA[
gap> info:= OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 10 );
rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, 
  repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",
  standardization := 1, transitivity := 1, type := "perm" )
gap> info2:= AtlasGenerators( info );
rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
  contents := "core", 
  generators := [ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ], 
  groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, 
  repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",
  standardization := 1, transitivity := 1, type := "perm" )
gap> info2.generators;
[ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ]
]]></Example>

<P/>

The record <C>info</C> appears as the value of the attribute
<Ref Attr="AtlasRepInfoRecord" Label="for a group"/>
in groups that are returned by
<Ref Func="AtlasGroup" Label="for various arguments"/>.

<P/>

<Example><![CDATA[
gap> g:= AtlasGroup( "A5", NrMovedPoints, 10 );;
gap> AtlasRepInfoRecord( g );
rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, 
  repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",
  standardization := 1, transitivity := 1, type := "perm" )
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:tutslp">
<Heading>Straight Line Programs</Heading>

For computing certain group elements from standard generators, such as
generators of a subgroup or class representatives,
&AtlasRep; uses <E>straight line programs</E>,
see <Ref Sect="Straight Line Programs" BookName="ref"/>.
Essentially this means to evaluate words in the generators,
which is similar to <Ref Func="MappedWord" BookName="ref"/>
but can be more efficient.

<P/>

It can be useful to deal with these straight line programs,
see <Ref Func="AtlasProgram"/>.
For example, an automorphism <M>\alpha</M>, say, of the group <M>G</M>,
if available in &AtlasRep;,
is given by a straight line program that defines the images of standard
generators of <M>G</M>.
This way, one can for example compute the image of a subgroup <M>U</M> of
<M>G</M> under <M>\alpha</M> by first applying the straight line program
for <M>\alpha</M> to standard generators of <M>G</M>,
and then applying the straight line program for the restriction from
<M>G</M> to <M>U</M>.

<P/>

<Example><![CDATA[
gap> prginfo:= AtlasProgramInfo( "A5", "maxes", 1 );
rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], 
  size := 12, standardization := 1, subgroupname := "A4", 
  version := "1" )
gap> prg:= AtlasProgram( prginfo.identifier );
rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], 
  program := <straight line program>, size := 12, 
  standardization := 1, subgroupname := "A4", version := "1" )
gap> Display( prg.program );
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]*r[2];
r[4]:= r[2]*r[1];
r[5]:= r[3]*r[3];
r[1]:= r[5]*r[4];
# return values:
[ r[1], r[2] ]
gap> ResultOfStraightLineProgram( prg.program, info2.generators );
[ (1,10)(2,3)(4,9)(7,8), (1,2,3)(4,6,7)(5,8,9) ]
]]></Example>

</Subsection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:Examples of Using the AtlasRep Package">
<Heading>Examples of Using the &AtlasRep; Package</Heading>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:Example: Class Representatives">
<Heading>Example: Class Representatives</Heading>

First we show the computation of class representatives of the Mathieu group
<M>M_{11}</M>, in a <M>2</M>-modular matrix representation.
We start with the ordinary and Brauer character tables of this group.

<P/>

<Example><![CDATA[
gap> tbl:= CharacterTable( "M11" );;
gap> modtbl:= tbl mod 2;;
gap> CharacterDegrees( modtbl );
[ [ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ] ]
]]></Example>

<P/>

The output of <Ref Func="CharacterDegrees" BookName="ref"/>
means that the <M>2</M>-modular irreducibles of <M>M_{11}</M>
have degrees <M>1</M>, <M>10</M>, <M>16</M>, <M>16</M>, and <M>44</M>.

<P/>

Using <Ref Func="DisplayAtlasInfo"/>,
we find out that matrix generators for the irreducible <M>10</M>-dimensional
representation are available in the database.

<P/>

<Example><![CDATA[
gap> DisplayAtlasInfo( "M11", Characteristic, 2 );
Representations for G = M11:    (all refer to std. generators 1)
----------------------------
 6: G <= GL(10,2)  character 10a
 7: G <= GL(32,2)  character 16ab
 8: G <= GL(44,2)  character 44a
16: G <= GL(16a,4) character 16a
17: G <= GL(16b,4) character 16b
]]></Example>

<P/>

So we decide to work with this representation.
We fetch the generators and compute the list of class representatives
of <M>M_{11}</M> in the representation.
The ordering of class representatives is the same as that in the character
table of the &ATLAS; of Finite Groups (<Cite Key="CCN85"/>),
which coincides with the ordering of columns in the &GAP; table we have
fetched above.

