File: chap6_mj.html

package info (click to toggle)
gap-ctbllib 1.3.1-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 67,576 kB
  • sloc: xml: 39,210; makefile: 218
file content (2112 lines) | stat: -rw-r--r-- 156,623 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
  src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (CTblLibXpls) - Chapter 6: Solvable Subgroups of Maximal Order in Sporadic Simple Groups</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap6"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap5_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap7_mj.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap6.html">[MathJax off]</a></p>
<p><a id="X7EF73AA88384B5F3" name="X7EF73AA88384B5F3"></a></p>
<div class="ChapSects"><a href="chap6_mj.html#X7EF73AA88384B5F3">6 <span class="Heading">Solvable Subgroups of Maximal Order in Sporadic Simple Groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X7F817DC57A69CF0D">6.1 <span class="Heading">The Result</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X876F77197B2FB84A">6.2 <span class="Heading">The Approach</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X792957AB7B24C5E0">6.2-1 <span class="Heading">Use the Table of Marks</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X7B39A4467A1CCF8A">6.2-2 <span class="Heading">Use Information from the Character Table Library</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X834298A87BF43AAF">6.3 <span class="Heading">Cases where the Table of Marks is available in <strong class="pkg">GAP</strong></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X85559C0F7AA73E48">6.4 <span class="Heading">Cases where the Table of Marks is not available in <strong class="pkg">GAP</strong></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X7E393459822E78B5">6.4-1 <span class="Heading"><span class="SimpleMath">\(G = Ru\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X7AFF09337CCB7745">6.4-2 <span class="Heading"><span class="SimpleMath">\(G = Suz\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X7969AE067D3862A3">6.4-3 <span class="Heading"><span class="SimpleMath">\(G = ON\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X84921B85845EDA31">6.4-4 <span class="Heading"><span class="SimpleMath">\(G = Co_2\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X7D777A0D82BE8498">6.4-5 <span class="Heading"><span class="SimpleMath">\(G = Fi_{22}\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X7D9DB76A861A6F62">6.4-6 <span class="Heading"><span class="SimpleMath">\(G = HN\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X83E6436678AF562C">6.4-7 <span class="Heading"><span class="SimpleMath">\(G = Ly\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X7D6CF8EC812EF6FB">6.4-8 <span class="Heading"><span class="SimpleMath">\(G = Th\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X7A07090483C935DC">6.4-9 <span class="Heading"><span class="SimpleMath">\(G = Fi_{23}\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X7D028E9E7CB62A4F">6.4-10 <span class="Heading"><span class="SimpleMath">\(G = Co_1\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X84208AB781344A9D">6.4-11 <span class="Heading"><span class="SimpleMath">\(G = J_4\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X7BC589718203F125">6.4-12 <span class="Heading"><span class="SimpleMath">\(G = Fi_{24}^{\prime}\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X7EDF990985573EB6">6.4-13 <span class="Heading"><span class="SimpleMath">\(G = B\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6_mj.html#X87D468D07D7237CB">6.4-14 <span class="Heading"><span class="SimpleMath">\(G = M\)</span></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X7CD8E04C7F32AD56">6.5 <span class="Heading">Proof of the Corollary</span></a>
</span>
</div>
</div>

<h3>6 <span class="Heading">Solvable Subgroups of Maximal Order in Sporadic Simple Groups</span></h3>

<p>Date: May 14th, 2012</p>

<p>We determine the orders of solvable subgroups of maximal orders in sporadic simple groups and their automorphism groups, using the information in the <strong class="pkg">Atlas</strong> of Finite Groups <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a> and the <strong class="pkg">GAP</strong> system <a href="chapBib_mj.html#biBGAP">[GAP19]</a>, in particular its Character Table Library <a href="chapBib_mj.html#biBCTblLib">[Bre20]</a> and its library of Tables of Marks <a href="chapBib_mj.html#biBTomLib">[NMP18]</a>.</p>

<p>We also determine the conjugacy classes of these solvable subgroups in the big group, and the maximal overgroups.</p>

<p>A first version of this document, which was based on <strong class="pkg">GAP</strong> 4.4.10, had been accessible in the web since August 2006. The differences to the current version are as follows.</p>


<ul>
<li><p>The format of the <strong class="pkg">GAP</strong> output was adjusted to the changed behaviour of <strong class="pkg">GAP</strong> 4.5.</p>

</li>
<li><p>The (too wide) table of results was split into two tables, the first one lists the orders and indices of the subgroups, the second one lists the structure of subgroups and the maximal overgroups.</p>

</li>
<li><p>The distribution of the solvable subgroups of maximal orders in the Baby Monster group and the Monster group to conjugacy classes is now proved.</p>

</li>
<li><p>The sporadic simple Monster group has exactly one class of maximal subgroups of the type PSL<span class="SimpleMath">\((2, 41)\)</span> (see <a href="chapBib_mj.html#biBNW12">[NW13]</a>), and has no maximal subgroups which have the socle PSL<span class="SimpleMath">\((2, 27)\)</span> (see <a href="chapBib_mj.html#biBWil10">[Wil10]</a>). This does not affect the arguments in Section <a href="chap6_mj.html#X87D468D07D7237CB"><span class="RefLink">6.4-14</span></a>, but some statements in this section had to be corrected.</p>

</li>
</ul>
<p><a id="X7F817DC57A69CF0D" name="X7F817DC57A69CF0D"></a></p>

<h4>6.1 <span class="Heading">The Result</span></h4>

<p>The tables I and II list information about solvable subgroups of maximal order in sporadic simple groups and their automorphism groups. The first column in each table gives the names of the almost simple groups <span class="SimpleMath">\(G\)</span>, in alphabetical order. The remaining columns of Table I contain the order and the index of a solvable subgroup <span class="SimpleMath">\(S\)</span> of maximal order in <span class="SimpleMath">\(G\)</span>, the value <span class="SimpleMath">\(\log_{|G|}(|S|)\)</span>, and the page number in the <strong class="pkg">Atlas</strong> <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a> where the information about maximal subgroups of <span class="SimpleMath">\(G\)</span> is listed. The second and third columns of Table II show a structure description of <span class="SimpleMath">\(S\)</span> and the structures of the maximal subgroups that contain <span class="SimpleMath">\(S\)</span>; the value "<span class="SimpleMath">\(S\)</span>" in the third column means that <span class="SimpleMath">\(S\)</span> is itself maximal in <span class="SimpleMath">\(G\)</span>. The fourth and fifth columns list the pages in the <strong class="pkg">Atlas</strong> with the information about the maximal subgroups of <span class="SimpleMath">\(G\)</span> and the section in this note with the proof of the table row, respectively. In the fourth column, page numbers in brackets refer to the <strong class="pkg">Atlas</strong> pages with information about the maximal subgroups of nonsolvable quotients of the maximal subgroups of <span class="SimpleMath">\(G\)</span> listed in the third column.</p>

<p>Note that in the case of nonmaximal subgroups <span class="SimpleMath">\(S\)</span>, we do not claim to describe the <em>module</em> structure of <span class="SimpleMath">\(S\)</span> in the third column of the table; we have kept the <strong class="pkg">Atlas</strong> description of the normal subgroups of the maximal overgroups of <span class="SimpleMath">\(S\)</span>. For example, the subgroup <span class="SimpleMath">\(S\)</span> listed for <span class="SimpleMath">\(Co_2\)</span> is contained in maximal subgroups of the types <span class="SimpleMath">\(2^{1+8}_+:S_6(2)\)</span> and <span class="SimpleMath">\(2^{4+10}(S_4 \times S_3)\)</span>, so <span class="SimpleMath">\(S\)</span> has normal subgroups of the orders <span class="SimpleMath">\(2\)</span>, <span class="SimpleMath">\(2^4\)</span>, <span class="SimpleMath">\(2^9\)</span>, <span class="SimpleMath">\(2^{14}\)</span>, and <span class="SimpleMath">\(2^{16}\)</span>; more <strong class="pkg">Atlas</strong> conformal notations would be <span class="SimpleMath">\(2^{[14]}(S_4 \times S_3)\)</span> or <span class="SimpleMath">\(2^{[16]}(S_3 \times S_3)\)</span>.</p>

<p>As a corollary (see Section <a href="chap6_mj.html#X7CD8E04C7F32AD56"><span class="RefLink">6.5</span></a>), we read off the following.</p>

<p>Corollary:</p>

<p>Exactly the following almost simple groups <span class="SimpleMath">\(G\)</span> with sporadic simple socle contain a solvable subgroup <span class="SimpleMath">\(S\)</span> with the property <span class="SimpleMath">\(|S|^2 \geq |G|\)</span>.</p>

<p class="center">\[
   Fi_{23}, J_2, J_2.2, M_{11}, M_{12}, M_{22}.2.
\]</p>

<p>The existence of the subgroups <span class="SimpleMath">\(S\)</span> of <span class="SimpleMath">\(G\)</span> with the structure and the order stated in Table I and II follows from the <strong class="pkg">Atlas</strong>: It is obvious in the cases where <span class="SimpleMath">\(S\)</span> is maximal in <span class="SimpleMath">\(G\)</span>, and in the other cases, the <strong class="pkg">Atlas</strong> information about a nonsolvable factor group of a maximal subgroup of <span class="SimpleMath">\(G\)</span> suffices.</p>

<p>In order to show that the table rows for the group <span class="SimpleMath">\(G\)</span> are correct, we have to show the following.</p>


<ul>
<li><p><span class="SimpleMath">\(G\)</span> does not contain solvable subgroups of order larger than <span class="SimpleMath">\(|S|\)</span>.</p>

</li>
<li><p><span class="SimpleMath">\(G\)</span> contain exactly the conjugacy classes of solvable subgroups of order <span class="SimpleMath">\(|S|\)</span> that are listed in the second column of Table II.</p>

</li>
<li><p><span class="SimpleMath">\(S\)</span> is contained exactly in the maximal subgroups listed in the third column of Table II.</p>

</li>
</ul>
<p><em>Remark:</em></p>


<ul>
<li><p>Each of the groups <span class="SimpleMath">\(M_{12}\)</span> and <span class="SimpleMath">\(He\)</span> contains two classes of isomorphic solvable subgroups of maximal order.</p>

</li>
<li><p>Each of the groups <span class="SimpleMath">\(Ru\)</span>, <span class="SimpleMath">\(Th\)</span>, and <span class="SimpleMath">\(M\)</span> contains two classes of nonisomorphic solvable subgroups of maximal order.</p>

</li>
<li><p>The solvable subgroups of maximal order in <span class="SimpleMath">\(McL.2\)</span> have the structure <span class="SimpleMath">\(3^{1+4}_+:4S_4\)</span>, the subgroups are maximal in the maximal subgroups of the structures <span class="SimpleMath">\(3^{1+4}_+:4S_5\)</span> and <span class="SimpleMath">\(U_4(3).2_3\)</span> in <span class="SimpleMath">\(McL.2\)</span>. Note that the <strong class="pkg">Atlas</strong> claims another structure for these maximal subgroups of <span class="SimpleMath">\(U_4(3).2_3\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 52]</a>.</p>

</li>
<li><p>The solvable subgroups of maximal order in <span class="SimpleMath">\(Co_3\)</span> are the normalizers of Sylow <span class="SimpleMath">\(3\)</span>-subgroups of <span class="SimpleMath">\(Co_3\)</span>.</p>

