File: chap2.html

package info (click to toggle)
gap-ctbllib 1.3.11-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 76,256 kB
  • sloc: xml: 41,608; makefile: 219; javascript: 155
file content (1395 lines) | stat: -rw-r--r-- 106,558 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (CTblLib) - Chapter 2: Tutorial for the GAP Character Table Library</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap2"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap1.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap3.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap2_mj.html">[MathJax on]</a></p>
<p><a id="X7C4E7E1181E82D8E" name="X7C4E7E1181E82D8E"></a></p>
<div class="ChapSects"><a href="chap2.html#X7C4E7E1181E82D8E">2 <span class="Heading">Tutorial for the <strong class="pkg">GAP</strong> Character Table Library</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X86B34875862028E8">2.1 <span class="Heading">Concepts used in the <strong class="pkg">GAP</strong> Character Table Library</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X84930B2D7849E019">2.2 <span class="Heading">Accessing a Character Table from the Library</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X8658DC3A83B5A98B">2.2-1 <span class="Heading">Accessing a Character Table via a name</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7AA474817D17BF49">2.2-2 <span class="Heading">Accessing a Character Table via properties</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7C6BFB4384CAFFC8">2.2-3 <span class="Heading">Accessing a Character Table via a Table of Marks</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7E6AF18C7F139F54">2.2-4 <span class="Heading">Accessing a Character Table relative to another Character Table
</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7CD1E9AA871848EC">2.2-5 <span class="Heading">Different character tables for the same group</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X83B721F3801ED6D1">2.3 <span class="Heading">Examples of Using the <strong class="pkg">GAP</strong> Character Table Library</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X87AC9A4181AC369C">2.3-1 <span class="Heading">Example: Ambivalent Simple Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7AD705F685FBF179">2.3-2 <span class="Heading">Example: Simple <span class="SimpleMath">p</span>-pure Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7C2C7B138646D0C5">2.3-3 <span class="Heading">Example: Simple Groups with only one <span class="SimpleMath">p</span>-Block</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7FA308D585DC1B40">2.3-4 <span class="Heading">Example:The Sylow <span class="SimpleMath">3</span> subgroup of <span class="SimpleMath">3.O'N</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X83BF83D87BC1B123">2.3-5 <span class="Heading">Example: Primitive Permutation Characters of <span class="SimpleMath">2.A_6</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X808DD8997F10D429">2.3-6 <span class="Heading">Example: A Permutation Character of <span class="SimpleMath">Fi_23</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7A23CB7D8267FE55">2.3-7 <span class="Heading">Example: Non-commutators in the commutator group</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X79CDDEE67A41EAB8">2.3-8 <span class="Heading">Example: An irreducible <span class="SimpleMath">11</span>-modular character of <span class="SimpleMath">J_4</span>
(December 2018)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X8135F74080E50B14">2.3-9 <span class="Heading">Example: Tensor Products that are Generalized Projectives
(October 2019)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7AD5E36B7D44C507">2.3-10 <span class="Heading">Example: Certain elementary abelian subgroups in quasisimple groups
(November 2020)</span></a>
</span>
</div></div>
</div>

<h3>2 <span class="Heading">Tutorial for the <strong class="pkg">GAP</strong> Character Table Library</span></h3>

<p>This chapter gives an overview of the basic functionality provided by the <strong class="pkg">GAP</strong> Character Table Library. The main concepts and interface functions are presented in the sections <a href="chap2.html#X86B34875862028E8"><span class="RefLink">2.1</span></a> and <a href="chap2.html#X84930B2D7849E019"><span class="RefLink">2.2</span></a>, Section <a href="chap2.html#X83B721F3801ED6D1"><span class="RefLink">2.3</span></a> shows a few small examples.</p>

<p>In order to force that the output of the examples consists only of ASCII characters, we set the user preference <code class="code">DisplayFunction</code> of the <strong class="pkg">AtlasRep</strong> to the value <code class="code">"Print"</code>. This is necessary because the LaTeX and HTML versions of <strong class="pkg">GAPDoc</strong> documents support only ASCII characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">origpref:= UserPreference( "AtlasRep", "DisplayFunction" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference( "AtlasRep", "DisplayFunction", "Print" );</span>
</pre></div>

<p>Some of the examples need functionalities from other <strong class="pkg">GAP</strong> packages in the sense that the output looks different if these packages are not available.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "Browse", false );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "SpinSym", false );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "TomLib", false );</span>
true
</pre></div>

<p><a id="X86B34875862028E8" name="X86B34875862028E8"></a></p>

<h4>2.1 <span class="Heading">Concepts used in the <strong class="pkg">GAP</strong> Character Table Library</span></h4>

<p>The main idea behind working with the <strong class="pkg">GAP</strong> Character Table Library is to deal with character tables of groups but <em>without</em> having access to these groups. This situation occurs for example if one extracts information from the printed <strong class="pkg">Atlas</strong> of Finite Groups (<a href="chapBib.html#biBCCN85">[CCN+85]</a>).</p>

<p>This restriction means first of all that we need a way to access the character tables, see Section <a href="chap2.html#X84930B2D7849E019"><span class="RefLink">2.2</span></a> for that. Once we have such a character table, we can compute all those data about the underlying group <span class="SimpleMath">G</span>, say, that are determined by the character table. Chapter <a href="../../../doc/ref/chap71.html#X7F9D58208241D35E"><span class="RefLink">Reference: Attributes and Properties for Groups and Character Tables</span></a> lists such attributes and properties. For example, it can be computed from the character table of <span class="SimpleMath">G</span> whether <span class="SimpleMath">G</span> is solvable or not.</p>

<p>Questions that cannot be answered using only the character table of <span class="SimpleMath">G</span> can perhaps be treated using additional information. For example, the structure of subgroups of <span class="SimpleMath">G</span> is in general not determined by the character table of <span class="SimpleMath">G</span>, but the character table may yield partial information. Two examples can be found in the sections <a href="chap2.html#X7FA308D585DC1B40"><span class="RefLink">2.3-4</span></a> and <a href="chap2.html#X808DD8997F10D429"><span class="RefLink">2.3-6</span></a>.</p>

<p>In the character table context, the role of homomorphisms between two groups is taken by <em>class fusions</em>. Monomorphisms correspond to subgroup fusions, epimorphisms correspond to factor fusions. Given two character tables of a group <span class="SimpleMath">G</span> and a subgroup <span class="SimpleMath">H</span> of <span class="SimpleMath">G</span>, one can in general compute only <em>candidates</em> for the class fusion of <span class="SimpleMath">H</span> into <span class="SimpleMath">G</span>, for example using <code class="func">PossibleClassFusions</code> (<a href="../../../doc/ref/chap73.html#X7883271F7F26356E"><span class="RefLink">Reference: PossibleClassFusions</span></a>). Note that <span class="SimpleMath">G</span> may contain several nonconjugate subgroups isomorphic with <span class="SimpleMath">H</span>, which may have different class fusions.</p>

<p>One can often reduce a question about a group <span class="SimpleMath">G</span> to a question about its maximal subgroups. In the character table context, it is often sufficient to know the character table of <span class="SimpleMath">G</span>, the character tables of its maximal subgroups, and their class fusions into <span class="SimpleMath">G</span>. We are in this situation if the attribute <code class="func">Maxes</code> (<a href="chap3.html#X8150E63F7DBDF252"><span class="RefLink">3.7-1</span></a>) is set in the character table of <span class="SimpleMath">G</span>.</p>

<p><em>Summary:</em> The character theoretic approach that is supported by the <strong class="pkg">GAP</strong> Character Table Library, that is, an approach without explicitly using the underlying groups, has the advantages that it can be used to answer many questions, and that these computations are usually cheap, compared to computations with groups. Disadvantages are that this approach is not always successful, and that answers are often <q>nonconstructive</q> in the sense that one can show the existence of something without getting one's hands on it.</p>

<p><a id="X84930B2D7849E019" name="X84930B2D7849E019"></a></p>

<h4>2.2 <span class="Heading">Accessing a Character Table from the Library</span></h4>

<p>As stated in Section <a href="chap2.html#X86B34875862028E8"><span class="RefLink">2.1</span></a>, we must define how character tables from the <strong class="pkg">GAP</strong> Character Table Library can be accessed.</p>

<p><a id="X8658DC3A83B5A98B" name="X8658DC3A83B5A98B"></a></p>

<h5>2.2-1 <span class="Heading">Accessing a Character Table via a name</span></h5>

<p>The most common way to access a character table from the <strong class="pkg">GAP</strong> Character Table Library is to call <code class="func">CharacterTable</code> (<a href="chap3.html#X86C06F408706F27A"><span class="RefLink">3.1-2</span></a>) with argument a string that is an <em>admissible name</em> for the character table. Typical admissible names are similar to the group names used in the <strong class="pkg">Atlas</strong> of Finite Groups <a href="chapBib.html#biBCCN85">[CCN+85]</a>. One of these names is the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) value of the character table, this name is used by <strong class="pkg">GAP</strong> when it prints library character tables.</p>

<p>For example, an admissible name for the character table of an almost simple group is the <strong class="pkg">Atlas</strong> name, such as <code class="code">A5</code>, <code class="code">M11</code>, or <code class="code">L2(11).2</code>. Other names may be admissible, for example <code class="code">S6</code> is admissible for the symmetric group on six points, which is called <span class="SimpleMath">A_6.2_1</span> in the <strong class="pkg">Atlas</strong>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterTable( "J1" );</span>
CharacterTable( "J1" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterTable( "L2(11)" );</span>
CharacterTable( "L2(11)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterTable( "S5" );</span>
CharacterTable( "A5.2" )
</pre></div>

<p><a id="X7AA474817D17BF49" name="X7AA474817D17BF49"></a></p>

<h5>2.2-2 <span class="Heading">Accessing a Character Table via properties</span></h5>

