1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
#############################################################################
##
#W utils.gd GAP 4 package AtlasRep Thomas Breuer
##
## This file contains the declarations of utility functions for the
## &ATLAS; of Group Representations.
##
#############################################################################
##
## Class Names Used in the AtlasRep Package
##
## <#GAPDoc Label="classnames">
## <Subsection Label="subsect:Definition of ATLAS Class Names">
## <Heading>Definition of &ATLAS; Class Names</Heading>
##
## For the definition of class names of an almost simple group,
## we assume that the ordinary character tables of all nontrivial normal
## subgroups are shown in
## the &ATLAS; of Finite Groups <Cite Key="CCN85"/>.
## <P/>
## Each class name is a string consisting of the element order of the class
## in question followed by a combination of capital letters, digits, and
## the characters <C>'</C> and <C>-</C> (starting with a capital letter).
## For example, <C>1A</C>, <C>12A1</C>, and <C>3B'</C> denote
## the class that contains the identity element,
## a class of element order <M>12</M>,
## and a class of element order <M>3</M>, respectively.
## <P/>
## <Enum>
## <Item>
## For the table of a <E>simple</E> group, the class names are the same
## as returned by the two argument version of the &GAP; function
## <Ref Func="ClassNames" BookName="ref"/>,
## cf. <Cite Key="CCN85" Where="Chapter 7, Section 5"/>:
## The classes are arranged w. r. t. increasing element
## order and for each element order w. r. t. decreasing
## centralizer order, the conjugacy classes that contain elements of
## order <M>n</M> are named <M>n</M><C>A</C>, <M>n</M><C>B</C>,
## <M>n</M><C>C</C>, <M>\ldots</M>;
## the alphabet used here is potentially infinite, and reads
## <C>A</C>, <C>B</C>, <C>C</C>, <M>\ldots</M>, <C>Z</C>, <C>A1</C>,
## <C>B1</C>, <M>\ldots</M>, <C>A2</C>, <C>B2</C>, <M>\ldots</M>.
## <P/>
## For example, the classes of the alternating group <M>A_5</M> have the
## names <C>1A</C>, <C>2A</C>, <C>3A</C>, <C>5A</C>, and <C>5B</C>.
## </Item>
## <Item>
## Next we consider the case of an <E>upward extension</E> <M>G.A</M>
## of a simple group <M>G</M> by a <E>cyclic</E> group of order
## <M>A</M>.
## The &ATLAS; defines class names for each element <M>g</M> of
## <M>G.A</M> only w. r. t. the group <M>G.a</M>, say,
## that is generated by <M>G</M> and <M>g</M>;
## namely, there is a power of <M>g</M> (with the exponent coprime to
## the order of <M>g</M>) for which the class has a name of the same
## form as the class names for simple groups,
## and the name of the class of <M>g</M>
## w. r. t. <M>G.a</M> is then
## obtained from this name by appending a suitable number of
## dashes <C>'</C>.
## So dashed class names refer exactly to those classes that are not
## printed in the &ATLAS;.
## <P/>
## For example, those classes of the symmetric group <M>S_5</M> that do
## not lie in <M>A_5</M> have the names <C>2B</C>, <C>4A</C>,
## and <C>6A</C>.
## The outer classes of the group <M>L_2(8).3</M> have the names
## <C>3B</C>, <C>6A</C>, <C>9D</C>, and <C>3B'</C>, <C>6A'</C>,
## <C>9D'</C>.
## The outer elements of order <M>5</M> in the group <M>Sz(32).5</M>
## lie in the classes with names <C>5B</C>, <C>5B'</C>, <C>5B''</C>,
## and <C>5B'''</C>.
## <P/>
## In the group <M>G.A</M>, the class of <M>g</M> may fuse with other
## classes.
