1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
|
<!-- %W maintain.xml GAP 4 package AtlasRep Thomas Breuer -->
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Chapter Label="chap:maintain">
<Heading>Maintenance Issues of the &AtlasRep; Package</Heading>
This is just preliminary, in particular not intended for inclusion in the manual!
<hier/>
This chapter describes why some data that are available in the web &ATLAS;
are excluded from the &GAP; interface,
by which data they have been replaced (if applicable),
and which additional data are distributed together with the
&AtlasRep; package.
-> section on just added material, such as cyc2ccls scripts
-> document all in datapkg!
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:kernel_scripts">
<Heading>Generators of Kernels</Heading>
- change the code!
- test.g -> not only for compatible std. generators & same std.!
run for 3^(1+12):2.Suz.2
Print( "hier\n" );
if entry[1] = "3^(1+12):2.Suz.2" then
SetSize( N, 3^13 );
fi;
#T for 3^13, calling Size exceeds the memory!
#T (trans. permutation action on 3^12 = 531441 points!)
-> how to verify that the kernel is correct?
Note that the program computes elements in G,
in particular we are not concerned with standardization in F,
and we do not assume that the given standard generators of G
are compatible with some standard generators of F.
(Only relation: If G has several normal subgroups N such that G/N
is isomorphic with F and if the i-th std. gens of G and F are compatible
then we prefer the normal subgroup that is the kernel of the epim.
given by mapping the i-th std. gen. of G to those of F.)
- provide kernel info also for incompatible generators:
AGR.STDCOMP("(A5xA12):2",[0,"A12.2",1,false]);
AGR.STDCOMP("(A5xU3(8):3):2",[0,"A5.2",1,false]);
AGR.STDCOMP("(L3(2)xS4(4):2).2",[0,"L3(2).2",1,false]);
AGR.STDCOMP("2^2.2E6(2).S3",[0,"2E6(2).3.2",0,false]);
AGR.STDCOMP("5^3.L3(5)",[2,"L3(5)",1,false]);
- a new type of slps, many new scripts
- hard case:
2.2E6(2) ->> 2E6(2) (and analog. 2^2.2E6(2) -> 2E6(2))
need to skip obviously unnecessary words;
the > 5593818-th word works (which exactly?),
but only 525 words must actually be tested (really?)
(altogether 10 minutes runtime!)
(done 2015-04-13 on gemma)
5593773-
5593781+
5593782+
5593813-
5593814+
5593818-
[ [ m2^2*m1*m2*(m2*m1*m2^2*m1)^2*(m2*m1)^4, 33 ], true ]
-> is equal to (m2^2*m1)^3*m2*m1*m2^2*m1*(m2*m1)^4
with slp 3:= 2*1
4:= 2*3
5:= 4^3 (2 mult)
6:= 3^4 (2 mult)
7:= 5*3
8:= 7*4
9:= 8*6
thus 9 mult!
-> add a remark about the arbitr. of the printed factoriz.!
(only those numbers are shown for which all syllables are below the el. order,
and "-" means that the order in the factor group is even, which need not be
checked)
- function is AGR.Test.ComputeKernelGenerators...
-> better move out from Test!
- really verify the non-cyclic kernels! (see TODO_2)
--------------------------------------------------------------------------
kernel generators:
- missing verifications in atlasrep/kerrun.out? (std. 0)
- two kernels of order 3^13 --prove!
# run on 2014-04-30
# add a test:
# if a repres. for G and of m.G are avail. then try to compute kernel slp,
# also if no compat. is assumed;
# try also compatibility ...
# add a test: are all files in the datapkg dir. of atlasrep valid?
......................................................................