<p>If one does not know an admissible name of the character table of a group one is interested in, or if one does not know whether ths character table is available at all, one can use <code class="func">AllCharacterTableNames</code> (<a href="chap3.html#X7C091641852BB6FE"><span class="RefLink">3.1-4</span></a>) to compute a list of identifiers of all available character tables with given properties. Analogously, <code class="func">OneCharacterTableName</code> (<a href="chap3.html#X7EC4A57E8393D75C"><span class="RefLink">3.1-5</span></a>) can be used to compute one such identifier.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AllCharacterTableNames( Size, 168 );</span>
[ "(2^2xD14):3", "2^3.7.3", "L3(2)", "L3(4)M7", "L3(4)M8" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OneCharacterTableName( NrConjugacyClasses, n -&gt; n &lt;= 4 );</span>
"S3"
</pre></div>

<p>For certain filters, such as <code class="func">Size</code> (<a href="../../../doc/ref/chap30.html#X858ADA3B7A684421"><span class="RefLink">Reference: Size</span></a>) and <code class="func">NrConjugacyClasses</code> (<a href="../../../doc/ref/chap39.html#X8733F87B7E4C9903"><span class="RefLink">Reference: NrConjugacyClasses</span></a>), the computations are fast because the values for all library tables are precomputed. See <code class="func">AllCharacterTableNames</code> (<a href="chap3.html#X7C091641852BB6FE"><span class="RefLink">3.1-4</span></a>) for an overview of these filters.</p>

<p>The function <code class="func">BrowseCTblLibInfo</code> (<a href="chap3.html#X7A038A267CD17032"><span class="RefLink">3.5-2</span></a>) provides an interactive overview of available character tables, which allows one for example to search also for substrings in identifiers of character tables. This function is available only if the <strong class="pkg">Browse</strong> package has been loaded.</p>

<p><a id="X7C6BFB4384CAFFC8" name="X7C6BFB4384CAFFC8"></a></p>

<h5>2.2-3 <span class="Heading">Accessing a Character Table via a Table of Marks</span></h5>

<p>Let <span class="SimpleMath">G</span> be a group whose table of marks is available via the <strong class="pkg">TomLib</strong> package (see <a href="chapBib.html#biBTomLib">[MNP19]</a> for how to access tables of marks from this library) then the <strong class="pkg">GAP</strong> Character Table Library contains the character table of <span class="SimpleMath">G</span>, and one can access this table by using the table of marks as an argument of <code class="func">CharacterTable</code> (<a href="chap3.html#X87110C1584D09BE4"><span class="RefLink">3.2-2</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( "M11" );</span>
TableOfMarks( "M11" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( tom );</span>
CharacterTable( "M11" )
</pre></div>

<p><a id="X7E6AF18C7F139F54" name="X7E6AF18C7F139F54"></a></p>

<h5>2.2-4 <span class="Heading">Accessing a Character Table relative to another Character Table
</span></h5>

<p>If one has already a character table from the <strong class="pkg">GAP</strong> Character Table Library that belongs to the group <span class="SimpleMath">G</span>, say, then names of related tables can be found as follows.</p>

<p>The value of the attribute <code class="func">Maxes</code> (<a href="chap3.html#X8150E63F7DBDF252"><span class="RefLink">3.7-1</span></a>), if known, is the list of identifiers of the character tables of all classes of maximal subgroups of <span class="SimpleMath">G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "M11" );</span>
CharacterTable( "M11" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">HasMaxes( t );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maxes( t );</span>
[ "A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4" ]
</pre></div>

<p>If the <code class="func">Maxes</code> (<a href="chap3.html#X8150E63F7DBDF252"><span class="RefLink">3.7-1</span></a>) value of the character table with identifier <span class="SimpleMath">id</span>, say, is known then the character table of the groups in the <span class="SimpleMath">i</span>-th class of maximal subgroups can be accessed via the <q>relative name</q> <span class="SimpleMath">id</span><code class="code">M</code><span class="SimpleMath">i</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterTable( "M11M2" );</span>
CharacterTable( "L2(11)" )
</pre></div>

<p>The value of the attribute <code class="func">NamesOfFusionSources</code> (<a href="../../../doc/ref/chap73.html#X7F6569D5786A9D49"><span class="RefLink">Reference: NamesOfFusionSources</span></a>) is the list of identifiers of those character tables which store class fusions to <span class="SimpleMath">G</span>. So these character tables belong to subgroups of <span class="SimpleMath">G</span> and groups that have <span class="SimpleMath">G</span> as a factor group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NamesOfFusionSources( t );</span>
[ "A5.2", "A6.2_3", "P48/G1/L1/V1/ext2", "P48/G1/L1/V2/ext2", 
  "L2(11)", "2.S4", "3^5:M11", "3^6.M11", "3^(2+5+10).(M11x2S4)", 
  "s4", "3^2:Q8.2", "M11N2", "5:4", "11:5" ]
</pre></div>

<p>The value of the attribute <code class="func">ComputedClassFusions</code> (<a href="../../../doc/ref/chap73.html#X7F71402285B7DE8E"><span class="RefLink">Reference: ComputedClassFusions</span></a>) is the list of records whose <code class="code">name</code> components are the identifiers of those character tables to which class fusions are stored. So these character tables belong to overgroups and factor groups of <span class="SimpleMath">G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ComputedClassFusions( t ), r -&gt; r.name );</span>
[ "A11", "M12", "M23", "HS", "McL", "ON", "3^5:M11", "B" ]
</pre></div>

<p><a id="X7CD1E9AA871848EC" name="X7CD1E9AA871848EC"></a></p>

<h5>2.2-5 <span class="Heading">Different character tables for the same group</span></h5>

<p>The <strong class="pkg">GAP</strong> Character Table Library may contain several different character tables of a given group, in the sense that the rows and columns are sorted differently.</p>

<p>For example, the <strong class="pkg">Atlas</strong> table of the alternating group <span class="SimpleMath">A_5</span> is available, and since <span class="SimpleMath">A_5</span> is isomorphic with the groups PSL<span class="SimpleMath">(2, 4)</span> and PSL<span class="SimpleMath">(2, 5)</span>, two more character tables of <span class="SimpleMath">A_5</span> can be constructed in a natural way. The three tables are of course permutation isomorphic. The first two are sorted in the same way, but the rows and columns of the third one are sorted differently.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t1:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "PSL", 2, 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t3:= CharacterTable( "PSL", 2, 5 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( t1, t2 );</span>
rec( columns := (), group := Group([ (4,5) ]), rows := () )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( t1, t3 );</span>
rec( columns := (2,4)(3,5), group := Group([ (2,3) ]), 
  rows := (2,5,3,4) )
</pre></div>

<p>Another situation where several character tables for the same group are available is that a group contains several classes of isomorphic maximal subgroups such that the class fusions are different.</p>

<p>For example, the Mathieu group <span class="SimpleMath">M_12</span> contains two classes of maximal subgroups of index <span class="SimpleMath">12</span>, which are isomorphic with <span class="SimpleMath">M_11</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "M12" );</span>
CharacterTable( "M12" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= Maxes( t );</span>
[ "M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7", 
  "2xS5", "M8.S4", "4^2:D12", "A4xS3" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s1:= CharacterTable( mx[1] );</span>
CharacterTable( "M11" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s2:= CharacterTable( mx[2] );</span>
CharacterTable( "M12M2" )
</pre></div>

<p>The class fusions into <span class="SimpleMath">M_12</span> are stored on the library tables of the maximal subgroups. The groups in the first class of <span class="SimpleMath">M_11</span> type subgroups contain elements in the classes <code class="code">4B</code>, <code class="code">6B</code>, and <code class="code">8B</code> of <span class="SimpleMath">M_12</span>, and the groups in the second class contain elements in the classes <code class="code">4A</code>, <code class="code">6A</code>, and <code class="code">8A</code>. Note that according to the <strong class="pkg">Atlas</strong> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 33]</a>), the permutation characters of the action of <span class="SimpleMath">M_12</span> on the cosets of <span class="SimpleMath">M_11</span> type subgroups from the two classes of maximal subgroups are <code class="code">1a + 11a</code> and <code class="code">1a + 11b</code>, respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( s1, t );</span>
[ 1, 3, 4, 7, 8, 10, 12, 12, 15, 14 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( s2, t );</span>
[ 1, 3, 4, 6, 8, 10, 11, 11, 14, 15 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( t );</span>
M12

      2   6  4  6  1  2  5  5  1  2  1  3  3   1   .   .
      3   3  1  1  3  2  .  .  .  1  1  .  .   .   .   .
      5   1  1  .  .  .  .  .  1  .  .  .  .   1   .   .
     11   1  .  .  .  .  .  .  .  .  .  .  .   .   1   1

         1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 11a 11b
     2P  1a 1a 1a 3a 3b 2b 2b 5a 3b 3a 4a 4b  5a 11b 11a
     3P  1a 2a 2b 1a 1a 4a 4b 5a 2a 2b 8a 8b 10a 11a 11b
     5P  1a 2a 2b 3a 3b 4a 4b 1a 6a 6b 8a 8b  2a 11a 11b
    11P  1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a  1a  1a

X.1       1  1  1  1  1  1  1  1  1  1  1  1   1   1   1
X.2      11 -1  3  2 -1 -1  3  1 -1  . -1  1  -1   .   .
X.3      11 -1  3  2 -1  3 -1  1 -1  .  1 -1  -1   .   .
X.4      16  4  . -2  1  .  .  1  1  .  .  .  -1   A  /A
X.5      16  4  . -2  1  .  .  1  1  .  .  .  -1  /A   A
X.6      45  5 -3  .  3  1  1  . -1  . -1 -1   .   1   1
X.7      54  6  6  .  .  2  2 -1  .  .  .  .   1  -1  -1
X.8      55 -5  7  1  1 -1 -1  .  1  1 -1 -1   .   .   .
X.9      55 -5 -1  1  1  3 -1  .  1 -1 -1  1   .   .   .
X.10     55 -5 -1  1  1 -1  3  .  1 -1  1 -1   .   .   .
X.11     66  6  2  3  . -2 -2  1  . -1  .  .   1   .   .
X.12     99 -1  3  .  3 -1 -1 -1 -1  .  1  1  -1   .   .
X.13    120  . -8  3  .  .  .  .  .  1  .  .   .  -1  -1
X.14    144  4  .  . -3  .  . -1  1  .  .  .  -1   1   1
X.15    176 -4  . -4 -1  .  .  1 -1  .  .  .   1   .   .

