
Browse

(Version 1.8.21)

March 2023

Thomas Breuer
Frank Lübeck

Thomas Breuer Email: Thomas.Breuer@Math.RWTH-Aachen.De
Homepage: https://www.math.rwth-aachen.de/~Thomas.Breuer

Frank Lübeck Email: Frank.Luebeck@Math.RWTH-Aachen.De
Homepage: https://www.math.rwth-aachen.de/~Frank.Luebeck

mailto://Thomas.Breuer@Math.RWTH-Aachen.De
https://www.math.rwth-aachen.de/~Thomas.Breuer
mailto://Frank.Luebeck@Math.RWTH-Aachen.De
https://www.math.rwth-aachen.de/~Frank.Luebeck

Browse 2

Copyright
© 2006-2023 by Thomas Breuer and Frank Lübeck

This package may be distributed under the terms and conditions of the GNU Public License Version 3 or
later, see http://www.gnu.org/licenses.

http://www.gnu.org/licenses

Contents

1 Introduction and Overview 5
1.1 Introduction . 5
1.2 Overview . 6
1.3 User preferences provided by the Browse package 6

2 Interface to the ncurses Library 8
2.1 The ncurses Library . 8
2.2 The ncurses GAP functions . 16

3 Utilities using ncurses 22
3.1 ncurses utilities . 22
3.2 A Demo Function . 26

4 Browsing Tables in GAP using ncurses –The User Interface 27
4.1 Features Supported by the Function NCurses.BrowseGeneric 28
4.2 Data Structures used by NCurses.BrowseGeneric 30
4.3 The Function NCurses.BrowseGeneric . 34

5 Browsing Tables in GAP using ncurses –The Programming Interface 36
5.1 Navigation Steps in Browse Tables . 36
5.2 Modes in Browse Tables . 37
5.3 Browse Applications . 38
5.4 Predefined Browse Functionalities . 39

6 Examples of Applications based on NCurses.BrowseGeneric 47
6.1 The Operation Browse . 47
6.2 Matrix Display . 47
6.3 Character Table Display . 49
6.4 Table of Marks Display . 51
6.5 Table of Contents of AtlasRep . 52
6.6 Access to GAP Manuals–a Variant . 54
6.7 Overview of Bibliographies . 55
6.8 Profiling GAP functions–a Variant . 59
6.9 Variables defined in GAP packages–a Variant . 60
6.10 Configuring User preferences–a Variant . 61
6.11 Overview of GAP Data . 62
6.12 Navigating in a Directory Tree . 64

3

Browse 4

6.13 A Puzzle . 65
6.14 Peg Solitaire . 66
6.15 Rubik’s Cube . 67
6.16 Changing Sides . 69
6.17 Sudoku . 70
6.18 Managing simple Workflows . 74
6.19 Utility for GAP Demos . 76

A Some Tools for Database Handling 79
A.1 GAP Objects for Database Handling . 79
A.2 Using Database Attributes for Browse Tables . 86
A.3 Example: Database Id Enumerators and Database Attributes 87
A.4 Example: An Overview of the GAP Library of Tables of Marks 94

References 97

Index 98

Chapter 1

Introduction and Overview

1.1 Introduction

The motivation of the package Browse was to provide better functionality for displaying two-
dimensional arrays of data (e.g., character tables): moving through the data without loosing row and
column labels, searching for text, displaying extra information, hiding information, allowing interac-
tive user input, ...

We wanted to achieve this by using the capabilities of the terminal emulations in which GAP
is running, and not by some external graphical user interface. For this we have chosen to use the
widely available C-library ncurses, see [NCu]. It contains functions to find out terminal capabilities,
to change properties of terminals, to place text, to handle several windows with overlapping, ... To use
these functions the terminal is switched to a visual mode so that the display of the non-visual mode of
your terminal in which GAP is running is not clobbered.

Browse has now three levels of functionality:

A low level interface to ncurses
This may be interesting for all kinds of applications which want to display text with some
markup including colors, maybe in several windows, using the available capabilities of a termi-
nal.

A medium level interface to a generic function NCurses.BrowseGeneric (4.3.1)
This is for displaying two-dimensional arrays of data, handles labels for rows and columns,
searching, sorting, binding keys to actions, ... If you want to implement such applications
for further kinds of data, first look at the examples in Section BrowseData.IsBrowseTable
(4.2.3), then check what can be copied from the examples in Chapter 6, and consult the descrip-
tions in Chapters 4 and 5.

Applications of these interfaces
We provide some applications of the ncurses interface and of the generic
NCurses.BrowseGeneric (4.3.1) function. These may be interesting for end users, and
also as examples for programmers of further applications. This includes (of course) a method
for browsing through character tables, functions for browsing through data collections, several
games, and an interface for demos.

Users interested only in these applications should perhaps just try NCurses.Demo().

5

Browse 6

1.2 Overview

1.2.1 The ncurses interface

Chapter 2 describes GAP’s interface to the ncurses C-library. The imported C-functions are shortly
explained, but for further details we refer to the documentation of that library. There are also a few
utility functions on GAP level, such as NCurses.SetTerm (2.2.2), which simplify the use of the
library.

The concept of an attribute line, see NCurses.IsAttributeLine (2.2.3), helps to deal with text
with markup for its display in a terminal window.

This chapter is for users who want to write their own applications of ncurses.

1.2.2 Applications of ncurses

In Chapter 3 we describe some interactive applications of the ncurses interface. For example, there
is NCurses.Select (3.1.2) for asking a user to choose one or several of a given list of items. There
is also a demo function NCurses.Demo (3.2.1) which we use to demonstrate features of the Browse
package, but it may be interesting for other kinds of demos as well.

1.2.3 The interface to browse two-dimensional arrays

Chapters 4 and 5 describe the interface to a generic function NCurses.BrowseGeneric (4.3.1) which
can be used for an interactive display of two-dimensional arrays of data. The first of these covers the
basic functionality which may be sufficient for many applications and the second gives more technical
details. With interactive display we mean that it is not only possible to scroll through the data, but
one can search for strings, sort by rows or columns, select entries, bind arbitrary actions to keys and
mouse events, ask for help, and more.

1.2.4 Applications of the generic function NCurses.BrowseGeneric

In Chapter 6 we describe several applications which are using the generic NCurses.BrowseGeneric
(4.3.1) interface introduced before. They are provided as prototype applications and so we include
some implementation remarks in their documentation.

Users who just want to use these applications hopefully do not need to read this Browse manual,
all applications are coming with built-in help windows.

There are different kinds of applications. First, there are methods for browsing through character
tables and tables of marks (our original motivation for this package). Then there are applications for
browsing through data collections, e.g., the data available through the AtlasRep package, the GAP
bibliography or the sections of the GAP manuals. Finally, there are several games like Sam Loyd’s
fifteen puzzle (generalized), peg solitaire, and Sudoku (including functions to create new puzzles and
to solve puzzles).

1.3 User preferences provided by the Browse package

See SetUserPreference (Reference: SetUserPreference) for GAP’s user preferences mechanism,
and BrowseUserPreferences (6.10.1) for viewing and modifying user preferences.

Browse 7

1.3.1 The user preference EnableMouseEvents

This user preference defines whether mouse events are enabled by default in visual mode (value true)
or not (value false, this is the default). During the GAP session, the value can be changed using
NCurses.UseMouse (2.2.10). Inside browse applications based on NCurses.BrowseGeneric (4.3.1)
or NCurses.Select (3.1.2), the value can be toggled usually by hitting the M key.

1.3.2 The user preference SelectHelpMatches

In the case that the GAP help system finds multiple matches, true (the default) means that the user
can choose one entry from a list that is shown via NCurses.Select (3.1.2), and false means that the
matches are just shown in a pager.

1.3.3 The user preference SelectPackageName

In the case that LoadPackage (Reference: LoadPackage) is called with a prefix of some package
names, true (the default) means that the user can choose one matching entry, and false means that
the matches are just printed.

Chapter 2

Interface to the ncurses Library

In this chapter we describe the GAP interface to the GNU curses/ncurses C-library. This library
contains routines to manipulate the contents of terminal windows. It allows one to write programs
which should work on a wide variety of terminal emulations with different sets of capabilities.

This technical chapter is intended for readers who want to program new applications using the
ncurses functionality. If you are only interested in the function NCurses.BrowseGeneric (4.3.1)
from this package or some of its applications you can skip this chapter.

Detailed documentation of the ncurses library is probably available in your operating system (try
man ncurses) and from the web (see for example [NCu]). Here, we only give short reminders about
the functions provided in the GAP interface and explain how to use the GAP functions.

2.1 The ncurses Library

In this section we list the functions from the GNU ncurses library and its panel extension which are
made available in GAP via the Browse package. See the following section 2.2 for explanations how
to use these functions from within GAP.

The basic objects to manipulate are called windows, they correspond to rectangular regions of the
terminal screen. Windows can overlap but ncurses cannot handle this for the display. Therefore
windows can be wrapped in panels, they provide a display depth for windows and it is possible to
move panels to the top and bottom of the display or to hide a panel.

We will not import all the functions of the ncurses library to GAP. For example, there are many
pairs of functions with the same name except for a leading w (like move and wmove for moving the
cursor in a window). Here, we only import the versions with w, which get a window as first argument.
The functions without w are for the ncurses standard screen window stdscr which is available as
window 0 in GAP. Similarly, there are functions with the same name except for an extra n (like
waddstr and waddnstr for placing a string into a window). Here, we only import the safer functions
with n which get the number of characters to write as argument. (More convenient functions are then
implemented on the GAP level.)

2.1.1 Setting the terminal

We first list flags for setting the basic behavior of a terminal. With savetty/resetty a setting can be
stored and recovered.

8

Browse 9

savetty()
This stores the current setting of the terminal in a buffer.

resetty()
This resets the terminal to what was stored in the last call to savetty.

cbreak()/nocbreak()
In cbreak mode each input character from a terminal is directly forwarded to the application
(but see keypad). With nocbreak this only happens after a newline or return is typed.

keypad(win, bool)
If set to true some special input like arrow or function keys can be read as single characters
from the input (such keys actually generate certain sequences of characters), see also 2.1.4. (The
win argument is irrelevant.)

echo()/noecho()
This determines if input characters are automatically echoed by the terminal at the current cursor
position.

curs_set(vis)
This determines the visibility of the cursor. The argument vis=0 makes the cursor invisible.
With vis=1 it becomes visible; some terminals allow also higher levels of visibility.

wtimeout(win, delay)
Here delay determines a timeout in milliseconds for reading characters from the input of a
window. Negative values mean infinity, that is a blocking read.

nl()/nonl()
With nl a return on input is translated to a newline character and a newline on output is inter-
preted as return and linefeed.

intrflush(win, bool)
This flag determines if after an interrupt pending output to the terminal is flushed. (The win
argument is irrelevant.)

idlok(win, bool)
With true the library tries to use a hardware line insertion functionality (in particular for
scrolling).

scrollok(win, bool)
If set to true moving the cursor down from the last line of a window causes scrolling of the
whole window, otherwise nothing happens.

leaveok(win, bool)
If set to true a refresh of the window leaves the cursor at its current location, otherwise this is
not guaranteed.

clearok(win, bool)
If set to true the next refresh of the window will clear the screen completely and redraw every-
thing.

Browse 10

immedok(win, bool)
If set to true all changes of the window will automatically also call a wrefresh.

raw()/noraw()
Similar to cbreak, usually not needed (see the ncurses documentation for details).

2.1.2 Manipulating windows

In ncurses an arbitrary number of windows which correspond to rectangular regions (maybe overlap-
ping) of the screen can be handled. You should always delete windows which are no longer needed. To
get a proper display of overlapping windows (which may occur by recursively called functions using
this library) we suggest that you always wrap windows in panels, see 2.1.3.

For functions which involve coordinates recall that the upper left corner of the screen or internally
of any window has the coordinates (0,0).

newwin(nlines, ncols, y, x)
This creates a new window whose upper left corner has the coordinates (y ,x) on the screen and
has nlines lines and ncols columns, if this is possible. The arguments nlines and ncols
can be zero, then their maximal possible values are assumed.

delwin(win)
Deletes a window.

mvwin(win, y, x)
Moves the upper left corner of the window to the given coordinates, if the window still fits on
the screen. With panels don’t use this function, but use move_panel mentioned below.

wrefresh(win)
Writing to a window only changes some internal buffers, this function copies the window con-
tent to the actual display screen. You don’t need this function if you wrap your windows in
panels, use update_panels and doupdate instead.

doupdate()
Use this function to update the content of your display screen to the current content of all
windows. If your terminal is not yet in visual mode this function changes to visual mode.

endwin()
Use this function to leave the visual mode of your terminal. (Remark: If you use this function
while not in visual mode the cursor will be moved to the line where the visual mode was started
last time. To avoid this use isendwin first.)

isendwin()
Returns true if called while not in visual mode and false otherwise

getbegyx(win)
Get the coordinates of the upper left corner of a window on the screen.

getmaxyx(win)
Get the number of lines and columns of a window.

Browse 11

2.1.3 Manipulating panels

Wrap windows in panels to get a proper handling of overlapping windows on the display. Don’t forget
to delete a panel before deleting the corresponding window.

new_panel(win)
Create a panel for a window.

del_panel(pan)
Delete a panel.

update_panels()
Use this function to copy changes of windows and panels to a screen buffer. Then call
doupdate() to update the display screen.

move_panel(pan, y, x)
Move top left corner of a panel wrapped window to coordinates (y ,x) if possible.

hide_panel(pan)/show_panel(pan)
Hide or show, respectively, the content of a panel on the display screen.

top_panel(pan)/bottom_panel(pan)
Move a panel to the top or bottom of all panels, respectively.

panel_below(pan)/panel_above(pan)
Return the panel directly below or above the given one, respectively. With argument 0 the top
or bottom panel are returned, respectively. If argument is the bottom or top panel, respectively,
then false is returned.

2.1.4 Getting keyboard input

If you want to read input from the user first adjust the terminal settings of cbreak, keypad, echo,
wtimeout and curs_set to your needs, see 2.1.1. The basic functions are as follows.

wgetch(win)
Reads one character from user input (returned as integer). If wtimeout was set with a positive
delay then the function returns false if there was no input for delay milliseconds. Note
that in nocbreak mode typed characters reach the application only after typing a return. If the
keypad flag is set to true some special keys can be read like single characters; the keys are
explained below. (Note that there is only one input queue for all windows.)

ungetch(char)
Puts back the character char on the input queue.

Some terminals allow one to read special keys like one character, we import some of the symbolic
names of such keys into GAP. You can check for such characters by comparing with the components
of the record NCurses.keys, these are

UP/DOWN/LEFT/RIGHT
the arrow keys

Browse 12

PPAGE/NPAGE
the page up and page down keys

HOME/END
the home and end keys

BACKSPACE/DC
the backspace and delete keys

IC the insert key

ENTER
the enter key

F1/F2/../F24
the function keys

MOUSE
a pseudo key to detect mouse events

A1/A3/B2/C1/C3
the keys around the arrow keys on a num pad

It can happen that on a specific keyboard there is no key for some of these. Also, not all terminals can
interpret all of these keys. You can check this with the function

has_key(key)
Checks if the special key key is recognized by the terminal.

2.1.5 Writing to windows

The display of text in ncurses windows has two aspects. The first is to get actual characters on the
screen. The second is to specify attributes which influence the display, for example normal or bold
fonts or colors. This subsection is for the first aspect. Possible attributes are explained below in 2.1.7.

wmove(win, y, x)
Moves the cursor to position (y ,x), recall that the coordinates are zero based, (0,0) being the
top left corner.

waddnstr(win, str, len)
Writes the string str to the window starting from the current cursor position. Writes at most
len characters. At end of line the cursor moves to the beginning of next line. The behavior at
the end of the window depends on the setting of scrollok, see 2.1.1.

waddch(win, char)
Writes a character to the window at the current cursor position and moves the cursor on. The
character char is given as integer and can include attribute information.

wborder(win, charlist)
Draws a border around the window. If charlist is a plain list of eight GAP characters these
are taken for left/right/top/bottom sides and top-left/top-right/bottom-left/bottom-right corners.
Otherwise default characters are used. (See NCurses.WBorder (2.2.9) for a more user friendly
interface.)

Browse 13

wvline(win, char, len)
Writes a vertical line of length len (or as long as fitting into the window) starting from the
current cursor position to the bottom, using the character char . If char=0 the default character
is used.

whline(win, char, len)
Same as wvline but for horizontal lines starting from the cursor position to the right.

werase(win)
Deletes all characters in the window.

wclear(win)
Like werase, but also calls clearok.

wclrtobot(win)
Deletes all characters from cursor position to the right and bottom.

wclrtoeol(win)
Deletes all characters from cursor position to end of line.

winch(win)
Returns the character at current cursor position, as integer and including color and attribute
information.

getyx(win)
Returns the current cursor position.

waddstr(win, str)
Delegates to waddnstr(win, str, Length(str)).

2.1.6 Line drawing characters

For drawing lines and grids in a terminal window you should use some "virtual" characters which
are available as components of the record NCurses.lineDraw. On some terminals these are nicely
displayed as proper lines (on others they are simulated by ASCII characters). These are:

BLOCK
solid block

BOARD
board of squares

BTEE/LTEE/RTEE/TTEE
bottom/left/right/top tee

BULLET
bullet

CKBOARD
checker board

Browse 14

DARROW/LARROW/RARROW/UARROW
down/left/right/up arrow

DEGREE
degree symbol

DIAMOND
diamond

GEQUAL
greater than or equal

HLINE/VLINE
horizontal/vertical line

LANTERN
lantern symbol

LEQUAL
less than or equal

LLCORNER/LRCORNER/ULCORNER/URCORNER
lower left/lower right/upper left/upper right corner

NEQUAL
not equal

PI letter pi

PLMINUS
plus-minus

PLUS
crossing lines like a plus

S1/S3/S7/S9
scan line 1/3/7/9

STERLING
pound sterling

2.1.7 Text attributes and colors

In addition to the actual characters to be written to the screen the way they are displayed can be
changed by additional attributes. (There should be no danger to mix up this notion of attributes with
the one introduced in (Reference: Attributes).) The available attributes are stored in the record
NCurses.attrs, they are

NORMAL
normal display with no extra attributes.

STANDOUT
displays text in the best highlighting mode of the terminal.

Browse 15

UNDERLINE
underlines the text.

REVERSE
display in reverse video by exchanging the foreground and background color.

BLINK
displays the text blinking.

DIM displays the text half bright.

BOLD
displays the text in a bold font.

Note that not all of these work with all types of terminals, or some may cause the same display.
Furthermore, if NCurses.attrs.has_colors is true there is a list NCurses.attrs.ColorPairs
of attributes to set the foreground and background color. These should be accessed indirectly with
NCurses.ColorAttr (2.2.1). Attributes can be combined by adding their values (internally, they are
represented by integers). They can also be added to the integer representing a character for use with
waddch.

The library functions for setting attributes are:

wattrset(win, attr)
This sets the default (combined) attributes for a window which is added to all characters written
to it; using NCurses.attrs.NORMAL as attribute is a reset.

wattron(win, attr)/wattroff(win, attr)
This sets or unsets one or some default attributes of the window without changing the others.

wattr_get(win)
This returns the current default attribute and default color pair of a window.

wbkgdset(win, attr)
This is similar to wattrset but you can also add a character to attr which is used as default
instead of blanks.

wbkgd(win, attr)
This function changes the attributes for all characters in the window to attr , also used for
further characters written to that window.

2.1.8 Low level ncurses mouse support

Many xterm based terminals support mouse events. The recognition of mouse events by the
ncurses input queue can be switched on and off. If switched on and a mouse event occurs, then
NCurses.wgetch gets NCurses.keys.MOUSE if the keypad flag is true (see 2.1.4). If this is read
one must call NCurses.getmouse which reads further characters from the input queue and interprets
them as details on the mouse event. In most cases the function NCurses.GetMouseEvent (2.2.10) can
be used in applications (it calls NCurses.getmouse). The following low level functions are available
as components of the record NCurses.

The names of mouse events which may be possible are stored in the list NCurses.mouseEvents,
which starts ["BUTTON1_PRESSED", "BUTTON1_RELEASED", "BUTTON1_CLICKED",

Browse 16

"BUTTON1_DOUBLE_CLICKED", "BUTTON1_TRIPLE_CLICKED", ... and contains the same
for buttons number 2 to 5 and a few other events.

mousemask(intlist)
The argument intlist is a list of integers specifying mouse events. An entry i refers to the
event described in NCurses.mouseEvents[i+1]. It returns a record with components .new
(for the current setting) and .old (for the previous setting) which are again lists of integers with
the same meaning. Note that .new may be different from intlist , it is always the empty list
if the terminal does not support mouse events. In applications use NCurses.UseMouse (2.2.10)
instead of this low level function.

getmouse()
This function must be called after a key NCurses.keys.MOUSE was read. It returns a list with
three entries [y, x, intlist] where y and x are the coordinates of the character cell where
the mouse event occured and intlist describes the event, it should have length one and refers
to a position in NCurses.mouseEvents.

wenclose(win, y, x)
This functions returns true if the screen position y , x is within window win and false other-
wise.

mouseinterval(t)
Sets the time to recognize a press and release of a mouse button as a click to t milliseconds.
(Note that this may have no effect because a window manager may catch this.)

2.1.9 Miscellaneous function

We also provide the ncurses function mnap(msec) which is a sleep for msec milliseconds.
Furthermore, there a two utilities which can be useful for scripts and testing, namely a

check if standard input or standard output are connected to terminals. These can be called as
NCurses.IsStdinATty() or NCurses.IsStdoutATty(), respectively.

2.2 The ncurses GAP functions

The functions of the ncurses library are used within GAP very similarly to their C equivalents. The
functions are available as components of a record NCurses with the name of the C function (e.g.,
NCurses.newwin).

In GAP the ncurses windows are accessed via integers (as returned by NCurses.newwin). The
standard screen stdscr from the ncurses library is available as window number 0. But this should
not be used; to allow recursive applications of ncurses always create a new window, wrap it in a
panel and delete both when they are no longer needed.

Each window can be wrapped in one panel which is accessed by the same integer. (Window 0
cannot be used with a panel.)

Coordinates in windows are the same zero based integers as in the corresponding C functions. The
interface of functions which return coordinates is slightly different from the C version; they just return
lists of integers and you just give the window as argument, e.g., NCurses.getmaxyx(win) returns a
list [nrows, ncols] of two integers.

Browse 17

Characters to be written to a window can be given either as GAP characters like ’a’ or as integers
like INT_CHAR(’a’) = 97. If you use the integer version you can also add attributes including color
settings to it for use with NCurses.waddch.

When writing an application decide about an appropriate terminal setting for your vi-
sual mode windows, see 2.1.1 and the utility function NCurses.SetTerm (2.2.2) below. Use
NCurses.savetty() and NCurses.resetty() to save and restore the previous setting.

We also provide some higher level functionality for displaying marked up text, see
NCurses.PutLine (2.2.6) and NCurses.IsAttributeLine (2.2.3).

We now describe some utility functions for putting text on a terminal window.

2.2.1 NCurses.ColorAttr

. NCurses.ColorAttr(fgcolor, bgcolor) (function)

Returns: an attribute for setting the foreground and background color to be used on a terminal
window (it is a GAP integer).
. NCurses.attrs.has_colors (global variable)

The return value can be used like any other attribute as described in 2.1.7. The arguments
fgcolor and bgcolor can be given as strings, allowed are those in ["black", "red", "green",
"yellow", "blue", "magenta", "cyan", "white"]. These are the default foreground colors
0 to 7 on ANSI terminals. Alternatively, the numbers 0 to 7 can be used directly as arguments.

Note that terminals can be configured in a way such that these named colors are not the colors
which are actually displayed.

The variable NCurses.attrs.has_colors (2.2.1) is set to true or false if the terminal supports
colors or not, respectively. If a terminal does not support colors then NCurses.ColorAttr always
returns NCurses.attrs.NORMAL.

For an attribute setting the foreground color with the default background color of the terminal use
-1 as bgcolor or the same as fgcolor .

Example
gap> win := NCurses.newwin(0,0,0,0);; pan := NCurses.new_panel(win);;
gap> defc := NCurses.defaultColors;;
gap> NCurses.wmove(win, 0, 0);;
gap> for a in defc do for b in defc do
> NCurses.wattrset(win, NCurses.ColorAttr(a, b));
> NCurses.waddstr(win, Concatenation(a,"/",b,"\t"));
> od; od;
gap> if NCurses.IsStdoutATty() then
> NCurses.update_panels();; NCurses.doupdate();;
> NCurses.napms(5000);; # show for 5 seconds
> NCurses.endwin();; NCurses.del_panel(pan);; NCurses.delwin(win);;
> fi;

2.2.2 NCurses.SetTerm

. NCurses.SetTerm([record]) (function)

This function provides a unified interface to the various terminal setting functions of ncurses
listed in 2.1.1. The optional argument is a record with components which are assigned to true or

Browse 18

false. Recognised components are: cbreak, echo, nl, intrflush, leaveok, scrollok, keypad,
raw (with the obvious meaning if set to true or false, respectively).