</li>
</ul>
<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b>Table I: Solvable subgroups of maximal order – orders and indices</caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(G\)</span></td>
<td class="tdright"><span class="SimpleMath">\(|S|\)</span></td>
<td class="tdright"><span class="SimpleMath">\(|G/S|\)</span></td>
<td class="tdright"><span class="SimpleMath">\(\log_{|G|}(|S|)\)</span></td>
<td class="tdright">p.</td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{11}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(144\)</span></td>
<td class="tdright"><span class="SimpleMath">\(55\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.5536\)</span></td>
<td class="tdright"><span class="SimpleMath">\(18\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{12}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(432\)</span></td>
<td class="tdright"><span class="SimpleMath">\(220\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.5294\)</span></td>
<td class="tdright"><span class="SimpleMath">\(33\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{12}.2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(432\)</span></td>
<td class="tdright"><span class="SimpleMath">\(440\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4992\)</span></td>
<td class="tdright"><span class="SimpleMath">\(33\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(J_1\)</span></td>
<td class="tdright"><span class="SimpleMath">\(168\)</span></td>
<td class="tdright"><span class="SimpleMath">\(1\,045\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4243\)</span></td>
<td class="tdright"><span class="SimpleMath">\(36\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{22}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(576\)</span></td>
<td class="tdright"><span class="SimpleMath">\(770\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4888\)</span></td>
<td class="tdright"><span class="SimpleMath">\(39\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{22}.2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(1\,152\)</span></td>
<td class="tdright"><span class="SimpleMath">\(770\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.5147\)</span></td>
<td class="tdright"><span class="SimpleMath">\(39\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(J_2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(1\,152\)</span></td>
<td class="tdright"><span class="SimpleMath">\(525\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.5295\)</span></td>
<td class="tdright"><span class="SimpleMath">\(42\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(J_2.2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(2\,304\)</span></td>
<td class="tdright"><span class="SimpleMath">\(525\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.5527\)</span></td>
<td class="tdright"><span class="SimpleMath">\(42\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{23}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(1\,152\)</span></td>
<td class="tdright"><span class="SimpleMath">\(8\,855\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4368\)</span></td>
<td class="tdright"><span class="SimpleMath">\(71\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(HS\)</span></td>
<td class="tdright"><span class="SimpleMath">\(2\,000\)</span></td>
<td class="tdright"><span class="SimpleMath">\(22\,176\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4316\)</span></td>
<td class="tdright"><span class="SimpleMath">\(80\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(HS.2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(4\,000\)</span></td>
<td class="tdright"><span class="SimpleMath">\(22\,176\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4532\)</span></td>
<td class="tdright"><span class="SimpleMath">\(80\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(J_3\)</span></td>
<td class="tdright"><span class="SimpleMath">\(1\,944\)</span></td>
<td class="tdright"><span class="SimpleMath">\(25\,840\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4270\)</span></td>
<td class="tdright"><span class="SimpleMath">\(82\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(J_3.2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(3\,888\)</span></td>
<td class="tdright"><span class="SimpleMath">\(25\,840\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4486\)</span></td>
<td class="tdright"><span class="SimpleMath">\(82\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{24}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(13\,824\)</span></td>
<td class="tdright"><span class="SimpleMath">\(17\,710\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4935\)</span></td>
<td class="tdright"><span class="SimpleMath">\(96\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(McL\)</span></td>
<td class="tdright"><span class="SimpleMath">\(11\,664\)</span></td>
<td class="tdright"><span class="SimpleMath">\(77\,000\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4542\)</span></td>
<td class="tdright"><span class="SimpleMath">\(100\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(McL.2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(23\,328\)</span></td>
<td class="tdright"><span class="SimpleMath">\(77\,000\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4719\)</span></td>
<td class="tdright"><span class="SimpleMath">\(100\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(He\)</span></td>
<td class="tdright"><span class="SimpleMath">\(13\,824\)</span></td>
<td class="tdright"><span class="SimpleMath">\(291\,550\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4310\)</span></td>
<td class="tdright"><span class="SimpleMath">\(104\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(He.2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(18\,432\)</span></td>
<td class="tdright"><span class="SimpleMath">\(437\,325\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4305\)</span></td>
<td class="tdright"><span class="SimpleMath">\(104\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Ru\)</span></td>
<td class="tdright"><span class="SimpleMath">\(49\,152\)</span></td>
<td class="tdright"><span class="SimpleMath">\(2\,968\,875\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4202\)</span></td>
<td class="tdright"><span class="SimpleMath">\(126\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Suz\)</span></td>
<td class="tdright"><span class="SimpleMath">\(139\,968\)</span></td>
<td class="tdright"><span class="SimpleMath">\(3\,203\,200\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4416\)</span></td>
<td class="tdright"><span class="SimpleMath">\(131\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Suz.2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(279\,936\)</span></td>
<td class="tdright"><span class="SimpleMath">\(3\,203\,200\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4557\)</span></td>
<td class="tdright"><span class="SimpleMath">\(131\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O'N\)</span></td>
<td class="tdright"><span class="SimpleMath">\(25\,920\)</span></td>
<td class="tdright"><span class="SimpleMath">\(17\,778\,376\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.3784\)</span></td>
<td class="tdright"><span class="SimpleMath">\(132\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O'N.2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(51\,840\)</span></td>
<td class="tdright"><span class="SimpleMath">\(17\,778\,376\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.3940\)</span></td>
<td class="tdright"><span class="SimpleMath">\(132\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Co_3\)</span></td>
<td class="tdright"><span class="SimpleMath">\(69\,984\)</span></td>
<td class="tdright"><span class="SimpleMath">\(7\,084\,000\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4142\)</span></td>
<td class="tdright"><span class="SimpleMath">\(134\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Co_2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(2\,359\,296\)</span></td>
<td class="tdright"><span class="SimpleMath">\(17\,931\,375\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4676\)</span></td>
<td class="tdright"><span class="SimpleMath">\(154\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Fi_{22}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(5\,038\,848\)</span></td>
<td class="tdright"><span class="SimpleMath">\(12\,812\,800\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4853\)</span></td>
<td class="tdright"><span class="SimpleMath">\(163\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Fi_{22}.2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(10\,077\,696\)</span></td>
<td class="tdright"><span class="SimpleMath">\(12\,812\,800\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4963\)</span></td>
<td class="tdright"><span class="SimpleMath">\(163\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(HN\)</span></td>
<td class="tdright"><span class="SimpleMath">\(2\,000\,000\)</span></td>
<td class="tdright"><span class="SimpleMath">\(136\,515\,456\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4364\)</span></td>
<td class="tdright"><span class="SimpleMath">\(166\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(HN.2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(4\,000\,000\)</span></td>
<td class="tdright"><span class="SimpleMath">\(136\,515\,456\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4479\)</span></td>
<td class="tdright"><span class="SimpleMath">\(166\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Ly\)</span></td>
<td class="tdright"><span class="SimpleMath">\(900\,000\)</span></td>
<td class="tdright"><span class="SimpleMath">\(57\,516\,865\,560\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.3562\)</span></td>
<td class="tdright"><span class="SimpleMath">\(174\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Th\)</span></td>
<td class="tdright"><span class="SimpleMath">\(944\,784\)</span></td>
<td class="tdright"><span class="SimpleMath">\(96\,049\,408\,000\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.3523\)</span></td>
<td class="tdright"><span class="SimpleMath">\(177\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Fi_{23}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(3\,265\,173\,504\)</span></td>
<td class="tdright"><span class="SimpleMath">\(1\,252\,451\,200\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.5111\)</span></td>
<td class="tdright"><span class="SimpleMath">\(177\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Co_1\)</span></td>
<td class="tdright"><span class="SimpleMath">\(84\,934\,656\)</span></td>
<td class="tdright"><span class="SimpleMath">\(48\,952\,653\,750\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4258\)</span></td>
<td class="tdright"><span class="SimpleMath">\(183\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(J_4\)</span></td>
<td class="tdright"><span class="SimpleMath">\(28\,311\,552\)</span></td>
<td class="tdright"><span class="SimpleMath">\(3\,065\,023\,459\,190\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.3737\)</span></td>
<td class="tdright"><span class="SimpleMath">\(190\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Fi_{24}'\)</span></td>
<td class="tdright"><span class="SimpleMath">\(29\,386\,561\,536\)</span></td>
<td class="tdright"><span class="SimpleMath">\(42\,713\,595\,724\,800\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4343\)</span></td>
<td class="tdright"><span class="SimpleMath">\(207\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Fi_{24}'.2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(58\,773\,123\,072\)</span></td>
<td class="tdright"><span class="SimpleMath">\(42\,713\,595\,724\,800\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4413\)</span></td>
<td class="tdright"><span class="SimpleMath">\(207\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(B\)</span></td>
<td class="tdright"><span class="SimpleMath">\(29\,686\,813\,949\,952\)</span></td>
<td class="tdright"><span class="SimpleMath">\(139\,953\,768\,303\,693\,093\,750\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.4007\)</span></td>
<td class="tdright"><span class="SimpleMath">\(217\)</span></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M\)</span></td>
<td class="tdright"><span class="SimpleMath">\(2\,849\,934\,139\,195\,392\)</span></td>
<td class="tdright"><span class="SimpleMath">\(283\,521\,437\,805\,098\,363\,752\)</span></td>
<td class="tdright"></td>
<td class="tdright"></td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdright"></td>
<td class="tdright"><span class="SimpleMath">\(344\,287\,234\,566\,406\,250\)</span></td>
<td class="tdright"><span class="SimpleMath">\(0.2866\)</span></td>
<td class="tdright"><span class="SimpleMath">\(234\)</span></td>
<td>&#160;</td>
</tr>
</table><br /><p>&nbsp;</p><br />
</div>

<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b>Table II: Solvable subgroups of maximal order – structures and overgroups</caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(G\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdleft">Max. overgroups</td>
<td class="tdright"><a href="chapBib_mj.html#biBCCN85">[CCN+85]</a></td>
<td class="tdleft"></td>
<td class="tdleft">see</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{11}\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^2:Q_8.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">18</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{12}\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^2:2S_4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">33</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(3^2:2S_4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">33</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{12}.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^2:2S_4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(M_{12}\)</span></td>
<td class="tdright">33</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(J_1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^3:7:3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">36</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{22}\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^4:3^2:4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^4:A_6\)</span></td>
<td class="tdright">39</td>
<td class="tdleft">(4)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{22}.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^4:3^2:D_8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^4:S_6\)</span></td>
<td class="tdright">39</td>
<td class="tdleft">(4)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(J_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{2+4}:(3 \times S_3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">42</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(J_2.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{2+4}:(S_3 \times S_3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">42</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{23}\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^4:(3 \times A_4):2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^4:(3 \times A_5):2\)</span>,</td>
<td class="tdright">71</td>
<td class="tdleft">(2)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(2^4:A_7\)</span></td>
<td class="tdright"></td>
<td class="tdleft">(10)</td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(HS\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5^{1+2}_+:8:2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(U_3(5).2\)</span></td>
<td class="tdright">80</td>
<td class="tdleft">(34)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(U_3(5).2\)</span></td>
<td class="tdright"></td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(HS.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5^{1+2}_+:[2^5]\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">80</td>
<td class="tdleft">(34)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(J_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^2.3^{1+2}_+:8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">82</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(J_3.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^2.3^{1+2}_+:QD_{16}\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">82</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{24}\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^6:3^{1+2}_+:D_8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^6:3.S_6\)</span></td>
<td class="tdright">96</td>
<td class="tdleft">(4)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(McL\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+4}_+:2S_4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+4}_+:2S_5\)</span>,</td>
<td class="tdright">100</td>
<td class="tdleft">(2)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(U_4(3)\)</span></td>
<td class="tdright"></td>
<td class="tdleft">(52)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(McL.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+4}_+:4S_4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+4}_+:4S_5\)</span>,</td>
<td class="tdright">100</td>
<td class="tdleft">(2)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(U_4(3).2_3\)</span></td>
<td class="tdright"></td>
<td class="tdleft">(52)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(He\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^6:3^{1+2}_+:D_8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^6:3.S_6\)</span></td>
<td class="tdright">104</td>
<td class="tdleft">(4)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(2^6:3^{1+2}_+:D_8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^6:3.S_6\)</span></td>
<td class="tdright"></td>
<td class="tdleft">(4)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(He.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{4+4}.(S_3 \times S_3).2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">104</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Ru\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2.2^{4+6}:S_4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{3+8}:L_3(2)\)</span>,</td>
<td class="tdright">126</td>
<td class="tdleft">(3)</td>
<td class="tdleft"><a href="chap6_mj.html#X7E393459822E78B5"><span class="RefLink">6.4-1</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(2.2^{4+6}:S_5\)</span></td>
<td class="tdright"></td>
<td class="tdleft">(2)</td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(2^{3+8}:S_4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{3+8}:L_3(2)\)</span>,</td>
<td class="tdright"></td>
<td class="tdleft">(3)</td>
<td class="tdleft"><a href="chap6_mj.html#X7E393459822E78B5"><span class="RefLink">6.4-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Suz\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{2+4}:2(A_4 \times 2^2).2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">131</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X7AFF09337CCB7745"><span class="RefLink">6.4-2</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Suz.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{2+4}:2(S_4 \times D_8)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">131</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X7AFF09337CCB7745"><span class="RefLink">6.4-2</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O'N\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^4:2^{1+4}_-D_{10}\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">132</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X7969AE067D3862A3"><span class="RefLink">6.4-3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O'N.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^4:2^{1+4}_-.(5:4)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">132</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X7969AE067D3862A3"><span class="RefLink">6.4-3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Co_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+4}_+:4.3^2:D_8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+4}_+:4S_6\)</span></td>
<td class="tdright">134</td>
<td class="tdleft">(4)</td>
<td class="tdleft"><a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(3^5:(2 \times M_{11})\)</span></td>
<td class="tdright"></td>
<td class="tdleft">(18)</td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Co_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{4+10}(S_4 \times S_3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{1+8}_+:S_6(2)\)</span>,</td>
<td class="tdright">154</td>
<td class="tdleft">(46)</td>
<td class="tdleft"><a href="chap6_mj.html#X84921B85845EDA31"><span class="RefLink">6.4-4</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(2^{4+10}(S_5 \times S_3)\)</span></td>
<td class="tdright"></td>
<td class="tdleft">(2)</td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Fi_{22}\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+6}_+:2^{3+4}:3^2:2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">163</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X7D777A0D82BE8498"><span class="RefLink">6.4-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Fi_{22}.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+6}_+:2^{3+4}:(S_3 \times S_3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">163</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X7D777A0D82BE8498"><span class="RefLink">6.4-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(HN\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5^{1+4}_+:2^{1+4}_-.5.4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">166</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X7D9DB76A861A6F62"><span class="RefLink">6.4-6</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(HN.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5^{1+4}_+:(4 Y 2^{1+4}_-.5.4)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">166</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X7D9DB76A861A6F62"><span class="RefLink">6.4-6</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Ly\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5^{1+4}_+:4.3^2:D_8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5^{1+4}_+:4S_6\)</span></td>
<td class="tdright">174</td>
<td class="tdleft">(4)</td>
<td class="tdleft"><a href="chap6_mj.html#X83E6436678AF562C"><span class="RefLink">6.4-7</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Th\)</span></td>
<td class="tdleft"><span class="SimpleMath">\([3^9].2S_4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">177</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X7D6CF8EC812EF6FB"><span class="RefLink">6.4-8</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(3^2.[3^7].2S_4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Fi_{23}\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+8}_+.2^{1+6}_-.3^{1+2}_+.2S_4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdright">177</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X7A07090483C935DC"><span class="RefLink">6.4-9</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Co_1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{4+12}.(S_3 \times 3^{1+2}_+:D_8)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{4+12}.(S_3 \times 3S_6)\)</span></td>
<td class="tdright">183</td>
<td class="tdleft"></td>
<td class="tdleft"><a href="chap6_mj.html#X7D028E9E7CB62A4F"><span class="RefLink">6.4-10</span></a></td>
</tr>
</table><br /><p>&nbsp;</p><br />
</div>

<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b>Table II: Solvable subgroups of maximal order – structures and overgroups (continued)</caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(G\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdleft">Max. overgroups</td>
<td class="tdright"><a href="chapBib_mj.html#biBCCN85">[CCN+85]</a></td>
<td class="tdleft"></td>
<td class="tdleft">see</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(J_4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{11}:2^6:3^{1+2}_+:D_8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{11}:M_{24}\)</span>,</td>
<td class="tdright">190</td>
<td class="tdleft">(96)</td>
<td class="tdleft"><a href="chap6_mj.html#X84208AB781344A9D"><span class="RefLink">6.4-11</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(2^{1+12}_+.3M_{22}:2\)</span></td>
<td class="tdright"></td>
<td class="tdleft">(39)</td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Fi_{24}'\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+10}_+:2^{1+6}_-:3^{1+2}_+:2S_4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+10}_+:U_5(2):2\)</span></td>
<td class="tdright">207</td>
<td class="tdleft">(73)</td>
<td class="tdleft"><a href="chap6_mj.html#X7BC589718203F125"><span class="RefLink">6.4-12</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Fi_{24}'.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+10}_+:(2 \times 2^{1+6}_-:3^{1+2}_+:2S_4)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+10}_+:(2 \times U_5(2):2)\)</span></td>
<td class="tdright">207</td>
<td class="tdleft">(73)</td>
<td class="tdleft"><a href="chap6_mj.html#X7BC589718203F125"><span class="RefLink">6.4-12</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(B\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{2+10+20}(2^4:3^2:D_8 \times S_3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{2+10+20}(M_{22}:2 \times S_3)\)</span>,</td>
<td class="tdright">217</td>
<td class="tdleft">(39)</td>
<td class="tdleft"><a href="chap6_mj.html#X7EDF990985573EB6"><span class="RefLink">6.4-13</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(2^{9+16}S_8(2)\)</span></td>
<td class="tdright"></td>
<td class="tdleft">(123)</td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{1+2+6+12+18}.(S_4 \times 3^{1+2}_+:D_8)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{[39]}.(L_3(2) \times 3S_6)\)</span>,</td>
<td class="tdright">234</td>
<td class="tdleft">(3, 4)</td>
<td class="tdleft"><a href="chap6_mj.html#X87D468D07D7237CB"><span class="RefLink">6.4-14</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(2^{1+24}_+.Co_1\)</span></td>
<td class="tdright"></td>
<td class="tdleft">(183)</td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(2^{2+1+6+12+18}.(S_4 \times 3^{1+2}_+:D_8)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{[39]}.(L_3(2) \times 3S_6)\)</span>,</td>
<td class="tdright"></td>
<td class="tdleft">(3, 4)</td>
<td class="tdleft"><a href="chap6_mj.html#X87D468D07D7237CB"><span class="RefLink">6.4-14</span></a></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"><span class="SimpleMath">\(2^{2+11+22}.(M_{24} \times S_3)\)</span></td>
<td class="tdright"></td>
<td class="tdleft">(96)</td>
<td class="tdleft"></td>
</tr>
</table><br /><p>&nbsp;</p><br />
</div>

