File: random.gi

package info (click to toggle)
gap-congruence 1.2.7-1
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 928 kB
  • sloc: xml: 1,000; javascript: 155; makefile: 108
file content (233 lines) | stat: -rw-r--r-- 7,457 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#############################################################################
##
#W random.gi               The Congruence package                   Ann Dooms
#W                                                               Eric Jespers
#W                                                         Olexandr Konovalov
##
##
#############################################################################
##
## This file contains implementations of methods to construct random elements
## of congruence subgroups CongruenceSubgroupGamma, CongruenceSubgroupGamma0, 
## CongruenceSubgroupGammaUpper0, CongruenceSubgroupGamma1 and
## CongruenceSubgroupGammaUpper1.
## The idea is to select two random entries a and b in the same row or column
## of the matrix, such that a and b will satisfy the requirements arising 
## from the congruence subgroup. For example, for the principal congruence 
## subgroup we will select a and b as follows:
## a := 1 + n * Random( [ -10 .. 10 ] );  
## b :=     n * Random( [ -10 .. 10 ] );
## After this we can find such x and y for the other row (or column) of the
## matrix that its determinant will be equal to one. If the resulting matrix
## will be not in the congruence subgroup because of not suitable x and y,
## we will repeat this process for another a and b until we will find 
## suitable x and y.  
## For each type of congruence subgroups, we provide one- and two-argument 
## versions of Random. The one-argument version uses Random( [ -10 .. 10 ] ) 
## to generate a and b, ## and in the two-argument version Random([ -m..m ]) 
## will be used, where m is given by the second argument.


#############################################################################
##
## The principal congruence subgroup of level N consists of all matrices
## of the form   [ 1+N    N ]
##               [   N  1+N ]
##
InstallMethod( Random,
	"for a principal congruence subgroup",
	[ IsPrincipalCongruenceSubgroup ],
	0,
	function( G )
	local n, a, b, gcd;
	n := LevelOfCongruenceSubgroup( G );
    repeat
      a := 1 + n * Random( [ -10 .. 10 ] );  
      b :=     n * Random( [ -10 .. 10 ] );
      gcd := Gcdex( a, b );
    until gcd.gcd = 1 and 
          IsInt( -gcd.coeff2/n ) and 
          IsInt( (gcd.coeff1-1)/n );
    return [ [          a,           b ], 
             [ -gcd.coeff2, gcd.coeff1 ] ];
end);

InstallOtherMethod( Random,
	"for a principal congruence subgroup",
	[ IsPrincipalCongruenceSubgroup, IsPosInt ],
	0,
	function( G, m )
	local n, a, b, gcd;
	n := LevelOfCongruenceSubgroup( G );
    repeat
      a := 1 + n * Random( [ -m .. m ] );  
      b :=     n * Random( [ -m .. m ] );
      gcd := Gcdex( a, b );
    until gcd.gcd = 1 and 
          IsInt( -gcd.coeff2/n ) and 
          IsInt( (gcd.coeff1-1)/n );
    return [ [          a,           b ], 
             [ -gcd.coeff2, gcd.coeff1 ] ];
end);


#############################################################################
##
## The congruence subgroup CongruenceSubgroupGamma0(N) consists of all matrices
## of the form   [   *    * ]
##               [   N    * ]
##
InstallMethod( Random,
	"for a congruence subgroup CongruenceSubgroupGamma0",
	[ IsCongruenceSubgroupGamma0 ],
	0,
	function( G )
	local n, a, b, gcd;
	n := LevelOfCongruenceSubgroup( G );
    repeat
      a := Random( [ -n*10 .. n*10 ] );  
      b := n * Random( [ -10 .. 10 ] );
      gcd := Gcdex( a, b );
    until gcd.gcd = 1;
    return [ [ a, -gcd.coeff2 ], 
             [ b,  gcd.coeff1 ] ];
end);

InstallOtherMethod( Random,
	"for a congruence subgroup CongruenceSubgroupGamma0",
	[ IsCongruenceSubgroupGamma0, IsPosInt ],
	0,
	function( G, m )
	local n, a, b, gcd;
	n := LevelOfCongruenceSubgroup( G );
	repeat
      a := Random( [ -n*m .. n*m ] );  
      b := n * Random( [ -m .. m ] );
      gcd := Gcdex( a, b );
    until gcd.gcd = 1;
    return [ [ a,  -gcd.coeff2 ], 
             [ b,   gcd.coeff1 ] ];
end);