<P/>

<Example><![CDATA[
gap> info:= OneAtlasGeneratingSetInfo( "M11", Characteristic, 2,
>                                             Dimension, 10 );;
gap> gens:= AtlasGenerators( info.identifier );;
gap> ccls:= AtlasProgram( "M11", gens.standardization, "classes" );
rec( groupname := "M11", identifier := [ "M11", "M11G1-cclsW1", 1 ], 
  outputs := [ "1A", "2A", "3A", "4A", "5A", "6A", "8A", "8B", "11A", 
      "11B" ], program := <straight line program>, 
  standardization := 1, version := "1" )
gap> reps:= ResultOfStraightLineProgram( ccls.program, gens.generators );;
]]></Example>

<P/>

If we would need only a few class representatives, we could use
the &GAP; library function <Ref Func="RestrictOutputsOfSLP" BookName="ref"/>
to create a straight line program that computes only specified outputs.
Here is an example where only the class representatives of order eight are
computed.

<P/>

<Example><![CDATA[
gap> ord8prg:= RestrictOutputsOfSLP( ccls.program,
>                   Filtered( [ 1 .. 10 ], i -> ccls.outputs[i][1] = '8' ) );
<straight line program>
gap> ord8reps:= ResultOfStraightLineProgram( ord8prg, gens.generators );;
gap> List( ord8reps, m -> Position( reps, m ) );
[ 7, 8 ]
]]></Example>

<P/>

Let us check that the class representatives have the right orders.

<P/>

<Example><![CDATA[
gap> List( reps, Order ) = OrdersClassRepresentatives( tbl );
true
]]></Example>

<P/>

From the class representatives, we can compute the Brauer character
we had started with.
This Brauer character is defined on all classes of the <M>2</M>-modular
table.
So we first pick only those representatives,
using the &GAP; function <Ref Func="GetFusionMap" BookName="ref"/>;
in this situation, it returns the class fusion from the Brauer table into
the ordinary table.

<P/>

<Example><![CDATA[
gap> fus:= GetFusionMap( modtbl, tbl );
[ 1, 3, 5, 9, 10 ]
gap> modreps:= reps{ fus };;
]]></Example>

<P/>

Then we call the &GAP; function
<Ref Func="BrauerCharacterValue" BookName="ref"/>,
which computes the Brauer character value from the matrix given.

<P/>

<Example><![CDATA[
gap> char:= List( modreps, BrauerCharacterValue );
[ 10, 1, 0, -1, -1 ]
gap> Position( Irr( modtbl ), char );
2
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:Example: Permutation and Matrix Representations">
<Heading>Example: Permutation and Matrix Representations</Heading>

The second example shows the computation of a permutation representation
from a matrix representation.
We work with the <M>10</M>-dimensional representation used above,
and consider the action on the <M>2^{10}</M> vectors of the underlying row
space.

<P/>

<Example><![CDATA[
gap> grp:= Group( gens.generators );;
gap> v:= GF(2)^10;;
gap> orbs:= Orbits( grp, AsList( v ) );;
gap> List( orbs, Length );
[ 1, 396, 55, 330, 66, 165, 11 ]
]]></Example>

<P/>

We see that there are six nontrivial orbits,
and we can compute the permutation actions on these orbits directly
using <Ref Func="Action" BookName="ref"/>.
However, for larger examples, one cannot write down all orbits on the
row space, so one has to use another strategy if one is interested in
a particular orbit.

<P/>

Let us assume that we are interested in the orbit of length <M>11</M>.
The point stabilizer is the first maximal subgroup of <M>M_{11}</M>,
thus the restriction of the representation to this subgroup has a
nontrivial fixed point space.
This restriction can be computed using the &AtlasRep; package.

<P/>

<Example><![CDATA[
gap> gens:= AtlasGenerators( "M11", 6, 1 );;
]]></Example>

<P/>

Now computing the fixed point space is standard linear algebra.

<P/>

<Example><![CDATA[
gap> id:= IdentityMat( 10, GF(2) );;
gap> sub1:= Subspace( v, NullspaceMat( gens.generators[1] - id ) );;
gap> sub2:= Subspace( v, NullspaceMat( gens.generators[2] - id ) );;
gap> fix:= Intersection( sub1, sub2 );
<vector space of dimension 1 over GF(2)>
]]></Example>

<P/>

The final step is of course the computation of the permutation action
on the orbit.

