File: autos.gi

package info (click to toggle)
gap-autpgrp 1.5-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 560 kB
  • ctags: 19
  • sloc: makefile: 107; sh: 9
file content (416 lines) | stat: -rw-r--r-- 12,297 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#############################################################################
##
#W  autos.gi                 AutPGrp package                     Bettina Eick
##
#H  @(#)$Id: autos.gi,v 1.13 2009/08/31 07:40:15 gap Exp $
##
Revision.("autpgrp/gap/autos_gi") :=
    "@(#)$Id: autos.gi,v 1.13 2009/08/31 07:40:15 gap Exp $";

#############################################################################
##
#F LinearActionPGAut( <P>, <M>, <aut> )
##
LinearActionPGAut := function( P, M, aut )
    local p, gensP, pcgsM, gensG, defn, imgs, mat, d;

    # set up
    p := PrimePGroup( P );
    gensP := GeneratorsOfGroup( P );
    pcgsM := Pcgs( M );
    gensG := DifferenceLists( gensP, pcgsM );

    # compute matrix
    defn := P!.definitions;
    imgs := List( aut!.baseimgs, x -> MappedPcElement( x, aut!.pcgs, gensG ));
    for d in defn do
        if not IsNegRat( d ) then
            Add( imgs, SubstituteDef( d, imgs, p ) );
        fi;
    od;
    imgs := imgs{List( pcgsM, x -> Position( gensP, x ) )};

    # two cases - the first for efficiency
    if imgs = pcgsM then
        aut!.mat := 1;
    else
	#AH: make the matrix FF *before* conpacting
        mat := List( imgs, x -> ExponentsOfPcElement( pcgsM, x)*One(M!.field) );
        ConvertToMatrixRep( mat,Size(M!.field) );
        mat := Immutable( mat );
        aut!.mat :=  mat;
    fi;
end;

#############################################################################
##
#F LinearActionAutGrp( <A>, <P>, <M> )
##
InstallGlobalFunction( LinearActionAutGrp,
  function( A, P, M )
    local aut;

    # add information
    for aut in A.glAutos do
        LinearActionPGAut( P, M, aut );
    od;
    for aut in A.agAutos do
        LinearActionPGAut( P, M, aut );
    od;
    A.field := M!.field;
    A.prime := PrimePGroup( P );
    A.one!.mat := 1;
  end);

#############################################################################
##
#F CentralAutos( <G>, <N> )
##
CentralAutos := function( G, N )
    local base, pcgs, cent, b, i, imgs, aut;

    base := Pcgs(N);
    pcgs := Pcgs(G);
    cent := [];
    for b in base do
        for i in [1..RankPGroup(G)] do
            imgs := ShallowCopy( pcgs );
            imgs[i] := imgs[i] * b;
            aut := PGAutomorphism( G, pcgs, imgs );
            Add( cent, aut );
        od;
    od;
    return cent;
end;

#############################################################################
##
#F InduceAuto( <F>, <aut> )
##
InduceAuto := function( F, aut )
    local pcgsF, baseF, imgsG, imgsF, hom;
    pcgsF := Pcgs( F );
    baseF := pcgsF{[1..RankPGroup(F)]};
    imgsG := aut!.baseimgs;
    imgsF := List( imgsG, x -> MappedPcElement( x, aut!.pcgs, pcgsF ) );
    if CHECK then 
        hom := GroupHomomorphismByImages( F, F, baseF, imgsF );
        if not IsGroupHomomorphism( hom ) then 
            Error("no hom");
        elif not IsBijective( hom ) then
            Error("no bijection");
        fi;
    fi;
    return PGAutomorphism( F, baseF, imgsF );
end;

#############################################################################
##
#F InduceAutGroup( <A>, <Q>, <P>, <M>, <U> )
##
InstallGlobalFunction( InduceAutGroup,
  function( A, Q, P, M, U )
    local p, r, F, s, t, pcgsF, pcgsL, L, B, central;

    # set up
    p := PrimePGroup( P );
    r := RankPGroup( P );

    # create factor
    F := Range( EpimorphismQuotientSystem(Q) );
    SetIsPGroup( F, true );
    SetPrimePGroup( F, p );
    SetRankPGroup( F, r );
    pcgsF := Pcgs(F);

    # get definitions for F
    F!.definitions := RewriteDef( pcgsF, Q!.definitions, p );

    # get p-centre of F
    s := Length( Pcgs(P) ) - Length( Pcgs(M) );
    t := s + Length( Pcgs(M) ) - Length( Pcgs(U) );
    pcgsL := InducedPcgsByPcSequenceNC( pcgsF, pcgsF{[s+1..t]} );
    L := SubgroupByPcgs( F, pcgsL );

