1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (CTblLib) - Chapter 2: Tutorial for the GAP Character Table Library</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap2" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap1.html">[Previous Chapter]</a> <a href="chap3.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap2_mj.html">[MathJax on]</a></p>
<p><a id="X7C4E7E1181E82D8E" name="X7C4E7E1181E82D8E"></a></p>
<div class="ChapSects"><a href="chap2.html#X7C4E7E1181E82D8E">2 <span class="Heading">Tutorial for the <strong class="pkg">GAP</strong> Character Table Library</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X86B34875862028E8">2.1 <span class="Heading">Concepts used in the <strong class="pkg">GAP</strong> Character Table Library</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X84930B2D7849E019">2.2 <span class="Heading">Accessing a Character Table from the Library</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X8658DC3A83B5A98B">2.2-1 <span class="Heading">Accessing a Character Table via a name</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7AA474817D17BF49">2.2-2 <span class="Heading">Accessing a Character Table via properties</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7C6BFB4384CAFFC8">2.2-3 <span class="Heading">Accessing a Character Table via a Table of Marks</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7E6AF18C7F139F54">2.2-4 <span class="Heading">Accessing a Character Table relative to another Character Table
</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7CD1E9AA871848EC">2.2-5 <span class="Heading">Different character tables for the same group</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X83B721F3801ED6D1">2.3 <span class="Heading">Examples of Using the <strong class="pkg">GAP</strong> Character Table Library</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X87AC9A4181AC369C">2.3-1 <span class="Heading">Example: Ambivalent Simple Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7AD705F685FBF179">2.3-2 <span class="Heading">Example: Simple <span class="SimpleMath">p</span>-pure Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7C2C7B138646D0C5">2.3-3 <span class="Heading">Example: Simple Groups with only one <span class="SimpleMath">p</span>-Block</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7FA308D585DC1B40">2.3-4 <span class="Heading">Example:The Sylow <span class="SimpleMath">3</span> subgroup of <span class="SimpleMath">3.O'N</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X83BF83D87BC1B123">2.3-5 <span class="Heading">Example: Primitive Permutation Characters of <span class="SimpleMath">2.A_6</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X808DD8997F10D429">2.3-6 <span class="Heading">Example: A Permutation Character of <span class="SimpleMath">Fi_23</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7A23CB7D8267FE55">2.3-7 <span class="Heading">Example: Non-commutators in the commutator group</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X79CDDEE67A41EAB8">2.3-8 <span class="Heading">Example: An irreducible <span class="SimpleMath">11</span>-modular character of <span class="SimpleMath">J_4</span>
(December 2018)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X8135F74080E50B14">2.3-9 <span class="Heading">Example: Tensor Products that are Generalized Projectives
(October 2019)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7AD5E36B7D44C507">2.3-10 <span class="Heading">Example: Certain elementary abelian subgroups in quasisimple groups
(November 2020)</span></a>
</span>
</div></div>
</div>
<h3>2 <span class="Heading">Tutorial for the <strong class="pkg">GAP</strong> Character Table Library</span></h3>
<p>This chapter gives an overview of the basic functionality provided by the <strong class="pkg">GAP</strong> Character Table Library. The main concepts and interface functions are presented in the sections <a href="chap2.html#X86B34875862028E8"><span class="RefLink">2.1</span></a> and <a href="chap2.html#X84930B2D7849E019"><span class="RefLink">2.2</span></a>, Section <a href="chap2.html#X83B721F3801ED6D1"><span class="RefLink">2.3</span></a> shows a few small examples.</p>
<p>In order to force that the output of the examples consists only of ASCII characters, we set the user preference <code class="code">DisplayFunction</code> of the <strong class="pkg">AtlasRep</strong> to the value <code class="code">"Print"</code>. This is necessary because the LaTeX and HTML versions of <strong class="pkg">GAPDoc</strong> documents support only ASCII characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">origpref:= UserPreference( "AtlasRep", "DisplayFunction" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetUserPreference( "AtlasRep", "DisplayFunction", "Print" );</span>
</pre></div>
<p>Some of the examples need functionalities from other <strong class="pkg">GAP</strong> packages in the sense that the output looks different if these packages are not available.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "Browse", false );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "SpinSym", false );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "TomLib", false );</span>
true
</pre></div>
<p><a id="X86B34875862028E8" name="X86B34875862028E8"></a></p>
<h4>2.1 <span class="Heading">Concepts used in the <strong class="pkg">GAP</strong> Character Table Library</span></h4>
<p>The main idea behind working with the <strong class="pkg">GAP</strong> Character Table Library is to deal with character tables of groups but <em>without</em> having access to these groups. This situation occurs for example if one extracts information from the printed <strong class="pkg">Atlas</strong> of Finite Groups (<a href="chapBib.html#biBCCN85">[CCN+85]</a>).</p>
<p>This restriction means first of all that we need a way to access the character tables, see Section <a href="chap2.html#X84930B2D7849E019"><span class="RefLink">2.2</span></a> for that. Once we have such a character table, we can compute all those data about the underlying group <span class="SimpleMath">G</span>, say, that are determined by the character table. Chapter <a href="../../../doc/ref/chap71.html#X7F9D58208241D35E"><span class="RefLink">Reference: Attributes and Properties for Groups and Character Tables</span></a> lists such attributes and properties. For example, it can be computed from the character table of <span class="SimpleMath">G</span> whether <span class="SimpleMath">G</span> is solvable or not.</p>
<p>Questions that cannot be answered using only the character table of <span class="SimpleMath">G</span> can perhaps be treated using additional information. For example, the structure of subgroups of <span class="SimpleMath">G</span> is in general not determined by the character table of <span class="SimpleMath">G</span>, but the character table may yield partial information. Two examples can be found in the sections <a href="chap2.html#X7FA308D585DC1B40"><span class="RefLink">2.3-4</span></a> and <a href="chap2.html#X808DD8997F10D429"><span class="RefLink">2.3-6</span></a>.</p>
<p>In the character table context, the role of homomorphisms between two groups is taken by <em>class fusions</em>. Monomorphisms correspond to subgroup fusions, epimorphisms correspond to factor fusions. Given two character tables of a group <span class="SimpleMath">G</span> and a subgroup <span class="SimpleMath">H</span> of <span class="SimpleMath">G</span>, one can in general compute only <em>candidates</em> for the class fusion of <span class="SimpleMath">H</span> into <span class="SimpleMath">G</span>, for example using <code class="func">PossibleClassFusions</code> (<a href="../../../doc/ref/chap73.html#X7883271F7F26356E"><span class="RefLink">Reference: PossibleClassFusions</span></a>). Note that <span class="SimpleMath">G</span> may contain several nonconjugate subgroups isomorphic with <span class="SimpleMath">H</span>, which may have different class fusions.</p>
<p>One can often reduce a question about a group <span class="SimpleMath">G</span> to a question about its maximal subgroups. In the character table context, it is often sufficient to know the character table of <span class="SimpleMath">G</span>, the character tables of its maximal subgroups, and their class fusions into <span class="SimpleMath">G</span>. We are in this situation if the attribute <code class="func">Maxes</code> (<a href="chap3.html#X8150E63F7DBDF252"><span class="RefLink">3.7-1</span></a>) is set in the character table of <span class="SimpleMath">G</span>.</p>
<p><em>Summary:</em> The character theoretic approach that is supported by the <strong class="pkg">GAP</strong> Character Table Library, that is, an approach without explicitly using the underlying groups, has the advantages that it can be used to answer many questions, and that these computations are usually cheap, compared to computations with groups. Disadvantages are that this approach is not always successful, and that answers are often <q>nonconstructive</q> in the sense that one can show the existence of something without getting one's hands on it.</p>
<p><a id="X84930B2D7849E019" name="X84930B2D7849E019"></a></p>
<h4>2.2 <span class="Heading">Accessing a Character Table from the Library</span></h4>
<p>As stated in Section <a href="chap2.html#X86B34875862028E8"><span class="RefLink">2.1</span></a>, we must define how character tables from the <strong class="pkg">GAP</strong> Character Table Library can be accessed.</p>
<p><a id="X8658DC3A83B5A98B" name="X8658DC3A83B5A98B"></a></p>
<h5>2.2-1 <span class="Heading">Accessing a Character Table via a name</span></h5>
<p>The most common way to access a character table from the <strong class="pkg">GAP</strong> Character Table Library is to call <code class="func">CharacterTable</code> (<a href="chap3.html#X86C06F408706F27A"><span class="RefLink">3.1-2</span></a>) with argument a string that is an <em>admissible name</em> for the character table. Typical admissible names are similar to the group names used in the <strong class="pkg">Atlas</strong> of Finite Groups <a href="chapBib.html#biBCCN85">[CCN+85]</a>. One of these names is the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) value of the character table, this name is used by <strong class="pkg">GAP</strong> when it prints library character tables.</p>
<p>For example, an admissible name for the character table of an almost simple group is the <strong class="pkg">Atlas</strong> name, such as <code class="code">A5</code>, <code class="code">M11</code>, or <code class="code">L2(11).2</code>. Other names may be admissible, for example <code class="code">S6</code> is admissible for the symmetric group on six points, which is called <span class="SimpleMath">A_6.2_1</span> in the <strong class="pkg">Atlas</strong>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CharacterTable( "J1" );</span>