# find a kernel generator:
# see AGR.Test.ComputeKernelGenerators! (atlasrep/gap/test.g)
fgens:= AtlasGenerators( "L3(7).2", 1 ).generators;
gens:= AtlasGenerators( "3.L3(7).2", 1 ).generators;
kergens:= [];
kerwords:= [];
f:= FreeMonoid( 2 );
mgens:= GeneratorsOfMonoid( f );
iter:= Iterator( f );
for word in iter do
m:= MappedWord( word, mgens, gens );
fm:= MappedWord( word, mgens, fgens );
ord:= Order( fm );
if Order( m ) <> ord then
kergen:= m^ord;
if not kergen in kergens then
Add( kergens, kergen );
Add( kerwords, word );
if Length( kerwords ) >= 1 then
Error("!");
fi;
fi;
fi;
od;
word;
Order( m );
Order( fm );
brk> word;
m1
brk> Order( m );
4
brk> Order( fm );
2
m2^2*m1*m2*m1
slp:= StraightLineProgram(
[[2,1,1,1],[3,2],[2,2],[5,1,4,1],[[6,19]]],2
);
-----------------------------------------------------------------------------
#I AGR.Test.KernelGenerators for 2.A10.2: missing kernels of epim. to
#I [ "A10.2" ]
#I AGR.Test.KernelGenerators for 2.A12.2: missing kernels of epim. to
#I [ "A12.2" ]
#I AGR.Test.KernelGenerators for 2.A13.2: missing kernels of epim. to
#I [ "A13.2" ]
#I AGR.Test.KernelGenerators for 2.A8.2: missing kernels of epim. to
#I [ "A8.2" ]
#I AGR.Test.KernelGenerators for 2.A9.2: missing kernels of epim. to
#I [ "A9.2" ]
#I AGR.Test.KernelGenerators for 2.B: missing kernels of epim. to
#I [ "B" ]
#I AGR.Test.KernelGenerators for 2.L2(25): missing kernels of epim. to
#I [ "L2(25)" ]
#I AGR.Test.KernelGenerators for 2.O7(3).2: missing kernels of epim. to
#I [ "O7(3).2" ]
#I AGR.Test.KernelGenerators for 2.O8+(2): missing kernels of epim. to
#I [ "O8+(2)" ]
#I AGR.Test.KernelGenerators for 2.O8+(2).2: missing kernels of epim. to
#I [ "O8+(2).2" ]
#I AGR.Test.KernelGenerators for 2.U6(2).2: missing kernels of epim. to
#I [ "U6(2).2" ]
omit 2^2.2E6(2)
#I AGR.Test.KernelGenerators for 2^2.2E6(2).S3: missing kernels of epim. to
#I [ "2E6(2).3.2" ]
#I AGR.Test.KernelGenerators for 2^2.L3(4): missing kernels of epim. to
#I [ "2.L3(4)", "L3(4)" ]
#I AGR.Test.KernelGenerators for 2^2.L3(4).2_2: missing kernels of epim. to
#I [ "L3(4).2_2" ]
#I AGR.Test.KernelGenerators for 6.O7(3).2: missing kernels of epim. to
#I [ "2.O7(3).2", "3.O7(3).2", "O7(3).2" ]
#I AGR.Test.KernelGenerators for Isoclinic(12.M22.2): missing kernels of epim\
. to
#I [ "2.M22.2", "3.M22.2", "6.M22.2", "M22.2" ]
#I AGR.Test.KernelGenerators for Isoclinic(2.A8.2): missing kernels of epim. \
to
#I [ "A8.2" ]
#I AGR.Test.KernelGenerators for Isoclinic(2.HS.2): missing kernels of epim. \
to
#I [ "HS.2" ]
#I AGR.Test.KernelGenerators for Isoclinic(2.Suz.2): missing kernels of epim.\
to
#I [ "Suz.2" ]
#I AGR.Test.KernelGenerators for Isoclinic(4.M22.2): missing kernels of epim.\
to
#I [ "2.M22.2", "M22.2" ]
#I AGR.Test.KernelGenerators for Isoclinic(6.M22.2): missing kernels of epim.\
to
#I [ "3.M22.2", "M22.2" ]
-> no repres.
#I AGR.Test.KernelGenerators for Isoclinic(6.Suz.2): missing kernels of epim.\
to
#I [ "3.Suz.2", "Suz.2" ]
................
#I AGR.Test.KernelGenerators for 3^(1+12):2.Suz.2: missing kernels of epim. t\
o
#I [ "2.Suz.2" ]
#I AGR.Test.KernelGenerators for 3^(1+12):6.Suz.2: missing kernels of epim. t\
o
#I [ "3^(1+12).2.Suz.2", "6.Suz.2" ]
-> Vorsicht:
Ich habe zwar gezeigt, dass die Konjugierten des 3. Erzeugers
mindestens eine 3^13 erzeugen, aber ist es nicht vielleicht mehr?
Und ich habe nicht gezeigt, dass die Untergruppe wirklich normal ist!
(in beiden Fällen, M3max7G0-ker6Suzd2W1 und Mmax7G0-ker2Suzd2W1)
gap> List( gens.generators, Order );
[ 4, 3, 3 ]
gap> List( fgens.generators, Order );
[ 4, 3 ]
gap> p:= Product( gens.generators{[1,2]} );;
gap> l:= List( [0..11], x -> gens.generators[3]^(p^x) );;
gap> cc:= Group(l );;
gap> orb:= Orbit( cc, l[1][38] );; Length( orb );
1
gap> orb:= Orbit( cc, l[1][78] );; Length( orb );
1594323
gap> 3^13;
1594323
g:= Group( gens.generators );
kergens:= [];
kerwords:= [];
f:= FreeMonoid( 2 );
mgens:= GeneratorsOfMonoid( f );
iter:= Iterator( f );
for word in iter do
m:= MappedWord( word, mgens, gens.generators );
ord:= Order( m );
if ord mod 7 = 0 then
kergen:= m^(ord/7);
if not kergen in kergens then
n:= NormalClosure( g, SubgroupNC( g, [ kergen ] ) );
if 7^5 mod Size( n ) = 0 then
Add( kergens, kergen );
Add( kerwords, [ word, ord/7 ] );
if Length( kerwords ) >= 1 then
Error("!");
fi;
fi;
fi;
fi;
od;
</Section>
ab hier o.k.!
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:excluded_data">
<Heading>Excluded data files</Heading>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:3L37d2_wrong_repres">
<Heading>A matrix representation of <M>3.L_3(7).2</M></Heading>
The files <C>3L37d2G1-f7r6B0.m1</C> and <C>3L37d2G1-f7r6B0.m2</C>
that are available in the web &ATLAS;
contain generators for the group <M>G = 3.L_3(7).2</M>,
but these generators are not standard.