<P/>

<Example><![CDATA[
gap> orb:= Orbit( grp, Basis( fix )[1] );;
gap> act:= Action( grp, orb );;  Print( act, "\n" );
Group( [ ( 1, 2)( 4, 6)( 5, 8)( 7,10), ( 1, 3, 5, 9)( 2, 4, 7,11) ] )
]]></Example>

<P/>

Note that this group is <E>not</E> equal to the group obtained by fetching
the permutation representation from the database.
This is due to a different numbering of the points,
thus the groups are permutation isomorphic,
that is, they are conjugate in the symmetric group on eleven points.

<P/>

<Example><![CDATA[
gap> permgrp:= Group( AtlasGenerators( "M11", 1 ).generators );;
gap> Print( permgrp, "\n" );
Group( [ ( 2,10)( 4,11)( 5, 7)( 8, 9), ( 1, 4, 3, 8)( 2, 5, 6, 9) ] )
gap> permgrp = act;
false
gap> IsConjugate( SymmetricGroup(11), permgrp, act );
true
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:Example: Outer Automorphisms">
<Heading>Example: Outer Automorphisms</Heading>

The straight line programs for applying outer automorphisms to
standard generators can of course be used to define the automorphisms
themselves as &GAP; mappings.

<P/>

<Example><![CDATA[
gap> DisplayAtlasInfo( "G2(3)", IsStraightLineProgram );
Programs for G = G2(3):    (all refer to std. generators 1)
-----------------------
- class repres.            
- presentation             
- repr. cyc. subg.         
- std. gen. checker        
- automorphisms:
  2                        
- maxes (all 10):
   1:  U3(3).2             
   2:  U3(3).2             
   3:  (3^(1+2)+x3^2):2S4  
   4:  (3^(1+2)+x3^2):2S4  
   5:  L3(3).2             
   6:  L3(3).2             
   7:  L2(8).3             
   8:  2^3.L3(2)           
   9:  L2(13)              
  10:  2^(1+4)+:3^2.2      
gap> prog:= AtlasProgram( "G2(3)", "automorphism", "2" ).program;;
gap> info:= OneAtlasGeneratingSetInfo( "G2(3)", Dimension, 7 );;
gap> gens:= AtlasGenerators( info ).generators;;
gap> imgs:= ResultOfStraightLineProgram( prog, gens );;
]]></Example>

<P/>

If we are not suspicious whether the script really describes an
automorphism then we should tell this to &GAP;,
in order to avoid the expensive checks of the properties of being a
homomorphism and bijective
(see Section&nbsp;<Ref Sect="Creating Group Homomorphisms" BookName="ref"/>).
This looks as follows.

<P/>

<Example><![CDATA[
gap> g:= Group( gens );;
gap> aut:= GroupHomomorphismByImagesNC( g, g, gens, imgs );;
gap> SetIsBijective( aut, true );
]]></Example>

<P/>

If we are suspicious whether the script describes an automorphism
then we might have the idea to check it with &GAP;, as follows.

<P/>

<Example><![CDATA[
gap> aut:= GroupHomomorphismByImages( g, g, gens, imgs );;
gap> IsBijective( aut );
true
]]></Example>

<P/>

(Note that even for a comparatively small group such as <M>G_2(3)</M>,
this was a difficult task for &GAP; before version&nbsp;4.3.)

<P/>

Often one can form images under an automorphism <M>\alpha</M>, say,
without creating the homomorphism object.
This is obvious for the standard generators of the group <M>G</M> themselves,
but also for generators of a maximal subgroup <M>M</M> computed from standard
generators of <M>G</M>, provided that the straight line programs in question
refer to the same standard generators.
Note that the generators of <M>M</M> are given by evaluating words in terms
of standard generators of <M>G</M>,
and their images under <M>\alpha</M> can be obtained by evaluating the same
words at the images under <M>\alpha</M> of the standard generators of
<M>G</M>.