## The name of the class of <M>g</M> in <M>G.A</M> is obtained from the
## names of the involved classes of <M>G.a</M> by concatenating their
## names after removing the element order part from all of them except
## the first one.
## <P/>
## For example, the elements of order <M>9</M> in the group
## <M>L_2(27).6</M> are contained in the subgroup <M>L_2(27).3</M>
## but not in <M>L_2(27)</M>.
## In <M>L_2(27).3</M>, they lie in the classes <C>9A</C>, <C>9A'</C>,
## <C>9B</C>, and <C>9B'</C>;
## in <M>L_2(27).6</M>, these classes fuse to <C>9AB</C> and
## <C>9A'B'</C>.
## </Item>
## <Item>
## Now we define class names for <E>general upward extensions</E>
## <M>G.A</M> of a simple group <M>G</M>.
## Each element <M>g</M> of such a group lies in an upward extension
## <M>G.a</M> by a cyclic group, and the class names
## w. r. t. <M>G.a</M> are already defined.
## The name of the class of <M>g</M> in <M>G.A</M> is obtained by
## concatenating the names of the classes in the orbit of <M>G.A</M> on
## the classes of cyclic upward extensions of <M>G</M>,
## after ordering the names lexicographically and removing the element
## order part from all of them except the first one.
## An <E>exception</E> is the situation where dashed and non-dashed
## class names appear in an orbit;
## in this case, the dashed names are omitted.
## <P/>
## For example, the classes <C>21A</C> and <C>21B</C> of the group
## <M>U_3(5).3</M> fuse in <M>U_3(5).S_3</M> to the class <C>21AB</C>,
## and the class <C>2B</C> of <M>U_3(5).2</M> fuses with the involution
## classes <C>2B'</C>, <C>2B''</C> in the groups
## <M>U_3(5).2^{\prime}</M> and <M>U_3(5).2^{{\prime\prime}}</M>
## to the class <C>2B</C> of <M>U_3(5).S_3</M>.
## <P/>
## It may happen that some names in the <C>outputs</C> component of a
## record returned by <Ref Func="AtlasProgram"/>
## do not uniquely determine the classes of the corresponding elements.
## For example, the (algebraically conjugate) classes <C>39A</C> and
## <C>39B</C> of the group <M>Co_1</M> have not been distinguished yet.
## In such cases, the names used contain a minus sign <C>-</C>,
## and mean <Q>one of the classes in the range described by the name
## before and the name after the minus sign</Q>;
## the element order part of the name does not appear after the minus
## sign.
## So the name <C>39A-B</C> for the group <M>Co_1</M> means
## <C>39A</C> or <C>39B</C>,
## and the name <C>20A-B'''</C> for the group <M>Sz(32).5</M> means
## one of the classes of element order <M>20</M> in this group
## (these classes lie outside the simple group <M>Sz</M>).
## </Item>
## <Item>
## For a <E>downward extension</E> <M>m.G.A</M> of an almost simple
## group <M>G.A</M> by a cyclic group of order <M>m</M>,
## let <M>\pi</M> denote the natural epimorphism from <M>m.G.A</M>
## onto <M>G.A</M>.
## Each class name of <M>m.G.A</M> has the form <C>nX_0</C>,
## <C>nX_1</C> etc.,
## where <C>nX</C> is the class name of the image under <M>\pi</M>,
## and the indices <C>0</C>, <C>1</C> etc. are chosen according to the
## position of the class in the lifting order rows for <M>G</M>,
## see <Cite Key="CCN85" Where="Chapter 7, Section 7,
## and the example in Section 8"/>).
## <P/>
## For example, if <M>m = 6</M> then <C>1A_1</C> and <C>1A_5</C> denote
## the classes containing the generators of the kernel of <M>\pi</M>,
## that is, central elements of order <M>6</M>.
## </Item>
## </Enum>
##
## </Subsection>
## <#/GAPDoc>
##
#T missing:
#T general central downward extensions (<M>2^2</M>, <M>2 \times 4</M>, ...)