A = E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9
  = (-1+Sqrt(-11))/2 = b11
</pre></div>

<p>Permutation equivalent library tables are related to each other. In the above example, the table <code class="code">s2</code> is a <em>duplicate</em> of <code class="code">s1</code>, and there are functions for making the relations explicit.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsDuplicateTable( s2 );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdentifierOfMainTable( s2 );</span>
"M11"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdentifiersOfDuplicateTables( s1 );</span>
[ "HSM9", "M12M2", "ONM11" ]
</pre></div>

<p>See Section <a href="chap3.html#X7E5CFB187E313B11"><span class="RefLink">3.6</span></a> for details about duplicate character tables.</p>

<p><a id="X83B721F3801ED6D1" name="X83B721F3801ED6D1"></a></p>

<h4>2.3 <span class="Heading">Examples of Using the <strong class="pkg">GAP</strong> Character Table Library</span></h4>

<p>The sections <a href="chap2.html#X87AC9A4181AC369C"><span class="RefLink">2.3-1</span></a>, <a href="chap2.html#X7AD705F685FBF179"><span class="RefLink">2.3-2</span></a>, and <a href="chap2.html#X7C2C7B138646D0C5"><span class="RefLink">2.3-3</span></a> show how the function <code class="func">AllCharacterTableNames</code> (<a href="chap3.html#X7C091641852BB6FE"><span class="RefLink">3.1-4</span></a>) can be used to search for character tables with certain properties. The <strong class="pkg">GAP</strong> Character Table Library serves as a tool for finding and checking conjectures in these examples.</p>

<p>In Section <a href="chap2.html#X808DD8997F10D429"><span class="RefLink">2.3-6</span></a>, a question about a subgroup of the sporadic simple Fischer group <span class="SimpleMath">G = Fi_23</span> is answered using only character tables from the <strong class="pkg">GAP</strong> Character Table Library.</p>

<p>More examples can be found in <a href="chapBib.html#biBGMN">[BGL+10]</a>, <a href="chapBib.html#biBAmbigFus">[Brea]</a>, <a href="chapBib.html#biBctblpope">[Bred]</a>, <a href="chapBib.html#biBProbGenArxiv">[Bree]</a>, <a href="chapBib.html#biBAuto">[Bref]</a>.</p>

<p><a id="X87AC9A4181AC369C" name="X87AC9A4181AC369C"></a></p>

<h5>2.3-1 <span class="Heading">Example: Ambivalent Simple Groups</span></h5>

<p>A group <span class="SimpleMath">G</span> is called <em>ambivalent</em> if each element in <span class="SimpleMath">G</span> is <span class="SimpleMath">G</span>-conjugate to its inverse. Equivalently, <span class="SimpleMath">G</span> is ambivalent if all its characters are real-valued. We are interested in nonabelian simple ambivalent groups. Since ambivalence is of course invariant under permutation equivalence, we may omit duplicate character tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">isambivalent:= tbl -&gt; PowerMap( tbl, -1 )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                           = [ 1 .. NrConjugacyClasses( tbl ) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AllCharacterTableNames( IsSimple, true, IsDuplicateTable, false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       IsAbelian, false, isambivalent, true );</span>
[ "3D4(2)", "3D4(3)", "3D4(4)", "A10", "A14", "A5", "A6", "J1", "J2", 
  "L2(101)", "L2(109)", "L2(113)", "L2(121)", "L2(125)", "L2(13)", 
  "L2(16)", "L2(17)", "L2(25)", "L2(29)", "L2(32)", "L2(37)", 
  "L2(41)", "L2(49)", "L2(53)", "L2(61)", "L2(64)", "L2(73)", 
  "L2(8)", "L2(81)", "L2(89)", "L2(97)", "O12+(2)", "O12-(2)", 
  "O12-(3)", "O7(5)", "O8+(2)", "O8+(3)", "O8+(7)", "O8-(2)", 
  "O8-(3)", "O9(3)", "S10(2)", "S12(2)", "S4(4)", "S4(5)", "S4(8)", 
  "S4(9)", "S6(2)", "S6(4)", "S6(5)", "S8(2)" ]
</pre></div>

<p><a id="X7AD705F685FBF179" name="X7AD705F685FBF179"></a></p>

<h5>2.3-2 <span class="Heading">Example: Simple <span class="SimpleMath">p</span>-pure Groups</span></h5>

<p>A group <span class="SimpleMath">G</span> is called <em><span class="SimpleMath">p</span>-pure</em> for a prime integer <span class="SimpleMath">p</span> that divides <span class="SimpleMath">|G|</span> if the centralizer orders of nonidentity <span class="SimpleMath">p</span>-elements in <span class="SimpleMath">G</span> are <span class="SimpleMath">p</span>-powers. Equivalently, <span class="SimpleMath">G</span> is <span class="SimpleMath">p</span>-pure if <span class="SimpleMath">p</span> divides <span class="SimpleMath">|G|</span> and each element in <span class="SimpleMath">G</span> of order divisible by <span class="SimpleMath">p</span> is a <span class="SimpleMath">p</span>-element. (This property was studied by L. Héthelyi in 2002.)</p>

<p>We are interested in small nonabelian simple <span class="SimpleMath">p</span>-pure groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">isppure:= function( p )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     return tbl -&gt; Size( tbl ) mod p = 0 and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       ForAll( OrdersClassRepresentatives( tbl ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               n -&gt; n mod p &lt;&gt; 0 or IsPrimePowerInt( n ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   end;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [ 2, 3, 5, 7, 11, 13 ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Print( i, "\n",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       AllCharacterTableNames( IsSimple, true, IsAbelian, false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           IsDuplicateTable, false, isppure( i ), true ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
2
[ "A5", "A6", "L2(16)", "L2(17)", "L2(31)", "L2(32)", "L2(64)", 
  "L2(8)", "L3(2)", "L3(4)", "Sz(32)", "Sz(8)" ]
3
[ "A5", "A6", "L2(17)", "L2(19)", "L2(27)", "L2(53)", "L2(8)", 
  "L2(81)", "L3(2)", "L3(4)" ]
5
[ "A5", "A6", "A7", "L2(11)", "L2(125)", "L2(25)", "L2(49)", "L3(4)", 
  "M11", "M22", "S4(7)", "Sz(32)", "Sz(8)", "U4(2)", "U4(3)" ]
7
[ "A7", "A8", "A9", "G2(3)", "HS", "J1", "J2", "L2(13)", "L2(49)", 
  "L2(8)", "L2(97)", "L3(2)", "L3(4)", "M22", "O8+(2)", "S6(2)", 
  "Sz(8)", "U3(3)", "U3(5)", "U4(3)", "U6(2)" ]
11
[ "A11", "A12", "A13", "Co2", "HS", "J1", "L2(11)", "L2(121)", 
  "L2(23)", "L5(3)", "M11", "M12", "M22", "M23", "M24", "McL", 
  "O10+(3)", "O12+(3)", "ON", "Suz", "U5(2)", "U6(2)" ]
13
[ "2E6(2)", "2F4(2)'", "3D4(2)", "A13", "A14", "A15", "F4(2)", 
  "Fi22", "G2(3)", "G2(4)", "L2(13)", "L2(25)", "L2(27)", "L3(3)", 
  "L4(3)", "O7(3)", "O8+(3)", "S4(5)", "S6(3)", "Suz", "Sz(8)", 
  "U3(4)" ]
</pre></div>

<p>Looking at these examples, we may observe that the alternating group <span class="SimpleMath">A_n</span> of degree <span class="SimpleMath">n</span> is <span class="SimpleMath">2</span>-pure iff <span class="SimpleMath">n ∈ { 4, 5, 6 }</span>, <span class="SimpleMath">3</span>-pure iff <span class="SimpleMath">n ∈ { 3, 4, 5, 6 }</span>, and <span class="SimpleMath">p</span>-pure, for <span class="SimpleMath">p ≥ 5</span>, iff <span class="SimpleMath">n ∈ { p, p+1, p+2 }</span>.</p>

<p>Also, the Suzuki groups <span class="SimpleMath">Sz(q)</span> are <span class="SimpleMath">2</span>-pure since the centralizers of nonidentity <span class="SimpleMath">2</span>-elements are contained in Sylow <span class="SimpleMath">2</span>-subgroups.</p>

<p>From the inspection of the generic character table(s) of <span class="SimpleMath">PSL(2, q)</span>, we see that <span class="SimpleMath">PSL(2, p^d)</span> is <span class="SimpleMath">p</span>-pure Additionally, exactly the following cases of <span class="SimpleMath">l</span>-purity occur, for a prime <span class="SimpleMath">l</span>.</p>


<ul>
<li><p><span class="SimpleMath">q</span> is even and <span class="SimpleMath">q-1</span> or <span class="SimpleMath">q+1</span> is a power of <span class="SimpleMath">l</span>.</p>

</li>
<li><p>For <span class="SimpleMath">q ≡ 1 mod 4</span>, <span class="SimpleMath">(q+1)/2</span> is a power of <span class="SimpleMath">l</span> or <span class="SimpleMath">q-1</span> is a power of <span class="SimpleMath">l = 2</span>.</p>

</li>
<li><p>For <span class="SimpleMath">q ≡ 3 mod 4</span>, <span class="SimpleMath">(q-1)/2</span> is a power of <span class="SimpleMath">l</span> or <span class="SimpleMath">q+1</span> is a power of <span class="SimpleMath">l = 2</span>.</p>

</li>
</ul>
<p><a id="X7C2C7B138646D0C5" name="X7C2C7B138646D0C5"></a></p>

<h5>2.3-3 <span class="Heading">Example: Simple Groups with only one <span class="SimpleMath">p</span>-Block</span></h5>

<p>Are there nonabelian simple groups with only one <span class="SimpleMath">p</span>-block, for some prime <span class="SimpleMath">p</span>?</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fun:= function( tbl )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     local result, p, bl;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     result:= false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for p in PrimeDivisors( Size( tbl ) ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       bl:= PrimeBlocks( tbl, p );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if Length( bl.defect ) = 1 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         result:= true;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "only one block: ", Identifier( tbl ), ", p = ", p, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     return result;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AllCharacterTableNames( IsSimple, true, IsAbelian, false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                           IsDuplicateTable, false, fun, true );</span>
only one block: M22, p = 2
only one block: M24, p = 2
[ "M22", "M24" ]
</pre></div>