The default, if no argument is given, is rec(cbreak := true, echo := false, nl
:= false, intrflush := false, leaveok := true, scrollok := false, keypad :=
true). (This is a useful setting for many applications.) If there is an argument record , then the
given components overwrite the corresponding defaults.

2.2.3 NCurses.IsAttributeLine

. NCurses.IsAttributeLine(obj) (function)

Returns: true if the argument describes a string with attributes.
An attribute line describes a string with attributes. It is represented by either a string or a dense

list of strings, integers, and Booleans immediately following integers, where at least one list entry
must not be a string. (The reason is that we want to be able to distinguish between an attribute line
and a list of such lines, and that the case of plain strings is perhaps the most usual one, so we do not
want to force wrapping each string in a list.) The integers denote attribute values such as color or font
information, the Booleans denote that the attribute given by the preceding integer is set or reset.

If an integer is not followed by a Boolean then it is used as the attribute for the following characters,
that is it overwrites all previously set attributes. Note that in some applications the variant with explicit
Boolean values is preferable, because such a line can nicely be highlighted just by prepending a
NCurses.attrs.STANDOUT attribute.

For an overview of attributes, see 2.1.7.
Example

gap> NCurses.IsAttributeLine("abc");
true
gap> NCurses.IsAttributeLine(["abc", "def"]);
false
gap> NCurses.IsAttributeLine([NCurses.attrs.UNDERLINE, true, "abc"]);
true
gap> NCurses.IsAttributeLine(""); NCurses.IsAttributeLine([]);
true
false

The empty string is an attribute line whereas the empty list (which is not in IsStringRep
(Reference: IsStringRep)) is not an attribute line.

2.2.4 NCurses.ConcatenationAttributeLines

. NCurses.ConcatenationAttributeLines(lines[, keep]) (function)

Returns: an attribute line.
For a list lines of attribute lines (see NCurses.IsAttributeLine (2.2.3)),

NCurses.ConcatenationAttributeLines returns the attribute line obtained by concatenat-
ing the attribute lines in lines .

If the optional argument keep is true then attributes set in an entry of lines are valid also for
the following entries of lines . Otherwise (in particular if there is no second argument) the attributes
are reset to NCurses.attrs.NORMAL between the entries of lines .

Example
gap> plain_str:= "hello";;
gap> with_attr:= [NCurses.attrs.BOLD, "bold"];;

Browse 19

gap> NCurses.ConcatenationAttributeLines([plain_str, plain_str]);
"hellohello"
gap> NCurses.ConcatenationAttributeLines([plain_str, with_attr]);
["hello", 2097152, "bold"]
gap> NCurses.ConcatenationAttributeLines([with_attr, plain_str]);
[2097152, "bold", 0, "hello"]
gap> NCurses.ConcatenationAttributeLines([with_attr, with_attr]);
[2097152, "bold", 0, 2097152, "bold"]
gap> NCurses.ConcatenationAttributeLines([with_attr, with_attr], true);
[2097152, "bold", 2097152, "bold"]

2.2.5 NCurses.RepeatedAttributeLine

. NCurses.RepeatedAttributeLine(line, width) (function)

Returns: an attribute line.
For an attribute line line (see NCurses.IsAttributeLine (2.2.3)) and a positive integer

width , NCurses.RepeatedAttributeLine returns an attribute line with width displayed charac-
ters (see NCurses.WidthAttributeLine (2.2.7)) that is obtained by concatenating sufficiently many
copies of line and cutting off a tail if applicable.

Example
gap> NCurses.RepeatedAttributeLine("12345", 23);
"12345123451234512345123"
gap> NCurses.RepeatedAttributeLine([NCurses.attrs.BOLD, "12345"], 13);
[2097152, "12345", 0, 2097152, "12345", 0, 2097152, "123"]

2.2.6 NCurses.PutLine

. NCurses.PutLine(win, y, x, lines[, skip]) (function)

Returns: true if lines were written, otherwise false.
The argument lines can be a list of attribute lines (see NCurses.IsAttributeLine (2.2.3)) or

a single attribute line. This function writes the attribute lines to window win at and below of position
y , x .

If the argument skip is given, it must be a nonnegative integer. In that case the first skip charac-
ters of each given line are not written to the window (but the attributes are).

2.2.7 NCurses.WidthAttributeLine

. NCurses.WidthAttributeLine(line) (function)

Returns: number of displayed characters in an attribute line.
For an attribute line line (see NCurses.IsAttributeLine (2.2.3)), the function returns the

number of displayed characters of line .
Example

gap> NCurses.WidthAttributeLine("abcde");
5
gap> NCurses.WidthAttributeLine([NCurses.attrs.BOLD, "abc",
> NCurses.attrs.NORMAL, "de"]);
5

Browse 20

2.2.8 NCurses.Grid

. NCurses.Grid(win, trow, brow, lcol, rcol, rowinds, colinds) (function)

This function draws a grid of horizontal and vertical lines on the window win , using the line
drawing characters explained in 2.1.6. The given arguments specify the top and bottom row of the
grid, its left and right column, and lists of row and column numbers where lines should be drawn.

Example
gap> fun := function() local win, pan;
> win := NCurses.newwin(0,0,0,0);
> pan := NCurses.new_panel(win);
> NCurses.Grid(win, 2, 11, 5, 22, [5, 6], [13, 14]);
> NCurses.PutLine(win, 12, 0, "Press <Enter> to quit");
> NCurses.update_panels(); NCurses.doupdate();
> NCurses.wgetch(win);
> NCurses.endwin();
> NCurses.del_panel(pan); NCurses.delwin(win);
> end;;
gap> fun();

2.2.9 NCurses.WBorder

. NCurses.WBorder(win[, chars]) (function)

This is a convenient interface to the ncurses function wborder. It draws a border around the
window win . If no second argument is given the default line drawing characters are used, see 2.1.6.
Otherwise, chars must be a list of GAP characters or integers specifying characters, possibly with
attributes. If chars has length 8 the characters are used for the left/right/top/bottom sides and top-
left/top-right/bottom-left/bottom-right corners. If chars contains 2 characters the first is used for
the sides and the second for all corners. If chars contains just one character it is used for all sides
including the corners.

2.2.10 Mouse support in ncurses applications

. NCurses.UseMouse(on) (function)

Returns: a record
. NCurses.GetMouseEvent() (function)

Returns: a list of records
ncurses allows on some terminals (xterm and related) to catch mouse events. In principle a sub-

set of events can be caught, see mousemask in 2.1.8. But this does not seem to work well with proper
subsets of possible events (probably due to intermediate processes X, window manager, terminal ap-
plication, ...). Therefore we suggest to catch either all or no mouse events in applications.

This can be done with NCurses.UseMouse with argument true to switch on the recognition of
mouse events and false to switch it off. The function returns a record with components .new and
.old which are both set to the status true or false from after and before the call, respectively. (There
does not seem to be a possibility to get the current status without calling NCurses.UseMouse.) If you
call the function with argument true and the .new component of the result is false, then the terminal
does not support mouse events.

Browse 21

When the recognition of mouse events is switched on and a mouse event occurs then the key
NCurses.keys.MOUSE is found in the input queue, see wgetch in 2.1.4. If this key is read the low
level function NCurses.getmousemust be called to fetch further details about the event from the input
queue, see 2.1.8. In many cases this can be done by calling the function NCurses.GetMouseEvent
which also generates additional information. The return value is a list of records, one for each panel
over which the event occured, these panels sorted from top to bottom (so, often you will just need the
first entry if there is any). Each of these records has components .win, the corresponding window of
the panel, .y and .x, the relative coordinates in window .win where the event occured, and .event,
which is bound to one of the strings in NCurses.mouseEvents which describes the event.

Suggestion: Always make the use of the mouse optional in your application. Allow the user to
switch mouse usage on and off while your application is running. Some users may not like to give
mouse control to your application, for example the standard cut and paste functionality cannot be used
while mouse events are caught.

2.2.11 NCurses.SaveWin

. NCurses.SaveWin(win) (function)

. NCurses.StringsSaveWin(cont) (function)

. NCurses.RestoreWin(win, cont) (function)

. NCurses.ShowSaveWin(cont) (function)

Returns: a GAP object describing the contents of a window.
These functions can be used to save and restore the contents of ncurses windows.

NCurses.SaveWin returns a list [nrows, ncols, chars] giving the number of rows, number of
columns, and a list of integers describing the content of window win . The integers in the latter con-
tain the displayed characters plus the attributes for the display.

The function NCurses.StringsSaveWin translates data cont in form of the output of
NCurses.SaveWin to a list of nrows strings giving the text of the rows of the saved window, and
ignoring the attributes. You can view the result with NCurses.Pager (3.1.4).

The argument cont for NCurses.RestoreWin must be of the same format as the output of
NCurses.SaveWin. The content of the saved window is copied to the window win , starting from
the top-left corner as much as it fits.

The utility NCurses.ShowSaveWin can be used to display the output of NCurses.SaveWin (as
much of the top-left corner as fits on the screen).

Chapter 3

Utilities using ncurses

In this chapter we describe the usage of some example applications of the ncurses interface provided
by the Browse package. They may be of interest by themselves, or they may be used as utility
functions within larger applications.

3.1 ncurses utilities

If you call the functions NCurses.Alert (3.1.1), NCurses.Select (3.1.2),
NCurses.GetLineFromUser (3.1.3), or NCurses.Pager (3.1.4) from another ncurses application in
visual mode, you should refresh the windows that are still open, by calling NCurses.update_panels
and NCurses.doupdate afterwards, see Section 2.1.3 and 2.1.2. Also, if the cursor shall be
hidden after that, you should call curs_set with argument 0, see Section 2.1.1, since the cursor is
automatically made visible in NCurses.endwin.

3.1.1 NCurses.Alert

. NCurses.Alert(messages, timeout[, attrs]) (function)

Returns: the integer corresponding to the character entered, or fail.
In visual mode, Print (Reference: Print) cannot be used for messages. An alternative is given

by NCurses.Alert.
Let messages be either an attribute line or a nonempty list of attribute lines, and timeout be a

nonnegative integer. NCurses.Alert shows messages in a bordered box in the middle of the screen.
If timeout is zero then the box is closed after any user input, and the integer corresponding to

the entered key is returned. If timeout is a positive number n, say, then the box is closed after n
milliseconds, and fail is returned.

If timeout is zero and mouse events are enabled (see NCurses.UseMouse (2.2.10)) then the box
can be moved inside the window via mouse events.

If the optional argument attrs is given, it must be an integer representing attributes such as
the components of NCurses.attrs (see Section 2.1.7) or the return value of NCurses.ColorAttr
(2.2.1); these attributes are used for the border of the box. The default is NCurses.attrs.NORMAL.

Example
gap> NCurses.Alert("Hello world!", 1000);
fail
gap> NCurses.Alert(["Hello world!",
> ["Hello ", NCurses.attrs.BOLD, "bold!"]], 1500,

22

Browse 23

> NCurses.ColorAttr("red", -1) + NCurses.attrs.BOLD);
fail

3.1.2 NCurses.Select

. NCurses.Select(poss[, single[, none]]) (function)

Returns: Position or list of positions, or false.
This function allows the user to select one or several items from a given list. In the simplest case

poss is a list of attribute lines (see NCurses.IsAttributeLine (2.2.3)), each of which should fit on
one line. Then NCurses.Select displays these lines and lets the user browse through them. After
pressing the RETURN key the index of the highlighted item is returned. Note that attributes in your
lines should be switched on and off separately by true/false entries such that the lines can be nicely
highlighted.

The optional argument single must be true (default) or false. In the second case, an arbitrary
number of items can be marked and the function returns the list of their indices.

If single is true a third argument none can be given. If it is true then it is possible to leave the
selection without choosing an item, in this case false is returned.

More details can be given to the function by giving a record as argument poss . It can have the
following components:

items
The list of attribute lines as described above.

single
Boolean with the same meaning as the optional argument single .

none
Boolean with the same meaning as the optional argument none .

size
The size of the window like the first two arguments of NCurses.newwin (default is [0, 0], as
big as possible), or the string "fit" which means the smallest possible window.

align
A substring of "bclt", which describes the alignment of the window in the terminal. The
meaning and the default are the same as for BrowseData.IsBrowseTableCellData (4.2.1).

begin
Top-left corner of the window like the last two arguments of NCurses.newwin (default is [0,
0], top-left of the screen). This value has priority over the align component.

attribute
An attribute used for the display of the window (default is NCurses.attrs.NORMAL).

border
If the window should be displayed with a border then set to true (default is false) or to an
integer representing attributes such as the components of NCurses.attrs (see Section 2.1.7)
or the return value of NCurses.ColorAttr (2.2.1); these attributes are used for the border of
the box. The default is NCurses.attrs.NORMAL.

Browse 24

header
An attribute line used as header line (the default depends on the settings of single and none).

hint
An attribute line used as hint in the last line of the window (the default depends on the settings
of single and none).

onSubmitFunction
A function that is called when the user submits the selection; the argument for this call is the cur-
rent value of the record poss . If the function returns true then the selected entries are returned
as usual, otherwise the selection window is kept open, waiting for new inputs; if the function
returns a nonempty list of attribute lines then these messages are shown using NCurses.Alert
(3.1.1).

If mouse events are enabled (see NCurses.UseMouse (2.2.10)) then the window can be moved
on the screen via mouse events, the focus can be moved to an entry, and (if single is false) the
selection of an entry can be toggled.

Example
gap> index := NCurses.Select(["Apples", "Pears", "Oranges"]);
gap> index := NCurses.Select(rec(
> items := ["Apples", "Pears", "Oranges"],
> single := false,
> border := true,
> begin := [5, 5],
> size := [8, 60],
> header := "Choose at least two fruits",
> attribute := NCurses.ColorAttr("yellow","red"),
> onSubmitFunction:= function(r)
> if Length(r.RESULT) < 2 then
> return ["Choose at least two fruits"];
> else
> return true;
> fi;
> end));

3.1.3 NCurses.GetLineFromUser

. NCurses.GetLineFromUser(pre) (function)

Returns: User input as string.
This function can be used to get an input string from the user. It opens a one line window and

writes the given string pre into it. Then it waits for user input. After hitting the RETURN key the
typed line is returned as a string to GAP. If the user exits via hitting the ESC key instead of hitting the
RETURN key, the function returns false. (The ESC key may be recognized as input only after a delay
of about a second.)

Some simple editing is possible during user input: The LEFT, RIGHT, HOME and END keys, the
INSERT/REPLACE keys, and the BACKSPACE/DELETE keys are supported.

Instead of a string, pre can also be a record with the component prefix, whose value is the string
described above. The following optional components of this record are supported.

Browse 25

window
The window with the input field is created relative to this window, the default is 0.

begin
This is a list with the coordinates of the upper left corner of the window with the input field,
relative to the window described by the window component; the default is [y-4, 2], where
y is the height of this window.

default
This string appears as result when the window is opened, the default is an empty string.

Example
gap> str := NCurses.GetLineFromUser("Your Name: ");;
gap> Print("Hello ", str, "!\n");

3.1.4 NCurses.Pager

. NCurses.Pager(lines[, border[, ly, lx, y, x]]) (function)

This is a simple pager utility for displaying and scrolling text. The argument lines can be a
list of attribute lines (see NCurses.IsAttributeLine (2.2.3)) or a string (the lines are separated by
newline characters) or a record. In case of a record the following components are recognized:

lines
The list of attribute lines or a string as described above.

start
Line number to start the display.

size
The size [ly, lx] of the window like the first two arguments of NCurses.newwin (default is
[0, 0], as big as possible).

begin
Top-left corner [y, x] of the window like the last two arguments of NCurses.newwin (default
is [0, 0], top-left of the screen).

attribute
An attribute used for the display of the window (default is NCurses.attrs.NORMAL).

border
Either one of true/false to show the pager window with or without a standard border. Or it
can be string with eight, two or one characters, giving characters to be used for a border, see
NCurses.WBorder (2.2.9).

hint
A text for usage info in the last line of the window.

As an abbreviation the information from border, size and begin can also be specified in optional
arguments.

Example
gap> lines := List([1..100],i-> ["line ",NCurses.attrs.BOLD,String(i)]);;
gap> NCurses.Pager(lines);

Browse 26

3.1.5 Selection of help matches

After loading the Browse package GAP’s help system behaves slightly different when a request yields
several matches. The matches are shown via NCurses.Select (3.1.2), the list can be searched and
filtered, and one can choose one match for immediate display. It is possible to not choose a match and
the ?<nr> syntax still works.

If you want the original behavior call SetUserPreference("Browse",
"SelectHelpMatches", false); in your GAP session or gap.ini file, see (Reference:
Configuring User preferences).

3.1.6 Selection of package names

The function LoadPackage (Reference: LoadPackage) shows a list of matches if only a prefix of a
package name is given. After loading the Browse package, NCurses.Select (3.1.2) is used for that,
and one can choose a match.

If you want the original behavior call SetUserPreference("Browse",
"SelectPackageName", false); in your GAP session or gap.ini file, see (Reference:
Configuring User preferences).

3.2 A Demo Function

3.2.1 NCurses.Demo

. NCurses.Demo([inputs]) (function)

Let inputs be a list of records, each with the components title (a string), inputblocks (a list
of strings, each describing some GAP statements), and optionally footer (a string) and cleanup (a
string describing GAP statements). The default is NCurses.DemoDefaults.

NCurses.Demo lets the user choose an entry from inputs , via NCurses.Select (3.1.2), and then
executes the GAP statements in the first entry of the inputblocks list of this entry; these strings, to-
gether with the values of title and footer, are shown in a window, at the bottom of the screen.
The effects of calls to functions using ncurses are shown in the rest of the screen. After the exe-
cution of the statements (which may require user input), the user can continue with the next entry
of inputblocks, or return to the inputs selection (and thus cancel the current inputs entry), or
return to the execution of the beginning of the current inputs entry. At the end of the current entry of
inputs, the user returns to the inputs selection.

The GAP statements in the cleanup component, if available, are executed whenever the user does
not continue; this is needed for deleting panels and windows that are defined in the statements of the
current entry.

Note that the GAP statements are executed in the global scope, that is, they have the same ef-
fect as if they would be entered at the GAP prompt. Initially, NCurses.Demo sets the value of
BrowseData.defaults.work.windowParameters to the parameters that describe the part of the
screen above the window that shows the inputs; so applications of NCurses.BrowseGeneric (4.3.1)
use automatically the maximal part of the screen as their window. It is recommended to use a screen
with at least 80 columns and at least 37 rows.

Chapter 4

Browsing Tables in GAP using ncurses
–The User Interface

As stated in Section 1.1, one aim of the Browse package is to provide tools for the quite usual task to
show a two-dimensional array or certain rows and columns of it on a character screen in a formatted
way, to navigate in this array via key strokes (and mouse events), and to search for strings, to sort the
array by row or column values etc.

The idea is that one starts with an array of data, the main table. Optionally, labels for each row
of the main table are given, which are also arranged in an array (with perhaps several columns), the
row labels table; analogously, a column labels table of labels for the columns of the main table may
be given. The row labels are shown to the left of the main table, the column labels are shown above
the main table. The space above the row labels and to the left of the column labels can be used for a
fourth table, the corner table, with information about the labels or about the main table. Optionally, a
header and a footer may be shown above and below these four tables, respectively. Header and footer
are not separated into columns. So the shown window has the following structure.

header
corner column labels

row main
labels table

footer

If not the whole tables fit into the window then only subranges of rows and columns of the main
table are shown, together with the corresponding row and column labels. Also in this case, the row
heights and column widths are computed w.r.t. the whole table not w.r.t. the shown rows and columns.
This means that the shown row labels are unchanged if the range of shown columns is changed, the
shown column labels are unchanged if the range of shown rows is changed, and the whole corner table
is always shown.

The current chapter describes the user interface for standard applications of this kind, i. e., those
applications for which one just has to collect the data to be shown in a record –which we call a browse
table– without need for additional GAP programming.

Section 4.1 gives an overview of the features available in standard browse table applications, and
Section 4.2 describes the data structures used in browse tables. Finally, Section 4.3 introduces the

27

Browse 28

function NCurses.BrowseGeneric (4.3.1), which is the generic function for showing browse table in
visual mode.

For technical details needed to extend these applications and to build other applications, see Chap-
ter 5.

Examples of browse table applications are shown in Chapter 6.

4.1 Features Supported by the Function NCurses.BrowseGeneric

Standard applications of the function NCurses.BrowseGeneric (4.3.1) have the following function-
ality. Other applications may provide only a subset, or add further functionality, see Chapters 5 and 6.

Scrolling:
The subranges of shown rows and columns of the main table can be modified, such that the
focus area is moved to the left, to the right, up, or down; depending on the context, the focus
is moved by one character, by one table cell or a part of it, by the window height/width (minus
one character or minus one table cell). If mouse events are enabled then cells can be selected
also via mouse clicks.

Selecting:
A cell, row, or column of the main table can be selected; then it is shown highlighted on the
screen (by default using the attribute NCurses.attrs.STANDOUT, see Section 2.1.7). The se-
lection can be moved inside the main table to a neighboring cell, row, or column; this causes
also scrolling of the main table when the window borders are reached.

Searching:
A search string is entered by the user, and the first matching cell becomes selected; one can
search further for the next matching cell. Global search parameters define what matching means
(case sensitive or not, search for substrings or complete words) and what the first and the next
matching cells are (search in the whole table or just in the selected row or column, search for
whole words or prefixes or suffixes, search forwards or backwards).

Sorting:
If a row or column is selected then the main table can be sorted w.r.t. the entries in this row or
column. Global sort parameters describe for example whether one wants to sort ascending or
descending, or case sensitive or not.

If a categorized table is sorted by a column then the category rows are removed and the current
sorting and filtering by rows is reset before the table is sorted by the given column. If a table is
sorted by a column/row that is already sorted by a column/row then this ordering is reset first.

Sorting can be undone globally, i. e., one can return to the unsorted table.

Sorting and Categorizing:
If a column is selected then the main table can be sorted w.r.t. the entries in this column,
and additionally these entries are turned into category rows, i. e., additional rows are added to
the main table, appearing immediately above the table rows with a fixed value in the selected
column, and showing this column value. (There should be no danger to mix up this notion of
categories with the one introduced in (Reference: Categories).) The category rows can be
collapsed (that is, the table rows that belong to this category row are not shown) or expanded

Browse 29

(that is, the corresponding table rows are shown). Some of the global search parameters affect
the category rows, for example, whether the category rows shall involve a counter showing the
number of corresponding data rows, or whether a row of the browse table appears under different
category rows.

Sorting and categorizing can be undone globally, i. e., one can return to the unsorted table
without category rows.

Filtering:
The browse table can be restricted to those rows or columns in which a given search string oc-
curs. (Also entries in collapsed rows can match; they remain collapsed then.) As a consequence,
the category rows are restricted to those under which a matching row occurs. (It is irrelevant
whether the search string occurs in category rows.)

If the search string does not occur at all then a message is printed, and the table remains as it
was before. If a browse table is restricted then this fact is indicated by the message “restricted
table” in the lower right corner of the window.

When a column or row is selected then the search is restricted to the entries in this column
or row, respectively. Besides using a search, one can also explicitly hide the selected row or
column. Filtering in an already restricted table restricts the shown rows or columns further.

Filtering can be undone globally, i. e., one can return to the unrestricted table.

Help:
Depending on the application and on the situation, different sets of user inputs may be available
and different meanings of these inputs are possible. An overview of the currently available
inputs and their meanings can be opened in each situation, by hitting the ? key.

Re-entering:
When one has called NCurses.BrowseGeneric (4.3.1) with a browse table, and returns from
visual mode to the GAP prompt after some navigation steps, calling NCurses.BrowseGeneric
again with this table will enter visual mode in the same situation where it was left. For example,
the cell in the top-left position will be the same as before, and if a cell was selected before then
this cell will be selected now. (One can avoid this behavior using the optional second argument
of NCurses.BrowseGeneric.)

Logging:
The integers corresponding to the user inputs in visual mode are collected in a list that is stored
in the component dynamic.log of the browse table. It can be used for repeating the inputs
with the replay feature. (For browse table applications that give the user no access to the browse
table itself, one can force the log to be assigned to the component log of the global variable
BrowseData, see Section 5.4.1.)

Replay:
Instead of interactively hitting keys in visual mode, one can prescribe the user inputs to a browse
table via a “replay record”; the inputs are then processed with given time intervals. The easiest
way to create a meaningful replay record is via the function BrowseData.SetReplay (5.4.2),
with argument the dynamic.log component of the browse table in question that was stored in
an interactive session.

Browse 30

The following features are not available in standard applications. They require additional pro-
gramming.

