File: chap2.html

package info (click to toggle)
gap-atlasrep 2.1.9-1
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,688 kB
  • sloc: xml: 20,993; javascript: 155; makefile: 113; sh: 1
file content (1013 lines) | stat: -rw-r--r-- 72,917 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (AtlasRep) - Chapter 2: Tutorial for the AtlasRep Package</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap2"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap1.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap3.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap2_mj.html">[MathJax on]</a></p>
<p><a id="X8171B3798425E183" name="X8171B3798425E183"></a></p>
<div class="ChapSects"><a href="chap2.html#X8171B3798425E183">2 <span class="Heading">Tutorial for the <strong class="pkg">AtlasRep</strong> Package</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X79CECBFE7A8EE2C2">2.1 <span class="Heading">Accessing a Specific Group in <strong class="pkg">AtlasRep</strong></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X87CD0FFB87D0BDD7">2.1-1 <span class="Heading">Accessing a Group in <strong class="pkg">AtlasRep</strong> via its Name</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X826C681B7EB3B67A">2.1-2 <span class="Heading">Accessing a Maximal Subgroup of a Group in <strong class="pkg">AtlasRep</strong></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X7F616D9685292471">2.2 <span class="Heading">Accessing Specific Generators in <strong class="pkg">AtlasRep</strong></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X7D3A29F879B140D3">2.3 <span class="Heading">Basic Concepts used in <strong class="pkg">AtlasRep</strong></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7E2FB5E5852AD970">2.3-1 <span class="Heading">Groups, Generators, and Representations</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7DC99E4284093FBB">2.3-2 <span class="Heading">Straight Line Programs</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X87ACE06E82B68589">2.4 <span class="Heading">Examples of Using the <strong class="pkg">AtlasRep</strong> Package</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X8563D96878AC685C">2.4-1 <span class="Heading">Example: Class Representatives</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X81C9233778A3A817">2.4-2 <span class="Heading">Example: Permutation and Matrix Representations</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X8284D7E87D38889C">2.4-3 <span class="Heading">Example: Outer Automorphisms</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X794D669E7A507310">2.4-4 <span class="Heading">Example: Using Semi-presentations and Black Box Programs</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7CE7C2068017525C">2.4-5 <span class="Heading">Example: Using the <strong class="pkg">GAP</strong> Library of Tables of Marks</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X82550A9683E0DCA2">2.4-6 <span class="Heading">Example: Index <span class="SimpleMath">770</span> Subgroups in <span class="SimpleMath">M_22</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X84F9D163795B7DE1">2.4-7 <span class="Heading">Example: Index <span class="SimpleMath">462</span> Subgroups in <span class="SimpleMath">M_22</span></span></a>
</span>
</div></div>
</div>

<h3>2 <span class="Heading">Tutorial for the <strong class="pkg">AtlasRep</strong> Package</span></h3>

<p>This chapter gives an overview of the basic functionality provided by the <strong class="pkg">AtlasRep</strong> package. The main concepts and interface functions are presented in the first three sections, and Section <a href="chap2.html#X87ACE06E82B68589"><span class="RefLink">2.4</span></a> shows a few small examples.</p>

<p>Let us first fix the setup for the examples shown in the package manual.</p>

<ol>
<li><p>First of all, we load the <strong class="pkg">AtlasRep</strong> package. Some of the examples require also the <strong class="pkg">GAP</strong> packages <strong class="pkg">CTblLib</strong> and <strong class="pkg">TomLib</strong>, so we load also these packages.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "AtlasRep", false );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "CTblLib", false );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "TomLib", false );</span>
true
</pre></div>

</li>
<li><p>Depending on the terminal capabilities, the output of <code class="func">DisplayAtlasInfo</code> (<a href="chap3.html#X79DACFFA7E2D1A99"><span class="RefLink">3.5-1</span></a>) may contain non-ASCII characters, which are not supported by the LaTeX and HTML versions of <strong class="pkg">GAPDoc</strong> documents. The examples in this manual are used for tests of the package's functionality, thus we set the user preference <code class="code">DisplayFunction</code> (see Section <a href="chap4.html#X81F055037F9D3068"><span class="RefLink">4.2-11</span></a>) to the value <code class="code">"Print"</code> in order to produce output consisting only of ASCII characters, which is assumed to work in any terminal.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">origpref:= UserPreference( "AtlasRep", "DisplayFunction" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference( "AtlasRep", "DisplayFunction", "Print" );</span>
</pre></div>

</li>
<li><p>The <strong class="pkg">GAP</strong> output for the examples may look differently if data extensions have been loaded. In order to ignore these extensions in the examples, we unload them.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">priv:= Difference(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    List( AtlasOfGroupRepresentationsInfo.notified, x -&gt; x.ID ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    [ "core", "internal" ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Perform( priv, AtlasOfGroupRepresentationsForgetData );</span>
</pre></div>

</li>
<li><p>If the info level of <code class="func">InfoAtlasRep</code> (<a href="chap7.html#X8006BE167EB81E16"><span class="RefLink">7.1-1</span></a>) is larger than zero then additional output appears on the screen. In order to avoid this output, we set the level to zero.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">globallevel:= InfoLevel( InfoAtlasRep );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetInfoLevel( InfoAtlasRep, 0 );</span>
</pre></div>

</li>
</ol>
<p><a id="X79CECBFE7A8EE2C2" name="X79CECBFE7A8EE2C2"></a></p>

<h4>2.1 <span class="Heading">Accessing a Specific Group in <strong class="pkg">AtlasRep</strong></span></h4>

<p>An important database to which the <strong class="pkg">AtlasRep</strong> package gives access is the <strong class="pkg">ATLAS</strong> of Group Representations <a href="chapBib.html#biBAGRv3">[WWT+]</a>. It contains generators and related data for several groups, mainly for extensions of simple groups (see Section <a href="chap2.html#X87CD0FFB87D0BDD7"><span class="RefLink">2.1-1</span></a>) and for their maximal subgroups (see Section <a href="chap2.html#X826C681B7EB3B67A"><span class="RefLink">2.1-2</span></a>).</p>

<p>In general, these data are not part of the package. They are downloaded as soon as they are needed for the first time, see Section <a href="chap4.html#X7C3293A98577EE68"><span class="RefLink">4.2-1</span></a>.</p>

<p><a id="X87CD0FFB87D0BDD7" name="X87CD0FFB87D0BDD7"></a></p>

<h5>2.1-1 <span class="Heading">Accessing a Group in <strong class="pkg">AtlasRep</strong> via its Name</span></h5>

<p>Each group that occurs in this database is specified by a <em>name</em>, which is a string similar to the name used in the <strong class="pkg">ATLAS</strong> of Finite Groups <a href="chapBib.html#biBCCN85">[CCN+85]</a>. For those groups whose character tables are contained in the <strong class="pkg">GAP</strong> Character Table Library <a href="chapBib.html#biBCTblLib">[Bre22]</a>, the names are equal to the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) values of these character tables. Examples of such names are <code class="code">"M24"</code> for the Mathieu group <span class="SimpleMath">M_24</span>, <code class="code">"2.A6"</code> for the double cover of the alternating group <span class="SimpleMath">A_6</span>, and <code class="code">"2.A6.2_1"</code> for the double cover of the symmetric group <span class="SimpleMath">S_6</span>. The names that actually occur are listed in the first column of the overview table that is printed by the function <code class="func">DisplayAtlasInfo</code> (<a href="chap3.html#X79DACFFA7E2D1A99"><span class="RefLink">3.5-1</span></a>), called without arguments, see below. The other columns of the table describe the data that are available in the database.</p>