First we show this fact and then we compute standard generators.
<P/>
The files look as follows.
<P/>
<Listing>
1 7 6 6
000454
000103
000163
321000
016000
622000
</Listing>
and
<Listing>
1 7 6 6
000500
000416
000064
251000
212000
203000
</Listing>
Standard generators of <M>G</M> are defined as follows.
<P/>
<Q>Std. gens. of <M>L_3(7).2</M> are <M>c, d</M>, where <M>c</M> in <C>2B</C>,
<M>d</M> in <C>4B</C> (two outer classes),
<M>|cd| = 19</M>, <M>|cdcdd| = 8</M>.
Std. gens. of <M>3.L_3(7).2</M> are preimages <M>C, D</M>
where <M>|CD| = 19</M>.</Q>
<P/>
We create the matrices in &GAP; and check the conditions.
<P/>
<Example>
gap> gens:= List( [
> " 1 7 6 6\n\
> 000454\n\
> 000103\n\
> 000163\n\
> 321000\n\
> 016000\n\
> 622000",
> " 1 7 6 6\n\
> 000500\n\
> 000416\n\
> 000064\n\
> 251000\n\
> 212000\n\
> 203000" ], str -> ScanMeatAxeFile( str, 7, "string" ) );
[ < immutable compressed matrix 6x6 over GF(7) >,
< immutable compressed matrix 6x6 over GF(7) > ]
gap> List( gens, Order );
[ 2, 4 ]
gap> Order( gens[1] * gens[2] );
19
gap> Order( ( gens[1] * gens[2] )^2 * gens[2] );
6
</Example>
<P/>
This shows that the given matrices are not <E>standard</E> generators
of <M>G</M>.
In order to convince ourselves that they generate <M>G</M>,
we proceed as follows.
First we compute a faithful permutation representation of the group <M>H</M>,
say, that is generated by the given matrices.
Then we show that the derived subgroup <M>D</M> of <M>H</M> is a perfect group
with a central subgroup <M>Z</M> of order three such that the factor group
<M>D / Z</M> is a simple group that is isomorphic with <M>L_3(7)</M>,
thus <M>D</M> is the triple cover of <M>L_3(7)</M>.
It remains to show that <M>H / Z</M> is not a direct product of <M>D / Z</M>
and a group of order two; for that, it is enough to show that the centralizer
of an element of order <M>19</M> in <M>H</M> has odd order.
<!--
Note that if <M>x</M> is an element of order <M>19</M> in <M>H</M> and
<M>H / Z</M> is a direct product of <M>D / Z</M> and a group of order two
that is generated by <M>y Z</M> then <M>x^y</M> lies in <M>x Z</M>;
since <M>x</M> is the only element in <M>x Z</M> that has order <M>19</M>,
we have found an element of even order that commutes with <M>x</M>.
-->
<P/>
<Example>
gap> g:= GroupWithGenerators( gens );;
gap> Size( g );
11261376
gap> orbs:= Orbits( g, Elements( GF(7)^6 ) );;
gap> Collected( List( orbs, Length ) );
[ [ 1, 1 ], [ 684, 1 ], [ 16416, 1 ], [ 16758, 6 ] ]
gap> orb:= First( orbs, x -> Length( x ) = 684 );;
gap> acthom:= ActionHomomorphism( g, orb, OnRight );;
gap> img:= Image( acthom );;
gap> Size( img ) = Size( g );
true
gap> der:= DerivedSubgroup( img );;
gap> IsPerfectGroup( der );
true
gap> z:= Centre( der );;
gap> Size( z );
3
gap> f:= der / z;;
gap> IsSimple( f );
true
gap> IsomorphismTypeInfoFiniteSimpleGroup( f );
rec( name := "A(2,7) = L(3,7) ", parameter := [ 3, 7 ], series := "L" )
gap> gensimgs:= List( gens, x -> x^acthom );;
gap> x:= gensimgs[1] * gensimgs[2];;
gap> Order( x );
19
gap> Size( Centralizer( img, x ) );
57
</Example>
<P/>
Now let us find standard generators for <M>G</M>.
According to <Cite Key="CCN85" Where="p. 51"/>,
there is exactly one conjugacy class of elements of the orders <M>2</M>
and <M>4</M> in <M>G</M> outside <M>D</M>,
and the given generators have the right orders and lie outside <M>D</M>.
Thus we may keep the first matrix and replace the second one
by a suitable <M>G</M>-conjugate.
<P/>
<Example>
gap> c:= gensimgs[1];;
gap> d:= gensimgs[2];;
gap> repeat
> dr:= d^Random( img );
> until Order( c * dr ) = 19 and Order( (c * dr)^2 * dr ) = 8
> and Size( img ) = Size( SubgroupNC( img, [ c, dr ] ) );
gap>
gap> stdgens:= [ gens[1], PreImagesRepresentative( acthom, dr ) ];
[ < immutable compressed matrix 6x6 over GF(7) >,
< immutable compressed matrix 6x6 over GF(7) > ]
</Example>
<P/>
The erroneous representation gets excluded from the &GAP; interface
by removing it from the data list in the file <F>gap/atlasprm.json</F>
of the &AtlasRep; package and then adding an entry to the global variable
<Ref Var="AGR.ExclusionList"/>.
