File: maintain.xml

package info (click to toggle)
gap-atlasrep 2.1.9-1
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,688 kB
  • sloc: xml: 20,993; javascript: 155; makefile: 113; sh: 1
file content (1182 lines) | stat: -rwxr-xr-x 33,599 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182

<!-- %W  maintain.xml    GAP 4 package AtlasRep             Thomas Breuer -->


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Chapter Label="chap:maintain">
<Heading>Maintenance Issues of the &AtlasRep; Package</Heading>

This is just preliminary, in particular not intended for inclusion in the manual!

<hier/>

This chapter describes why some data that are available in the web &ATLAS;
are excluded from the &GAP; interface,
by which data they have been replaced (if applicable),
and which additional data are distributed together with the
&AtlasRep; package.


-> section on just added material, such as cyc2ccls scripts

-> document all in datapkg!


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:kernel_scripts">
<Heading>Generators of Kernels</Heading>


- change the code!
  - test.g -> not only for compatible std. generators & same std.!

run for 3^(1+12):2.Suz.2
Print( "hier\n" );
if entry[1] = "3^(1+12):2.Suz.2" then
  SetSize( N, 3^13 );
fi;
#T  for 3^13, calling Size exceeds the memory!
#T  (trans. permutation action on 3^12 = 531441 points!)

-> how to verify that the kernel is correct?


Note that the program computes elements in G,
in particular we are not concerned with standardization in F,
and we do not assume that the given standard generators of G
are compatible with some standard generators of F.
(Only relation: If G has several normal subgroups N such that G/N
is isomorphic with F and if the i-th std. gens of G and F are compatible
then we prefer the normal subgroup that is the kernel of the epim.
given by mapping the i-th std. gen. of G to those of F.)


- provide kernel info also for incompatible generators:

AGR.STDCOMP("(A5xA12):2",[0,"A12.2",1,false]);
AGR.STDCOMP("(A5xU3(8):3):2",[0,"A5.2",1,false]);
AGR.STDCOMP("(L3(2)xS4(4):2).2",[0,"L3(2).2",1,false]);
AGR.STDCOMP("2^2.2E6(2).S3",[0,"2E6(2).3.2",0,false]);
AGR.STDCOMP("5^3.L3(5)",[2,"L3(5)",1,false]);

- a new type of slps, many new scripts

- hard case:
  2.2E6(2) ->> 2E6(2) (and analog. 2^2.2E6(2) -> 2E6(2))
  need to skip obviously unnecessary words;
  the > 5593818-th word works (which exactly?),
  but only 525 words must actually be tested (really?)
  (altogether 10 minutes runtime!)

  (done 2015-04-13 on gemma)

5593773-
5593781+
5593782+
5593813-
5593814+
5593818-
[ [ m2^2*m1*m2*(m2*m1*m2^2*m1)^2*(m2*m1)^4, 33 ], true ]

-> is equal to (m2^2*m1)^3*m2*m1*m2^2*m1*(m2*m1)^4
   with slp 3:= 2*1
            4:= 2*3
            5:= 4^3  (2 mult)
            6:= 3^4  (2 mult)
            7:= 5*3
            8:= 7*4
            9:= 8*6
   thus 9 mult!
-> add a remark about the arbitr. of the printed factoriz.!

(only those numbers are shown for which all syllables are below the el. order,
and "-" means that the order in the factor group is even, which need not be
checked)

- function is AGR.Test.ComputeKernelGenerators...

-> better move out from Test!

- really verify the non-cyclic kernels! (see TODO_2)



--------------------------------------------------------------------------

kernel generators:

- missing verifications in atlasrep/kerrun.out? (std. 0)
- two kernels of order 3^13 --prove!

# run on 2014-04-30

# add a test:
# if a repres. for G and of m.G are avail. then try to compute kernel slp,
# also if no compat. is assumed;
# try also compatibility ...

# add a test: are all files in the datapkg dir. of atlasrep valid?

......................................................................


# find a kernel generator:

# see AGR.Test.ComputeKernelGenerators! (atlasrep/gap/test.g)

fgens:= AtlasGenerators( "L3(7).2", 1 ).generators;
gens:= AtlasGenerators( "3.L3(7).2", 1 ).generators;


kergens:= [];
kerwords:= [];

f:= FreeMonoid( 2 );
mgens:= GeneratorsOfMonoid( f );
iter:= Iterator( f );
for word in iter do
  m:= MappedWord( word, mgens, gens );
  fm:= MappedWord( word, mgens, fgens );
  ord:= Order( fm );
  if Order( m ) <> ord then
kergen:= m^ord;
if not kergen in kergens then
  Add( kergens, kergen );
  Add( kerwords, word );
  if Length( kerwords ) >= 1 then
Error("!");
  fi;
fi;
  fi;
od;

word;
Order( m );
Order( fm );

brk> word;
m1
brk> Order( m );
4
brk> Order( fm );
2


m2^2*m1*m2*m1



slp:= StraightLineProgram(
[[2,1,1,1],[3,2],[2,2],[5,1,4,1],[[6,19]]],2
);

