1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
#############################################################################
##
#W autoops.gi AutPGrp package Bettina Eick
##
#H @(#)$Id: autoops.gi,v 1.5 2003/08/18 12:10:28 gap Exp $
##
Revision.("autpgrp/gap/autoops_gi") :=
"@(#)$Id: autoops.gi,v 1.5 2003/08/18 12:10:28 gap Exp $";
#############################################################################
##
#F PGAutomorphism( <G>, <gens>, <imgs> )
##
InstallMethod( PGAutomorphism,
"for p-groups", true, [IsPGroup, IsList, IsList ], 0,
function( G, gens, imgs )
local filter, type, r, p, pcgs, base, pcgsimgs, baseimgs, def, d;
# cache the default type in the group
if not IsBound( G!.PGAutomType ) then
filter := IsPGAutomorphism and IsBijective;
type := TypeOfDefaultGeneralMapping( G, G, filter );
G!.PGAutomType := type;
else
type := G!.PGAutomType;
fi;
# get images correct
r := RankPGroup( G );
p := PrimePGroup( G );
pcgs := Pcgs( G );
base := pcgs{[1..r]};
if gens = pcgs then
pcgsimgs := imgs;
baseimgs := imgs{[1..r]};
elif gens = base then
baseimgs := ShallowCopy( imgs );
pcgsimgs := ShallowCopy( imgs );
for d in G!.definitions do
if not IsNegRat( d ) then
Add( pcgsimgs, SubstituteDef( d, pcgsimgs, p ) );
fi;
od;
else
Print("# W computing pcgs in PGAutomorphism \n");
pcgsimgs := CanonicalPcgsByGeneratorsWithImages( pcgs, gens, imgs );
baseimgs := pcgsimgs{[1..r]};
fi;
# create homomorphism
return Objectify( type, rec( pcgs := pcgs, pcgsimgs := pcgsimgs,
base := base, baseimgs := baseimgs ) );
end);
#############################################################################
##
#F IdentityPGAutomorphism( <G> )
##
InstallGlobalFunction( IdentityPGAutomorphism, function( G )
return PGAutomorphism( G, Pcgs(G), AsList(Pcgs(G)) );
end );
#############################################################################
##
#F PrintObj(auto)
##
InstallMethod( PrintObj,
"for group automorphisms",
true,
[IsPGAutomorphism],
SUM_FLAGS,
function( auto )
if IsBound( auto!.mat ) then
Print("Aut + Mat: ",auto!.pcgsimgs);
else
Print("Aut: ",auto!.pcgsimgs);
fi;
end);
#############################################################################
##
#F ViewObj(auto)
##
InstallMethod( ViewObj,
"for group automorphisms",
true,
[IsPGAutomorphism],
SUM_FLAGS,
function( auto )
if IsBound( auto!.mat ) then
Print("Aut + Mat: ",auto!.pcgsimgs);
else
Print("Aut: ",auto!.pcgsimgs);
fi;
end);
#############################################################################
##
#F \=
##
InstallMethod( \=,
"for group automorphisms",
IsIdenticalObj,
[IsPGAutomorphism, IsPGAutomorphism],
0,
function( auto1, auto2 )
return auto1!.base = auto2!.base and auto1!.baseimgs = auto2!.baseimgs;
end);
#############################################################################
##
#F ImagesRepresentative( auto, g )
##
InstallMethod( ImagesRepresentative,
"for group automorphisms",
true,
[IsPGAutomorphism, IsObject],
0,
function( auto, g )
return MappedPcElement( g, auto!.pcgs, auto!.pcgsimgs );
end );
#############################################################################
##
#F PGMult( auto1, auto2 )
##
InstallMethod( PGMult, true, [IsPGAutomorphism, IsPGAutomorphism], 0,
function( auto1, auto2 )
local new, aut;
# 1. version
new := List( auto1!.pcgsimgs, x -> ImagesRepresentative( auto2, x ) );
if IsBound( auto1!.mat ) and IsBound( auto2!.mat ) then
aut := PGAutomorphism( Source(auto1), auto1!.pcgs, new );
aut!.mat := auto1!.mat * auto2!.mat;
else
aut := PGAutomorphism( Source(auto1), auto1!.pcgs, new );
fi;
return aut;
# 2. version
new := List( auto2!.baseimgs, x -> ImagesRepresentative( auto1, x ) );
return PGAutomorphism( Source(auto2), auto2!.base, new );
end );
#############################################################################
##
#F CompositionMapping2( auto1, auto2 )
##
InstallMethod( CompositionMapping2,
"for group automorphisms",
true,
[IsPGAutomorphism, IsPGAutomorphism],
0,
function( auto2, auto1 )
return PGMult( auto1, auto2 );
end );
#############################################################################
##
#F PGMultList( autl )
##
InstallMethod( PGMultList, true, [IsList], 0,
function( autl )
local l, r, new;
if Length( autl ) = 1 then return autl[1]; fi;
if Length( autl ) = 2 then return PGMult(autl[1],autl[2]); fi;
l := Length( autl );
r := QuoInt( l, 2 );
new := List( [1..r], x -> PGMult( autl[2*x-1], autl[2*x] ));
if not IsInt( l/2 ) then Add( new, autl[l] ); fi;
return PGMultList( new );
end );
#############################################################################
##
#F PGPower( n, aut )
##
InstallMethod( PGPower, true, [IsInt, IsPGAutomorphism], 0,
function( n, aut )
local c, l, i, j, new;
if n <= 0 then return fail; fi;
if n = 1 then return aut; fi;
c := CoefficientsQadic( n, 2 );
# create power list, if necessary
if not IsBound( aut!.power ) then aut!.power := []; fi;
# add powers, if necessary
l := Length( aut!.power );
if l = 0 then
new := aut;
else
new := aut!.power[l];
fi;
for i in [l+1..Length(c)-1] do
new := PGMult( new, new );
Add( aut!.power, new );
od;
# multiply powers together
if c[1] = 1 then
new := [aut];
else
new := [];
fi;
for i in [2..Length(c)] do
if c[i] = 1 then
Add( new, aut!.power[i-1] );
fi;
od;
return PGMultList( new );
end );
#############################################################################
##
#F PGInverse( aut )
##
InstallMethod( PGInverse, true, [IsPGAutomorphism], 0,
function( aut )
local new, inv;
if not IsBound( aut!.inv ) then
new := CanonicalPcgsByGeneratorsWithImages(
aut!.pcgs, aut!.pcgsimgs, aut!.pcgs);
inv := PGAutomorphism( Source( aut ), aut!.pcgs, new[2] );
else
inv := aut!.inv;
fi;
if IsBound( aut!.mat ) and not IsBound( inv!.mat) then
inv!.mat := aut!.mat^-1;
fi;
aut!.inv := inv;
return aut!.inv;
end );
#############################################################################
##
#F InverseGeneralMapping(auto)
##
InstallOtherMethod( InverseGeneralMapping,
"for group automorphism",
true,
[IsPGAutomorphism],
SUM_FLAGS,
function( auto ) return PGInverse( auto ); end );
|