CharacterTable( "J1" )
<span class="GAPprompt">gap></span> <span class="GAPinput">CharacterTable( "L2(11)" );</span>
CharacterTable( "L2(11)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">CharacterTable( "S5" );</span>
CharacterTable( "A5.2" )
</pre></div>
<p><a id="X7AA474817D17BF49" name="X7AA474817D17BF49"></a></p>
<h5>2.2-2 <span class="Heading">Accessing a Character Table via properties</span></h5>
<p>If one does not know an admissible name of the character table of a group one is interested in, or if one does not know whether ths character table is available at all, one can use <code class="func">AllCharacterTableNames</code> (<a href="chap3.html#X7C091641852BB6FE"><span class="RefLink">3.1-4</span></a>) to compute a list of identifiers of all available character tables with given properties. Analogously, <code class="func">OneCharacterTableName</code> (<a href="chap3.html#X7EC4A57E8393D75C"><span class="RefLink">3.1-5</span></a>) can be used to compute one such identifier.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">AllCharacterTableNames( Size, 168 );</span>
[ "(2^2xD14):3", "2^3.7.3", "L3(2)", "L3(4)M7", "L3(4)M8" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OneCharacterTableName( NrConjugacyClasses, n -> n <= 4 );</span>
"S3"
</pre></div>
<p>For certain filters, such as <code class="func">Size</code> (<a href="../../../doc/ref/chap30.html#X858ADA3B7A684421"><span class="RefLink">Reference: Size</span></a>) and <code class="func">NrConjugacyClasses</code> (<a href="../../../doc/ref/chap39.html#X8733F87B7E4C9903"><span class="RefLink">Reference: NrConjugacyClasses</span></a>), the computations are fast because the values for all library tables are precomputed. See <code class="func">AllCharacterTableNames</code> (<a href="chap3.html#X7C091641852BB6FE"><span class="RefLink">3.1-4</span></a>) for an overview of these filters.</p>
<p>The function <code class="func">BrowseCTblLibInfo</code> (<a href="chap3.html#X7A038A267CD17032"><span class="RefLink">3.5-2</span></a>) provides an interactive overview of available character tables, which allows one for example to search also for substrings in identifiers of character tables. This function is available only if the <strong class="pkg">Browse</strong> package has been loaded.</p>
<p><a id="X7C6BFB4384CAFFC8" name="X7C6BFB4384CAFFC8"></a></p>
<h5>2.2-3 <span class="Heading">Accessing a Character Table via a Table of Marks</span></h5>
<p>Let <span class="SimpleMath">G</span> be a group whose table of marks is available via the <strong class="pkg">TomLib</strong> package (see <a href="chapBib.html#biBTomLib">[MNP19]</a> for how to access tables of marks from this library) then the <strong class="pkg">GAP</strong> Character Table Library contains the character table of <span class="SimpleMath">G</span>, and one can access this table by using the table of marks as an argument of <code class="func">CharacterTable</code> (<a href="chap3.html#X87110C1584D09BE4"><span class="RefLink">3.2-2</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tom:= TableOfMarks( "M11" );</span>
TableOfMarks( "M11" )
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( tom );</span>
CharacterTable( "M11" )
</pre></div>
<p><a id="X7E6AF18C7F139F54" name="X7E6AF18C7F139F54"></a></p>
<h5>2.2-4 <span class="Heading">Accessing a Character Table relative to another Character Table
</span></h5>
<p>If one has already a character table from the <strong class="pkg">GAP</strong> Character Table Library that belongs to the group <span class="SimpleMath">G</span>, say, then names of related tables can be found as follows.</p>
<p>The value of the attribute <code class="func">Maxes</code> (<a href="chap3.html#X8150E63F7DBDF252"><span class="RefLink">3.7-1</span></a>), if known, is the list of identifiers of the character tables of all classes of maximal subgroups of <span class="SimpleMath">G</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "M11" );</span>
CharacterTable( "M11" )
<span class="GAPprompt">gap></span> <span class="GAPinput">HasMaxes( t );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Maxes( t );</span>
[ "A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4" ]
</pre></div>
<p>If the <code class="func">Maxes</code> (<a href="chap3.html#X8150E63F7DBDF252"><span class="RefLink">3.7-1</span></a>) value of the character table with identifier <span class="SimpleMath">id</span>, say, is known then the character table of the groups in the <span class="SimpleMath">i</span>-th class of maximal subgroups can be accessed via the <q>relative name</q> <span class="SimpleMath">id</span><code class="code">M</code><span class="SimpleMath">i</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CharacterTable( "M11M2" );</span>
CharacterTable( "L2(11)" )
</pre></div>
<p>The value of the attribute <code class="func">NamesOfFusionSources</code> (<a href="../../../doc/ref/chap73.html#X7F6569D5786A9D49"><span class="RefLink">Reference: NamesOfFusionSources</span></a>) is the list of identifiers of those character tables which store class fusions to <span class="SimpleMath">G</span>. So these character tables belong to subgroups of <span class="SimpleMath">G</span> and groups that have <span class="SimpleMath">G</span> as a factor group.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">NamesOfFusionSources( t );</span>
[ "A5.2", "A6.2_3", "P48/G1/L1/V1/ext2", "P48/G1/L1/V2/ext2",
"L2(11)", "2.S4", "3^5:M11", "3^6.M11", "3^(2+5+10).(M11x2S4)",
"s4", "3^2:Q8.2", "M11N2", "5:4", "11:5" ]
</pre></div>
<p>The value of the attribute <code class="func">ComputedClassFusions</code> (<a href="../../../doc/ref/chap73.html#X7F71402285B7DE8E"><span class="RefLink">Reference: ComputedClassFusions</span></a>) is the list of records whose <code class="code">name</code> components are the identifiers of those character tables to which class fusions are stored. So these character tables belong to overgroups and factor groups of <span class="SimpleMath">G</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ComputedClassFusions( t ), r -> r.name );</span>
[ "A11", "M12", "M23", "HS", "McL", "ON", "3^5:M11", "B" ]
</pre></div>
<p><a id="X7CD1E9AA871848EC" name="X7CD1E9AA871848EC"></a></p>
<h5>2.2-5 <span class="Heading">Different character tables for the same group</span></h5>
<p>The <strong class="pkg">GAP</strong> Character Table Library may contain several different character tables of a given group, in the sense that the rows and columns are sorted differently.</p>
<p>For example, the <strong class="pkg">Atlas</strong> table of the alternating group <span class="SimpleMath">A_5</span> is available, and since <span class="SimpleMath">A_5</span> is isomorphic with the groups PSL<span class="SimpleMath">(2, 4)</span> and PSL<span class="SimpleMath">(2, 5)</span>, two more character tables of <span class="SimpleMath">A_5</span> can be constructed in a natural way. The three tables are of course permutation isomorphic. The first two are sorted in the same way, but the rows and columns of the third one are sorted differently.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t1:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "PSL", 2, 4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t3:= CharacterTable( "PSL", 2, 5 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( t1, t2 );</span>
rec( columns := (), group := Group([ (4,5) ]), rows := () )
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( t1, t3 );</span>
rec( columns := (2,4)(3,5), group := Group([ (2,3) ]),
rows := (2,5,3,4) )
</pre></div>
<p>Another situation where several character tables for the same group are available is that a group contains several classes of isomorphic maximal subgroups such that the class fusions are different.</p>
<p>For example, the Mathieu group <span class="SimpleMath">M_12</span> contains two classes of maximal subgroups of index <span class="SimpleMath">12</span>, which are isomorphic with <span class="SimpleMath">M_11</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "M12" );</span>
CharacterTable( "M12" )
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= Maxes( t );</span>
[ "M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7",
"2xS5", "M8.S4", "4^2:D12", "A4xS3" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">s1:= CharacterTable( mx[1] );</span>
CharacterTable( "M11" )
<span class="GAPprompt">gap></span> <span class="GAPinput">s2:= CharacterTable( mx[2] );</span>
CharacterTable( "M12M2" )
</pre></div>
<p>The class fusions into <span class="SimpleMath">M_12</span> are stored on the library tables of the maximal subgroups. The groups in the first class of <span class="SimpleMath">M_11</span> type subgroups contain elements in the classes <code class="code">4B</code>, <code class="code">6B</code>, and <code class="code">8B</code> of <span class="SimpleMath">M_12</span>, and the groups in the second class contain elements in the classes <code class="code">4A</code>, <code class="code">6A</code>, and <code class="code">8A</code>. Note that according to the <strong class="pkg">Atlas</strong> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 33]</a>), the permutation characters of the action of <span class="SimpleMath">M_12</span> on the cosets of <span class="SimpleMath">M_11</span> type subgroups from the two classes of maximal subgroups are <code class="code">1a + 11a</code> and <code class="code">1a + 11b</code>, respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s1, t );</span>
[ 1, 3, 4, 7, 8, 10, 12, 12, 15, 14 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s2, t );</span>
[ 1, 3, 4, 6, 8, 10, 11, 11, 14, 15 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( t );</span>
M12
2 6 4 6 1 2 5 5 1 2 1 3 3 1 . .
3 3 1 1 3 2 . . . 1 1 . . . . .
5 1 1 . . . . . 1 . . . . 1 . .
11 1 . . . . . . . . . . . . 1 1
1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 11a 11b
2P 1a 1a 1a 3a 3b 2b 2b 5a 3b 3a 4a 4b 5a 11b 11a
3P 1a 2a 2b 1a 1a 4a 4b 5a 2a 2b 8a 8b 10a 11a 11b
5P 1a 2a 2b 3a 3b 4a 4b 1a 6a 6b 8a 8b 2a 11a 11b
11P 1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 11 -1 3 2 -1 -1 3 1 -1 . -1 1 -1 . .
X.3 11 -1 3 2 -1 3 -1 1 -1 . 1 -1 -1 . .
X.4 16 4 . -2 1 . . 1 1 . . . -1 A /A
X.5 16 4 . -2 1 . . 1 1 . . . -1 /A A
X.6 45 5 -3 . 3 1 1 . -1 . -1 -1 . 1 1
X.7 54 6 6 . . 2 2 -1 . . . . 1 -1 -1
X.8 55 -5 7 1 1 -1 -1 . 1 1 -1 -1 . . .
X.9 55 -5 -1 1 1 3 -1 . 1 -1 -1 1 . . .
X.10 55 -5 -1 1 1 -1 3 . 1 -1 1 -1 . . .
X.11 66 6 2 3 . -2 -2 1 . -1 . . 1 . .
X.12 99 -1 3 . 3 -1 -1 -1 -1 . 1 1 -1 . .
X.13 120 . -8 3 . . . . . 1 . . . -1 -1
X.14 144 4 . . -3 . . -1 1 . . . -1 1 1
X.15 176 -4 . -4 -1 . . 1 -1 . . . 1 . .