##
#############################################################################
##
#F AtlasClassNames( <tbl> )
##
## <#GAPDoc Label="AtlasClassNames">
## <ManSection>
## <Func Name="AtlasClassNames" Arg='tbl'/>
##
## <Returns>
## a list of class names.
## </Returns>
## <Description>
## Let <A>tbl</A> be the ordinary or modular character table of a group
## <M>G</M>, say, that is almost simple or a downward extension of an
## almost simple group and such that <A>tbl</A> is an &ATLAS; table
## from the &GAP; Character Table Library,
## according to its <Ref Func="InfoText" BookName="ref"/> value.
## Then <Ref Func="AtlasClassNames"/> returns the list of class names for
## <M>G</M>, as defined
## in Section <Ref Subsect="subsect:Definition of ATLAS Class Names"/>.
## The ordering of class names is the same as the ordering of the columns
## of <A>tbl</A>.
## <P/>
## (The function may work also for character tables that are not
## &ATLAS; tables,
## but then clearly the class names returned are somewhat arbitrary.)
## <P/>
## <Example><![CDATA[
## gap> AtlasClassNames( CharacterTable( "L3(4).3" ) );
## [ "1A", "2A", "3A", "4ABC", "5A", "5B", "7A", "7B", "3B", "3B'",
## "3C", "3C'", "6B", "6B'", "15A", "15A'", "15B", "15B'", "21A",
## "21A'", "21B", "21B'" ]
## gap> AtlasClassNames( CharacterTable( "U3(5).2" ) );
## [ "1A", "2A", "3A", "4A", "5A", "5B", "5CD", "6A", "7AB", "8AB",
## "10A", "2B", "4B", "6D", "8C", "10B", "12B", "20A", "20B" ]
## gap> AtlasClassNames( CharacterTable( "L2(27).6" ) );
## [ "1A", "2A", "3AB", "7ABC", "13ABC", "13DEF", "14ABC", "2B", "4A",
## "26ABC", "26DEF", "28ABC", "28DEF", "3C", "3C'", "6A", "6A'",
## "9AB", "9A'B'", "6B", "6B'", "12A", "12A'" ]
## gap> AtlasClassNames( CharacterTable( "L3(4).3.2_2" ) );
## [ "1A", "2A", "3A", "4ABC", "5AB", "7A", "7B", "3B", "3C", "6B",
## "15A", "15B", "21A", "21B", "2C", "4E", "6E", "8D", "14A", "14B" ]
## gap> AtlasClassNames( CharacterTable( "3.A6" ) );
## [ "1A_0", "1A_1", "1A_2", "2A_0", "2A_1", "2A_2", "3A_0", "3B_0",
## "4A_0", "4A_1", "4A_2", "5A_0", "5A_1", "5A_2", "5B_0", "5B_1",
## "5B_2" ]
## gap> AtlasClassNames( CharacterTable( "2.A5.2" ) );
## [ "1A_0", "1A_1", "2A_0", "3A_0", "3A_1", "5AB_0", "5AB_1", "2B_0",
## "4A_0", "4A_1", "6A_0", "6A_1" ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "AtlasClassNames" );
#############################################################################
##
#V AtlasClassNamesOffsetInfo
##
## <ManSection>
## <Var Name="AtlasClassNamesOffsetInfo"/>
##
## <Description>
## This global variable describes the cyclic upwards extensions of those
## simple groups whose ordinary character tables are contained in the
## &ATLAS; of Finite Groups and for which the outer automorphism groups
## are noncyclic.
## </Description>
## </ManSection>
##
DeclareGlobalVariable( "AtlasClassNamesOffsetInfo" );
#############################################################################
##
#F AtlasCharacterNames( <tbl> )