<P/>

<Example><![CDATA[
gap> max1:= AtlasProgram( "G2(3)", 1 ).program;;
gap> mgens:= ResultOfStraightLineProgram( max1, gens );;
gap> comp:= CompositionOfStraightLinePrograms( max1, prog );;
gap> mimgs:= ResultOfStraightLineProgram( comp, gens );;
]]></Example>

<P/>

The list <C>mgens</C> is the list of generators of the first maximal subgroup
of <M>G_2(3)</M>, <C>mimgs</C> is the list of images under the automorphism
given by the straight line program <C>prog</C>.
Note that applying the program returned by
<Ref Func="CompositionOfStraightLinePrograms" BookName="ref"/>
means to apply first <C>prog</C> and then <C>max1</C>.
Since we have already constructed the &GAP; object representing the
automorphism, we can check whether the results are equal.

<P/>

<Example><![CDATA[
gap> mimgs = List( mgens, x -> x^aut );
true
]]></Example>

<P/>

However, it should be emphasized that using <C>aut</C> requires a huge
machinery of computations behind the scenes, whereas applying the
straight line programs <C>prog</C> and <C>max1</C> involves only elementary
operations with the generators.
The latter is feasible also for larger groups,
for which constructing the &GAP; automorphism might be too hard.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:Example: Semi-presentations">
<Heading>Example: Using Semi-presentations and Black Box Programs</Heading>

Let us suppose that we want to restrict a representation of the
Mathieu group <M>M_{12}</M> to a non-maximal subgroup of the type
<M>L_2(11)</M>.
The idea is that this subgroup can be found as a maximal subgroup of a
maximal subgroup of the type <M>M_{11}</M>,
which is itself maximal in <M>M_{12}</M>.
For that,
we fetch a representation of <M>M_{12}</M> and use a straight line program
for restricting it to the first maximal subgroup,
which has the type <M>M_{11}</M>.

<P/>

<Example><![CDATA[
gap> info:= OneAtlasGeneratingSetInfo( "M12", NrMovedPoints, 12 );
rec( charactername := "1a+11a", constituents := [ 1, 2 ], 
  contents := "core", groupname := "M12", id := "a", 
  identifier := [ "M12", [ "M12G1-p12aB0.m1", "M12G1-p12aB0.m2" ], 1, 
      12 ], isPrimitive := true, maxnr := 1, p := 12, rankAction := 2,
  repname := "M12G1-p12aB0", repnr := 1, size := 95040, 
  stabilizer := "M11", standardization := 1, transitivity := 5, 
  type := "perm" )
gap> gensM12:= AtlasGenerators( info.identifier );;
gap> restM11:= AtlasProgram( "M12", "maxes", 1 );;
gap> gensM11:= ResultOfStraightLineProgram( restM11.program,
>                                           gensM12.generators );
[ (3,9)(4,12)(5,10)(6,8), (1,4,11,5)(2,10,8,3) ]
]]></Example>

<P/>

Now we <E>cannot</E> simply apply a straight line program for a group
to some generators, since they are not necessarily
<E>standard</E> generators of the group.
We check this property using a semi-presentation for <M>M_{11}</M>,
see <Ref Subsect="Semi-Presentations and Presentations"/>.

<P/>

<Example><![CDATA[
gap> checkM11:= AtlasProgram( "M11", "check" );
rec( groupname := "M11", identifier := [ "M11", "M11G1-check1", 1, 1 ]
    , program := <straight line decision>, standardization := 1, 
  version := "1" )
gap> ResultOfStraightLineDecision( checkM11.program, gensM11 );
true
]]></Example>

<P/>

So we are lucky that applying the appropriate program for <M>M_{11}</M>
will give us the required generators for <M>L_2(11)</M>.

<P/>

<Example><![CDATA[
gap> restL211:= AtlasProgram( "M11", "maxes", 2 );;
gap> gensL211:= ResultOfStraightLineProgram( restL211.program, gensM11 );
[ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ]
gap> G:= Group( gensL211 );;  Size( G );  IsSimple( G );
660
true
]]></Example>

In this case, we could also use the information that is stored about
<M>M_{11}</M>, as follows.