A = E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9
= (-1+Sqrt(-11))/2 = b11
</pre></div>
<p>Permutation equivalent library tables are related to each other. In the above example, the table <code class="code">s2</code> is a <em>duplicate</em> of <code class="code">s1</code>, and there are functions for making the relations explicit.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsDuplicateTable( s2 );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IdentifierOfMainTable( s2 );</span>
"M11"
<span class="GAPprompt">gap></span> <span class="GAPinput">IdentifiersOfDuplicateTables( s1 );</span>
[ "HSM9", "M12M2", "ONM11" ]
</pre></div>
<p>See Section <a href="chap3.html#X7E5CFB187E313B11"><span class="RefLink">3.6</span></a> for details about duplicate character tables.</p>
<p><a id="X83B721F3801ED6D1" name="X83B721F3801ED6D1"></a></p>
<h4>2.3 <span class="Heading">Examples of Using the <strong class="pkg">GAP</strong> Character Table Library</span></h4>
<p>The sections <a href="chap2.html#X87AC9A4181AC369C"><span class="RefLink">2.3-1</span></a>, <a href="chap2.html#X7AD705F685FBF179"><span class="RefLink">2.3-2</span></a>, and <a href="chap2.html#X7C2C7B138646D0C5"><span class="RefLink">2.3-3</span></a> show how the function <code class="func">AllCharacterTableNames</code> (<a href="chap3.html#X7C091641852BB6FE"><span class="RefLink">3.1-4</span></a>) can be used to search for character tables with certain properties. The <strong class="pkg">GAP</strong> Character Table Library serves as a tool for finding and checking conjectures in these examples.</p>
<p>In Section <a href="chap2.html#X808DD8997F10D429"><span class="RefLink">2.3-6</span></a>, a question about a subgroup of the sporadic simple Fischer group <span class="SimpleMath">G = Fi_23</span> is answered using only character tables from the <strong class="pkg">GAP</strong> Character Table Library.</p>
<p>More examples can be found in <a href="chapBib.html#biBGMN">[BGL+10]</a>, <a href="chapBib.html#biBAmbigFus">[Brea]</a>, <a href="chapBib.html#biBctblpope">[Bred]</a>, <a href="chapBib.html#biBProbGenArxiv">[Bree]</a>, <a href="chapBib.html#biBAuto">[Bref]</a>.</p>
<p><a id="X87AC9A4181AC369C" name="X87AC9A4181AC369C"></a></p>
<h5>2.3-1 <span class="Heading">Example: Ambivalent Simple Groups</span></h5>
<p>A group <span class="SimpleMath">G</span> is called <em>ambivalent</em> if each element in <span class="SimpleMath">G</span> is <span class="SimpleMath">G</span>-conjugate to its inverse. Equivalently, <span class="SimpleMath">G</span> is ambivalent if all its characters are real-valued. We are interested in nonabelian simple ambivalent groups. Since ambivalence is of course invariant under permutation equivalence, we may omit duplicate character tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">isambivalent:= tbl -> PowerMap( tbl, -1 )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> = [ 1 .. NrConjugacyClasses( tbl ) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AllCharacterTableNames( IsSimple, true, IsDuplicateTable, false,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsAbelian, false, isambivalent, true );</span>
[ "3D4(2)", "3D4(3)", "3D4(4)", "A10", "A14", "A5", "A6", "J1", "J2",
"L2(101)", "L2(109)", "L2(113)", "L2(121)", "L2(125)", "L2(13)",
"L2(16)", "L2(17)", "L2(25)", "L2(29)", "L2(32)", "L2(37)",
"L2(41)", "L2(49)", "L2(53)", "L2(61)", "L2(64)", "L2(73)",
"L2(8)", "L2(81)", "L2(89)", "L2(97)", "O12+(2)", "O12-(2)",
"O12-(3)", "O7(5)", "O8+(2)", "O8+(3)", "O8+(7)", "O8-(2)",
"O8-(3)", "O9(3)", "S10(2)", "S12(2)", "S4(4)", "S4(5)", "S4(8)",
"S4(9)", "S6(2)", "S6(4)", "S6(5)", "S8(2)" ]
</pre></div>
<p><a id="X7AD705F685FBF179" name="X7AD705F685FBF179"></a></p>
<h5>2.3-2 <span class="Heading">Example: Simple <span class="SimpleMath">p</span>-pure Groups</span></h5>
<p>A group <span class="SimpleMath">G</span> is called <em><span class="SimpleMath">p</span>-pure</em> for a prime integer <span class="SimpleMath">p</span> that divides <span class="SimpleMath">|G|</span> if the centralizer orders of nonidentity <span class="SimpleMath">p</span>-elements in <span class="SimpleMath">G</span> are <span class="SimpleMath">p</span>-powers. Equivalently, <span class="SimpleMath">G</span> is <span class="SimpleMath">p</span>-pure if <span class="SimpleMath">p</span> divides <span class="SimpleMath">|G|</span> and each element in <span class="SimpleMath">G</span> of order divisible by <span class="SimpleMath">p</span> is a <span class="SimpleMath">p</span>-element. (This property was studied by L. Héthelyi in 2002.)</p>
<p>We are interested in small nonabelian simple <span class="SimpleMath">p</span>-pure groups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">isppure:= function( p )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return tbl -> Size( tbl ) mod p = 0 and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ForAll( OrdersClassRepresentatives( tbl ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> n -> n mod p <> 0 or IsPrimePowerInt( n ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 2, 3, 5, 7, 11, 13 ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( i, "\n",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> AllCharacterTableNames( IsSimple, true, IsAbelian, false,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsDuplicateTable, false, isppure( i ), true ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
2
[ "A5", "A6", "L2(16)", "L2(17)", "L2(31)", "L2(32)", "L2(64)",
"L2(8)", "L3(2)", "L3(4)", "Sz(32)", "Sz(8)" ]
3
[ "A5", "A6", "L2(17)", "L2(19)", "L2(27)", "L2(53)", "L2(8)",
"L2(81)", "L3(2)", "L3(4)" ]
5
[ "A5", "A6", "A7", "L2(11)", "L2(125)", "L2(25)", "L2(49)", "L3(4)",
"M11", "M22", "S4(7)", "Sz(32)", "Sz(8)", "U4(2)", "U4(3)" ]
7
[ "A7", "A8", "A9", "G2(3)", "HS", "J1", "J2", "L2(13)", "L2(49)",
"L2(8)", "L2(97)", "L3(2)", "L3(4)", "M22", "O8+(2)", "S6(2)",
"Sz(8)", "U3(3)", "U3(5)", "U4(3)", "U6(2)" ]
11
[ "A11", "A12", "A13", "Co2", "HS", "J1", "L2(11)", "L2(121)",
"L2(23)", "L5(3)", "M11", "M12", "M22", "M23", "M24", "McL",
"O10+(3)", "O12+(3)", "ON", "Suz", "U5(2)", "U6(2)" ]
13
[ "2E6(2)", "2F4(2)'", "3D4(2)", "A13", "A14", "A15", "F4(2)",
"Fi22", "G2(3)", "G2(4)", "L2(13)", "L2(25)", "L2(27)", "L3(3)",
"L4(3)", "O7(3)", "O8+(3)", "S4(5)", "S6(3)", "Suz", "Sz(8)",
"U3(4)" ]
</pre></div>
<p>Looking at these examples, we may observe that the alternating group <span class="SimpleMath">A_n</span> of degree <span class="SimpleMath">n</span> is <span class="SimpleMath">2</span>-pure iff <span class="SimpleMath">n ∈ { 4, 5, 6 }</span>, <span class="SimpleMath">3</span>-pure iff <span class="SimpleMath">n ∈ { 3, 4, 5, 6 }</span>, and <span class="SimpleMath">p</span>-pure, for <span class="SimpleMath">p ≥ 5</span>, iff <span class="SimpleMath">n ∈ { p, p+1, p+2 }</span>.</p>
<p>Also, the Suzuki groups <span class="SimpleMath">Sz(q)</span> are <span class="SimpleMath">2</span>-pure since the centralizers of nonidentity <span class="SimpleMath">2</span>-elements are contained in Sylow <span class="SimpleMath">2</span>-subgroups.</p>
<p>From the inspection of the generic character table(s) of <span class="SimpleMath">PSL(2, q)</span>, we see that <span class="SimpleMath">PSL(2, p^d)</span> is <span class="SimpleMath">p</span>-pure Additionally, exactly the following cases of <span class="SimpleMath">l</span>-purity occur, for a prime <span class="SimpleMath">l</span>.</p>
<ul>
<li><p><span class="SimpleMath">q</span> is even and <span class="SimpleMath">q-1</span> or <span class="SimpleMath">q+1</span> is a power of <span class="SimpleMath">l</span>.</p>
</li>
<li><p>For <span class="SimpleMath">q ≡ 1 mod 4</span>, <span class="SimpleMath">(q+1)/2</span> is a power of <span class="SimpleMath">l</span> or <span class="SimpleMath">q-1</span> is a power of <span class="SimpleMath">l = 2</span>.</p>
</li>
<li><p>For <span class="SimpleMath">q ≡ 3 mod 4</span>, <span class="SimpleMath">(q-1)/2</span> is a power of <span class="SimpleMath">l</span> or <span class="SimpleMath">q+1</span> is a power of <span class="SimpleMath">l = 2</span>.</p>
</li>
</ul>
<p><a id="X7C2C7B138646D0C5" name="X7C2C7B138646D0C5"></a></p>
<h5>2.3-3 <span class="Heading">Example: Simple Groups with only one <span class="SimpleMath">p</span>-Block</span></h5>
<p>Are there nonabelian simple groups with only one <span class="SimpleMath">p</span>-block, for some prime <span class="SimpleMath">p</span>?</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= function( tbl )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local result, p, bl;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> result:= false;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in PrimeDivisors( Size( tbl ) ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> bl:= PrimeBlocks( tbl, p );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( bl.defect ) = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result:= true;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "only one block: ", Identifier( tbl ), ", p = ", p, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return result;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AllCharacterTableNames( IsSimple, true, IsAbelian, false,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsDuplicateTable, false, fun, true );</span>
only one block: M22, p = 2
only one block: M24, p = 2
[ "M22", "M24" ]
</pre></div>
<p>We see that the sporadic simple groups <span class="SimpleMath">M_22</span> and <span class="SimpleMath">M_24</span> have only one <span class="SimpleMath">2</span>-block.</p>
<p><a id="X7FA308D585DC1B40" name="X7FA308D585DC1B40"></a></p>
<h5>2.3-4 <span class="Heading">Example:The Sylow <span class="SimpleMath">3</span> subgroup of <span class="SimpleMath">3.O'N</span></span></h5>
<p>We want to determine the structure of the Sylow <span class="SimpleMath">3</span>-subgroups of the triple cover <span class="SimpleMath">G = 3.O'N</span> of the sporadic simple O'Nan group <span class="SimpleMath">O'N</span>. The Sylow <span class="SimpleMath">3</span>-subgroup of <span class="SimpleMath">O'N</span> is an elementary abelian group of order <span class="SimpleMath">3^4</span>, since the Sylow <span class="SimpleMath">3</span> normalizer in <span class="SimpleMath">O'N</span> has the structure <span class="SimpleMath">3^4:2^1+4D_10</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 132]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CharacterTable( "ONN3" );</span>
CharacterTable( "3^4:2^(1+4)D10" )
</pre></div>