##
## <#GAPDoc Label="AtlasCharacterNames">
## <ManSection>
## <Func Name="AtlasCharacterNames" Arg='tbl'/>
##
## <Returns>
## a list of character names.
## </Returns>
## <Description>
## Let <A>tbl</A> be the ordinary or modular character table of a simple
## group.
## <Ref Func="AtlasCharacterNames"/> returns a list of strings,
## the <M>i</M>-th entry being the name of the <M>i</M>-th irreducible
## character of <A>tbl</A>;
## this name consists of the degree of this character followed by
## distinguishing lowercase letters.
## <P/>
## <Example><![CDATA[
## gap> AtlasCharacterNames( CharacterTable( "A5" ) );
## [ "1a", "3a", "3b", "4a", "5a" ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "AtlasCharacterNames" );
#############################################################################
##
#F StringOfAtlasProgramCycToCcls( <prgstring>, <tbl>, <mode> )
##
## <ManSection>
## <Func Name="StringOfAtlasProgramCycToCcls" Arg='prgstring, tbl, mode'/>
##
## <Description>
## The purpose of this utility program is to construct a straight line
## program for computing conjugacy class representatives of a group <M>G</M>
## from a straight line program for computing representatives of classes
## of maximally cyclic subgroups of <M>G</M>;
## the latter program is assumed to be given by the string <A>prgstring</A>.
## The second argument <A>tbl</A> must be the ordinary character table of
## <M>G</M>.
## The third argument <A>mode</A> must be one of the strings <C>"names"</C>
## or <C>"numbers"</C>; in the former case, the labels used are class names,
## in the latter case they are numbers.
## (Note that the labels used for the inputs are the outputs of the program
## given by <A>prgstring</A>, which may be names even if <C>"numbers"</C> is
## chosen for <A>mode</A>.)
## <P/>
## <M>G</M> must be an &ATLAS; group, and the classes of <A>tbl</A> must be
## sorted compatibly with the
## &ATLAS; of Finite Groups <Cite Key="CCN85"/>,
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "StringOfAtlasProgramCycToCcls" );
#############################################################################
##
#F CurrentDateTimeString( [<options>] )
##
## <ManSection>
## <Func Name="CurrentDateTimeString" Arg='[options]'/>
##
## <Description>
## If the system function <C>date</C> is available then the return value is
## a string that describes the current date and time,
## otherwise the string <C>"unknown"</C> is returned.
## <P/>
## If the argument <A>options</A> is given it must be a list of options for
## <C>date</C>;
## for example an empty list means the local time,
## and the value <C>[ "-u" ]</C> means Greenwich mean time (UTC).
## <P/>
## If no argument is given then the format of the result refers to Greenwich
## mean time and is compatible with <Ref Func="StringDate" BookName="ref"/>
## and <Ref Func="StringTime" BookName="ref"/>;
## in this case the option <C>+%s</C> is used.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CurrentDateTimeString" );
#############################################################################
##
#F SendMail( <sendto>, <copyto>, <subject>, <text> )