Clicking:
One possible action is to “click” a selected cell, row, or column, by hitting the ENTER key.
It depends on the application what the effect is. A typical situation is that a corresponding
GAP object is added to the list of return values of NCurses.BrowseGeneric (4.3.1). Again
it depends on the application what this GAP object is. In order to use this feature, one has to
provide a record whose components are GAP functions, see Section 5.4.1 for details. If mouse
events are enabled (see NCurses.UseMouse (2.2.10)) then also mouse clicks can be used as an
alternative to hitting the ENTER key.

Return Value:
The function NCurses.BrowseGeneric (4.3.1) may have an application dependent return
value. A typical situation is that a list of objects corresponding to those cells is returned that
were “clicked” in visual mode. In order to use this feature, one has to assign the desired value
to the component dynamic.Return of the browse table.

4.2 Data Structures used by NCurses.BrowseGeneric

4.2.1 BrowseData.IsBrowseTableCellData

. BrowseData.IsBrowseTableCellData(obj) (function)

Returns: true if the argument is a list or a record in a supported format.
A table cell data object describes the input data for the contents of a cell in a browse table. It is

represented by either an attribute line (see NCurses.IsAttributeLine (2.2.3)), for cells of height
one, or a list of attribute lines or a record with the components rows, a list of attribute lines, and
optionally align, a substring of "bclt", which describes the alignment of the attribute lines in the
table cell – bottom, horizontally centered, left, and top alignment; the default is right and vertically
centered alignment. (Note that the height of a table row and the width of a table column can be larger
than the height and width of an individual cell.)

Example
gap> BrowseData.IsBrowseTableCellData("abc");
true
gap> BrowseData.IsBrowseTableCellData(["abc", "def"]);
true
gap> BrowseData.IsBrowseTableCellData(rec(rows:= ["ab", "cd"],
> align:= "tl"));
true
gap> BrowseData.IsBrowseTableCellData("");
true
gap> BrowseData.IsBrowseTableCellData([]);
true

The empty string is a table cell data object of height one and width zero whereas the empty list
(which is not in IsStringRep (Reference: IsStringRep)) is a table cell data object of height zero
and width zero.

Browse 31

4.2.2 BrowseData.BlockEntry

. BrowseData.BlockEntry(tablecelldata, height, width) (function)

Returns: a list of attribute lines.
For a table cell data object tablecelldata (see BrowseData.IsBrowseTableCellData

(4.2.1)) and two positive integers height and width , BrowseData.BlockEntry returns a list of
height attribute lines of displayed length width each (see NCurses.WidthAttributeLine (2.2.7)),
that represents the formatted version of tablecelldata .

If the rows of tablecelldata have different numbers of displayed characters then they are
filled up to the desired numbers of rows and columns, according to the alignment prescribed by
tablecelldata ; the default alignment is right and vertically centered.

Example
gap> BrowseData.BlockEntry("abc", 3, 5);
[" ", " abc", " "]
gap> BrowseData.BlockEntry(rec(rows:= ["ab", "cd"],
> align:= "tl"), 3, 5);
["ab ", "cd ", " "]

4.2.3 BrowseData.IsBrowseTable

. BrowseData.IsBrowseTable(obj) (function)

Returns: true if the argument record has the required components and is consistent.
A browse table is a GAP record that can be used as the first argument of the function

NCurses.BrowseGeneric (4.3.1).
The supported components of a browse table are work and dynamic, their values must be records:

The components in work describe that part of the data that are not likely to depend on user interactions,
such as the table entries and their heights and widths. The components in dynamic describe that part of
the data that is intended to change with user interactions, such as the currently shown top-left entry of
the table, or the current status w.r.t. sorting. For example, suppose you call NCurses.BrowseGeneric
(4.3.1) twice with the same browse table; the second call enters the table in the same status where it
was left after the first call if the component dynamic is kept, whereas one has to reset (which usually
simply means to unbind) the component dynamic if one wants to start in the same status as before the
first call.

The following components are the most important ones for standard browse applications. All
these components belong to the work record. For other supported components (of work as well as of
dynamic) and for the meaning of the term “mode”, see Section 5.2.

main
is the list of lists of table cell data objects that form the matrix to be shown. There is no default
for this component. (It is possible to compute the entries of the main table on demand, see the
description of the component Main in Section 5.4.1. In this situation, the value of the component
main can be an empty list.)

header
describes a header that shall be shown above the column labels. The value is either a list of
attribute lines (“static header”) or a function or a record whose component names are names of
available modes of the browse table (“dynamic header”). In the function case, the function must
take the browse table as its only argument, and return a list of attribute lines. In the record case,

Browse 32

the values of the components must be such functions. It is assumed that the number of these
lines depends at most on the mode. The default is an empty list, i. e., there is no header.

footer
describes a footer that shall be shown below the table. The value is analogous to that of footer.
The default is an empty list, i. e., there is no footer.

labelsRow
is a list of row label rows, each being a list of table cell data objects. These rows are shown to
the left of the main table. The default is an empty list, i. e., there are no row labels.

labelsCol
is a list of column information rows, each being a list of table cell data objects. These rows are
shown between the header and the main table. The default is an empty list, i. e., there are no
column labels.

corner
is a list of lists of table cell data objects that are printed in the upper left corner, i. e., to the left
of the column label rows and above the row label columns. The default is an empty list.

sepRow
describes the separators above and below rows of the main table and of the row labels table. The
value is either an attribute line or a (not necessarily dense) list of attribute lines. In the former
case, repetitions of the attribute line are used as separators below each row and above the first
row of the table; in the latter case, repetitions of the entry at the first position (if bound) are used
above the first row, and repetitions of the last bound entry before the (i+2)-th position (if there
is such an entry at all) are used below the i-th table row. The default is an empty string, which
means that there are no row separators.

sepCol
describes the separators in front of and behind columns of the main table and of the column
labels table. The format of the value is analogous to that of the component sepRow; the default
is the string " " (whitespace of width one).

sepLabelsCol
describes the separators above and below rows of the column labels table and of the corner table,
analogously to sepRow. The default is an empty string, which means that there are no column
label separators.

sepLabelsRow
describes the separators in front of and behind columns of the row labels table and of the corner
table, analogously to sepCol. The default is an empty string.

We give a few examples of standard applications.
The first example defines a small browse table by prescribing only the component work.main, so

the defaults for row and column labels (no such labels), and for separators are used. The table cells
are given by plain strings, so they have height one. Usually this table will fit on the screen.

Example
gap> m:= 10;; n:= 5;;
gap> xpl1:= rec(work:= rec(

Browse 33

> main:= List([1 .. m], i -> List([1 .. n],
> j -> String([i, j])))));;
gap> BrowseData.IsBrowseTable(xpl1);
true

In the second example, also row and column labels appear, and different separators are used. The
table cells have height three. Also this table will usually fit on the screen.

Example
gap> m:= 6;; n:= 5;;
gap> xpl2:= rec(work:= rec(
> main:= List([1 .. m], i -> List([1 .. n],
> j -> rec(rows:= List([-i*j, i*j*1000+j, i-j], String),
> align:= "c"))),
> labelsRow:= List([1 .. m], i -> [String(i)]),
> labelsCol:= [List([1 .. n], String)],
> sepRow:= "-",
> sepCol:= "|",
>));;
gap> BrowseData.IsBrowseTable(xpl2);
true

The third example additionally has a static header and a dynamic footer, and the ta-
ble cells involve attributes. This table will usually not fit on the screen. Note that
NCurses.attrs.ColorPairs is available only if the terminal supports colors, which can be checked
using NCurses.attrs.has_colors (2.2.1).

Example
gap> m:= 30;; n:= 25;;
gap> xpl3:= rec(work:= rec(
> header:= [" Example 3"],
> labelsRow:= List([1 .. 30], i -> [String(i)]),
> sepLabelsRow:= " % ",
> sepLabelsCol:= "=",
> sepRow:= "*",
> sepCol:= " |",
> footer:= t -> [Concatenation("top-left entry is: ",
> String(t.dynamic.topleft{ [1, 2] }))],
>));;
gap> if NCurses.attrs.has_colors then
> xpl3.work.main:= List([1 .. m], i -> List([1 .. n],
> j -> rec(rows:= [String(-i*j),
> [NCurses.attrs.BOLD, true,
> NCurses.attrs.ColorPairs[56+1], true,
> String(i*j*1000+j),
> NCurses.attrs.NORMAL, true],
> String(i-j)],
> align:= "c")));
> xpl3.work.labelsCol:= [List([1 .. 30], i -> [
> NCurses.attrs.ColorPairs[56+4], true,
> String(i),
> NCurses.attrs.NORMAL, true])];
> else

Browse 34

> xpl3.work.main:= List([1 .. m], i -> List([1 .. n],
> j -> rec(rows:= [String(-i*j),
> [NCurses.attrs.BOLD, true,
> String(i*j*1000+j),
> NCurses.attrs.NORMAL, true],
> String(i-j)],
> align:= "c")));
> xpl3.work.labelsCol:= [List([1 .. 30], i -> [
> NCurses.attrs.BOLD, true,
> String(i),
> NCurses.attrs.NORMAL, true])];
> fi;
gap> BrowseData.IsBrowseTable(xpl3);
true

The fourth example illustrates that highlighting may not work properly for browse tables contain-
ing entries whose attributes are not set with explicit Boolean values, see NCurses.IsAttributeLine
(2.2.3). Call NCurses.BrowseGeneric (4.3.1) with the browse table xpl4, and select an entry (or a
column or a row): Only the middle row of each selected cell will be highlighted, because only in this
row, the color attribute is switched on with an explicit true.

Example
gap> xpl4:= rec(
> defc:= NCurses.defaultColors,
> wd:= Maximum(List(~.defc, Length)),
> ca:= NCurses.ColorAttr,
> work:= rec(
> header:= ["Examples of NCurses.ColorAttr"],
> main:= List(~.defc, i -> List(~.defc,
> j -> [[~.ca(i, j), String(i, ~.wd)], # no true!
> [~.ca(i, j), true, String("on", ~.wd)],
> [~.ca(i, j), String(j, ~.wd)]])), # no true!
> labelsRow:= List(~.defc, i -> [String(i)]),
> labelsCol:= [List(~.defc, String)],
> sepRow:= "-",
> sepCol:= [" |", "|"],
>));;
gap> BrowseData.IsBrowseTable(xpl4);
true

4.3 The Function NCurses.BrowseGeneric

4.3.1 NCurses.BrowseGeneric

. NCurses.BrowseGeneric(t[, arec]) (function)

Returns: an application dependent value, or nothing.
NCurses.BrowseGeneric is used to show the browse table t (see BrowseData.IsBrowseTable

(4.2.3)) in a formatted way on a text screen, and allows the user to navigate in this table.
The optional argument arec , if given, must be a record whose components work and dynamic,

if bound, are used to provide defaults for missing values in the corresponding components of t .

Browse 35

The default for arec and for the components not provided in arec is BrowseData.defaults,
see BrowseData (5.4.1), the function BrowseData.SetDefaults sets these default values.

At least the component work.main must be bound in t , with value a list of list of table cell data
objects, see BrowseData.IsBrowseTableCellData (4.2.1).

When the window or the screen is too small for the browse table, according to its component
work.minyx, the table will not be shown in visual mode, and fail is returned. (This holds also if
there would be no return value of the call in a large enough screen.) Thus one should check for fail
results of programmatic calls of NCurses.BrowseGeneric, and one should better not admit fail as
a regular return value.

Most likely, NCurses.BrowseGeneric will not be called on the command line, but the browse
table t will be composed by a suitable function which then calls NCurses.BrowseGeneric, see the
examples in Chapter 6.

Chapter 5

Browsing Tables in GAP using ncurses
–The Programming Interface

This chapter describes some aspects of the internals of the browse table handling. The relevant ob-
jects are action functions that implement the individual navigation steps (see Section 5.1), modes that
describe the sets of available navigation steps in given situations (see Section 5.2), and browse appli-
cations that are given by the combination of several modes (see Section 5.3). Most of the related data
is stored in the global variable BrowseData (5.4.1). For more details, one should look directly at the
code in the file lib/browse.gi of the Browse package.

5.1 Navigation Steps in Browse Tables

Navigating in a browse table means that after entering visual mode by calling
NCurses.BrowseGeneric (4.3.1), the user hits one or several keys, or uses a mouse button,
and if this input is in a given set of admissible inputs then a corresponding function is executed with
argument the browse table (plus additional information in the case of mouse events). The function call
then may change components in this table (recommended: components in its dynamic component),
such that the appearance in the window may be different afterwards, and also the admissible inputs
and their effects may have changed.

The relation between the admissible inputs and the corresponding functions is application de-
pendent. However, it is recommended to associate the same input to the same function in different
situations; for example, the ? key and the F1 key should belong to a function that shows a help win-
dow (see Section 5.4.4), the Q key and the ESC key should belong to a function that exits the current
mode (Note that the ESC key may be recognized as input only after a delay of about a second.), the
Q key should belong to a function that exits the browse application (see Section 5.4.6), the F2 key
should belong to a function that saves the current window contents in a global variable (see Section
5.4.5), and the E key should belong to a function that enters a break loop (see Section 5.4.7). The
ENTER and RETURN keys should belong to a “click” on a selected table entry, and if a category row
is selected then they should expand/collapse this category. The M key should toggle enabling and
disabling mouse events. Mouse events on a cell or on a category row of a browse table should move
the selected entry to this position; it is recommended that no functionality is lost if no mouse events
are used, although the number of steps might be reduced when the mouse is used.

Each such function is wrapped into a record with the components action (the function itself) and
helplines (a list of attribute lines that describes what the function does). The help lines are used by

36

Browse 37

the help feature of NCurses.BrowseGeneric, see Section 5.4.4.
The action functions need not return anything. Whenever the shown screen shall be recomputed

after the function call, the component dynamic.changed of the browse table must be set to true by
the action functions.

After entering the first characters of an admissible input that consists of more characters, the last
line of the window with the browse table shows these characters behind the prefix “partial input:”. One
can delete the last entered character of a partial input via the DELETE and BACKSPACE keys. It is not
possible to make these keys part of an admissible input. When a partial input is given, only those user
inputs have an effect that extend the partial input to (a prefix of) an admissible input. For example,
asking for help by hitting the ? key will in general not work if a partial input had been entered before.

5.2 Modes in Browse Tables

In different situations, different inputs may be admissible for the same browse table, and different
functions may belong to the same input. For example, the meaning of “moving down” can be different
depending on whether a cell is selected or not.

The set of admissible user inputs and corresponding functions for a particular situation is collected
in a mode of the browse table. (There should be no danger to mix up this notion of mode with the
“visual mode” introduced in Section 1.1.) A mode is represented by a record with the components
name (a string used to associate the mode with the components of header, headerLength, footer,
footerLength, Click, and for the help screen), flag (a string that describes properties of the mode
but that can be equal for different modes), actions (a list of records describing the navigation steps
that are admissible in the mode, see Section 5.1), and ShowTables (the function used to eventually
print the current window contents, the default is BrowseData.ShowTables). Due to the requirement
that each admissible user input uniquely determines a corresponding function, no admissible user input
can be a prefix of another admissible input, for the same mode.

Navigation steps (see Section 5.1) can change the current mode or keep the mode. It is recom-
mended that each mode has an action to leave this mode; also an action to leave the browse table
application is advisable.

In a browse table, all available modes are stored in the component work.availableModes, whose
value is a list of mode records. The value of the component dynamic.activeModes is a list of mode
records that is used as a stack: The current mode is the last entry in this list, changing the current
mode is achieved by unbinding the last entry (so one returns to the mode from which the current
mode had been entered by adding it to the list), by adding a new mode record (so one can later
return to the current mode), or by replacing the last entry by another mode record. As soon as the
dynamic.activeModes list becomes empty, the browse table application is left. (In this situation, if
the browse table had been entered from the GAP prompt then visual mode is left, and one returns to
the GAP prompt.)

The following modes are predefined by the Browse package. Each of these modes admits the user
inputs ?, F1, Q, ESC, Q, F2, E, and M that have been mentioned in Section 5.1.

browse
This mode admits scrolling of the browse table by a cell or by a screen, searching for a string,
selecting a row, a column, or an entry, and expanding or collapsing all category rows.

help This mode is entered by calling BrowseData.ShowHelpTable; it shows a help window con-
cerning the actions available in the mode from which the help mode was entered. The help

Browse 38

mode admits scrolling in the help table by a cell or by a screen. See Section 5.4.4 for details.

select_entry
In this mode, one table cell is regarded as selected; this cell is highlighted using the attribute in
the component work.startSelect as a prefix of each attribute line, see the remark in Section
2.2.3. The mode admits moving the selection by one cell in the four directions, searching for
a string and for further occurrences of this string, expanding or collapsing the current category
row or all category rows, and executing the “click” function of this mode, provided that the
component work.Click.("select_entry") of the browse table is bound.

select_row
This is like the select_entry mode, except that a whole row of the browse table is highlighted.
Searching is restricted to the selected row, and “click” refers to the function work.Click.(
"select_row").

select_row_and_entry
This is a combination of the select_entry mode and the select_row mode.

select_column
This is like the select_row mode, just a column is selected not a row.

select_column_and_entry
This is like the select_row_and_entry mode, just a column is selected not a row.

5.3 Browse Applications

The data in a browse table together with the set of its available modes and the stack of active modes
forms a browse application. So the part of or all functionality of the Browse package can be available
(“standard application”), or additional functionality can be provided by extending available modes or
adding new modes.

When NCurses.BrowseGeneric (4.3.1) has been called with the browse table t , say, the follow-
ing loop is executed.

1. If the list t.dynamic.activeModes is empty then exit the browse table, and if the component
t.dynamic.Return is bound then return its value. Otherwise proceed with step 2.

2. If t.dynamic.changed is true then call the ShowTables function of the current mode; this
causes a redraw of the window that shows the browse table. Then go to step 3.

3. Get one character of user input. If then the current user input string is the name of an action of
the current mode then call the corresponding action function and go to step 1; if the current user
input string is just a prefix of the name of some actions of the current mode then go to step 3;
if the current user input string is not a prefix of any name of an action of the current mode then
discard the last read character and go to step 3.

When one designs a new application, it may be not obvious whether some functionality shall be
implemented via one mode or via several modes. As a rule of thumb, introducing a new mode is
recommended when one needs a new set of admissible actions in a given situation, and also if one
wants to allow the user to perform some actions and then to return to the previous status.

Browse 39

5.4 Predefined Browse Functionalities

5.4.1 BrowseData

. BrowseData (global variable)

This is the record that contains the global data used by the function NCurses.BrowseGeneric
(4.3.1). The components are actions, defaults, and several capitalized names for which the values
are functions.

BrowseData.actions is a record containing the action records that are provided by the package,
see Section 5.1. These actions are used in standard applications of NCurses.BrowseGeneric (4.3.1).
Of course there is no problem with using actions that are not stored in BrowseData.actions.

BrowseData.defaults is a record that contains the defaults for the browse table used as the first
argument of NCurses.BrowseGeneric (4.3.1). Important components have been described above,
see BrowseData.IsBrowseTable (4.2.3), in the sense that these components provide default values
of work components in browse tables. Here is a list of further interesting components.

The following components are provided in BrowseData.defaults.work.

windowParameters
is a list of four nonnegative integers, denoting the arguments of NCurses.newwin for the win-
dow in which the browse table shall be shown. The default is [0, 0, 0, 0], i. e., the
window for the browse table is the full screen.

minyx
is a list of length two, the entries must be either nonnegative integers, denoting the minimal
number of rows and columns that are required by the browse table, or unary functions that return
these values when they are applied to the browse table; this is interesting for applications that do
not support scrolling, or for applications that may have large row or column labels tables. The
default is a list with two functions, the return value of the first function is the sum of the heights
of the table header, the column labels table, the first table row, and the table footer, and the return
value of the second function is the sum of widths of the row labels table and the width of the
first column. (If the header/footer is given by a function then this part of the table is ignored in
the minyx default.) Note that the conditions are checked only when NCurses.BrowseGeneric
(4.3.1) is called, not after later changes of the screen size in a running browse table application.

align
is a substring of "bclt", which describes the alignment of the browse table in the window. The
meaning and the default are the same as for BrowseData.IsBrowseTableCellData (4.2.1).
(Of course this is relevant only if the table is smaller than the window.)

headerLength
describes the lengths of the headers in the modes for which header functions are provided.
The value is a record whose component names are names of modes and the corresponding
components are nonnegative integers. This component is ignored if the header component is
unbound or bound to a list, missing values are computed by calls to the corresponding header
function as soon as they are needed.

footerLength
corresponds to footer in the same way as headerLength to header.

Browse 40

Main
if bound to a function then this function can be used to compute missing values for the com-
ponent main; this way one can avoid computing/storing all main values at the same time. The
access to the entries of the main matrix is defined as follows: If mainFormatted[i][j] is
bound then take it, if main[i][j] is bound then take it and compute the formatted version,
if Main is a function then call it with arguments the browse table, i, and j, and compute the
formatted version, otherwise compute the formatted version of work.emptyCell. (For the con-
dition whether entries in mainFormatted can be bound, see below in the description of the
component cacheEntries.)

cacheEntries
describes whether formatted values of the entries in the matrices given by the compo-
nents corner, labelsCol, labelsRow, main, and of the corresponding row and column
separators shall be stored in the components cornerFormatted, labelsColFormatted,
labelsRowFormatted, and mainFormatted. The value must be a Boolean, the default is
false; it should be set to true only if the tables are reasonably small.

cornerFormatted
is a list of lists of formatted entries corresponding to the corner component. Each entry is
either an attribute line or a list of attribute lines (with the same number of displayed characters),
the values can be computed from the input format with BrowseData.FormattedEntry. The
entries are stored in this component only if the component cacheEntries has the value true.
The default is an empty list.

labelsColFormatted
corresponds to labelsCol in the same way as cornerFormatted to corner.

labelsRowFormatted
corresponds to labelsRow in the same way as cornerFormatted to corner.

mainFormatted
corresponds to main in the same way as cornerFormatted to corner.

m0 is the maximal number of rows in the column labels table. If this value is not bound then it is
computed from the components corner and labelsCol.

n0 is the maximal number of columns in corner and labelsRow.

m is the maximal number of rows in labelsRow and main. This value must be set in advance if
the values of main are computed using a Main function, and if the number of rows in main is
larger than that in labelsRow.

n is the maximal number of columns in labelsCol and main. This value must be set in advance
if the values of main are computed using a Main function, and if the number of columns in main
is larger than that in labelsCol.

heightLabelsCol
is a list of 2 m0+1 nonnegative integers, the entry at position i is the maximal height
of the entries in the i-th row of cornerFormatted and labelsColFormatted. Values
that are not bound are computed on demand from the table entries, with the function

Browse 41

BrowseData.HeightLabelsCol. (So if one knows the needed heights in advance, it is ad-
visable to set the values, in order to avoid that formatted table entries are computed just for
computing their size.) The default is an empty list.

widthLabelsRow
is the corresponding list of 2 n0+1 maximal widths of entries in cornerFormatted and
labelsRowFormatted.

heightRow
is the corresponding list of 2 m+1 maximal heights of entries in labelsRowFormatted and
mainFormatted.

widthCol
is the corresponding list of 2 n+1 maximal widths of entries in labelsColFormatted and
mainFormatted.

emptyCell
is a table cell data object to be used as the default for unbound positions in the four matrices.
The default is the empty list.

sepCategories
is an attribute line to be used repeatedly as a separator below expanded category rows. The
default is the string "-".

startCollapsedCategory
is a list of attribute lines to be used as prefixes of unhidden but collapsed category rows. For
category rows of level i, the last bound entry before the (i+1)-th position is used. The default
is a list of length one, the entry is the boldface variant of the string "> ", so collapsed category
rows on different levels are treated equally.

startExpandedCategory
is a list of attribute lines to be used as prefixes of expanded category rows, analogously to
startCollapsedCategory. The default is a list of length one, the entry is the boldface variant
of the string "* ", so expanded category rows on different levels are treated equally.

startSelect
is an attribute line to be used as a prefix of each attribute line that belongs to a selected cell. The
default is to switch the attribute NCurses.attrs.STANDOUT on, see Section 2.1.7.

Click
is a record whose component names are names of available modes of the browse table. The
values are unary functions that take the browse table as their argument. If the action Click is
available in the current mode and the corresponding input is entered then the function in the
relevant component of the Click record is called.

availableModes
is a list whose entries are the mode records that can be used when one navigates through the
browse table, see Section 5.2.

Browse 42

SpecialGrid
is a function that takes a browse table and a record as its arguments. It is called by
BrowseData.ShowTables after the current contents of the window has been computed, and it
is intended to draw an individual grid into the table that fits better than anything that can be spec-
ified in terms of row and column separators. (If other functions than BrowseData.ShowTables
are used in some modes of the browse table, these functions must deal with this aspect them-
selves.) The default is to do nothing.