<P/>
<Example><![CDATA[
gap> DisplayAtlasInfo( "M11", IsStraightLineProgram );
Programs for G = M11:    (all refer to std. generators 1)
---------------------
- presentation                                        
- repr. cyc. subg.                                    
- std. gen. finder                                    
- class repres.:
  (direct)                                            
  (composed)                                          
- maxes (all 5):
  1:  A6.2_3                                          
  1:  A6.2_3                                  (std. 1)
  2:  L2(11)                                          
  2:  L2(11)                                  (std. 1)
  3:  3^2:Q8.2                                        
  4:  S5                                              
  4:  S5                                      (std. 1)
  5:  2.S4                                            
- standardizations of maxes:
  from 1st max., version 1 to A6.2_3, std. 1          
  from 2nd max., version 1 to L2(11), std. 1          
  from 4th max., version 1 to A5.2, std. 1            
- std. gen. checker:
  (check)                                             
  (pres)                                              
]]></Example>
<P/>

The entry <Q>std.1</Q> in the line about the maximal subgroup of type
<M>L_2(11)</M> means that a straight line program for computing
<E>standard</E> generators (in standardization 1) of the subgroup.
This program can be fetched as follows.

<P/>
<Example><![CDATA[
gap> restL211std:= AtlasProgram( "M11", "maxes", 2, 1 );;
gap> ResultOfStraightLineProgram( restL211std.program, gensM11 );
[ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ]
]]></Example>

<P/>

We see that we get the same generators for the subgroup as above.
(In fact the second approach first applies the same program as is
given by <C>restL211.program</C>,
and then applies a program to the results that does nothing.)

<P/>

Usually representations are not given in terms of standard generators.
For example, let us take the <M>M_{11}</M> type group returned by the &GAP;
function <Ref Func="MathieuGroup" BookName="ref"/>.

<P/>

<Example><![CDATA[
gap> G:= MathieuGroup( 11 );;
gap> gens:= GeneratorsOfGroup( G );
[ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]
gap> ResultOfStraightLineDecision( checkM11.program, gens );
false
]]></Example>

<P/>

If we want to compute an <M>L_2(11)</M> type subgroup of this group,
we can use a black box program for computing standard generators,
and then apply the straight line program for computing the restriction.

<P/>

<Example><![CDATA[
gap> find:= AtlasProgram( "M11", "find" );
rec( groupname := "M11", identifier := [ "M11", "M11G1-find1", 1, 1 ],
  program := <black box program>, standardization := 1, 
  version := "1" )
gap> stdgens:= ResultOfBBoxProgram( find.program, Group( gens ) );;
gap> List( stdgens, Order );
[ 2, 4 ]
gap> ResultOfStraightLineDecision( checkM11.program, stdgens );
true
gap> gensL211:= ResultOfStraightLineProgram( restL211.program, stdgens );;
gap> List( gensL211, Order );
[ 2, 3 ]
gap> G:= Group( gensL211 );;  Size( G );  IsSimple( G );
660
true
]]></Example>

<P/>

Note that applying the black box program several times may yield different
group elements, because computations of random elements are involved,
see <Ref Func="ResultOfBBoxProgram"/>.
All what the black box program promises is to construct standard
generators, and these are defined only up to conjugacy in the automorphism
group of the group in question.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:Example: Using the GAP Library of Tables of Marks">
<Heading>Example: Using the &GAP; Library of Tables of Marks</Heading>

The &GAP; Library of Tables of Marks
(the &GAP; package <Package>TomLib</Package>, <Cite Key="TomLib"/>)
provides,
for many almost simple groups, information for constructing representatives
of all conjugacy classes of subgroups.
If this information is compatible with the standard generators of the
&ATLAS; of Group Representations then we can use it to restrict any
representation from the &ATLAS; to prescribed subgroups.
This is useful in particular for those subgroups for which the &ATLAS;
of Group Representations itself does not contain a straight line program.

<P/>

<Example><![CDATA[
gap> tom:= TableOfMarks( "A5" );
TableOfMarks( "A5" )
gap> info:= StandardGeneratorsInfo( tom );
[ rec( ATLAS := true, description := "|a|=2, |b|=3, |ab|=5", 
      generators := "a, b", 
      script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ], 
      standardization := 1 ) ]
]]></Example>

<P/>

The <K>true</K> value of the component <C>ATLAS</C> indicates
that the information stored on <C>tom</C> refers to the standard generators
of type <M>1</M> in the &ATLAS; of Group Representations.

<P/>

We want to restrict a <M>4</M>-dimensional integral representation of
<M>A_5</M> to a Sylow <M>2</M> subgroup of <M>A_5</M>,
and use <Ref Func="RepresentativeTomByGeneratorsNC" BookName="ref"/>
for that.