<p>For example, <code class="func">DisplayAtlasInfo</code> (<a href="chap3.html#X79DACFFA7E2D1A99"><span class="RefLink">3.5-1</span></a>) may print the following lines. Omissions are indicated with <q><code class="code">...</code></q>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DisplayAtlasInfo();</span>
group                    |  # | maxes | cl | cyc | out | fnd | chk | prs
-------------------------+----+-------+----+-----+-----+-----+-----+----
...
2.A5                     | 26 |     3 |    |     |     |     |  +  |  + 
2.A5.2                   | 11 |     4 |    |     |     |     |  +  |  + 
2.A6                     | 18 |     5 |    |     |     |     |     |    
2.A6.2_1                 |  3 |     6 |    |     |     |     |     |    
2.A7                     | 24 |     2 |    |     |     |     |     |    
2.A7.2                   |  7 |       |    |     |     |     |     |    
...
M22                      | 58 |     8 |  + |  +  |     |  +  |  +  |  + 
M22.2                    | 46 |     7 |  + |  +  |     |  +  |  +  |  + 
M23                      | 66 |     7 |  + |  +  |     |  +  |  +  |  + 
M24                      | 62 |     9 |  + |  +  |     |  +  |  +  |  + 
McL                      | 46 |    12 |  + |  +  |     |  +  |  +  |  + 
McL.2                    | 27 |    10 |    |  +  |     |  +  |  +  |  + 
O7(3)                    | 28 |       |    |     |     |     |     |    
O7(3).2                  |  3 |       |    |     |     |     |     |    
...
Suz                      | 30 |    17 |    |  +  |   2 |  +  |  +  |    
...
</pre></div>

<p>Called with a group name as the only argument, the function <code class="func">AtlasGroup</code> (<a href="chap3.html#X80AABEE783363B70"><span class="RefLink">3.5-8</span></a>) returns a group isomorphic to the group with the given name, or <code class="keyw">fail</code>. If permutation generators are available in the database then a permutation group (of smallest available degree) is returned, otherwise a matrix group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= AtlasGroup( "M24" );</span>
Group([ (1,4)(2,7)(3,17)(5,13)(6,9)(8,15)(10,19)(11,18)(12,21)(14,16)
  (20,24)(22,23), (1,4,6)(2,21,14)(3,9,15)(5,18,10)(13,17,16)
  (19,24,23) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPermGroup( g );  NrMovedPoints( g );  Size( g );</span>
true
24
244823040
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasGroup( "J5" );</span>
fail
</pre></div>

<p><a id="X826C681B7EB3B67A" name="X826C681B7EB3B67A"></a></p>

<h5>2.1-2 <span class="Heading">Accessing a Maximal Subgroup of a Group in <strong class="pkg">AtlasRep</strong></span></h5>

<p>Many maximal subgroups of extensions of simple groups can be constructed using the function <code class="func">AtlasSubgroup</code> (<a href="chap3.html#X7A3E460C82B3D9A3"><span class="RefLink">3.5-9</span></a>). Given the name of the extension of the simple group and the number of the conjugacy class of maximal subgroups, this function returns a representative from this class.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= AtlasSubgroup( "M24", 1 );</span>
Group([ (2,10)(3,12)(4,14)(6,9)(8,16)(15,18)(20,22)(21,24), (1,7,2,9)
  (3,22,10,23)(4,19,8,12)(5,14)(6,18)(13,16,17,24) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPermGroup( g );  NrMovedPoints( g );  Size( g );</span>
true
23
10200960
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasSubgroup( "M24", 100 );</span>
fail
</pre></div>

<p>The classes of maximal subgroups are ordered w. r. t. decreasing subgroup order. So the first class contains maximal subgroups of smallest index.</p>

<p>Note that groups obtained by <code class="func">AtlasSubgroup</code> (<a href="chap3.html#X7A3E460C82B3D9A3"><span class="RefLink">3.5-9</span></a>) may be not very suitable for computations in the sense that much nicer representations exist. For example, the sporadic simple O'Nan group <span class="SimpleMath">O'N</span> contains a maximal subgroup <span class="SimpleMath">S</span> isomorphic with the Janko group <span class="SimpleMath">J_1</span>; the smallest permutation representation of <span class="SimpleMath">O'N</span> has degree <span class="SimpleMath">122760</span>, and restricting this representation to <span class="SimpleMath">S</span> yields a representation of <span class="SimpleMath">J_1</span> of that degree. However, <span class="SimpleMath">J_1</span> has a faithful permutation representation of degree <span class="SimpleMath">266</span>, which admits much more efficient computations. If you are just interested in <span class="SimpleMath">J_1</span> and not in its embedding into <span class="SimpleMath">O'N</span> then one possibility to get a <q>nicer</q> faithful representation is to call <code class="func">SmallerDegreePermutationRepresentation</code> (<a href="../../../doc/ref/chap43.html#X8086628878AFD3EA"><span class="RefLink">Reference: SmallerDegreePermutationRepresentation</span></a>). In the abovementioned example, this works quite well; note that in general, we cannot expect that we get a representation of smallest degree in this way.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= AtlasSubgroup( "ON", 3 );</span>
&lt;permutation group of size 175560 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints( s );  Size( s );</span>
122760
175560
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hom:= SmallerDegreePermutationRepresentation( s );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints( Image( hom ) ) &lt; 2000;</span>
true
</pre></div>

<p>(Depending on random choices in the computations, one may or my not get the degree <span class="SimpleMath">266</span> representation.)</p>

<p>In this particular case, one could of course also ask directly for the group <span class="SimpleMath">J_1</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">j1:= AtlasGroup( "J1" );</span>
&lt;permutation group of size 175560 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints( j1 );</span>
266
</pre></div>

<p>If you have a group <span class="SimpleMath">G</span>, say, and you are really interested in the embedding of a maximal subgroup of <span class="SimpleMath">G</span> into <span class="SimpleMath">G</span> then an easy way to get compatible generators is to create <span class="SimpleMath">G</span> with <code class="func">AtlasGroup</code> (<a href="chap3.html#X80AABEE783363B70"><span class="RefLink">3.5-8</span></a>) and then to call <code class="func">AtlasSubgroup</code> (<a href="chap3.html#X7A3E460C82B3D9A3"><span class="RefLink">3.5-9</span></a>) with first argument the group <span class="SimpleMath">G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= AtlasGroup( "ON" );</span>
&lt;permutation group of size 460815505920 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= AtlasSubgroup( g, 3 );</span>
&lt;permutation group of size 175560 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSubset( g, s );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSubset( g, j1 );</span>
false
</pre></div>

<p><a id="X7F616D9685292471" name="X7F616D9685292471"></a></p>

<h4>2.2 <span class="Heading">Accessing Specific Generators in <strong class="pkg">AtlasRep</strong></span></h4>