The following components are provided in BrowseData.defaults.dynamic.

changed
is a Boolean that must be set to true by action functions whenever a refresh of the window is
necessary; it is automatically reset to false after the refresh.

indexRow
is a list of positive integers. The entry k at position i means that the k-th row in the
mainFormatted table is shown as the i-th row. Note that depending on the current status of
the browse table, the rows of mainFormatted (and of main) may be permuted, or it may even
happen that a row in mainFormatted is shown several times, for example under different cate-
gory rows. It is assumed (as a “sort convention”) that the even positions in indexRow point to
even numbers, and that the subsequent odd positions (corresponding to the following separators)
point to the subsequent odd numbers. The default value is the list [1,2, . . . ,m], where m is the
number of rows in mainFormatted (including the separator rows, so m is always odd).

indexCol
is the analogous list of positive integers that refers to columns.

topleft
is a list of four positive integers denoting the current topleft position of the main table. The
value [i, j,k, l] means that the topleft entry is indexed by the i-th entry in indexRow, the j-th
entry in indexCol, and the k-th row and l-th column inside the corresponding cell. The default
is [1,1,1,1].

isCollapsedRow
is a list of Booleans, of the same length as the indexRow value. If the entry at position i is
true then the i-th row is currently not shown because it belongs to a collapsed category row. It
is assumed (as a “hide convention”) that the value at any even position equals the value at the
subsequent odd position. The default is that all entries are false.

isCollapsedCol
is the corresponding list for indexCol.

isRejectedRow
is a list of Booleans. If the entry at position i is true then the i-th row is currently not shown
because it does not match the current filtering of the table. Defaults, length, and hide convention
are as for isCollapsedRow.

isRejectedCol
is the corresponding list for indexCol.

Browse 43

isRejectedLabelsRow
is a list of Booleans. If the entry at position i is true then the i-th column of row labels is
currently not shown.

isRejectedLabelsCol
is the corresponding list for the column labels.

activeModes
is a list of mode records that are contained in the availableModes list of the work component
of the browse table. The current mode is the last entry in this list. The default depends on
the application, BrowseData.defaults prescribes the list containing only the mode with name
component "browse".

selectedEntry
is a list [i, j]. If i = j = 0 then no table cell is selected, otherwise i and j are the row and column
index of the selected cell. (Note that i and j are always even.) The default is [0,0].

selectedCategory
is a list [i, l]. If i = l = 0 then no category row is selected, otherwise i and l are the row index
and the level of the selected category row. (Note that i is always even.) The default is [0,0].

searchString
is the last string for which the user has searched in the table. The default is the empty string.

searchParameters
is a list of parameters that are modified by the function
BrowseData.SearchStringWithStartParameters. If one sets these parameters in a
search then these values hold also for subsequent searches. So it may make sense to set the
parameters to personally preferred ones.

sortFunctionForColumnsDefault
is a function with two arguments used to compare two entries in the same column of the main
table (or two category row values). The default is the operation \<. (Note that this default may
be not meaningful if some of the rows or columns contain strings representing numbers.)

sortFunctionForRowsDefault
is the analogous function for comparing two entries in the same row of the main table.

sortFunctionsForRows
is a list of comparison functions, if the i-th entry is bound then it replaces the
sortFunctionForRowsDefault value when the table is sorted w.r.t. the i-th row.

sortFunctionsForColumns
is the analogous list of functions for the case that the table is sorted w.r.t. columns.

sortParametersForRowsDefault
is a list of parameters for sorting the main table w.r.t. entries in given rows, e. g., whether one
wants to sort ascending or descending.

Browse 44

sortParametersForColumnsDefault
is the analogous list of parameters for sorting w.r.t. given columns. In addition to the param-
eters for rows, also parameters concerning category rows are available, e. g., whether the data
columns that are transformed into category rows shall be hidden afterwards or not.

sortParametersForRows
is a list that contains ar position i, if bound, a list of parameters that shall replace those in
sortParametersForRowsDefault when the table is sorted w.r.t. the i-th row.

sortParametersForColumns
is the analogous list of parameters lists for sorting w.r.t. columns.

categories
describes the current category rows. The value is a list [l1, l2, l3] where l1 is a sorted list
[i1, i2, ..., ik] of positive integers, l2 is a list of length k where the j-th entry is a record with
the components pos (with value i j), level (the level of the category row), value (an attribute
line to be shown), separator (the separator below this category row is a repetition of this
string), isUnderCollapsedCategory (true if the category row is hidden because a category
row of an outer level is collapsed; note that in the false case, the category row itself can be
collapsed), isRejectedCategory (true if the category row is hidden because none of th edata
rows below this category match the current filtering of the table); the list l3 contains the levels
for which the category rows shall include the numbers of data rows under these category rows.
The default value is [[], [], []]. (Note that this “hide convention” makes sense mainly
if together with a hidden category row, also the category rows on higher levels and the corre-
sponding data rows are hidden –but this property is not checked.) Category rows are computed
with the CategoryValues function in the work component of the browse table.

log describes the session log which is currently written. The value is a list of positive inte-
gers, representing the user inputs in the current session. When GAP returns from a call to
NCurses.BrowseGeneric (4.3.1), one can access the log list of the user interactions in the
browse table as the value of its component dynamic.log.

If BrowseData.logStore had been set to true before NCurses.BrowseGeneric (4.3.1)
had been called then the list can also be accessed as the value of BrowseData.log. If
BrowseData.logStore is unbound or has a value different from true then BrowseData.log
is not written. (This can be interesting in the case of browse table applications where the user
does not get access to the browse table itself.)

replay
describes the non-interactive input for the current browse table. The value is a record with the
components logs (a dense list of records, the default is an empty list) and pointer (a positive
integer, the default is 1). If pointer is a position in logs then currently the pointer-th record
is processed, otherwise the browse table has exhausted its non-interactive part, and requires
interactive input. The records in log have the components steps (a list of user inputs, the
default is an empty list), position (a positive integer denoting the current position in the steps
list if the log is currently processed, the default is 1), replayInterval (the timeout between
two steps in milliseconds if the log is processed, the default is 0), and quiet (a Boolean, true
if the steps shall not be shown on the screen until the end of the log is reached, the default is
false).

Browse 45

5.4.2 BrowseData.SetReplay

. BrowseData.SetReplay(data) (function)

This function sets and resets the value of BrowseData.defaults.dynamic.replay.
When BrowseData.SetReplay is called with a list data as its argument then the entries are

assumed to describe user inputs for a browse table for which NCurses.BrowseGeneric (4.3.1) will
be called afterwards, such that replay of the inputs runs. (Valid input lists can be obtained from the
component dynamic.log of the browse table in question.)

When BrowseData.SetReplay is called with the only argument false, the component is un-
bound (so replay is disabled, and thus calls to NCurses.BrowseGeneric (4.3.1) will require interac-
tive user input).

The replay feature should be used by initially setting the input list, then running the replay (perhaps
several times), and finally unbinding the inputs, such that subsequent uses of other browse tables do
not erroneously expect their input in BrowseData.defaults.dynamic.replay.

Note that the value of BrowseData.defaults.dynamic.replay is used in a call to
NCurses.BrowseGeneric (4.3.1) only if the browse table in question does not have a component
dynamic.replay before the call.

5.4.3 BrowseData.AlertWithReplay

. BrowseData.AlertWithReplay(t, messages[, attrs]) (function)

Returns: an integer representing a (simulated) user input.
The function BrowseData.AlertWithReplay is a variant of NCurses.Alert (3.1.1) that is

adapted for the replay feature of the browse table t , see Section 4.1. The arguments messages
and attrs are the same as the corresponding arguments of NCurses.Alert (3.1.1), the argu-
ment timeout of NCurses.Alert (3.1.1) is taken from the browse table t , as follows. If
BrowseData.IsDoneReplay returns true for t then timeout is zero, so a user input is requested
for closing the alert box; otherwise the requested input character is fetched from t.dynamic.replay.

If timeout is zero and mouse events are enabled (see NCurses.UseMouse (2.2.10)) then the box
can be moved inside the window via mouse events.

No alert box is shown if BrowseData.IsQuietSession returns true when called with
t.dynamic.replay, otherwise the alert box is closed after the time (in milliseconds) that is given
by the replayInterval value of the current entry in t.dynamic.replay.logs.

The function returns either the return value of the call to NCurses.Alert (3.1.1) (in the interactive
case) or the value that was fetched from the current replay record (in the replay case).

5.4.4 BrowseData.actions.ShowHelp

. BrowseData.actions.ShowHelp (global variable)

There are two predefined ways for showing an overview of the admissible inputs and their mean-
ing in the current mode of a browse table. The function BrowseData.ShowHelpTable displays
this overview in a browse table (using the help mode), and BrowseData.ShowHelpPager uses
NCurses.Pager.

Technically, the only difference between these two functions is that BrowseData.ShowHelpTable
supports the replay feature of NCurses.BrowseGeneric (4.3.1), whereas

Browse 46

BrowseData.ShowHelpPager simply does not call the pager in replay situations.
The action record BrowseData.actions.ShowHelp is associated with the user inputs ? or

F1 in standard NCurses.BrowseGeneric (4.3.1) applications, and it is recommended to do the
same in other NCurses.BrowseGeneric (4.3.1) applications. This action calls the function
stored in the component work.ShowHelp of the browse table, the default (i. e., the value of
BrowseData.defaults.work.ShowHelp) is BrowseData.ShowHelpTable.

Example
gap> xpl1.work.ShowHelp:= BrowseData.ShowHelpPager;;
gap> BrowseData.SetReplay("?Q");
gap> Unbind(xpl1.dynamic);
gap> NCurses.BrowseGeneric(xpl1);
gap> xpl1.work.ShowHelp:= BrowseData.ShowHelpTable;;
gap> BrowseData.SetReplay("?dQQ");
gap> Unbind(xpl1.dynamic);
gap> NCurses.BrowseGeneric(xpl1);
gap> BrowseData.SetReplay(false);
gap> Unbind(xpl1.dynamic);

5.4.5 BrowseData.actions.SaveWindow

. BrowseData.actions.SaveWindow (global variable)

The function BrowseData.actions.SaveWindow.action asks the user to enter the name of a
global GAP variable, using NCurses.GetLineFromUser (3.1.3). If this variable name is valid and if
no value is bound to this variable yet then the current contents of the window of the browse table that
is given as the argument is saved in this variable, using NCurses.SaveWin (2.2.11).

5.4.6 BrowseData.actions.QuitMode

. BrowseData.actions.QuitMode (global variable)

. BrowseData.actions.QuitTable (global variable)

The function BrowseData.actions.QuitMode.action unbinds the current mode in the browse
table that is given as its argument (see Section 5.2), so the browse table returns to the mode from which
this mode had been called. If the current mode is the only one, first the user is asked for confirmation
whether she really wants to quit the table; only if the Y key is hit, the last mode is unbound.

The function BrowseData.actions.QuitTable.action unbinds all modes in the browse table
that is given as its argument, without asking for confirmation; the effect is to exit the browse applica-
tion (see Section 5.3).

5.4.7 BrowseData.actions.Error

. BrowseData.actions.Error (global variable)

After NCurses.BrowseGeneric (4.3.1) has been called, interrupting by hitting the CTRL-C keys
is not possible. It is recommended to provide the action BrowseData.actions.Error for each mode
of a NCurses.BrowseGeneric (4.3.1) application, which enters a break loop and admits returning to
the application. The recommended user input for this action is the E key.

Chapter 6

Examples of Applications based on
NCurses.BrowseGeneric

This chapter introduces the operation Browse (6.1.1) and lists several examples how the function
NCurses.BrowseGeneric (4.3.1) can be utilized for rendering GAP related data or for playing
games. Each section describes the relevant GAP functions and briefly sketches the technical aspects
of the implementation; more details can be found in the GAP files, in the app directory of the package.

Only Section 6.4 describes a standard application in the sense of the introduction to Chapter 4,
perhaps except for a special function that is needed to compare table entries. The other examples in
this chapter require some of the programming described in Chapter 5.

The GAP examples in this chapter use the “replay” feature of NCurses.BrowseGeneric (4.3.1),
see Section 4.1. This means that the NCurses.BrowseGeneric (4.3.1) based function is called be-
tween two calls of BrowseData.SetReplay (5.4.2). If you want to paste these examples into the
GAP session with the mouse then do not paste the final BrowseData.SetReplay (5.4.2) call, since
NCurses.BrowseGeneric (4.3.1) would regard the additional input as a user interrupt.

6.1 The Operation Browse

6.1.1 Browse

. Browse(obj[, arec]) (operation)

This operation displays the GAP object obj in a nice, formatted way, similar to the operation
Display (Reference: Display). The difference is that Browse is intended to use ncurses facilities.

Currently there are methods for matrices (see Browse (6.2.2)), for character tables (see Browse
(6.3.1)) and for tables of marks (see Browse (6.4.1)).

6.2 Matrix Display

The GAP library provides several Display (Reference: Display) methods for matrices. In order to
cover the functionality of these methods, Browse provides the function NCurses.BrowseDenseList
(6.2.1) that uses the standard facilities of the function NCurses.BrowseGeneric (4.3.1), i. e., one can
scroll in the matrix, searching and sorting are provided etc.

47

Browse 48

The idea is to customize this function for different special cases, and to install corresponding
Browse (6.1.1) methods. Examples are methods for matrices over finite fields and residue class rings
of the rational integers, see Browse (6.2.2).

The code can be found in the file app/matdisp.g of the package.

6.2.1 NCurses.BrowseDenseList

. NCurses.BrowseDenseList(list, arec) (function)

Returns: nothing.
Let list be a dense list whose entries are lists, for example a matrix, and let arec be a record.

This function displays list in a window, as a two-dimensional array with row and column positions
as row and column labels, respectively.

The following components of arec are supported.

header
If bound, the value must be a valid value of the work.header component of a browse table,
see BrowseData.IsBrowseTable (4.2.3); for example, the value can be a list of strings. If this
component is not bound then the browse table has no header.

footer
If bound, the value must be a valid value of the work.footer component of a browse table,
see BrowseData.IsBrowseTable (4.2.3); for example, the value can be a list of strings. If this
component is not bound then the browse table has no footer.

convertEntry
If bound, the value must be a unary function that returns a string describing its argu-
ment. The default is the operation String (Reference: String). Another possible value is
NCurses.ReplaceZeroByDot, which returns the string "." if the argument is a zero element
in the sense of IsZero (Reference: IsZero), and returns the String (Reference: String) value
otherwise. For each entry in a row of list , the convertEntry value is shown in the browse
table.

labelsRow
If bound, the value must be a list of row label rows for list , as described in Section
BrowseData.IsBrowseTable (4.2.3). The default is [["1"], ["2"], ...].

labelsCol
If bound, the value must be a list of column label rows for list , as described in Section
BrowseData.IsBrowseTable (4.2.3). The default is [["1", "2", ...]].

The full functionality of the function NCurses.BrowseGeneric (4.3.1) is available.

6.2.2 Browse (for a list of lists)

. Browse(list) (method)

Returns: nothing.
Several methods for the operation Browse (6.1.1) are installed for the case that the argument is

a list of lists. These methods cover a default method for lists of lists and the Display (Reference:
Display) methods for matrices over finite fields and residue class rings of the rational integers. Note

Browse 49

that matrices over finite prime fields, small extension fields, and large extension fields are displayed
differently, and the same holds for the corresponding Browse (6.1.1) methods.

Example
gap> n:= [14, 14, 14, 14];;
gap> input:= Concatenation(n, n, n, "Q");; # ‘‘do nothing and quit’’
gap> BrowseData.SetReplay(input);
gap> Browse(RandomMat(10, 10, Integers));
gap> BrowseData.SetReplay(input);
gap> Browse(RandomMat(10, 10, GF(3)));
gap> BrowseData.SetReplay(input);
gap> Browse(RandomMat(10, 10, GF(4)));
gap> BrowseData.SetReplay(input);
gap> Browse(RandomMat(10, 10, Integers mod 6));
gap> BrowseData.SetReplay(input);
gap> Browse(RandomMat(10, 10, GF(NextPrimeInt(2^16))));
gap> BrowseData.SetReplay(input);
gap> Browse(RandomMat(10, 10, GF(2^20)));
gap> BrowseData.SetReplay(false);

6.3 Character Table Display

The GAP library provides a Display (Reference: Display) method for character tables that breaks
the table into columns fitting on the screen. Browse provides an alternative, using the standard facil-
ities of the function NCurses.BrowseGeneric (4.3.1), i. e., one can scroll in the matrix of character
values, searching and sorting are provided etc.

The Browse (6.1.1) method for character tables can be called instead of Display (Reference:
Display). For convenience, one can additionally make this function the default Display (Reference:
Display) method for character tables, by assigning it to the Display component in the global record
CharacterTableDisplayDefaults.User, see (Reference: Printing Character Tables); for ex-
ample, one can do this in one’s gaprc file, see (Reference: The gap.ini and gaprc files). (This can
be undone by unbinding the component CharacterTableDisplayDefaults.User.Display.)

The function BrowseDecompositionMatrix (6.3.2) can be used to display decomposition matri-
ces for Brauer character tables.

6.3.1 Browse (for character tables)

. Browse(tbl[, options]) (method)

This method displays the character table tbl in a window. The optional record options describes
what shall be displayed, the supported components and the default values are described in (Reference:
Printing Character Tables).

The full functionality of the function NCurses.BrowseGeneric (4.3.1) is available.
Example

gap> if TestPackageAvailability("CTblLib") = true then
> BrowseData.SetReplay(Concatenation(
> # scroll in the table
> "DRULdddddrrrrrlluu",
> # select an entry and move it around

Browse 50

> "seddrruuuddlll",
> # search for the pattern 135 (six times)
> "/135", [NCurses.keys.ENTER], "nnnnn",
> # deselect the entry, select the first column
> "qLsc",
> # sort and categorize by this column
> "sc",
> # select the first row, move down the selection
> "srdddd",
> # expand the selected category, scroll the selection down
> "xd",
> # and quit the application
> "Q"));
> Browse(CharacterTable("HN"));
> BrowseData.SetReplay(false);
> fi;

Implementation remarks: The first part of the code in the Browse (6.1.1) method for character
tables is almost identical with the code for extracting the data to be displayed from the input data in
the GAP library function CharacterTableDisplayDefault. The second part of the code transforms
these data into a browse table. Character names and (if applicable) indicator values are used as row
labels, and centralizer orders, power maps, and class names are used as column labels. The identifier
of the table is used as the static header. When an irrational entry is selected, a description of this entry
is shown in the dynamic footer.

The standard modes in BrowseData (5.4.1) (except the help mode) have been extended by three
new actions. The first two of them open pagers giving an overview of all irrationalities in the table,
or of all those irrationalities that have been shown on the screen in the current call, respectively.
The corresponding user inputs are the I and the I key. (The names assigned to the irrationalities
are generated column-wise. If one just scrolls through the table, without jumping, then these names
coincide with the names generated by the default Display (Reference: Display) method for character
tables; this is in general not the case, for example when a row-wise search in the table is performed.)
The third new action, which is associated with the P key, toggles the visibility status of the column
label rows for centralizer orders and power maps.

An individual minyx function does not only check whether the desired table fits into the window
but also whether a table with too high column labels (centralizer orders and power maps) would fit if
these labels get collapsed via the P key. In this case, the labels are automatically collapsed, and the P

key is disabled.
In order to keep the required space small also for large character tables, caching of formatted ma-

trix entries is disabled, and the strings to be displayed are computed on demand with a Main function
in the work component of the browse table. For the same reason, the constant height one for all table
rows is set in advance, so one need not inspect a whole character if only a few values of it shall be
shown.

Special functions are provided for sorting (concerning the comparison of character values, which
can be integers or irrationalities) and categorizing the table by a column (the value in the category row
involves the class name of the column in question).

The code can be found in the file app/ctbldisp.g of the package.

Browse 51

6.3.2 BrowseDecompositionMatrix

. BrowseDecompositionMatrix(modtbl[, b][, options]) (function)

This method displays the decomposition matrix of (the b -th block of) the Brauer character ta-
ble modtbl in a window. The arguments are the same as for LaTeXStringDecompositionMatrix
(Reference: LaTeXStringDecompositionMatrix).

The positions of the ordinary and modular irreducible characters are shown in the labels of the rows
and columns, respectively, that are indexed by these characters. When an entry in the decomposition
matrix is selected then information about the degrees of these characters is shown in the table footer.

The full functionality of the function NCurses.BrowseGeneric (4.3.1) is available.
Example

gap> BrowseData.SetReplay(Concatenation(
> # select the first entry
> "se",
> # scroll in the table
> "drrrr",
> # keep the table open for a while
> [14, 14, 14, 14, 14],
> # and quit the application
> "Q"));
gap> BrowseDecompositionMatrix(CharacterTable("J1") mod 2);
gap> BrowseData.SetReplay(false);

The code can be found in the file app/ctbldisp.g of the package.

6.4 Table of Marks Display

The GAP library provides a Display (Reference: Display) method for tables of marks that breaks
the table into columns fitting on the screen. Similar to the situation with character tables, see Sec-
tion 6.3, but with a much simpler implementation, Browse provides an alternative based on the func-
tion NCurses.BrowseGeneric (4.3.1).

Browse (6.1.1) can be called instead of Display (Reference: Display) for tables of marks,
cf. (Reference: Printing Tables of Marks).

6.4.1 Browse (for tables of marks)

. Browse(tom[, options]) (method)

This method displays the table of marks tom in a window. The optional record options describes
what shall be displayed, the supported components and the default values are described in (Reference:
Printing Tables of Marks).

The full functionality of the function NCurses.BrowseGeneric (4.3.1) is available.
Example

gap> if TestPackageAvailability("TomLib") = true then
> BrowseData.SetReplay(Concatenation(
> # scroll in the table
> "DDRRR",

Browse 52

> # search for the (exact) value 100 (three times)
> "/100",
> [NCurses.keys.DOWN, NCurses.keys.DOWN, NCurses.keys.RIGHT],
> [NCurses.keys.DOWN, NCurses.keys.DOWN, NCurses.keys.DOWN],
> [NCurses.keys.RIGHT, NCurses.keys.ENTER], "nn",
> # no more occurrences of 100, confirm
> [NCurses.keys.ENTER],
> # and quit the application
> "Q"));
> Browse(TableOfMarks("A10"));
> BrowseData.SetReplay(false);
> fi;

Implementation remarks: Rows and columns are indexed by their positions. The identifier of the
table is used as the static header, there is no footer.

In order to keep the required space small also for large tables of marks, caching of formatted matrix
entries is disabled, and the strings to be displayed are computed on demand with a Main function in
the work component of the browse table. For the same reason, the constant height one for the table
rows is set in advance. (For example, the table of marks of the group with identifier "O8+(2)", with
11171 rows and columns, can be shown with Browse (6.1.1) in a GAP session requiring about 100
MB.)

The code can be found in the file app/tomdisp.g of the package.

6.5 Table of Contents of AtlasRep

The GAP package AtlasRep (see [WPN+19]) is an interface to a database of representations and re-
lated data. The table of contents of this database can be displayed via the function DisplayAtlasInfo
(AtlasRep: DisplayAtlasInfo) of this package. The Browse package provides an alternative based
on the function NCurses.BrowseGeneric (4.3.1); one can scroll, search, and fetch data for later use.

6.5.1 BrowseAtlasInfo

. BrowseAtlasInfo([listofnames][,] ["contents", sources][,] [...]) (function)

. BrowseAtlasInfo(gapname[, std][, ...]) (function)

Returns: the list of “clicked” info records.
This function shows the information available via the GAP package AtlasRep in a browse table,

cf. Section (AtlasRep: Accessing Data via AtlasRep) in the AtlasRep manual.
The optional arguments can be used to restrict the table to core data or data extensions, or to

show an overview for one particular group. The arguments are the same as for DisplayAtlasInfo
(AtlasRep: DisplayAtlasInfo), see the documentation of this function for details. (Note that addi-
tional conditions such as IsPermGroup (Reference: IsPermGroup) can be entered also in the case
that no gapname is given. In this situation, the additional conditions are evaluated for the “second
level tables” that are opened by “clicking” on a table row or entry.)

When one “clicks” on one of the table rows or entries then a browse table with an overview of the
information available for this group is shown, and “clicking” on one of the rows in these tables adds
the corresponding info record (see OneAtlasGeneratingSetInfo (AtlasRep: OneAtlasGenerat-
ingSetInfo)) to the list of return values of BrowseAtlasInfo.

Browse 53

The full functionality of the function NCurses.BrowseGeneric (4.3.1) is available.
The following example shows how BrowseAtlasInfo can be used to fetch info records about

permutation representations of the alternating groups A5 and A6: We search for the group name "A5"
in the overview table, and the first cell in the table row for A5 becomes selected; hitting the ENTER

key causes a new window to be opened, with an overview of the data available for A5; moving down
two rows and hitting the ENTER key again causes the second representation to be added to the result
list; hitting Q closes the second window, and we are back in the overview table; we move the selection
down twice (to the row for the group A6), and choose the first representation for this group; finally we
leave the table, and the return value is the list with the data for the two representations.