<P/>

<Example><![CDATA[
gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, Integers, Dimension, 4 );;
gap> stdgens:= AtlasGenerators( info.identifier );
rec( charactername := "4a", constituents := [ 4 ], contents := "core",
  dim := 4, 
  generators := 
    [ 
      [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], 
          [ -1, -1, -1, -1 ] ], 
      [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], 
          [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "", 
  identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], 
  repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, 
  standardization := 1, type := "matint" )
gap> orders:= OrdersTom( tom );
[ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
gap> pos:= Position( orders, 4 );
4
gap> sub:= RepresentativeTomByGeneratorsNC( tom, pos, stdgens.generators );
<matrix group of size 4 with 2 generators>
gap> GeneratorsOfGroup( sub );
[ [ [ 1, 0, 0, 0 ], [ -1, -1, -1, -1 ], [ 0, 0, 0, 1 ], 
      [ 0, 0, 1, 0 ] ], 
  [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], 
      [ -1, -1, -1, -1 ] ] ]
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:Example: Index 770 Subgroups in M22">
<Heading>Example: Index <M>770</M> Subgroups in <M>M_{22}</M></Heading>

The sporadic simple Mathieu group <M>M_{22}</M> contains a unique class of
subgroups of index <M>770</M> (and order <M>576</M>).
This can be seen for example using &GAP;'s Library of Tables of Marks.

<P/>

<Example><![CDATA[
gap> tom:= TableOfMarks( "M22" );
TableOfMarks( "M22" )
gap> subord:= Size( UnderlyingGroup( tom ) ) / 770;
576
gap> ord:= OrdersTom( tom );;
gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = subord );
[ 144 ]
]]></Example>

<P/>

The permutation representation of <M>M_{22}</M> on the right cosets of such
a subgroup <M>S</M> is contained in the &ATLAS; of Group Representations.

<P/>

<Example><![CDATA[
gap> DisplayAtlasInfo( "M22", NrMovedPoints, 770 );
Representations for G = M22:    (all refer to std. generators 1)
----------------------------
12: G <= Sym(770) rank 9, on cosets of (A4xA4):4 < 2^4:A6
]]></Example>

<P/>

Now we verify the information shown about the point stabilizer and
about the maximal overgroups of <M>S</M> in <M>M_{22}</M>.

<P/>

<Example><![CDATA[
gap> maxtom:= MaximalSubgroupsTom( tom );
[ [ 155, 154, 153, 152, 151, 150, 146, 145 ], 
  [ 22, 77, 176, 176, 231, 330, 616, 672 ] ]
gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) );
[ [ 0, 10, 0, 0, 0, 0, 0, 0 ] ]
]]></Example>

<P/>

We see that the only maximal subgroups of <M>M_{22}</M> that contain <M>S</M>
have index <M>77</M> in <M>M_{22}</M>.
According to the &ATLAS; of Finite Groups, these maximal subgroups have the
structure <M>2^4:A_6</M>.  From that and from the structure of <M>A_6</M>,
we conclude that <M>S</M> has the structure <M>2^4:(3^2:4)</M>.

<P/>

Alternatively, we look at the permutation representation of degree <M>770</M>.
We fetch it from the &ATLAS; of Group Representations.
There is exactly one nontrivial block system for this representation,
with <M>77</M> blocks of length <M>10</M>.

<P/>

<Example><![CDATA[
gap> g:= AtlasGroup( "M22", NrMovedPoints, 770 );
<permutation group of size 443520 with 2 generators>
gap> allbl:= AllBlocks( g );;
gap> List( allbl, Length );
[ 10 ]
]]></Example>

<P/>

Furthermore, &GAP; computes that the point stabilizer <M>S</M> has the
structure <M>(A_4 \times A_4):4</M>.

<P/>

<Example><![CDATA[
gap> stab:= Stabilizer( g, 1 );;
gap> StructureDescription( stab : nice );
"(A4 x A4) : C4"
gap> blocks:= Orbit( g, allbl[1], OnSets );;
gap> act:= Action( g, blocks, OnSets );;
gap> StructureDescription( Stabilizer( act, 1 ) );
"(C2 x C2 x C2 x C2) : A6"
]]></Example>


</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:Example: Index 462 Subgroups in M22">
<Heading>Example: Index <M>462</M> Subgroups in <M>M_{22}</M></Heading>

The &ATLAS; of Group Representations contains three
degree <M>462</M> permutation representations of the group <M>M_{22}</M>.