<p>The function <code class="func">DisplayAtlasInfo</code> (<a href="chap3.html#X79DACFFA7E2D1A99"><span class="RefLink">3.5-1</span></a>), called with an admissible name of a group as the only argument, lists the <strong class="pkg">ATLAS</strong> data available for this group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DisplayAtlasInfo( "A5" );</span>
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 1: G &lt;= Sym(5)                  3-trans., on cosets of A4 (1st max.)
 2: G &lt;= Sym(6)                  2-trans., on cosets of D10 (2nd max.)
 3: G &lt;= Sym(10)                 rank 3, on cosets of S3 (3rd max.)
 4: G &lt;= GL(4a,2)                character 4a
 5: G &lt;= GL(4b,2)                character 2ab
 6: G &lt;= GL(4,3)                 character 4a
 7: G &lt;= GL(6,3)                 character 3ab
 8: G &lt;= GL(2a,4)                character 2a
 9: G &lt;= GL(2b,4)                character 2b
10: G &lt;= GL(3,5)                 character 3a
11: G &lt;= GL(5,5)                 character 5a
12: G &lt;= GL(3a,9)                character 3a
13: G &lt;= GL(3b,9)                character 3b
14: G &lt;= GL(4,Z)                 character 4a
15: G &lt;= GL(5,Z)                 character 5a
16: G &lt;= GL(6,Z)                 character 3ab
17: G &lt;= GL(3a,Field([Sqrt(5)])) character 3a
18: G &lt;= GL(3b,Field([Sqrt(5)])) character 3b

Programs for G = A5:    (all refer to std. generators 1)
--------------------
- class repres.*      
- presentation        
- maxes (all 3):
  1:  A4              
  2:  D10             
  3:  S3              
- std. gen. checker:
  (check)             
  (pres)              
</pre></div>

<p>In order to fetch one of the listed permutation groups or matrix groups, you can call <code class="func">AtlasGroup</code> (<a href="chap3.html#X80AABEE783363B70"><span class="RefLink">3.5-8</span></a>) with second argument the function <code class="func">Position</code> (<a href="../../../doc/ref/chap21.html#X79975EC6783B4293"><span class="RefLink">Reference: Position</span></a>) and third argument the position in the list.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasGroup( "A5", Position, 1 );</span>
Group([ (1,2)(3,4), (1,3,5) ])
</pre></div>

<p>Note that this approach may yield a different group after a data extension has been loaded.</p>

<p>Alternatively, you can describe the desired group by conditions, such as the degree in the case of a permutation group, and the dimension and the base ring in the case of a matrix group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasGroup( "A5", NrMovedPoints, 10 );</span>
Group([ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasGroup( "A5", Dimension, 4, Ring, GF(2) );</span>
&lt;matrix group of size 60 with 2 generators&gt;
</pre></div>

<p>The same holds for the restriction to maximal subgroups: Use <code class="func">AtlasSubgroup</code> (<a href="chap3.html#X7A3E460C82B3D9A3"><span class="RefLink">3.5-9</span></a>) with the same arguments as <code class="func">AtlasGroup</code> (<a href="chap3.html#X80AABEE783363B70"><span class="RefLink">3.5-8</span></a>), except that additionally the number of the class of maximal subgroups is entered as the last argument. Note that the conditions refer to the group, not to the subgroup; it may happen that the subgroup moves fewer points than the big group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasSubgroup( "A5", Dimension, 4, Ring, GF(2), 1 );</span>
&lt;matrix group of size 12 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= AtlasSubgroup( "A5", NrMovedPoints, 10, 3 );</span>
Group([ (2,4)(3,5)(6,8)(7,10), (1,4)(3,8)(5,7)(6,10) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( g );  NrMovedPoints( g );</span>
6
9
</pre></div>

<p><a id="X7D3A29F879B140D3" name="X7D3A29F879B140D3"></a></p>

<h4>2.3 <span class="Heading">Basic Concepts used in <strong class="pkg">AtlasRep</strong></span></h4>

<p><a id="X7E2FB5E5852AD970" name="X7E2FB5E5852AD970"></a></p>

<h5>2.3-1 <span class="Heading">Groups, Generators, and Representations</span></h5>

<p>Up to now, we have talked only about groups and subgroups. The <strong class="pkg">AtlasRep</strong> package provides access to <em>group generators</em>, and in fact these generators have the property that mapping one set of generators to another set of generators for the same group defines an isomorphism. These generators are called <em>standard generators</em>, see Section <a href="chap3.html#X795DB7E486E0817D"><span class="RefLink">3.3</span></a>.</p>

<p>So instead of thinking about several generating sets of a group <span class="SimpleMath">G</span>, say, we can think about one abstract group <span class="SimpleMath">G</span>, with one fixed set of generators, and mapping these generators to any set of generators provided by <strong class="pkg">AtlasRep</strong> defines a representation of <span class="SimpleMath">G</span>. This viewpoint had motivated the name <q><strong class="pkg">ATLAS</strong> of Group Representations</q> for the core part of the database.</p>

<p>If you are interested in the generators provided by the database rather than in the groups they generate, you can use the function <code class="func">OneAtlasGeneratingSetInfo</code> (<a href="chap3.html#X841478AB7CD06D44"><span class="RefLink">3.5-6</span></a>) instead of <code class="func">AtlasGroup</code> (<a href="chap3.html#X80AABEE783363B70"><span class="RefLink">3.5-8</span></a>), with the same arguments. This will yield a record that describes the representation in question. Calling the function <code class="func">AtlasGenerators</code> (<a href="chap3.html#X7D1CCCF8852DFF39"><span class="RefLink">3.5-3</span></a>) with this record will then yield a record with the additional component <code class="code">generators</code>, which holds the list of generators.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 10 );</span>
rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, 
  repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",
  standardization := 1, transitivity := 1, type := "perm" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info2:= AtlasGenerators( info );</span>
rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
  contents := "core", 
  generators := [ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ], 
  groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, 
  repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",
  standardization := 1, transitivity := 1, type := "perm" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info2.generators;</span>
[ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ]
</pre></div>

<p>The record <code class="code">info</code> appears as the value of the attribute <code class="func">AtlasRepInfoRecord</code> (<a href="chap3.html#X87BC7D9C7BA2F27A"><span class="RefLink">3.5-10</span></a>) in groups that are returned by <code class="func">AtlasGroup</code> (<a href="chap3.html#X80AABEE783363B70"><span class="RefLink">3.5-8</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= AtlasGroup( "A5", NrMovedPoints, 10 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasRepInfoRecord( g );</span>
rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, 
  repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",
  standardization := 1, transitivity := 1, type := "perm" )
</pre></div>

<p><a id="X7DC99E4284093FBB" name="X7DC99E4284093FBB"></a></p>

<h5>2.3-2 <span class="Heading">Straight Line Programs</span></h5>

<p>For computing certain group elements from standard generators, such as generators of a subgroup or class representatives, <strong class="pkg">AtlasRep</strong> uses <em>straight line programs</em>, see <a href="../../../doc/ref/chap37.html#X7DC99E4284093FBB"><span class="RefLink">Reference: Straight Line Programs</span></a>. Essentially this means to evaluate words in the generators, which is similar to <code class="func">MappedWord</code> (<a href="../../../doc/ref/chap36.html#X7EC17930781D104A"><span class="RefLink">Reference: MappedWord</span></a>) but can be more efficient.</p>