<!-- and add entry to htm/data/changes.htm -->
<P/>
The standard generators computed as shown above have been added to the
data that are distributed together with the &AtlasRep; package,
the representation is now available with the name <C>3L37d2G1-f7r6aB0</C>;
note that the name <C>3L37d2G1-f7r6B0</C> must be avoided.
<P/>
<Example>
gap> OneAtlasGeneratingSetInfo( "3.L3(7).2", Dimension, 6, Ring, GF(7) );
rec( dim := 6, groupname := "3.L3(7).2", id := "a",
identifier :=
[ "3.L3(7).2",
[ [ "internal", "3L37d2G1-f7r6aB0.m1" ],
[ "internal", "3L37d2G1-f7r6aB0.m2" ] ], 1, 7 ],
repname := "3L37d2G1-f7r6aB0", repnr := 1, ring := GF(7), size := 11261376,
standardization := 1, type := "matff" )
</Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:2O73d2_wrong_repres">
<Heading>A matrix representation of <M>2.O_7(3).2^*</M></Heading>
The files <C>2O73d2G1-f3r8B0.m1</C> and <C>2O73d2G1-f3r8B0.m2</C>
that are available in the web &ATLAS;
do not contain generators for the group <M>2.O_7(3).2</M>.
<P/>
The files look as follows.
<P/>
<Listing>
1 3 8 8
01200212
10011201
20201110
02122011
01111002
00211210
20212110
00111021
</Listing>
and
<Listing>
1 3 8 8
11010011
10121000
20000221
12101200
11001011
22000112
12121220
01201002
</Listing>
Standard generators of <M>2.O_7(3).2</M> are defined as follows.
<P/>
<Q>Standard generators of <M>O_7(3).2</M> are <M>c, d</M>
where <M>c</M> is in class <C>2D</C>,
<M>d</M> has order <M>7</M>,
<M>cd</M> has order <M>26</M> and <M>cdcdd</M> has order <M>14</M>.
Standard generators of <M>2.O_7(3).2</M> are preimages <M>C, D</M>
where <M>D</M> has order <M>7</M>.</Q>
<P/>
We create the matrices in &GAP; and check the conditions.
<P/>
<Example>
gap> gens:= List( [
> " 1 3 8 8\n\
> 01200212\n\
> 10011201\n\
> 20201110\n\
> 02122011\n\
> 01111002\n\
> 00211210\n\
> 20212110\n\
> 00111021",
> " 1 3 8 8\n\
> 11010011\n\
> 10121000\n\
> 20000221\n\
> 12101200\n\
> 11001011\n\
> 22000112\n\
> 12121220\n\
> 01201002" ], str -> ScanMeatAxeFile( str, 3, "string" ) );
[ < immutable compressed matrix 8x8 over GF(3) >,
< immutable compressed matrix 8x8 over GF(3) > ]
gap> List( gens, Order );
[ 2, 7 ]
gap> Order( gens[1] * gens[2] );
26
gap> Order( ( gens[1] * gens[2] )^2 * gens[2] );
28
</Example>
<P/>
Since the <C>2D</C> elements in <M>O_7(3).2</M> lift to elements of
order four in <M>2.O_7(3).2</M>,
and since the elements of order <M>26</M> in <M>O_7(3).2</M> lift to
elements of order <M>52</M> in <M>2.O_7(3).2</M>,
the given matrices do not fit.
They would fit, however, to the isoclinic variant <M>G = 2.O_7(3).2^*</M>,
provided that they generate this group and that the first generator
is a preimage of a <C>2D</C> element (that is, <E>not</E> a preimage of a
<C>2E</C> element).
<P/>
In order to convince ourselves that the given matrices generate <M>G</M>,
we proceed as follows.
First we compute a faithful permutation representation of the group <M>H</M>,
say, that is generated by the given matrices.
Then we show that the derived subgroup <M>D</M> of <M>H</M> is a perfect group
with a central subgroup <M>Z</M> of order two such that the factor group
<M>D / Z</M> is a simple group that is isomorphic with <M>O_7(3)</M>,
thus <M>D</M> is the double cover of <M>O_7(3)</M>.
It remains to show that <M>H / Z</M> is not a direct product of <M>D / Z</M>
and a group of order two;
for that, it is enough to show that the centre of <M>H / Z</M> is trivial.