<P/>

<Example><![CDATA[
gap> DisplayAtlasInfo( "M22", NrMovedPoints, 462 );
Representations for G = M22:    (all refer to std. generators 1)
----------------------------
7: G <= Sym(462a) rank 5, on cosets of 2^4:A5 < 2^4:A6
8: G <= Sym(462b) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:S5
9: G <= Sym(462c) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:A6
]]></Example>

<P/>

The point stabilizers in these three representations have the structure
<M>2^4:A_5</M>.
Using &GAP;'s Library of Tables of Marks,
we can show that these stabilizers are exactly the three classes of subgroups
of order <M>960</M> in <M>M_{22}</M>.
For that, we first verify that the group generators stored in &GAP;'s
table of marks coincide with the standard generators used by the
&ATLAS; of Group Representations.

<P/>

<Example><![CDATA[
gap> tom:= TableOfMarks( "M22" );
TableOfMarks( "M22" )
gap> genstom:= GeneratorsOfGroup( UnderlyingGroup( tom ) );;
gap> checkM22:= AtlasProgram( "M22", "check" );
rec( groupname := "M22", identifier := [ "M22", "M22G1-check1", 1, 1 ]
    , program := <straight line decision>, standardization := 1, 
  version := "1" )
gap> ResultOfStraightLineDecision( checkM22.program, genstom );
true
]]></Example>

<P/>

There are indeed three classes of subgroups of order <M>960</M>
in <M>M_{22}</M>.

<P/>

<Example><![CDATA[
gap> ord:= OrdersTom( tom );;
gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = 960 );
[ 147, 148, 149 ]
]]></Example>

<P/>

Now we compute representatives of these three classes in the three
representations <C>462a</C>, <C>462b</C>, and <C>462c</C>.
We see that each of the three classes occurs as a point stabilizer
in exactly one of the three representations.

<P/>

<Example><![CDATA[
gap> atlasreps:= AllAtlasGeneratingSetInfos( "M22", NrMovedPoints, 462 );
[ rec( charactername := "1a+21a+55a+154a+231a", 
      constituents := [ 1, 2, 5, 7, 9 ], contents := "core", 
      groupname := "M22", id := "a", 
      identifier := 
        [ "M22", [ "M22G1-p462aB0.m1", "M22G1-p462aB0.m2" ], 1, 462 ],
      isPrimitive := false, p := 462, rankAction := 5, 
      repname := "M22G1-p462aB0", repnr := 7, size := 443520, 
      stabilizer := "2^4:A5 < 2^4:A6", standardization := 1, 
      transitivity := 1, type := "perm" ), 
  rec( charactername := "1a+21a^2+55a+154a+210a", 
      constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", 
      groupname := "M22", id := "b", 
      identifier := 
        [ "M22", [ "M22G1-p462bB0.m1", "M22G1-p462bB0.m2" ], 1, 462 ],
      isPrimitive := false, p := 462, rankAction := 8, 
      repname := "M22G1-p462bB0", repnr := 8, size := 443520, 
      stabilizer := "2^4:A5 < L3(4), 2^4:S5", standardization := 1, 
      transitivity := 1, type := "perm" ), 
  rec( charactername := "1a+21a^2+55a+154a+210a", 
      constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", 
      groupname := "M22", id := "c", 
      identifier := 
        [ "M22", [ "M22G1-p462cB0.m1", "M22G1-p462cB0.m2" ], 1, 462 ],
      isPrimitive := false, p := 462, rankAction := 8, 
      repname := "M22G1-p462cB0", repnr := 9, size := 443520, 
      stabilizer := "2^4:A5 < L3(4), 2^4:A6", standardization := 1, 
      transitivity := 1, type := "perm" ) ]
gap> atlasreps:= List( atlasreps, AtlasGroup );;
gap> tomstabreps:= List( atlasreps, G -> List( tomstabs,
> i -> RepresentativeTomByGenerators( tom, i, GeneratorsOfGroup( G ) ) ) );;
gap> List( tomstabreps, x -> List( x, NrMovedPoints ) );
[ [ 462, 462, 461 ], [ 460, 462, 462 ], [ 462, 461, 462 ] ]
]]></Example>

<P/>

More precisely, we see that the point stabilizers in the three
representations <C>462a</C>, <C>462b</C>, <C>462c</C> lie in the
subgroup classes <M>149</M>, <M>147</M>, <M>148</M>, respectively,
of the table of marks.