-----------------------------------------------------------------------------

#I  AGR.Test.KernelGenerators for 2.A10.2: missing kernels of epim. to
#I  [ "A10.2" ]
#I  AGR.Test.KernelGenerators for 2.A12.2: missing kernels of epim. to
#I  [ "A12.2" ]
#I  AGR.Test.KernelGenerators for 2.A13.2: missing kernels of epim. to
#I  [ "A13.2" ]
#I  AGR.Test.KernelGenerators for 2.A8.2: missing kernels of epim. to
#I  [ "A8.2" ]
#I  AGR.Test.KernelGenerators for 2.A9.2: missing kernels of epim. to
#I  [ "A9.2" ]
#I  AGR.Test.KernelGenerators for 2.B: missing kernels of epim. to
#I  [ "B" ]

#I  AGR.Test.KernelGenerators for 2.L2(25): missing kernels of epim. to
#I  [ "L2(25)" ]
#I  AGR.Test.KernelGenerators for 2.O7(3).2: missing kernels of epim. to
#I  [ "O7(3).2" ]
#I  AGR.Test.KernelGenerators for 2.O8+(2): missing kernels of epim. to
#I  [ "O8+(2)" ]
#I  AGR.Test.KernelGenerators for 2.O8+(2).2: missing kernels of epim. to
#I  [ "O8+(2).2" ]

#I  AGR.Test.KernelGenerators for 2.U6(2).2: missing kernels of epim. to
#I  [ "U6(2).2" ]
omit 2^2.2E6(2)
#I  AGR.Test.KernelGenerators for 2^2.2E6(2).S3: missing kernels of epim. to
#I  [ "2E6(2).3.2" ]
#I  AGR.Test.KernelGenerators for 2^2.L3(4): missing kernels of epim. to
#I  [ "2.L3(4)", "L3(4)" ]
#I  AGR.Test.KernelGenerators for 2^2.L3(4).2_2: missing kernels of epim. to
#I  [ "L3(4).2_2" ]

#I  AGR.Test.KernelGenerators for 6.O7(3).2: missing kernels of epim. to
#I  [ "2.O7(3).2", "3.O7(3).2", "O7(3).2" ]

#I  AGR.Test.KernelGenerators for Isoclinic(12.M22.2): missing kernels of epim\
. to
#I  [ "2.M22.2", "3.M22.2", "6.M22.2", "M22.2" ]
#I  AGR.Test.KernelGenerators for Isoclinic(2.A8.2): missing kernels of epim. \
to
#I  [ "A8.2" ]
#I  AGR.Test.KernelGenerators for Isoclinic(2.HS.2): missing kernels of epim. \
to
#I  [ "HS.2" ]
#I  AGR.Test.KernelGenerators for Isoclinic(2.Suz.2): missing kernels of epim.\
 to
#I  [ "Suz.2" ]
#I  AGR.Test.KernelGenerators for Isoclinic(4.M22.2): missing kernels of epim.\
 to
#I  [ "2.M22.2", "M22.2" ]

#I  AGR.Test.KernelGenerators for Isoclinic(6.M22.2): missing kernels of epim.\
 to
#I  [ "3.M22.2", "M22.2" ]

-> no repres.

#I  AGR.Test.KernelGenerators for Isoclinic(6.Suz.2): missing kernels of epim.\
 to
#I  [ "3.Suz.2", "Suz.2" ]

................
#I  AGR.Test.KernelGenerators for 3^(1+12):2.Suz.2: missing kernels of epim. t\
o
#I  [ "2.Suz.2" ]
#I  AGR.Test.KernelGenerators for 3^(1+12):6.Suz.2: missing kernels of epim. t\
o
#I  [ "3^(1+12).2.Suz.2", "6.Suz.2" ]

-> Vorsicht:
   Ich habe zwar gezeigt, dass die Konjugierten des 3. Erzeugers
   mindestens eine 3^13 erzeugen, aber ist es nicht vielleicht mehr?
   Und ich habe nicht gezeigt, dass die Untergruppe wirklich normal ist!

(in beiden Fällen, M3max7G0-ker6Suzd2W1 und Mmax7G0-ker2Suzd2W1)


gap> List( gens.generators, Order );
[ 4, 3, 3 ]
gap> List( fgens.generators, Order );
[ 4, 3 ]
gap> p:= Product( gens.generators{[1,2]} );;
gap> l:= List( [0..11], x -> gens.generators[3]^(p^x) );;
gap> cc:= Group(l );;
gap> orb:= Orbit( cc, l[1][38] );;  Length( orb );
1
gap> orb:= Orbit( cc, l[1][78] );;  Length( orb );
1594323
gap> 3^13;
1594323



g:= Group( gens.generators );
kergens:= [];
kerwords:= [];

f:= FreeMonoid( 2 );
mgens:= GeneratorsOfMonoid( f );
iter:= Iterator( f );
for word in iter do
  m:= MappedWord( word, mgens, gens.generators );
  ord:= Order( m );
  if ord mod 7 = 0 then
kergen:= m^(ord/7);
    if not kergen in kergens then
      n:= NormalClosure( g, SubgroupNC( g, [ kergen ] ) );
      if 7^5 mod Size( n ) = 0 then
        Add( kergens, kergen );
        Add( kerwords, [ word, ord/7 ] );
        if Length( kerwords ) >= 1 then
Error("!");
        fi;
      fi;
    fi;
  fi;
od;

</Section>

ab hier o.k.!