<P/>
<Example>
gap> g:= GroupWithGenerators( gens );;
gap> Size( g );
18341406720
gap> orbs:= Orbits( g, Elements( GF(3)^8 ) );;
gap> Collected( List( orbs, Length ) );
[ [ 1, 1 ], [ 2240, 1 ], [ 4320, 1 ] ]
gap> orb:= First( orbs, x -> Length( x ) = 2240 );;
gap> acthom:= ActionHomomorphism( g, orb, OnRight );;
gap> img:= Image( acthom );;
gap> Size( img ) = Size( g );
true
gap> der:= DerivedSubgroup( img );;
gap> IsPerfectGroup( der );
true
gap> z:= Centre( der );;
gap> Size( z );
2
gap> blocks:= Orbits( z, MovedPoints( img ) );;
gap> act:= Action( img, blocks, OnSets );;
gap> Size( act ) = Size( g ) / Size( z );
true
gap> IsSimple( act );
true
gap> IsomorphismTypeInfoFiniteSimpleGroup( act );
rec( name := "B(3,3) = O(7,3)", parameter := [ 3, 3 ], series := "B" )
gap> Size( Centre( act ) );
1
</Example>
<P/>
Now we show that the first generator is in fact a preimage of a
<C>2D</C> element in <M>O_7(3).2</M>;
note that this conjugacy class is the first class outside <M>O_7(3)</M>,
and it is uniquely determined by the centralizer order of its elements.
<P/>
<Example>
gap> ind:= Permutation( gens[1]^acthom, blocks, OnSets );;
gap> c:= Size( Centralizer( act, ind ) );
24261120
gap> t:= CharacterTable( "O7(3).2" );;
gap> Positions( SizesCentralizers( t ), c );
[ 53 ]
gap> Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4, 53, 54, 55 ]
</Example>
<P/>
Thus we have shown that the given matrices are standard generators
of the group <M>G</M>.
<P/>
The erroneous representation gets excluded from the &GAP; interface
by removing it from the data list in the file <F>gap/atlasprm.json</F>
of the &AtlasRep; package and then adding an entry to the global variable
<Ref Var="AGR.ExclusionList"/>.
<!-- and add entry to htm/data/changes.htm -->
<P/>
The given matrices have been added to the data that are distributed
together with the &AtlasRep; package,
the representation is now available with the name <C>2O73d2iG1-f3r8B0</C>.
(In order to make this work, also the &ATLAS; name <C>"2O73d2i"</C> for the
group with &GAP; name <C>"Isoclinic(2.O7(3).2)"</C> had to be notified
via a call to <C>AGR.GNAN</C>.
<P/>
<Example>
gap> OneAtlasGeneratingSetInfo( "Isoclinic(2.O7(3).2)", Dimension, 8,
> Ring, GF(3) );
rec( dim := 8, groupname := "Isoclinic(2.O7(3).2)", id := "",
identifier :=
[ "Isoclinic(2.O7(3).2)",
[ [ "internal", "2O73d2iG1-f3r8B0.m1" ],
[ "internal", "2O73d2iG1-f3r8B0.m2" ] ], 1, 3 ],
repname := "2O73d2iG1-f3r8B0", repnr := 1, ring := GF(3),
standardization := 1, type := "matff" )
</Example>
<P/>
Of course we can create a representation of <M>2.O_7(3).2</M> from this
representation,
by multiplying the first generator with a fourth root of unity,
for example with <C>Z(9)^2</C>.
(see <Cite Key="CCN85" Where="p. xxiii"/>).
Note that this representation is defined over the field with <M>9</M>
elements, and that <M>2.O_7(3).2</M> does not have a faithful matrix
representation of degree <M>8</M> over the field with <M>3</M> elements.
The data that are distributed together with the &AtlasRep; package
contain also this representation, with the name <C>2O73d2G1-f9r8B0</C>.
<Example>
gap> OneAtlasGeneratingSetInfo( "2.O7(3).2", Dimension, 8, Ring, GF(9) );
rec( dim := 8, groupname := "2.O7(3).2", id := "",
identifier :=
[ "2.O7(3).2",
[ [ "internal", "2O73d2G1-f9r8B0.m1" ],
[ "internal", "2O73d2G1-f9r8B0.m2" ] ], 1, 9 ],
repname := "2O73d2G1-f9r8B0", repnr := 1, ring := GF(3^2),
size := 18341406720, standardization := 1, type := "matff" )
</Example>
</Subsection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:F22d2_wrong_maxes">
Some of the straight line programs that are available in the web &ATLAS; for
computing generators of maximal subgroups of the group <M>G = Fi_{22}.2</M>
are not correct.
In fact, all of these programs compute generators for maximal subgroups
but for some of them, the maximal subgroup is in a class different from
the one that is claimed.
<P/>
Thus the programs in question have been excluded from the &GAP; interface
by removing them from the data list in the file <F>gap/atlasprm.json</F>
of the &AtlasRep; package and then adding entries to the global variable
<Ref Var="AGR.ExclusionList"/>.
<P/>
Then the same programs have been added to the data that are distributed
together with the &AtlasRep; package, but with different names;
the mapping of names is as follows.