<p>We see that the sporadic simple groups <span class="SimpleMath">M_22</span> and <span class="SimpleMath">M_24</span> have only one <span class="SimpleMath">2</span>-block.</p>

<p><a id="X7FA308D585DC1B40" name="X7FA308D585DC1B40"></a></p>

<h5>2.3-4 <span class="Heading">Example:The Sylow <span class="SimpleMath">3</span> subgroup of <span class="SimpleMath">3.O'N</span></span></h5>

<p>We want to determine the structure of the Sylow <span class="SimpleMath">3</span>-subgroups of the triple cover <span class="SimpleMath">G = 3.O'N</span> of the sporadic simple O'Nan group <span class="SimpleMath">O'N</span>. The Sylow <span class="SimpleMath">3</span>-subgroup of <span class="SimpleMath">O'N</span> is an elementary abelian group of order <span class="SimpleMath">3^4</span>, since the Sylow <span class="SimpleMath">3</span> normalizer in <span class="SimpleMath">O'N</span> has the structure <span class="SimpleMath">3^4:2^1+4D_10</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 132]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterTable( "ONN3" );</span>
CharacterTable( "3^4:2^(1+4)D10" )
</pre></div>

<p>Let <span class="SimpleMath">P</span> be a Sylow <span class="SimpleMath">3</span>-subgroup of <span class="SimpleMath">G</span>. Then <span class="SimpleMath">P</span> is not abelian, since the centralizer order of any preimage of an element of order three in the simple factor group of <span class="SimpleMath">G</span> is not divisible by <span class="SimpleMath">3^5</span>. Moreover, the exponent of <span class="SimpleMath">P</span> is three.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3t:= CharacterTable( "3.ON" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orders:= OrdersClassRepresentatives( 3t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord3:= PositionsProperty( orders, x -&gt; x = 3 );</span>
[ 2, 3, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sizes:= SizesCentralizers( 3t ){ ord3 };</span>
[ 1382446517760, 1382446517760, 3240 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( 3t );</span>
1382446517760
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( Factors( sizes[3] ) );</span>
[ [ 2, 3 ], [ 3, 4 ], [ 5, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">9 in orders;</span>
false
</pre></div>

<p>So both the centre and the Frattini subgroup of <span class="SimpleMath">P</span> are equal to the centre of <span class="SimpleMath">G</span>, hence <span class="SimpleMath">P</span> is an extraspecial group <span class="SimpleMath">3^1+4_+</span>.</p>

<p><a id="X83BF83D87BC1B123" name="X83BF83D87BC1B123"></a></p>

<h5>2.3-5 <span class="Heading">Example: Primitive Permutation Characters of <span class="SimpleMath">2.A_6</span></span></h5>

<p>It is often interesting to compute the primitive permutation characters of a group <span class="SimpleMath">G</span>, that is, the characters of the permutation actions of <span class="SimpleMath">G</span> on the cosets of its maximal subgroups. These characters can be computed for example when the character tables of <span class="SimpleMath">G</span>, the character tables of its maximal subgroups, and the class fusions from these character tables into the table of <span class="SimpleMath">G</span> are known.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "2.A6" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">HasMaxes( tbl );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxes:= Maxes( tbl );</span>
[ "2.A5", "2.A6M2", "3^2:8", "2.Symm(4)", "2.A6M5" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( maxes, CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim1:= List( mx, s -&gt; TrivialCharacter( s )^tbl );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( tbl,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     rec( chars:= prim1, centralizers:= false, powermap:= false ) );</span>
2.A6

       1a 2a 4a 3a 6a 3b 6b 8a 8b 5a 10a 5b 10b

Y.1     6  6  2  3  3  .  .  .  .  1   1  1   1
Y.2     6  6  2  .  .  3  3  .  .  1   1  1   1
Y.3    10 10  2  1  1  1  1  2  2  .   .  .   .
Y.4    15 15  3  3  3  .  .  1  1  .   .  .   .
Y.5    15 15  3  .  .  3  3  1  1  .   .  .   .
</pre></div>

<p>These permutation characters are the ones listed in <a href="chapBib.html#biBCCN85">[CCN+85, p. 4]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermCharInfo( tbl, prim1 ).ATLAS;</span>
[ "1a+5a", "1a+5b", "1a+9a", "1a+5a+9a", "1a+5b+9a" ]
</pre></div>

<p>Alternatively, one can compute the primitive permutation characters from the table of marks if this table and the fusion into it are known.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( tbl );</span>
TableOfMarks( "2.A6" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">allperm:= PermCharsTom( tbl, tom );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim2:= allperm{ MaximalSubgroupsTom( tom )[1] };;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( tbl,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     rec( chars:= prim2, centralizers:= false, powermap:= false ) );</span>
2.A6

       1a 2a 4a 3a 6a 3b 6b 8a 8b 5a 10a 5b 10b

Y.1     6  6  2  3  3  .  .  .  .  1   1  1   1
Y.2     6  6  2  .  .  3  3  .  .  1   1  1   1
Y.3    10 10  2  1  1  1  1  2  2  .   .  .   .
Y.4    15 15  3  .  .  3  3  1  1  .   .  .   .
Y.5    15 15  3  3  3  .  .  1  1  .   .  .   .
</pre></div>

<p>We see that the two approaches yield the same permutation characters, but the two lists are sorted in a different way. The latter is due to the fact that the rows of the table of marks are ordered in a way that is not compatible with the ordering of maximal subgroups for the character table. Moreover, there is no way to choose the fusion from the character table to the table of marks in such a way that the two lists of permutation characters would become equal. The component <code class="code">perm</code> in the <code class="func">FusionToTom</code> (<a href="chap3.html#X7B1AAED68753B1BE"><span class="RefLink">3.2-4</span></a>) record of the character table describes the incompatibility.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FusionToTom( tbl );</span>
rec( map := [ 1, 2, 5, 4, 8, 3, 7, 11, 11, 6, 13, 6, 13 ], 
  name := "2.A6", perm := (4,5), 
  text := "fusion map is unique up to table autom." )
</pre></div>

<p><a id="X808DD8997F10D429" name="X808DD8997F10D429"></a></p>

<h5>2.3-6 <span class="Heading">Example: A Permutation Character of <span class="SimpleMath">Fi_23</span></span></h5>

<p>Let <span class="SimpleMath">x</span> be a <code class="code">3B</code> element in the sporadic simple Fischer group <span class="SimpleMath">G = Fi_23</span>. The normalizer <span class="SimpleMath">M</span> of <span class="SimpleMath">x</span> in <span class="SimpleMath">G</span> is a maximal subgroup of the type <span class="SimpleMath">3^{1+8}_+.2^{1+6}_-.3^{1+2}_+.2S_4</span>. We are interested in the distribution of the elements of the normal subgroup <span class="SimpleMath">N</span> of the type <span class="SimpleMath">3^{1+8}_+</span> in <span class="SimpleMath">M</span> to the conjugacy classes of <span class="SimpleMath">G</span>.</p>

<p>This information can be computed from the permutation character <span class="SimpleMath">π = 1_N^G</span>, so we try to compute this permutation character. We have <span class="SimpleMath">π = (1_N^M)^G</span>, and <span class="SimpleMath">1_N^M</span> can be computed as the inflation of the regular character of the factor group <span class="SimpleMath">M/N</span> to <span class="SimpleMath">M</span>. Note that the character tables of <span class="SimpleMath">G</span> and <span class="SimpleMath">M</span> are available, as well as the class fusion of <span class="SimpleMath">M</span> in <span class="SimpleMath">G</span>, and that <span class="SimpleMath">N</span> is the largest normal <span class="SimpleMath">3</span>-subgroup of <span class="SimpleMath">M</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Fi23" );</span>
CharacterTable( "Fi23" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= Maxes( t );</span>
[ "2.Fi22", "O8+(3).3.2", "2^2.U6(2).2", "S8(2)", "S3xO7(3)", 
  "2..11.m23", "3^(1+8).2^(1+6).3^(1+2).2S4", "Fi23M8", "A12.2", 
  "(2^2x2^(1+8)).(3xU4(2)).2", "2^(6+8):(A7xS3)", "S4xS6(2)", 
  "S4(4).4", "L2(23)" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:= CharacterTable( mx[7] );</span>
CharacterTable( "3^(1+8).2^(1+6).3^(1+2).2S4" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= ClassPositionsOfPCore( m, 3 );</span>
[ 1 .. 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:= m / n;</span>
CharacterTable( "3^(1+8).2^(1+6).3^(1+2).2S4/[ 1, 2, 3, 4, 5, 6 ]" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reg:= 0 * [ 1 .. NrConjugacyClasses( f ) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reg[1]:= Size( f );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">infl:= reg{ GetFusionMap( m, f ) };</span>
[ 165888, 165888, 165888, 165888, 165888, 165888, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ind:= Induced( m, t, [ infl ] );</span>
[ ClassFunction( CharacterTable( "Fi23" ),
  [ 207766624665600, 0, 0, 0, 603832320, 127567872, 6635520, 663552, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermCharInfo( t, ind ).contained;</span>
[ [ 1, 0, 0, 0, 864, 1538, 3456, 13824, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( OrdersClassRepresentatives( t ), x -&gt; x = 3 );</span>
[ 5, 6, 7, 8 ]
</pre></div>

<p>Thus <span class="SimpleMath">N</span> contains <span class="SimpleMath">864</span> elements in the class <code class="code">3A</code>, <span class="SimpleMath">1538</span> elements in the class <code class="code">3B</code>, and so on.</p>

<p><a id="X7A23CB7D8267FE55" name="X7A23CB7D8267FE55"></a></p>

<h5>2.3-7 <span class="Heading">Example: Non-commutators in the commutator group</span></h5>