#############################################################################
## 
## The congruence subgroup CongruenceSubgroupGammaUpper0(N) consists of all matrices
## of the form   [   *    N ]
##               [   *    * ]
##
InstallMethod( Random,
	"for a congruence subgroup CongruenceSubgroupGammaUpper0",
	[ IsCongruenceSubgroupGammaUpper0 ],
	0,
	function( G )
	local n, a, b, gcd;
	n := LevelOfCongruenceSubgroup( G );
    repeat
      a := Random( [ -n*10 .. n*10 ] );  
      b := n * Random( [ -10 .. 10 ] );
      gcd := Gcdex( a, b );
    until gcd.gcd = 1;
    return [ [           a,           b ], 
             [ -gcd.coeff2,  gcd.coeff1 ] ];
end);

InstallOtherMethod( Random,
	"for a congruence subgroup CongruenceSubgroupGammaUpper0",
	[ IsCongruenceSubgroupGammaUpper0, IsPosInt ],
	0,
	function( G, m )
	local n, a, b, gcd;
	n := LevelOfCongruenceSubgroup( G );
	repeat
      a := Random( [ -n*m .. n*m ] );  
      b := n * Random( [ -m .. m ] );
      gcd := Gcdex( a, b );
    until gcd.gcd = 1;
    return [ [           a,           b ], 
             [ -gcd.coeff2,  gcd.coeff1 ] ];
end);


#############################################################################
## 
## The congruence subgroup CongruenceSubgroupGamma1(N) consists of all matrices
## of the form   [ 1+N    * ]
##               [   N  1+N ]
##
InstallMethod( Random,
	"for a congruence subgroup CongruenceSubgroupGamma1",
	[ IsCongruenceSubgroupGamma1 ],
	0,
	function( G )
	local n, a, b, gcd;
	n := LevelOfCongruenceSubgroup( G );
    repeat
      a := 1 + n * Random( [ -10 .. 10 ] );  
      b :=     n * Random( [ -10 .. 10 ] );
      gcd := Gcdex( a, b );
    until gcd.gcd = 1 and IsInt( (gcd.coeff1-1)/n );
    return [ [ a, -gcd.coeff2 ], 
             [ b,  gcd.coeff1 ] ];
end);

InstallOtherMethod( Random,
	"for a congruence subgroup CongruenceSubgroupGamma1",
	[ IsCongruenceSubgroupGamma1, IsPosInt ],
	0,
	function( G, m )
	local n, a, b, gcd;
	n := LevelOfCongruenceSubgroup( G );
    repeat
      a := 1 + n * Random( [ -m .. m ] );  
      b :=     n * Random( [ -m .. m ] );
      gcd := Gcdex( a, b );
    until gcd.gcd = 1 and IsInt( (gcd.coeff1-1)/n );
    return [ [ a, -gcd.coeff2 ], 
             [ b,  gcd.coeff1 ] ];
end);


#############################################################################
## 
## The congruence subgroup CongruenceSubgroupGammaUpper1(N) consists of all matrices
## of the form   [ 1+N    N ]
##               [   *  1+N ]
##
InstallMethod( Random,
	"for a congruence subgroup CongruenceSubgroupGammaUpper1",
	[ IsCongruenceSubgroupGammaUpper1 ],
	0,
	function( G )
	local n, a, b, gcd;
	n := LevelOfCongruenceSubgroup( G );
    repeat
      a := 1 + n * Random( [ -10 .. 10 ] );  
      b :=     n * Random( [ -10 .. 10 ] );
      gcd := Gcdex( a, b );
    until gcd.gcd = 1 and IsInt( (gcd.coeff1-1)/n );
    return [ [          a,           b ], 
             [ -gcd.coeff2, gcd.coeff1 ] ];
end);

InstallOtherMethod( Random,
	"for a congruence subgroup CongruenceSubgroupGammaUpper1",
	[ IsCongruenceSubgroupGammaUpper1, IsPosInt ],
	0,
	function( G, m )
	local n, a, b, gcd;
	n := LevelOfCongruenceSubgroup( G );
    repeat
      a := 1 + n * Random( [ -m .. m ] );  
      b :=     n * Random( [ -m .. m ] );
      gcd := Gcdex( a, b );
    until gcd.gcd = 1 and IsInt( (gcd.coeff1-1)/n );
    return [ [          a,           b ], 
             [ -gcd.coeff2, gcd.coeff1 ] ];
end);


#############################################################################
##
#E
##