<Table Align="|r|l|l|">
<HorLine>
<Row>
<Item>Order</Item>
<Item>Excluded name</Item><Item>Supported name</Item>
</Row>
<Row>
<Item><M>2090188800</M></Item>
<Item><C>F22d2G1-max12W1</C></Item><Item><C>F22d2G1-max3W2</C></Item>
</Row>
<Row>
<Item><M>908328960</M></Item>
<Item><C>F22d2G1-max10W1</C></Item><Item><C>F22d2G1-max4W2</C></Item>
</Row>
<Row>
<Item><M>185794560</M></Item>
<Item><C>F22d2G1-max3W1</C></Item><Item><C>F22d2G1-max5W2</C></Item>
</Row>
<Row>
<Item><M>106168320</M></Item>
<Item><C>F22d2G1-max4W1</C></Item><Item><C>F22d2G1-max6W2</C></Item>
</Row>
<Row>
<Item><M>78382080</M></Item>
<Item><C>F22d2G1-max5W1</C></Item><Item><C>F22d2G1-max7W2</C></Item>
</Row>
<Row>
<Item><M>35942400</M></Item>
<Item><C>F22d2G1-max6W1</C></Item><Item><C>F22d2G1-max8W2</C></Item>
</Row>
<Row>
<Item><M>35389440</M></Item>
<Item><C>F22d2G1-max7W1</C></Item><Item><C>F22d2G1-max9W2</C></Item>
</Row>
<Row>
<Item><M>25194240</M></Item>
<Item><C>F22d2G1-max8W1</C></Item><Item><C>F22d2G1-max10W2</C></Item>
</Row>
<Row>
<Item><M>10077696</M></Item>
<Item><C>F22d2G1-max9W1</C></Item><Item><C>F22d2G1-max11W2</C></Item>
</Row>
<Row>
<Item><M>8491392</M></Item>
<Item><C>F22d2G1-max11W1</C></Item><Item><C>F22d2G1-max12W2</C></Item>
</Row>
<HorLine>
</Table>
<P/>
(A possible reason for the different numbering could be that the classes
of maximal subgroups can be listed either according to non-increasing index
or according to the ordering in <Cite Key="CCN85" Where="p. 163"/>;
note that in the latter ordering, the relatively small <Q>novelties</Q>
<M>G_2(3):2</M> and <M>3^5:(2 \times U_4(2).2)</M> appear in the positions
<M>3</M> and <M>4</M>, respectively, whereas the positions of these groups
according to increasing index must be <M>12</M> and <M>10</M>,
respectively.
Reordering the classes from the latter ordering to the former one would
result in the mapping that appears in the above table;
unfortunately, the straight line programs had not been ordered according to
the latter ordering.).
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:L38d2_classreps">
<Heading>Class representatives of <M>L_3(8).2</M></Heading>
1. the script is WRONG:
Take the available 6-dim. repres. over GF(8),
its Brauer character value at 63AB does not fit to the char. table!
2. thus CHOOSE the available repres. as the FIRST one in the table,
find out in which classes the inner elements lie
3. next, determine the outer classes:
- 18A-C by their squares, which are 7th powers of the order 63 elements
- 14G-I by their squares which are connected to the 9th powers of the
order 63 elements
- 8A-B by a representation
4. thus get a unique script; add it!
-> not unique program L38d2G1-cycW1 --can this be improved?
outputs := [ "7GH", "14AB", "63AB", "73AB", "8A-B", "14G-I", "18A-C" ]
-> on 8A-B: 2r2
on 14G-I: y7
on 18A-C: y9
-> mod 3: 8AB disting. by dim. 72, 14G-I by 657
-> mod 7: 8AB disting. by dim. 72, 14G-I by 511
-> mod 73: 8AB disting. by dim. 71, 14G-I by 657, 18A-C by 511
-> available: 9: G ≤ GL(72,7) -> does not help!
23: G ≤ GL(71,73) -> two irreducibles, decidable!
25: G ≤ GL(511a,73)
26: G ≤ GL(511b,73)
1a 2a 3a 4a 7a 7b 7c 7d 7e 7f 7g 9a 9b 9c 14a 14b 14c 21a 21b 21c
2P 1a 1a 3a 2a 7b 7c 7a 7d 7f 7g 7e 9b 9c 9a 7b 7c 7a 21b 21c 21a
3P 1a 2a 1a 4a 7c 7a 7b 7d 7g 7e 7f 3a 3a 3a 14c 14a 14b 7c 7a 7b
7P 1a 2a 3a 4a 1a 1a 1a 1a 1a 1a 1a 9b 9c 9a 2a 2a 2a 3a 3a 3a
73P 1a 2a 3a 4a 7c 7a 7b 7d 7g 7e 7f 9a 9b 9c 14c 14a 14b 21c 21a 21b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.3 71 7 -1 -1 8 8 8 1 1 1 1 -1 -1 -1 . . . -1 -1 -1
X.4 71 7 -1 -1 8 8 8 1 1 1 1 -1 -1 -1 . . . -1 -1 -1
2 . . . . . . . . . 4 1 5 5 1 1 1 1 1
3 2 2 2 2 2 2 2 2 2 2 2 . . . . . 2 2
7 1 1 1 1 1 1 1 1 1 1 . . . 1 1 1 . .
73 . . . . . . . . . . . . . . . . . .