<p>It can be useful to deal with these straight line programs, see <code class="func">AtlasProgram</code> (<a href="chap3.html#X801F2E657C8A79ED"><span class="RefLink">3.5-4</span></a>). For example, an automorphism <span class="SimpleMath">α</span>, say, of the group <span class="SimpleMath">G</span>, if available in <strong class="pkg">AtlasRep</strong>, is given by a straight line program that defines the images of standard generators of <span class="SimpleMath">G</span>. This way, one can for example compute the image of a subgroup <span class="SimpleMath">U</span> of <span class="SimpleMath">G</span> under <span class="SimpleMath">α</span> by first applying the straight line program for <span class="SimpleMath">α</span> to standard generators of <span class="SimpleMath">G</span>, and then applying the straight line program for the restriction from <span class="SimpleMath">G</span> to <span class="SimpleMath">U</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prginfo:= AtlasProgramInfo( "A5", "maxes", 1 );</span>
rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], 
  size := 12, standardization := 1, subgroupname := "A4", 
  version := "1" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prg:= AtlasProgram( prginfo.identifier );</span>
rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], 
  program := &lt;straight line program&gt;, size := 12, 
  standardization := 1, subgroupname := "A4", version := "1" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( prg.program );</span>
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]*r[2];
r[4]:= r[2]*r[1];
r[5]:= r[3]*r[3];
r[1]:= r[5]*r[4];
# return values:
[ r[1], r[2] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResultOfStraightLineProgram( prg.program, info2.generators );</span>
[ (1,10)(2,3)(4,9)(7,8), (1,2,3)(4,6,7)(5,8,9) ]
</pre></div>

<p><a id="X87ACE06E82B68589" name="X87ACE06E82B68589"></a></p>

<h4>2.4 <span class="Heading">Examples of Using the <strong class="pkg">AtlasRep</strong> Package</span></h4>

<p><a id="X8563D96878AC685C" name="X8563D96878AC685C"></a></p>

<h5>2.4-1 <span class="Heading">Example: Class Representatives</span></h5>

<p>First we show the computation of class representatives of the Mathieu group <span class="SimpleMath">M_11</span>, in a <span class="SimpleMath">2</span>-modular matrix representation. We start with the ordinary and Brauer character tables of this group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "M11" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">modtbl:= tbl mod 2;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterDegrees( modtbl );</span>
[ [ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ] ]
</pre></div>

<p>The output of <code class="func">CharacterDegrees</code> (<a href="../../../doc/ref/chap71.html#X81FEFF768134481A"><span class="RefLink">Reference: CharacterDegrees</span></a>) means that the <span class="SimpleMath">2</span>-modular irreducibles of <span class="SimpleMath">M_11</span> have degrees <span class="SimpleMath">1</span>, <span class="SimpleMath">10</span>, <span class="SimpleMath">16</span>, <span class="SimpleMath">16</span>, and <span class="SimpleMath">44</span>.</p>

<p>Using <code class="func">DisplayAtlasInfo</code> (<a href="chap3.html#X79DACFFA7E2D1A99"><span class="RefLink">3.5-1</span></a>), we find out that matrix generators for the irreducible <span class="SimpleMath">10</span>-dimensional representation are available in the database.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DisplayAtlasInfo( "M11", Characteristic, 2 );</span>
Representations for G = M11:    (all refer to std. generators 1)
----------------------------
 6: G &lt;= GL(10,2)  character 10a
 7: G &lt;= GL(32,2)  character 16ab
 8: G &lt;= GL(44,2)  character 44a
16: G &lt;= GL(16a,4) character 16a
17: G &lt;= GL(16b,4) character 16b
</pre></div>

<p>So we decide to work with this representation. We fetch the generators and compute the list of class representatives of <span class="SimpleMath">M_11</span> in the representation. The ordering of class representatives is the same as that in the character table of the <strong class="pkg">ATLAS</strong> of Finite Groups (<a href="chapBib.html#biBCCN85">[CCN+85]</a>), which coincides with the ordering of columns in the <strong class="pkg">GAP</strong> table we have fetched above.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= OneAtlasGeneratingSetInfo( "M11", Characteristic, 2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                            Dimension, 10 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= AtlasGenerators( info.identifier );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccls:= AtlasProgram( "M11", gens.standardization, "classes" );</span>
rec( groupname := "M11", identifier := [ "M11", "M11G1-cclsW1", 1 ], 
  outputs := [ "1A", "2A", "3A", "4A", "5A", "6A", "8A", "8B", "11A", 
      "11B" ], program := &lt;straight line program&gt;, 
  standardization := 1, version := "1" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= ResultOfStraightLineProgram( ccls.program, gens.generators );;</span>
</pre></div>

<p>If we would need only a few class representatives, we could use the <strong class="pkg">GAP</strong> library function <code class="func">RestrictOutputsOfSLP</code> (<a href="../../../doc/ref/chap37.html#X7C9CABD17BE4850F"><span class="RefLink">Reference: RestrictOutputsOfSLP</span></a>) to create a straight line program that computes only specified outputs. Here is an example where only the class representatives of order eight are computed.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord8prg:= RestrictOutputsOfSLP( ccls.program,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  Filtered( [ 1 .. 10 ], i -&gt; ccls.outputs[i][1] = '8' ) );</span>
&lt;straight line program&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord8reps:= ResultOfStraightLineProgram( ord8prg, gens.generators );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ord8reps, m -&gt; Position( reps, m ) );</span>
[ 7, 8 ]
</pre></div>

<p>Let us check that the class representatives have the right orders.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( reps, Order ) = OrdersClassRepresentatives( tbl );</span>
true
</pre></div>

<p>From the class representatives, we can compute the Brauer character we had started with. This Brauer character is defined on all classes of the <span class="SimpleMath">2</span>-modular table. So we first pick only those representatives, using the <strong class="pkg">GAP</strong> function <code class="func">GetFusionMap</code> (<a href="../../../doc/ref/chap73.html#X8464DD23879431D9"><span class="RefLink">Reference: GetFusionMap</span></a>); in this situation, it returns the class fusion from the Brauer table into the ordinary table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= GetFusionMap( modtbl, tbl );</span>
[ 1, 3, 5, 9, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">modreps:= reps{ fus };;</span>
</pre></div>

<p>Then we call the <strong class="pkg">GAP</strong> function <code class="func">BrauerCharacterValue</code> (<a href="../../../doc/ref/chap72.html#X8304B68E84511685"><span class="RefLink">Reference: BrauerCharacterValue</span></a>), which computes the Brauer character value from the matrix given.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">char:= List( modreps, BrauerCharacterValue );</span>
[ 10, 1, 0, -1, -1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Position( Irr( modtbl ), char );</span>
2
</pre></div>

<p><a id="X81C9233778A3A817" name="X81C9233778A3A817"></a></p>

<h5>2.4-2 <span class="Heading">Example: Permutation and Matrix Representations</span></h5>