<p>Let <span class="SimpleMath">P</span> be a Sylow <span class="SimpleMath">3</span>-subgroup of <span class="SimpleMath">G</span>. Then <span class="SimpleMath">P</span> is not abelian, since the centralizer order of any preimage of an element of order three in the simple factor group of <span class="SimpleMath">G</span> is not divisible by <span class="SimpleMath">3^5</span>. Moreover, the exponent of <span class="SimpleMath">P</span> is three.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">3t:= CharacterTable( "3.ON" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orders:= OrdersClassRepresentatives( 3t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord3:= PositionsProperty( orders, x -> x = 3 );</span>
[ 2, 3, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">sizes:= SizesCentralizers( 3t ){ ord3 };</span>
[ 1382446517760, 1382446517760, 3240 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( 3t );</span>
1382446517760
<span class="GAPprompt">gap></span> <span class="GAPinput">Collected( Factors( sizes[3] ) );</span>
[ [ 2, 3 ], [ 3, 4 ], [ 5, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">9 in orders;</span>
false
</pre></div>
<p>So both the centre and the Frattini subgroup of <span class="SimpleMath">P</span> are equal to the centre of <span class="SimpleMath">G</span>, hence <span class="SimpleMath">P</span> is an extraspecial group <span class="SimpleMath">3^1+4_+</span>.</p>
<p><a id="X83BF83D87BC1B123" name="X83BF83D87BC1B123"></a></p>
<h5>2.3-5 <span class="Heading">Example: Primitive Permutation Characters of <span class="SimpleMath">2.A_6</span></span></h5>
<p>It is often interesting to compute the primitive permutation characters of a group <span class="SimpleMath">G</span>, that is, the characters of the permutation actions of <span class="SimpleMath">G</span> on the cosets of its maximal subgroups. These characters can be computed for example when the character tables of <span class="SimpleMath">G</span>, the character tables of its maximal subgroups, and the class fusions from these character tables into the table of <span class="SimpleMath">G</span> are known.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl:= CharacterTable( "2.A6" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">HasMaxes( tbl );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= Maxes( tbl );</span>
[ "2.A5", "2.A6M2", "3^2:8", "2.Symm(4)", "2.A6M5" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= List( maxes, CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim1:= List( mx, s -> TrivialCharacter( s )^tbl );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( tbl,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> rec( chars:= prim1, centralizers:= false, powermap:= false ) );</span>
2.A6
1a 2a 4a 3a 6a 3b 6b 8a 8b 5a 10a 5b 10b
Y.1 6 6 2 3 3 . . . . 1 1 1 1
Y.2 6 6 2 . . 3 3 . . 1 1 1 1
Y.3 10 10 2 1 1 1 1 2 2 . . . .
Y.4 15 15 3 3 3 . . 1 1 . . . .
Y.5 15 15 3 . . 3 3 1 1 . . . .
</pre></div>
<p>These permutation characters are the ones listed in <a href="chapBib.html#biBCCN85">[CCN+85, p. 4]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( tbl, prim1 ).ATLAS;</span>
[ "1a+5a", "1a+5b", "1a+9a", "1a+5a+9a", "1a+5b+9a" ]
</pre></div>
<p>Alternatively, one can compute the primitive permutation characters from the table of marks if this table and the fusion into it are known.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tom:= TableOfMarks( tbl );</span>
TableOfMarks( "2.A6" )
<span class="GAPprompt">gap></span> <span class="GAPinput">allperm:= PermCharsTom( tbl, tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim2:= allperm{ MaximalSubgroupsTom( tom )[1] };;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( tbl,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> rec( chars:= prim2, centralizers:= false, powermap:= false ) );</span>
2.A6
1a 2a 4a 3a 6a 3b 6b 8a 8b 5a 10a 5b 10b
Y.1 6 6 2 3 3 . . . . 1 1 1 1
Y.2 6 6 2 . . 3 3 . . 1 1 1 1
Y.3 10 10 2 1 1 1 1 2 2 . . . .
Y.4 15 15 3 . . 3 3 1 1 . . . .
Y.5 15 15 3 3 3 . . 1 1 . . . .
</pre></div>
<p>We see that the two approaches yield the same permutation characters, but the two lists are sorted in a different way. The latter is due to the fact that the rows of the table of marks are ordered in a way that is not compatible with the ordering of maximal subgroups for the character table. Moreover, there is no way to choose the fusion from the character table to the table of marks in such a way that the two lists of permutation characters would become equal. The component <code class="code">perm</code> in the <code class="func">FusionToTom</code> (<a href="chap3.html#X7B1AAED68753B1BE"><span class="RefLink">3.2-4</span></a>) record of the character table describes the incompatibility.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">FusionToTom( tbl );</span>
rec( map := [ 1, 2, 5, 4, 8, 3, 7, 11, 11, 6, 13, 6, 13 ],
name := "2.A6", perm := (4,5),
text := "fusion map is unique up to table autom." )
</pre></div>
<p><a id="X808DD8997F10D429" name="X808DD8997F10D429"></a></p>
<h5>2.3-6 <span class="Heading">Example: A Permutation Character of <span class="SimpleMath">Fi_23</span></span></h5>
<p>Let <span class="SimpleMath">x</span> be a <code class="code">3B</code> element in the sporadic simple Fischer group <span class="SimpleMath">G = Fi_23</span>. The normalizer <span class="SimpleMath">M</span> of <span class="SimpleMath">x</span> in <span class="SimpleMath">G</span> is a maximal subgroup of the type <span class="SimpleMath">3^{1+8}_+.2^{1+6}_-.3^{1+2}_+.2S_4</span>. We are interested in the distribution of the elements of the normal subgroup <span class="SimpleMath">N</span> of the type <span class="SimpleMath">3^{1+8}_+</span> in <span class="SimpleMath">M</span> to the conjugacy classes of <span class="SimpleMath">G</span>.</p>
<p>This information can be computed from the permutation character <span class="SimpleMath">π = 1_N^G</span>, so we try to compute this permutation character. We have <span class="SimpleMath">π = (1_N^M)^G</span>, and <span class="SimpleMath">1_N^M</span> can be computed as the inflation of the regular character of the factor group <span class="SimpleMath">M/N</span> to <span class="SimpleMath">M</span>. Note that the character tables of <span class="SimpleMath">G</span> and <span class="SimpleMath">M</span> are available, as well as the class fusion of <span class="SimpleMath">M</span> in <span class="SimpleMath">G</span>, and that <span class="SimpleMath">N</span> is the largest normal <span class="SimpleMath">3</span>-subgroup of <span class="SimpleMath">M</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "Fi23" );</span>
CharacterTable( "Fi23" )
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= Maxes( t );</span>
[ "2.Fi22", "O8+(3).3.2", "2^2.U6(2).2", "S8(2)", "S3xO7(3)",
"2..11.m23", "3^(1+8).2^(1+6).3^(1+2).2S4", "Fi23M8", "A12.2",
"(2^2x2^(1+8)).(3xU4(2)).2", "2^(6+8):(A7xS3)", "S4xS6(2)",
"S4(4).4", "L2(23)" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( mx[7] );</span>
CharacterTable( "3^(1+8).2^(1+6).3^(1+2).2S4" )
<span class="GAPprompt">gap></span> <span class="GAPinput">n:= ClassPositionsOfPCore( m, 3 );</span>
[ 1 .. 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= m / n;</span>
CharacterTable( "3^(1+8).2^(1+6).3^(1+2).2S4/[ 1, 2, 3, 4, 5, 6 ]" )
<span class="GAPprompt">gap></span> <span class="GAPinput">reg:= 0 * [ 1 .. NrConjugacyClasses( f ) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">reg[1]:= Size( f );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">infl:= reg{ GetFusionMap( m, f ) };</span>
[ 165888, 165888, 165888, 165888, 165888, 165888, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ind:= Induced( m, t, [ infl ] );</span>
[ ClassFunction( CharacterTable( "Fi23" ),
[ 207766624665600, 0, 0, 0, 603832320, 127567872, 6635520, 663552,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( t, ind ).contained;</span>
[ [ 1, 0, 0, 0, 864, 1538, 3456, 13824, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( OrdersClassRepresentatives( t ), x -> x = 3 );</span>
[ 5, 6, 7, 8 ]
</pre></div>
<p>Thus <span class="SimpleMath">N</span> contains <span class="SimpleMath">864</span> elements in the class <code class="code">3A</code>, <span class="SimpleMath">1538</span> elements in the class <code class="code">3B</code>, and so on.</p>
<p><a id="X7A23CB7D8267FE55" name="X7A23CB7D8267FE55"></a></p>
<h5>2.3-7 <span class="Heading">Example: Non-commutators in the commutator group</span></h5>
<p>In general, not every element in the commutator group of a group is itself a commutator. Are there examples in the Character Table Library, and if yes, what is a smallest one?</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">nam:= OneCharacterTableName( CommutatorLength, x -> x > 1</span>
<span class="GAPprompt">></span> <span class="GAPinput"> : OrderedBy:= Size );</span>
"3.(A4x3):2"
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( CharacterTable( nam ) );</span>
216
</pre></div>
<p>The smallest groups with this property have order <span class="SimpleMath">96</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">OneSmallGroup( Size, [ 2 .. 100 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> G -> CommutatorLength( G ) > 1, true );</span>
<pc group of size 96 with 6 generators>
</pre></div>
<p>(Note the different syntax: <code class="func">OneSmallGroup</code> (<a href="../../../pkg/smallgrp/doc/chap1.html#X875EB1167FF6BA82"><span class="RefLink">smallgrp: OneSmallGroup</span></a>) does not admit a function such as <code class="code">x -> x > 1</code> for describing the admissible values.)</p>
<p>Nonabelian simple groups cannot be expected to have non-commutators, by the main theorem in <a href="chapBib.html#biBLOST2010">[LOST10]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">OneCharacterTableName( IsSimple, true, IsAbelian, false,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsDuplicateTable, false,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CommutatorLength, x -> x > 1</span>
<span class="GAPprompt">></span> <span class="GAPinput"> : OrderedBy:= Size );</span>
fail
</pre></div>
<p>Perfect groups can contain non-commutators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">nam:= OneCharacterTableName( IsPerfect, true,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsDuplicateTable, false,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CommutatorLength, x -> x > 1</span>
<span class="GAPprompt">></span> <span class="GAPinput"> : OrderedBy:= Size );</span>
"P1/G1/L1/V1/ext2"
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( CharacterTable( nam ) );</span>
960
</pre></div>
<p>This is in fact the smallest example of a perfect group that contains non-commutators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [ 2 .. 960 ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. NrPerfectGroups( n ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> g:= PerfectGroup( n, i);</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if CommutatorLength( g ) <> 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( [ n, i ], "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