Example
gap> d:= [NCurses.keys.DOWN];; r:= [NCurses.keys.RIGHT];;
gap> c:= [NCurses.keys.ENTER];;
gap> BrowseData.SetReplay(Concatenation(
> "/A5", # Find the string A5 ...
> d, d, r, # ... such that just the word matches,
> c, # start the search,
> c, # click the table entry A5,
> d, d, # move down two rows,
> c, # click the row for this representation,
> "Q", # quit the second level table,
> d, d, # move down two rows,
> c, # click the table entry A6,
> d, # move down one row,
> c, # click the first row,
> "Q", # quit the second level table,
> "Q")); # and quit the application.
gap> if IsBound(BrowseAtlasInfo) and IsBound(AtlasProgramInfo) then
> SetUserPreference("AtlasRep", "AtlasRepMarkNonCoreData", "");
> tworeps:= BrowseAtlasInfo();
> else
> tworeps:= [fail];
> fi;
gap> BrowseData.SetReplay(false);
gap> if fail in tworeps then
> Print("no access to the Web ATLAS\n");
> else
> Print(List(tworeps, x -> x.identifier[1]), "\n");
> fi;
["A5", "A6"]

Implementation remarks: The first browse table shown has a static header, no footer and row
labels, one row of column labels describing the type of data summarized in the columns.

Row and column separators are drawn as grids (cf. NCurses.Grid (2.2.8)) composed from the
special characters described in Section 2.1.6, using the component work.SpecialGrid of the browse
table, see BrowseData (5.4.1).

When a row is selected, the “click” functionality opens a new window (via a second level call
to NCurses.BrowseGeneric (4.3.1)), in which a browse table with the list of available data for the
given group is shown; in this table, “click” results in adding the info for the selected row to the result
list, and a message about this addition is shown in the footer row. One can choose further data, return

Browse 54

to the first browse table, and perhaps iterate the process for other groups. When the first level table is
left, the list of info records for the chosen data is returned.

For the two kinds of browse tables, the standard modes in BrowseData (5.4.1) (except the help
mode) have been extended by a new action that opens a pager giving an overview of all data that have
been chosen in the current call. The corresponding user input is the Y key.

This function is available only if the GAP package AtlasRep is available.
The code can be found in the file app/atlasbrowse.g of the package.

6.6 Access to GAP Manuals–a Variant

A Browse adapted way to access several manuals is to show the hierarchy of books, chapters, sections,
and subsections as collapsible category rows, and to regard the contents of each subsection as a data
row of a matrix with only one column.

This application is mainly intended as an example with table cells that exceed the screen, and as
an example with several category levels.

6.6.1 BrowseGapManuals

. BrowseGapManuals([start]) (function)

This function displays the contents of the GAP manuals (the main GAP manuals as well as the
loaded package manuals) in a window. The optional argument start describes the initial status, ad-
missible values are the strings "inline/collapsed", "inline/expanded", "pager/collapsed",
and "pager/expanded".

In the inline cases, the parts of the manuals are shown in the browse table, and in the pager case,
the parts of the manuals are shown in a different window when they are “clicked”, using the user’s
favourite help viewer, see (Reference: Changing the Help Viewer).

In the collapsed cases, all category rows are collapsed, and the first row is selected; typical next
steps are moving down the selection and expanding single category rows. In the expanded cases,
all category rows are expanded, and nothing is selected; a typical next step in the inline/expanded
case is a search for a string in the manuals. (Note that searching in quite slow: For viewing a part of
a manual, the file with the corresponding section is read into GAP, the text is formatted, the relevant
part is cut out from the section, perhaps markup is stripped off, and finally the search is performed in
the resulting strings.)

If no argument is given then the user is asked for selecting an initial status, using NCurses.Select
(3.1.2).

The full functionality of the function NCurses.BrowseGeneric (4.3.1) is available.
Example

gap> n:= [14, 14, 14];; # ‘‘do nothing’’
gap> BrowseData.SetReplay(Concatenation(
> "xdxd", # expand a Tutorial section
> n, "Q")); # and quit
gap> BrowseGapManuals("inline/collapsed");
gap> BrowseData.SetReplay(Concatenation(
> "/Browse", [NCurses.keys.ENTER], # search for "Browse"
> "xdxddxd", # expand a section
> n, "Q")); # and quit

Browse 55

gap> BrowseGapManuals("inline/collapsed");
gap> BrowseData.SetReplay(false);

Implementation remarks: The browse table has a dynamic header showing the name of the cur-
rently selected manual, no footer, no row or column labels, and exactly one column of fixed width
equal to the screen width. The category rows are precomputed, i. e., they do not arise from a table
column; this way, the contents of each data cell can be computed on demand, as soon as it is shown on
the screen, in particular the category hierarchy is computed without reading the manuals into GAP.
Also, the data rows are not cached. There is no return value. The heights of many cells are bigger than
the screen height, so scrolling is a mixture of scrolling to the next cell and scrolling inside a cell. The
different initial states are realized via executing different initial steps before the table is shown to the
user.

For the variants that show the manuals in a pager, the code temporarily replaces the show function
of the default viewer "screen" (see (Reference: Changing the Help Viewer)) by a function that
uses NCurses.Pager (3.1.4). Note that in the case that the manual bit in question fits into one screen,
the default show function writes this text directly to the screen, but this is used already by the browse
table.

The implementation should be regarded as a sketch.
For example, the markup available in the text file format of GAPDoc manuals (using ESC se-

quences) is stripped off instead of being transferred to the attribute lines that arise, because of the
highlighting problem mentioned in Section 2.2.3.

Some heuristics used in the code are due to deficiencies of the manual formats.
For the inline variant of the browse table, the titles of chapters, sections, and subsections are not

regarded as parts of the actual text since they appear already as category rows; however, the functions
of the GAP help system deliver the text together with these titles, so these lines must be stripped off
afterwards.

The category hierarchy representing the tables of contents is created from the manual.six files of
the manuals. These files do not contain enough information for determining whether several functions
define the same subsection, in the sense that there is a common description text after a series of manual
lines introducing different functions. In such cases, the browse table contains a category row for each
of these functions (with its own number), but the corresponding text appears only under the last of
these category rows, the data rows for the others are empty. (This problem does not occur in the
GAPDoc manual format because this introduces explicit subsection titles, involving only the first of
several function definitions.)

Also, index entries and sectioning entries in manual.six files of manuals in GAPDoc format are
not explicitly distinguished.

The code can be found in the file app/manual.g of the package.

6.7 Overview of Bibliographies

The function BrowseBibliography (6.7.1) can be used to turn the contents of bibliography files in
BibTeX or BibXMLext format (see (GAPDoc: The BibXMLext Format)) into a Browse table, such
that one can scroll in the list, search for entries, sort by year, sort and categorize by authors etc.

The default bibliography used by BrowseBibliography (6.7.1) is the bibliography of GAP re-
lated publications, see [GAP]. The Browse package contains a (perhaps outdated) version of this
bibliography. One can get an updated version as follows.

Browse 56

wget -N http://www.gap-system.org/Doc/Bib/gap-publishednicer.bib
The columns of the Browse table that is shown by BrowseBibliography (6.7.1) can be cus-

tomized, two examples for that are given by the functions BrowseBibliographySporadicSimple
(AtlasRep: BrowseBibliographySporadicSimple) and BrowseBibliographyGapPackages
(6.7.2).

The function BrowseMSC (6.7.3) shows an overview of the AMS Mathematics Subject Classifica-
tion codes.

6.7.1 BrowseBibliography

. BrowseBibliography([bibfiles]) (function)

Returns: a record as returned by ParseBibXMLExtFiles (GAPDoc: ParseBibXMLextFiles).
This function shows the list of bibliography entries in the files given by bibfiles , which may be

a string or a list of strings (denoting a filename or a list of filenames, respectively) or a record (see
below for the supported components).

If no argument is given then the file bibl/gap-publishednicer.bib in the Browse package
directory is taken, and "GAP Bibliography" is used as the header.

Another perhaps interesting data file that should be available in the GAP distribution is
doc/manualbib.xml. This file can be located as follows.

Example
gap> file:= Filename(DirectoriesLibrary("doc"), "manualbib.xml");;

Both BibTEX format and the XML based extended format provided by the GAPDoc package are
supported by BrowseBibliography, see Chapter (GAPDoc: Utilities for Bibliographies).

In the case of BibTEX format input, first a conversion to the extended format takes place, via
StringBibAsXMLext (GAPDoc: StringBibAsXMLext) and ParseBibXMLextString (GAPDoc:
ParseBibXMLextString). Note that syntactically incorrect entries are rejected in this conversion
–this is signaled with InfoBibTools (GAPDoc: InfoBibTools) warnings– and that only a subset of
the possible LATEX markup is recognized –other markup appears in the browse table except that the
leading backslash is removed.

In both cases of input, the problem arises that in visual mode, currently we can show only
ASCII characters (and the symbols in NCurses.lineDraw, but these are handled differently, see Sec-
tion 2.1.6). Therefore, we use the function SimplifiedUnicodeString (GAPDoc: SimplifiedUni-
codeString) for replacing other unicode characters by ASCII text.

The return value is a record as returned by ParseBibXMLExtFiles (GAPDoc: ParseBibXM-
LextFiles), its entries component corresponds to the bibliography entries that have been “clicked”
in visual mode. This record can be used as input for WriteBibFile (GAPDoc: WriteBibFile) or
WriteBibXMLextFile (GAPDoc: WriteBibXMLextFile), in order to produce a bibliography file,
or it can be used as input for StringBibXMLEntry (GAPDoc: StringBibXMLEntry), in order to
produce strings from the entries, in various formats.

The full functionality of the function NCurses.BrowseGeneric (4.3.1) is available.
Example

gap> # sort and categorize by year, scroll down, expand a category row
gap> BrowseData.SetReplay("scrrscsedddddxdddddQ");
gap> BrowseBibliography();;
gap> # sort & categorize by authors, expand all category rows, scroll down
gap> BrowseData.SetReplay("scscXseddddddQ");

Browse 57

gap> BrowseBibliography();;
gap> # sort and categorize by journal, search for a journal name, expand
gap> BrowseData.SetReplay(Concatenation("scrrrsc/J. Algebra",
> [NCurses.keys.ENTER], "nxdddQ"));
gap> BrowseBibliography();;
gap> BrowseData.SetReplay(false);

Implementation remarks: The browse table has a dynamic header (showing the number of entries,
which can vary when the table is restricted), no footer and row labels; one row of column labels is
given by the descriptions of the table columns (authors, title, year, journal, MSC code).

Row and column separators are drawn as grids (cf. NCurses.Grid (2.2.8)) composed from the
special characters described in Section 2.1.6, using the component work.SpecialGrid of the browse
table, see BrowseData (5.4.1).

For categorizing by authors (or by MSC codes), the sort parameter "split rows on
categorizing" is set to "yes", so the authors (codes) are distributed to different category rows,
hence each entry appears once for each of its authors (or its MSC codes) in the categorized table.
When a data row or an entry in a data row is selected, “click” adds the corresponding bibliographhy
entry to the result.

The width of the title column is preset; usually titles are too long for one line, and the con-
tents of this column is formatted as a paragraph, using the function FormatParagraph (GAPDoc:
FormatParagraph). For the authors and journal columns, maximal widths are prescribed, and
FormatParagraph (GAPDoc: FormatParagraph) is used for longer entries.

For four columns, the sort parameters are defined as follows: The authors and MSC code columns
do not become hidden when the table is categorized according to this column, sorting by the year
yields a descending order, and the category rows arising from these columns and the journal column
show the numbers of the data rows that belong to them.

Those standard modes in BrowseData (5.4.1) where an entry or a row of the table is selected
have been extended by three new actions, which open a pager showing the BibTEX, HTML, and Text
format of the selected entry, respectively. The corresponding user inputs are the VB, VH, and VT. If
the MSC code column is available then also the user input VM is admissible; it opens a pager showing
the descriptions of the MSC codes attached to the selected entry.

This function requires some of the utilities provided by the GAP package GAPDoc (see [LN07]),
such as FormatParagraph (GAPDoc: FormatParagraph), NormalizeNameAndKey (GAPDoc:
NormalizeNameAndKey), NormalizedNameAndKey (GAPDoc: NormalizedNameAndKey),
ParseBibFiles (GAPDoc: ParseBibFiles), ParseBibXMLextFiles (GAPDoc: ParseBibXM-
LextFiles), ParseBibXMLextString (GAPDoc: ParseBibXMLextString), RecBibXMLEntry
(GAPDoc: RecBibXMLEntry), and StringBibAsXMLext (GAPDoc: StringBibAsXMLext).

The code can be found in the file app/gapbibl.g of the package.
The browse table can be customized by entering a record as the argument of

BrowseBibliography, with the following supported components.

files
a nonempty list of filenames containing the data to be shown; there is no default for this com-
ponent.

filesshort
a list of the same length as the files component, the entries are strings which are shown in

Browse 58

the "sourcefilename" column of the table (if this column is present); the default is the list of
filenames.

filecontents
a list of the same length as the files component, the entries are strings which are shown as
category values when the table is categorized by the "sourcefilename" column; the default is
the list of filenames.

header
is the constant part of the header shown above the browse table, the default is the first filename.

columns
is a list of records that are valid as the second argument of DatabaseAttributeAdd (A.1.5),
where the first argument is a database id enumerator created from the bibliography entries in
the files in question. Each entry (and also the corresponding identifier) of this database id enu-
merator is a list of records obtained from ParseBibXMLextFiles (GAPDoc: ParseBibXM-
LextFiles) and RecBibXMLEntry (GAPDoc: RecBibXMLEntry), or from ParseBibFiles
(GAPDoc: ParseBibFiles), such that the list elements are regarded as equal, in the sense that
their fingerprints (see below) are equal. The records in the columns list are available for con-
structing the desired browse table, the actual appearance is controlled by the choice component
described below. Columns showing authors, title, year, journal, MSC code, and filename are
predefined and need not be listed here.

choice
a list of strings denoting the identifier components of those columns that shall actu-
ally be shown in the table, the default is ["authors", "title", "year", "journal",
"mrclass"].

fingerprint
a list of strings denoting component names of the entries of the database id enumerator that
is constructed from the data (see above); two data records are regarded as equal if the values
of these components are equal; the default is ["mrnumber", "title", "authorAsList",
"editorAsList", "author"].

sortKeyFunction
either fail or a function that takes a record as returned by RecBibXMLEntry (GAPDoc:
RecBibXMLEntry) and returns a list that is used for comparing and thus sorting the records;
the default is fail, which means that the rows of the table appear in the same ordering as in the
source files.

6.7.2 BrowseBibliographyGapPackages

. BrowseBibliographyGapPackages() (function)

Returns: a record as returned by BrowseBibliography (6.7.1).
This function collects the information from the *.bib and *bib.xml files in those subdirectories

of installed GAP packages which contain the package documentation, and shows it in a Browse table,
using the function BrowseBibliography (6.7.1).

This function is experimental. The result is not really satisfactory, for the following reasons.

Browse 59

• Duplicate entries may occur, due to subtle differences in various source files.

• The source files may contain more than what is actually cited in the package manuals.

• It may happen that some *.bib or *bib.xml file is accidentally distributed with the package
but is not intended to serve as package bibliography.

• The heuristics for rewriting LATEX code is of course not perfect; thus strange symbols may occur
in the Browse table.

6.7.3 BrowseMSC

. BrowseMSC([version]) (function)

Returns: nothing.
This function shows the valid MSC codes in a browse table that is categorized by the ..-XX

and the ...xx codes. (Use X for expanding all categories or X for expanding the currently selected
category.) Due to the categorization, only two columns of the table are visible, showing the codes and
their descriptions.

If version is given then it must be one of the numbers 2010 or 2020, meaning that the MSC2010
or MSC2020 codes are shown; the default for version is 2020.

6.8 Profiling GAP functions–a Variant

A Browse adapted way to evaluate profiling results is to show the overview that is printed by the GAP
function DisplayProfile (Reference: DisplayProfile) in a Browse table, which allows one to sort
the profiled functions according to the numbers of calls, the time spent, etc., and to search for certain
functions one is interested in.

6.8.1 BrowseProfile

. BrowseProfile([functions][,] [mincount, mintime]) (function)

The arguments and their meaning are the same as for the function DisplayProfile (Reference:
DisplayProfile), in the sense that the lines printed by that function correspond to the rows of the list
that is shown by BrowseProfile. Initially, the table is sorted in the same way as the list shown by
BrowseProfile; sorting the table by any of the first five columns will yield a non-increasing order of
the rows.

The threshold values mincount and mintime can be changed in visual mode via the user input E.
If mouse events are enabled (see NCurses.UseMouse (2.2.10)) then one can also use a mouse click
on the current parameter value shown in the table header in order to enter the mode for changing the
parameters.

When a row or an entry in a row is selected, “click” shows the code of the corresponding function
in a pager (see NCurses.Pager (3.1.4)) whenever this is possible, as follows. If the function was
read from a file then this file is opened, if the function was entered interactively then the code of the
function is shown in the format produced by Print (Reference: Print); other functions (for example
GAP kernel functions) cannot be shown, one gets an alert message (see NCurses.Alert (3.1.1)) in
such a case.

The full functionality of the function NCurses.BrowseGeneric (4.3.1) is available.

Browse 60

Example
gap> n:= [14, 14, 14, 14, 14];; # ‘‘do nothing’’
gap> ProfileOperationsAndMethods(true); # collect some data
gap> ConjugacyClasses(PrimitiveGroup(24, 1));;
gap> ProfileOperationsAndMethods(false);
gap> BrowseData.SetReplay(Concatenation(
> "e", # edit threshold paras
> [NCurses.keys.DC], "2", "\t", # replace 10000 by 20000
> [NCurses.keys.DC], "2", # replace 30 by 20
> [NCurses.keys.ENTER], # commit the changes
> "scso", # sort by column 1,
> n,
> "rso", # sort by column 2,
> n,
> "rso", # sort by column 3,
> n,
> "q", # deselect the column,
> "/Normalizer", [NCurses.keys.ENTER], # search for a function,
> n, n, n, "Q")); # and quit
gap> BrowseProfile();
gap> BrowseData.SetReplay(false);

Implementation remarks: The browse table has a dynamic header, which shows the current values
of mincount and mintime , and a dynamic footer, which shows the sums of counts and timings for
the rows in the table (label TOTAL) and if applicable the sums for the profiled functions not shown in
the table (label OTHER). There are no row labels, and the obvious column labels. There is no return
value.

The standard modes in BrowseData (5.4.1) (except the help mode) have been modified by adding
a new action for changing the threshold parameters mincount and mintime (user input E). The way
how this in implemented made it necessary to change the standard “reset” action (user input !) of the
table; note that resetting (a sorting or filtering of) the table must not make those rows visible that shall
be hidden because of the threshold parameters.

The code can be found in the file app/profile.g of the package.

6.9 Variables defined in GAP packages–a Variant

A Browse adapted way to list the variables that are defined in a GAP package is to show the overview
that is printed by the GAP function ShowPackageVariables (Reference: ShowPackageVariables)
in a Browse table.

6.9.1 BrowsePackageVariables

. BrowsePackageVariables(pkgname[, version][, arec]) (function)

Returns: nothing.
The arguments can be the same as for ShowPackageVariables (Reference: ShowPackageVari-

ables), that is, pkgname is the name of a GAP package, and the optional arguments version and
arec are a version number of this package and a record used for customizing the output, respectively.

Alternatively, the second argument can be the output info of PackageVariablesInfo
(Reference: PackageVariablesInfo) for the package in question, instead of the version number.

Browse 61

BrowsePackageVariables opens a browse table that shows the global variables that become
bound and the methods that become installed when GAP loads the package pkgname .

The table is categorized by the kinds of variables (new or redeclared operations, methods, info
classes, synonyms, other globals). The column “Doc.?” distinguishes undocumented and documented
variables, so one can use this column as a filter or for categorizing. The column “Filename” shows the
names of the package files. Clicking a selected row of the table opens the relevant package file at the
code in question.

The idea behind the argument info is that using the same arguments as for
ShowPackageVariables (Reference: ShowPackageVariables) does not allow one to apply
BrowsePackageVariables to packages that have been loaded before the Browse package. Thus
one can compute the underlying data info first, using PackageVariablesInfo (Reference:
PackageVariablesInfo), then load the Browse package, and finally call BrowsePackageVariables.

For example, the overview of package variables for Browse can be shown by starting GAP with-
out packages and then entering the following lines.

Example
gap> pkgname:= "Browse";;
gap> info:= PackageVariablesInfo(pkgname, "");;
gap> LoadPackage("Browse");;
gap> BrowsePackageVariables(pkgname, info);

If the arguments are the same as for ShowPackageVariables (Reference: ShowPackageVari-
ables) then this function is actually called, with the consequence that the package gets loaded when
BrowsePackageVariables is called. This is not the case if the output of PackageVariablesInfo
(Reference: PackageVariablesInfo) is entered as the second argument.

6.10 Configuring User preferences–a Variant

A Browse adapted way to show and edit GAP’s user preferences is to show the overview that is printed
by the GAP function ShowUserPreferences (Reference: ShowUserPreferences) in a Browse ta-
ble.

6.10.1 BrowseUserPreferences

. BrowseUserPreferences(package1, package2, ...) (function)

Returns: nothing.
The arguments are the same as for ShowUserPreferences (Reference: ShowUserPreferences),

that is, calling the function with no argument yields an overview of all known user preferences, and
if one or more strings package1 , . . . are given then only the user preferences for these packages are
shown.

BrowseUserPreferences opens a browse table with the following columns:

“Package”
contains the names of the GAP packages to which the user preferences belong,

“Pref. names”
contains the names of the user preferences, and

Browse 62

“Description”
contains the description texts from the DeclareUserPreference (Reference: De-
clareUserPreference) calls and the default values (if applicable), and the actual values.

When one “clicks” on one of the table rows or entries then the values of the user preference in
question can be edited. If a list of admissible values is known then this means that one can choose
from this list via NCurses.Select (3.1.2), otherwise one can enter the desired value as text.

The values of the user preferences are not changed before one closes the browse table. When
the table is left and if one has changed at least one value, one is asked whether the changes shall be
applied.

Example
gap> d:= [NCurses.keys.DOWN];;
gap> c:= [NCurses.keys.ENTER];;
gap> BrowseData.SetReplay(Concatenation(
> "/PackagesToLoad", # enter a search string,
> c, # start the search,
> c, # edit the entry (a list of choices),
> " ", d, # toggle the first four values,
> " ", d, #
> " ", d, #
> " ", d, #
> c, # submit the values,
> "Q", # quit the table,
> c)); # choose "cancel": do not apply the changes.
gap> BrowseUserPreferences();
gap> BrowseData.SetReplay(false);

The code can be found in the file app/userpref.g of the package.

6.11 Overview of GAP Data

The GAP system contains several data collections such as libraries of groups and character tables.
Clearly the function NCurses.BrowseGeneric (4.3.1) can be used to visualize interesting informa-
tion about such data collections, in the form of an “overview table” whose rows correspond to the
objects in the collection; each column of the table shows a piece of information about the objects.
(One possibility to create such overviews is given by BrowseTableFromDatabaseIdEnumerator
(A.2.2).)

6.11.1 BrowseGapData

. BrowseGapData() (function)

Returns: the return value of the chosen application if there is one.
The function BrowseGapData shows the choices in the list BrowseData.GapDataOverviews, in

a browse table with one column. When an entry is “clicked” then the associated function is called, and
the table of choices is closed.

The idea is that each entry of BrowseData.GapDataOverviews describes an overview of a data
collection.

The Browse package provides overviews of

Browse 63

• the current AMS Mathematics Subject Classification codes (see BrowseMSC (6.7.3)),

• the contents of the AtlasRep package [WPN+19] (only if this package is loaded, see Sec-
tion 6.5),

• the Conway polynomials in GAP (calls BrowseConwayPolynomials()),

• profile information for GAP functions (see Section 6.8),

• the list of GAP related bibliography entries in the file bibl/gap-publishednicer.bib of the
Browse package (see Section 6.7),

• the GAP manuals (see Section 6.6),

• GAP operations and methods (calls BrowseGapMethods()),

• the installed GAP packages (calls BrowseGapPackages()),

• GAP’s user preferences (see Section 6.10),

• the contents of the TomLib package [NMP13] (only if this package is loaded, see Section A.4),

Other GAP packages may add more overviews, using the function BrowseGapDataAdd (6.11.2).
For example, there are overviews of

• the bibliographies in the ATLAS of Finite Groups [CCN+85] and in the ATLAS of Brauer
Characters [JLPW95] (see BrowseBibliographySporadicSimple (AtlasRep: BrowseBibli-
ographySporadicSimple)),

• atomic irrationalities that occur in character tables in the ATLAS of Finite Groups [CCN+85]
or the ATLAS of Brauer Characters [JLPW95] (see Section BrowseCommonIrrationalities
(CTblLib: BrowseCommonIrrationalities)),

• the differences between the versions of the character table data in the CTblLib package (see
Section BrowseCTblLibDifferences (CTblLib: BrowseCTblLibDifferences)),

• the information in the GAP Character Table Library (see Section BrowseCTblLibInfo
(CTblLib: BrowseCTblLibInfo)),

• an overview of minimal degrees of representations of groups from the ATLAS of Group Repre-
sentations (see Section BrowseMinimalDegrees (AtlasRep: BrowseMinimalDegrees)).