<p>In general, not every element in the commutator group of a group is itself a commutator. Are there examples in the Character Table Library, and if yes, what is a smallest one?</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nam:= OneCharacterTableName( CommutatorLength, x -&gt; x &gt; 1</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                : OrderedBy:= Size );</span>
"3.(A4x3):2"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( CharacterTable( nam ) );</span>
216
</pre></div>

<p>The smallest groups with this property have order <span class="SimpleMath">96</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OneSmallGroup( Size, [ 2 .. 100 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  G -&gt; CommutatorLength( G ) &gt; 1, true );</span>
&lt;pc group of size 96 with 6 generators&gt;
</pre></div>

<p>(Note the different syntax: <code class="func">OneSmallGroup</code> (<a href="../../../pkg/smallgrp/doc/chap1.html#X875EB1167FF6BA82"><span class="RefLink">smallgrp: OneSmallGroup</span></a>) does not admit a function such as <code class="code">x -&gt; x &gt; 1</code> for describing the admissible values.)</p>

<p>Nonabelian simple groups cannot be expected to have non-commutators, by the main theorem in <a href="chapBib.html#biBLOST2010">[LOST10]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OneCharacterTableName( IsSimple, true, IsAbelian, false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                          IsDuplicateTable, false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                          CommutatorLength, x -&gt; x &gt; 1</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                          : OrderedBy:= Size );</span>
fail
</pre></div>

<p>Perfect groups can contain non-commutators.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nam:= OneCharacterTableName( IsPerfect, true,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                IsDuplicateTable, false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                CommutatorLength, x -&gt; x &gt; 1</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                : OrderedBy:= Size );</span>
"P1/G1/L1/V1/ext2"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( CharacterTable( nam ) );</span>
960
</pre></div>

<p>This is in fact the smallest example of a perfect group that contains non-commutators.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for n in [ 2 .. 960 ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for i in [ 1 .. NrPerfectGroups( n ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       g:= PerfectGroup( n,  i);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if CommutatorLength( g ) &lt;&gt; 1 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( [ n, i ], "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
[ 960, 2 ]
</pre></div>

<p><a id="X79CDDEE67A41EAB8" name="X79CDDEE67A41EAB8"></a></p>

<h5>2.3-8 <span class="Heading">Example: An irreducible <span class="SimpleMath">11</span>-modular character of <span class="SimpleMath">J_4</span>
(December 2018)</span></h5>

<p>Let <span class="SimpleMath">G</span> be the sporadic simple Janko group <span class="SimpleMath">J_4</span>. For the ordinary irreducible characters of degree <span class="SimpleMath">1333</span> of <span class="SimpleMath">G</span>, the reductions modulo <span class="SimpleMath">11</span> are known to be irreducible Brauer characters.</p>

<p>David Craven asked Richard Parker how to show that the antisymmetric squares of these Brauer characters are irreducible. Richard proposed the following.</p>

<p>Restrict the given ordinary character <span class="SimpleMath">χ</span>, say, to a subgroup <span class="SimpleMath">S</span> of <span class="SimpleMath">J_4</span> whose <span class="SimpleMath">11</span>-modular character table is known, decompose the restriction <span class="SimpleMath">χ_S</span> into irreducible Brauer characters, and compute those constituents that are constant on all subsets of conjugacy classes that fuse in <span class="SimpleMath">J_4</span>. If the Brauer character <span class="SimpleMath">χ_S</span> cannot be written as a sum of two such constituents then <span class="SimpleMath">χ</span>, as a Brauer character of <span class="SimpleMath">J_4</span>, is irreducible.</p>

<p>Here is a <strong class="pkg">GAP</strong> session that shows how to apply this idea.</p>

<p>The group <span class="SimpleMath">J_4</span> has exactly two ordinary irreducible characters of degree <span class="SimpleMath">1333</span>. They are complex conjugate, and so are their antisymmetric squares. Thus we may consider just one of the two.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "J4" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">deg1333:= Filtered( Irr( t ), x -&gt; x[1] = 1333 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">antisym:= AntiSymmetricParts( t, deg1333, 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(  antisym, x -&gt; Position( Irr( t ), x ) );</span>
[ 7, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComplexConjugate( antisym[1] ) = antisym[2];</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chi:= antisym[1];;  chi[1];</span>
887778
</pre></div>

<p>Let <span class="SimpleMath">S</span> be a maximal subgroup of the structure <span class="SimpleMath">2^11:M_24</span> in <span class="SimpleMath">J_4</span>. Fortunately, the <span class="SimpleMath">11</span>-modular character table of <span class="SimpleMath">S</span> is available (it had been constructed by Christoph Jansen), and we can restrict the interesting character to this table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= CharacterTable( Maxes( t )[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( s ) = 2^11 * Size( CharacterTable( "M24" ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rest:= RestrictedClassFunction( chi, s );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">smod11:= s mod 11;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rest:= RestrictedClassFunction( rest, smod11 );;</span>
</pre></div>

<p>The restriction is a sum of nine pairwise different irreducible Brauer characters of <span class="SimpleMath">S</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dec:= Decomposition( Irr( smod11 ), [ rest ], "nonnegative" )[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sum( dec );</span>
9
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">constpos:= PositionsProperty( dec, x -&gt; x &lt;&gt; 0 );</span>
[ 15, 36, 46, 53, 55, 58, 63, 67, 69 ]
</pre></div>

<p>Next we compute those sets of classes of <span class="SimpleMath">S</span> which fuse in <span class="SimpleMath">J_4</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">smod11fuss:= GetFusionMap( smod11, s );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sfust:= GetFusionMap( s, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= CompositionMaps( sfust, smod11fuss );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= Filtered( InverseMap( fus ), IsList );</span>
[ [ 3, 4, 5 ], [ 2, 6, 7 ], [ 8, 9 ], [ 10, 11, 16 ], 
  [ 12, 14, 15, 17, 18, 21 ], [ 13, 19, 20, 22 ], [ 26, 27, 28, 30 ], 
  [ 25, 29, 31 ], [ 34, 39 ], [ 35, 37, 38 ], [ 40, 42 ], [ 41, 43 ], 
  [ 44, 47, 48 ], [ 45, 49, 50 ], [ 46, 51 ], [ 56, 57 ], [ 63, 64 ], 
  [ 69, 70 ] ]
</pre></div>

<p>Finally, we run over all <span class="SimpleMath">2^9</span> subsets of the irreducible constituents.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">const:= Irr( smod11 ){ constpos };;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">zero:= 0 * TrivialCharacter( smod11 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">comb:= List( Combinations( const ), x -&gt; Sum( x, zero ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= Filtered( comb,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; ForAll( inv, l -&gt; Length( Set( x{ l } ) ) = 1 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( cand, x -&gt; x[1] );</span>
[ 0, 887778 ]
</pre></div>

<p>We see that no proper subset of the constituents yields a Brauer character that can be restricted from <span class="SimpleMath">J_4</span>.</p>

<p><a id="X8135F74080E50B14" name="X8135F74080E50B14"></a></p>

<h5>2.3-9 <span class="Heading">Example: Tensor Products that are Generalized Projectives
(October 2019)</span></h5>

<p>Let <span class="SimpleMath">G</span> be a finite group and <span class="SimpleMath">p</span> be a prime integer. If the tensor product <span class="SimpleMath">Φ</span>, say, of two ordinary irreducible characters of <span class="SimpleMath">G</span> vanishes on all <span class="SimpleMath">p</span>-singular elements of <span class="SimpleMath">G</span> then <span class="SimpleMath">Φ</span> is a <span class="SimpleMath">ℤ</span>-linear combination of the <em>projective indecomposable characters</em> <span class="SimpleMath">Φ_φ = ∑_{χ ∈ Irr(G)} d_{χ φ} χ</span> of <span class="SimpleMath">G</span>, where <span class="SimpleMath">φ</span> runs over the irreducible <span class="SimpleMath">p</span>-modular Brauer characters of <span class="SimpleMath">G</span> and <span class="SimpleMath">d_{χ φ}</span> is the decomposition number of <span class="SimpleMath">χ</span> and <span class="SimpleMath">φ</span>. (See for example <a href="chapBib.html#biBNav98">[Nav98, p. 25]</a> or <a href="chapBib.html#biBLP10">[LP10, Def. 4.3.1]</a>.) Such class functions are called generalized projective characters.</p>

<p>In fact, very often <span class="SimpleMath">Φ</span> is a projective character, that is, the coefficients of the decomposition into projective indecomposable characters are nonnegative.</p>

<p>We are interested in examples where this is <em>not</em> the case. For that, we write a small <strong class="pkg">GAP</strong> function that computes, for a given <span class="SimpleMath">p</span>-modular character table, those tensor products of ordinary irreducible characters that are generalized projective characters but are not projective.</p>

<p>Many years ago, Richard Parker had been interested in the question whether such tensor products can exist for a given group. Note that forming tensor products that vanish on <span class="SimpleMath">p</span>-singular elements is a recipe for creating projective characters, provided one knows in advance that the answer is negative for the given group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GenProjNotProj:= function( modtbl )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     local p, tbl, X, PIMs, n, psingular, list, labels, i, j, psi,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           pos, dec, poss;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     p:= UnderlyingCharacteristic( modtbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tbl:= OrdinaryCharacterTable( modtbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     X:= Irr( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     PIMs:= TransposedMat( DecompositionMatrix( modtbl ) ) * X;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     n:= Length( X );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     psingular:= Difference( [ 1 .. n ], GetFusionMap( modtbl, tbl ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     list:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     labels:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for i in [ 1 .. n ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       for j in [ 1 .. i ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         psi:= List( [ 1 .. n ], x -&gt; X[i][x] * X[j][x] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if IsZero( psi{ psingular } ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           # This is a generalized projective character.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           pos:= Position( list, psi );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           if pos = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Add( list, psi );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Add( labels, [ [ j, i ] ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Add( labels[ pos ], [ j, i ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if Length( list ) &gt; 0 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       # Decompose the generalized projective tensor products</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       # into the projective indecomposables.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       dec:= Decomposition( PIMs, list, "nonnegative" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       poss:= Positions( dec, fail );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       return Set( Concatenation( labels{ poss } ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       return [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     end;;</span>
</pre></div>

