1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
#############################################################################
##
#W autos.gi AutPGrp package Bettina Eick
##
#H @(#)$Id: autos.gi,v 1.13 2009/08/31 07:40:15 gap Exp $
##
Revision.("autpgrp/gap/autos_gi") :=
"@(#)$Id: autos.gi,v 1.13 2009/08/31 07:40:15 gap Exp $";
#############################################################################
##
#F LinearActionPGAut( <P>, <M>, <aut> )
##
LinearActionPGAut := function( P, M, aut )
local p, gensP, pcgsM, gensG, defn, imgs, mat, d;
# set up
p := PrimePGroup( P );
gensP := GeneratorsOfGroup( P );
pcgsM := Pcgs( M );
gensG := DifferenceLists( gensP, pcgsM );
# compute matrix
defn := P!.definitions;
imgs := List( aut!.baseimgs, x -> MappedPcElement( x, aut!.pcgs, gensG ));
for d in defn do
if not IsNegRat( d ) then
Add( imgs, SubstituteDef( d, imgs, p ) );
fi;
od;
imgs := imgs{List( pcgsM, x -> Position( gensP, x ) )};
# two cases - the first for efficiency
if imgs = pcgsM then
aut!.mat := 1;
else
#AH: make the matrix FF *before* conpacting
mat := List( imgs, x -> ExponentsOfPcElement( pcgsM, x)*One(M!.field) );
ConvertToMatrixRep( mat,Size(M!.field) );
mat := Immutable( mat );
aut!.mat := mat;
fi;
end;
#############################################################################
##
#F LinearActionAutGrp( <A>, <P>, <M> )
##
InstallGlobalFunction( LinearActionAutGrp,
function( A, P, M )
local aut;
# add information
for aut in A.glAutos do
LinearActionPGAut( P, M, aut );
od;
for aut in A.agAutos do
LinearActionPGAut( P, M, aut );
od;
A.field := M!.field;
A.prime := PrimePGroup( P );
A.one!.mat := 1;
end);
#############################################################################
##
#F CentralAutos( <G>, <N> )
##
CentralAutos := function( G, N )
local base, pcgs, cent, b, i, imgs, aut;
base := Pcgs(N);
pcgs := Pcgs(G);
cent := [];
for b in base do
for i in [1..RankPGroup(G)] do
imgs := ShallowCopy( pcgs );
imgs[i] := imgs[i] * b;
aut := PGAutomorphism( G, pcgs, imgs );
Add( cent, aut );
od;
od;
return cent;
end;
#############################################################################
##
#F InduceAuto( <F>, <aut> )
##
InduceAuto := function( F, aut )
local pcgsF, baseF, imgsG, imgsF, hom;
pcgsF := Pcgs( F );
baseF := pcgsF{[1..RankPGroup(F)]};
imgsG := aut!.baseimgs;
imgsF := List( imgsG, x -> MappedPcElement( x, aut!.pcgs, pcgsF ) );
if CHECK then
hom := GroupHomomorphismByImages( F, F, baseF, imgsF );
if not IsGroupHomomorphism( hom ) then
Error("no hom");
elif not IsBijective( hom ) then
Error("no bijection");
fi;
fi;
return PGAutomorphism( F, baseF, imgsF );
end;
#############################################################################
##
#F InduceAutGroup( <A>, <Q>, <P>, <M>, <U> )
##
InstallGlobalFunction( InduceAutGroup,
function( A, Q, P, M, U )
local p, r, F, s, t, pcgsF, pcgsL, L, B, central;
# set up
p := PrimePGroup( P );
r := RankPGroup( P );
# create factor
F := Range( EpimorphismQuotientSystem(Q) );
SetIsPGroup( F, true );
SetPrimePGroup( F, p );
SetRankPGroup( F, r );
pcgsF := Pcgs(F);
# get definitions for F
F!.definitions := RewriteDef( pcgsF, Q!.definitions, p );
# get p-centre of F
s := Length( Pcgs(P) ) - Length( Pcgs(M) );
t := s + Length( Pcgs(M) ) - Length( Pcgs(U) );
pcgsL := InducedPcgsByPcSequenceNC( pcgsF, pcgsF{[s+1..t]} );
L := SubgroupByPcgs( F, pcgsL );
# induce autos
B := rec();
B.glAutos := List( A.glAutos, x -> InduceAuto( F, x ) );
B.agAutos := List( A.agAutos, x -> InduceAuto( F, x ) );