##
## <ManSection>
## <Func Name="SendMail" Arg='sendto, copyto, subject, text'/>
##
## <Description>
## Let <A>sendto</A> and <A>copyto</A> be lists of email addresses,
## and <A>subject</A> and <A>text</A> be strings.
## <Ref Func="SendMail"/> sends email messages with subject <A>subject</A>
## and body <A>text</A> to the addresses in <A>sendto</A> and <A>copyto</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "SendMail" );
#############################################################################
##
#F ParseBackwards( <string>, <format> )
#F ParseBackwardsWithPrefix( <string>, <format> )
#F ParseForwards( <string>, <format> )
#F ParseForwardsWithSuffix( <string>, <format> )
##
## <ManSection>
## <Func Name="ParseBackwards" Arg='string, format'/>
## <Func Name="ParseBackwardsWithPrefix" Arg='string, format'/>
## <Func Name="ParseForwards" Arg='string, format'/>
## <Func Name="ParseForwardsWithSuffix" Arg='string, format'/>
##
## <Description>
## <!-- Remove this as soon as <C>gpisotyp</C> is available!-->
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ParseBackwards" );
DeclareGlobalFunction( "ParseBackwardsWithPrefix" );
DeclareGlobalFunction( "ParseForwards" );
DeclareGlobalFunction( "ParseForwardsWithSuffix" );
#############################################################################
##
#F AtlasRepIdentifier( <oldid> )
#F AtlasRepIdentifier( <id>, "old" )
##
## <#GAPDoc Label="AtlasRepIdentifier">
## <ManSection>
## <Heading>AtlasRepIdentifier</Heading>
## <Func Name="AtlasRepIdentifier" Arg='oldid'
## Label="convert an old type identifier to a new type one"/>
## <Func Name="AtlasRepIdentifier" Arg='id, "old"'
## Label="convert a new type identifier to an old type one"/>
##
## <Description>
## This function converts between the <Q>old format</Q> (the one used up to
## version 1.5.1 of the package) and the <Q>new format</Q> (the one used
## since version 2.0) of the <C>identifier</C> component of the records
## returned by &AtlasRep; functions.
## Note that the two formats differ only for <C>identifier</C> components
## that describe data from non-core parts of the database.
## <P/>
## If the only argument is a list <A>oldid</A> that is an <C>identifier</C>
## in old format then the function returns the corresponding
## <C>identifier</C> in new format.
## If there are two arguments, a list <A>id</A> that is an <C>identifier</C>
## in new format and the string <A>"old"</A>,
## then the function returns the corresponding <C>identifier</C> in old
## format if this is possible, and <K>fail</K> otherwise.
## <P/>
## <Example><![CDATA[
## gap> id:= [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ];;
## gap> AtlasRepIdentifier( id ) = id;
## true
## gap> id:= [ "L2(8)", "L28G1-check1", 1, 1 ];;
## gap> AtlasRepIdentifier( id ) = id;
## true
## gap> oldid:= [ [ "priv", "C4" ], [ "C4G1-p4B0.m1" ], 1, 4 ];;
## gap> newid:= AtlasRepIdentifier( oldid );
## [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ]
## gap> oldid = AtlasRepIdentifier( newid, "old" );
## true
## gap> oldid:= [ [ "priv", "C4" ], "C4G1-max1W1", 1 ];;
## gap> newid:= AtlasRepIdentifier( oldid );
## [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ]
## gap> oldid = AtlasRepIdentifier( newid, "old" );
## true
## gap> oldid:= [ [ "priv", "C4" ], "C4G1-Ar1aB0.g", 1, 1 ];;
## gap> newid:= AtlasRepIdentifier( oldid );
## [ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ]
## gap> oldid = AtlasRepIdentifier( newid, "old" );
## true
## gap> oldid:= [ [ "priv", "C4" ], "C4G1-XtestW1", 1 ];;
## gap> newid:= AtlasRepIdentifier( oldid );
## [ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ]
## gap> oldid = AtlasRepIdentifier( newid, "old" );
## true
## gap> oldid:= [ [ "mfer", "2.M12" ],
## > [ "2M12G1-p264aB0.m1", "2M12G1-p264aB0.m2" ], 1, 264 ];;
## gap> newid:= AtlasRepIdentifier( oldid );
## [ "2.M12",
## [ [ "mfer", "2M12G1-p264aB0.m1" ], [ "mfer", "2M12G1-p264aB0.m2" ] ]
## , 1, 264 ]
## gap> oldid = AtlasRepIdentifier( newid, "old" );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "AtlasRepIdentifier" );
#############################################################################
##
#F CompositionOfSLDAndSLP( <sld>, <slp> )