<p>The second example shows the computation of a permutation representation from a matrix representation. We work with the <span class="SimpleMath">10</span>-dimensional representation used above, and consider the action on the <span class="SimpleMath">2^10</span> vectors of the underlying row space.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">grp:= Group( gens.generators );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v:= GF(2)^10;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= Orbits( grp, AsList( v ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 1, 396, 55, 330, 66, 165, 11 ]
</pre></div>

<p>We see that there are six nontrivial orbits, and we can compute the permutation actions on these orbits directly using <code class="func">Action</code> (<a href="../../../doc/ref/chap40.html#X86C2BE2481FDC8EE"><span class="RefLink">Reference: Action homomorphisms</span></a>). However, for larger examples, one cannot write down all orbits on the row space, so one has to use another strategy if one is interested in a particular orbit.</p>

<p>Let us assume that we are interested in the orbit of length <span class="SimpleMath">11</span>. The point stabilizer is the first maximal subgroup of <span class="SimpleMath">M_11</span>, thus the restriction of the representation to this subgroup has a nontrivial fixed point space. This restriction can be computed using the <strong class="pkg">AtlasRep</strong> package.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= AtlasGenerators( "M11", 6, 1 );;</span>
</pre></div>

<p>Now computing the fixed point space is standard linear algebra.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">id:= IdentityMat( 10, GF(2) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sub1:= Subspace( v, NullspaceMat( gens.generators[1] - id ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sub2:= Subspace( v, NullspaceMat( gens.generators[2] - id ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fix:= Intersection( sub1, sub2 );</span>
&lt;vector space of dimension 1 over GF(2)&gt;
</pre></div>

<p>The final step is of course the computation of the permutation action on the orbit.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= Orbit( grp, Basis( fix )[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">act:= Action( grp, orb );;  Print( act, "\n" );</span>
Group( [ ( 1, 2)( 4, 6)( 5, 8)( 7,10), ( 1, 3, 5, 9)( 2, 4, 7,11) ] )
</pre></div>

<p>Note that this group is <em>not</em> equal to the group obtained by fetching the permutation representation from the database. This is due to a different numbering of the points, thus the groups are permutation isomorphic, that is, they are conjugate in the symmetric group on eleven points.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">permgrp:= Group( AtlasGenerators( "M11", 1 ).generators );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Print( permgrp, "\n" );</span>
Group( [ ( 2,10)( 4,11)( 5, 7)( 8, 9), (1,4,3,8)(2,5,6,9) ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">permgrp = act;</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsConjugate( SymmetricGroup(11), permgrp, act );</span>
true
</pre></div>

<p><a id="X8284D7E87D38889C" name="X8284D7E87D38889C"></a></p>

<h5>2.4-3 <span class="Heading">Example: Outer Automorphisms</span></h5>

<p>The straight line programs for applying outer automorphisms to standard generators can of course be used to define the automorphisms themselves as <strong class="pkg">GAP</strong> mappings.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DisplayAtlasInfo( "G2(3)", IsStraightLineProgram );</span>
Programs for G = G2(3):    (all refer to std. generators 1)
-----------------------
- class repres.            
- presentation             
- repr. cyc. subg.         
- std. gen. checker        
- automorphisms:
  2                        
- maxes (all 10):
   1:  U3(3).2             
   2:  U3(3).2             
   3:  (3^(1+2)+x3^2):2S4  
   4:  (3^(1+2)+x3^2):2S4  
   5:  L3(3).2             
   6:  L3(3).2             
   7:  L2(8).3             
   8:  2^3.L3(2)           
   9:  L2(13)              
  10:  2^(1+4)+:3^2.2      
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prog:= AtlasProgram( "G2(3)", "automorphism", "2" ).program;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= OneAtlasGeneratingSetInfo( "G2(3)", Dimension, 7 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= AtlasGenerators( info ).generators;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">imgs:= ResultOfStraightLineProgram( prog, gens );;</span>
</pre></div>

<p>If we are not suspicious whether the script really describes an automorphism then we should tell this to <strong class="pkg">GAP</strong>, in order to avoid the expensive checks of the properties of being a homomorphism and bijective (see Section <a href="../../../doc/ref/chap40.html#X81A7BB0F7D81B247"><span class="RefLink">Reference: Creating Group Homomorphisms</span></a>). This looks as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Group( gens );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">aut:= GroupHomomorphismByImagesNC( g, g, gens, imgs );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetIsBijective( aut, true );</span>
</pre></div>

<p>If we are suspicious whether the script describes an automorphism then we might have the idea to check it with <strong class="pkg">GAP</strong>, as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">aut:= GroupHomomorphismByImages( g, g, gens, imgs );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsBijective( aut );</span>
true
</pre></div>

<p>(Note that even for a comparatively small group such as <span class="SimpleMath">G_2(3)</span>, this was a difficult task for <strong class="pkg">GAP</strong> before version 4.3.)</p>

<p>Often one can form images under an automorphism <span class="SimpleMath">α</span>, say, without creating the homomorphism object. This is obvious for the standard generators of the group <span class="SimpleMath">G</span> themselves, but also for generators of a maximal subgroup <span class="SimpleMath">M</span> computed from standard generators of <span class="SimpleMath">G</span>, provided that the straight line programs in question refer to the same standard generators. Note that the generators of <span class="SimpleMath">M</span> are given by evaluating words in terms of standard generators of <span class="SimpleMath">G</span>, and their images under <span class="SimpleMath">α</span> can be obtained by evaluating the same words at the images under <span class="SimpleMath">α</span> of the standard generators of <span class="SimpleMath">G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">max1:= AtlasProgram( "G2(3)", 1 ).program;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mgens:= ResultOfStraightLineProgram( max1, gens );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">comp:= CompositionOfStraightLinePrograms( max1, prog );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mimgs:= ResultOfStraightLineProgram( comp, gens );;</span>
</pre></div>

<p>The list <code class="code">mgens</code> is the list of generators of the first maximal subgroup of <span class="SimpleMath">G_2(3)</span>, <code class="code">mimgs</code> is the list of images under the automorphism given by the straight line program <code class="code">prog</code>. Note that applying the program returned by <code class="func">CompositionOfStraightLinePrograms</code> (<a href="../../../doc/ref/chap37.html#X8274C7948248C053"><span class="RefLink">Reference: CompositionOfStraightLinePrograms</span></a>) means to apply first <code class="code">prog</code> and then <code class="code">max1</code>. Since we have already constructed the <strong class="pkg">GAP</strong> object representing the automorphism, we can check whether the results are equal.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mimgs = List( mgens, x -&gt; x^aut );</span>
true
</pre></div>

<p>However, it should be emphasized that using <code class="code">aut</code> requires a huge machinery of computations behind the scenes, whereas applying the straight line programs <code class="code">prog</code> and <code class="code">max1</code> involves only elementary operations with the generators. The latter is feasible also for larger groups, for which constructing the <strong class="pkg">GAP</strong> automorphism might be too hard.</p>

<p><a id="X794D669E7A507310" name="X794D669E7A507310"></a></p>

<h5>2.4-4 <span class="Heading">Example: Using Semi-presentations and Black Box Programs</span></h5>