    # induce autos
    B := rec();
    B.glAutos := List( A.glAutos, x -> InduceAuto( F, x ) );
    B.agAutos := List( A.agAutos, x -> InduceAuto( F, x ) );
    central   := CentralAutos( F, L );
    Append( B.agAutos, central );

    # add information
    B.glOrder := A.glOrder;
    B.agOrder := Concatenation( A.agOrder, List( central, x -> p ) );
    B.group   := F;
    B.one     := IdentityPGAutomorphism( F );
    B.size    := B.glOrder * Product( B.agOrder );

    # if possible add projective operation
    if IsBound( A.glOper ) then B.glOper := A.glOper; fi;

    # and return
    return B;
  end);

#############################################################################
##
#F ConvertAuto( <aut>, <iso> )
##
ConvertAuto := function( aut, iso )
    local G, pcgs, imgs, auto;
    
    G := Source( iso );
    pcgs := SpecialPcgs( G );
    imgs := List( pcgs, x -> ImagesRepresentative( iso, x ) );
    imgs := List( imgs, x -> ImagesRepresentative( aut, x ) );
    imgs := List( imgs, x -> PreImagesRepresentative( iso, x ) );
   
    if not CHECK then
        auto := GroupHomomorphismByImagesNC(G, G, pcgs, imgs );
        SetIsBijective( auto, true );
    else
        auto := GroupHomomorphismByImages( G, G, AsList(pcgs), imgs );
        if not IsGroupHomomorphism( auto ) then
            Error("automorphism is no homomorphism");
        elif not IsBijective( auto ) then
            Error("automorphism is not bijective");
        fi;
    fi;

    return auto;
end;

#############################################################################
##
#F ConvertAutGroup ( <A>, <G> )
##
InstallGlobalFunction( ConvertAutGroup,
  function( A, G )
    local r, gens, imgs, iso, C;

    r := RankPGroup( G );
    gens := SpecialPcgs( G ){[1..r]};
    imgs := Pcgs( A.group ){[1..r]};
    if not CHECK then 
        iso := GroupHomomorphismByImagesNC( G, A.group, gens, imgs );
        SetIsBijective( iso, true );
    else
        iso := GroupHomomorphismByImages( G, A.group, gens, imgs );
        if not IsGroupHomomorphism( iso ) then
            Error("isomorphism is no homomorphism");
        elif not IsBijective( iso ) then
            Error("isomorphism is not bijective");
        fi;
    fi;

    C := rec();
    C.glAutos := List( A.glAutos, x -> ConvertAuto( x, iso ) );
    C.glOrder := A.glOrder;
    C.agAutos := List( A.agAutos, x -> ConvertAuto( x, iso ) );
    C.agOrder := A.agOrder;
    C.one := IdentityMapping( G );
    C.group := G;
    C.size := A.size;

    # if possible add projective operation
    if IsBound( A.glOper ) then C.glOper := A.glOper; fi;

    return C;
  end);

#############################################################################
##
#F AddInfoCover( Q, P, M, U )
##
InstallGlobalFunction( AddInfoCover, 
  function( Q, P, M, U )
    local r, p, f, fam, gensP, pcgsP, gensM, pcgsM, gensU, pcgsU, pos, def; 
  
    r := Q!.RanksOfDescendingSeries;
    p := Q!.prime;
    f := Q!.field;
    fam := FamilyPcgs( P );

    # info for P
    gensP := GeneratorsOfGroup( P );
    pcgsP := InducedPcgsByPcSequenceNC( fam, gensP );
    SetPcgs( P, pcgsP );
    SetRankPGroup( P, r[1] );
    SetPrimePGroup( P, p );

    # info for M
    gensM := GeneratorsOfGroup( M );
    pcgsM := InducedPcgsByPcSequenceNC( fam, gensM );
    SetPcgs( M, pcgsM );
    SetPrimePGroup( M, p );
    M!.field := f;

    # info for U
    gensU := GeneratorsOfGroup( U );
    pcgsU := InducedPcgsByGeneratorsNC( fam, gensU );
    SetPcgs( U, pcgsU );
    
    # get definitions of M
    pos := List( pcgsP, x -> Position( fam, x ) );
    def := Q!.definitions{pos};
    P!.definitions := RewriteDef( pcgsP, def, p );
  end);

#############################################################################
##
#F AutomorphismGroupPGroup( <G>, <flag> ) . . . .automorphisms in hybird form
##
InstallGlobalFunction( AutomorphismGroupPGroup, function( arg )
    local p, r, G, pcgs, first, n, str, A, F, Q, i, s, t, P, N, M, U, B,
          baseU, baseN, epi, interrupt, f;