central := CentralAutos( F, L );
Append( B.agAutos, central );
# add information
B.glOrder := A.glOrder;
B.agOrder := Concatenation( A.agOrder, List( central, x -> p ) );
B.group := F;
B.one := IdentityPGAutomorphism( F );
B.size := B.glOrder * Product( B.agOrder );
# if possible add projective operation
if IsBound( A.glOper ) then B.glOper := A.glOper; fi;
# and return
return B;
end);
#############################################################################
##
#F ConvertAuto( <aut>, <iso> )
##
ConvertAuto := function( aut, iso )
local G, pcgs, imgs, auto;
G := Source( iso );
pcgs := SpecialPcgs( G );
imgs := List( pcgs, x -> ImagesRepresentative( iso, x ) );
imgs := List( imgs, x -> ImagesRepresentative( aut, x ) );
imgs := List( imgs, x -> PreImagesRepresentative( iso, x ) );
if not CHECK then
auto := GroupHomomorphismByImagesNC(G, G, pcgs, imgs );
SetIsBijective( auto, true );
else
auto := GroupHomomorphismByImages( G, G, AsList(pcgs), imgs );
if not IsGroupHomomorphism( auto ) then
Error("automorphism is no homomorphism");
elif not IsBijective( auto ) then
Error("automorphism is not bijective");
fi;
fi;
return auto;
end;
#############################################################################
##
#F ConvertAutGroup ( <A>, <G> )
##
InstallGlobalFunction( ConvertAutGroup,
function( A, G )
local r, gens, imgs, iso, C;
r := RankPGroup( G );
gens := SpecialPcgs( G ){[1..r]};
imgs := Pcgs( A.group ){[1..r]};
if not CHECK then
iso := GroupHomomorphismByImagesNC( G, A.group, gens, imgs );
SetIsBijective( iso, true );
else
iso := GroupHomomorphismByImages( G, A.group, gens, imgs );
if not IsGroupHomomorphism( iso ) then
Error("isomorphism is no homomorphism");
elif not IsBijective( iso ) then
Error("isomorphism is not bijective");
fi;
fi;
C := rec();
C.glAutos := List( A.glAutos, x -> ConvertAuto( x, iso ) );
C.glOrder := A.glOrder;
C.agAutos := List( A.agAutos, x -> ConvertAuto( x, iso ) );
C.agOrder := A.agOrder;
C.one := IdentityMapping( G );
C.group := G;
C.size := A.size;
# if possible add projective operation
if IsBound( A.glOper ) then C.glOper := A.glOper; fi;
return C;
end);
#############################################################################
##
#F AddInfoCover( Q, P, M, U )
##
InstallGlobalFunction( AddInfoCover,
function( Q, P, M, U )
local r, p, f, fam, gensP, pcgsP, gensM, pcgsM, gensU, pcgsU, pos, def;
r := Q!.RanksOfDescendingSeries;
p := Q!.prime;
f := Q!.field;
fam := FamilyPcgs( P );
# info for P
gensP := GeneratorsOfGroup( P );
pcgsP := InducedPcgsByPcSequenceNC( fam, gensP );
SetPcgs( P, pcgsP );
SetRankPGroup( P, r[1] );
SetPrimePGroup( P, p );
# info for M
gensM := GeneratorsOfGroup( M );
pcgsM := InducedPcgsByPcSequenceNC( fam, gensM );
SetPcgs( M, pcgsM );
SetPrimePGroup( M, p );
M!.field := f;
# info for U
gensU := GeneratorsOfGroup( U );
pcgsU := InducedPcgsByGeneratorsNC( fam, gensU );
SetPcgs( U, pcgsU );
# get definitions of M
pos := List( pcgsP, x -> Position( fam, x ) );
def := Q!.definitions{pos};
P!.definitions := RewriteDef( pcgsP, def, p );
end);
#############################################################################
##
#F AutomorphismGroupPGroup( <G>, <flag> ) . . . .automorphisms in hybird form
##
InstallGlobalFunction( AutomorphismGroupPGroup, function( arg )
local p, r, G, pcgs, first, n, str, A, F, Q, i, s, t, P, N, M, U, B,
baseU, baseN, epi, interrupt, f;
# catch the trivial case
G := arg[1];
if Size( G ) = 1 then return Group( [], IdentityMapping(G) ); fi;
# catch arguments
if Length( arg ) = 1 then
