1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
#############################################################################
##
#W initmat.gi AutPGrp package Bettina Eick
##
#H @(#)$Id: initmat.gi,v 1.2 2002/11/19 13:36:38 gap Exp $
##
Revision.("autpgrp/gap/initmat_gi") :=
"@(#)$Id: initmat.gi,v 1.2 2002/11/19 13:36:38 gap Exp $";
#############################################################################
##
#F TwoStepCentralizersByLcs( G )
##
## The two-step-centralizers of lower p-central series of G.
##
TwoStepCentralizersByLcs := function( G )
local pcgs, first, p, field, list, i, f, m, n, max, pcgsN, pcgsM,
pcgsH, gensL, gensC, pcgsR, new;
# set up
pcgs := SpecialPcgs( G );
first := LGFirst( pcgs );
p := PrimePGroup( G );
field := GF(p);
list := [];
max := Length(pcgs);
# run through lower p-central series
for i in [3..Length(first)] do
f := first[i-2];
m := first[i-1];
n := first[i];
pcgsN := InducedPcgsByPcSequenceNC( pcgs, pcgs{[f..max]} );
pcgsM := InducedPcgsByPcSequenceNC( pcgs, pcgs{[m..max]} );
pcgsH := InducedPcgsByPcSequenceNC( pcgs, pcgs{[n..max]} );
gensL := pcgsN mod pcgsM;
gensC := pcgs mod pcgsM;
pcgsR := pcgsM mod pcgsH;
new := NextStepCentralizer( gensL, gensC, pcgsR, field );
Append(new, pcgsM );
#new := InducedPcgsByPcSequenceNC( pcgs, new );
new := InducedPcgsByGeneratorsNC( pcgs, new );
Add( list, SubgroupByPcgs( G, new ) );
od;
return list;
end;
#############################################################################
##
#F OmegaSubgroupsByLcs( G )
##
## The preimages of Omega-subgroups of G_i for all factors G_i of the lower
## p-central series of G.
##
OmegaSubgroupsByLcs := function( G )
local pcgs, first, p, field, list, max, i, pcgsN, N, hom, F, ser, specF;
# catch the trivial case
p := PrimePGroup( G );
pcgs := SpecialPcgs( G );
if ForAll( pcgs, x -> Order(x) = p ) then return []; fi;
# set up
first := LGFirst( pcgs );
field := GF(p);
list := [];
max := Length(pcgs);
# run through lower p-central series
for i in [2..Length(first)] do
pcgsN := InducedPcgsByPcSequenceNC( pcgs, pcgs{[first[i]..max]} );
N := SubgroupByPcgs( G, pcgsN );
hom := NaturalHomomorphismByNormalSubgroupNC( G, N );
F := Image( hom );
specF := SpecialPcgs(F);
if ForAny( specF, x -> Order(x) > p ) and Size(F) < 10000 then
ser := OmegaSeries( F );
ser := List( ser, x -> PreImage( hom, x ) );
Append( list, ser );
fi;
od;
return list;
end;
#############################################################################
##
#F PGCharSubgroups( G )
##
PGCharSubgroups := function(G)
local cent, omega;
cent := TwoStepCentralizersByLcs( G );
omega := OmegaSubgroupsByLcs( G );
return Union( cent, omega );
end;
#############################################################################
##
#F FrattiniQuotientBase( <spec>, <U> )
##
FrattiniQuotientBase := function( spec, U )
local r, frat, pcgs, subU, base;
r := LGFirst(spec)[2];
frat := InducedPcgsByPcSequenceNC( spec, spec{[r..Length(spec)]} );
pcgs := spec mod frat;
subU := Filtered(InducedPcgs(spec, U), x -> DepthOfPcElement(spec,x)<r);
base := List( subU, x -> ExponentsOfPcElement( pcgs, x ) );
return base;
end;
#############################################################################
##
#F InitAutomorphismGroupChar( G )
##
InitAutomorphismGroupChar := function( G )
local r, p, chars, bases, S, H, A, z, spec, kern;
Info( InfoAutGrp, 2, " init automorphism group : Char ");
# set up
r := RankPGroup( G );
p := PrimePGroup( G );
z := One(GF(p));
spec := SpecialPcgs( G );
# compute characteristic subgroups
Info( InfoAutGrp, 3, " compute characteristic subgroups ");
chars := PGCharSubgroups( G );
bases := List( chars, x -> FrattiniQuotientBase( spec, x ) ) * z;
# compute the matrixgroup stabilising all subspaces in chain
Info( InfoAutGrp, 3, " compute stabilizer ");
S := StabilizingMatrixGroup( bases, r, p );
# the Frattini Quotient
H := FrattiniQuotientPGroup( G );
kern := InitAgAutos( H, p );
# the aut group
A := rec( );
A.glAutos := InitGlAutos( H, GeneratorsOfGroup(S) );
A.glOrder := Size(S) / Product( kern.rels );
A.glOper := GeneratorsOfGroup(S);
Assert(1,IsInt(A.glOrder));
A.agAutos := kern.auts;
A.agOrder := kern.rels;
A.one := IdentityPGAutomorphism( H );
A.group := H;
A.size := A.glOrder * Product( A.agOrder );
# try to construct perm rep
NiceInitGroup( A, true );
return A;
end;
#############################################################################
##
#F InitAutomorphismGroupFull( G )
##
InitAutomorphismGroupFull := function( G )
local r, p, S, H, A, kern;
Info( InfoAutGrp, 2, " init automorphism group : Full ");
# set up
r := RankPGroup( G );
p := PrimePGroup( G );
S := GL(r, p);
H := FrattiniQuotientPGroup( G );
kern := InitAgAutos( H, p );
# the aut group
A := rec( );
A.glAutos := InitGlAutos( H, GeneratorsOfGroup(S) );
A.glOrder := Size(S) / Product( kern.rels );
A.glOper := GeneratorsOfGroup( S );
Assert(1,IsInt(A.glOrder));
A.agAutos := kern.auts;
A.agOrder := kern.rels;
A.one := IdentityPGAutomorphism( H );
A.group := H;
A.size := A.glOrder * Product( A.agOrder );
# try to compute perm rep
NiceInitGroup( A, false );
return A;
end;
|