[ 960, 2 ]
</pre></div>
<p><a id="X79CDDEE67A41EAB8" name="X79CDDEE67A41EAB8"></a></p>
<h5>2.3-8 <span class="Heading">Example: An irreducible <span class="SimpleMath">11</span>-modular character of <span class="SimpleMath">J_4</span>
(December 2018)</span></h5>
<p>Let <span class="SimpleMath">G</span> be the sporadic simple Janko group <span class="SimpleMath">J_4</span>. For the ordinary irreducible characters of degree <span class="SimpleMath">1333</span> of <span class="SimpleMath">G</span>, the reductions modulo <span class="SimpleMath">11</span> are known to be irreducible Brauer characters.</p>
<p>David Craven asked Richard Parker how to show that the antisymmetric squares of these Brauer characters are irreducible. Richard proposed the following.</p>
<p>Restrict the given ordinary character <span class="SimpleMath">χ</span>, say, to a subgroup <span class="SimpleMath">S</span> of <span class="SimpleMath">J_4</span> whose <span class="SimpleMath">11</span>-modular character table is known, decompose the restriction <span class="SimpleMath">χ_S</span> into irreducible Brauer characters, and compute those constituents that are constant on all subsets of conjugacy classes that fuse in <span class="SimpleMath">J_4</span>. If the Brauer character <span class="SimpleMath">χ_S</span> cannot be written as a sum of two such constituents then <span class="SimpleMath">χ</span>, as a Brauer character of <span class="SimpleMath">J_4</span>, is irreducible.</p>
<p>Here is a <strong class="pkg">GAP</strong> session that shows how to apply this idea.</p>
<p>The group <span class="SimpleMath">J_4</span> has exactly two ordinary irreducible characters of degree <span class="SimpleMath">1333</span>. They are complex conjugate, and so are their antisymmetric squares. Thus we may consider just one of the two.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "J4" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">deg1333:= Filtered( Irr( t ), x -> x[1] = 1333 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">antisym:= AntiSymmetricParts( t, deg1333, 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( antisym, x -> Position( Irr( t ), x ) );</span>
[ 7, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ComplexConjugate( antisym[1] ) = antisym[2];</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">chi:= antisym[1];; chi[1];</span>
887778
</pre></div>
<p>Let <span class="SimpleMath">S</span> be a maximal subgroup of the structure <span class="SimpleMath">2^11:M_24</span> in <span class="SimpleMath">J_4</span>. Fortunately, the <span class="SimpleMath">11</span>-modular character table of <span class="SimpleMath">S</span> is available (it had been constructed by Christoph Jansen), and we can restrict the interesting character to this table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( Maxes( t )[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( s ) = 2^11 * Size( CharacterTable( "M24" ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">rest:= RestrictedClassFunction( chi, s );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">smod11:= s mod 11;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rest:= RestrictedClassFunction( rest, smod11 );;</span>
</pre></div>
<p>The restriction is a sum of nine pairwise different irreducible Brauer characters of <span class="SimpleMath">S</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">dec:= Decomposition( Irr( smod11 ), [ rest ], "nonnegative" )[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Sum( dec );</span>
9
<span class="GAPprompt">gap></span> <span class="GAPinput">constpos:= PositionsProperty( dec, x -> x <> 0 );</span>
[ 15, 36, 46, 53, 55, 58, 63, 67, 69 ]
</pre></div>
<p>Next we compute those sets of classes of <span class="SimpleMath">S</span> which fuse in <span class="SimpleMath">J_4</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">smod11fuss:= GetFusionMap( smod11, s );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= GetFusionMap( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= CompositionMaps( sfust, smod11fuss );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= Filtered( InverseMap( fus ), IsList );</span>
[ [ 3, 4, 5 ], [ 2, 6, 7 ], [ 8, 9 ], [ 10, 11, 16 ],
[ 12, 14, 15, 17, 18, 21 ], [ 13, 19, 20, 22 ], [ 26, 27, 28, 30 ],
[ 25, 29, 31 ], [ 34, 39 ], [ 35, 37, 38 ], [ 40, 42 ], [ 41, 43 ],
[ 44, 47, 48 ], [ 45, 49, 50 ], [ 46, 51 ], [ 56, 57 ], [ 63, 64 ],
[ 69, 70 ] ]
</pre></div>
<p>Finally, we run over all <span class="SimpleMath">2^9</span> subsets of the irreducible constituents.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">const:= Irr( smod11 ){ constpos };;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">zero:= 0 * TrivialCharacter( smod11 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comb:= List( Combinations( const ), x -> Sum( x, zero ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= Filtered( comb,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> ForAll( inv, l -> Length( Set( x{ l } ) ) = 1 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( cand, x -> x[1] );</span>
[ 0, 887778 ]
</pre></div>
<p>We see that no proper subset of the constituents yields a Brauer character that can be restricted from <span class="SimpleMath">J_4</span>.</p>
<p><a id="X8135F74080E50B14" name="X8135F74080E50B14"></a></p>
<h5>2.3-9 <span class="Heading">Example: Tensor Products that are Generalized Projectives
(October 2019)</span></h5>
<p>Let <span class="SimpleMath">G</span> be a finite group and <span class="SimpleMath">p</span> be a prime integer. If the tensor product <span class="SimpleMath">Φ</span>, say, of two ordinary irreducible characters of <span class="SimpleMath">G</span> vanishes on all <span class="SimpleMath">p</span>-singular elements of <span class="SimpleMath">G</span> then <span class="SimpleMath">Φ</span> is a <span class="SimpleMath">ℤ</span>-linear combination of the <em>projective indecomposable characters</em> <span class="SimpleMath">Φ_φ = ∑_{χ ∈ Irr(G)} d_{χ φ} χ</span> of <span class="SimpleMath">G</span>, where <span class="SimpleMath">φ</span> runs over the irreducible <span class="SimpleMath">p</span>-modular Brauer characters of <span class="SimpleMath">G</span> and <span class="SimpleMath">d_{χ φ}</span> is the decomposition number of <span class="SimpleMath">χ</span> and <span class="SimpleMath">φ</span>. (See for example <a href="chapBib.html#biBNav98">[Nav98, p. 25]</a> or <a href="chapBib.html#biBLP10">[LP10, Def. 4.3.1]</a>.) Such class functions are called generalized projective characters.</p>
<p>In fact, very often <span class="SimpleMath">Φ</span> is a projective character, that is, the coefficients of the decomposition into projective indecomposable characters are nonnegative.</p>
<p>We are interested in examples where this is <em>not</em> the case. For that, we write a small <strong class="pkg">GAP</strong> function that computes, for a given <span class="SimpleMath">p</span>-modular character table, those tensor products of ordinary irreducible characters that are generalized projective characters but are not projective.</p>
<p>Many years ago, Richard Parker had been interested in the question whether such tensor products can exist for a given group. Note that forming tensor products that vanish on <span class="SimpleMath">p</span>-singular elements is a recipe for creating projective characters, provided one knows in advance that the answer is negative for the given group.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GenProjNotProj:= function( modtbl )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local p, tbl, X, PIMs, n, psingular, list, labels, i, j, psi,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pos, dec, poss;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> p:= UnderlyingCharacteristic( modtbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tbl:= OrdinaryCharacterTable( modtbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> X:= Irr( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PIMs:= TransposedMat( DecompositionMatrix( modtbl ) ) * X;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> n:= Length( X );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> psingular:= Difference( [ 1 .. n ], GetFusionMap( modtbl, tbl ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> list:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> labels:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. n ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for j in [ 1 .. i ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> psi:= List( [ 1 .. n ], x -> X[i][x] * X[j][x] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsZero( psi{ psingular } ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # This is a generalized projective character.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pos:= Position( list, psi );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if pos = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( list, psi );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( labels, [ [ j, i ] ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( labels[ pos ], [ j, i ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( list ) > 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Decompose the generalized projective tensor products</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # into the projective indecomposables.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> dec:= Decomposition( PIMs, list, "nonnegative" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= Positions( dec, fail );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return Set( Concatenation( labels{ poss } ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
</pre></div>
<p>One group for which the function returns a nonempty result is the sporadic simple Janko group <span class="SimpleMath">J_2</span> in characteristic <span class="SimpleMath">2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl:= CharacterTable( "J2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">modtbl:= tbl mod 2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pairs:= GenProjNotProj( modtbl );</span>
[ [ 6, 12 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">irr:= Irr( tbl );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PIMs:= TransposedMat( DecompositionMatrix( modtbl ) ) * irr;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SolutionMat( PIMs, irr[6] * irr[12] );</span>
[ 0, 0, 0, 1, 1, 1, 0, 0, -2, 3 ]
</pre></div>