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:excluded_data">
<Heading>Excluded data files</Heading>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:3L37d2_wrong_repres">
<Heading>A matrix representation of <M>3.L_3(7).2</M></Heading>

The files <C>3L37d2G1-f7r6B0.m1</C> and <C>3L37d2G1-f7r6B0.m2</C>
that are available in the web &ATLAS;
contain generators for the group <M>G = 3.L_3(7).2</M>,
but these generators are not standard.
First we show this fact and then we compute standard generators.

<P/>

The files look as follows.

<P/>

<Listing>
 1     7     6     6
000454
000103
000163
321000
016000
622000
</Listing>

and

<Listing>
 1     7     6     6
000500
000416
000064
251000
212000
203000
</Listing>

Standard generators of <M>G</M> are defined as follows.

<P/>

<Q>Std. gens. of <M>L_3(7).2</M> are <M>c, d</M>, where <M>c</M> in <C>2B</C>,
<M>d</M> in <C>4B</C> (two outer classes),
<M>|cd| = 19</M>, <M>|cdcdd| = 8</M>.
Std. gens. of <M>3.L_3(7).2</M> are preimages <M>C, D</M>
where <M>|CD| = 19</M>.</Q>

<P/>

We create the matrices in &GAP; and check the conditions.

<P/>

<Example>
gap> gens:= List( [
> " 1     7     6     6\n\
> 000454\n\
> 000103\n\
> 000163\n\
> 321000\n\
> 016000\n\
> 622000",
> " 1     7     6     6\n\
> 000500\n\
> 000416\n\
> 000064\n\
> 251000\n\
> 212000\n\
> 203000" ], str -> ScanMeatAxeFile( str, 7, "string" ) );
[ < immutable compressed matrix 6x6 over GF(7) >, 
  < immutable compressed matrix 6x6 over GF(7) > ]
gap> List( gens, Order );
[ 2, 4 ]
gap> Order( gens[1] * gens[2] );
19
gap> Order( ( gens[1] * gens[2] )^2 * gens[2] );
6
</Example>

<P/>

This shows that the given matrices are not <E>standard</E> generators
of <M>G</M>.
In order to convince ourselves that they generate <M>G</M>,
we proceed as follows.
First we compute a faithful permutation representation of the group <M>H</M>,
say, that is generated by the given matrices.
Then we show that the derived subgroup <M>D</M> of <M>H</M> is a perfect group
with a central subgroup <M>Z</M> of order three such that the factor group
<M>D / Z</M> is a simple group that is isomorphic with <M>L_3(7)</M>,
thus <M>D</M> is the triple cover of <M>L_3(7)</M>.
It remains to show that <M>H / Z</M> is not a direct product of <M>D / Z</M>
and a group of order two; for that, it is enough to show that the centralizer
of an element of order <M>19</M> in <M>H</M> has odd order.

<!--
Note that if <M>x</M> is an element of order <M>19</M> in <M>H</M> and
<M>H / Z</M> is a direct product of <M>D / Z</M> and a group of order two
that is generated by <M>y Z</M> then <M>x^y</M> lies in <M>x Z</M>;
since <M>x</M> is the only element in <M>x Z</M> that has order <M>19</M>,
we have found an element of even order that commutes with <M>x</M>.
-->

<P/>

<Example>
gap> g:= GroupWithGenerators( gens );;
gap> Size( g );
11261376
gap> orbs:= Orbits( g, Elements( GF(7)^6 ) );;
gap> Collected( List( orbs, Length ) );
[ [ 1, 1 ], [ 684, 1 ], [ 16416, 1 ], [ 16758, 6 ] ]
gap> orb:= First( orbs, x -> Length( x ) = 684 );;
gap> acthom:= ActionHomomorphism( g, orb, OnRight );;
gap> img:= Image( acthom );;
gap> Size( img ) = Size( g );
true
gap> der:= DerivedSubgroup( img );;
gap> IsPerfectGroup( der );
true
gap> z:= Centre( der );;
gap> Size( z );
3
gap> f:= der / z;;
gap> IsSimple( f );
true
gap> IsomorphismTypeInfoFiniteSimpleGroup( f );
rec( name := "A(2,7) = L(3,7) ", parameter := [ 3, 7 ], series := "L" )
gap> gensimgs:= List( gens, x -> x^acthom );;
gap> x:= gensimgs[1] * gensimgs[2];;
gap> Order( x );
19
gap> Size( Centralizer( img, x ) );
57
</Example>

<P/>

Now let us find standard generators for <M>G</M>.
According to <Cite Key="CCN85" Where="p. 51"/>,
there is exactly one conjugacy class of elements of the orders <M>2</M>
and <M>4</M> in <M>G</M> outside <M>D</M>,
and the given generators have the right orders and lie outside <M>D</M>.
Thus we may keep the first matrix and replace the second one
by a suitable <M>G</M>-conjugate.

<P/>

<Example>
gap> c:= gensimgs[1];;
gap> d:= gensimgs[2];;
gap> repeat
> dr:= d^Random( img );
> until Order( c * dr ) = 19 and Order( (c * dr)^2 * dr ) = 8
>       and Size( img ) = Size( SubgroupNC( img, [ c, dr ] ) );
gap> 
gap> stdgens:= [ gens[1], PreImagesRepresentative( acthom, dr ) ];
[ < immutable compressed matrix 6x6 over GF(7) >, 
  < immutable compressed matrix 6x6 over GF(7) > ]
</Example>

<P/>

The erroneous representation gets excluded from the &GAP; interface
by removing it from the data list in the file <F>gap/atlasprm.json</F>
of the &AtlasRep; package and then adding an entry to the global variable
<Ref Var="AGR.ExclusionList"/>.