<p>Let us suppose that we want to restrict a representation of the Mathieu group <span class="SimpleMath">M_12</span> to a non-maximal subgroup of the type <span class="SimpleMath">L_2(11)</span>. The idea is that this subgroup can be found as a maximal subgroup of a maximal subgroup of the type <span class="SimpleMath">M_11</span>, which is itself maximal in <span class="SimpleMath">M_12</span>. For that, we fetch a representation of <span class="SimpleMath">M_12</span> and use a straight line program for restricting it to the first maximal subgroup, which has the type <span class="SimpleMath">M_11</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= OneAtlasGeneratingSetInfo( "M12", NrMovedPoints, 12 );</span>
rec( charactername := "1a+11a", constituents := [ 1, 2 ], 
  contents := "core", groupname := "M12", id := "a", 
  identifier := [ "M12", [ "M12G1-p12aB0.m1", "M12G1-p12aB0.m2" ], 1, 
      12 ], isPrimitive := true, maxnr := 1, p := 12, rankAction := 2,
  repname := "M12G1-p12aB0", repnr := 1, size := 95040, 
  stabilizer := "M11", standardization := 1, transitivity := 5, 
  type := "perm" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gensM12:= AtlasGenerators( info.identifier );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">restM11:= AtlasProgram( "M12", "maxes", 1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gensM11:= ResultOfStraightLineProgram( restM11.program,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                          gensM12.generators );</span>
[ (3,9)(4,12)(5,10)(6,8), (1,4,11,5)(2,10,8,3) ]
</pre></div>

<p>Now we <em>cannot</em> simply apply a straight line program for a group to some generators, since they are not necessarily <em>standard</em> generators of the group. We check this property using a semi-presentation for <span class="SimpleMath">M_11</span>, see <a href="chap6.html#X7C94ECAC8583CEAE"><span class="RefLink">6.1-7</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">checkM11:= AtlasProgram( "M11", "check" );</span>
rec( groupname := "M11", identifier := [ "M11", "M11G1-check1", 1, 1 ]
    , program := &lt;straight line decision&gt;, standardization := 1, 
  version := "1" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResultOfStraightLineDecision( checkM11.program, gensM11 );</span>
true
</pre></div>

<p>So we are lucky that applying the appropriate program for <span class="SimpleMath">M_11</span> will give us the required generators for <span class="SimpleMath">L_2(11)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">restL211:= AtlasProgram( "M11", "maxes", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gensL211:= ResultOfStraightLineProgram( restL211.program, gensM11 );</span>
[ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= Group( gensL211 );;  Size( G );  IsSimple( G );</span>
660
true
</pre></div>

<p>In this case, we could also use the information that is stored about <span class="SimpleMath">M_11</span>, as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DisplayAtlasInfo( "M11", IsStraightLineProgram );</span>
Programs for G = M11:    (all refer to std. generators 1)
---------------------
- presentation                                        
- repr. cyc. subg.                                    
- std. gen. finder                                    
- class repres.:
  (direct)                                            
  (composed)                                          
- maxes (all 5):
  1:  A6.2_3                                          
  1:  A6.2_3                                  (std. 1)
  2:  L2(11)                                          
  2:  L2(11)                                  (std. 1)
  3:  3^2:Q8.2                                        
  4:  S5                                              
  4:  S5                                      (std. 1)
  5:  2.S4                                            
- standardizations of maxes:
  from 1st max., version 1 to A6.2_3, std. 1          
  from 2nd max., version 1 to L2(11), std. 1          
  from 4th max., version 1 to A5.2, std. 1            
- std. gen. checker:
  (check)                                             
  (pres)                                              
</pre></div>

<p>The entry <q>std.1</q> in the line about the maximal subgroup of type <span class="SimpleMath">L_2(11)</span> means that a straight line program for computing <em>standard</em> generators (in standardization 1) of the subgroup. This program can be fetched as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">restL211std:= AtlasProgram( "M11", "maxes", 2, 1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResultOfStraightLineProgram( restL211std.program, gensM11 );</span>
[ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ]
</pre></div>

<p>We see that we get the same generators for the subgroup as above. (In fact the second approach first applies the same program as is given by <code class="code">restL211.program</code>, and then applies a program to the results that does nothing.)</p>

<p>Usually representations are not given in terms of standard generators. For example, let us take the <span class="SimpleMath">M_11</span> type group returned by the <strong class="pkg">GAP</strong> function <code class="func">MathieuGroup</code> (<a href="../../../doc/ref/chap50.html#X788FA7DE84E0FE6A"><span class="RefLink">Reference: MathieuGroup</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= MathieuGroup( 11 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= GeneratorsOfGroup( G );</span>
[ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResultOfStraightLineDecision( checkM11.program, gens );</span>
false
</pre></div>

<p>If we want to compute an <span class="SimpleMath">L_2(11)</span> type subgroup of this group, we can use a black box program for computing standard generators, and then apply the straight line program for computing the restriction.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">find:= AtlasProgram( "M11", "find" );</span>
rec( groupname := "M11", identifier := [ "M11", "M11G1-find1", 1, 1 ],
  program := &lt;black box program&gt;, standardization := 1, 
  version := "1" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">stdgens:= ResultOfBBoxProgram( find.program, Group( gens ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( stdgens, Order );</span>
[ 2, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResultOfStraightLineDecision( checkM11.program, stdgens );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gensL211:= ResultOfStraightLineProgram( restL211.program, stdgens );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( gensL211, Order );</span>
[ 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= Group( gensL211 );;  Size( G );  IsSimple( G );</span>
660
true
</pre></div>

<p>Note that applying the black box program several times may yield different group elements, because computations of random elements are involved, see <code class="func">ResultOfBBoxProgram</code> (<a href="chap6.html#X869BACFB80A3CC87"><span class="RefLink">6.2-4</span></a>). All what the black box program promises is to construct standard generators, and these are defined only up to conjugacy in the automorphism group of the group in question.</p>

<p><a id="X7CE7C2068017525C" name="X7CE7C2068017525C"></a></p>

<h5>2.4-5 <span class="Heading">Example: Using the <strong class="pkg">GAP</strong> Library of Tables of Marks</span></h5>

<p>The <strong class="pkg">GAP</strong> Library of Tables of Marks (the <strong class="pkg">GAP</strong> package <strong class="pkg">TomLib</strong>, <a href="chapBib.html#biBTomLib">[NMP18]</a>) provides, for many almost simple groups, information for constructing representatives of all conjugacy classes of subgroups. If this information is compatible with the standard generators of the <strong class="pkg">ATLAS</strong> of Group Representations then we can use it to restrict any representation from the <strong class="pkg">ATLAS</strong> to prescribed subgroups. This is useful in particular for those subgroups for which the <strong class="pkg">ATLAS</strong> of Group Representations itself does not contain a straight line program.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( "A5" );</span>
TableOfMarks( "A5" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= StandardGeneratorsInfo( tom );</span>
[ rec( ATLAS := true, description := "|a|=2, |b|=3, |ab|=5", 
      generators := "a, b", 
      script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ], 
      standardization := 1 ) ]
</pre></div>

<p>The <code class="keyw">true</code> value of the component <code class="code">ATLAS</code> indicates that the information stored on <code class="code">tom</code> refers to the standard generators of type <span class="SimpleMath">1</span> in the <strong class="pkg">ATLAS</strong> of Group Representations.</p>