<p>Checking all available tables from the library takes several hours of CPU time and also requires a lot of space; finally, it yields the following result.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">examples:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for name in AllCharacterTableNames( IsDuplicateTable, false ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tbl:= CharacterTable( name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in PrimeDivisors( Size( tbl ) ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtbl:= tbl mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modtbl <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> res:= GenProjNotProj( modtbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsEmpty( res ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> AddSet( examples, [ name, p, Length( res ) ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">examples;</span>
[ [ "(A5xJ2):2", 2, 4 ], [ "(D10xJ2).2", 2, 9 ], [ "2.Suz", 3, 1 ],
[ "2.Suz.2", 3, 4 ], [ "2xCo2", 5, 4 ], [ "3.Suz", 2, 6 ],
[ "3.Suz.2", 2, 4 ], [ "Co2", 5, 1 ], [ "Co3", 2, 4 ],
[ "Isoclinic(2.Suz.2)", 3, 4 ], [ "J2", 2, 1 ], [ "Suz", 2, 2 ],
[ "Suz", 3, 1 ], [ "Suz.2", 3, 4 ] ]
</pre></div>
<p>This list looks rather <q>sporadic</q>. The number of examples is small, and all groups in question except two (the subdirect products of <span class="SimpleMath">S_5</span> and <span class="SimpleMath">J_2.2</span>, and of <span class="SimpleMath">5:4</span> and <span class="SimpleMath">J_2.2</span>, respectively) are extensions of sporadic simple groups.</p>
<p>Note that the following cases could be omitted because the characters in question belong to proper factor groups: <span class="SimpleMath">2.Suz</span> mod <span class="SimpleMath">3</span>, <span class="SimpleMath">2.Suz.2</span> mod <span class="SimpleMath">3</span>, and its isoclinic variant.</p>
<p><a id="X7AD5E36B7D44C507" name="X7AD5E36B7D44C507"></a></p>
<h5>2.3-10 <span class="Heading">Example: Certain elementary abelian subgroups in quasisimple groups
(November 2020)</span></h5>
<p>In October 2020, Bob Guralnick asked: Does each quasisimple group <span class="SimpleMath">G</span> contain an elementary abelian subgroup that contains elements from all conjugacy classes of involutions in <span class="SimpleMath">G</span>? (Such a subgroup is called a <em>broad</em> subgroup of <span class="SimpleMath">G</span>. See <a href="chapBib.html#biBGR20">[GR]</a> for the paper.)</p>
<p>In the case of simple groups, theoretical arguments suffice to show that the answer is positive for simple groups of alternating and Lie type, thus it remains to inspect the sporadic simple groups.</p>
<p>In the case of nonsimple quasisimple groups, again groups having a sporadic simple factor group have to be checked, and also the central extensions of groups of Lie type by exceptional multipliers have to be checked computationally.</p>
<p>In the following situations, the answer is positive for a given group <span class="SimpleMath">G</span>.</p>
<ol>
<li><p><span class="SimpleMath">G</span> has at most two classes of involutions. (Take an involution <span class="SimpleMath">x</span> in the centre of a Sylow <span class="SimpleMath">2</span>-subgroup <span class="SimpleMath">P</span> of <span class="SimpleMath">G</span>; if there is a conjugacy class of involutions in <span class="SimpleMath">G</span> different from <span class="SimpleMath">x^G</span> then <span class="SimpleMath">P</span> contains an element in the other involution class.)</p>
</li>
<li><p><span class="SimpleMath">G</span> has exactly three classes of involutions such that there are representatives <span class="SimpleMath">x</span>, <span class="SimpleMath">y</span>, <span class="SimpleMath">z</span> with the property <span class="SimpleMath">x y = z</span>. (The subgroup <span class="SimpleMath">⟨ x, y ⟩</span> is a Klein four group; note that <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span> commute because <span class="SimpleMath">x^{-1} y^{-1} x y = (x y)^2 = z^2 = 1</span> holds.)</p>
</li>
<li><p><span class="SimpleMath">G</span> has a central elementary abelian <span class="SimpleMath">2</span>-subgroup <span class="SimpleMath">N</span>, and there is an elementary abelian <span class="SimpleMath">2</span>-subgroup <span class="SimpleMath">P / N</span> in <span class="SimpleMath">G / N</span> containing elements from all those involution classes of <span class="SimpleMath">G / N</span> that lift to involutions of <span class="SimpleMath">G</span>, but no elements from other involution classes of <span class="SimpleMath">G / N</span>. (Just take the preimage <span class="SimpleMath">P</span>, which is elementary abelian.)</p>
<p>This condition is satisfied for example if the answer is positive for <span class="SimpleMath">G / N</span> and <em>all</em> involutions of <span class="SimpleMath">G / N</span> lift to involutions in <span class="SimpleMath">G</span>, or if exactly one class of involutions of <span class="SimpleMath">G / N</span> lifts to involutions in <span class="SimpleMath">G</span>.</p>
</li>
</ol>
<p>The following function evaluates the first two of the above criteria and easy cases of the third one, for the given character table of the group <span class="SimpleMath">G</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ApplyCriteria:= "dummy";; # Avoid a syntax error ...</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ApplyCriteria:= function( tbl )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local id, ord, invpos, cen, facttbl, factfus, invmap, factord,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> factinvpos, imgs;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> id:= ReplacedString( Identifier( tbl ), " ", "" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ord:= OrdersClassRepresentatives( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> invpos:= PositionsProperty( ord, x -> x <= 2 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( invpos ) <= 3 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # There are at most 2 involution classes.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", id, ": ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "done (", Length( invpos ) - 1, " inv. class(es))\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return true;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif Length( invpos ) = 4 and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassMultiplicationCoefficient( tbl, invpos[2], invpos[3],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> invpos[4] ) <> 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", id, ": ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "done (3 inv. classes, nonzero str. const.)\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return true;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cen:= Intersection( invpos, ClassPositionsOfCentre( tbl ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( cen ) > 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Consider the factor modulo the largest central el. ab. 2-group.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> facttbl:= tbl / cen;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> factfus:= GetFusionMap( tbl, facttbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> invmap:= InverseMap( factfus );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> factord:= OrdersClassRepresentatives( facttbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> factinvpos:= PositionsProperty( factord, x -> x <= 2 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAll( factinvpos,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> invmap[i] in invpos or</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ( IsList( invmap[i] ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsSubset( invpos, invmap[i] ) ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # All involutions of the factor group lift to involutions.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ApplyCriteria( facttbl ) = true then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", id, ": ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "done (all inv. in ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ReplacedString( Identifier( facttbl ), " ", "" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " lift to inv.)\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return true;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> imgs:= Set( factfus{ invpos } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( imgs ) = 2 and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ForAll( imgs,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> invmap[i] in invpos or</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ( IsList( invmap[i] ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsSubset( invpos, invmap[i] ) ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # There is a C2 subgroup of the factor</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # such that its involution lifts to involutions,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # and the lifts of the C2 cover all involution classes of 'tbl'.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", id, ": ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "done (all inv. in ", id,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " are lifts of a C2\n",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "#I in the factor modulo ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ReplacedString( String( cen ), " ", "" ), ")\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return true;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", id, ": ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "OPEN (", Length( invpos ) - 1, " inv. class(es))\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return false;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>We start with the sporadic simple groups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SizeScreen( [ 72 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spor:= AllCharacterTableNames( IsSporadicSimple, true,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsDuplicateTable, false );</span>
[ "B", "Co1", "Co2", "Co3", "F3+", "Fi22", "Fi23", "HN", "HS", "He",
"J1", "J2", "J3", "J4", "Ly", "M", "M11", "M12", "M22", "M23",
"M24", "McL", "ON", "Ru", "Suz", "Th" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( spor,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> not ApplyCriteria( CharacterTable( x ) ) );</span>
#I B: OPEN (4 inv. class(es))
#I Co1: OPEN (3 inv. class(es))
#I Co2: done (3 inv. classes, nonzero str. const.)
#I Co3: done (2 inv. class(es))
#I F3+: done (2 inv. class(es))
#I Fi22: done (3 inv. classes, nonzero str. const.)
#I Fi23: done (3 inv. classes, nonzero str. const.)