Except that always one table cell is selected, the full functionality of the function
NCurses.BrowseGeneric (4.3.1) is available.

Example
gap> n:= [14, 14, 14];; # ‘‘do nothing’’
gap> # open the overview of Conway polynomials
gap> BrowseData.SetReplay(Concatenation("/Conway Polynomials",
> [NCurses.keys.ENTER, NCurses.keys.ENTER], "srdddd", n, "Q"));
gap> BrowseGapData();;
gap> # open the overview of GAP packages
gap> BrowseData.SetReplay(Concatenation("/GAP Packages",
> [NCurses.keys.ENTER, NCurses.keys.ENTER], "/Browse",

Browse 64

> [NCurses.keys.ENTER], "n", n, "Q"));
gap> BrowseGapData();;
gap> BrowseData.SetReplay(false);

Implementation remarks: The browse table has a static header, a dynamic footer showing the
description of the currently selected entry, no row or column labels, and exactly one column of fixed
width equal to the screen width. If the chosen application has a return value then this is returned by
BrowseGapData, otherwise nothing is returned. The component work.SpecialGrid of the browse
table is used to draw a border around the list of choices and another border around the footer. Only
one mode is needed in which an entry is selected.

The code can be found in the file app/gapdata.g of the package.

6.11.2 BrowseGapDataAdd

. BrowseGapDataAdd(title, call[, ret], documentation) (function)

This function extends the list BrowseData.GapDataOverviews by a new entry. The list is used
by BrowseGapData (6.11.1).

title must be a string of length at most 76; it will be shown in the browse table that is opened
by BrowseGapData (6.11.1). call must be a function that takes no arguments; it will be called when
title is “clicked”. ret , if given, must be true if call has a return value and if BrowseGapData
(6.11.1) shall return this value, and false otherwise. documentation must be a string that describes
what happens when the function call is called; it will be shown in the footer of the table opened by
BrowseGapData (6.11.1) when title is selected.

6.12 Navigating in a Directory Tree

A natural way to visualize the contents of a directory is via a tree whose leaves denote
plain files, and the other vertices denote subdirectories. Browse provides a function based on
NCurses.BrowseGeneric (4.3.1) for displaying such trees; the leaves correspond to the data rows,
and the other vertices correspond to category rows.

6.12.1 BrowseDirectory

. BrowseDirectory([dir]) (function)

Returns: a list of the “clicked” filenames.
If no argument is given then the contents of the current directory is shown, see DirectoryCurrent

(Reference: DirectoryCurrent). If a directory object dir (see Directory (Reference: Directory))
is given as the only argument then the contents of this directory is shown; alternatively, dir may also
be a string which is then understood as a directory path.

The full functionality of the function NCurses.BrowseGeneric (4.3.1) is available.
Example

gap> n:= [14, 14, 14];; # ‘‘do nothing’’
gap> BrowseData.SetReplay(Concatenation(
> "q", # leave the selection
> "X", # expand all categories
> "/filetree", [NCurses.keys.ENTER], # search for "filetree"

Browse 65

> n, "Q")); # and quit
gap> dir:= DirectoriesPackageLibrary("Browse", "")[1];;
gap> if IsBound(BrowseDirectory) then
> BrowseDirectory(dir);
> fi;
gap> BrowseData.SetReplay(false);

Implementation remarks: The browse table has a static header, no footer, no row or column labels,
and exactly one data column. The category rows are precomputed, i. e., they do not arise from a table
column. The tree structure is visualized via a special grid that is shown in the separator column in
front of the table column; the width of this column is computed from the largest nesting depth of files.
For technical reasons, category rows representing empty directories are realized via “dummy” table
rows; a special ShowTables function guarantees that these rows are always hidden.

When a data row or an entry in this row is selected, “click” adds the corresponding filename to
the result list. Initially, the first row is selected. (So if you want to search in the whole tree then you
should quit this selection by hitting the Q key.)

The category hierarchy is computed using DirectoryContents (Reference: DirectoryCon-
tents).

This function is available only if the GAP package IO (see [Neu07]) is available, because the
check for cycles uses the function IO_stat (IO: IO_stat) from this package.

The code can be found in the file app/filetree.g of the package.

6.13 A Puzzle

We consider an m by n rectangle of squares numbered from 1 to mn− 1, the bottom right square is
left empty. The numbered squares are permuted by successively exchanging the empty square and a
neighboring square such that in the end, the empty cell is again in the bottom right corner.

7 13 14 2
1 4 15 11
6 8 3 9
10 5 12

The aim of the game is to order the numbered squares via these moves.
For the case m = n = 4, the puzzle is (erroneously?) known under the name “Sam Loyd’s Fifteen”,

see [Bog] and [OR] for more information and references.

6.13.1 BrowsePuzzle

. BrowsePuzzle([m, n[, pi]]) (function)

Returns: a record describing the initial and final status of the puzzle.
This function shows the rectangle in a window.
The arguments m and n are the dimensions of the rectangle, the default for both values is 4. The

initial distribution of the numbers in the squares can be prescribed via a permutation pi , the default is
a random element in the alternating group on the points 1,2, . . . ,mn −1. (Note that the game has not
always a solution.)

In any case, the empty cell is selected, and the selection can be moved to neighboring cells via the
arrow keys, or to any place in the same row or column via a mouse click.

Browse 66

The return value is a record with the components dim (the pair [m, n]), init (the initial per-
mutation), final (the final permutation), and steps (the number of transpositions that were needed).

Example
gap> BrowseData.SetReplay(Concatenation(
> BrowsePuzzleSolution.steps, "Q"));
gap> BrowsePuzzle(4, 4, BrowsePuzzleSolution.init);;
gap> BrowseData.SetReplay(false);

An implementation using only mouse clicks but no key strokes is available in the GAP package XGAP
(see [CN04]).

Implementation remarks: The game board is implemented via a browse table, without row and
column labels, with static header, dynamic footer, and individual minyx function. Only one mode is
needed in which one cell is selected, and besides the standard actions for quitting the table, asking
for help, and saving the current window contents, only the four moves via the arrow keys and mouse
clicks are admissible.

Some standard NCurses.BrowseGeneric (4.3.1) functionality, such as scrolling, selecting, and
searching, are not available in this application.

The code can be found in the file app/puzzle.g of the package.

6.14 Peg Solitaire

Peg solitaire is a board game for one player. The game board consists of several holes some of which
contain pegs. In each step of the game, one peg is moved horizontally or vertically to an empty hole
at distance two, by jumping over a neighboring peg which is then removed from the board.

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

We consider the game that in the beginning, exactly one hole is empty, and in the end, exactly one
peg is left.

6.14.1 PegSolitaire

. PegSolitaire([format][,] [nrholes][,] [twoModes]) (function)

This function shows the game board in a window.
If the argument format is one of the strings "small" or "large" then small or large pegs are

shown, the default is "small".
Three shapes of the game board are supported, with 33, 37, and 45 holes, respectively; this number

can be specified via the argument nrholes , the default is 33. In the cases of 33 and 45 holes, the
position of both the initial hole and the destination of the final peg is the middle cell, whereas in the
case of 37 holes, the initial hole is in the top left position and the final peg has to be placed in the
bottom right position.

Browse 67

If a Boolean twoModes is entered as an argument then it determines whether a browse table with
one or two modes is used; the default false yields a browse table with only one mode.

In any case, one cell of the board is selected, and the selection can be moved to neighboring cells
via the arrow keys. A peg in the selected cell jumps over a neighboring peg to an adjacent hole via the
j key followed by the appropriate arrow key.

Example
gap> for n in [33, 37, 45] do
> BrowseData.SetReplay(Concatenation(
> PegSolitaireSolutions.(String(n)), "Q"));
> PegSolitaire(n);
> PegSolitaire("large", n);
> PegSolitaire(n, true);
> PegSolitaire("large", n, true);
> od;
gap> BrowseData.SetReplay(false);

For more information such as variations of the game and references, see [Köla]. Also the solutions
stored in the variable PegSolitaireSolutions have been taken from this web page.

Implementation remarks: The game board is implemented via a browse table, without row and
column labels, with static header, dynamic footer, and individual minyx function. In fact, two imple-
mentations are provided. The first one needs only one mode in which one cell is selected; moving the
selection and jumping with the peg in the selected cell in one of the four directions are the supported
user actions. The second implementation needs two modes, one for moving the selection and one for
jumping.

Some standard NCurses.BrowseGeneric (4.3.1) functionality, such as scrolling, selecting, and
searching, are not available in this application.

The code can be found in the file app/solitair.g of the package.

6.15 Rubik’s Cube

We visualize the transformations of Rubik’s magic cube in a model that is given by “unfolding” the
faces and numbering them as follows.

1 2 3
4 top 5
6 7 8

9 10 11 17 18 19 25 26 27 33 34 35
12 left 13 20 front 21 28 right 29 36 back 37
14 15 16 22 23 24 30 31 32 38 39 40

41 42 43
44 down 45
46 47 48

Clockwise turns of the six layers (top, left, front, right, back, and down) are represented by the
following permutations.

Example
gap> cubegens := [
> (1, 3, 8, 6)(2, 5, 7, 4)(9,33,25,17)(10,34,26,18)(11,35,27,19),

Browse 68

> (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35),
> (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11),
> (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24),
> (33,35,40,38)(34,37,39,36)(3, 9,46,32)(2,12,47,29)(1,14,48,27),
> (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)
>];;

GAP computations analyzing this permutation group have been part of the announcements of GAP 3
releases. For a GAP 4 equivalent, see [Sch]. For more information and references (not GAP related)
about Rubik’s cube, see [Kölb].

6.15.1 BrowseRubiksCube

. BrowseRubiksCube([format][,] [pi]) (function)

This function shows the model of the cube in a window.
If the argument format is one of the strings "small" or "large" then small or large cells are

shown, the default is "small".
The argument pi is the initial permutation of the faces, the default is a random permutation in the

cube group, see (Reference: Random).
Supported user inputs are the keys T, L, F, R, B, and D for clockwise turns of the six layers, and the

corresponding capital letters for counter-clockwise turns. If the terminal supports colors, according to
the global variable NCurses.attrs.has_colors (2.2.1), the input S switches between a screen that
shows only the colors of the faces and a screen that shows the numbers; the color screen is the default.

The return value is a record with the components inputs (a string describing the user inputs),
init, and final (the initial and final permutation of the faces, respectively). (The inputs component
can be used for the replay feature, see the example below.)

In the following example, a word in terms of the generators is used to initialize the browse table,
and then the letters in this word are used as a series of input steps, except that in between, the display
is switched once from colors to numbers and back.

Example
gap> choice:= List([1 .. 30], i -> Random([1 .. 6]));;
gap> input:= List("tlfrbd", IntChar){ choice };;
gap> BrowseData.SetReplay(Concatenation(
> input{ [1 .. 20] },
> "s", # switch to number display
> input{ [21 .. 25] },
> "s", # switch to color display
> input{ [26 .. 30] },
> "Q"));; # quit the browse table
gap> BrowseRubiksCube(Product(cubegens{ choice }));;
gap> BrowseRubiksCube("large", Product(cubegens{ choice }));;
gap> BrowseData.SetReplay(false);

Implementation remarks: The cube is implemented via a browse table, without row and column labels,
with static header, dynamic footer, and individual minyx function. Only one mode is needed, and
besides the standard actions for quitting the table, asking for help, and saving the current window
contents, only the twelve moves and the switch between color and number display are admissible.

Browse 69

Switching between the two display formats is implemented via a function work.Main, so this
relies on not caching the formatted cells in work.main.

Row and column separators of the browse table are whitespace of height and width one. The
separating lines are drawn using an individual SpecialGrid function in the browse table. Note that
the relevant cells do not form a rectangular array.

Some standard NCurses.BrowseGeneric (4.3.1) functionality, such as scrolling, selecting, and
searching, are not available in this application.

The code can be found in the file app/rubik.g of the package.

6.16 Changing Sides

We consider a 5 by 5 board of squares filled with two types of stones, as follows. The square in the
middle is left empty.

× × × × ×
◦ × × × ×
◦ ◦ × ×
◦ ◦ ◦ ◦ ×
◦ ◦ ◦ ◦ ◦

The aim of the game is to exchange the two types of stones via a sequence of single steps that
move one stone to the empty position on the board. Only those moves are allowed that increase or
decrease one coordinate by 2 and increase or decrease the other by 1; these are the allowed moves of
the knight in chess.

This game has been part of the MacTutor system [OR00].

6.16.1 BrowseChangeSides

. BrowseChangeSides() (function)

This function shows the game board in a window.
Each move is encoded as a sequence of three arrow keys; there are 24 admissible inputs.

Example
gap> for entry in BrowseChangeSidesSolutions do
> BrowseData.SetReplay(Concatenation(entry, "Q"));
> BrowseChangeSides();
> od;
gap> BrowseData.SetReplay(false);

Implementation remarks: The game board is implemented via a browse table, without row and
column labels, with static header, dynamic footer, and individual minyx function. Only one mode is
needed, and besides the standard actions for quitting the table, asking for help, and saving the current
window contents, only moves via combinations of the four arrow keys are admissible.

The separating lines are drawn using an individual SpecialGrid function in the browse table.
Some standard NCurses.BrowseGeneric (4.3.1) functionality, such as scrolling, selecting, and

searching, are not available in this application.
The code can be found in the file app/knight.g of the package.

Browse 70

6.17 Sudoku

We consider a 9 by 9 board of squares. Some squares are initially filled with numbers from 1 to 9.
The aim of the game is to fill the empty squares in such a way that each row, each column, and each
of the marked 3 by 3 subsquares contains all numbers from 1 to 9. A proper Sudoku game is defined
as one with a unique solution. Here is an example.

5

1 5 4 6 2

9 5 3

6 4

8

8 9 5 3

5

4 7 2

9 1 8

The Browse package contains functions to create, play and solve these games. There are basic
command line functions for this, which we describe first, and there is a user interface PlaySudoku
(6.17.8) which is implemented using the generic browse functionality described in Chapter 4.

6.17.1 Sudoku.Init

. Sudoku.Init([arg]) (function)

Returns: A record describing a Sudoku board or fail.
This function constructs a record describing a Sudoku game. This is used by the other functions

described below. There a several possibilities for the argument arg .

arg is a string
The entries of a Sudoku board are numbered row-wise from 1 to 81. A board is encoded as a
string as follows. If one of the numbers 1 to 9 is in entry i then the corresponding digit character
is written in position i of the string. If an entry is empty any character, except ’1’ to ’9’ or
’|’ is written in position i of the string. Trailing empty entries can be left out. Afterwards
’|’-characters can be inserted in the string (for example to mark line ends). Such strings can
be used for arg .

arg is a matrix
A Sudoku board can also be encoded as a 9 by 9-matrix, that is a list of 9 lists of length 9, whose
(i,j)-th entry is the (i,j)-th entry of the board as integer if it is not empty. Empty entries of the
board correspond to unbound entries in the matrix.

arg is a list of integers
Instead of the matrix just described the argument can also be given by the concatenation of the
rows of the matrix (so, a list of integers and holes).

Example
gap> game := Sudoku.Init(" 3 68 | 85 1 69| 97 53| 79 |\
> 6 47 |45 2 |89 2 1 | 4 8 7 | ");;

Browse 71

6.17.2 Sudoku.Place

. Sudoku.Place(game, i, n) (function)

. Sudoku.Remove(game, i) (function)

Returns: The changed game .
Here game is a record describing a Sudoku board, as returned by Sudoku.Init (6.17.1). The

argument i is the number of an entry, counted row-wise from 1 to 81, and n is an integer from 1 to 9
to be placed on the board. These functions change game .

Sudoku.Place tries to place number n on entry i . It is an error if entry i is not empty. The
number is not placed if n is already used in the row, column or subsquare of entry i . In this case the
component game.impossible is bound.

Sudoku.Remove tries to remove the number placed on position i of the board. It does not change
the board if entry i is empty, or if entry i was given when the board game was created. In the latter
case game.impossible is bound.

Example
gap> game := Sudoku.Init(" 3 68 | 85 1 69| 97 53| 79 |\
> 6 47 |45 2 |89 2 1 | 4 8 7 | ");;
gap> Sudoku.Place(game, 1, 3);; # 3 is already in first row
gap> IsBound(game.impossible);
true
gap> Sudoku.Place(game, 1, 2);; # 2 is not in row, col or subsquare
gap> IsBound(game.impossible);
false

6.17.3 Sudoku.RandomGame

. Sudoku.RandomGame([seed]) (function)

Returns: A pair [str, seed] of string and seed.
The optional argument seed , if given, must be an integer. If not given some random integer from

the current GAP session is used. This function returns a random proper Sudoku game, where the
board is described by a string str, as explained in Sudoku.Init (6.17.1). With the same seed the
same board is returned.

The games computed by this function have the property that after removing any given entry the
puzzle does no longer have a unique solution.

Example
gap> Sudoku.RandomGame(5833750);
[" 1 2 43 2 68 72 8 6 2 1 9 8 8 3 9 \
47 3 7 18 ", 5833750]
gap> last = Sudoku.RandomGame(last[2]);
true

6.17.4 Sudoku.SimpleDisplay

. Sudoku.SimpleDisplay(game) (function)

Displays a Sudoku board on the terminal. (But see PlaySudoku (6.17.8) for a fancier interface.)
Example

gap> game := Sudoku.Init(" 3 68 | 85 1 69| 97 53| 79 |\
> 6 47 |45 2 |89 2 1 | 4 8 7 | ");;

Browse 72

gap> Sudoku.SimpleDisplay(game);
3 | 6|8
85| 1| 69
9|7 | 53

| |79

6 | 47|
45 | 2 |

89 | 2| 1
4 | 8| 7

| |

6.17.5 Sudoku.DisplayString

. Sudoku.DisplayString(game) (function)

The string returned by this function can be used to display the Sudoku board game on the terminal,
using PrintFormattedString (GAPDoc: PrintFormattedString). The result depends on the value
of GAPInfo.TermEncoding.

Example
gap> game := Sudoku.Init(" 3 68 | 85 1 69| 97 53| 79 |\
> 6 47 |45 2 |89 2 1 | 4 8 7 | ");;
gap> str:= Sudoku.DisplayString(game);;
gap> PrintFormattedString(str);

+===+===+===+===+===+===+===+===+===+
| | 3 | | | | 6 | 8 | | |
+---+---+---+---+---+---+---+---+---+
| | 8 | 5 | | | 1 | | 6 | 9 |
+---+---+---+---+---+---+---+---+---+
| | | 9 | 7 | | | | 5 | 3 |
+===+===+===+===+===+===+===+===+===+
| | | | | | | 7 | 9 | |
+---+---+---+---+---+---+---+---+---+
| | 6 | | | 4 | 7 | | | |
+---+---+---+---+---+---+---+---+---+
| 4 | 5 | | | 2 | | | | |
+===+===+===+===+===+===+===+===+===+
| 8 | 9 | | | | 2 | | 1 | |
+---+---+---+---+---+---+---+---+---+
| | 4 | | | | 8 | | 7 | |
+---+---+---+---+---+---+---+---+---+
| | | | | | | | | |
+===+===+===+===+===+===+===+===+===+

6.17.6 Sudoku.OneSolution

. Sudoku.OneSolution(game) (function)

Returns: A completed Sudoku board that solves game , or fail.

Browse 73

Here game must be a Sudoku board as returned by Sudoku.Init (6.17.1). It is not necessary that
game describes a proper Sudoku game (has a unique solution). It may have several solutions, then one
random solution is returned. Or it may have no solution, then fail is returned.

Example
gap> Sudoku.SimpleDisplay(Sudoku.OneSolution(Sudoku.Init(" 3")));
493|876|251
861|542|739
527|193|648

942|618|573
156|739|482
738|425|916

289|354|167
375|961|824
614|287|395

6.17.7 Sudoku.UniqueSolution

. Sudoku.UniqueSolution(game) (function)

Returns: A completed Sudoku board that solves game , or false, or fail.
Here game must be a Sudoku board as returned by Sudoku.Init (6.17.1). It is not necessary that

game describes a proper Sudoku game. If it has several solutions, then false is returned. If it has no
solution, then fail is returned. Otherwise a board with the unique solution is returned.

Example
gap> s := " 5 | 154 6 2 |9 5 3 |6 4 | 8 |8 9 53\
> | 5 | 4 7 2| 91 8 ";;
gap> sol := Sudoku.UniqueSolution(Sudoku.Init(s));;
gap> Sudoku.SimpleDisplay(sol);
438|219|576
715|436|928
962|758|314

694|573|281
153|862|749
827|941|653

281|695|437
546|387|192
379|124|865

6.17.8 PlaySudoku

. PlaySudoku([arg]) (function)

Returns: A record describing the latest status of a Sudoku board.
This function allows one to solve Sudoku puzzles interactively. There are several possibilities for

the optional argument arg . It can either be a string, matrix or list of holes and integers as described
in Sudoku.Init (6.17.1), or a board as returned by Sudoku.Init (6.17.1). Furthermore arg can be
an integer or not be given, in that case Sudoku.RandomGame (6.17.3) is called to produce a random
game.

Browse 74

The usage of this function is self-explanatory, pressing the ? key displays a help screen. Here, we
mention two keys with a particular action: Pressing the H key you get a hint, either an empty entry
is filled or the program tells you that there is no solution (so you must delete some entries and try
others). Pressing the S key the puzzle is solved by the program or it tells you that there is no or no
unique solution.

Implementation remarks: The game board is implemented via a browse table, without row and
column labels, with static header, dynamic footer, and individual minyx function. Two modes are
supported, with the standard actions for quitting the table and asking for help; one cell is selected in
each mode. The first mode provides actions for moving the selected cell via arrow keys, for changing
the value in the selected cell, for getting a hint or the (unique) solution. (Initial entries of the matrix
cannot be changed via user input. They are shown in boldface.) The second mode serves for error
handling: When the user enters an invalid number, i. e., a number that occurs already in the current
row or column or subsquare, then the application switches to this mode, which causes that a message
is shown in the footer, and the invalid entry is shown in red and blinking; similarly, error mode is
entered if a hint or solution does not exist.

The separating lines are drawn using an individual SpecialGrid function in the browse table,
since they cannot be specified within the generic browse table functions.

Some standard NCurses.BrowseGeneric (4.3.1) functionality, such as scrolling, selecting, and
searching, are not available in this application.

The code can be found in the file app/sudoku.g of the package.

6.17.9 Sudoku.HTMLGame

. Sudoku.HTMLGame(game) (function)

. Sudoku.LaTeXGame(game) (function)

Returns: A string with HTML or LATEX code, respectively.
The argument of these functions is a record describing a Sudoku game. These functions return

code for including the current status of the board into a webpage or a LATEX document.

6.18 Managing simple Workflows

The idea behind the function BrowseWizard (6.18.1) is that one wants to collect interactively informa-
tion from a user, by asking a series of questions. Default answers for these questions can be provided,
perhaps depending on the answers to earlier questions. The questions and answers are shown in a
browse table, the current question is highlighted, and this selection is automatically moved to the next
question after a valid answer has been entered. One may move up in the table, in order to change
previous answers, but one can move down only to the first unanswered question. When the browse
table gets closed (by submitting or canceling), a record with the collected information is returned.

6.18.1 BrowseWizard

. BrowseWizard(data) (function)

Returns: a record.
The argument data must be a record with the components steps (a list of records, each repre-

senting one step in the questionnaire) and defaults (a record). The component header, if present,
must be a string that is used as a header line; the default for it is "BrowseWizard".

Browse 75

BrowseWizard opens a browse table whose rows correspond to the entries of data.steps. The
components of data.defaults are used as default values if they are present.

Beginning with the first entry, the user is asked to enter information, one record component per
entry; this may be done by entering some text, by choosing keys from a given list of choices, or by
editing a list of tabular data. Then one can go to the next step by hitting the ARROWDOWN key (or by
entering D), and edit this step by hitting the ENTER key. One can also go back to previous steps and
edit them again.

Some steps may be hidden from the user, depending on the information that has been entered for
the previous steps. The hide conditions are evaluated after each step.

An implementation of a questionnaire is given by BrowseData.ChooseSimpleGroupQuestions,
which is used in the following example. The idea is to choose the description of a fi-
nite simple group by entering first the type (cyclic, alternating, classical, exceptional, or
sporadic) and then the relevant parameter values. The information is then evaluated by
BrowseData.InterpretSimpleGroupDescription, which returns a description that fits to the
return values of IsomorphismTypeInfoFiniteSimpleGroup (Reference: IsomorphismTypeIn-
foFiniteSimpleGroup). For example, this function identifies the group PSL(4,2) as A8.)