<!-- and add entry to htm/data/changes.htm -->

<P/>

The standard generators computed as shown above have been added to the
data that are distributed together with the &AtlasRep; package,
the representation is now available with the name <C>3L37d2G1-f7r6aB0</C>;
note that the name <C>3L37d2G1-f7r6B0</C> must be avoided.

<P/>

<Example>
gap> OneAtlasGeneratingSetInfo( "3.L3(7).2", Dimension, 6, Ring, GF(7) );
rec( dim := 6, groupname := "3.L3(7).2", id := "a", 
  identifier := 
    [ "3.L3(7).2", 
      [ [ "internal", "3L37d2G1-f7r6aB0.m1" ], 
          [ "internal", "3L37d2G1-f7r6aB0.m2" ] ], 1, 7 ], 
  repname := "3L37d2G1-f7r6aB0", repnr := 1, ring := GF(7), size := 11261376, 
  standardization := 1, type := "matff" )
</Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:2O73d2_wrong_repres">
<Heading>A matrix representation of <M>2.O_7(3).2^*</M></Heading>

The files <C>2O73d2G1-f3r8B0.m1</C> and <C>2O73d2G1-f3r8B0.m2</C>
that are available in the web &ATLAS;
do not contain generators for the group <M>2.O_7(3).2</M>.

<P/>

The files look as follows.

<P/>

<Listing>
 1     3     8     8
01200212
10011201
20201110
02122011
01111002
00211210
20212110
00111021
</Listing>

and

<Listing>
 1     3     8     8
11010011
10121000
20000221
12101200
11001011
22000112
12121220
01201002
</Listing>

Standard generators of <M>2.O_7(3).2</M> are defined as follows.

<P/>

<Q>Standard generators of <M>O_7(3).2</M> are <M>c, d</M>
where <M>c</M> is in class <C>2D</C>,
<M>d</M> has order <M>7</M>,
<M>cd</M> has order <M>26</M> and <M>cdcdd</M> has order <M>14</M>.
Standard generators of <M>2.O_7(3).2</M> are preimages <M>C, D</M>
where <M>D</M> has order <M>7</M>.</Q>

<P/>

We create the matrices in &GAP; and check the conditions.

<P/>

<Example>
gap> gens:= List( [
> " 1     3     8     8\n\
> 01200212\n\
> 10011201\n\
> 20201110\n\
> 02122011\n\
> 01111002\n\
> 00211210\n\
> 20212110\n\
> 00111021",
> " 1     3     8     8\n\
> 11010011\n\
> 10121000\n\
> 20000221\n\
> 12101200\n\
> 11001011\n\
> 22000112\n\
> 12121220\n\
> 01201002" ], str -> ScanMeatAxeFile( str, 3, "string" ) );
[ < immutable compressed matrix 8x8 over GF(3) >,
  < immutable compressed matrix 8x8 over GF(3) > ]
gap> List( gens, Order );
[ 2, 7 ]
gap> Order( gens[1] * gens[2] );
26
gap> Order( ( gens[1] * gens[2] )^2 * gens[2] );
28
</Example>

<P/>

Since the <C>2D</C> elements in <M>O_7(3).2</M> lift to elements of
order four in <M>2.O_7(3).2</M>,
and since the elements of order <M>26</M> in <M>O_7(3).2</M> lift to
elements of order <M>52</M> in <M>2.O_7(3).2</M>,
the given matrices do not fit.
They would fit, however, to the isoclinic variant <M>G = 2.O_7(3).2^*</M>,
provided that they generate this group and that the first generator
is a preimage of a <C>2D</C> element (that is, <E>not</E> a preimage of a
<C>2E</C> element).

<P/>

In order to convince ourselves that the given matrices generate <M>G</M>,
we proceed as follows.
First we compute a faithful permutation representation of the group <M>H</M>,
say, that is generated by the given matrices.
Then we show that the derived subgroup <M>D</M> of <M>H</M> is a perfect group
with a central subgroup <M>Z</M> of order two such that the factor group
<M>D / Z</M> is a simple group that is isomorphic with <M>O_7(3)</M>,
thus <M>D</M> is the double cover of <M>O_7(3)</M>.
It remains to show that <M>H / Z</M> is not a direct product of <M>D / Z</M>
and a group of order two;
for that, it is enough to show that the centre of <M>H / Z</M> is trivial.