<p><a id="X876F77197B2FB84A" name="X876F77197B2FB84A"></a></p>

<h4>6.2 <span class="Heading">The Approach</span></h4>

<p>We combine the information in the <strong class="pkg">Atlas</strong> <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a> with explicit computations using the <strong class="pkg">GAP</strong> system <a href="chapBib_mj.html#biBGAP">[GAP19]</a>, in particular its Character Table Library <a href="chapBib_mj.html#biBCTblLib">[Bre20]</a> and its library of Tables of Marks <a href="chapBib_mj.html#biBTomLib">[NMP18]</a>. First we load these two packages.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "CTblLib", "1.2", false );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "TomLib", false );</span>
true
</pre></div>

<p>The orders of solvable subgroups of maximal order will be collected in a global record <code class="code">MaxSolv</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv:= rec();;</span>
</pre></div>

<p><a id="X792957AB7B24C5E0" name="X792957AB7B24C5E0"></a></p>

<h5>6.2-1 <span class="Heading">Use the Table of Marks</span></h5>

<p>If the <strong class="pkg">GAP</strong> library of Tables of Marks <a href="chapBib_mj.html#biBTomLib">[NMP18]</a> contains the table of marks of a group <span class="SimpleMath">\(G\)</span> then we can easily inspect all conjugacy classes of subgroups of <span class="SimpleMath">\(G\)</span>. The following small <strong class="pkg">GAP</strong> function can be used for that. It returns <code class="keyw">false</code> if the table of marks of the group with the name <code class="code">name</code> is not available, and the list <code class="code">[ name, n, super ]</code> otherwise, where <code class="code">n</code> is the maximal order of solvable subgroups of <span class="SimpleMath">\(G\)</span>, and <code class="code">super</code> is a list of lists; for each conjugacy class of solvable subgroups <span class="SimpleMath">\(S\)</span> of order <code class="code">n</code>, <code class="code">super</code> contains the list of orders of representatives <span class="SimpleMath">\(M\)</span> of the classes of maximal subgroups of <span class="SimpleMath">\(G\)</span> such that <span class="SimpleMath">\(M\)</span> contains a conjugate of <span class="SimpleMath">\(S\)</span>.</p>

<p>Note that a subgroup in the <span class="SimpleMath">\(i\)</span>-th class of a table of marks contains a subgroup in the <span class="SimpleMath">\(j\)</span>-th class if and only if the entry in the position <span class="SimpleMath">\((i,j)\)</span> of the table of marks is nonzero. For tables of marks objects in <strong class="pkg">GAP</strong>, this is the case if and only if <span class="SimpleMath">\(j\)</span> is contained in the <span class="SimpleMath">\(i\)</span>-th row of the list that is stored as the value of the attribute <code class="code">SubsTom</code> of the table of marks object; for this test, one need not unpack the matrix of marks.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaximalSolvableSubgroupInfoFromTom:= function( name )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local tom,          # table of marks for `name'</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          n,            # maximal order of a solvable subgroup</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          maxsubs,      # numbers of the classes of subgroups of order `n'</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          orders,       # list of orders of the classes of subgroups</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          i,            # loop over the classes of subgroups</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          maxes,        # list of positions of the classes of max. subgroups</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          subs,         # `SubsTom' value</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          cont;         # list of list of positions of max. subgroups</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    tom:= TableOfMarks( name );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if tom = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    n:= 1;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    maxsubs:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    orders:= OrdersTom( tom );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for i in [ 1 .. Length( orders ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if IsSolvableTom( tom, i ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        if orders[i] = n then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          Add( maxsubs, i );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        elif orders[i] &gt; n then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          n:= orders[i];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          maxsubs:= [ i ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    maxes:= MaximalSubgroupsTom( tom )[1];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    subs:= SubsTom( tom );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    cont:= List( maxsubs, j -&gt; Filtered( maxes, i -&gt; j in subs[i] ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return [ name, n, List( cont, l -&gt; orders{ l } ) ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p><a id="X7B39A4467A1CCF8A" name="X7B39A4467A1CCF8A"></a></p>

<h5>6.2-2 <span class="Heading">Use Information from the Character Table Library</span></h5>

<p>The <strong class="pkg">GAP</strong> Character Table Library contains the character tables of all maximal subgroups of sporadic simple groups, except for the Monster group. This information can be used as follows.</p>

<p>We start, for a sporadic simple group <span class="SimpleMath">\(G\)</span>, with a known solvable subgroup of order <span class="SimpleMath">\(n\)</span>, say, in <span class="SimpleMath">\(G\)</span>. In order to show that <span class="SimpleMath">\(G\)</span> contains no solvable subgroup of larger order, it suffices to show that no maximal subgroup of <span class="SimpleMath">\(G\)</span> contains a larger solvable subgroup.</p>

<p>The point is that usually the orders of the maximal subgroups of <span class="SimpleMath">\(G\)</span> are not much larger than <span class="SimpleMath">\(n\)</span>, and that a maximal subgroup <span class="SimpleMath">\(M\)</span> contains a solvable subgroup of order <span class="SimpleMath">\(n\)</span> only if the factor group of <span class="SimpleMath">\(M\)</span> by its largest solvable normal subgroup <span class="SimpleMath">\(N\)</span> contains a solvable subgroup of order <span class="SimpleMath">\(n/|N|\)</span>. This reduces the question to relatively small groups.</p>

<p>What we can check <em>automatically</em> from the character table of <span class="SimpleMath">\(M/N\)</span> is whether <span class="SimpleMath">\(M/N\)</span> can contain subgroups (solvable or not) of indices between five and <span class="SimpleMath">\(|M|/n\)</span>, by computing possible permutation characters of these degrees. (Note that a solvable subgroup of a nonsolvable group has index at least five. This lower bound could be improved for example by considering the smallest degree of a nontrivial character, but this is not an issue here.)</p>

<p>Then we are left with a –hopefully short– list of maximal subgroups of <span class="SimpleMath">\(G\)</span>, together with upper bounds on the indices of possible solvable subgroups; excluding these possibilities then yields that the initially chosen solvable subgroup of <span class="SimpleMath">\(G\)</span> is indeed the largest one.</p>

<p>The following <strong class="pkg">GAP</strong> function can be used to compute this information for the character table <code class="code">tblM</code> of <span class="SimpleMath">\(M\)</span> and a given order <code class="code">minorder</code>. It returns <code class="keyw">false</code> if <span class="SimpleMath">\(M\)</span> cannot contain a solvable subgroup of order at least <code class="code">minorder</code>, otherwise a list <code class="code">[ tblM, m, k ]</code> where <code class="code">m</code> is the maximal index of a subgroup that has order at least <code class="code">minorder</code>, and <code class="code">k</code> is the minimal index of a possible subgroup of <span class="SimpleMath">\(M\)</span> (a proper subgroup if <span class="SimpleMath">\(M\)</span> is nonsolvable), according to the <strong class="pkg">GAP</strong> function <code class="func">PermChars</code> (<a href="../../../doc/ref/chap72_mj.html#X7D02541482C196A6"><span class="RefLink">Reference: PermChars</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SolvableSubgroupInfoFromCharacterTable:= function( tblM, minorder )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local maxindex,  # index of subgroups of order `minorder'</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          N,         # class positions describing a solvable normal subgroup</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          fact,      # character table of the factor by `N'</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          classes,   # class sizes in `fact'</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          nsg,       # list of class positions of normal subgroups</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          i;         # loop over the possible indices</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    maxindex:= Int( Size( tblM ) / minorder );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if   maxindex = 0 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif IsSolvableCharacterTable( tblM ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return [ tblM, maxindex, 1 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif maxindex &lt; 5 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    N:= [ 1 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fact:= tblM;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    repeat</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fact:= fact / N;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      classes:= SizesConjugacyClasses( fact );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      nsg:= Difference( ClassPositionsOfNormalSubgroups( fact ), [ [ 1 ] ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      N:= First( nsg, x -&gt; IsPrimePowerInt( Sum( classes{ x } ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    until N = fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for i in Filtered( DivisorsInt( Size( fact ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       d -&gt; 5 &lt;= d and d &lt;= maxindex ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if Length( PermChars( fact, rec( torso:= [ i ] ) ) ) &gt; 0 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        return [ tblM, maxindex, i ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p><a id="X834298A87BF43AAF" name="X834298A87BF43AAF"></a></p>

<h4>6.3 <span class="Heading">Cases where the Table of Marks is available in <strong class="pkg">GAP</strong></span></h4>

<p>For twelve sporadic simple groups, the <strong class="pkg">GAP</strong> library of Tables of Marks knows the tables of marks, so we can use <code class="code">MaximalSolvableSubgroupInfoFromTom</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">solvinfo:= Filtered( List(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        AllCharacterTableNames( IsSporadicSimple, true,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                IsDuplicateTable, false ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        MaximalSolvableSubgroupInfoFromTom ), x -&gt; x &lt;&gt; false );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for entry in solvinfo do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     MaxSolv.( entry[1] ):= entry[2];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for entry in solvinfo do                                 </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Print( String( entry[1], 5 ), String( entry[2], 7 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            String( entry[3], 28 ), "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
  Co3  69984     [ [ 3849120, 699840 ] ]
   HS   2000      [ [ 252000, 252000 ] ]
   He  13824  [ [ 138240 ], [ 138240 ] ]
   J1    168                 [ [ 168 ] ]
   J2   1152                [ [ 1152 ] ]
   J3   1944                [ [ 1944 ] ]
  M11    144                 [ [ 144 ] ]
  M12    432        [ [ 432 ], [ 432 ] ]
  M22    576                [ [ 5760 ] ]
  M23   1152         [ [ 40320, 5760 ] ]
  M24  13824              [ [ 138240 ] ]
  McL  11664      [ [ 3265920, 58320 ] ]
</pre></div>

<p>We see that for <span class="SimpleMath">\(J_1\)</span>, <span class="SimpleMath">\(J_2\)</span>, <span class="SimpleMath">\(J_3\)</span>, <span class="SimpleMath">\(M_{11}\)</span>, and <span class="SimpleMath">\(M_{12}\)</span>, the subgroup <span class="SimpleMath">\(S\)</span> is maximal. For <span class="SimpleMath">\(M_{12}\)</span> and <span class="SimpleMath">\(He\)</span>, there are two classes of subgroups <span class="SimpleMath">\(S\)</span>. For the other groups, the class of subgroups <span class="SimpleMath">\(S\)</span> is unique, and there are one or two classes of maximal subgroups of <span class="SimpleMath">\(G\)</span> that contain <span class="SimpleMath">\(S\)</span>. From the shown orders of these maximal subgroups, their structures can be read off from the <strong class="pkg">Atlas</strong>, on the pages listed in Table II.</p>

<p>Similarly, the <strong class="pkg">Atlas</strong> tells us about the extensions of the subgroups <span class="SimpleMath">\(S\)</span> in Aut<span class="SimpleMath">\((G)\)</span>. In particular,</p>


<ul>
<li><p>the order <span class="SimpleMath">\(2\,000\)</span> subgroups of <span class="SimpleMath">\(HS\)</span> are contained in maximal subgroups of the type <span class="SimpleMath">\(U_3(5).2\)</span> (two classes) which do not extend to <span class="SimpleMath">\(HS.2\)</span>, but there are novelties of the type <span class="SimpleMath">\(5^{1+2}_+:[2^5]\)</span> and of the order <span class="SimpleMath">\(4\,000\)</span>, so the solvable subgroups of maximal order in <span class="SimpleMath">\(HS\)</span> do in fact extend to <span class="SimpleMath">\(HS.2\)</span>.</p>

</li>
<li><p>the order <span class="SimpleMath">\(13\,824\)</span> subgroups of <span class="SimpleMath">\(He\)</span> are contained in maximal subgroups of the type <span class="SimpleMath">\(2^6:3S_6\)</span> (two classes) which do not extend to <span class="SimpleMath">\(He.2\)</span>, but there are novelties of the type <span class="SimpleMath">\(2^{4+4}.(S_3 \times S_3).2\)</span> and of the order <span class="SimpleMath">\(18\,432\)</span>. (So the solvable subgroups <span class="SimpleMath">\(S\)</span> of maximal order in <span class="SimpleMath">\(He\)</span> do not extend to <span class="SimpleMath">\(He.2\)</span> but there are larger solvable subgroups in <span class="SimpleMath">\(He.2\)</span>.)</p>

<p>We inspect the maximal subgroups of <span class="SimpleMath">\(He.2\)</span> in order to show that these are in fact the solvable subgroups of maximal order (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 104]</a>): Any other solvable subgroup of order at least <span class="SimpleMath">\(n\)</span> in <span class="SimpleMath">\(He.2\)</span> must be contained in a subgroup of one of the types <span class="SimpleMath">\(S_4(4).4\)</span> (of index at most <span class="SimpleMath">\(212\)</span>), <span class="SimpleMath">\(2^2.L_3(4).D_{12}\)</span> (of index at most <span class="SimpleMath">\(52\)</span>), or <span class="SimpleMath">\(2^{1+6}_+.L_3(2).2\)</span> (of index at most <span class="SimpleMath">\(2\)</span>). By <a href="chapBib_mj.html#biBCCN85">[CCN+85, pp. 44, 23, 3]</a>, this is not the case.</p>

</li>
<li><p>the maximal subgroups of order <span class="SimpleMath">\(1\,152\)</span> in <span class="SimpleMath">\(J_2\)</span> extend to subgroups of order <span class="SimpleMath">\(2\,304\)</span> in <span class="SimpleMath">\(J_2.2\)</span>.</p>

</li>
<li><p>the maximal subgroups of order <span class="SimpleMath">\(1\,944\)</span> in <span class="SimpleMath">\(J_3\)</span> extend to subgroups of the type <span class="SimpleMath">\(3^2.3^{1+2}_+:8.2\)</span> and of order <span class="SimpleMath">\(3888\)</span> in <span class="SimpleMath">\(J_3.2\)</span>. (The structure stated in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 82]</a> is not correct, see <a href="chapBib_mj.html#biBBN95">[BN95]</a>.)</p>

</li>
<li><p>the maximal subgroups of order <span class="SimpleMath">\(432\)</span> in <span class="SimpleMath">\(M_{12}\)</span> (two classes) do <em>not</em> extend in <span class="SimpleMath">\(M_{12}.2\)</span>, and we see from the table of marks of <span class="SimpleMath">\(M_{12}.2\)</span> that there are no larger solvable subgroups in this group, i. e., the solvable subgroups of maximal order in <span class="SimpleMath">\(M_{12}.2\)</span> lie in <span class="SimpleMath">\(M_{12}\)</span>.</p>