63a 63b 63c 63d 63e 63f 63g 63h 63i 2b 6a 8a 8b 14d 14e 14f 18a 18b
2P 63b 63c 63a 63e 63f 63d 63h 63i 63g 1a 3a 4a 4a 7f 7g 7e 9b 9c
3P 21c 21a 21b 21a 21b 21c 21b 21c 21a 2b 2b 8b 8a 14f 14d 14e 6a 6a
7P 9b 9c 9a 9a 9b 9c 9c 9a 9b 2b 6a 8a 8b 2b 2b 2b 18b 18c
73P 63e 63f 63d 63h 63i 63g 63b 63c 63a 2b 6a 8a 8b 14f 14d 14e 18a 18b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
X.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 AQ *AQ -1 -1 -1 -1 -1
X.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -AQ -*AQ 1 1 1 1 1
2 1
3 2
7 .
73 .
18c
2P 9a
3P 6a
7P 18a
73P 18c
X.1 1
X.2 -1
X.3 -1
X.4 1
AQ = -1+2*E(8)-2*E(8)^3
= -1+2*Sqrt(2) = -1+2r2
gap> prg:= AtlasProgram( "L3(8).2", "cyclic" );
rec( groupname := "L3(8).2", identifier := [ "L3(8).2", "L38d2G1-cycW1", 1 ],
outputs := [ "7GH", "14AB", "63AB", "73AB", "8A-B", "14G-I", "18A-C" ],
program := <straight line program>, standardization := 1, version := "1" )
gap> gens:= OneAtlasGeneratingSetInfo( "L3(8).2", Dimension, 71, Characteristic, 73 );
rec( dim := 71, groupname := "L3(8).2", id := "",
identifier := [ "L3(8).2", [ "L38d2G1-f73r71B0.m1", "L38d2G1-f73r71B0.m2" ],
1, 73 ], repname := "L38d2G1-f73r71B0", repnr := 23, ring := GF(73),
size := 32965632, standardization := 1, type := "matff" )
gap> gens:= AtlasGenerators( gens );
rec( dim := 71,
generators := [ < immutable compressed matrix 71x71 over GF(73) >,
< immutable compressed matrix 71x71 over GF(73) > ],
groupname := "L3(8).2", id := "",
identifier := [ "L3(8).2", [ "L38d2G1-f73r71B0.m1", "L38d2G1-f73r71B0.m2" ],
1, 73 ], repname := "L38d2G1-f73r71B0", repnr := 23, ring := GF(73),
size := 32965632, standardization := 1, type := "matff" )
gap> res:= ResultOfStraightLineProgram( prg.program, gens.generators );;
gap> Length( res );
7
gap> 2b:= res[7]^9;
< immutable compressed matrix 71x71 over GF(73) >
gap> Order( last );
2
gap> BrauerCharacterValue( 2b );
-1
gap> # thus we have 71a!
gap> 8ab:= res[5];
< immutable compressed matrix 71x71 over GF(73) >
gap> Order( last );
8
gap> BrauerCharacterValue( 8ab );
-1-2*E(8)+2*E(8)^3
gap> Quadratic( last );
rec( ATLAS := "-1-2r2", a := -1, b := -2, d := 1, display := "-1-2*Sqrt(2)",
root := 2 )
gap> # thus we have class 8B!
concerning 18A-C:
squares are in 9B, 9C, 9A
and 9A is the 7th power of 63c, 63d, 63h
and 9B is the 7th power of 63a, 63e, 63i
and 9C is the 7th power of 63b, 63f, 63g
-> so we could solve this without a repres.! (and the answer defines some repres.)
-> what about 14G-I?
squares: 14G -> 7f
14H -> 7g
14I -> 7e
and 9th powers of 63 are
63a -> 21c -> 7b
63b -> 21a -> 7c
63c -> 21b -> 7a
63d -> 21a -> 7c
63e -> 21b -> 7a
63f -> 21c -> 7b
63g -> 21b -> 7a
63h -> 21c -> 7b
63i -> 21a -> 7c
and there are representations of degree 146 or 1168 or 657 which couple 7a-c to 7d-f
23: G ≤ GL(71,73)
24: G ≤ GL(441,73)
25: G ≤ GL(511a,73)
26: G ≤ GL(511b,73)
-> but we do not have it!
-> in char. 3, also candidates:
degrees 146, 657
-> use the nat. repres. in char. 2!
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:L34_maxes">
<Heading>Maximal Subgroups of <M>L_3(4)</M></Heading>
Two straight line programs that are available in the web &ATLAS; for
computing generators of maximal subgroups of the group <M>G = L_3(4)</M>
are not correct.
<P/>
The contents of the file <C>L34G1-max4W1</C> is as follows.
<P/>
<Listing>
mu 1 2 3
mu 2 1 4
iv 3 5
mu 4 4 2
mu 2 5 4
mu 4 3 2
</Listing>
<P/>
However,
if we apply this program to standard generators of <M>G</M> then
the outputs generate the whole group.