<P/>

<Example>
gap> g:= GroupWithGenerators( gens );;
gap> Size( g );
18341406720
gap> orbs:= Orbits( g, Elements( GF(3)^8 ) );;
gap> Collected( List( orbs, Length ) );
[ [ 1, 1 ], [ 2240, 1 ], [ 4320, 1 ] ]
gap> orb:= First( orbs, x -> Length( x ) = 2240 );;
gap> acthom:= ActionHomomorphism( g, orb, OnRight );;
gap> img:= Image( acthom );;
gap> Size( img ) = Size( g );
true
gap> der:= DerivedSubgroup( img );;
gap> IsPerfectGroup( der );
true
gap> z:= Centre( der );;
gap> Size( z );
2
gap> blocks:= Orbits( z, MovedPoints( img ) );;
gap> act:= Action( img, blocks, OnSets );;
gap> Size( act ) = Size( g ) / Size( z );
true
gap> IsSimple( act );
true
gap> IsomorphismTypeInfoFiniteSimpleGroup( act );
rec( name := "B(3,3) = O(7,3)", parameter := [ 3, 3 ], series := "B" )
gap> Size( Centre( act ) );
1
</Example>

<P/>

Now we show that the first generator is in fact a preimage of a
<C>2D</C> element in <M>O_7(3).2</M>;
note that this conjugacy class is the first class outside <M>O_7(3)</M>,
and it is uniquely determined by the centralizer order of its elements.

<P/>

<Example>
gap> ind:= Permutation( gens[1]^acthom, blocks, OnSets );;
gap> c:= Size( Centralizer( act, ind ) );
24261120
gap> t:= CharacterTable( "O7(3).2" );;
gap> Positions( SizesCentralizers( t ), c );
[ 53 ]
gap> Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4, 53, 54, 55 ]
</Example>

<P/>

Thus we have shown that the given matrices are standard generators
of the group <M>G</M>.

<P/>

The erroneous representation gets excluded from the &GAP; interface
by removing it from the data list in the file <F>gap/atlasprm.json</F>
of the &AtlasRep; package and then adding an entry to the global variable
<Ref Var="AGR.ExclusionList"/>.

<!-- and add entry to htm/data/changes.htm -->

<P/>

The given matrices have been added to the data that are distributed
together with the &AtlasRep; package,
the representation is now available with the name <C>2O73d2iG1-f3r8B0</C>.
(In order to make this work, also the &ATLAS; name <C>"2O73d2i"</C> for the
group with &GAP; name <C>"Isoclinic(2.O7(3).2)"</C> had to be notified
via a call to <C>AGR.GNAN</C>.

<P/>

<Example>
gap> OneAtlasGeneratingSetInfo( "Isoclinic(2.O7(3).2)", Dimension, 8,
>                               Ring, GF(3) );
rec( dim := 8, groupname := "Isoclinic(2.O7(3).2)", id := "", 
  identifier := 
    [ "Isoclinic(2.O7(3).2)", 
      [ [ "internal", "2O73d2iG1-f3r8B0.m1" ], 
          [ "internal", "2O73d2iG1-f3r8B0.m2" ] ], 1, 3 ], 
  repname := "2O73d2iG1-f3r8B0", repnr := 1, ring := GF(3), 
  standardization := 1, type := "matff" )
</Example>

<P/>

Of course we can create a representation of <M>2.O_7(3).2</M> from this
representation,
by multiplying the first generator with a fourth root of unity,
for example with <C>Z(9)^2</C>.
(see <Cite Key="CCN85" Where="p. xxiii"/>).
Note that this representation is defined over the field with <M>9</M>
elements, and that <M>2.O_7(3).2</M> does not have a faithful matrix
representation of degree <M>8</M> over the field with <M>3</M> elements.
The data that are distributed together with the &AtlasRep; package
contain also this representation, with the name <C>2O73d2G1-f9r8B0</C>.

<Example>
gap> OneAtlasGeneratingSetInfo( "2.O7(3).2", Dimension, 8, Ring, GF(9) );
rec( dim := 8, groupname := "2.O7(3).2", id := "", 
  identifier := 
    [ "2.O7(3).2", 
      [ [ "internal", "2O73d2G1-f9r8B0.m1" ], 
          [ "internal", "2O73d2G1-f9r8B0.m2" ] ], 1, 9 ], 
  repname := "2O73d2G1-f9r8B0", repnr := 1, ring := GF(3^2), 
  size := 18341406720, standardization := 1, type := "matff" )
</Example>

</Subsection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:F22d2_wrong_maxes">

Some of the straight line programs that are available in the web &ATLAS; for
computing generators of maximal subgroups of the group <M>G = Fi_{22}.2</M>
are not correct.
In fact, all of these programs compute generators for maximal subgroups
but for some of them, the maximal subgroup is in a class different from
the one that is claimed.

<P/>

Thus the programs in question have been excluded from the &GAP; interface
by removing them from the data list in the file <F>gap/atlasprm.json</F>
of the &AtlasRep; package and then adding entries to the global variable
<Ref Var="AGR.ExclusionList"/>.

<P/>

Then the same programs have been added to the data that are distributed
together with the &AtlasRep; package, but with different names;
the mapping of names is as follows.