<P/>

The point stabilizers in the representations <C>462b</C> and <C>462c</C>
are isomorphic, but not isomorphic with the point stabilizer in <C>462a</C>.

<P/>

<Example><![CDATA[
gap> stabs:= List( atlasreps, G -> Stabilizer( G, 1 ) );;
gap> List( stabs, IdGroup );
[ [ 960, 11358 ], [ 960, 11357 ], [ 960, 11357 ] ]
gap> List( stabs, PerfectIdentification );
[ [ 960, 2 ], [ 960, 1 ], [ 960, 1 ] ]
]]></Example>

<P/>

The three representations are imprimitive.
The containment of the point stabilizers in maximal subgroups of
<M>M_{22}</M> can be computed using the table of marks of <M>M_{22}</M>.

<P/>

<Example><![CDATA[
gap> maxtom:= MaximalSubgroupsTom( tom );
[ [ 155, 154, 153, 152, 151, 150, 146, 145 ], 
  [ 22, 77, 176, 176, 231, 330, 616, 672 ] ]
gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) );
[ [ 21, 0, 0, 0, 1, 0, 0, 0 ], [ 21, 6, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 6, 0, 0, 0, 0, 0, 0 ] ]
]]></Example>

<P/>

We see:

<List>
<Item>
  The point stabilizers in <C>462a</C> (subgroups in the class
  <M>149</M> of the table of marks) are contained only in maximal subgroups
  in class <M>154</M>; these groups have the structure <M>2^4:A_6</M>.
</Item>
<Item>
  The point stabilizers in <C>462b</C> (subgroups in the class <M>147</M>)
  are contained in maximal subgroups in the classes <M>155</M> and <M>151</M>;
  these groups have the structures <M>L_3(4)</M> and <M>2^4:S_5</M>,
  respectively.
</Item>
<Item>
  The point stabilizers in <C>462c</C> (subgroups in the class <M>148</M>)
  are contained in maximal subgroups in the classes <M>155</M> and <M>154</M>.
</Item>
</List>

<P/>

We identify the supergroups of the point stabilizers by computing the
block systems.

<P/>

<Example><![CDATA[
gap> bl:= List( atlasreps, AllBlocks );;
gap> List( bl, Length );
[ 1, 3, 2 ]
gap> List( bl, l -> List( l, Length ) );
[ [ 6 ], [ 21, 21, 2 ], [ 21, 6 ] ]
]]></Example>

<P/>

Note that the two block systems with blocks of length <M>21</M> for
<C>462b</C> belong to the same supergroups (of the type <M>L_3(4)</M>);
each of these subgroups fixes two different subsets of <M>21</M> points.

<P/>

The representation <C>462a</C> is <E>multiplicity-free</E>,
that is, it splits into a sum of pairwise nonisomorphic irreducible
representations.
This can be seen from the fact that the rank of this permutation
representation (that is, the number of orbits of the point stabilizer)
is five; each permutation representation with this property is
multiplicity-free.

<P/>

The other two representations have rank eight.
We have seen the ranks in the overview that was shown by
<Ref Func="DisplayAtlasInfo"/> in the beginning.
Now we compute the ranks from the permutation groups.

<P/>

<Example><![CDATA[
gap> List( atlasreps, RankAction );
[ 5, 8, 8 ]
]]></Example>

<P/>

In fact the two representations <C>462b</C> and <C>462c</C> have the same
permutation character.
We check this by computing the possible permutation characters
of degree <M>462</M> for <M>M_{22}</M>,
and decomposing them into irreducible characters,
using the character table from &GAP;'s Character Table Library.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "M22" );;
gap> perms:= PermChars( t, 462 );
[ Character( CharacterTable( "M22" ),
  [ 462, 30, 3, 2, 2, 2, 3, 0, 0, 0, 0, 0 ] ), 
  Character( CharacterTable( "M22" ),
  [ 462, 30, 12, 2, 2, 2, 0, 0, 0, 0, 0, 0 ] ) ]
gap> MatScalarProducts( t, Irr( t ), perms );
[ [ 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0 ], 
  [ 1, 2, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0 ] ]
]]></Example>

<P/>

In particular, we see that the rank eight characters are not
multiplicity-free.

</Subsection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

</Section>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

</Chapter>