#I HN: done (2 inv. class(es))
#I HS: done (2 inv. class(es))
#I He: done (2 inv. class(es))
#I J1: done (1 inv. class(es))
#I J2: done (2 inv. class(es))
#I J3: done (1 inv. class(es))
#I J4: done (2 inv. class(es))
#I Ly: done (1 inv. class(es))
#I M: done (2 inv. class(es))
#I M11: done (1 inv. class(es))
#I M12: done (2 inv. class(es))
#I M22: done (1 inv. class(es))
#I M23: done (1 inv. class(es))
#I M24: done (2 inv. class(es))
#I McL: done (1 inv. class(es))
#I ON: done (1 inv. class(es))
#I Ru: done (2 inv. class(es))
#I Suz: done (2 inv. class(es))
#I Th: done (1 inv. class(es))
[ "B", "Co1" ]
</pre></div>
<p>The two open cases can be handled as follows.</p>
<p>The group <span class="SimpleMath">G = B</span> contains maximal subgroups of the type <span class="SimpleMath">5:4 × HS.2</span> (the normalizers of <code class="code">5A</code> elements, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 217]</a>). The direct factor <span class="SimpleMath">H = HS.2</span> of such a subgroup has four classes of involutions, which fuse to the four involution classes of <span class="SimpleMath">G</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invpos:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= First( mx,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Size( x ) = 20 * Size( CharacterTable( "HS.2" ) ) );</span>
CharacterTable( "5:4xHS.2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= GetFusionMap( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prod:= ClassPositionsOfDirectProductDecompositions( s );</span>
[ [ [ 1, 40 .. 157 ], [ 1 .. 39 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fusinB:= List( prod[1], l -> fus{ l } );</span>
[ [ 1, 18, 8, 3, 8 ],
[ 1, 3, 4, 6, 8, 9, 14, 19, 18, 18, 25, 22, 31, 36, 43, 51, 50, 54,
57, 81, 100, 2, 5, 8, 11, 16, 21, 20, 24, 34, 33, 48, 52, 59,
76, 106, 100, 100, 137 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubset( fusinB[2], invpos );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">h:= CharacterTable( "HS.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fusinB[2]{ Positions( OrdersClassRepresentatives( h ), 2 ) };</span>
[ 3, 4, 2, 5 ]
</pre></div>
<p>The table of marks of <span class="SimpleMath">H</span> is known. We find five classes of elementary abelian subgroups of order eight in <span class="SimpleMath">H</span> that contain elements from all four involution classes of <span class="SimpleMath">H</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tom:= TableOfMarks( h );</span>
TableOfMarks( "HS.2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">ord:= OrdersTom( tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invpos:= Positions( ord, 2 );</span>
[ 2, 3, 534, 535 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">8pos:= Positions( ord, 8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( 8pos,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> ForAll( invpos,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> y -> Length( IntersectionsTom( tom, x, y ) ) >= y</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and IntersectionsTom( tom, x, y )[y] <> 0 ) );</span>
[ 587, 589, 590, 593, 595 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= List( filt, i -> RepresentativeTom( tom, i ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( reps, IsElementaryAbelian );</span>
true
</pre></div>
<p>The group <span class="SimpleMath">G = Co_1</span> has a maximal subgroup <span class="SimpleMath">H</span> of type <span class="SimpleMath">A_9 × S_3</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 183]</a>) that contains elements from all three involution classes of <span class="SimpleMath">G</span>. Moreover, the factor <span class="SimpleMath">S_3</span> contains <code class="code">2A</code> elements, and the factor <span class="SimpleMath">A_9</span> contains <code class="code">2B</code> and <code class="code">2C</code> elements. This yields the desired elementary abelian subgroup of order eight.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "Co1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invpos:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= First( mx, x -> Size( x ) = 3 * Factorial( 9 ) );</span>
CharacterTable( "A9xS3" )
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= GetFusionMap( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prod:= ClassPositionsOfDirectProductDecompositions( s );</span>
[ [ [ 1 .. 3 ], [ 1, 4 .. 52 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( prod[1], l -> fus{ l } );</span>
[ [ 1, 8, 2 ],
[ 1, 3, 4, 5, 7, 6, 13, 14, 15, 19, 24, 28, 36, 37, 39, 50, 61, 61
] ]
</pre></div>
<p>Thus we know that the answer is positive for each sporadic simple group. Next we look at the relevant covering groups of sporadic simple groups. For a quasisimple group with a sporadic simple factor, the Schur multiplier has at most the prime factors <span class="SimpleMath">2</span> and <span class="SimpleMath">3</span>; only the extension by the <span class="SimpleMath">2</span>-part of the multipier must be checked.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sporcov:= AllCharacterTableNames( IsSporadicSimple, true,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsDuplicateTable, false, OfThose, SchurCover );</span>
[ "12.M22", "2.B", "2.Co1", "2.HS", "2.J2", "2.M12", "2.Ru", "3.F3+",
"3.J3", "3.McL", "3.ON", "6.Fi22", "6.Suz", "Co2", "Co3", "Fi23",
"HN", "He", "J1", "J4", "Ly", "M", "M11", "M23", "M24", "Th" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( sporcov, x -> '.' in x );</span>
[ "12.M22", "2.B", "2.Co1", "2.HS", "2.J2", "2.M12", "2.Ru", "3.F3+",
"3.J3", "3.McL", "3.ON", "6.Fi22", "6.Suz" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">relevant:= [ "2.M22", "4.M22", "2.B", "2.Co1", "2.HS", "2.J2",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "2.M12", "2.Ru", "2.Fi22", "2.Suz" ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( relevant,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> not ApplyCriteria( CharacterTable( x ) ) );</span>
#I 2.M22: done (3 inv. classes, nonzero str. const.)
#I 4.M22: done (2 inv. class(es))
#I 2.B: OPEN (5 inv. class(es))
#I 2.Co1: OPEN (4 inv. class(es))
#I 2.HS: done (3 inv. classes, nonzero str. const.)
#I 2.J2: done (3 inv. classes, nonzero str. const.)
#I 2.M12: done (3 inv. classes, nonzero str. const.)
#I 2.Ru: done (3 inv. classes, nonzero str. const.)
#I 2.Fi22/[1,2]: done (3 inv. classes, nonzero str. const.)
#I 2.Fi22: done (all inv. in 2.Fi22/[1,2] lift to inv.)
#I 2.Suz: done (3 inv. classes, nonzero str. const.)
[ "2.B", "2.Co1" ]
</pre></div>
<p>The group <span class="SimpleMath">B</span> has four classes of involutions, let us call them <code class="code">2A</code>, <code class="code">2B</code>, <code class="code">2C</code>, and <code class="code">2D</code>. All except <code class="code">2C</code> lift to involutions in <span class="SimpleMath">2.B</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2t:= CharacterTable( "2.B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invpost:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );</span>
[ 2, 3, 4, 5, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( 2t, t ){ invpos2t };</span>
[ 1, 2, 3, 3, 5 ]
</pre></div>
<p>Thus it suffices to show that there is a subgroup of type <span class="SimpleMath">2^2</span> in <span class="SimpleMath">B</span> that contains elements from <code class="code">2A</code>, <code class="code">2B</code>, and <code class="code">2D</code> (but no element from <code class="code">2C</code>). This follows from the fact that the <span class="SimpleMath">(</span><code class="code">2A</code>, <code class="code">2B</code>, <code class="code">2D</code><span class="SimpleMath">)</span> structure constant of <span class="SimpleMath">B</span> is nonzero.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassMultiplicationCoefficient( t, 2, 3, 5 );</span>
120
</pre></div>
<p>The group <span class="SimpleMath">Co_1</span> has three classes of involutions, let us call them <code class="code">2A</code>, <code class="code">2B</code>, and <code class="code">2C</code>. All except <code class="code">2B</code> lift to involutions in <span class="SimpleMath">2.Co_1</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "Co1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2t:= CharacterTable( "2.Co1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invpost:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );</span>
[ 2, 3, 4, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( 2t, t ){ invpos2t };</span>
[ 1, 2, 2, 4 ]
</pre></div>
<p>Thus it suffices to show that there is a subgroup of type <span class="SimpleMath">2^2</span> in <span class="SimpleMath">Co_1</span> that contains elements from <code class="code">2A</code> and <code class="code">2C</code> but no element from <code class="code">2B</code>. This follows from the fact that the <span class="SimpleMath">(</span><code class="code">2A</code>, <code class="code">2A</code>, <code class="code">2C</code><span class="SimpleMath">)</span> structure constant of <span class="SimpleMath">Co_1</span> is nonzero.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassMultiplicationCoefficient( t, 2, 2, 4 );</span>
264
</pre></div>
<p>Finally, we deal with the relevant central extensions of finite simple groups of Lie type with exceptional multipliers. These groups are listed in <a href="chapBib.html#biBCCN85">[CCN+85, p. xvi, Table 5]</a>. The following cases belong to exceptional multipliers with nontrivial <span class="SimpleMath">2</span>-part.</p>
<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b>Groups with exceptional <span class="SimpleMath">2</span>-part of their multiplier</caption>
<tr>
<td class="tdleft">Group</td>
<td class="tdleft">Name</td>
<td class="tdright">Multiplier</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">A_1(4)</span></td>
<td class="tdleft"><code class="code">"A5"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">A_2(2)</span></td>
<td class="tdleft"><code class="code">"L3(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">A_2(4)</span></td>
<td class="tdleft"><code class="code">"L3(4)"</code></td>
<td class="tdright"><span class="SimpleMath">4^2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">A_3(2)</span></td>
<td class="tdleft"><code class="code">"A8"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">^2A_3(2)</span></td>
<td class="tdleft"><code class="code">"U4(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">^2A_5(2)</span></td>
<td class="tdleft"><code class="code">"U6(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2^2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">B_2(2)</span></td>
<td class="tdleft"><code class="code">"S6"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">^2B_2(2)</span></td>
<td class="tdleft"><code class="code">"Sz(8)"</code></td>
<td class="tdright"><span class="SimpleMath">2^2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">B_3(2) ≅ C_3(2)</span></td>
<td class="tdleft"><code class="code">"S6(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">D_4(2)</span></td>
<td class="tdleft"><code class="code">"O8+(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2^2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">G_2(4)</span></td>
<td class="tdleft"><code class="code">"G2(4)"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">F_4(2)</span></td>
<td class="tdleft"><code class="code">"F4(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">^2E_6(2)</span></td>
<td class="tdleft"><code class="code">"2E6(2)"</code></td>
<td class="tdright"><span class="SimpleMath">2^2</span></td>
</tr>
</table><br />
</div>
<p>This leads to the following list of cases to be checked. (We would not need to deal with the groups <span class="SimpleMath">A_5</span> and <span class="SimpleMath">L_3(2)</span>, because of isomorphisms with groups of Lie type for which the multiplier in question is not exceptional, but here we ignore this fact.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">list:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "A5", "2.A5" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "L3(2)", "2.L3(2)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "L3(4)", "2.L3(4)", "2^2.L3(4)", "4_1.L3(4)", "4_2.L3(4)",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "(2x4).L3(4)", "4^2.L3(4)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "A8", "2.A8" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "U4(2)", "2.U4(2)"],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "U6(2)", "2.U6(2)", "2^2.U6(2)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "A6", "2.A6" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "Sz(8)", "2.Sz(8)", "2^2.Sz(8)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "S6(2)", "2.S6(2)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "O8+(2)", "2.O8+(2)", "2^2.O8+(2)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "G2(4)", "2.G2(4)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "F4(2)", "2.F4(2)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "2E6(2)", "2.2E6(2)", "2^2.2E6(2)" ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( Concatenation( list ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> not ApplyCriteria( CharacterTable( x ) ) );</span>
#I A5: done (1 inv. class(es))
#I 2.A5: done (1 inv. class(es))
#I L3(2): done (1 inv. class(es))
#I 2.L3(2): done (1 inv. class(es))
#I L3(4): done (1 inv. class(es))
#I 2.L3(4): done (3 inv. classes, nonzero str. const.)