interrupt := false;
# choose a initialisation
p := PrimePGroup( G );
r := RankPGroup( G );
if IsHomoCyclic( G ) then
InitAutGroup := InitAutomorphismGroupFull;
elif (p^r - 1)/(p - 1) < 30000 then
InitAutGroup := InitAutomorphismGroupOver;
else
InitAutGroup := InitAutomorphismGroupChar;
fi;
# choose flags
CHOP_MULT := true;
NICE_STAB := true;
USE_LABEL := false;
elif Length( arg ) = 2 then
interrupt := arg[2];
fi;
# compute special pcgs
pcgs := SpecialPcgs( G );
first := LGFirst( SpecialPcgs(G) );
p := PrimePGroup( G );
n := Length(pcgs);
r := RankPGroup( G );
f := GF(p);
# init automorphism group - compute Aut(G/G_1)
Info( InfoAutGrp, 1,
"step 1: ",p,"^", first[2]-1, " -- init automorphisms ");
if interrupt or IsBool( InitAutGroup ) then
str := Interrupt("choose initialisation (Over/Char/Full)");
if str = "Over" then
InitAutGroup := InitAutomorphismGroupOver;
elif str = "Char" then
InitAutGroup := InitAutomorphismGroupChar;
elif str = "Full" then
InitAutGroup := InitAutomorphismGroupFull;
else
Print("not a valid inititialisation \n");
return;
fi;
fi;
A := InitAutGroup( G );
# loop over remaining steps
F := Range( IsomorphismFpGroupByPcgs( pcgs, "f" ) );
Q := PQuotient( F, p, 1 );
for i in [2..Length(first)-1] do
# print info
s := first[i];
t := first[i+1];
Info( InfoAutGrp, 1,
"step ",i,": ",p,"^", t-s, " -- aut grp has size ", A.size );
# the cover
Info( InfoAutGrp, 2, " computing cover");
P := PCover( Q );
M := PMultiplicator( Q, P );
N := Nucleus( Q, P );
U := AllowableSubgroup( Q, P );
AddInfoCover( Q, P, M, U );
# induced action of A on M
Info( InfoAutGrp, 2, " computing matrix action");
LinearActionAutGrp( A, P, M );
# compute stabilizer
Info( InfoAutGrp, 2, " computing stabilizer of U");
baseN := GeneratorsOfGroup(N);
baseU := GeneratorsOfGroup(U);
baseN := List(baseN, x -> ExponentsOfPcElement(Pcgs(M), x)) * One(f);
baseU := List(baseU, x -> ExponentsOfPcElement(Pcgs(M), x)) * One(f);
baseU := EcheloniseMat( baseU );
PGOrbitStabilizer( A, baseU, baseN, interrupt );
# next step of p-quotient
IncorporateCentralRelations( Q );
RenumberHighestWeightGenerators( Q );
# induce to next factor
Info( InfoAutGrp, 2, " induce autos and add central autos");
A := InduceAutGroup( A, Q, P, M, U );
od;
# now get a real automorphism group
Info( InfoAutGrp, 1, "final step: convert");
return ConvertAutGroup( A, G );
end );
#############################################################################
##
#M ConvertHybridAutGroup( <A> )
##
InstallGlobalFunction( ConvertHybridAutGroup, function( A )
local B, pcgs;
B := Group( Concatenation( A.glAutos, A.agAutos ), A.one );
SetSize( B, A.glOrder * Product( A.agOrder ) );
if Length( A.glAutos ) = 0 then
SetIsSolvableGroup( B, true );
pcgs := PcgsByPcSequenceNC( FamilyObj( A.one ), A.agAutos );
SetRelativeOrders( pcgs, A.agOrder );
SetOneOfPcgs( pcgs, A.one );
SetGeneralizedPcgs( B, pcgs );
fi;
SetIsGroupOfAutomorphisms( B, true );
return B;
end );
#############################################################################
##
#M AutomorphismGroup
##
InstallMethod( AutomorphismGroup,
"for finite p-groups",
true,
[IsPGroup and IsFinite and CanEasilyComputePcgs],
0,
function( G )
local A;
# the trivial case is a problem
if Size( G ) = 1 then return Group( [], IdentityMapping(G) ); fi;
# compute
A := AutomorphismGroupPGroup( G );
# translate and return
A:=ConvertHybridAutGroup( A );
SetIsAutomorphismGroup(A,true);
if IsFinite(G) then
SetIsGroupOfAutomorphismsFiniteGroup(A,true);
fi;
return A;
end );
|