<p>One group for which the function returns a nonempty result is the sporadic simple Janko group <span class="SimpleMath">J_2</span> in characteristic <span class="SimpleMath">2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "J2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">modtbl:= tbl mod 2;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pairs:= GenProjNotProj( modtbl );</span>
[ [ 6, 12 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr:= Irr( tbl );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PIMs:= TransposedMat( DecompositionMatrix( modtbl ) ) * irr;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SolutionMat( PIMs, irr[6] * irr[12] );</span>
[ 0, 0, 0, 1, 1, 1, 0, 0, -2, 3 ]
</pre></div>

<p>Checking all available tables from the library takes several hours of CPU time and also requires a lot of space; finally, it yields the following result.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">examples:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for name in AllCharacterTableNames( IsDuplicateTable, false ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tbl:= CharacterTable( name );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for p in PrimeDivisors( Size( tbl ) ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modtbl:= tbl mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if modtbl &lt;&gt; fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         res:= GenProjNotProj( modtbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if not IsEmpty( res ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           AddSet( examples, [ name, p, Length( res ) ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">examples;</span>
[ [ "(A5xJ2):2", 2, 4 ], [ "(D10xJ2).2", 2, 9 ], [ "2.Suz", 3, 1 ], 
  [ "2.Suz.2", 3, 4 ], [ "2xCo2", 5, 4 ], [ "3.Suz", 2, 6 ], 
  [ "3.Suz.2", 2, 4 ], [ "Co2", 5, 1 ], [ "Co3", 2, 4 ], 
  [ "Isoclinic(2.Suz.2)", 3, 4 ], [ "J2", 2, 1 ], [ "Suz", 2, 2 ], 
  [ "Suz", 3, 1 ], [ "Suz.2", 3, 4 ] ]
</pre></div>

<p>This list looks rather <q>sporadic</q>. The number of examples is small, and all groups in question except two (the subdirect products of <span class="SimpleMath">S_5</span> and <span class="SimpleMath">J_2.2</span>, and of <span class="SimpleMath">5:4</span> and <span class="SimpleMath">J_2.2</span>, respectively) are extensions of sporadic simple groups.</p>

<p>Note that the following cases could be omitted because the characters in question belong to proper factor groups: <span class="SimpleMath">2.Suz</span> mod <span class="SimpleMath">3</span>, <span class="SimpleMath">2.Suz.2</span> mod <span class="SimpleMath">3</span>, and its isoclinic variant.</p>

<p><a id="X7AD5E36B7D44C507" name="X7AD5E36B7D44C507"></a></p>

<h5>2.3-10 <span class="Heading">Example: Certain elementary abelian subgroups in quasisimple groups
(November 2020)</span></h5>

<p>In October 2020, Bob Guralnick asked: Does each quasisimple group <span class="SimpleMath">G</span> contain an elementary abelian subgroup that contains elements from all conjugacy classes of involutions in <span class="SimpleMath">G</span>? (Such a subgroup is called a <em>broad</em> subgroup of <span class="SimpleMath">G</span>. See <a href="chapBib.html#biBGR20">[GR]</a> for the paper.)</p>

<p>In the case of simple groups, theoretical arguments suffice to show that the answer is positive for simple groups of alternating and Lie type, thus it remains to inspect the sporadic simple groups.</p>

<p>In the case of nonsimple quasisimple groups, again groups having a sporadic simple factor group have to be checked, and also the central extensions of groups of Lie type by exceptional multipliers have to be checked computationally.</p>

<p>In the following situations, the answer is positive for a given group <span class="SimpleMath">G</span>.</p>

<ol>
<li><p><span class="SimpleMath">G</span> has at most two classes of involutions. (Take an involution <span class="SimpleMath">x</span> in the centre of a Sylow <span class="SimpleMath">2</span>-subgroup <span class="SimpleMath">P</span> of <span class="SimpleMath">G</span>; if there is a conjugacy class of involutions in <span class="SimpleMath">G</span> different from <span class="SimpleMath">x^G</span> then <span class="SimpleMath">P</span> contains an element in the other involution class.)</p>

</li>
<li><p><span class="SimpleMath">G</span> has exactly three classes of involutions such that there are representatives <span class="SimpleMath">x</span>, <span class="SimpleMath">y</span>, <span class="SimpleMath">z</span> with the property <span class="SimpleMath">x y = z</span>. (The subgroup <span class="SimpleMath">⟨ x, y ⟩</span> is a Klein four group; note that <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span> commute because <span class="SimpleMath">x^{-1} y^{-1} x y = (x y)^2 = z^2 = 1</span> holds.)</p>

</li>
<li><p><span class="SimpleMath">G</span> has a central elementary abelian <span class="SimpleMath">2</span>-subgroup <span class="SimpleMath">N</span>, and there is an elementary abelian <span class="SimpleMath">2</span>-subgroup <span class="SimpleMath">P / N</span> in <span class="SimpleMath">G / N</span> containing elements from all those involution classes of <span class="SimpleMath">G / N</span> that lift to involutions of <span class="SimpleMath">G</span>, but no elements from other involution classes of <span class="SimpleMath">G / N</span>. (Just take the preimage <span class="SimpleMath">P</span>, which is elementary abelian.)</p>

<p>This condition is satisfied for example if the answer is positive for <span class="SimpleMath">G / N</span> and <em>all</em> involutions of <span class="SimpleMath">G / N</span> lift to involutions in <span class="SimpleMath">G</span>, or if exactly one class of involutions of <span class="SimpleMath">G / N</span> lifts to involutions in <span class="SimpleMath">G</span>.</p>

</li>
</ol>
<p>The following function evaluates the first two of the above criteria and easy cases of the third one, for the given character table of the group <span class="SimpleMath">G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApplyCriteria:= "dummy";;  # Avoid a syntax error ...</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApplyCriteria:= function( tbl )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   local id, ord, invpos, cen, facttbl, factfus, invmap, factord,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          factinvpos, imgs;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   id:= ReplacedString( Identifier( tbl ), " ", "" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   ord:= OrdersClassRepresentatives( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   invpos:= PositionsProperty( ord, x -&gt; x &lt;= 2 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   if Length( invpos ) &lt;= 3 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     # There are at most 2 involution classes.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Print( "#I  ", id, ": ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            "done (", Length( invpos ) - 1, " inv. class(es))\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     return true;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   elif Length( invpos ) = 4 and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        ClassMultiplicationCoefficient( tbl, invpos[2], invpos[3],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                             invpos[4] ) &lt;&gt; 0 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Print( "#I  ", id, ": ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            "done (3 inv. classes, nonzero str. const.)\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     return true;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   cen:= Intersection( invpos, ClassPositionsOfCentre( tbl ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   if Length( cen ) &gt; 1 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     # Consider the factor modulo the largest central el. ab. 2-group.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     facttbl:= tbl / cen;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     factfus:= GetFusionMap( tbl, facttbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     invmap:= InverseMap( factfus );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     factord:= OrdersClassRepresentatives( facttbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     factinvpos:= PositionsProperty( factord, x -&gt; x &lt;= 2 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if ForAll( factinvpos,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            i -&gt; invmap[i] in invpos or</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 ( IsList( invmap[i] ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   IsSubset( invpos, invmap[i] ) ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       # All involutions of the factor group lift to involutions.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if ApplyCriteria( facttbl ) = true then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#I  ", id, ": ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                "done (all inv. in ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                ReplacedString( Identifier( facttbl ), " ", "" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                " lift to inv.)\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         return true;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     imgs:= Set( factfus{ invpos } );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if Length( imgs ) = 2 and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        ForAll( imgs,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            i -&gt; invmap[i] in invpos or</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 ( IsList( invmap[i] ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   IsSubset( invpos, invmap[i] ) ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       # There is a C2 subgroup of the factor</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       # such that its involution lifts to involutions,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       # and the lifts of the C2 cover all involution classes of 'tbl'.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  ", id, ": ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              "done (all inv. in ", id,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              " are lifts of a C2\n",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              "#I  in the factor modulo ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              ReplacedString( String( cen ), " ", "" ), ")\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       return true;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   Print( "#I  ", id, ": ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          "OPEN (", Length( invpos  ) - 1, " inv. class(es))\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   return false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p>We start with the sporadic simple groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizeScreen( [ 72 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spor:= AllCharacterTableNames( IsSporadicSimple, true,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                  IsDuplicateTable, false );</span>
[ "B", "Co1", "Co2", "Co3", "F3+", "Fi22", "Fi23", "HN", "HS", "He", 
  "J1", "J2", "J3", "J4", "Ly", "M", "M11", "M12", "M22", "M23", 
  "M24", "McL", "ON", "Ru", "Suz", "Th" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( spor,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       x -&gt; not ApplyCriteria( CharacterTable( x ) ) );</span>
#I  B: OPEN (4 inv. class(es))
#I  Co1: OPEN (3 inv. class(es))
#I  Co2: done (3 inv. classes, nonzero str. const.)
#I  Co3: done (2 inv. class(es))
#I  F3+: done (2 inv. class(es))
#I  Fi22: done (3 inv. classes, nonzero str. const.)
#I  Fi23: done (3 inv. classes, nonzero str. const.)
#I  HN: done (2 inv. class(es))
#I  HS: done (2 inv. class(es))
#I  He: done (2 inv. class(es))
#I  J1: done (1 inv. class(es))
#I  J2: done (2 inv. class(es))
#I  J3: done (1 inv. class(es))
#I  J4: done (2 inv. class(es))
#I  Ly: done (1 inv. class(es))
#I  M: done (2 inv. class(es))
#I  M11: done (1 inv. class(es))
#I  M12: done (2 inv. class(es))
#I  M22: done (1 inv. class(es))
#I  M23: done (1 inv. class(es))
#I  M24: done (2 inv. class(es))
#I  McL: done (1 inv. class(es))
#I  ON: done (1 inv. class(es))
#I  Ru: done (2 inv. class(es))
#I  Suz: done (2 inv. class(es))
#I  Th: done (1 inv. class(es))
[ "B", "Co1" ]
</pre></div>