<p>We want to restrict a <span class="SimpleMath">4</span>-dimensional integral representation of <span class="SimpleMath">A_5</span> to a Sylow <span class="SimpleMath">2</span> subgroup of <span class="SimpleMath">A_5</span>, and use <code class="func">RepresentativeTomByGeneratorsNC</code> (<a href="../../../doc/ref/chap70.html#X7F625AB880B73AC3"><span class="RefLink">Reference: RepresentativeTomByGeneratorsNC</span></a>) for that.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= OneAtlasGeneratingSetInfo( "A5", Ring, Integers, Dimension, 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">stdgens:= AtlasGenerators( info.identifier );</span>
rec( charactername := "4a", constituents := [ 4 ], contents := "core",
  dim := 4, 
  generators := 
    [ 
      [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], 
          [ -1, -1, -1, -1 ] ], 
      [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], 
          [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "", 
  identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], 
  repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, 
  standardization := 1, type := "matint" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orders:= OrdersTom( tom );</span>
[ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pos:= Position( orders, 4 );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sub:= RepresentativeTomByGeneratorsNC( tom, pos, stdgens.generators );</span>
&lt;matrix group of size 4 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfGroup( sub );</span>
[ [ [ 1, 0, 0, 0 ], [ -1, -1, -1, -1 ], [ 0, 0, 0, 1 ], 
      [ 0, 0, 1, 0 ] ], 
  [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], 
      [ -1, -1, -1, -1 ] ] ]
</pre></div>

<p><a id="X82550A9683E0DCA2" name="X82550A9683E0DCA2"></a></p>

<h5>2.4-6 <span class="Heading">Example: Index <span class="SimpleMath">770</span> Subgroups in <span class="SimpleMath">M_22</span></span></h5>

<p>The sporadic simple Mathieu group <span class="SimpleMath">M_22</span> contains a unique class of subgroups of index <span class="SimpleMath">770</span> (and order <span class="SimpleMath">576</span>). This can be seen for example using <strong class="pkg">GAP</strong>'s Library of Tables of Marks.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( "M22" );</span>
TableOfMarks( "M22" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">subord:= Size( UnderlyingGroup( tom ) ) / 770;</span>
576
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord:= OrdersTom( tom );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -&gt; ord[i] = subord );</span>
[ 144 ]
</pre></div>

<p>The permutation representation of <span class="SimpleMath">M_22</span> on the right cosets of such a subgroup <span class="SimpleMath">S</span> is contained in the <strong class="pkg">ATLAS</strong> of Group Representations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DisplayAtlasInfo( "M22", NrMovedPoints, 770 );</span>
Representations for G = M22:    (all refer to std. generators 1)
----------------------------
12: G &lt;= Sym(770) rank 9, on cosets of (A4xA4):4 &lt; 2^4:A6
</pre></div>

<p>Now we verify the information shown about the point stabilizer and about the maximal overgroups of <span class="SimpleMath">S</span> in <span class="SimpleMath">M_22</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxtom:= MaximalSubgroupsTom( tom );</span>
[ [ 155, 154, 153, 152, 151, 150, 146, 145 ], 
  [ 22, 77, 176, 176, 231, 330, 616, 672 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( tomstabs, i -&gt; List( maxtom[1], j -&gt; ContainedTom( tom, i, j ) ) );</span>
[ [ 0, 10, 0, 0, 0, 0, 0, 0 ] ]
</pre></div>

<p>We see that the only maximal subgroups of <span class="SimpleMath">M_22</span> that contain <span class="SimpleMath">S</span> have index <span class="SimpleMath">77</span> in <span class="SimpleMath">M_22</span>. According to the <strong class="pkg">ATLAS</strong> of Finite Groups, these maximal subgroups have the structure <span class="SimpleMath">2^4:A_6</span>. From that and from the structure of <span class="SimpleMath">A_6</span>, we conclude that <span class="SimpleMath">S</span> has the structure <span class="SimpleMath">2^4:(3^2:4)</span>.</p>

<p>Alternatively, we look at the permutation representation of degree <span class="SimpleMath">770</span>. We fetch it from the <strong class="pkg">ATLAS</strong> of Group Representations. There is exactly one nontrivial block system for this representation, with <span class="SimpleMath">77</span> blocks of length <span class="SimpleMath">10</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= AtlasGroup( "M22", NrMovedPoints, 770 );</span>
&lt;permutation group of size 443520 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">allbl:= AllBlocks( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( allbl, Length );</span>
[ 10 ]
</pre></div>

<p>Furthermore, <strong class="pkg">GAP</strong> computes that the point stabilizer <span class="SimpleMath">S</span> has the structure <span class="SimpleMath">(A_4 × A_4):4</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">stab:= Stabilizer( g, 1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription( stab : nice );</span>
"(A4 x A4) : C4"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">blocks:= Orbit( g, allbl[1], OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">act:= Action( g, blocks, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription( Stabilizer( act, 1 ) );</span>
"(C2 x C2 x C2 x C2) : A6"
</pre></div>

<p><a id="X84F9D163795B7DE1" name="X84F9D163795B7DE1"></a></p>

<h5>2.4-7 <span class="Heading">Example: Index <span class="SimpleMath">462</span> Subgroups in <span class="SimpleMath">M_22</span></span></h5>

<p>The <strong class="pkg">ATLAS</strong> of Group Representations contains three degree <span class="SimpleMath">462</span> permutation representations of the group <span class="SimpleMath">M_22</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DisplayAtlasInfo( "M22", NrMovedPoints, 462 );</span>
Representations for G = M22:    (all refer to std. generators 1)
----------------------------
7: G &lt;= Sym(462a) rank 5, on cosets of 2^4:A5 &lt; 2^4:A6
8: G &lt;= Sym(462b) rank 8, on cosets of 2^4:A5 &lt; L3(4), 2^4:S5
9: G &lt;= Sym(462c) rank 8, on cosets of 2^4:A5 &lt; L3(4), 2^4:A6
</pre></div>

<p>The point stabilizers in these three representations have the structure <span class="SimpleMath">2^4:A_5</span>. Using <strong class="pkg">GAP</strong>'s Library of Tables of Marks, we can show that these stabilizers are exactly the three classes of subgroups of order <span class="SimpleMath">960</span> in <span class="SimpleMath">M_22</span>. For that, we first verify that the group generators stored in <strong class="pkg">GAP</strong>'s table of marks coincide with the standard generators used by the <strong class="pkg">ATLAS</strong> of Group Representations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( "M22" );</span>
TableOfMarks( "M22" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">genstom:= GeneratorsOfGroup( UnderlyingGroup( tom ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">checkM22:= AtlasProgram( "M22", "check" );</span>
rec( groupname := "M22", identifier := [ "M22", "M22G1-check1", 1, 1 ]
    , program := &lt;straight line decision&gt;, standardization := 1, 
  version := "1" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResultOfStraightLineDecision( checkM22.program, genstom );</span>
true
</pre></div>

<p>There are indeed three classes of subgroups of order <span class="SimpleMath">960</span> in <span class="SimpleMath">M_22</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord:= OrdersTom( tom );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -&gt; ord[i] = 960 );</span>
[ 147, 148, 149 ]
</pre></div>