##
## <ManSection>
## <Func Name="CompositionOfSLDAndSLP" Arg='sld, slp'/>
##
## <Description>
## Return a straight line decision that first applies the straight line
## program <A>slp</A> to its inputs and then returns the result of the
## straight line decision <A>sld</A> on the outputs.
## <P/>
## A typical situation is that <A>slp</A> is a restandardization script
## and <A>sld</A> is a presentation.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CompositionOfSLDAndSLP" );
#############################################################################
##
#F AtlasRepComputedKernelGenerators( <gapname>, <std>,
#F <factgapname>, <factstd>,
#F <bound> )
##
## <ManSection>
## <Func Name="AtlasRepComputedKernelGenerators"
## Arg='gapname, std, factgapname, factstd, bound'/>
##
## <Description>
## We assume that <A>gapname</A> and <A>factgapname</A> are valid arguments
## of <Ref Func="AtlasGroup"/>,
## and that the <A>std</A>-th and <A>factstd</A>-th standard generators of
## the two groups <M>G</M> and <M>F</M>, say, are compatible
## in the sense that mapping the generators of <M>G</M> to those of <M>F</M>
## defines an epimorphism.
## <P/>
## If representations for the two groups in the given standardizations
## are locally available then the following happens.
## <P/>
## The function runs over the elements of a free monoid and collects those
## elements that evaluate to elements of different orders in the two groups
## and thus lie in the kernel of the epimorphism from <M>G</M> to <M>F</M>.
## Only those words in the free generators are considered for which the
## exponents of all syllables are smaller than the orders of the
## corresponding generators of <M>G</M>.
## <P/>
## If <A>gapname</A> and <A>factgapname</A> are two identifiers of
## character tables from the &GAP; Character Table Library such that
## a factor fusion from the table of <A>gapname</A> to that of
## <A>factgapname</A> is stored then the character tables are used
## to determine those orders of elements in <A>F</A> for which a preimage
## in <M>G</M> has larger order.
## In this case, only those elements of <M>G</M> are computed for which
## the order of the corresponding element of <M>F</M> admits a preimage of
## larger order in <M>G</M>.
## <P/>
## At most the first <A>bound</A> words in the free generators are checked
## for which an element of <M>G</M> is actually computed according to these
## rules.
## <P/>
## The function returns <K>fail</K> if it finds out that the generators
## are not compatible;
## in this case, a message about the details is printed
## if the info level of <Ref Var="InfoAtlasRep"/> is at least <M>3</M>.
## Otherwise, the function returns a list <M>[ l, flag ]</M>,
## where <M>l</M> is a list of pairs <M>[ w, o ]</M> such that <M>w^o</M>
## describes an element in the kernel,
## and <M>flag</M> is <K>true</K> if these words are known to generate
## the kernel, and <K>false</K> otherwise.
## <P/>
## Yes, the strategy used is quite simpleminded:
## First, although the words in the free monoid are checked in an ordering
## that respects the length of the words, it may happen that some longer
## word can be evaluated with a straight line program that needs less
## multiplications.
## Second, the checks of many words are unnecessary because these words
## evaluate to the same elements as words that have been checked already.
## <P/>
## Moreover, the strategy is suitable only for computing <E>small</E>
## kernels, since membership tests for the kernel are needed if it is not
## cyclic. Large kernels occur for example in maximal subgroups of the
## Monster group; if such a kernel is an irreducible module then it is
## a better approach to find one nontrivial element in the kernel and
## suitable conjugating elements of the maximal subgroup.
## <P/>
## <Example><![CDATA[
## gap> AtlasRepComputedKernelGenerators( "2.A5", 1, "A5", 1, 10^6 );
## [ [ [ m1, 2 ] ], true ]
## gap> g:= AtlasGroup( "A5" );;
## gap> 2g:= AtlasGroup( "2.A5" );;
## gap> List( GeneratorsOfGroup( g ), Order );
## [ 2, 3 ]
## gap> List( GeneratorsOfGroup( 2g ), Order );
## [ 4, 3 ]
## ]]></Example>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "AtlasRepComputedKernelGenerators" );
#############################################################################
##
#E
|