<Table Align="|r|l|l|">
<HorLine>
<Row>
  <Item>Order</Item>
  <Item>Excluded name</Item><Item>Supported name</Item>
</Row>
<Row>
  <Item><M>2090188800</M></Item>
  <Item><C>F22d2G1-max12W1</C></Item><Item><C>F22d2G1-max3W2</C></Item>
</Row>
<Row>
  <Item><M>908328960</M></Item>
  <Item><C>F22d2G1-max10W1</C></Item><Item><C>F22d2G1-max4W2</C></Item>
</Row>
<Row>
  <Item><M>185794560</M></Item>
  <Item><C>F22d2G1-max3W1</C></Item><Item><C>F22d2G1-max5W2</C></Item>
</Row>
<Row>
  <Item><M>106168320</M></Item>
  <Item><C>F22d2G1-max4W1</C></Item><Item><C>F22d2G1-max6W2</C></Item>
</Row>
<Row>
  <Item><M>78382080</M></Item>
  <Item><C>F22d2G1-max5W1</C></Item><Item><C>F22d2G1-max7W2</C></Item>
</Row>
<Row>
  <Item><M>35942400</M></Item>
  <Item><C>F22d2G1-max6W1</C></Item><Item><C>F22d2G1-max8W2</C></Item>
</Row>
<Row>
  <Item><M>35389440</M></Item>
  <Item><C>F22d2G1-max7W1</C></Item><Item><C>F22d2G1-max9W2</C></Item>
</Row>
<Row>
  <Item><M>25194240</M></Item>
  <Item><C>F22d2G1-max8W1</C></Item><Item><C>F22d2G1-max10W2</C></Item>
</Row>
<Row>
  <Item><M>10077696</M></Item>
  <Item><C>F22d2G1-max9W1</C></Item><Item><C>F22d2G1-max11W2</C></Item>
</Row>
<Row>
  <Item><M>8491392</M></Item>
  <Item><C>F22d2G1-max11W1</C></Item><Item><C>F22d2G1-max12W2</C></Item>
</Row>
<HorLine>
</Table>

<P/>

(A possible reason for the different numbering could be that the classes
of maximal subgroups can be listed either according to non-increasing index
or according to the ordering in <Cite Key="CCN85" Where="p. 163"/>;
note that in the latter ordering, the relatively small <Q>novelties</Q>
<M>G_2(3):2</M> and <M>3^5:(2 \times U_4(2).2)</M> appear in the positions
<M>3</M> and <M>4</M>, respectively, whereas the positions of these groups
according to increasing index must be <M>12</M> and <M>10</M>,
respectively.
Reordering the classes from the latter ordering to the former one would
result in the mapping that appears in the above table;
unfortunately, the straight line programs had not been ordered according to
the latter ordering.).

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:L38d2_classreps">
<Heading>Class representatives of <M>L_3(8).2</M></Heading>


1. the script is WRONG:
   Take the available 6-dim. repres. over GF(8),
   its Brauer character value at 63AB does not fit to the char. table!

2. thus CHOOSE the available repres. as the FIRST one in the table,
   find out in which classes the inner elements lie

3. next, determine the outer classes:
   - 18A-C by their squares, which are 7th powers of the order 63 elements
   - 14G-I by their squares which are connected to the 9th powers of the
     order 63 elements
   - 8A-B by a representation

4. thus get a unique script; add it!


-> not unique program L38d2G1-cycW1 --can this be improved?
   outputs := [ "7GH", "14AB", "63AB", "73AB", "8A-B", "14G-I", "18A-C" ]
-> on 8A-B: 2r2
   on 14G-I: y7
   on 18A-C: y9
-> mod 3: 8AB disting. by dim. 72, 14G-I by 657
-> mod 7: 8AB disting. by dim. 72, 14G-I by 511
-> mod 73: 8AB disting. by dim. 71, 14G-I by 657, 18A-C by 511

-> available:  9: G ≤ GL(72,7)  -> does not help!
              23: G ≤ GL(71,73) -> two irreducibles, decidable!
              25: G ≤ GL(511a,73)
              26: G ≤ GL(511b,73)

          1a 2a 3a 4a 7a 7b 7c 7d 7e 7f 7g 9a 9b 9c 14a 14b 14c 21a 21b 21c
     2P   1a 1a 3a 2a 7b 7c 7a 7d 7f 7g 7e 9b 9c 9a  7b  7c  7a 21b 21c 21a
     3P   1a 2a 1a 4a 7c 7a 7b 7d 7g 7e 7f 3a 3a 3a 14c 14a 14b  7c  7a  7b
     7P   1a 2a 3a 4a 1a 1a 1a 1a 1a 1a 1a 9b 9c 9a  2a  2a  2a  3a  3a  3a
    73P   1a 2a 3a 4a 7c 7a 7b 7d 7g 7e 7f 9a 9b 9c 14c 14a 14b 21c 21a 21b

X.1        1  1  1  1  1  1  1  1  1  1  1  1  1  1   1   1   1   1   1   1
X.2        1  1  1  1  1  1  1  1  1  1  1  1  1  1   1   1   1   1   1   1
X.3       71  7 -1 -1  8  8  8  1  1  1  1 -1 -1 -1   .   .   .  -1  -1  -1
X.4       71  7 -1 -1  8  8  8  1  1  1  1 -1 -1 -1   .   .   .  -1  -1  -1


      2   .   .   .   .   .   .   .   .   .  4  1   5    5   1   1   1   1   1
      3   2   2   2   2   2   2   2   2   2  2  2   .    .   .   .   .   2   2
      7   1   1   1   1   1   1   1   1   1  1  .   .    .   1   1   1   .   .
     73   .   .   .   .   .   .   .   .   .  .  .   .    .   .   .   .   .   .