Example
gap> d:= [NCurses.keys.DOWN];; r:= [NCurses.keys.RIGHT];;
gap> c:= [NCurses.keys.ENTER];;
gap> BrowseData.SetReplay(Concatenation(
> c, # confirm the initial message
> d, # enter the first step
> d, d, # go to the choice of classical groups
> c, # confirm this choice
> c, # enter the next step
> d, d, # go to the choice of unitary groups
> c, # confirm this choice
> c, # enter the next step
> "5", c, # enter the dimension and confirm
> c, # enter the next step
> "3", c, # enter the field size and confirm
> c)); # confirm all choices (closes the table)
gap> res:= BrowseWizard(rec(
> steps:= BrowseData.ChooseSimpleGroupQuestions,
> defaults:= rec(),
> header:= "Choose a finite simple group"));;
gap> BrowseData.SetReplay(false);
gap> BrowseData.InterpretSimpleGroupDescription(res);
rec(parameter := [4, 3], requestedname := "U5(3)", series := "2A",

shortname := "U5(3)")

The supported components of each entry in data.steps are as follows.

key a string, the name of the component of the result record that gets bound for this entry.

description
a string describing what information shall be entered.

type
one of "editstring", "edittable", "key", "keys", "ok", "okcancel",
"submitcancelcontinue".

Browse 76

keys (only if type is "key" or "keys")
either the list of pairs [key, alias] such that the user shall choose from the list of key
values (strings), and the alias values (any GAP object) corresponding to the chosen values are
entered into the result record, or a function that takes steps and the current result record as its
arguments and returns the desired list of pairs.

validation (optional)
a function that takes steps , the current result record, and a result candidate for the current
step as its arguments; it returns true if the result candidate is valid, and a string describing the
reason for the failure otherwise.

default (optional)
depending on the type value, the alias part(s) of the chosen key(s) or the string or the list
of data records, or alternatively a function that takes steps and the current result record as its
arguments and returns the desired value. If the key component of data.defaults is bound and
valid (according to the validation function) then this value is taken as the default; otherwise,
the default component of the entry is taken as the default.

isVisible (optional)
a function that takes steps and the current result record as its arguments and returns true if
the step shall be visible, and false otherwise,

If the type value of a step is "edittable" then also the following components are mandatory.

list
the current list of records to be edited; only strings are supported as the values of the record
components.

mapping
a list of pairs [component, label] such that component is the name of a component in the
entries in list, and label is the label shown in the dialog box for editing the record.

choices (optional)
a list of records which can be added to list.

rectodisp
a function that takes a record from list and returns a string that is shown in the browse table.

title
a string, the header line of the dialog box for editing an entry.

The code of BrowseWizard, BrowseData.ChooseSimpleGroupQuestions, and
BrowseData.InterpretSimpleGroupDescription can be found in the file app/wizard.g
of the package.

6.19 Utility for GAP Demos

This application can be used with GAP if the user interface has readline support. The purpose is to
simplify the typing during a demonstration of GAP commands.

Browse 77

The file format to specify GAP code for a demonstration is very simple: it contains blocks of lines
with GAP input, separated by lines starting with the sequence #%. Comments in such a file can be
added to one or several lines starting with #%. Here is the content of an example file demo.demo:

#% Add comments after #% characters at the beginning of a line.
#% A comment can have several lines.
#% Here is a multi-line input block:
g := MathieuGroup(11);;
cl := ConjugacyClasses(g);
#% Calling a help page
?MathieuGroup
#% The next line contains a comment in the GAP session:
a := 12;; b := 13;; # assign two numbers
#%
a*b;
#%

(Single % in the beginning of a line will also work as separators.)
A demonstration can be loaded into a GAP session with the command

6.19.1 LoadDemoFile

. LoadDemoFile(demoname, demofile[, singleline]) (function)

Returns: Nothing.
This function loads a demo file in the format described above. The argument demoname is a string

containing a name for the demo, and demofile is the file name containing the demo.
If the optional argument singleline is given and its value is true, the demo behaves differently

with respect to input blocks that span several lines. By default full blocks are treated as a single input
line for readline (maybe spanning several physical lines in the terminal). If singleline is true
then all input lines of a block except the last one are sent to GAP and are evaluated automatically
before the last line of the block is displayed.

Example
gap> dirs := DirectoriesPackageLibrary("Browse");;
gap> demofile := Filename(dirs, "../app/demo.demo");;
gap> if IsBound(GAPInfo.UseReadline) and GAPInfo.UseReadline = true then
> LoadDemoFile("My first demo", demofile);
> LoadDemoFile("My first demo (single lines)", demofile, true);
> fi;

Many demos can be loaded at the same time. They are used with the PAGEDOWN and PAGEUP

keys.
The PAGEUP key leads to a (Browse) menu which allows one to choose a demo to start (if several

are loaded), to stop a demo or to move to another position in the current demo (e.g., to go back to a
previous point or to skip part of a demo).

The next input block of the current demo is copied into the current input line of the GAP session
by pressing the PAGEDOWN key. This line is not yet sent to GAP, use the RETURN key if you want
to evaluate the input. (You can also still edit the input line before evaluation.)

Browse 78

So, in the simplest case a demo can be done by just pressing PAGEDOWN and RETURN in turns.
But it is always possible to type extra input during a demo by hand or to change the input lines from
the demo file before evaluation. It is no problem if commands are interrupted by CTRL-C. During a
demo you are in a normal GAP session, this application only saves you some typing. The input lines
from the demo are put into the history of the session as if they were typed by hand.

Try it yourself with the two demos loaded in the example. This also shows the different behaviour
between default and single line mode.

Appendix A

Some Tools for Database Handling

Two aims of the tools described in this appendix are

• speeding up selection functions such as AllCharacterTableNames (CTblLib: AllCharac-
terTableNames) for certain data libraries of GAP (with not too many entries), in the sense that
users can extend the list of attributes that are treated in a special way

• and a programmatic extension for rendering overviews of information about the contents of
databases, using BrowseTableFromDatabaseIdEnumerator (A.2.2).

The GAP objects introduced for that are database id enumerators (see A.1.1) and database at-
tributes (see A.1.2).

Contrary to the individual interfaces to the GAP manuals (see Section 6.6), the GAP bibliography
(see Section 6.7), and the overviews of GAP packages, GAP methods, and Conway polynomials
available in GAP (see Section 6.11), the approach that will be described here assumes a special way
to access database entries. Thus it depends on the structure of a given database whether the tools
described here are useful, or whether an individual interface fits better. Perhaps the example shown in
Section A.3 gives an impression what is possible.

A.1 GAP Objects for Database Handling

A.1.1 Database Id Enumerators

A database id enumerator is a record r with at least the following components.

identifiers
a list of “identifiers” of the database entries, which provides a bijection with these entries,

entry
a function that takes r and an entry in the identifiers list, and returns the corresponding
database entry,

attributes
the record whose components are the database attribute records (see Section A.1.2) for r ;
this components is automatically initialized when r is created with DatabaseIdEnumerator
(A.1.4); database attributes can be entered with DatabaseAttributeAdd (A.1.5).

79

Browse 80

If the identifiers list may change over the time (because the database is extended or corrected)
then the following components are supported. They are used by DatabaseIdEnumeratorUpdate
(A.1.7).

version
a GAP object that describes the version of the identifiers component, this can be for example
a string describing the time of the last change (this time need not coincide with the time of the
last update); the default value (useful only for the case that the identifiers component is
never changed) is an empty string,

update
a function that takes r as its argument, replaces its identifiers and version values by up-to-
date versions if necessary (for example by downloading the data), and returns true or false,
depending on whether the update process was successful or not; the default value is ReturnTrue
(Reference: ReturnTrue),

The following component is optional.

isSorted
true means that the identifiers list is sorted w.r.t. GAP’s ordering \<; the default is false.

The idea behind database id enumerator objects is that such an object defines the set of data covered
by database attributes (see Section A.1.2), it provides the mapping between identifiers and the actual
entries of the database, and it defines when precomputed data of database attributes are outdated.

A.1.2 Database Attributes

A database attribute is a record a whose components belong to the aspects of defining the attribute,
accessing the attribute’s data, computing (and recomputing) data, storing data on files, and checking
data. (Additional parameters used for creating browse table columns from database attributes are
described in Section A.2.1.)

The following components are defining, except description they are mandatory.

idenumerator
the database id enumerator to which the attribute a is related,

identifier
a string that identifies a among all database attributes for the underlying database id enumerator
(this is used by BrowseTableFromDatabaseIdEnumerator (A.2.2) and when the data of a are
entered with DatabaseAttributeSetData (A.1.11), for example when precomputed values
are read from a file),

description
a string that describes the attribute in human readable form (currently just for convenience, the
default is an empty string).

The following components are used for accessing data. Except type, they are optional, but enough
information must be provided in order to make the database attribute meaningful. If an individual
attributeValue function is available then this function decides what is needed; for the default

Browse 81

function DatabaseAttributeValueDefault (A.1.6), at least one of the components name, data,
datafile must be bound (see DatabaseAttributeValueDefault (A.1.6) for the behaviour in this
case).

type
one of the strings "values" or "pairs"; the format of the component data is different for
these cases,

name
if bound, a string that is the name of a GAP function such that the database attribute encodes
the values of this function for the database entries; besides the computation of attribute values
on demand (see DatabaseAttributeValueDefault (A.1.6)), this component can be used by
selection functions such as OneCharacterTableName (CTblLib: OneCharacterTableName)
or AllCharacterTableNames (CTblLib: AllCharacterTableNames), which take GAP func-
tions and prescribed return values as their arguments –of course these functions must then be
prepared to deal with database attributes.

data
if bound, the data for this attribute; if the component type has the value "values" then the value
is a list, where the entry at position i , if bound, belongs to the i -th entry of the identifiers
list of idenumerator; if type is "pairs" then the value is a record with the components
automatic and nonautomatic, and the values of these components are lists such that each en-
try is a list of length two whose first entry occurs in the identifiers list of a.idenumerator
and whose second entry encodes the corresponding attribute value,

datafile
if bound, the absolute name of a file that contains the data for this attribute,

attributeValue
a function that takes a and an identifiers entry of its idenumerator value, and re-
turns the attribute value for this identifier; typically this is not a table cell data object
that can be shown in a browse table, cf. the viewValue component; the default is
DatabaseAttributeValueDefault (A.1.6) (Note that using individual attributeValue
functions, one can deal with database attributes independent of actually stored data, for example
without precomputed values, such that the values are computed on demand and afterwards are
cached.),

dataDefault
a GAP object that is regarded as the attribute value for those database entries for which data,
datafile, and name do not provide values; the default value is an empty string "",

eval
if this component is bound, the value is assumed to be a function that takes a and a value from
its data component, and returns the actual attribute value; this can be useful if one does not
want to create all attribute values in advance, because this would be space or time consuming;
another possible aspect of the eval component is that it may be used to strip off comments that
are perhaps contained in data entries,

Browse 82

isSorted
if this component is bound to true and if type is "pairs" then it is assumed that the two lists
in the data record of a are sorted w.r.t. GAP’s ordering \<; the default is false,

The following optional components are needed for computing (or recomputing) data with
DatabaseAttributeCompute (A.1.8). This is useful mainly for databases which can change over
the time.

version
the GAP object that is the version component of the idenumerator component at the time
when the stored data were entered; this value is used by DatabaseIdEnumeratorUpdate
(A.1.7) for deciding whether the attribute values are outdated; if a.datafile is bound then
it is assumed that the version component is set when this file is read, for example in the func-
tion DatabaseAttributeSetData (A.1.11),

update
a function that takes a as its argument, adjusts its data components to the current values of
a.dbidenum if necessary, sets the version component to that of a.dbidenum, and returns
true or false, depending on whether the update process was successful or not; the default
value is ReturnTrue (Reference: ReturnTrue),

neededAttributes
a list of attribute identifier strings such that the values of these attributes are needed in
the computations for the current one, and therefore these should be updated/recomputed in
advance; it is assumed that the neededAttributes components of all database attributes of
a.idenumerator define a partial ordering; the default is an empty list,

prepareAttributeComputation
a function with argument a that must be called before the computations for the current attribute
are started; the default value is ReturnTrue (Reference: ReturnTrue),

cleanupAfterAttibuteComputation
a function with argument a that must be called after the computations for the current attribute
are finished; the default value is ReturnTrue (Reference: ReturnTrue), and

create
a function that takes a database attribute and an entry in the identifiers list of its database
id enumerator, and returns either the entry that shall be stored in the data component, as the
value for the given identifier (if this value shall be stored in the data component of a) or the
dataDefault component of a (if this value shall not be stored); in order to get the actual
attribute value, the eval function of a , if bound, must be called with the return value. This
function may assume that the prepareAttributeComputation function has been called in
advance, and that the cleanupAfterAttibuteComputation function will be called later. The
create function is not intended to compute an individual attribute value on demand, use a
name component for that. (A stored name function is used to provide a default for the create
function; without name component, there is no default for create.)

The following optional component is needed for storing data on files.

Browse 83

string
if bound, a function that takes the pair consisting of an identifier and the return value of the
create function for this identifier, and returns a string that represents this value when the data
are printed to a file with DatabaseAttributeString (A.1.9); the default function returns the
String (Reference: String) value of the second argument.

The following optional component is needed for checking stored data.

check
a function that takes a string that occurs in the identifiers list of the idenumerator record,
and returns true if the attribute value stored for this string is reasonable, and something different
from true if an error was detected. (One could argue that these tests can be performed also
when the values are computed, but consistency checks may involve several entries; besides that,
checking may be cheaper than recomputing.)

A.1.3 How to Deal with Database Id Enumerators and Database Attributes

The idea is to start with a database id enumerator (see A.1.1), constructed with
DatabaseIdEnumerator (A.1.4), and to define database attributes for it (see A.1.2), using
DatabaseAttributeAdd (A.1.5). The attribute values can be precomputed and stored on files, or
they are computed when the attribute gets defined, or they are computed on demand.

The function DatabaseAttributeCompute (A.1.8) can be used to “refresh” the attribute values,
that is, all values or selected values can be recomputed; this can be necessary for example when the
underlying database id enumerator gets extended.

In data files, the function DatabaseAttributeSetData (A.1.11) can be used to fill the data com-
ponent of the attribute. The contents of a data file can be produced with DatabaseAttributeString
(A.1.9).

A.1.4 DatabaseIdEnumerator

. DatabaseIdEnumerator(arec) (function)

Returns: a shallow copy of the record arec , extended by default values.
For a record arec , DatabaseIdEnumerator checks whether the mandatory components of a

database id enumerator (see Section A.1.1) are present, initializes the attributes component, sets
the defaults for unbound optional components (see A.2.1), and returns the resulting record.

A special database attribute (see Section A.1.2) with identifier value "self" is constructed au-
tomatically for the returned record by DatabaseIdEnumerator; its attributeValue function sim-
ply returns its second argument (the identifier). The optional components of this attribute are derived
from components of the database id enumerator, so these components (see A.2.1) are supported for
arec . A typical use of the "self" attribute is to provide the first column in browse tables constructed
by BrowseTableFromDatabaseIdEnumerator (A.2.2).

A.1.5 DatabaseAttributeAdd

. DatabaseAttributeAdd(dbidenum, arec) (function)

For a database id enumerator dbidenum and a record arec , DatabaseAttributeAdd checks
whether the mandatory components of a database attribute, except idenumerator, are present in arec

Browse 84

(see Section A.1.2), sets the idenumerator component, and sets the defaults for unbound optional
components (see A.2.1).

A.1.6 DatabaseAttributeValueDefault

. DatabaseAttributeValueDefault(attr, id) (function)

Returns: the value of the database attribute attr at id .
For a database attribute attr and an entry id of the identifiers list of the underlying database

id enumerator, DatabaseAttributeValueDefault takes the data entry for id , applies the eval
function of attr to it if available and returns the result.

So the question is how to get the data entry.
First, if the data component of attr is not bound then the file given by the datafile com-

ponent of attr , if available, is read, and otherwise DatabaseAttributeCompute (A.1.8) is called;
afterwards it is assumed that the data component is bound.

The further steps depend on the type value of attr .
If the type value of attr is "pairs" then the data entry for id is either contained in the

automatic or in the nonautomatic list of attr.data, or it is given by the dataDefault value
of attr . (So a perhaps available name function is not used to compute the value for a missing data
entry.)

If the type value of attr is "values" then the data entry for id is computed as follows. Let n
be the position of id in the identifiers component of the database id enumerator. If the n-th entry
of the data component of attr is bound then take it; otherwise if the name component is bound then
apply it to id and take the return value; otherwise take the dataDefault value.

If one wants to introduce a database attribute where this functionality is not suitable then another
–more specific– function must be entered as the component attributeValue of such an attribute.

A.1.7 DatabaseIdEnumeratorUpdate

. DatabaseIdEnumeratorUpdate(dbidenum) (function)

Returns: true or false.
For a database id enumerator dbidenum (see Section A.1.1), DatabaseIdEnumeratorUpdate

first calls the update function of dbidenum . Afterwards, the update components of those of its
attributes records are called for which the version component differs from that of dbidenum .

The order in which the database attributes are updates is determined by the neededAttributes
component.

The return value is true if all these functions return true, and false otherwise.
When DatabaseIdEnumeratorUpdate has returned true, the data described by dbidenum and

its database attributes are consistent and up to date.

A.1.8 DatabaseAttributeCompute

. DatabaseAttributeCompute(dbidenum, attridentifier[, what]) (function)

Returns: true or false.
This function returns false if dbidenum is not a database id enumerator, or if it does not have

a database attribute with identifier value attridentifier , or if this attribute does not have a
create function.

Browse 85

Otherwise the prepareAttributeComputation function is called, the data entries for the
database attribute are (re)computed, the cleanupAfterAttibuteComputation function is called,
and true is returned.

The optional argument what determines which values are computed. Admissible values are

"all"
all identifiers entries of dbidenum ,

"automatic" (the default)
the same as "all" if the type value of the database attribute is "values", otherwise only the
values for the "automatic" component are computed,

"new"
stored values are not recomputed.

A.1.9 DatabaseAttributeString

. DatabaseAttributeString(idenum, idenumname, attridentifier, format) (function)

Returns: a string that describes the values of the attribute.
Let idenum be a database id enumerator (see Section A.1.1), idenumname be a string that denotes

the variable to which the enumerator is bound, attridentifier be the name of an attribute of type
"pairs", and format be one of "GAP", "JSON". DatabaseAttributeString returns a string that
can be used to set the attribute values, using DatabaseAttributeLoadData (A.1.10). In the "JSON"
case, it is not checked whether the string function of the attribute creates valid JSON (e.g., whether
the lists are dense).

A.1.10 DatabaseAttributeLoadData

. DatabaseAttributeLoadData(attr) (function)

Returns: true or false.
If the data of the attribute attr are stored in a file then this function loads the data. The data file

is expected to be either in JSON format (which can be produced with DatabaseAttributeString
(A.1.9), with fourth argument the string "JSON") and have filename extension .json, or to contain
a call to DatabaseAttributeSetData (A.1.11) such that reading the file with Read (Reference:
Read) sets the data.

A.1.11 DatabaseAttributeSetData

. DatabaseAttributeSetData(dbidenum, attridentifier, version, data) (function)

Let dbidenum be a database id enumerator (see Section A.1.1), attridentifier be a string that
is the identifier value of a database attribute of dbidenum , data be the data list or record for the
database attribute (depending on its type value), and version be the corresponding version value.

DatabaseAttributeSetData sets the data and version components of the attribute. This func-
tion is called when data files are loaded with DatabaseAttributeLoadData (A.1.10).

Browse 86

A.2 Using Database Attributes for Browse Tables

A.2.1 Browse Relevant Components of Database Attributes

The following optional components of database id enumerators and database attributes are used by
BrowseTableFromDatabaseIdEnumerator (A.2.2).

viewLabel
if bound, a table cell data object (see BrowseData.IsBrowseTableCellData (4.2.1)) that
gives a short description of the attribute, which is used as the column label in browse tables
created with BrowseTableFromDatabaseIdEnumerator (A.2.2); the default for database at-
tributes is the name component, if bound, and otherwise the identifier component; the default
for database id enumerators is the string "name",

viewValue
if bound, a function that takes the output of the attributeValue function and re-
turns a table cell data object (see BrowseData.IsBrowseTableCellData (4.2.1)) that
is used as the entry of the corresponding column in browse tables created with
BrowseTableFromDatabaseIdEnumerator (A.2.2); the default is String (Reference:
String),

viewSort
if bound, a comparison function that takes two database attribute values and returns true if the
first value is regarded as smaller than the second when the column corresponding to the attribute
in the browse table constructed by BrowseTableFromDatabaseIdEnumerator (A.2.2) gets
sorted, and false otherwise; the default is GAP’s \< operation,

sortParameters
if bound, a list in the same format as the last argument of BrowseData.SetSortParameters,
which is used for the column corresponding to the attribute in the browse table constructed by
BrowseTableFromDatabaseIdEnumerator (A.2.2); the default is an empty list,

widthCol
if bound, the width of the column in the browse table constructed by
BrowseTableFromDatabaseIdEnumerator (A.2.2); if a column width is prescribed this
way then the function stored in the attributeValue component must return either a list of
attribute lines that fit into the column or a plain string (which then gets formatted as required);
there is no default for this component, meaning that the column width is computed as the
maximum of the widths of the column label and of all entries in the column if no value is
bound,

align
if bound, the alignment of the values in the column of the browse table constructed
by BrowseTableFromDatabaseIdEnumerator (A.2.2); admissible values are substrings
of "bclt", see BrowseData.IsBrowseTableCellData (4.2.1); the default is right and
vertically centered, but note that if the viewValues function returns a record (see
BrowseData.IsBrowseTableCellData (4.2.1)) then the alignment prescribed by this record
is preferred,

Browse 87

categoryValue
if bound, a function that is similar to the viewValue component but may return a different
value; for example if the column in the browse table belongs to a property and the viewValue
function returns something like "+" or "-", it may be useful that the category rows show a
textual description of the property values; the default value is the viewValue component; if the
value is a record then its rows component is taken for forming category rows, if the value is an
attribute line (see NCurses.IsAttributeLine (2.2.3)) then there is exactly this category row,
and otherwise the value is regarded as a list of attribute lines, which is either concatenated to
one category row or turned into individual category rows, depending on the sortParameters
value.

A.2.2 BrowseTableFromDatabaseIdEnumerator

. BrowseTableFromDatabaseIdEnumerator(dbidenum, labelids, columnids[, header[,
footer[, choice]]]) (function)

Returns: a record that can be used as the input of NCurses.BrowseGeneric (4.3.1).
For a database id enumerator dbidenum (see Section A.1.1) and two lists

labelids and columnids of identifier values of database attributes stored
in dbidenum , BrowseTableFromDatabaseIdEnumerator returns a browse table
(see BrowseData.IsBrowseTable (4.2.3)) whose columns are given by the values of the specified
database attributes. The columns listed in labelids are used to provide row label columns of the
browse table, the columns listed in columnids yield main table columns. columnids must be
nonempty.

If the optional arguments header and footer are given then they must be lists or functions or
records that are admissible for the header and footer components of the work record of the browse
table, see BrowseData.IsBrowseTable (4.2.3).

The optional argument choice , if given, must be a subset of dbidenum.identifiers. The rows
of the returned browse table are then restricted to this subset.

The returned browse table does not support “Click” events or return values.

A.3 Example: Database Id Enumerators and Database Attributes

As an example for the functions introduced in this appendix, we introduce the database of small
integers. For that, we fix a positive integer n and consider the integers from 1 to n as the entries of our
database. Using these integers as their own identifiers, we construct the database id enumerator.

Example
gap> n:= 100;;
gap> smallintenum1:= DatabaseIdEnumerator(rec(
> identifiers:= [1 .. n],
> entry:= function(dbidenum, id) return id; end,
>));;

Examples of attributes for this database are the properties whether or not an integer is a prime
or a prime power. There are global GAP functions IsPrimeInt (Reference: IsPrimeInt) and
IsPrimePowerInt (Reference: IsPrimePowerInt) for computing these properties, so we can de-
fine these database attributes via a name component; we choose "values" as the type value, so the
values (true or false) are stored in a list of length n for each of the two database attributes.

Browse 88

Example
gap> DatabaseAttributeAdd(smallintenum1, rec(
> identifier:= "primes",
> type:= "values",
> name:= "IsPrimeInt",
>));
gap> DatabaseAttributeAdd(smallintenum1, rec(
> identifier:= "prime powers",
> type:= "values",
> name:= "IsPrimePowerInt",
>));

Similarly, we consider the prime factors as a database attribute.
Example

gap> DatabaseAttributeAdd(smallintenum1, rec(
> identifier:= "factors",
> type:= "values",
> name:= "Factors",
>));

Another example of an attribute of integers is the residue modulo 11. We do not want to introduce a
global GAP function for computing the value, so we use the create component in order to define the
attribute; again, the values (integers from 0 to 10) are stored in a list of length n.