</li>
<li><p>the order <span class="SimpleMath">\(576\)</span> subgroups of <span class="SimpleMath">\(M_{22}\)</span> are contained in maximal subgroups of the type <span class="SimpleMath">\(2^4:A_6\)</span> which extend to subgroups of the type <span class="SimpleMath">\(2^4:S_6\)</span> in <span class="SimpleMath">\(M_{22}.2\)</span>, so the solvable subgroups of maximal order in <span class="SimpleMath">\(M_{22}.2\)</span> have the type <span class="SimpleMath">\(2^4:3^2:D_8\)</span> and the order <span class="SimpleMath">\(1\,152\)</span>. In fact the structure is <span class="SimpleMath">\(S_4 \wr S_2\)</span>.</p>

</li>
<li><p>the order <span class="SimpleMath">\(11\,664\)</span> subgroups of <span class="SimpleMath">\(McL\)</span> are contained in maximal subgroups of the type <span class="SimpleMath">\(3^{1+4}_+:2S_5\)</span> which extend to subgroups of the type <span class="SimpleMath">\(3^{1+4}:4S_5\)</span> in <span class="SimpleMath">\(McL.2\)</span>, so the solvable subgroups of maximal order in <span class="SimpleMath">\(McL.2\)</span> have the type <span class="SimpleMath">\(3^{1+4}:4S_4\)</span> and the order <span class="SimpleMath">\(23\,328\)</span>.</p>

</li>
</ul>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "HS.2" ):= 2 * MaxSolv.( "HS" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 2^(4+4) * ( 6 * 6 ) * 2;  MaxSolv.( "He.2" ):= n;;</span>
18432
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ Size( CharacterTable( "S4(4).4" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Factorial( 5 )^2 * 2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Size( CharacterTable( "2^2.L3(4).D12" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           2^7 * Size( CharacterTable( "L3(2)" ) ) * 2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           7^2 * 2 * Size( CharacterTable( "L2(7)" ) ) * 2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           3 * Factorial( 7 ) * 2 ], i -&gt; Int( i / n ) );</span>
[ 212, 1, 52, 2, 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "J2.2" ):= 2 * MaxSolv.( "J2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "J3.2" ):= 2 * MaxSolv.( "J3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= MaximalSolvableSubgroupInfoFromTom( "M12.2" );</span>
[ "M12.2", 432, [ [ 95040 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "M12.2" ):= info[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "M22.2" ):= 2 * MaxSolv.( "M22" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "McL.2" ):= 2 * MaxSolv.( "McL" );;</span>
</pre></div>

<p><a id="X85559C0F7AA73E48" name="X85559C0F7AA73E48"></a></p>

<h4>6.4 <span class="Heading">Cases where the Table of Marks is not available in <strong class="pkg">GAP</strong></span></h4>

<p>} We use the <strong class="pkg">GAP</strong> function <code class="code">SolvableSubgroupInfoFromCharacterTable</code>, and individual arguments. In several cases, information about smaller sporadic simple groups is needed, so we deal with the groups in increasing order.</p>

<p><a id="X7E393459822E78B5" name="X7E393459822E78B5"></a></p>

<h5>6.4-1 <span class="Heading"><span class="SimpleMath">\(G = Ru\)</span></span></h5>

<p>The group <span class="SimpleMath">\(Ru\)</span> contains exactly two conjugacy classes of nonisomorphic solvable subgroups of order <span class="SimpleMath">\(n = 49\,152\)</span>, and no larger solvable subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Ru" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 49152;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= List( mx, x -&gt; SolvableSubgroupInfoFromCharacterTable( x, n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= Filtered( info, IsList );</span>
[ [ CharacterTable( "2^3+8:L3(2)" ), 7, 7 ], 
  [ CharacterTable( "2.2^4+6:S5" ), 5, 5 ] ]
</pre></div>

<p>The maximal subgroups of the structure <span class="SimpleMath">\(2.2^{4+6}:S_5\)</span> in <span class="SimpleMath">\(Ru\)</span> contain one class of solvable subgroups of order <span class="SimpleMath">\(n\)</span> and with the structure <span class="SimpleMath">\(2.2^{4+6}:S_4\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 126, p. 2]</a>.</p>

<p>The maximal subgroups of the structure <span class="SimpleMath">\(2^{3+8}:L_3(2)\)</span> in <span class="SimpleMath">\(Ru\)</span> contain two classes of solvable subgroups of order <span class="SimpleMath">\(n\)</span> and with the structure <span class="SimpleMath">\(2^{3+8}:S_4\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 126, p. 3]</a>. These groups are the stabilizers of vectors and two-dimensional subspaces, respectively, in the three-dimensional submodule; note that each <span class="SimpleMath">\(2^{3+8}:L_3(2)\)</span> type subgroup <span class="SimpleMath">\(H\)</span> of <span class="SimpleMath">\(Ru\)</span> is the normalizer of an elementary abelian group of order eight all of whose involutions are in the <span class="SimpleMath">\(Ru\)</span>-class <code class="code">2A</code> and are conjugate in <span class="SimpleMath">\(H\)</span>. Since the <span class="SimpleMath">\(2.2^{4+6}:S_5\)</span> type subgroups of <span class="SimpleMath">\(Ru\)</span> are the normalizers of <code class="code">2A</code>-elements in <span class="SimpleMath">\(Ru\)</span>, the groups in one of the two classes in question coincide with the largest solvable subgroups in the <span class="SimpleMath">\(2.2^{4+6}:S_5\)</span> type subgroups. The groups in the other class do not centralize a <code class="code">2A</code>-element in <span class="SimpleMath">\(Ru\)</span> and are therefore not isomorphic with the <span class="SimpleMath">\(2.2^{4+6}:S_4\)</span> type groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "Ru" ):= n;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= info[1][1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cls:= SizesConjugacyClasses( s );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( s ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   x -&gt; Sum( cls{ x } ) = 2^3 );</span>
[ [ 1, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cls{ nsg[1] };</span>
[ 1, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( s, t ){ nsg[1] };</span>
[ 1, 2 ]
</pre></div>

<p><a id="X7AFF09337CCB7745" name="X7AFF09337CCB7745"></a></p>

<h5>6.4-2 <span class="Heading"><span class="SimpleMath">\(G = Suz\)</span></span></h5>

<p>The group <span class="SimpleMath">\(Suz\)</span> contains a unique conjugacy class of solvable subgroups of order <span class="SimpleMath">\(n = 139\,968\)</span>, and no larger solvable subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Suz" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 139968;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= List( mx, x -&gt; SolvableSubgroupInfoFromCharacterTable( x, n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= Filtered( info, IsList );</span>
[ [ CharacterTable( "G2(4)" ), 1797, 416 ], 
  [ CharacterTable( "3_2.U4(3).2_3'" ), 140, 72 ], 
  [ CharacterTable( "3^5:M11" ), 13, 11 ], 
  [ CharacterTable( "2^4+6:3a6" ), 7, 6 ], 
  [ CharacterTable( "3^2+4:2(2^2xa4)2" ), 1, 1 ] ]
</pre></div>

<p>The maximal subgroups <span class="SimpleMath">\(S\)</span> of the structure <span class="SimpleMath">\(3^{2+4}:2(A_4 \times 2^2).2\)</span> in <span class="SimpleMath">\(Suz\)</span> are solvable and have order <span class="SimpleMath">\(n\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 131]</a>.</p>

<p>In order to show that <span class="SimpleMath">\(Suz\)</span> contains no other solvable subgroups of order larger than or equal to <span class="SimpleMath">\(|S|\)</span>, we check that there are no solvable subgroups in <span class="SimpleMath">\(G_2(4)\)</span> of index at most <span class="SimpleMath">\(1\,797\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 97]</a>), in <span class="SimpleMath">\(U_4(3).2_3^{\prime}\)</span> of index at most <span class="SimpleMath">\(140\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 52]</a>), in <span class="SimpleMath">\(M_{11}\)</span> of index at most <span class="SimpleMath">\(13\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 18]</a>), and in <span class="SimpleMath">\(A_6\)</span> of index at most <span class="SimpleMath">\(7\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 4]</a>).</p>

<p>The group <span class="SimpleMath">\(S\)</span> extends to a group of the structure <span class="SimpleMath">\(3^{2+4}:2(S_4 \times D_8)\)</span> in the automorphism group <span class="SimpleMath">\(Suz.2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "Suz" ):= n;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "Suz.2" ):= 2 * n;;</span>
</pre></div>

<p><a id="X7969AE067D3862A3" name="X7969AE067D3862A3"></a></p>

<h5>6.4-3 <span class="Heading"><span class="SimpleMath">\(G = ON\)</span></span></h5>

<p>The group <span class="SimpleMath">\(ON\)</span> contains a unique conjugacy class of solvable subgroups of order <span class="SimpleMath">\(25\,920\)</span>, and no larger solvable subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "ON" );;                                            </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 25920;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= List( mx, x -&gt; SolvableSubgroupInfoFromCharacterTable( x, n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= Filtered( info, IsList );</span>
[ [ CharacterTable( "L3(7).2" ), 144, 114 ], 
  [ CharacterTable( "ONM2" ), 144, 114 ], 
  [ CharacterTable( "3^4:2^(1+4)D10" ), 1, 1 ] ]
</pre></div>

<p>The maximal subgroups <span class="SimpleMath">\(S\)</span> of the structure <span class="SimpleMath">\(3^4:2^{1+4}_-D_{10}\)</span> in <span class="SimpleMath">\(ON\)</span> are solvable and have order <span class="SimpleMath">\(n\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, pp. 132]</a>.</p>

<p>In order to show that <span class="SimpleMath">\(ON\)</span> contains no other solvable subgroups of order larger than or equal to <span class="SimpleMath">\(|S|\)</span>, we check that there are no solvable subgroups in <span class="SimpleMath">\(L_3(7).2\)</span> of index at most <span class="SimpleMath">\(144\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 50]</a>); note that the groups in the second class of maximal subgroups of <span class="SimpleMath">\(ON\)</span> are isomorphic with <span class="SimpleMath">\(L_3(7).2\)</span>.</p>

<p>The group <span class="SimpleMath">\(S\)</span> extends to a group of order <span class="SimpleMath">\(|S.2|\)</span> in the automorphism group <span class="SimpleMath">\(ON.2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "ON" ):= n;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "ON.2" ):= 2 * n;;</span>
</pre></div>

<p><a id="X84921B85845EDA31" name="X84921B85845EDA31"></a></p>

<h5>6.4-4 <span class="Heading"><span class="SimpleMath">\(G = Co_2\)</span></span></h5>

<p>The group <span class="SimpleMath">\(Co_2\)</span> contains a unique conjugacy class of solvable subgroups of order <span class="SimpleMath">\(2\,359\,296\)</span>, and no larger solvable subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Co2" );;                                           </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 2359296;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= List( mx, x -&gt; SolvableSubgroupInfoFromCharacterTable( x, n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= Filtered( info, IsList );</span>
[ [ CharacterTable( "U6(2).2" ), 7796, 672 ], 
  [ CharacterTable( "2^10:m22:2" ), 385, 22 ], 
  [ CharacterTable( "McL" ), 380, 275 ], 
  [ CharacterTable( "2^1+8:s6f2" ), 315, 28 ], 
  [ CharacterTable( "2^1+4+6.a8" ), 17, 8 ], 
  [ CharacterTable( "U4(3).D8" ), 11, 8 ], 
  [ CharacterTable( "2^(4+10)(S5xS3)" ), 5, 5 ] ]
</pre></div>

<p>The maximal subgroups of the structure <span class="SimpleMath">\(2^{4+10}(S_5 \times S_3)\)</span> in <span class="SimpleMath">\(Co_2\)</span> contain solvable subgroups <span class="SimpleMath">\(S\)</span> of order <span class="SimpleMath">\(n\)</span> and with the structure <span class="SimpleMath">\(2^{4+10}(S_4 \times S_3)\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 154]</a>.</p>

<p>The subgroups <span class="SimpleMath">\(S\)</span> are contained also in the maximal subgroups of the type <span class="SimpleMath">\(2^{1+8}_+:S_6(2)\)</span>; note that the <span class="SimpleMath">\(2^{1+8}_+:S_6(2)\)</span> type subgroups are described as normalizers of elements in the <span class="SimpleMath">\(Co_2\)</span>-class <code class="code">2A</code>, and <span class="SimpleMath">\(S\)</span> normalizes an elementary abelian group of order <span class="SimpleMath">\(16\)</span> containing an <span class="SimpleMath">\(S\)</span>-class of length five that is contained in the <span class="SimpleMath">\(Co_2\)</span>-class <code class="code">2A</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= info[7][1];</span>
CharacterTable( "2^(4+10)(S5xS3)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cls:= SizesConjugacyClasses( s );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( s ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   x -&gt; Sum( cls{ x } ) = 2^4 );</span>
[ [ 1, 2, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cls{ nsg[1] };</span>
[ 1, 5, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( s, t ){ nsg[1] };</span>
[ 1, 2, 3 ]
</pre></div>

<p>The stabilizers of these involutions in <span class="SimpleMath">\(2^{4+10}(S_5 \times S_3)\)</span> have index five, they are solvable, and they are contained in <span class="SimpleMath">\(2^{1+8}_+:S_6(2)\)</span> type subgroups, so they are <span class="SimpleMath">\(Co_2\)</span>-conjugates of <span class="SimpleMath">\(S\)</span>. (The corresponding subgroups of <span class="SimpleMath">\(S_6(2)\)</span> are maximal and have the type <span class="SimpleMath">\(2.[2^6]:(S_3 \times S_3)\)</span>.)</p>

<p>In order to show that <span class="SimpleMath">\(G\)</span> contains no other solvable subgroups of order larger than or equal to <span class="SimpleMath">\(|S|\)</span>, we check that there are no solvable subgroups in <span class="SimpleMath">\(U_6(2)\)</span> of index at most <span class="SimpleMath">\(7\,796\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 115]</a>), in <span class="SimpleMath">\(M_{22}.2\)</span> of index at most <span class="SimpleMath">\(385\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 39]</a> or Section <a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a>), in <span class="SimpleMath">\(McL\)</span> of index at most <span class="SimpleMath">\(380\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 100]</a> or Section <a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a>), in <span class="SimpleMath">\(A_8\)</span> of index at most <span class="SimpleMath">\(17\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 20]</a>), and in <span class="SimpleMath">\(U_4(3).D_8\)</span> of index at most <span class="SimpleMath">\(11\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 52]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "Co2" ):= n;;</span>
</pre></div>

<p><a id="X7D777A0D82BE8498" name="X7D777A0D82BE8498"></a></p>

<h5>6.4-5 <span class="Heading"><span class="SimpleMath">\(G = Fi_{22}\)</span></span></h5>