        63a 63b 63c 63d 63e 63f 63g 63h 63i 2b 6a  8a   8b 14d 14e 14f 18a 18b
     2P 63b 63c 63a 63e 63f 63d 63h 63i 63g 1a 3a  4a   4a  7f  7g  7e  9b  9c
     3P 21c 21a 21b 21a 21b 21c 21b 21c 21a 2b 2b  8b   8a 14f 14d 14e  6a  6a
     7P  9b  9c  9a  9a  9b  9c  9c  9a  9b 2b 6a  8a   8b  2b  2b  2b 18b 18c
    73P 63e 63f 63d 63h 63i 63g 63b 63c 63a 2b 6a  8a   8b 14f 14d 14e 18a 18b

X.1       1   1   1   1   1   1   1   1   1  1  1   1    1   1   1   1   1   1
X.2       1   1   1   1   1   1   1   1   1 -1 -1  -1   -1  -1  -1  -1  -1  -1
X.3      -1  -1  -1  -1  -1  -1  -1  -1  -1 -1 -1  AQ  *AQ  -1  -1  -1  -1  -1
X.4      -1  -1  -1  -1  -1  -1  -1  -1  -1  1  1 -AQ -*AQ   1   1   1   1   1


      2   1
      3   2
      7   .
     73   .

        18c
     2P  9a
     3P  6a
     7P 18a
    73P 18c

X.1       1
X.2      -1
X.3      -1
X.4       1


AQ = -1+2*E(8)-2*E(8)^3
  = -1+2*Sqrt(2) = -1+2r2


gap> prg:= AtlasProgram( "L3(8).2", "cyclic" );
rec( groupname := "L3(8).2", identifier := [ "L3(8).2", "L38d2G1-cycW1", 1 ],
  outputs := [ "7GH", "14AB", "63AB", "73AB", "8A-B", "14G-I", "18A-C" ],
  program := <straight line program>, standardization := 1, version := "1" )
gap> gens:= OneAtlasGeneratingSetInfo( "L3(8).2", Dimension, 71, Characteristic, 73 );
rec( dim := 71, groupname := "L3(8).2", id := "",
  identifier := [ "L3(8).2", [ "L38d2G1-f73r71B0.m1", "L38d2G1-f73r71B0.m2" ],
      1, 73 ], repname := "L38d2G1-f73r71B0", repnr := 23, ring := GF(73),
  size := 32965632, standardization := 1, type := "matff" )
gap> gens:= AtlasGenerators( gens );
rec( dim := 71,
  generators := [ < immutable compressed matrix 71x71 over GF(73) >,
      < immutable compressed matrix 71x71 over GF(73) > ],
  groupname := "L3(8).2", id := "",
  identifier := [ "L3(8).2", [ "L38d2G1-f73r71B0.m1", "L38d2G1-f73r71B0.m2" ],
      1, 73 ], repname := "L38d2G1-f73r71B0", repnr := 23, ring := GF(73),
  size := 32965632, standardization := 1, type := "matff" )
gap> res:= ResultOfStraightLineProgram( prg.program, gens.generators );;
gap> Length( res );
7
gap> 2b:= res[7]^9;
< immutable compressed matrix 71x71 over GF(73) >
gap> Order( last );
2
gap> BrauerCharacterValue( 2b );
-1
gap> # thus we have 71a!
gap> 8ab:= res[5];
< immutable compressed matrix 71x71 over GF(73) >
gap> Order( last );
8
gap> BrauerCharacterValue( 8ab );
-1-2*E(8)+2*E(8)^3
gap> Quadratic( last );
rec( ATLAS := "-1-2r2", a := -1, b := -2, d := 1, display := "-1-2*Sqrt(2)",
  root := 2 )
gap> # thus we have class 8B!


concerning 18A-C:
squares are in 9B, 9C, 9A
and 9A is the 7th power of 63c, 63d, 63h
and 9B is the 7th power of 63a, 63e, 63i
and 9C is the 7th power of 63b, 63f, 63g

-> so we could solve this without a repres.! (and the answer defines some repres.)

-> what about 14G-I?

squares:  14G -> 7f
          14H -> 7g
          14I -> 7e

and 9th powers of 63 are
     63a -> 21c -> 7b
     63b -> 21a -> 7c
     63c -> 21b -> 7a
     63d -> 21a -> 7c
     63e -> 21b -> 7a
     63f -> 21c -> 7b
     63g -> 21b -> 7a
     63h -> 21c -> 7b
     63i -> 21a -> 7c

and there are representations of degree 146 or 1168 or 657 which couple 7a-c to 7d-f

23: G ≤ GL(71,73)
24: G ≤ GL(441,73)
25: G ≤ GL(511a,73)
26: G ≤ GL(511b,73)

-> but we do not have it!

-> in char. 3, also candidates:
   degrees 146, 657

-> use the nat. repres. in char. 2!



</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:L34_maxes">
<Heading>Maximal Subgroups of <M>L_3(4)</M></Heading>

Two straight line programs that are available in the web &ATLAS; for
computing generators of maximal subgroups of the group <M>G = L_3(4)</M>
are not correct.

<P/>

The contents of the file <C>L34G1-max4W1</C> is as follows.

<P/>

<Listing>
mu 1 2 3
mu 2 1 4
iv 3 5
mu 4 4 2
mu 2 5 4
mu 4 3 2
</Listing>

<P/>

However,
if we apply this program to standard generators of <M>G</M> then
the outputs generate the whole group.