    # catch the trivial case
    G := arg[1];
    if Size( G ) = 1 then return Group( [], IdentityMapping(G) ); fi;

    # catch arguments
    if Length( arg ) = 1 then
        interrupt := false;

        # choose a initialisation
        p := PrimePGroup( G );
        r := RankPGroup( G );
        if IsHomoCyclic( G ) then
            InitAutGroup := InitAutomorphismGroupFull;
        elif (p^r - 1)/(p - 1) < 30000 then
            InitAutGroup := InitAutomorphismGroupOver;
        else   
            InitAutGroup := InitAutomorphismGroupChar;
        fi;

        # choose flags
        CHOP_MULT := true;
        NICE_STAB := true; 
        USE_LABEL := false;

    elif Length( arg ) = 2 then
        interrupt := arg[2];
    fi;

    # compute special pcgs 
    pcgs := SpecialPcgs( G );
    first := LGFirst( SpecialPcgs(G) );
    p := PrimePGroup( G );
    n := Length(pcgs);
    r := RankPGroup( G );
    f := GF(p);
    
    # init automorphism group - compute Aut(G/G_1)
    Info( InfoAutGrp, 1, 
          "step 1: ",p,"^", first[2]-1, " -- init automorphisms ");

    if interrupt or IsBool( InitAutGroup ) then
        str := Interrupt("choose initialisation (Over/Char/Full)");
        if str = "Over" then
            InitAutGroup := InitAutomorphismGroupOver;
        elif str = "Char" then
            InitAutGroup := InitAutomorphismGroupChar;
        elif str = "Full" then
            InitAutGroup := InitAutomorphismGroupFull;
        else
            Print("not a valid inititialisation \n");
            return;
        fi;
    fi;
    A := InitAutGroup( G );

    # loop over remaining steps
    F := Range( IsomorphismFpGroupByPcgs( pcgs, "f" ) );
    Q := PQuotient( F, p, 1 );
    for i in [2..Length(first)-1] do

        # print info
        s := first[i];
        t := first[i+1];
        Info( InfoAutGrp, 1, 
              "step ",i,": ",p,"^", t-s, " -- aut grp has size ", A.size );

        # the cover
        Info( InfoAutGrp, 2, "  computing cover");
        P := PCover( Q );
        M := PMultiplicator( Q, P );
        N := Nucleus( Q, P );
        U := AllowableSubgroup( Q, P );
        AddInfoCover( Q, P, M, U );

        # induced action of A on M
        Info( InfoAutGrp, 2, "  computing matrix action");
        LinearActionAutGrp( A, P, M );

        # compute stabilizer
        Info( InfoAutGrp, 2, "  computing stabilizer of U");
        baseN := GeneratorsOfGroup(N);
        baseU := GeneratorsOfGroup(U);
        baseN := List(baseN, x -> ExponentsOfPcElement(Pcgs(M), x)) * One(f);
        baseU := List(baseU, x -> ExponentsOfPcElement(Pcgs(M), x)) * One(f);
        baseU := EcheloniseMat( baseU );
        PGOrbitStabilizer( A, baseU, baseN, interrupt );

        # next step of p-quotient
        IncorporateCentralRelations( Q );
        RenumberHighestWeightGenerators( Q );

        # induce to next factor
        Info( InfoAutGrp, 2, "  induce autos and add central autos");
        A := InduceAutGroup( A, Q, P, M, U );

    od;

    # now get a real automorphism group
    Info( InfoAutGrp, 1, "final step: convert");
    return ConvertAutGroup( A, G );
end );

#############################################################################
##
#M ConvertHybridAutGroup( <A> )
##
InstallGlobalFunction( ConvertHybridAutGroup, function( A )
    local B, pcgs;
    B := Group( Concatenation( A.glAutos, A.agAutos ), A.one );
    SetSize( B, A.glOrder * Product( A.agOrder ) );
    if Length( A.glAutos ) = 0 then 
        SetIsSolvableGroup( B, true ); 
        pcgs := PcgsByPcSequenceNC( FamilyObj( A.one ), A.agAutos );
        SetRelativeOrders( pcgs, A.agOrder );
        SetOneOfPcgs( pcgs, A.one );
        SetGeneralizedPcgs( B, pcgs );
    fi;
    SetIsGroupOfAutomorphisms( B, true );
    return B;
end );

#############################################################################
##
#M AutomorphismGroup
##
InstallMethod( AutomorphismGroup,
               "for finite p-groups",
               true,
               [IsPGroup and IsFinite and CanEasilyComputePcgs],
               0,
function( G )
    local A;

    # the trivial case is a problem
    if Size( G ) = 1 then return Group( [], IdentityMapping(G) ); fi;

    # compute
    A :=  AutomorphismGroupPGroup( G );

    # translate and return
    A:=ConvertHybridAutGroup( A );
    SetIsAutomorphismGroup(A,true);
    if IsFinite(G) then
      SetIsGroupOfAutomorphismsFiniteGroup(A,true);
    fi;
    return A;
end );