<p>The group <span class="SimpleMath">\(Fi_{22}\)</span> contains a unique conjugacy class of solvable subgroups of order <span class="SimpleMath">\(5\,038\,848\)</span>, and no larger solvable subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Fi22" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 5038848;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= List( mx, x -&gt; SolvableSubgroupInfoFromCharacterTable( x, n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= Filtered( info, IsList );</span>
[ [ CharacterTable( "2.U6(2)" ), 3650, 672 ], 
  [ CharacterTable( "O7(3)" ), 910, 351 ], 
  [ CharacterTable( "Fi22M3" ), 910, 351 ], 
  [ CharacterTable( "O8+(2).3.2" ), 207, 6 ], 
  [ CharacterTable( "2^10:m22" ), 90, 22 ], 
  [ CharacterTable( "3^(1+6):2^(3+4):3^2:2" ), 1, 1 ] ]
</pre></div>

<p>The maximal subgroups <span class="SimpleMath">\(S\)</span> of the structure <span class="SimpleMath">\(3^{1+6}:2^{3+4}:3^2:2\)</span> in <span class="SimpleMath">\(Fi_{22}\)</span> are solvable and have order <span class="SimpleMath">\(n\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 163]</a>.</p>

<p>In order to show that <span class="SimpleMath">\(Fi_{22}\)</span> contains no other solvable subgroups of order larger than or equal to <span class="SimpleMath">\(|S|\)</span>, we check that there are no solvable subgroups in <span class="SimpleMath">\(U_6(2)\)</span> of index at most <span class="SimpleMath">\(3\,650\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 115]</a>), in <span class="SimpleMath">\(O_7(3)\)</span> of index at most <span class="SimpleMath">\(910\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 109]</a>), in <span class="SimpleMath">\(O_8^+(2).S_3\)</span> of index at most <span class="SimpleMath">\(207\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85]</a>), and in <span class="SimpleMath">\(M_{22}.2\)</span> of index at most <span class="SimpleMath">\(90\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 39]</a> or Section <a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a>); note that the groups in the third class of maximal subgroups of <span class="SimpleMath">\(Fi_{22}\)</span> are isomorphic with <span class="SimpleMath">\(O_7(3)\)</span>.</p>

<p>The group <span class="SimpleMath">\(S\)</span> extends to a group of order <span class="SimpleMath">\(|S.2|\)</span> in the automorphism group <span class="SimpleMath">\(Fi_{22}.2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "Fi22" ):= n;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "Fi22.2" ):= 2 * n;;</span>
</pre></div>

<p><a id="X7D9DB76A861A6F62" name="X7D9DB76A861A6F62"></a></p>

<h5>6.4-6 <span class="Heading"><span class="SimpleMath">\(G = HN\)</span></span></h5>

<p>The group <span class="SimpleMath">\(HN\)</span> contains a unique conjugacy class of solvable subgroups of order <span class="SimpleMath">\(2\,000\,000\)</span>, and no larger solvable subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "HN" );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;                               </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 2000000;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= List( mx, x -&gt; SolvableSubgroupInfoFromCharacterTable( x, n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= Filtered( info, IsList );</span>
[ [ CharacterTable( "A12" ), 119, 12 ], 
  [ CharacterTable( "5^(1+4):2^(1+4).5.4" ), 1, 1 ] ]
</pre></div>

<p>The maximal subgroups <span class="SimpleMath">\(S\)</span> of the structure <span class="SimpleMath">\(5^{1+4}:2^{1+4}.5.4\)</span> in <span class="SimpleMath">\(HN\)</span> are solvable and have order <span class="SimpleMath">\(n\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 166]</a>.</p>

<p>In order to show that <span class="SimpleMath">\(HN\)</span> contains no other solvable subgroups of order larger than or equal to <span class="SimpleMath">\(|S|\)</span>, we check that there are no solvable subgroups in <span class="SimpleMath">\(A_{12}\)</span> of index at most <span class="SimpleMath">\(119\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 91]</a>).</p>

<p>The group <span class="SimpleMath">\(S\)</span> extends to a group of order <span class="SimpleMath">\(|S.2|\)</span> in the automorphism group <span class="SimpleMath">\(HN.2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "HN" ):= n;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "HN.2" ):= 2 * n;;</span>
</pre></div>

<p><a id="X83E6436678AF562C" name="X83E6436678AF562C"></a></p>

<h5>6.4-7 <span class="Heading"><span class="SimpleMath">\(G = Ly\)</span></span></h5>

<p>The group <span class="SimpleMath">\(Ly\)</span> contains a unique conjugacy class of solvable subgroups of order <span class="SimpleMath">\(900\,000\)</span>, and no larger solvable subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Ly" );;                                            </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 900000;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= List( mx, x -&gt; SolvableSubgroupInfoFromCharacterTable( x, n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= Filtered( info, IsList );</span>
[ [ CharacterTable( "G2(5)" ), 6510, 3906 ], 
  [ CharacterTable( "3.McL.2" ), 5987, 275 ], 
  [ CharacterTable( "5^3.psl(3,5)" ), 51, 31 ], 
  [ CharacterTable( "2.A11" ), 44, 11 ], 
  [ CharacterTable( "5^(1+4):4S6" ), 10, 6 ] ]
</pre></div>

<p>The maximal subgroups of the structure <span class="SimpleMath">\(5^(1+4):4S6\)</span> in <span class="SimpleMath">\(Ly\)</span> contain solvable subgroups <span class="SimpleMath">\(S\)</span> of order <span class="SimpleMath">\(n\)</span> and with the structure <span class="SimpleMath">\(5^{1+4}:4.3^2.D_8\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 174]</a>.</p>

<p>In order to show that <span class="SimpleMath">\(Ly\)</span> contains no other solvable subgroups of order larger than or equal to <span class="SimpleMath">\(|S|\)</span>, we check that there are no solvable subgroups in <span class="SimpleMath">\(G_2(5)\)</span> of index at most <span class="SimpleMath">\(6\,510\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 114]</a>), in <span class="SimpleMath">\(McL.2\)</span> of index at most <span class="SimpleMath">\(5\,987\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 100]</a> or Section <a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a>), in <span class="SimpleMath">\(L_3(5)\)</span> of index at most <span class="SimpleMath">\(51\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 38]</a>), and in <span class="SimpleMath">\(A_{11}\)</span> of index at most <span class="SimpleMath">\(44\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 75]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "Ly" ):= n;;</span>
</pre></div>

<p><a id="X7D6CF8EC812EF6FB" name="X7D6CF8EC812EF6FB"></a></p>

<h5>6.4-8 <span class="Heading"><span class="SimpleMath">\(G = Th\)</span></span></h5>

<p>The group <span class="SimpleMath">\(Th\)</span> contains exactly two conjugacy classes of nonisomorphic solvable subgroups of order <span class="SimpleMath">\(n = 944\,784\)</span>, and no larger solvable subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Th" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 944784;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= List( mx, x -&gt; SolvableSubgroupInfoFromCharacterTable( x, n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= Filtered( info, IsList );</span>
[ [ CharacterTable( "2^5.psl(5,2)" ), 338, 31 ], 
  [ CharacterTable( "2^1+8.a9" ), 98, 9 ], 
  [ CharacterTable( "U3(8).6" ), 35, 6 ], 
  [ CharacterTable( "ThN3B" ), 1, 1 ], 
  [ CharacterTable( "ThM7" ), 1, 1 ] ]
</pre></div>

<p>The maximal subgroups <span class="SimpleMath">\(S\)</span> of the structures <span class="SimpleMath">\([3^9].2S_4\)</span> and <span class="SimpleMath">\(3^2.[3^7].2S_4\)</span> in <span class="SimpleMath">\(Th\)</span> are solvable and have order <span class="SimpleMath">\(n\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 177]</a>.</p>

<p>In order to show that <span class="SimpleMath">\(Th\)</span> contains no other solvable subgroups of order larger than or equal to <span class="SimpleMath">\(|S|\)</span>, we check that there are no solvable subgroups in <span class="SimpleMath">\(L_5(2)\)</span> of index at most <span class="SimpleMath">\(338\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 70]</a>), in <span class="SimpleMath">\(A_9\)</span> of index at most <span class="SimpleMath">\(98\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 37]</a>), and in <span class="SimpleMath">\(U_3(8).6\)</span> of index at most <span class="SimpleMath">\(35\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 66]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "Th" ):= n;;</span>
</pre></div>

<p><a id="X7A07090483C935DC" name="X7A07090483C935DC"></a></p>

<h5>6.4-9 <span class="Heading"><span class="SimpleMath">\(G = Fi_{23}\)</span></span></h5>

<p>The group <span class="SimpleMath">\(Fi_{23}\)</span> contains a unique conjugacy class of solvable subgroups of order <span class="SimpleMath">\(n = 3\,265\,173\,504\)</span>, and no larger solvable subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Fi23" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 3265173504;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= List( mx, x -&gt; SolvableSubgroupInfoFromCharacterTable( x, n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= Filtered( info, IsList );</span>
[ [ CharacterTable( "2.Fi22" ), 39545, 3510 ], 
  [ CharacterTable( "O8+(3).3.2" ), 9100, 6 ], 
  [ CharacterTable( "3^(1+8).2^(1+6).3^(1+2).2S4" ), 1, 1 ] ]
</pre></div>

<p>The maximal subgroups <span class="SimpleMath">\(S\)</span> of the structure <span class="SimpleMath">\(3^{1+8}_+.2^{1+6}_-.3^{1+2}_+.2S_4\)</span> in <span class="SimpleMath">\(Fi_{23}\)</span> are solvable and have order <span class="SimpleMath">\(n\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 177]</a>.</p>

<p>In order to show that <span class="SimpleMath">\(Fi_{23}\)</span> contains no other solvable subgroups of order larger than or equal to <span class="SimpleMath">\(|S|\)</span>, we check that there are no solvable subgroups in <span class="SimpleMath">\(Fi_{22}\)</span> of index at most <span class="SimpleMath">\(39\,545\)</span> (see Section <a href="chap6_mj.html#X7D777A0D82BE8498"><span class="RefLink">6.4-5</span></a>) and in <span class="SimpleMath">\(O_8^+(3).S_3\)</span> of index at most <span class="SimpleMath">\(9\,100\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "Fi23" ):= n;;</span>
</pre></div>

<p><a id="X7D028E9E7CB62A4F" name="X7D028E9E7CB62A4F"></a></p>

<h5>6.4-10 <span class="Heading"><span class="SimpleMath">\(G = Co_1\)</span></span></h5>

<p>The group <span class="SimpleMath">\(Co_1\)</span> contains a unique conjugacy class of solvable subgroups of order <span class="SimpleMath">\(n = 84\,934\,656\)</span>, and no larger solvable subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Co1" );;                                           </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 84934656;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= List( mx, x -&gt; SolvableSubgroupInfoFromCharacterTable( x, n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= Filtered( info, IsList );</span>
[ [ CharacterTable( "Co2" ), 498093, 2300 ], 
  [ CharacterTable( "3.Suz.2" ), 31672, 1782 ], 
  [ CharacterTable( "2^11:M24" ), 5903, 24 ], 
  [ CharacterTable( "Co3" ), 5837, 276 ], 
  [ CharacterTable( "2^(1+8)+.O8+(2)" ), 1050, 120 ], 
  [ CharacterTable( "U6(2).3.2" ), 649, 6 ], 
  [ CharacterTable( "2^(2+12):(A8xS3)" ), 23, 8 ], 
  [ CharacterTable( "2^(4+12).(S3x3S6)" ), 10, 6 ] ]
</pre></div>

<p>The maximal subgroups of the structure <span class="SimpleMath">\(2^{4+12}.(S_3 \times 3S_6)\)</span> in <span class="SimpleMath">\(Co_1\)</span> contain solvable subgroups <span class="SimpleMath">\(S\)</span> of order <span class="SimpleMath">\(n\)</span> and with the structure <span class="SimpleMath">\(2^{4+12}.(S_3 \times 3^{1+2}_+:D_8)\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 183]</a>.</p>

<p>In order to show that <span class="SimpleMath">\(Co_1\)</span> contains no other solvable subgroups of order larger than or equal to <span class="SimpleMath">\(|S|\)</span>, we check that there are no solvable subgroups in <span class="SimpleMath">\(Co_2\)</span> of index at most <span class="SimpleMath">\(498\,093\)</span> (see Section <a href="chap6_mj.html#X84921B85845EDA31"><span class="RefLink">6.4-4</span></a>), in <span class="SimpleMath">\(Suz.2\)</span> of index at most <span class="SimpleMath">\(31\,672\)</span> (see Section <a href="chap6_mj.html#X7AFF09337CCB7745"><span class="RefLink">6.4-2</span></a>), in <span class="SimpleMath">\(M_{24}\)</span> of index at most <span class="SimpleMath">\(5\,903\)</span> (see Section <a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a>), in <span class="SimpleMath">\(Co_3\)</span> of index at most <span class="SimpleMath">\(5\,837\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 134]</a> or Section <a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a>), in <span class="SimpleMath">\(O_8^+(2)\)</span> of index at most <span class="SimpleMath">\(1\,050\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 185]</a>), in <span class="SimpleMath">\(U_6(2).S_3\)</span> of index at most <span class="SimpleMath">\(649\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 115]</a>), and in <span class="SimpleMath">\(A_8\)</span> of index at most <span class="SimpleMath">\(23\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 22]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "Co1" ):= n;;</span>
</pre></div>

<p><a id="X84208AB781344A9D" name="X84208AB781344A9D"></a></p>

<h5>6.4-11 <span class="Heading"><span class="SimpleMath">\(G = J_4\)</span></span></h5>

<p>The group <span class="SimpleMath">\(J_4\)</span> contains a unique conjugacy class of solvable subgroups of order <span class="SimpleMath">\(28\,311\,552\)</span>, and no larger solvable subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "J4" );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 28311552;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= List( mx, x -&gt; SolvableSubgroupInfoFromCharacterTable( x, n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= Filtered( info, IsList );</span>
[ [ CharacterTable( "mx1j4" ), 17710, 24 ], 
  [ CharacterTable( "c2aj4" ), 770, 22 ], 
  [ CharacterTable( "2^10:L5(2)" ), 361, 31 ], 
  [ CharacterTable( "J4M4" ), 23, 5 ] ]
</pre></div>

<p>The maximal subgroups of the structure <span class="SimpleMath">\(2^{11}:M_{24}\)</span> in <span class="SimpleMath">\(J_4\)</span> contain solvable subgroups <span class="SimpleMath">\(S\)</span> of order <span class="SimpleMath">\(n\)</span> and with the structure <span class="SimpleMath">\(2^{11}:2^6:3^{1+2}_+:D_8\)</span>, see Section <a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a> and <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 190]</a>.</p>