<P/>

<Example>
gap> slp:= ScanStraightLineProgram( "\
> mu 1 2 3\n\
> mu 2 1 4\n\
> iv 3 5\n\
> mu 4 4 2\n\
> mu 2 5 4\n\
> mu 4 3 2", "string" );
rec( program := <straight line program> )
gap> g:= AtlasGroup( "L3(4)" );
Group([ (1,2)(4,6)(5,7)(8,12)(9,14)(10,15)(11,17)(13,19), 
  (2,3,5,4)(6,8,13,9)(7,10,16,11)(12,18)(14,20,21,15)(17,19) ])
gap> res:= ResultOfStraightLineProgram( slp.program,
>              GeneratorsOfGroup( g ) );;
gap> Size( SubgroupNC( g, res ) );
20160
</Example>

<P/>

Similarly, the file <C>L34G1-max5W1</C> has the following contents.

<P/>

<Listing>
mu 1 2 3
mu 2 1 4
iv 3 5
mu 4 5 2
mu 2 3 4
mu 4 3 2
</Listing>

<P/>

The subgroup generated by the outputs of this program has order <M>10</M>
and is hence too small.

<P/>

<Example>
gap> slp:= ScanStraightLineProgram( "\
> mu 1 2 3\n\
> mu 2 1 4\n\
> iv 3 5\n\
> mu 4 5 2\n\
> mu 2 3 4\n\
> mu 4 3 2", "string" );
rec( program := <straight line program> )
gap> res:= ResultOfStraightLineProgram( slp.program,
>              GeneratorsOfGroup( g ) );;
gap> Size( SubgroupNC( g, res ) );
10
</Example>

<P/>

Now we want to replace the wrong programs by correct ones.
According to <Cite Key="CCN85" Where="p. 23"/>,
the subgroups in the 3rd, 4th, and 5th class of maximal subgroups of <M>G</M>
are all isomorphic with the alternating group <M>A_6</M>.
Thus our task is to find two subgroups of type <M>A_6</M> in <M>G</M>
that are not conjugate to each other and also not conjugate to the
representative of the 3rd class of maximal subgroups.

<P/>

Our approach is to keep the first generator of <M>G</M> (an involution),
and to iterate over short words in a free monoid until the corresponding
word in the standard generators of <M>G</M> together with the involution
generate a suitable subgroup.
(Note that all subgroups of order <M>360</M> in <M>G</M> are maximal in
<M>G</M> and have the type <M>A_6</M>.)

<P/>

<Example>
gap> g:= AtlasGroup( "L3(4)" );;
gap> s3:= AtlasSubgroup( "L3(4)", 3 );;
gap> Size( s3 );  IsSimple( s3 );
360
true
gap> gens:= ShallowCopy( GeneratorsOfGroup( g ) );;
gap> f:= FreeMonoid( 2 );;
gap> fgens:= GeneratorsOfMonoid( f );;
[ m1, m2 ]
gap> iter:= Iterator( f );;
gap> repeat
> w4:= NextIterator( iter );
> s4:= Group( gens[1], MappedWord( w4, fgens, gens ) );
> until Size( s4 ) = 360 and not IsConjugate( g, s3, s4 );
gap> w4;
m2*m1*m2^3*m1*m2*m1*m2
gap> repeat
> w5:= NextIterator( iter );
> s5:= Group( gens[1], MappedWord( w5, fgens, gens ) );
> until Size( s5 ) = 360
> and not IsConjugate( g, s3, s5 )
> and not IsConjugate( g, s4, s5 );
gap> w5;
m2*m1*m2*m1*m2^3*m1*m2
</Example>

<P/>

The erroneous programs get excluded from the &GAP; interface
by removing them from the data list in the file <F>gap/atlasprm.json</F>
of the &AtlasRep; package and then adding entries to the global variable
<Ref Var="AGR.ExclusionList"/>.

<P/>

The above words have been turned into straight line programs and then added
to the data that are distributed together with the &AtlasRep; package,
the programs are now available with the names <C>L34G1-max4W2</C>;
and <C>L34G1-max5W2</C>, respectively;
note that the names <C>L34G1-max4W1</C> and <C>L34G1-max5W1</C>
must be avoided.

<!-- and add entries to htm/data/changes.htm -->

<P/>

<Example>
gap> subs:= List( [3..5], i -> AtlasSubgroup( g, i ) );;
gap> List( subs, Size );
[ 360, 360, 360 ]
gap> IsConjugate( g, subs[1], subs[2] );
false
gap> IsConjugate( g, subs[1], subs[3] );
false
gap> IsConjugate( g, subs[2], subs[3] );
false
</Example>

<P/>

It turns out that the generators of the subgroups are in fact
standard generators of <M>A_6</M>.

<P/>

<Example>
gap> prg:= AtlasProgram( "A6", 1, "check" );
rec( groupname := "A6", identifier := [ "A6", "A6G1-check1", 1, 1 ], 
  program := <straight line decision>, standardization := 1, version := "1" )
gap> ForAll( subs, s -> ResultOfStraightLineDecision( prg.program,
>                           GeneratorsOfGroup( s ) ) );
true
</Example>

<P/>

Thus we can provide also the (empty) straight line programs
<C>L34G1max3W1-A6G1W1</C>, <C>L34G1max4W2-A6G1W1</C>, and
<C>L34G1max5W2-A6G1W1</C>,
which express that the &GAP; interface provides <E>standard</E> generators
for the maximal subgroups in question.

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

</Chapter>