<p>The two open cases can be handled as follows.</p>

<p>The group <span class="SimpleMath">G = B</span> contains maximal subgroups of the type <span class="SimpleMath">5:4 × HS.2</span> (the normalizers of <code class="code">5A</code> elements, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 217]</a>). The direct factor <span class="SimpleMath">H = HS.2</span> of such a subgroup has four classes of involutions, which fuse to the four involution classes of <span class="SimpleMath">G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpos:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= First( mx,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         x -&gt; Size( x ) = 20 * Size( CharacterTable( "HS.2" ) ) );</span>
CharacterTable( "5:4xHS.2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= GetFusionMap( s, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prod:= ClassPositionsOfDirectProductDecompositions( s );</span>
[ [ [ 1, 40 .. 157 ], [ 1 .. 39 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fusinB:= List( prod[1], l -&gt; fus{ l } );</span>
[ [ 1, 18, 8, 3, 8 ], 
  [ 1, 3, 4, 6, 8, 9, 14, 19, 18, 18, 25, 22, 31, 36, 43, 51, 50, 54, 
      57, 81, 100, 2, 5, 8, 11, 16, 21, 20, 24, 34, 33, 48, 52, 59, 
      76, 106, 100, 100, 137 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSubset( fusinB[2], invpos );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h:= CharacterTable( "HS.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fusinB[2]{ Positions( OrdersClassRepresentatives( h ), 2 ) };</span>
[ 3, 4, 2, 5 ]
</pre></div>

<p>The table of marks of <span class="SimpleMath">H</span> is known. We find five classes of elementary abelian subgroups of order eight in <span class="SimpleMath">H</span> that contain elements from all four involution classes of <span class="SimpleMath">H</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( h );</span>
TableOfMarks( "HS.2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord:= OrdersTom( tom );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpos:= Positions( ord, 2 );</span>
[ 2, 3, 534, 535 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">8pos:= Positions( ord, 8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= Filtered( 8pos,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       x -&gt; ForAll( invpos,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              y -&gt; Length( IntersectionsTom( tom, x, y ) ) &gt;= y</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   and IntersectionsTom( tom, x, y )[y] &lt;&gt; 0 ) );</span>
[ 587, 589, 590, 593, 595 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= List( filt, i -&gt; RepresentativeTom( tom, i ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( reps, IsElementaryAbelian );</span>
true
</pre></div>

<p>The group <span class="SimpleMath">G = Co_1</span> has a maximal subgroup <span class="SimpleMath">H</span> of type <span class="SimpleMath">A_9 × S_3</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 183]</a>) that contains elements from all three involution classes of <span class="SimpleMath">G</span>. Moreover, the factor <span class="SimpleMath">S_3</span> contains <code class="code">2A</code> elements, and the factor <span class="SimpleMath">A_9</span> contains <code class="code">2B</code> and <code class="code">2C</code> elements. This yields the desired elementary abelian subgroup of order eight.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Co1" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpos:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= First( mx, x -&gt; Size( x ) = 3 * Factorial( 9 ) );</span>
CharacterTable( "A9xS3" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= GetFusionMap( s, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prod:= ClassPositionsOfDirectProductDecompositions( s );</span>
[ [ [ 1 .. 3 ], [ 1, 4 .. 52 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( prod[1], l -&gt; fus{ l } );</span>
[ [ 1, 8, 2 ], 
  [ 1, 3, 4, 5, 7, 6, 13, 14, 15, 19, 24, 28, 36, 37, 39, 50, 61, 61 
     ] ]
</pre></div>

<p>Thus we know that the answer is positive for each sporadic simple group. Next we look at the relevant covering groups of sporadic simple groups. For a quasisimple group with a sporadic simple factor, the Schur multiplier has at most the prime factors <span class="SimpleMath">2</span> and <span class="SimpleMath">3</span>; only the extension by the <span class="SimpleMath">2</span>-part of the multipier must be checked.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sporcov:= AllCharacterTableNames( IsSporadicSimple, true,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       IsDuplicateTable, false, OfThose, SchurCover );</span>
[ "12.M22", "2.B", "2.Co1", "2.HS", "2.J2", "2.M12", "2.Ru", "3.F3+", 
  "3.J3", "3.McL", "3.ON", "6.Fi22", "6.Suz", "Co2", "Co3", "Fi23", 
  "HN", "He", "J1", "J4", "Ly", "M", "M11", "M23", "M24", "Th" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( sporcov, x -&gt; '.' in x );</span>
[ "12.M22", "2.B", "2.Co1", "2.HS", "2.J2", "2.M12", "2.Ru", "3.F3+", 
  "3.J3", "3.McL", "3.ON", "6.Fi22", "6.Suz" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">relevant:= [ "2.M22", "4.M22", "2.B", "2.Co1", "2.HS", "2.J2",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                "2.M12", "2.Ru", "2.Fi22", "2.Suz" ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( relevant,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       x -&gt; not ApplyCriteria( CharacterTable( x ) ) );</span>
#I  2.M22: done (3 inv. classes, nonzero str. const.)
#I  4.M22: done (2 inv. class(es))
#I  2.B: OPEN (5 inv. class(es))
#I  2.Co1: OPEN (4 inv. class(es))
#I  2.HS: done (3 inv. classes, nonzero str. const.)
#I  2.J2: done (3 inv. classes, nonzero str. const.)
#I  2.M12: done (3 inv. classes, nonzero str. const.)
#I  2.Ru: done (3 inv. classes, nonzero str. const.)
#I  2.Fi22/[1,2]: done (3 inv. classes, nonzero str. const.)
#I  2.Fi22: done (all inv. in 2.Fi22/[1,2] lift to inv.)
#I  2.Suz: done (3 inv. classes, nonzero str. const.)
[ "2.B", "2.Co1" ]
</pre></div>

<p>The group <span class="SimpleMath">B</span> has four classes of involutions, let us call them <code class="code">2A</code>, <code class="code">2B</code>, <code class="code">2C</code>, and <code class="code">2D</code>. All except <code class="code">2C</code> lift to involutions in <span class="SimpleMath">2.B</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2t:= CharacterTable( "2.B" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpost:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );</span>
[ 2, 3, 4, 5, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( 2t, t ){ invpos2t };</span>
[ 1, 2, 3, 3, 5 ]
</pre></div>

<p>Thus it suffices to show that there is a subgroup of type <span class="SimpleMath">2^2</span> in <span class="SimpleMath">B</span> that contains elements from <code class="code">2A</code>, <code class="code">2B</code>, and <code class="code">2D</code> (but no element from <code class="code">2C</code>). This follows from the fact that the <span class="SimpleMath">(</span><code class="code">2A</code>, <code class="code">2B</code>, <code class="code">2D</code><span class="SimpleMath">)</span> structure constant of <span class="SimpleMath">B</span> is nonzero.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassMultiplicationCoefficient( t, 2, 3, 5 );</span>
120
</pre></div>

<p>The group <span class="SimpleMath">Co_1</span> has three classes of involutions, let us call them <code class="code">2A</code>, <code class="code">2B</code>, and <code class="code">2C</code>. All except <code class="code">2B</code> lift to involutions in <span class="SimpleMath">2.Co_1</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Co1" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2t:= CharacterTable( "2.Co1" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpost:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );</span>
[ 2, 3, 4, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( 2t, t ){ invpos2t };</span>
[ 1, 2, 2, 4 ]
</pre></div>

<p>Thus it suffices to show that there is a subgroup of type <span class="SimpleMath">2^2</span> in <span class="SimpleMath">Co_1</span> that contains elements from <code class="code">2A</code> and <code class="code">2C</code> but no element from <code class="code">2B</code>. This follows from the fact that the <span class="SimpleMath">(</span><code class="code">2A</code>, <code class="code">2A</code>, <code class="code">2C</code><span class="SimpleMath">)</span> structure constant of <span class="SimpleMath">Co_1</span> is nonzero.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassMultiplicationCoefficient( t, 2, 2, 4 );</span>
264
</pre></div>

<p>Finally, we deal with the relevant central extensions of finite simple groups of Lie type with exceptional multipliers. These groups are listed in <a href="chapBib.html#biBCCN85">[CCN+85, p. xvi, Table 5]</a>. The following cases belong to exceptional multipliers with nontrivial <span class="SimpleMath">2</span>-part.</p>

<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b>Groups with exceptional <span class="SimpleMath">2</span>-part of their multiplier</caption>
<tr>
<td class="tdleft">Group</td>
<td class="tdleft">Name</td>
<td class="tdright">Multiplier</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">A_1(4)</span></td>
<td class="tdleft"><code class="code">"A5"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">A_2(2)</span></td>
<td class="tdleft"><code class="code">"L3(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">A_2(4)</span></td>
<td class="tdleft"><code class="code">"L3(4)"</code></td>
<td class="tdright"><span class="SimpleMath">4^2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">A_3(2)</span></td>
<td class="tdleft"><code class="code">"A8"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">^2A_3(2)</span></td>
<td class="tdleft"><code class="code">"U4(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">^2A_5(2)</span></td>
<td class="tdleft"><code class="code">"U6(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2^2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">B_2(2)</span></td>
<td class="tdleft"><code class="code">"S6"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">^2B_2(2)</span></td>
<td class="tdleft"><code class="code">"Sz(8)"</code></td>
<td class="tdright"><span class="SimpleMath">2^2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">B_3(2) ≅ C_3(2)</span></td>
<td class="tdleft"><code class="code">"S6(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">D_4(2)</span></td>
<td class="tdleft"><code class="code">"O8+(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2^2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">G_2(4)</span></td>
<td class="tdleft"><code class="code">"G2(4)"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">F_4(2)</span></td>
<td class="tdleft"><code class="code">"F4(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">^2E_6(2)</span></td>
<td class="tdleft"><code class="code">"2E6(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2^2</span></td>
</tr>
</table><br />
</div>