<p>(The subgroups in the first four classes of maximal subgroups of <span class="SimpleMath">\(J_4\)</span> have the structures <span class="SimpleMath">\(2^{11}:M_{24}\)</span>, <span class="SimpleMath">\(2^{1+12}_+.3M_{22}:2\)</span>, <span class="SimpleMath">\(2^{10}:L_5(2)\)</span>, and <span class="SimpleMath">\(2^{3+12}.(S_5 \times L_3(2))\)</span>, in this order.)</p>

<p>The subgroups <span class="SimpleMath">\(S\)</span> are contained also in the maximal subgroups of the type <span class="SimpleMath">\(2^{1+12}_+.3M_{22}:2\)</span>; note that these subgroups are described as normalizers of elements in the <span class="SimpleMath">\(J_4\)</span>-class <code class="code">2A</code>, and <span class="SimpleMath">\(S\)</span> normalizes an elementary abelian group of order <span class="SimpleMath">\(2^{11}\)</span> containing an <span class="SimpleMath">\(S\)</span>-class of length <span class="SimpleMath">\(1\,771\)</span> that is contained in the <span class="SimpleMath">\(J_4\)</span>-class <code class="code">2A</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= info[1][1];</span>
CharacterTable( "mx1j4" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cls:= SizesConjugacyClasses( s );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( s ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   x -&gt; Sum( cls{ x } ) = 2^11 );</span>
[ [ 1, 2, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cls{ nsg[1] };</span>
[ 1, 276, 1771 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( s, t ){ nsg[1] };</span>
[ 1, 3, 2 ]
</pre></div>

<p>The stabilizers of these involutions in <span class="SimpleMath">\(2^{11}:M_{24}\)</span> have index <span class="SimpleMath">\(1\,771\)</span>, they have the structure <span class="SimpleMath">\(2^{11}:2^6:3.S_6\)</span>, and they are contained in <span class="SimpleMath">\(2^{1+12}_+.3M_{22}:2\)</span> type subgroups; so also <span class="SimpleMath">\(S\)</span>, which has index <span class="SimpleMath">\(10\)</span> in <span class="SimpleMath">\(2^{11}:2^6:3.S_6\)</span>, is contained in <span class="SimpleMath">\(2^{1+12}_+.3M_{22}:2\)</span>. (The corresponding subgroups of <span class="SimpleMath">\(M_{22}:2\)</span> are of course the solvable groups of maximal order described in Section <a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a>.)</p>

<p>In order to show that <span class="SimpleMath">\(G\)</span> contains no other solvable subgroups of order larger than or equal to <span class="SimpleMath">\(|S|\)</span>, we check that there are no solvable subgroups in <span class="SimpleMath">\(L_5(2)\)</span> of index at most <span class="SimpleMath">\(361\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 70]</a>) and in <span class="SimpleMath">\(S_5 \times L_3(2)\)</span> of index at most <span class="SimpleMath">\(23\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, pp. 2, 3]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "J4" ):= n;;</span>
</pre></div>

<p><a id="X7BC589718203F125" name="X7BC589718203F125"></a></p>

<h5>6.4-12 <span class="Heading"><span class="SimpleMath">\(G = Fi_{24}^{\prime}\)</span></span></h5>

<p>The group <span class="SimpleMath">\(Fi_{24}^{\prime}\)</span> contains a unique conjugacy class of solvable subgroups of order <span class="SimpleMath">\(29\,386\,561\,536\)</span>, and no larger solvable subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Fi24'" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 29386561536;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= List( mx, x -&gt; SolvableSubgroupInfoFromCharacterTable( x, n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= Filtered( info, IsList );                                        </span>
[ [ CharacterTable( "Fi23" ), 139161244, 31671 ], 
  [ CharacterTable( "2.Fi22.2" ), 8787, 3510 ], 
  [ CharacterTable( "(3xO8+(3):3):2" ), 3033, 6 ], 
  [ CharacterTable( "O10-(2)" ), 851, 495 ], 
  [ CharacterTable( "3^(1+10):U5(2):2" ), 165, 165 ], 
  [ CharacterTable( "2^2.U6(2).3.2" ), 7, 6 ] ]
</pre></div>

<p>The maximal subgroups of the structure <span class="SimpleMath">\(3^{1+10}_+:U5(2):2\)</span> in <span class="SimpleMath">\(Fi_{24}^{\prime}\)</span> contain solvable subgroups <span class="SimpleMath">\(S\)</span> of order <span class="SimpleMath">\(n\)</span> and with the structure <span class="SimpleMath">\(3^{1+10}_+:2^{1+6}_-:3^{1+2}_+:2S_4\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 73, p. 207]</a>.</p>

<p>In order to show that <span class="SimpleMath">\(G\)</span> contains no other solvable subgroups of order larger than or equal to <span class="SimpleMath">\(|S|\)</span>, we check that there are no solvable subgroups in <span class="SimpleMath">\(Fi_{23}\)</span> of order at least <span class="SimpleMath">\(n\)</span> (see Section <a href="chap6_mj.html#X7A07090483C935DC"><span class="RefLink">6.4-9</span></a>), in <span class="SimpleMath">\(Fi_{22}.2\)</span> of order at least <span class="SimpleMath">\(n\)</span> (see Section <a href="chap6_mj.html#X7D777A0D82BE8498"><span class="RefLink">6.4-5</span></a>), in <span class="SimpleMath">\(O_8^+(3).S_3\)</span> of index at most <span class="SimpleMath">\(3\,033\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a>), in <span class="SimpleMath">\(O_{10}^-(2)\)</span> of index at most <span class="SimpleMath">\(851\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 147]</a>), and in <span class="SimpleMath">\(U_6(2).S_3\)</span> of index at most <span class="SimpleMath">\(7\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 115]</a>).</p>

<p>The group <span class="SimpleMath">\(S\)</span> extends to a group of order <span class="SimpleMath">\(|S.2|\)</span> in the automorphism group <span class="SimpleMath">\(Fi_{24}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "Fi24'" ):= n;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "Fi24'.2" ):= 2 * n;;</span>
</pre></div>

<p><a id="X7EDF990985573EB6" name="X7EDF990985573EB6"></a></p>

<h5>6.4-13 <span class="Heading"><span class="SimpleMath">\(G = B\)</span></span></h5>

<p>The group <span class="SimpleMath">\(B\)</span> contains a unique conjugacy class of solvable subgroups of order <span class="SimpleMath">\(n = 29\,686\,813\,949\,952\)</span>, and no larger solvable subgroups.</p>

<p>The maximal subgroups of the structure <span class="SimpleMath">\(2^{2+10+20}(M_{22}:2 \times S_3)\)</span> in <span class="SimpleMath">\(B\)</span> contain solvable subgroups <span class="SimpleMath">\(S\)</span> of order <span class="SimpleMath">\(n\)</span> and with the structure <span class="SimpleMath">\(2^{2+10+20}(2^4:3^2:D_8 \times S_3)\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 217]</a> and Section <a href="chap6_mj.html#X834298A87BF43AAF"><span class="RefLink">6.3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 29686813949952;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n = 2^(2+10+20) * 2^4 * 3^2 * 8 * 6;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n = 2^(2+10+20) * MaxSolv.( "M22.2" ) * 6;</span>
true
</pre></div>

<p>By <a href="chapBib_mj.html#biBWil99">[Wil99, Table 1]</a>, the only maximal subgroups of <span class="SimpleMath">\(B\)</span> of order bigger than <span class="SimpleMath">\(|S|\)</span> have the following structures.</p>

<div class="pcenter"><table class="GAPDocTablenoborder">
<tr>
<td class="tdleft"><span class="SimpleMath">\(2.{}^2E_6(2).2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{1+22}.Co_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(Fi_{23}\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{9+16}S_8(2)\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Th\)</span></td>
<td class="tdleft"><span class="SimpleMath">\((2^2 \times F_4(2)):2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{2+10+20}(M_{22}:2 \times S_3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{5+5+10+10}L_5(2)\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_3 \times Fi_{22}:2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{[35]}(S_5 \times L_3(2))\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(HN:2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(O_8^+(3):S_4\)</span></td>
</tr>
</table><br /><p>&nbsp;</p><br />
</div>

<p>(The character tables of the maximal subgroups of <span class="SimpleMath">\(B\)</span> are meanwhile available in <strong class="pkg">GAP</strong>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( b ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( mx, x -&gt; Size( x ) &gt;= n );</span>
[ CharacterTable( "2.2E6(2).2" ), CharacterTable( "2^(1+22).Co2" ), 
  CharacterTable( "Fi23" ), CharacterTable( "2^(9+16).S8(2)" ), 
  CharacterTable( "Th" ), CharacterTable( "(2^2xF4(2)):2" ), 
  CharacterTable( "2^(2+10+20).(M22.2xS3)" ), 
  CharacterTable( "[2^30].L5(2)" ), CharacterTable( "S3xFi22.2" ), 
  CharacterTable( "[2^35].(S5xL3(2))" ), CharacterTable( "HN.2" ), 
  CharacterTable( "O8+(3).S4" ) ]
</pre></div>

<p>For the subgroups <span class="SimpleMath">\(2^{1+22}.Co_2\)</span>, <span class="SimpleMath">\(Fi_{23}\)</span>, <span class="SimpleMath">\(Th\)</span>, <span class="SimpleMath">\(S_3 \times Fi_{22}:2\)</span>, and <span class="SimpleMath">\(HN:2\)</span>, the solvable subgroups of maximal order are known from the previous sections or can be derived from known values, and are smaller than <span class="SimpleMath">\(n\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ 2^(1+22) * MaxSolv.( "Co2" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           MaxSolv.( "Fi23" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           MaxSolv.( "Th" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           6 * MaxSolv.( "Fi22.2" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           MaxSolv.( "HN.2" ) ], i -&gt; Int( i / n ) );</span>
[ 0, 0, 0, 0, 0 ]
</pre></div>

<p>If one of the remaining maximal groups <span class="SimpleMath">\(U\)</span> from the above list has a solvable subgroup of order at least <span class="SimpleMath">\(n\)</span> then the index of this subgroup in <span class="SimpleMath">\(U\)</span> is bounded as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ Size( CharacterTable( "2.2E6(2).2" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           2^(9+16) * Size( CharacterTable( "S8(2)" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           2^3 * Size( CharacterTable( "F4(2)" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           2^(2+10+20) * Size( CharacterTable( "M22.2" ) ) * 6,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           2^30 * Size( CharacterTable( "L5(2)" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           2^35 * Factorial(5) * Size( CharacterTable( "L3(2)" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Size( CharacterTable( "O8+(3)" ) ) * 24 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         i -&gt; Int( i / n ) );</span>
[ 10311982931, 53550, 892, 770, 361, 23, 4 ]
</pre></div>

<p>The group <span class="SimpleMath">\(O_8^+(3):S_4\)</span> is nonsolvable, and its order is less than <span class="SimpleMath">\(5 n\)</span>, thus its solvable subgroups have orders less than <span class="SimpleMath">\(n\)</span>.</p>

<p>The largest solvable subgroup of <span class="SimpleMath">\(S_5 \times L_3(2)\)</span> has index <span class="SimpleMath">\(35\)</span>, thus the solvable subgroups of <span class="SimpleMath">\(2^{[35]}(S_5 \times L_3(2))\)</span> have orders less than <span class="SimpleMath">\(n\)</span>.</p>

<p>The groups of type <span class="SimpleMath">\(2^{5+5+10+10}L_5(2)\)</span> cannot contain solvable subgroups of order at least <span class="SimpleMath">\(n\)</span> because <span class="SimpleMath">\(L_5(2)\)</span> has no solvable subgroup of index up to <span class="SimpleMath">\(361\)</span> –such a subgroup would be contained in <span class="SimpleMath">\(2^4:L_4(2)\)</span>, of index at most <span class="SimpleMath">\(\lfloor 361/31 \rfloor = 11\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 70]</a>), and <span class="SimpleMath">\(L_4(2) \cong A_8\)</span> does not have such subgroups (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 22]</a>).</p>

<p>The largest proper subgroup of <span class="SimpleMath">\(F_4(2)\)</span> has index <span class="SimpleMath">\(69\,615\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 170]</a>), which excludes solvable subgroups of order at least <span class="SimpleMath">\(n\)</span> in <span class="SimpleMath">\((2^2 \times F_4(2)):2\)</span>.</p>

<p>Ruling out the group <span class="SimpleMath">\(2.{}^2E_6(2).2\)</span> is more involved. We consider the list of maximal subgroups of <span class="SimpleMath">\({}^2E_6(2)\)</span> in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 191]</a> (which is complete, see <a href="chapBib_mj.html#biBBN95">[BN95]</a>), and compute the maximal index of a group of order <span class="SimpleMath">\(n/4\)</span>; the possible subgroups of <span class="SimpleMath">\({}^2E_6(2)\)</span> to consider are the following</p>

<div class="pcenter"><table class="GAPDocTablenoborder">
<tr>
<td class="tdleft"><span class="SimpleMath">\(2^{1+20}:U_6(2)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{8+16}:O_8^-(2)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(F_4(2)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^2.2^9.2^{18}:(L_3(4) \times S_3)\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Fi_{22}\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(O_{10}^-(2)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^3.2^{12}.2^{15}:(S_5 \times L_3(2))\)</span></td>
<td class="tdleft"></td>
</tr>
</table><br /><p>&nbsp;</p><br />
</div>

<p>(The order of <span class="SimpleMath">\(S_3 \times U_6(2)\)</span> is already smaller than <span class="SimpleMath">\(n/4\)</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ 2^(1+20) * Size( CharacterTable( "U6(2)" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           2^(8+16) * Size( CharacterTable( "O8-(2)" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Size( CharacterTable( "F4(2)" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           2^(2+9+18) * Size( CharacterTable( "L3(4)" ) ) * 6,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Size( CharacterTable( "Fi22" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Size( CharacterTable( "O10-(2)" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           2^(3+12+15) * 120 * Size( CharacterTable( "L3(2)" ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           6 * Size( CharacterTable( "U6(2)" ) ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         i -&gt; Int( i / ( n / 4 ) ) );</span>
[ 2598, 446, 446, 8, 8, 3, 2, 0 ]
</pre></div>

<p>The indices of the solvable groups of maximal orders in the groups <span class="SimpleMath">\(U_6(2)\)</span>, <span class="SimpleMath">\(O_8^-(2)\)</span>, <span class="SimpleMath">\(F_4(2)\)</span>, <span class="SimpleMath">\(L_3(4)\)</span>, and <span class="SimpleMath">\(Fi_{22}\)</span> are larger than the bounds we get for <span class="SimpleMath">\(n\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, pp. 115, 89, 170, 23, 163]</a>.</p>

<p>It remains to consider the subgroups of the type <span class="SimpleMath">\(2^{9+16}S_8(2)\)</span>. The group <span class="SimpleMath">\(S_8(2)\)</span> contains maximal subgroups of the type <span class="SimpleMath">\(2^{3+8}:(S_3 \times S_6)\)</span> and of index <span class="SimpleMath">\(5\,355\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 123]</a>), which contain solvable subgroups <span class="SimpleMath">\(S'\)</span> of index <span class="SimpleMath">\(10\)</span>. This yields solvable subgroups of order <span class="SimpleMath">\(2^{9+16+3+8} \cdot 6 \cdot 72 = n\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2^(9+16+3+8) * 6 * 72 = n;</span>
true
</pre></div>