<P/>
<Example>
gap> slp:= ScanStraightLineProgram( "\
> mu 1 2 3\n\
> mu 2 1 4\n\
> iv 3 5\n\
> mu 4 4 2\n\
> mu 2 5 4\n\
> mu 4 3 2", "string" );
rec( program := <straight line program> )
gap> g:= AtlasGroup( "L3(4)" );
Group([ (1,2)(4,6)(5,7)(8,12)(9,14)(10,15)(11,17)(13,19),
(2,3,5,4)(6,8,13,9)(7,10,16,11)(12,18)(14,20,21,15)(17,19) ])
gap> res:= ResultOfStraightLineProgram( slp.program,
> GeneratorsOfGroup( g ) );;
gap> Size( SubgroupNC( g, res ) );
20160
</Example>
<P/>
Similarly, the file <C>L34G1-max5W1</C> has the following contents.
<P/>
<Listing>
mu 1 2 3
mu 2 1 4
iv 3 5
mu 4 5 2
mu 2 3 4
mu 4 3 2
</Listing>
<P/>
The subgroup generated by the outputs of this program has order <M>10</M>
and is hence too small.
<P/>
<Example>
gap> slp:= ScanStraightLineProgram( "\
> mu 1 2 3\n\
> mu 2 1 4\n\
> iv 3 5\n\
> mu 4 5 2\n\
> mu 2 3 4\n\
> mu 4 3 2", "string" );
rec( program := <straight line program> )
gap> res:= ResultOfStraightLineProgram( slp.program,
> GeneratorsOfGroup( g ) );;
gap> Size( SubgroupNC( g, res ) );
10
</Example>
<P/>
Now we want to replace the wrong programs by correct ones.
According to <Cite Key="CCN85" Where="p. 23"/>,
the subgroups in the 3rd, 4th, and 5th class of maximal subgroups of <M>G</M>
are all isomorphic with the alternating group <M>A_6</M>.
Thus our task is to find two subgroups of type <M>A_6</M> in <M>G</M>
that are not conjugate to each other and also not conjugate to the
representative of the 3rd class of maximal subgroups.
<P/>
Our approach is to keep the first generator of <M>G</M> (an involution),
and to iterate over short words in a free monoid until the corresponding
word in the standard generators of <M>G</M> together with the involution
generate a suitable subgroup.
(Note that all subgroups of order <M>360</M> in <M>G</M> are maximal in
<M>G</M> and have the type <M>A_6</M>.)
<P/>
<Example>
gap> g:= AtlasGroup( "L3(4)" );;
gap> s3:= AtlasSubgroup( "L3(4)", 3 );;
gap> Size( s3 ); IsSimple( s3 );
360
true
gap> gens:= ShallowCopy( GeneratorsOfGroup( g ) );;
gap> f:= FreeMonoid( 2 );;
gap> fgens:= GeneratorsOfMonoid( f );;
[ m1, m2 ]
gap> iter:= Iterator( f );;
gap> repeat
> w4:= NextIterator( iter );
> s4:= Group( gens[1], MappedWord( w4, fgens, gens ) );
> until Size( s4 ) = 360 and not IsConjugate( g, s3, s4 );
gap> w4;
m2*m1*m2^3*m1*m2*m1*m2
gap> repeat
> w5:= NextIterator( iter );
> s5:= Group( gens[1], MappedWord( w5, fgens, gens ) );
> until Size( s5 ) = 360
> and not IsConjugate( g, s3, s5 )
> and not IsConjugate( g, s4, s5 );
gap> w5;
m2*m1*m2*m1*m2^3*m1*m2
</Example>
<P/>
The erroneous programs get excluded from the &GAP; interface
by removing them from the data list in the file <F>gap/atlasprm.json</F>
of the &AtlasRep; package and then adding entries to the global variable
<Ref Var="AGR.ExclusionList"/>.
<P/>
The above words have been turned into straight line programs and then added
to the data that are distributed together with the &AtlasRep; package,
the programs are now available with the names <C>L34G1-max4W2</C>;
and <C>L34G1-max5W2</C>, respectively;
note that the names <C>L34G1-max4W1</C> and <C>L34G1-max5W1</C>
must be avoided.
<!-- and add entries to htm/data/changes.htm -->
<P/>
<Example>
gap> subs:= List( [3..5], i -> AtlasSubgroup( g, i ) );;
gap> List( subs, Size );
[ 360, 360, 360 ]
gap> IsConjugate( g, subs[1], subs[2] );
false
gap> IsConjugate( g, subs[1], subs[3] );
false
gap> IsConjugate( g, subs[2], subs[3] );
false
</Example>
<P/>
It turns out that the generators of the subgroups are in fact
standard generators of <M>A_6</M>.
<P/>
<Example>
gap> prg:= AtlasProgram( "A6", 1, "check" );
rec( groupname := "A6", identifier := [ "A6", "A6G1-check1", 1, 1 ],
program := <straight line decision>, standardization := 1, version := "1" )
gap> ForAll( subs, s -> ResultOfStraightLineDecision( prg.program,
> GeneratorsOfGroup( s ) ) );
true
</Example>
<P/>
Thus we can provide also the (empty) straight line programs
<C>L34G1max3W1-A6G1W1</C>, <C>L34G1max4W2-A6G1W1</C>, and
<C>L34G1max5W2-A6G1W1</C>,
which express that the &GAP; interface provides <E>standard</E> generators
for the maximal subgroups in question.
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
</Chapter>
|