<p>This leads to the following list of cases to be checked. (We would not need to deal with the groups <span class="SimpleMath">A_5</span> and <span class="SimpleMath">L_3(2)</span>, because of isomorphisms with groups of Lie type for which the multiplier in question is not exceptional, but here we ignore this fact.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "A5", "2.A5" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "L3(2)", "2.L3(2)" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "L3(4)", "2.L3(4)", "2^2.L3(4)", "4_1.L3(4)", "4_2.L3(4)",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       "(2x4).L3(4)", "4^2.L3(4)" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "A8", "2.A8" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "U4(2)", "2.U4(2)"],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "U6(2)", "2.U6(2)", "2^2.U6(2)" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "A6", "2.A6" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "Sz(8)", "2.Sz(8)", "2^2.Sz(8)" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "S6(2)", "2.S6(2)" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "O8+(2)", "2.O8+(2)", "2^2.O8+(2)" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "G2(4)", "2.G2(4)" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "F4(2)", "2.F4(2)" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "2E6(2)", "2.2E6(2)", "2^2.2E6(2)" ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( Concatenation( list ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       x -&gt; not ApplyCriteria( CharacterTable( x ) ) );</span>
#I  A5: done (1 inv. class(es))
#I  2.A5: done (1 inv. class(es))
#I  L3(2): done (1 inv. class(es))
#I  2.L3(2): done (1 inv. class(es))
#I  L3(4): done (1 inv. class(es))
#I  2.L3(4): done (3 inv. classes, nonzero str. const.)
#I  2^2.L3(4)/[1,2,3,4]: done (1 inv. class(es))
#I  2^2.L3(4): done (all inv. in 2^2.L3(4)/[1,2,3,4] lift to inv.)
#I  4_1.L3(4): done (2 inv. class(es))
#I  4_2.L3(4): done (2 inv. class(es))
#I  (2x4).L3(4): done (all inv. in (2x4).L3(4) are lifts of a C2
#I  in the factor modulo [1,2,3,4])
#I  4^2.L3(4): done (all inv. in 4^2.L3(4) are lifts of a C2
#I  in the factor modulo [1,2,3,4])
#I  A8: done (2 inv. class(es))
#I  2.A8: done (2 inv. class(es))
#I  U4(2): done (2 inv. class(es))
#I  2.U4(2): done (2 inv. class(es))
#I  U6(2): done (3 inv. classes, nonzero str. const.)
#I  2.U6(2)/[1,2]: done (3 inv. classes, nonzero str. const.)
#I  2.U6(2): done (all inv. in 2.U6(2)/[1,2] lift to inv.)
#I  2^2.U6(2)/[1,2,3,4]: done (3 inv. classes, nonzero str. const.)
#I  2^2.U6(2): done (all inv. in 2^2.U6(2)/[1,2,3,4] lift to inv.)
#I  A6: done (1 inv. class(es))
#I  2.A6: done (1 inv. class(es))
#I  Sz(8): done (1 inv. class(es))
#I  2.Sz(8): done (2 inv. class(es))
#I  2^2.Sz(8)/[1,2,3,4]: done (1 inv. class(es))
#I  2^2.Sz(8): done (all inv. in 2^2.Sz(8)/[1,2,3,4] lift to inv.)
#I  S6(2): OPEN (4 inv. class(es))
#I  2.S6(2): OPEN (3 inv. class(es))
#I  O8+(2): OPEN (5 inv. class(es))
#I  2.O8+(2): OPEN (5 inv. class(es))
#I  2^2.O8+(2): OPEN (5 inv. class(es))
#I  G2(4): done (2 inv. class(es))
#I  2.G2(4): done (3 inv. classes, nonzero str. const.)
#I  F4(2): OPEN (4 inv. class(es))
#I  2.F4(2)/[1,2]: OPEN (4 inv. class(es))
#I  2.F4(2): OPEN (9 inv. class(es))
#I  2E6(2): done (3 inv. classes, nonzero str. const.)
#I  2.2E6(2)/[1,2]: done (3 inv. classes, nonzero str. const.)
#I  2.2E6(2): done (all inv. in 2.2E6(2)/[1,2] lift to inv.)
#I  2^2.2E6(2)/[1,2,3,4]: done (3 inv. classes, nonzero str. const.)
#I  2^2.2E6(2): done (all inv. in 2^2.2E6(2)/[1,2,3,4] lift to inv.)
[ "S6(2)", "2.S6(2)", "O8+(2)", "2.O8+(2)", "2^2.O8+(2)", "F4(2)", 
  "2.F4(2)" ]
</pre></div>

<p>We could assume that the answer is positive for the simple groups in the list of open cases, by theoretical arguments, but it is easy to show this computationally.</p>

<p>For <span class="SimpleMath">G = S_6(2)</span>, consider a maximal subgroup <span class="SimpleMath">2^6.L_3(2)</span> of <span class="SimpleMath">G</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 46]</a>): Its <span class="SimpleMath">2</span>-core is elementary abelian and covers all four involution classes of <span class="SimpleMath">G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "S6(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpos:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= First( mx,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         x -&gt; Size( x ) = 2^6 * Size( CharacterTable( "L3(2)" ) ) );</span>
CharacterTable( "2^6:L3(2)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">corepos:= ClassPositionsOfPCore( s, 2 );</span>
[ 1 .. 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t ){ corepos };</span>
[ 1, 2, 2, 2, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( s, t ){ corepos };</span>
[ 1, 3, 4, 2, 5 ]
</pre></div>

<p>Concerning <span class="SimpleMath">G = 2.S_6(2)</span>, note that from the four involution classes of <span class="SimpleMath">S_6(2)</span>, exactly <code class="code">2B</code> and <code class="code">2D</code> lift to involutions in <span class="SimpleMath">2.S_6(2)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2t:= CharacterTable( "2.S6(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpost:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );</span>
[ 2, 4, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( 2t, t ){ invpos2t };</span>
[ 1, 3, 5 ]
</pre></div>

<p>Thus it suffices to show that there is a subgroup of type <span class="SimpleMath">2^2</span> in <span class="SimpleMath">S_6(2)</span> that contains elements from <code class="code">2B</code> and <code class="code">2D</code> but no elements from <code class="code">2A</code> or <code class="code">2C</code>. This follows from the fact that the <span class="SimpleMath">(</span><code class="code">2B</code>, <code class="code">2D</code>, <code class="code">2D</code><span class="SimpleMath">)</span> structure constant of <span class="SimpleMath">S_6(2)</span> is nonzero.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassMultiplicationCoefficient( t, 3, 5, 5 );</span>
15
</pre></div>

<p>For <span class="SimpleMath">G = O_8^+(2)</span>, we consider the known table of marks.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "O8+(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( t );</span>
TableOfMarks( "O8+(2)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord:= OrdersTom( tom );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpos:= Positions( ord, 2 );</span>
[ 2, 3, 4, 5, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">8pos:= Positions( ord, 8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= Filtered( 8pos,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            x -&gt; ForAll( invpos,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   y -&gt; Length( IntersectionsTom( tom, x, y ) ) &gt;= y</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                        and IntersectionsTom( tom, x, y )[y] &lt;&gt; 0 ) );</span>
[ 151, 153 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= List( filt, i -&gt; RepresentativeTom( tom, i ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( reps, IsElementaryAbelian );</span>
true
</pre></div>

<p>Concerning <span class="SimpleMath">G = 2.O_8^+(2)</span>, note that from the five involution classes of <span class="SimpleMath">O_8^+(2)</span>, exactly <code class="code">2A</code>, <code class="code">2B</code>, and <code class="code">2E</code> lift to involutions in <span class="SimpleMath">2.O_8^+(2)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2t:= CharacterTable( "2.O8+(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpost:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4, 5, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );</span>
[ 2, 3, 4, 5, 8 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( 2t, t ){ invpos2t };</span>
[ 1, 2, 3, 3, 6 ]
</pre></div>

<p>Thus it suffices to show that the <span class="SimpleMath">(</span><code class="code">2A</code>, <code class="code">2B</code>, <code class="code">2E</code><span class="SimpleMath">)</span> structure constant of <span class="SimpleMath">O_8^+(2)</span> is nonzero.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassMultiplicationCoefficient( t, 2, 3, 6 );</span>
4
</pre></div>

<p>Concerning <span class="SimpleMath">G = 2^2.O_8^+(2)</span>, note that from the five involution classes of <span class="SimpleMath">O_8^+(2)</span>, exactly the first and the last lift to involutions in <span class="SimpleMath">2^2.O_8^+(2)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v4t:= CharacterTable( "2^2.O8+(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invposv4t:= Positions( OrdersClassRepresentatives( v4t ), 2 );</span>
[ 2, 3, 4, 5, 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( v4t, t ){ invposv4t };</span>
[ 1, 1, 1, 2, 6 ]
</pre></div>

<p>Thus it suffices to show that a corresponding structure constant of <span class="SimpleMath">O_8^+(2)</span> is nonzero.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassMultiplicationCoefficient( t, 2, 6, 6 );</span>
27
</pre></div>

<p>For <span class="SimpleMath">G = F_4(2)</span>, consider a maximal subgroup <span class="SimpleMath">2^10.A_8</span> of a maximal subgroup <span class="SimpleMath">S_8(2)</span> of <span class="SimpleMath">G</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 123 and 170]</a>): Its <span class="SimpleMath">2</span>-core is elementary abelian and covers all four involution classes of <span class="SimpleMath">G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "F4(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpost:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">"S8(2)" in Maxes( t );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= CharacterTable( "S8(2)M4" );</span>
CharacterTable( "2^10.A8" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">corepos:= ClassPositionsOfPCore( s, 2 );</span>
[ 1 .. 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( s ){ corepos };</span>
[ 1, 2, 2, 2, 2, 2, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( poss, map -&gt; map{ corepos } );</span>
[ [ 1, 4, 2, 3, 4, 5, 5 ], [ 1, 4, 2, 3, 4, 5, 5 ], 
  [ 1, 4, 3, 2, 4, 5, 5 ], [ 1, 4, 3, 2, 4, 5, 5 ] ]
</pre></div>

<p>Finally, all involutions of <span class="SimpleMath">G</span> lift to involutions in <span class="SimpleMath">2.F_4(2)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2t:= CharacterTable( "2.F4(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );</span>
[ 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( 2t, t ){ invpos2t };</span>
[ 1, 2, 2, 3, 3, 4, 4, 5, 5 ]
</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap1.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap3.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>