<p>There are no other solvable subgroups of larger or equal order in <span class="SimpleMath">\(S_8(2)\)</span>: We would need solvable subgroups of index at most <span class="SimpleMath">\(446\)</span> in <span class="SimpleMath">\(O_8^-(2):2\)</span>, <span class="SimpleMath">\(393\)</span> in <span class="SimpleMath">\(O_8^+(2):2\)</span>, <span class="SimpleMath">\(210\)</span> in <span class="SimpleMath">\(S_6(2)\)</span>, or <span class="SimpleMath">\(23\)</span> in <span class="SimpleMath">\(A_8\)</span>, which is not the case by <a href="chapBib_mj.html#biBCCN85">[CCN+85, pp. 89, 85, 46, 22]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">index:= Int( 2^(9+16) * Size( CharacterTable( "S8(2)" ) ) / n );</span>
53550
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ 120, 136, 255, 2295 ], i -&gt; Int( index / i ) );</span>
[ 446, 393, 210, 23 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "B" ):= n;;</span>
</pre></div>

<p>So the <span class="SimpleMath">\(2^{9+16}S_8(2)\)</span> type subgroups of <span class="SimpleMath">\(B\)</span> yield solvable subgroups <span class="SimpleMath">\(S'\)</span> of the type <span class="SimpleMath">\(2^{9+16}.2^{3+8}:(S_3 \times 3^2:D_8)\)</span>, and of order <span class="SimpleMath">\(n\)</span>.</p>

<p>We want to show that <span class="SimpleMath">\(S'\)</span> is a <span class="SimpleMath">\(B\)</span>-conjugate of <span class="SimpleMath">\(S\)</span>. For that, we first show the following:</p>

<p>Lemma:</p>

<p>The group <span class="SimpleMath">\(B\)</span> contains exactly two conjugacy classes of Klein four groups whose involutions lie in the class <code class="code">2B</code>. (We will call these Klein four groups <code class="code">2B</code>-pure.) Their normalizers in <span class="SimpleMath">\(B\)</span> have the orders <span class="SimpleMath">\(22\,858\,846\,741\,463\,040\)</span> and <span class="SimpleMath">\(292\,229\,574\,819\,840\)</span>, respectively.</p>

<p><em>Proof.</em> Let <span class="SimpleMath">\(V\)</span> be a <code class="code">2B</code>-pure Klein four group in <span class="SimpleMath">\(B\)</span>, and set <span class="SimpleMath">\(N = N_B(V)\)</span>. Let <span class="SimpleMath">\(x \in V\)</span> be an involution and set <span class="SimpleMath">\(H = C_B(x)\)</span>, then <span class="SimpleMath">\(H\)</span> is maximal in <span class="SimpleMath">\(B\)</span> and has the structure <span class="SimpleMath">\(2^{1+22}.Co_2\)</span>. The index of <span class="SimpleMath">\(C = C_B(V) = C_H(V)\)</span> in <span class="SimpleMath">\(N\)</span> divides <span class="SimpleMath">\(6\)</span>, and <span class="SimpleMath">\(C\)</span> stabilizes the central involution in <span class="SimpleMath">\(H\)</span> and another <code class="code">2B</code> involution. The group <span class="SimpleMath">\(H\)</span> contains exactly four conjugacy classes of <code class="code">2B</code> elements.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h:= mx[2];</span>
CharacterTable( "2^(1+22).Co2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pos:= Positions( GetFusionMap( h, b ), 3 );</span>
[ 2, 4, 11, 20 ]
</pre></div>

<p>The <span class="SimpleMath">\(B\)</span>-classes of <code class="code">2B</code>-pure Klein four groups arise from those of these classes <span class="SimpleMath">\(y^H \subset H\)</span> such that <span class="SimpleMath">\(x \neq y\)</span> holds and <span class="SimpleMath">\(x y\)</span> is a <code class="code">2B</code> element. We compute this subset.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pos:= Filtered( Difference( pos, [ 2 ] ), i -&gt; ForAny( pos,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            j -&gt; NrPolyhedralSubgroups( h, 2, i, j ).number &lt;&gt; 0 ) );</span>
[ 4, 11 ]
</pre></div>

<p>The two classes have lengths <span class="SimpleMath">\(93\,150\)</span> and <span class="SimpleMath">\(7\,286\,400\)</span>, thus the index of <span class="SimpleMath">\(C\)</span> in <span class="SimpleMath">\(H\)</span> is one of these numbers.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesConjugacyClasses( h ){ pos };</span>
[ 93150, 7286400 ]
</pre></div>

<p>Next we compute the number <span class="SimpleMath">\(n_0\)</span> of <code class="code">2B</code>-pure Klein four groups in <span class="SimpleMath">\(B\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nr:= NrPolyhedralSubgroups( b, 3, 3, 3 );</span>
rec( number := 14399283809600746875, type := "V4" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n0:= nr.number;;</span>
</pre></div>

<p>The <span class="SimpleMath">\(B\)</span>-conjugacy class of <span class="SimpleMath">\(V\)</span> has length <span class="SimpleMath">\([B:N] = [B:H] \cdot [H:C] / [N:C]\)</span>, where <span class="SimpleMath">\([N:C]\)</span> divides <span class="SimpleMath">\(6\)</span>. We see that <span class="SimpleMath">\([N:C] = 6\)</span> in both cases.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( pos, i -&gt; Size( b ) / SizesCentralizers( h )[i] / 6 );</span>
[ 181758140654146875, 14217525668946600000 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sum( cand ) = n0;</span>
true
</pre></div>

<p>The orders of the normalizers of the two classes of <code class="code">2B</code>-pure Klein four groups are as claimed.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( cand, x -&gt; Size( b ) / x );</span>
[ 22858846741463040, 292229574819840 ]
</pre></div>

<p>The subgroup <span class="SimpleMath">\(S\)</span> of order <span class="SimpleMath">\(n\)</span> is contained in a maximal subgroup <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(2^{2+10+20}(M_{22}:2 \times S_3)\)</span> in <span class="SimpleMath">\(B\)</span>. The group <span class="SimpleMath">\(M\)</span> is the normalizer of a <code class="code">2B</code>-pure Klein four group in <span class="SimpleMath">\(B\)</span>, and the other class of normalizers of <code class="code">2B</code>-pure Klein four groups does not contain subgroups of order <span class="SimpleMath">\(n\)</span>. Thus the conjugates of <span class="SimpleMath">\(S\)</span> are uniquely determined by <span class="SimpleMath">\(|S|\)</span> and the property that they normalize <code class="code">2B</code>-pure Klein four groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:= mx[7];</span>
CharacterTable( "2^(2+10+20).(M22.2xS3)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( m );</span>
22858846741463040
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= ClassPositionsOfMinimalNormalSubgroups( m );</span>
[ [ 1, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesConjugacyClasses( m ){ nsg[1] };</span>
[ 1, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( m, b ){ nsg[1] };</span>
[ 1, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( cand, x -&gt; Size( b ) / ( n * x ) );</span>
[ 770, 315/32 ]
</pre></div>

<p>Now consider the subgroup <span class="SimpleMath">\(S'\)</span> of order <span class="SimpleMath">\(n\)</span>, which is contained in a maximal subgroup of the type <span class="SimpleMath">\(2^{9+16}S_8(2)\)</span> in <span class="SimpleMath">\(B\)</span>. In order to prove that <span class="SimpleMath">\(S'\)</span> is <span class="SimpleMath">\(B\)</span>-conjugate to <span class="SimpleMath">\(S\)</span>, it is enough to show that <span class="SimpleMath">\(S'\)</span> normalizes a <code class="code">2B</code>-pure Klein four group.</p>

<p>The unique minimal normal subgroup <span class="SimpleMath">\(V\)</span> of <span class="SimpleMath">\(2^{9+16}S_8(2)\)</span> has order <span class="SimpleMath">\(2^8\)</span>. Its involutions lie in the class <code class="code">2B</code> of <span class="SimpleMath">\(B\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:= mx[4];</span>
CharacterTable( "2^(9+16).S8(2)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= ClassPositionsOfMinimalNormalSubgroups( m );</span>
[ [ 1, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesConjugacyClasses( m ){ nsg[1] };</span>
[ 1, 255 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( m, b ){ nsg[1] };</span>
[ 1, 3 ]
</pre></div>

<p>The group <span class="SimpleMath">\(V\)</span> is central in the normal subgroup <span class="SimpleMath">\(W = 2^{9+16}\)</span>, since all nonidentity elements of <span class="SimpleMath">\(V\)</span> lie in one conjugacy class of odd length. As a module for <span class="SimpleMath">\(S_8(2)\)</span>, <span class="SimpleMath">\(V\)</span> is the unique irreducible eight-dimensional module in characteristic two.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterDegrees( CharacterTable( "S8(2)" ) mod 2 );</span>
[ [ 1, 1 ], [ 8, 1 ], [ 16, 1 ], [ 26, 1 ], [ 48, 1 ], [ 128, 1 ], 
  [ 160, 1 ], [ 246, 1 ], [ 416, 1 ], [ 768, 1 ], [ 784, 1 ], 
  [ 2560, 1 ], [ 3936, 1 ], [ 4096, 1 ], [ 12544, 1 ], [ 65536, 1 ] ]
</pre></div>

<p>Hence we are done if the restriction of the <span class="SimpleMath">\(S_8(2)\)</span>-action on <span class="SimpleMath">\(V\)</span> to <span class="SimpleMath">\(S'/W\)</span> leaves a two-dimensional subspace of <span class="SimpleMath">\(V\)</span> invariant. In fact we show that already the restriction of the <span class="SimpleMath">\(S_8(2)\)</span>-action on <span class="SimpleMath">\(V\)</span> to the maximal subgroups of the structure <span class="SimpleMath">\(2^{3+8}:(S_3 \times S_6)\)</span> has a two-dimensional submodule.</p>

<p>These maximal subgroups have index <span class="SimpleMath">\(5\,355\)</span> in <span class="SimpleMath">\(S_8(2)\)</span>. The primitive permutation representation of degree <span class="SimpleMath">\(5\,355\)</span> of <span class="SimpleMath">\(S_8(2)\)</span> and the irreducible eight-dimensional matrix representation of <span class="SimpleMath">\(S_8(2)\)</span> over the field with two elements are available via the <strong class="pkg">GAP</strong> package <strong class="pkg">AtlasRep</strong>, see <a href="chapBib_mj.html#biBAtlasRep">[WPN+19]</a>. We compute generators for an index <span class="SimpleMath">\(5\,355\)</span> subgroup in the matrix group via an isomorphism to the permutation group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">permg:= AtlasGroup( "S8(2)", NrMovedPoints, 5355 );</span>
&lt;permutation group of size 47377612800 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">matg:= AtlasGroup( "S8(2)", Dimension, 8 );</span>
&lt;matrix group of size 47377612800 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hom:= GroupHomomorphismByImagesNC( matg, permg,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             GeneratorsOfGroup( matg ), GeneratorsOfGroup( permg ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">max:= PreImages( hom, Stabilizer( permg, 1 ) );;</span>
</pre></div>

<p>These generators define the action of the index <span class="SimpleMath">\(5\,355\)</span> subgroup of <span class="SimpleMath">\(S_8(2)\)</span> on the eight-dimensional module. We compute the dimensions of the factors of an ascending composition series of this module.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:= GModuleByMats( GeneratorsOfGroup( max ), GF(2) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">comp:= MTX.CompositionFactors( m );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( comp, r -&gt; r.dimension );</span>
[ 2, 4, 2 ]
</pre></div>

<p><a id="X87D468D07D7237CB" name="X87D468D07D7237CB"></a></p>

<h5>6.4-14 <span class="Heading"><span class="SimpleMath">\(G = M\)</span></span></h5>

<p>The group <span class="SimpleMath">\(M\)</span> contains exactly two conjugacy classes of solvable subgroups of order <span class="SimpleMath">\(n = 2\,849\,934\,139\,195\,392\)</span>, and no larger solvable subgroups.</p>

<p>The maximal subgroups of the structure <span class="SimpleMath">\(2^{1+24}_+.Co_1\)</span> in the group <span class="SimpleMath">\(M\)</span> contain solvable subgroups <span class="SimpleMath">\(S\)</span> of order <span class="SimpleMath">\(n\)</span> and with the structure <span class="SimpleMath">\(2^{1+24}_+.2^{4+12}.(S_3 \times 3^{1+2}_+:D_8)\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 234]</a> and Section <a href="chap6_mj.html#X7D028E9E7CB62A4F"><span class="RefLink">6.4-10</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= 2^25 * MaxSolv.( "Co1" );</span>
2849934139195392
</pre></div>

<p>The solvable subgroups of maximal order in groups of the types <span class="SimpleMath">\(2^{2+11+22}.(M_{24} \times S_3)\)</span> and <span class="SimpleMath">\(2^{[39]}.(L_3(2) \times 3S_6)\)</span> have order <span class="SimpleMath">\(n\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2^(2+11+22) * MaxSolv.( "M24" ) * 6 = n;    </span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2^39 * 24 * 3 * 72 = n;                 </span>
true
</pre></div>

<p>For inspecting the other maximal subgroups of <span class="SimpleMath">\(M\)</span>, we use the description from <a href="chapBib_mj.html#biBNW12">[NW13]</a>. Currently <span class="SimpleMath">\(44\)</span> classes of maximal subgroups are listed there, and any possible other maximal subgroup of <span class="SimpleMath">\(G\)</span> has socle isomorphic to one of <span class="SimpleMath">\(L_2(13)\)</span>, <span class="SimpleMath">\(Sz(8)\)</span>, <span class="SimpleMath">\(U_3(4)\)</span>, <span class="SimpleMath">\(U_3(8)\)</span>; so these maximal subgroups are isomorphic to subgroups of the automorphism groups of these groups – the maximum of these group orders is smaller than <span class="SimpleMath">\(n\)</span>, hence we may ignore these possible subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= [ "L2(13)", "Sz(8)", "U3(4)", "U3(8)" ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( cand, nam -&gt; ExtensionInfoCharacterTable( </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">CharacterTable( nam ) ) );</span>
[ [ "2", "2" ], [ "2^2", "3" ], [ "", "4" ], [ "3", "(S3x3)" ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ll:= List( cand, x -&gt; Size( CharacterTable( x ) ) );</span>
[ 1092, 29120, 62400, 5515776 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">18* ll[4];</span>
99283968
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2^39 * 24 * 3 * 72;</span>
2849934139195392
</pre></div>

<p>Thus only the following maximal subgroups of <span class="SimpleMath">\(M\)</span> have order bigger than <span class="SimpleMath">\(|S|\)</span>.</p>