<p>Now we compute representatives of these three classes in the three representations <code class="code">462a</code>, <code class="code">462b</code>, and <code class="code">462c</code>. We see that each of the three classes occurs as a point stabilizer in exactly one of the three representations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">atlasreps:= AllAtlasGeneratingSetInfos( "M22", NrMovedPoints, 462 );</span>
[ rec( charactername := "1a+21a+55a+154a+231a", 
      constituents := [ 1, 2, 5, 7, 9 ], contents := "core", 
      groupname := "M22", id := "a", 
      identifier := 
        [ "M22", [ "M22G1-p462aB0.m1", "M22G1-p462aB0.m2" ], 1, 462 ],
      isPrimitive := false, p := 462, rankAction := 5, 
      repname := "M22G1-p462aB0", repnr := 7, size := 443520, 
      stabilizer := "2^4:A5 &lt; 2^4:A6", standardization := 1, 
      transitivity := 1, type := "perm" ), 
  rec( charactername := "1a+21a^2+55a+154a+210a", 
      constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", 
      groupname := "M22", id := "b", 
      identifier := 
        [ "M22", [ "M22G1-p462bB0.m1", "M22G1-p462bB0.m2" ], 1, 462 ],
      isPrimitive := false, p := 462, rankAction := 8, 
      repname := "M22G1-p462bB0", repnr := 8, size := 443520, 
      stabilizer := "2^4:A5 &lt; L3(4), 2^4:S5", standardization := 1, 
      transitivity := 1, type := "perm" ), 
  rec( charactername := "1a+21a^2+55a+154a+210a", 
      constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", 
      groupname := "M22", id := "c", 
      identifier := 
        [ "M22", [ "M22G1-p462cB0.m1", "M22G1-p462cB0.m2" ], 1, 462 ],
      isPrimitive := false, p := 462, rankAction := 8, 
      repname := "M22G1-p462cB0", repnr := 9, size := 443520, 
      stabilizer := "2^4:A5 &lt; L3(4), 2^4:A6", standardization := 1, 
      transitivity := 1, type := "perm" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">atlasreps:= List( atlasreps, AtlasGroup );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tomstabreps:= List( atlasreps, G -&gt; List( tomstabs,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">i -&gt; RepresentativeTomByGenerators( tom, i, GeneratorsOfGroup( G ) ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( tomstabreps, x -&gt; List( x, NrMovedPoints ) );</span>
[ [ 462, 462, 461 ], [ 460, 462, 462 ], [ 462, 461, 462 ] ]
</pre></div>

<p>More precisely, we see that the point stabilizers in the three representations <code class="code">462a</code>, <code class="code">462b</code>, <code class="code">462c</code> lie in the subgroup classes <span class="SimpleMath">149</span>, <span class="SimpleMath">147</span>, <span class="SimpleMath">148</span>, respectively, of the table of marks.</p>

<p>The point stabilizers in the representations <code class="code">462b</code> and <code class="code">462c</code> are isomorphic, but not isomorphic with the point stabilizer in <code class="code">462a</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">stabs:= List( atlasreps, G -&gt; Stabilizer( G, 1 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( stabs, IdGroup );</span>
[ [ 960, 11358 ], [ 960, 11357 ], [ 960, 11357 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( stabs, PerfectIdentification );</span>
[ [ 960, 2 ], [ 960, 1 ], [ 960, 1 ] ]
</pre></div>

<p>The three representations are imprimitive. The containment of the point stabilizers in maximal subgroups of <span class="SimpleMath">M_22</span> can be computed using the table of marks of <span class="SimpleMath">M_22</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxtom:= MaximalSubgroupsTom( tom );</span>
[ [ 155, 154, 153, 152, 151, 150, 146, 145 ], 
  [ 22, 77, 176, 176, 231, 330, 616, 672 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( tomstabs, i -&gt; List( maxtom[1], j -&gt; ContainedTom( tom, i, j ) ) );</span>
[ [ 21, 0, 0, 0, 1, 0, 0, 0 ], [ 21, 6, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 6, 0, 0, 0, 0, 0, 0 ] ]
</pre></div>

<p>We see:</p>


<ul>
<li><p>The point stabilizers in <code class="code">462a</code> (subgroups in the class <span class="SimpleMath">149</span> of the table of marks) are contained only in maximal subgroups in class <span class="SimpleMath">154</span>; these groups have the structure <span class="SimpleMath">2^4:A_6</span>.</p>

</li>
<li><p>The point stabilizers in <code class="code">462b</code> (subgroups in the class <span class="SimpleMath">147</span>) are contained in maximal subgroups in the classes <span class="SimpleMath">155</span> and <span class="SimpleMath">151</span>; these groups have the structures <span class="SimpleMath">L_3(4)</span> and <span class="SimpleMath">2^4:S_5</span>, respectively.</p>

</li>
<li><p>The point stabilizers in <code class="code">462c</code> (subgroups in the class <span class="SimpleMath">148</span>) are contained in maximal subgroups in the classes <span class="SimpleMath">155</span> and <span class="SimpleMath">154</span>.</p>

</li>
</ul>
<p>We identify the supergroups of the point stabilizers by computing the block systems.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bl:= List( atlasreps, AllBlocks );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( bl, Length );</span>
[ 1, 3, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( bl, l -&gt; List( l, Length ) );</span>
[ [ 6 ], [ 21, 21, 2 ], [ 21, 6 ] ]
</pre></div>

<p>Note that the two block systems with blocks of length <span class="SimpleMath">21</span> for <code class="code">462b</code> belong to the same supergroups (of the type <span class="SimpleMath">L_3(4)</span>); each of these subgroups fixes two different subsets of <span class="SimpleMath">21</span> points.</p>

<p>The representation <code class="code">462a</code> is <em>multiplicity-free</em>, that is, it splits into a sum of pairwise nonisomorphic irreducible representations. This can be seen from the fact that the rank of this permutation representation (that is, the number of orbits of the point stabilizer) is five; each permutation representation with this property is multiplicity-free.</p>

<p>The other two representations have rank eight. We have seen the ranks in the overview that was shown by <code class="func">DisplayAtlasInfo</code> (<a href="chap3.html#X79DACFFA7E2D1A99"><span class="RefLink">3.5-1</span></a>) in the beginning. Now we compute the ranks from the permutation groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( atlasreps, RankAction );</span>
[ 5, 8, 8 ]
</pre></div>

<p>In fact the two representations <code class="code">462b</code> and <code class="code">462c</code> have the same permutation character. We check this by computing the possible permutation characters of degree <span class="SimpleMath">462</span> for <span class="SimpleMath">M_22</span>, and decomposing them into irreducible characters, using the character table from <strong class="pkg">GAP</strong>'s Character Table Library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "M22" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">perms:= PermChars( t, 462 );</span>
[ Character( CharacterTable( "M22" ),
  [ 462, 30, 3, 2, 2, 2, 3, 0, 0, 0, 0, 0 ] ), 
  Character( CharacterTable( "M22" ),
  [ 462, 30, 12, 2, 2, 2, 0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MatScalarProducts( t, Irr( t ), perms );</span>
[ [ 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0 ], 
  [ 1, 2, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0 ] ]
</pre></div>

<p>In particular, we see that the rank eight characters are not multiplicity-free.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap1.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap3.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>