#I 2^2.L3(4)/[1,2,3,4]: done (1 inv. class(es))
#I 2^2.L3(4): done (all inv. in 2^2.L3(4)/[1,2,3,4] lift to inv.)
#I 4_1.L3(4): done (2 inv. class(es))
#I 4_2.L3(4): done (2 inv. class(es))
#I (2x4).L3(4): done (all inv. in (2x4).L3(4) are lifts of a C2
#I in the factor modulo [1,2,3,4])
#I 4^2.L3(4): done (all inv. in 4^2.L3(4) are lifts of a C2
#I in the factor modulo [1,2,3,4])
#I A8: done (2 inv. class(es))
#I 2.A8: done (2 inv. class(es))
#I U4(2): done (2 inv. class(es))
#I 2.U4(2): done (2 inv. class(es))
#I U6(2): done (3 inv. classes, nonzero str. const.)
#I 2.U6(2)/[1,2]: done (3 inv. classes, nonzero str. const.)
#I 2.U6(2): done (all inv. in 2.U6(2)/[1,2] lift to inv.)
#I 2^2.U6(2)/[1,2,3,4]: done (3 inv. classes, nonzero str. const.)
#I 2^2.U6(2): done (all inv. in 2^2.U6(2)/[1,2,3,4] lift to inv.)
#I A6: done (1 inv. class(es))
#I 2.A6: done (1 inv. class(es))
#I Sz(8): done (1 inv. class(es))
#I 2.Sz(8): done (2 inv. class(es))
#I 2^2.Sz(8)/[1,2,3,4]: done (1 inv. class(es))
#I 2^2.Sz(8): done (all inv. in 2^2.Sz(8)/[1,2,3,4] lift to inv.)
#I S6(2): OPEN (4 inv. class(es))
#I 2.S6(2): OPEN (3 inv. class(es))
#I O8+(2): OPEN (5 inv. class(es))
#I 2.O8+(2): OPEN (5 inv. class(es))
#I 2^2.O8+(2): OPEN (5 inv. class(es))
#I G2(4): done (2 inv. class(es))
#I 2.G2(4): done (3 inv. classes, nonzero str. const.)
#I F4(2): OPEN (4 inv. class(es))
#I 2.F4(2)/[1,2]: OPEN (4 inv. class(es))
#I 2.F4(2): OPEN (9 inv. class(es))
#I 2E6(2): done (3 inv. classes, nonzero str. const.)
#I 2.2E6(2)/[1,2]: done (3 inv. classes, nonzero str. const.)
#I 2.2E6(2): done (all inv. in 2.2E6(2)/[1,2] lift to inv.)
#I 2^2.2E6(2)/[1,2,3,4]: done (3 inv. classes, nonzero str. const.)
#I 2^2.2E6(2): done (all inv. in 2^2.2E6(2)/[1,2,3,4] lift to inv.)
[ "S6(2)", "2.S6(2)", "O8+(2)", "2.O8+(2)", "2^2.O8+(2)", "F4(2)",
"2.F4(2)" ]
</pre></div>
<p>We could assume that the answer is positive for the simple groups in the list of open cases, by theoretical arguments, but it is easy to show this computationally.</p>
<p>For <span class="SimpleMath">G = S_6(2)</span>, consider a maximal subgroup <span class="SimpleMath">2^6.L_3(2)</span> of <span class="SimpleMath">G</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 46]</a>): Its <span class="SimpleMath">2</span>-core is elementary abelian and covers all four involution classes of <span class="SimpleMath">G</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "S6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invpos:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= First( mx,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Size( x ) = 2^6 * Size( CharacterTable( "L3(2)" ) ) );</span>
CharacterTable( "2^6:L3(2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">corepos:= ClassPositionsOfPCore( s, 2 );</span>
[ 1 .. 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t ){ corepos };</span>
[ 1, 2, 2, 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, t ){ corepos };</span>
[ 1, 3, 4, 2, 5 ]
</pre></div>
<p>Concerning <span class="SimpleMath">G = 2.S_6(2)</span>, note that from the four involution classes of <span class="SimpleMath">S_6(2)</span>, exactly <code class="code">2B</code> and <code class="code">2D</code> lift to involutions in <span class="SimpleMath">2.S_6(2)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2t:= CharacterTable( "2.S6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invpost:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );</span>
[ 2, 4, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( 2t, t ){ invpos2t };</span>
[ 1, 3, 5 ]
</pre></div>
<p>Thus it suffices to show that there is a subgroup of type <span class="SimpleMath">2^2</span> in <span class="SimpleMath">S_6(2)</span> that contains elements from <code class="code">2B</code> and <code class="code">2D</code> but no elements from <code class="code">2A</code> or <code class="code">2C</code>. This follows from the fact that the <span class="SimpleMath">(</span><code class="code">2B</code>, <code class="code">2D</code>, <code class="code">2D</code><span class="SimpleMath">)</span> structure constant of <span class="SimpleMath">S_6(2)</span> is nonzero.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassMultiplicationCoefficient( t, 3, 5, 5 );</span>
15
</pre></div>
<p>For <span class="SimpleMath">G = O_8^+(2)</span>, we consider the known table of marks.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "O8+(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tom:= TableOfMarks( t );</span>
TableOfMarks( "O8+(2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">ord:= OrdersTom( tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invpos:= Positions( ord, 2 );</span>
[ 2, 3, 4, 5, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">8pos:= Positions( ord, 8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( 8pos,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> ForAll( invpos,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> y -> Length( IntersectionsTom( tom, x, y ) ) >= y</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and IntersectionsTom( tom, x, y )[y] <> 0 ) );</span>
[ 151, 153 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= List( filt, i -> RepresentativeTom( tom, i ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( reps, IsElementaryAbelian );</span>
true
</pre></div>
<p>Concerning <span class="SimpleMath">G = 2.O_8^+(2)</span>, note that from the five involution classes of <span class="SimpleMath">O_8^+(2)</span>, exactly <code class="code">2A</code>, <code class="code">2B</code>, and <code class="code">2E</code> lift to involutions in <span class="SimpleMath">2.O_8^+(2)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2t:= CharacterTable( "2.O8+(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invpost:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4, 5, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );</span>
[ 2, 3, 4, 5, 8 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( 2t, t ){ invpos2t };</span>
[ 1, 2, 3, 3, 6 ]
</pre></div>
<p>Thus it suffices to show that the <span class="SimpleMath">(</span><code class="code">2A</code>, <code class="code">2B</code>, <code class="code">2E</code><span class="SimpleMath">)</span> structure constant of <span class="SimpleMath">O_8^+(2)</span> is nonzero.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassMultiplicationCoefficient( t, 2, 3, 6 );</span>
4
</pre></div>
<p>Concerning <span class="SimpleMath">G = 2^2.O_8^+(2)</span>, note that from the five involution classes of <span class="SimpleMath">O_8^+(2)</span>, exactly the first and the last lift to involutions in <span class="SimpleMath">2^2.O_8^+(2)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v4t:= CharacterTable( "2^2.O8+(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invposv4t:= Positions( OrdersClassRepresentatives( v4t ), 2 );</span>
[ 2, 3, 4, 5, 12 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( v4t, t ){ invposv4t };</span>
[ 1, 1, 1, 2, 6 ]
</pre></div>
<p>Thus it suffices to show that a corresponding structure constant of <span class="SimpleMath">O_8^+(2)</span> is nonzero.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassMultiplicationCoefficient( t, 2, 6, 6 );</span>
27
</pre></div>
<p>For <span class="SimpleMath">G = F_4(2)</span>, consider a maximal subgroup <span class="SimpleMath">2^10.A_8</span> of a maximal subgroup <span class="SimpleMath">S_8(2)</span> of <span class="SimpleMath">G</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 123 and 170]</a>): Its <span class="SimpleMath">2</span>-core is elementary abelian and covers all four involution classes of <span class="SimpleMath">G</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "F4(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invpost:= Positions( OrdersClassRepresentatives( t ), 2 );</span>
[ 2, 3, 4, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">"S8(2)" in Maxes( t );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "S8(2)M4" );</span>
CharacterTable( "2^10.A8" )
<span class="GAPprompt">gap></span> <span class="GAPinput">corepos:= ClassPositionsOfPCore( s, 2 );</span>
[ 1 .. 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( s ){ corepos };</span>
[ 1, 2, 2, 2, 2, 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( poss, map -> map{ corepos } );</span>
[ [ 1, 4, 2, 3, 4, 5, 5 ], [ 1, 4, 2, 3, 4, 5, 5 ],
[ 1, 4, 3, 2, 4, 5, 5 ], [ 1, 4, 3, 2, 4, 5, 5 ] ]
</pre></div>
<p>Finally, all involutions of <span class="SimpleMath">G</span> lift to involutions in <span class="SimpleMath">2.F_4(2)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2t:= CharacterTable( "2.F4(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );</span>
[ 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( 2t, t ){ invpos2t };</span>
[ 1, 2, 2, 3, 3, 4, 4, 5, 5 ]
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap1.html">[Previous Chapter]</a> <a href="chap3.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|