<div class="pcenter"><table class="GAPDocTablenoborder">
<tr>
<td class="tdleft"><span class="SimpleMath">\(2.B\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{1+24}_+.Co_1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3.Fi_{24}\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^2.{}^2E_6(2):S_3\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(2^{10+16}.O_{10}^+(2)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{2+11+22}.(M_{24} \times S_3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+12}_+.2Suz.2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{5+10+20}.(S_3 \times L_5(2))\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_3 \times Th\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2^{[39]}.(L_3(2) \times 3S_6)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^8.O_8^-(3).2_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\((D_{10} \times HN).2\)</span></td>
</tr>
</table><br /><p>&nbsp;</p><br />
</div>

<p>For the subgroups <span class="SimpleMath">\(2.B\)</span>, <span class="SimpleMath">\(3.Fi_{24}\)</span>, <span class="SimpleMath">\(3^{1+12}_+.2Suz.2\)</span>, <span class="SimpleMath">\(S_3 \times Th\)</span>, and <span class="SimpleMath">\((D_{10} \times HN).2\)</span>, the solvable subgroups of maximal order are smaller than <span class="SimpleMath">\(n\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ 2 * MaxSolv.( "B" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           6 * MaxSolv.( "Fi24'" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           3^13 * 2 * MaxSolv.( "Suz" ) * 2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           6 * MaxSolv.( "Th" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           10 * MaxSolv.( "HN" ) * 2 ], i -&gt; Int( i / n ) );</span>
[ 0, 0, 0, 0, 0 ]
</pre></div>

<p>The subgroup <span class="SimpleMath">\(2^2.{}^2E_6(2):S_3\)</span> can be excluded by the fact that this group is only six times larger than the subgroup <span class="SimpleMath">\(2.{}^2E_6(2):2\)</span> of <span class="SimpleMath">\(B\)</span>, but <span class="SimpleMath">\(n\)</span> is <span class="SimpleMath">\(96\)</span> times larger than the maximal solvable subgroup in <span class="SimpleMath">\(B\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n / MaxSolv.( "B" );</span>
96
</pre></div>

<p>The group <span class="SimpleMath">\(3^8.O_8^-(3).2_3\)</span> can be excluded by the fact that a solvable subgroup of order at least <span class="SimpleMath">\(n\)</span> would imply the existence of a solvable subgroup of index at most <span class="SimpleMath">\(46\)</span> in <span class="SimpleMath">\(O_8^-(3).2_3\)</span>, which is not the case (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 141]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Int( 3^8 * Size( CharacterTable( "O8-(3)" ) ) * 2 / n );</span>
46
</pre></div>

<p>Similarly, the existence of a solvable subgroup of order at least <span class="SimpleMath">\(n\)</span> in <span class="SimpleMath">\(2^{5+10+20}.(S_3 \times L_5(2))\)</span> would imply the existence of a solvable subgroup of index at most <span class="SimpleMath">\(723\)</span> in <span class="SimpleMath">\(L_5(2)\)</span> and in turn of a solvable subgroup of index at most <span class="SimpleMath">\(23\)</span> in <span class="SimpleMath">\(L_4(2)\)</span>, which is not the case (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 70]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Int( 2^(10+16) * Size( CharacterTable( "O10+(2)" ) ) / n );    </span>
553350
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Int( 2^(5+10+20) * 6 * Size( CharacterTable( "L5(2)" ) ) / n );  </span>
723
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Int( 723 / 31 );</span>
23
</pre></div>

<p>It remains to exclude the subgroup <span class="SimpleMath">\(2^{10+16}.O_{10}^+(2)\)</span>, which means to show that <span class="SimpleMath">\(O_{10}^+(2)\)</span> does not contain a solvable subgroup of index at most <span class="SimpleMath">\(553\,350\)</span>. If such a subgroup would exist then it would be contained in one of the following maximal subgroups of <span class="SimpleMath">\(O_{10}^+(2)\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 146]</a>): in <span class="SimpleMath">\(S_8(2)\)</span> (of index at most <span class="SimpleMath">\(1\,115\)</span>), in <span class="SimpleMath">\(2^8:O_8^+(2)\)</span> (of index at most <span class="SimpleMath">\(1\,050\)</span>), in <span class="SimpleMath">\(2^{10}:L_5(2)\)</span> (of index at most <span class="SimpleMath">\(241\)</span>), in <span class="SimpleMath">\((3 \times O_8^-(2)):2\)</span> (of index at most <span class="SimpleMath">\(27\)</span>), in <span class="SimpleMath">\((2^{1+12}_+:(S_3 \times A_8)\)</span> (of index at most <span class="SimpleMath">\(23\)</span>), or in <span class="SimpleMath">\(2^{3+12}:(S_3 \times S_3 \times L_3(2))\)</span> (of index at most <span class="SimpleMath">\(4\)</span>). By <a href="chapBib_mj.html#biBCCN85">[CCN+85, pp. 123, 85, 70, 89, 22]</a>, this is not the case.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">index:= Int( 2^(10+16) * Size( CharacterTable( "O10+(2)" ) ) / n );    </span>
553350
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ 496, 527, 2295, 19840, 23715, 118575 ], i -&gt; Int( index / i ) );</span>
[ 1115, 1050, 241, 27, 23, 4 ]
</pre></div>

<p>As a consequence, we have shown that the largest solvable subgroups of <span class="SimpleMath">\(M\)</span> have order <span class="SimpleMath">\(n\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MaxSolv.( "M" ):= n;;</span>
</pre></div>

<p>In order to prove the statement about the conjugacy of subgroups of order <span class="SimpleMath">\(n\)</span> in <span class="SimpleMath">\(M\)</span>, we first show the following.</p>

<p>Lemma:</p>

<p>The group <span class="SimpleMath">\(M\)</span> contains exactly three conjugacy classes of <code class="code">2B</code>-pure Klein four groups. Their normalizers in <span class="SimpleMath">\(M\)</span> have the orders <span class="SimpleMath">\(50\,472\,333\,605\,150\,392\,320\)</span>, <span class="SimpleMath">\(259\,759\,622\,062\,080\)</span>, and <span class="SimpleMath">\(9\,567\,039\,651\,840\)</span>, respectively.</p>

<p><em>Proof.</em> The idea is the same as for the Baby Monster group, see Section <a href="chap6_mj.html#X7EDF990985573EB6"><span class="RefLink">6.4-13</span></a>. Let <span class="SimpleMath">\(V\)</span> be a <code class="code">2B</code>-pure Klein four group in <span class="SimpleMath">\(M\)</span>, and set <span class="SimpleMath">\(N = N_M(V)\)</span>. Let <span class="SimpleMath">\(x \in V\)</span> be an involution and set <span class="SimpleMath">\(H = C_M(x)\)</span>, then <span class="SimpleMath">\(H\)</span> is maximal in <span class="SimpleMath">\(M\)</span> and has the structure <span class="SimpleMath">\(2^{1+24}_+.Co_1\)</span>. The index of <span class="SimpleMath">\(C = C_M(V) = C_H(V)\)</span> in <span class="SimpleMath">\(N\)</span> divides <span class="SimpleMath">\(6\)</span>, and <span class="SimpleMath">\(C\)</span> stabilizes the central involution in <span class="SimpleMath">\(H\)</span> and another <code class="code">2B</code> involution.</p>

<p>The group <span class="SimpleMath">\(H\)</span> contains exactly five conjugacy classes of <code class="code">2B</code> elements, three of them consist of elements that generate a <code class="code">2B</code>-pure Klein four group together with <span class="SimpleMath">\(x\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h:= CharacterTable( "2^1+24.Co1" );</span>
CharacterTable( "2^1+24.Co1" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pos:= Positions( GetFusionMap( h, m ), 3 );</span>
[ 2, 4, 7, 9, 16 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pos:= Filtered( Difference( pos, [ 2 ] ), i -&gt; ForAny( pos,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            j -&gt; NrPolyhedralSubgroups( h, 2, i, j ).number &lt;&gt; 0 ) );</span>
[ 4, 9, 16 ]
</pre></div>

<p>The two classes have lengths <span class="SimpleMath">\(93\,150\)</span> and <span class="SimpleMath">\(7\,286\,400\)</span>, thus the index of <span class="SimpleMath">\(C\)</span> in <span class="SimpleMath">\(H\)</span> is one of these numbers.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesConjugacyClasses( h ){ pos };</span>
[ 16584750, 3222483264000, 87495303168000 ]
</pre></div>

<p>Next we compute the number <span class="SimpleMath">\(n_0\)</span> of <code class="code">2B</code>-pure Klein four groups in <span class="SimpleMath">\(M\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nr:= NrPolyhedralSubgroups( m, 3, 3, 3 );</span>
rec( number := 87569110066985387357550925521828244921875, 
  type := "V4" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n0:= nr.number;;</span>
</pre></div>

<p>The <span class="SimpleMath">\(M\)</span>-conjugacy class of <span class="SimpleMath">\(V\)</span> has length <span class="SimpleMath">\([M:N] = [M:H] \cdot [H:C] / [N:C]\)</span>, where <span class="SimpleMath">\([N:C]\)</span> divides <span class="SimpleMath">\(6\)</span>. We see that <span class="SimpleMath">\([N:C] = 6\)</span> in both cases.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( pos, i -&gt; Size( m ) / SizesCentralizers( h )[i] / 6 );</span>
[ 16009115629875684006343550944921875, 
  3110635203347364905168577322802100000000, 
  84458458854522392576698341855475200000000 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sum( cand ) = n0;</span>
true
</pre></div>

<p>The orders of the normalizers of the three classes of <code class="code">2B</code>-pure Klein four groups are as claimed.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( cand, x -&gt; Size( m ) / x );</span>
[ 50472333605150392320, 259759622062080, 9567039651840 ]
</pre></div>

<p>As we have seen above, the group <span class="SimpleMath">\(M\)</span> contains exactly the following (solvable) subgroups of order <span class="SimpleMath">\(n\)</span>.</p>

<ol>
<li><p>One class in <span class="SimpleMath">\(2^{1+24}_+.Co_1\)</span> type subgroups,</p>

</li>
<li><p>one class in <span class="SimpleMath">\(2^{2+11+22}.(M_{24} \times S_3)\)</span> type subgroups, and</p>

</li>
<li><p>two classes in <span class="SimpleMath">\(2^{[39]}.(L_3(2) \times 3S_6)\)</span> type subgroups.</p>

</li>
</ol>
<p>Note that <span class="SimpleMath">\(2^{[39]}.(L_3(2) \times 3S_6)\)</span> contains an elementary abelian normal subgroup of order eight whose involutions lie in the class <code class="code">2B</code>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 234]</a>. As a module for the group <span class="SimpleMath">\(L_3(2)\)</span>, this normal subgroup is irreducible, and the restriction of the action to the two classes of <span class="SimpleMath">\(S_4\)</span> type subgroups fixes a one- and a two-dimensional subspace, respectively. Hence we have one class of subgroups of order <span class="SimpleMath">\(n\)</span> that centralize a <code class="code">2B</code> element and one class of subgroups of order <span class="SimpleMath">\(n\)</span> that normalize a <code class="code">2B</code>-pure Klein four group. Clearly the subgroups in the first class coincide with the subgroups of order <span class="SimpleMath">\(n\)</span> in <span class="SimpleMath">\(2^{1+24}_+.Co_1\)</span> type subgroups. By the above classification of <code class="code">2B</code>-pure Klein four groups in <span class="SimpleMath">\(M\)</span>, the subgroups in the second class coincide with the subgroups of order <span class="SimpleMath">\(n\)</span> in <span class="SimpleMath">\(2^{2+11+22}.(M_{24} \times S_3)\)</span> type subgroups.</p>

<p>It remains to show that the subgroups of order <span class="SimpleMath">\(n\)</span> do <em>not</em> stabilize both a <code class="code">2B</code> element <em>and</em> a <code class="code">2B</code>-pure Klein four group. We do this by direct computations with a <span class="SimpleMath">\(2^{2+11+22}.(M_{24} \times S_3)\)</span> type group, which is available via the <strong class="pkg">AtlasRep</strong> package, see <a href="chapBib_mj.html#biBAtlasRep">[WPN+19]</a>.</p>

<p>First we fetch the group, and factor out the largest solvable normal subgroup, by suitable actions on blocks.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= AtlasGroup( "2^(2+11+22).(M24xS3)" );</span>
&lt;permutation group of size 50472333605150392320 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints( g );</span>
294912
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bl:= Blocks( g, MovedPoints( g ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( bl );</span>
147456
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hom1:= ActionHomomorphism( g, bl, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">act1:= Image( hom1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( g ) / Size( act1 );</span>
8192
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bl2:= Blocks( act1, MovedPoints( act1 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( bl2 );</span>
72
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hom2:= ActionHomomorphism( act1, bl2, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">act2:= Image( hom2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( act2 );</span>
1468938240
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( MathieuGroup( 24 ) ) * 6;</span>
1468938240
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bl3:= AllBlocks( act2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( bl3, Length );                                             </span>
[ 24, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bl3:= Orbit( act2, bl3[2], OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hom3:= ActionHomomorphism( act2, bl3, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">act3:= Image( hom3 );;</span>
</pre></div>

<p>Now we compute an isomorphism from the factor group of type <span class="SimpleMath">\(M_{24}\)</span> to the group that belongs to <strong class="pkg">GAP</strong>'s table of marks. Then we use the information from the table of marks to compute a solvable subgroup of maximal order in <span class="SimpleMath">\(M_{24}\)</span> (which is <span class="SimpleMath">\(13\,824\)</span>), and take the preimage under the isomorphism. Finally, we take the preimage of this group in te original group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( "M24" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tomgroup:= UnderlyingGroup( tom );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= IsomorphismGroups( act3, tomgroup );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pos:= Positions( OrdersTom( tom ), 13824 );</span>
[ 1508 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sub:= RepresentativeTom( tom, pos[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pre:= PreImages( iso, sub );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pre:= PreImages( hom3, pre );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pre:= PreImages( hom2, pre );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pre:= PreImages( hom1, pre );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( pre ) = n;</span>
true
</pre></div>

<p>The subgroups stabilizes a Klein four group. It does not stabilize a <code class="code">2B</code> element because its centre is trivial.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pciso:= IsomorphismPcGroup( pre );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( Centre( Image( pciso ) ) );</span>
1
</pre></div>

<p><a id="X7CD8E04C7F32AD56" name="X7CD8E04C7F32AD56"></a></p>

<h4>6.5 <span class="Heading">Proof of the Corollary</span></h4>

<p>With the computations in the previous sections, we have collected the information that is needed to show the corollary stated in Section <a href="chap6_mj.html#X7F817DC57A69CF0D"><span class="RefLink">6.1</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( Set( RecNames( MaxSolv ) ), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             x -&gt; MaxSolv.( x )^2 &gt;= Size( CharacterTable( x ) ) );</span>
[ "Fi23", "J2", "J2.2", "M11", "M12", "M22.2" ]
</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap5_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap7_mj.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>