Example
gap> DatabaseAttributeAdd(smallintenum1, rec(
> identifier:= "residue mod 11",
> type:= "values",
> create:= function(attr, id) return id mod 11; end,
>));

Some integers are values of Factorial (Reference: Factorial), and we want to record this informa-
tion and show it in a browse table. For most integers, nothing is stored and shown for this attribute, so
we choose the type value "pairs" and precompute the information for the data component. (The
default for the dataDefault component is an empty string, which is fine; so we need not prescribe
this component.)

Example
gap> factorialdata:= function(n)
> local result, i, f;
> result:= []; i:= 1; f:= 1;;
> while f <= n do
> Add(result, [f, i]); i:= i + 1; f:= f * i;
> od;
> return result;
> end;;
gap> DatabaseAttributeAdd(smallintenum1, rec(
> identifier:= "inverse factorial",
> type:= "pairs",
> data:= rec(automatic:= factorialdata(n), nonautomatic:= []),
> isSorted:= true,
>));

Browse 89

We use this setup for creating a browse table. The integers are shown as the first column, using the
"self" attribute. This attribute can be used as a column of row labels (useful if we want to keep the
column visible when one scrolls the table to the right) or as a column in the main table (useful if we
want to search for the values); here we choose the former possibility.

Example
gap> t1:= BrowseTableFromDatabaseIdEnumerator(smallintenum1,
> ["self"],
> ["primes", "prime powers", "factors", "residue mod 11",
> "inverse factorial"]);;

The following session shows some of the features of the browse table.
Example

gap> nop:= [14, 14, 14, 14, 14, 14];; # ‘‘do nothing’’
gap> sample_session:= Concatenation(
> # categorize by the first column, expand categories, wait, reset
> nop, "scsc", nop, "X", nop, "!",
> # sort the residue column, wait, reset
> "scrrrso", nop, "!",
> # categorize by the inverse factorial column
> "rscsrdx", nop, "!",
> # and quit the application
> "qQ");;
gap> BrowseData.SetReplay(sample_session);
gap> NCurses.BrowseGeneric(t1);
gap> BrowseData.SetReplay(false);
gap> Unbind(t1.dynamic.replay);

(Note that the last statement above is necessary to run the session more than once.) The result is not
too bad but we can improve the table, using the optional components of database attributes, as follows.

• The strings "true" and "false" shown for the Boolean valued database attributes can be re-
placed by the perhaps more suggestive strings "+" and "-" (or perhaps an empty string instead
of "-").

• The alignment of values inside their columns can be customized.

• When the browse table is categorized by a column then the values in this column do usually not
provide suitable category rows; we can prescribe individual category values.

• The column labels can be customized.

• Where the lexicographic order is not appropriate for sorting table entries, we can prescribe an
individual comparison function.

• Sort parameters can be customized.

• We can prescribe the width of a column, and thus distribute the attribute values for this column
to several rows when the values are too long.

• Finally, in the call of BrowseTableFromDatabaseIdEnumerator (A.2.2), we can add a header
to the browse table.

Browse 90

We create a new database id enumerator and the corresponding browse table, in order to be able
to compare the behaviour of the two objects. However, we assume that the variables n and
factorialdata are already available.

Example
gap> smallintenum2:= DatabaseIdEnumerator(rec(
> identifiers:= [1 .. n],
> entry:= function(dbidenum, id) return id; end,
> viewLabel:= "",
>));;
gap> DatabaseAttributeAdd(smallintenum2, rec(
> identifier:= "primes",
> type:= "values",
> name:= "IsPrimeInt",
> viewLabel:= "prime?",
> viewValue:= value -> BrowseData.ReplacedEntry(value,
> [true, false], ["+", "-"]),
> sortParameters:= ["add counter on categorizing", "yes"],
> align:= "c",
> categoryValue:= value -> BrowseData.ReplacedEntry(value,
> [true, false], ["prime", "nonprime"]),
>));
gap> DatabaseAttributeAdd(smallintenum2, rec(
> identifier:= "prime powers",
> type:= "values",
> name:= "IsPrimePowerInt",
> viewLabel:= "prime power?",
> viewValue:= value -> BrowseData.ReplacedEntry(value,
> [true, false], ["+", "-"]),
> sortParameters:= ["add counter on categorizing", "yes"],
> align:= "c",
> categoryValue:= value -> BrowseData.ReplacedEntry(value,
> [true, false], ["prime power", "not prime power"]),
>));
gap> DatabaseAttributeAdd(smallintenum2, rec(
> identifier:= "factors",
> type:= "values",
> name:= "Factors",
> viewLabel:= "factors",
> viewValue:= value -> JoinStringsWithSeparator(List(value, String),
> " * "),
> widthCol:= 10,
>));
gap> DatabaseAttributeAdd(smallintenum2, rec(
> identifier:= "residue mod 11",
> type:= "values",
> create:= function(attr, id) return id mod 11; end,
> viewSort:= BrowseData.SortAsIntegers,
> categoryValue:= res -> Concatenation(String(res), " mod 11"),
>));
gap> DatabaseAttributeAdd(smallintenum2, rec(
> identifier:= "inverse factorial",
> type:= "pairs",
> data:= rec(automatic:= factorialdata(n), nonautomatic:= []),

Browse 91

> isSorted:= true,
> categoryValue:= function(k)
> if k = "" then
> return "(no factorial)";
> else
> return Concatenation(String(k), "!");
> fi;
> end,
>));
gap> t2:= BrowseTableFromDatabaseIdEnumerator(smallintenum2,
> ["self"],
> ["primes", "prime powers", "factors", "residue mod 11",
> "inverse factorial"],
> t -> BrowseData.HeaderWithRowCounter(t, "Small integers", n));;

We run the same session as with the browse table for smallintenum1.
Example

gap> BrowseData.SetReplay(sample_session);
gap> NCurses.BrowseGeneric(t2);
gap> BrowseData.SetReplay(false);
gap> Unbind(t2.dynamic.replay);

Another possibility to change the look of the table is to combine the columns for the two Boolean
valued database attributes in one column, by showing the string "+" for prime powers, as before, and
showing this string in boldface red if the number in question is a prime. We implement this idea in
the following database attribute. However, note that this can be a bad idea because text attributes may
be not supported in the user’s terminal (see Section 2.1.7), or the user may have difficulties to see
or to distinguish colors; also, it must be documented which information is encoded in the table, and
the column label might be not sufficient for explaining what the text attributes mean. Alternatively,
we could show for example combined symbols such as ++, +-, – for primes, prime powers, and non-
prime-powers, respectively. (We see that besides these issues, the required GAP code is more involved
than what is needed for the examples above.)

Example
gap> DatabaseAttributeAdd(smallintenum2, rec(
> identifier:= "primes & prime powers",
> type:= "values",
> create:= function(attr, id)
> if IsPrimeInt(id) then
> return 2;
> elif IsPrimePowerInt(id) then
> return 1;
> else
> return 0;
> fi;
> end,
> viewLabel:= [NCurses.attrs.BOLD + NCurses.ColorAttr("red", -1),
> "prime", NCurses.attrs.NORMAL, " power?"],
> viewValue:= value -> BrowseData.ReplacedEntry(value,
> [0, 1, 2], ["-", "+",
> [NCurses.attrs.BOLD + NCurses.ColorAttr("red", -1),
> true, "+",

Browse 92

> NCurses.ColorAttr("red", -1), false]]),
> sortParameters:= ["add counter on categorizing", "yes"],
> align:= "c",
> categoryValue:= value -> BrowseData.ReplacedEntry(value,
> [0, 1, 2],
> ["not prime power", "prime power, not prime", "prime"]),
>));
gap> t3:= BrowseTableFromDatabaseIdEnumerator(smallintenum2,
> ["self"],
> ["primes & prime powers", "residue mod 11",
> "inverse factorial"],
> t -> BrowseData.HeaderWithRowCounter(t, "Small integers", n));;
gap> sample_session2:= Concatenation(
> # categorize by the first column, expand categories, wait, reset
> nop, "scsc", nop, "X", nop, "!", "Q");;
gap> BrowseData.SetReplay(sample_session2);
gap> NCurses.BrowseGeneric(t3);
gap> BrowseData.SetReplay(false);
gap> Unbind(t3.dynamic.replay);

Now we want to consider the database as extendible, that is, we want to be able to increase n after
constructing the database attributes. For that, we use n as the version value of the database id
enumerator, and provide version and update components for all attributes.

Again, we start the construction from scratch.
Example

gap> smallintenum3:= DatabaseIdEnumerator(rec(
> identifiers:= [1 .. n],
> entry:= function(dbidenum, id) return id; end,
> viewLabel:= "",
> version:= n,
> update:= function(dbidenum)
> dbidenum.identifiers:= [1 .. n];
> dbidenum.version:= n;
> return true;
> end,
>));;
gap> updateByUnbindData:= function(attr)
> Unbind(attr.data);
> return true;
> end;;
gap> DatabaseAttributeAdd(smallintenum3, rec(
> identifier:= "primes",
> type:= "values",
> name:= "IsPrimeInt",
> viewLabel:= "prime?",
> viewValue:= value -> BrowseData.ReplacedEntry(value,
> [true, false], ["+", "-"]),
> sortParameters:= ["add counter on categorizing", "yes"],
> align:= "c",
> categoryValue:= value -> BrowseData.ReplacedEntry(value,
> [true, false], ["prime", "nonprime"]),
> version:= n,

Browse 93

> update:= updateByUnbindData,
>));
gap> DatabaseAttributeAdd(smallintenum3, rec(
> identifier:= "prime powers",
> type:= "values",
> name:= "IsPrimePowerInt",
> viewLabel:= "prime power?",
> viewValue:= value -> BrowseData.ReplacedEntry(value,
> [true, false], ["+", "-"]),
> sortParameters:= ["add counter on categorizing", "yes"],
> align:= "c",
> categoryValue:= value -> BrowseData.ReplacedEntry(value,
> [true, false], ["prime power", "not prime power"]),
> version:= n,
> update:= updateByUnbindData,
>));
gap> DatabaseAttributeAdd(smallintenum3, rec(
> identifier:= "factors",
> type:= "values",
> name:= "Factors",
> viewLabel:= "factors",
> viewValue:= value -> JoinStringsWithSeparator(List(value, String),
> " * "),
> widthCol:= 10,
> version:= n,
> update:= updateByUnbindData,
>));
gap> DatabaseAttributeAdd(smallintenum3, rec(
> identifier:= "residue mod 11",
> type:= "values",
> create:= function(attr, id) return id mod 11; end,
> viewSort:= BrowseData.SortAsIntegers,
> categoryValue:= res -> Concatenation(String(res), " mod 11"),
> version:= n,
> update:= updateByUnbindData,
>));
gap> DatabaseAttributeAdd(smallintenum3, rec(
> identifier:= "inverse factorial",
> type:= "pairs",
> data:= rec(automatic:= factorialdata(n), nonautomatic:= []),
> isSorted:= true,
> categoryValue:= function(k)
> if k = "" then
> return "(no factorial)";
> else
> return Concatenation(String(k), "!");
> fi;
> end,
> version:= n,
> update:= function(attr)
> attr.data.automatic:= factorialdata(n);
> return true;

Browse 94

> end,
>));

Now we can change the set of database entries by assigning a new value to the variable n, and then
calling DatabaseIdEnumeratorUpdate (A.1.7).

Example
gap> n:= 200;;
gap> DatabaseIdEnumeratorUpdate(smallintenum3);
true
gap> t4:= BrowseTableFromDatabaseIdEnumerator(smallintenum3,
> ["self"], ["primes", "prime powers", "factors", "residue mod 11",
> "inverse factorial"],
> t -> BrowseData.HeaderWithRowCounter(t, "Small integers", n));;
gap> BrowseData.SetReplay(sample_session);
gap> NCurses.BrowseGeneric(t4);
gap> BrowseData.SetReplay(false);
gap> Unbind(t4.dynamic.replay);

A.4 Example: An Overview of the GAP Library of Tables of Marks

The example shown in this section deals with GAP’s Library of Tables of Marks (the TomLib package
[NMP13]).

A.4.1 BrowseTomLibInfo

. BrowseTomLibInfo() (function)

Returns: nothing.
This function shows the contents of the GAP Library of Tables of Marks (the TomLib package,

see [NMP13]) in a browse table.
The first call may take substantial time (about 40 seconds), because the data files of the TomLib

package are evaluated. This could be improved by precomputing and caching the values. Another pos-
sibility would be to call BrowseTomLibInfo once before creating a GAP workspace. The subsequent
calls are not expensive.

The table rows correspond to the tables of marks, one column of row labels shows the identifier
of the table. The columns of the table contain information about the group order, the number of
conjugacy classes of subgroups, the identifiers of tables of marks with fusions to and from the given
table, and the name of the file that contains the table of marks data.

The full functionality of the function NCurses.BrowseGeneric (4.3.1) is available.
Example

gap> c:= [NCurses.keys.ENTER];;
gap> n:= [14, 14, 14];; # ‘‘do nothing’’
gap> BrowseData.SetReplay(Concatenation(
> "scrrsc", # categorize the list by source tables of fusions,
> "srdd", # choose a source table,
> "x", # expand the list of targets of fusions
> n,
> "!", # revert the categorization
> "q", # leave the mode in which a row is selected
> "scrrrrsc", # categorize the list by filenames

Browse 95

> "X", # expand all categories
> n,
> "!", # revert the categorization
> "scso", # sort the list by group order
> n,
> "!q", # revert the sorting and selection
> "?", # open the help window
> n,
> "Q", # close the help window
> "/A5", c, # search for the first occurrence of "A5"
> n,
> "Q"));; # and quit the browse table
gap> BrowseTomLibInfo();
gap> BrowseData.SetReplay(false);

References

[Bog] A. Bogomolny. Sam Loyd’s Fifteen. http://www.cut-the-knot.org/pythagoras/
fifteen.shtml. 65

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of finite
groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary
characters for simple groups, With computational assistance from J. G. Thackray. 63

[CN04] F. Celler and M. Neunhöffer. XGAP, a graphical user interface for GAP, Version
4.21. http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/
Gap/xgap4.html, May 2004. Refereed GAP package. 66

[GAP] A Bibliography of GAP related publications. http://www.gap-system.org/Doc/
Bib/gap-publishednicer.bib. 55

[JLPW95] C. Jansen, K. Lux, R. Parker, and R. Wilson. An atlas of Brauer characters, volume 11
of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford
University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton, Oxford
Science Publications. 63

[Köla] J. Köller. Peg Solitaire. http://www.mathematische-basteleien.de/
solitaire.htm. 67

[Kölb] J. Köller. Rubik’s Cube. http://www.mathematische-basteleien.de/
rubikscube.htm. 68

[LN07] F. Lübeck and M. Neunhöffer. GAPDoc, a Meta Package for GAP Documentation, Ver-
sion 1.0. http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc, May 2007.
Refereed GAP package. 57

[NCu] The ncurses C library. https://invisible-island.net/ncurses/
ncurses.faq.html. 5, 8

[Neu07] M. Neunhöffer. IO, bindings for low level C library IO, Version 2.2.
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/
io.html, Apr 2007. GAP package. 65

[NMP13] L. Naughton, T. Merkwitz, and G. Pfeiffer. TomLib, the GAP library of tables of marks,
Version 1.2.4. http://schmidt.nuigalway.ie/tomlib/tomlib, Nov 2013. GAP
package. 63, 94

96

http://www.cut-the-knot.org/pythagoras/fifteen.shtml
http://www.cut-the-knot.org/pythagoras/fifteen.shtml
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/xgap4.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/xgap4.html
http://www.gap-system.org/Doc/Bib/gap-publishednicer.bib
http://www.gap-system.org/Doc/Bib/gap-publishednicer.bib
http://www.mathematische-basteleien.de/solitaire.htm
http://www.mathematische-basteleien.de/solitaire.htm
http://www.mathematische-basteleien.de/rubikscube.htm
http://www.mathematische-basteleien.de/rubikscube.htm
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc
https://invisible-island.net/ncurses/ncurses.faq.html
https://invisible-island.net/ncurses/ncurses.faq.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
http://schmidt.nuigalway.ie/tomlib/tomlib

Browse 97

[OR] J. J. O’Connor and E. F. Robertson. http://www-history.mcs.st-and.ac.uk/
HistTopics/Mathematical_games.html. 65

[OR00] J. J. O’Connor and E. F. Robertson. Mathematical MacTutor.
http://www-groups.dcs.st-and.ac.uk/~edmund/mactutor.html, 2000. 69

[Sch] M. Schönert. Analyzing Rubik’s Cube with GAP. http://www.gap-system.org/Doc/
Examples/rubik.html. 68

[WPN+19] R. A. Wilson, R. A. Parker, S. Nickerson, J. N. Bray, and T. Breuer. At-
lasRep, a GAP Interface to the Atlas of Group Representations, Version 2.1.
http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep, May 2019. GAP
package. 52, 63

http://www-history.mcs.st-and.ac.uk/HistTopics/Mathematical_games.html
http://www-history.mcs.st-and.ac.uk/HistTopics/Mathematical_games.html
http://www-groups.dcs.st-and.ac.uk/~edmund/mactutor.html
http://www.gap-system.org/Doc/Examples/rubik.html
http://www.gap-system.org/Doc/Examples/rubik.html
http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep

Index

action record of a browse table, 36
attribute line, 6
attributes of text, 14

bottom_panel, 11
Browse, 47

for a list of lists, 48
for character tables, 49
for tables of marks, 51

BrowseAtlasInfo
overview for one group, 52
overview of groups, 52

BrowseBibliography, 56
BrowseBibliographyGapPackages, 58
BrowseChangeSides, 69
BrowseConwayPolynomials

see BrowseGapData, 63
BrowseData, 39
BrowseData.actions.Error, 46
BrowseData.actions.QuitMode, 46
BrowseData.actions.QuitTable, 46
BrowseData.actions.SaveWindow, 46
BrowseData.actions.ShowHelp, 45
BrowseData.AlertWithReplay, 45
BrowseData.BlockEntry, 31
BrowseData.FormattedEntry, 40
BrowseData.HeightLabelsCol, 41
BrowseData.IsBrowseTable, 31
BrowseData.IsBrowseTableCellData, 30
BrowseData.IsDoneReplay, 45
BrowseData.IsQuietSession, 45
BrowseData.log, 29
BrowseData.log, 44
BrowseData.logStore, 44
BrowseData.SetReplay, 45
BrowseData.ShowHelpPager, 45
BrowseData.ShowHelpTable, 45
BrowseData.ShowTables, 37
BrowseDecompositionMatrix, 51

BrowseDirectory, 64
BrowseGapData, 62
BrowseGapDataAdd, 64
BrowseGapManuals, 54
BrowseGapMethods

see BrowseGapData, 63
BrowseGapPackages

see BrowseGapData, 63
BrowseMSC, 59
BrowsePackageVariables, 60
BrowseProfile, 59
BrowsePuzzle, 65
BrowseRubiksCube, 68
BrowseTableFromDatabaseIdEnumerator, 87
BrowseTomLibInfo, 94
BrowseUserPreferences, 61
BrowseWizard, 74

categorizing a browse table, 28
cbreak, 9
checkbox

see NCurses.Select, 23
clearok, 9
click on an entry of a browse table, 30
collapsed category row, 28
colors as text attributes, 5
colors, availability, 17
column labels of a browse table, 27
corner table of a browse table, 27
curs_set, 9

DatabaseAttributeAdd, 83
DatabaseAttributeCompute, 84
DatabaseAttributeLoadData, 85
DatabaseAttributeSetData, 85
DatabaseAttributeString, 85
DatabaseAttributeValueDefault, 84
DatabaseIdEnumerator, 83
DatabaseIdEnumeratorUpdate, 84

98

Browse 99

del_panel, 11
delwin, 10
displayed characters, 19
doupdate, 10

echo, 9
endwin, 10
expanded category row, 28

filtering a browse table, 29
footer of a browse table, 27

game, 5
A Puzzle, 65
Changing Sides, 69
Peg Solitaire, 66
Rubik’s Cube, 67
Sudoku, 70

getbegyx, 10
getmaxyx, 10
getmouse, 16
getyx, 13

has_key, 12
header of a browse table, 27
help window for a browse table, 29
hide convention, 42, 44
hide_panel, 11

idlok, 9
immedok, 10
intrflush, 9
isendwin, 10
IsStdinATty, 16
IsStdoutATty, 16

keypad, 9

leaveok, 9
LoadDemoFile, 77
log of a browse table session, 29

main table of a browse table, 27
mnap, 16
mode of a browse table, 37
mouse events, 22, 24, 28, 30, 45, 66
mouseinterval, 16
mousemask, 16
move_panel, 11

mvwin, 10

NCurses.Alert, 22
NCurses.attrs, 14
NCurses.attrs.has_colors, 17
NCurses.BrowseDenseList, 48
NCurses.BrowseGeneric, 34
NCurses.ColorAttr, 17
NCurses.ConcatenationAttributeLines, 18
NCurses.Demo, 26
NCurses.GetLineFromUser, 24
NCurses.GetMouseEvent, 20
NCurses.Grid, 20
NCurses.IsAttributeLine, 18
NCurses.keys, 11
NCurses.lineDraw, 13
NCurses.Pager, 25
NCurses.PutLine, 19
NCurses.RepeatedAttributeLine, 19
NCurses.RestoreWin, 21
NCurses.SaveWin, 21
NCurses.Select, 23
NCurses.SetTerm, 17
NCurses.ShowSaveWin, 21
NCurses.StringsSaveWin, 21
NCurses.UseMouse, 20
NCurses.WBorder, 20
NCurses.WidthAttributeLine, 19
new_panel, 11
newwin, 10
nl, 9
nocbreak, 9
noecho, 9
nonl, 9
noraw, 10

panel_above, 11
panel_below, 11
partial input in a browse table, 37
PegSolitaire, 66
PlaySudoku, 73

radio button
see NCurses.Select, 23

raw, 10
replay of a browse table session, 29
resetty, 9

Browse 100

return value of a browse table session, 30
row labels of a browse table, 27

savetty, 9
scrolling in a browse table, 28
scrollok, 9
searching in a browse table, 28
SearchStringWithStartParameters, 43
selecting entries of a browse table, 28
show_panel, 11
solitaire game, 66
sort convention, 42
sorting a browse table, 28
Sudoku.DisplayString, 72
Sudoku.HTMLGame, 74
Sudoku.Init, 70
Sudoku.LaTeXGame, 74
Sudoku.OneSolution, 72
Sudoku.Place, 71
Sudoku.RandomGame, 71
Sudoku.Remove, 71
Sudoku.SimpleDisplay, 71
Sudoku.UniqueSolution, 73

top_panel, 11

ungetch, 11
update_panels, 11

visual mode, 5

waddch, 12
waddnstr, 12
waddstr, 13
wattr_get, 15
wattroff, 15
wattron, 15
wattrset, 15
wbkgd, 15
wbkgdset, 15
wborder, 12
wclear, 13
wclrtobot, 13
wclrtoeol, 13
wenclose, 16
werase, 13
wgetch, 11
whline, 13

winch, 13
wmove, 12
wrefresh, 10
wtimeout, 9
wvline, 13

	Introduction and Overview
	Introduction
	Overview
	User preferences provided by the Browse package

	Interface to the ncurses Library
	The ncurses Library
	The ncurses GAP functions

	Utilities using ncurses
	ncurses utilities
	A Demo Function

	Browsing Tables in GAP using ncurses –The User Interface
	Features Supported by the Function NCurses.BrowseGeneric
	Data Structures used by NCurses.BrowseGeneric
	The Function NCurses.BrowseGeneric

	Browsing Tables in GAP using ncurses –The Programming Interface
	Navigation Steps in Browse Tables
	Modes in Browse Tables
	Browse Applications
	Predefined Browse Functionalities

	Examples of Applications based on NCurses.BrowseGeneric
	The Operation Browse
	Matrix Display
	Character Table Display
	Table of Marks Display
	Table of Contents of AtlasRep
	Access to GAP Manuals–a Variant
	Overview of Bibliographies
	Profiling GAP functions–a Variant
	Variables defined in GAP packages–a Variant
	Configuring User preferences–a Variant
	Overview of GAP Data
	Navigating in a Directory Tree
	A Puzzle
	Peg Solitaire
	Rubik's Cube
	Changing Sides
	Sudoku
	Managing simple Workflows
	Utility for GAP Demos

	Some Tools for Database Handling
	GAP Objects for Database Handling
	Using Database Attributes for Browse Tables
	Example: Database Id Enumerators and Database Attributes
	Example: An Overview of the GAP Library of Tables of Marks

	References
	Index

