File: chap4.html

package info (click to toggle)
gap-ctbllib 1.3.11-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 76,256 kB
  • sloc: xml: 41,608; makefile: 219; javascript: 155
file content (1653 lines) | stat: -rw-r--r-- 142,332 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (CTblLib) - Chapter 4: Contents of the GAP Character Table Library</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap4"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap3.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap5.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap4_mj.html">[MathJax on]</a></p>
<p><a id="X85854AF07F2F8745" name="X85854AF07F2F8745"></a></p>
<div class="ChapSects"><a href="chap4.html#X85854AF07F2F8745">4 <span class="Heading">Contents of the <strong class="pkg">GAP</strong> Character Table Library</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X80EEFF8B79856A75">4.1 <span class="Heading">Ordinary and Brauer Tables in the <strong class="pkg">GAP</strong> Character Table Library
</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8569BC8E7A9D4BCE">4.1-1 <span class="Heading">Ordinary Character Tables</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7AD048607A08C6FF">4.1-2 <span class="Heading">Brauer Tables</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X81E3F9A384365282">4.2 <span class="Heading">Generic Character Tables</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X78CD9A2D8680506B">4.2-1 <span class="Heading">Available generic character tables</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X78DA225F78F381C9">4.2-2 CharacterTableSpecialized</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7C2CB9E07990B63D">4.2-3 <span class="Heading">Components of generic character tables</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7D693E9787073E30">4.2-4 <span class="Heading">Example: The generic table of cyclic groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X81231BCE79486FA3">4.2-5 <span class="Heading">Example: The generic table of the general linear group GL<span class="SimpleMath">(2,q)</span>
</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X7F44BD4B79473085">4.3 <span class="Heading"><strong class="pkg">Atlas</strong> Tables</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7CC608CD8690F9B1">4.3-1 <span class="Heading">Improvements to the <strong class="pkg">Atlas</strong></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7FED949A86575949">4.3-2 <span class="Heading">Power Maps</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X824823F47BB6AD6C">4.3-3 <span class="Heading">Projective Characters and Projections</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X78732CDF85FB6774">4.3-4 <span class="Heading">Tables of Isoclinic Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7C4B91CD84D5CDCC">4.3-5 <span class="Heading">Ordering of Characters and Classes</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7ADC9DC980CF0685">4.3-6 AtlasLabelsOfIrreducibles</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X827044A37C04C0D1">4.3-7 <span class="Heading">Examples of the <strong class="pkg">Atlas</strong> Format for <strong class="pkg">GAP</strong> Tables</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X7BC3F0B0814D5B67">4.4 <span class="Heading"><strong class="pkg">CAS</strong> Tables</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X786A80A279674E91">4.4-1 CASInfo</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X835811C279FB1E56">4.5 <span class="Heading">Customizations of the <strong class="pkg">GAP</strong> Character Table Library</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8202ACD57ACD5CAC">4.5-1 <span class="Heading">Installing the <strong class="pkg">GAP</strong> Character Table Library</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X83FA9D6B86150501">4.5-2 <span class="Heading">Unloading Character Table Data</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7E859C3482F27089">4.5-3 <span class="Heading">Changing the display format of several functions</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7DFAD31F84F55870">4.5-4 <span class="Heading">User preference <code class="code">MagmaPath</code></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X8782716579A1B993">4.6 <span class="Heading">Technicalities of the Access to Character Tables from the Library
</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X84E18B0B84F50B1E">4.6-1 <span class="Heading">Data Files of the <strong class="pkg">GAP</strong> Character Table Library</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X84E728FD860CAC0F">4.6-2 LIBLIST</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X80B7DF9C83A0F3F1">4.6-3 LibInfoCharacterTable</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X78FFDF0F83E7EB0D">4.7 <span class="Heading">How to Extend the <strong class="pkg">GAP</strong> Character Table Library</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7A3B010A8790DD6E">4.7-1 NotifyNameOfCharacterTable</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8160EA7C85DCB485">4.7-2 LibraryFusion</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X79E06BD67F6BC3A5">4.7-3 LibraryFusionTblToTom</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X780CBC347876A54B">4.7-4 PrintToLib</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X79366F797CD02DAF">4.7-5 NotifyCharacterTable</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8374B5D081F85DBC">4.7-6 NotifyCharacterTables</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X7E3235FD7864A672">4.8 <span class="Heading">Sanity Checks for the <strong class="pkg">GAP</strong> Character Table Library</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X7D24C9D17DAB50D0">4.9 <span class="Heading">Maintenance of the <strong class="pkg">GAP</strong> Character Table Library</span></a>
</span>
</div>
</div>

<h3>4 <span class="Heading">Contents of the <strong class="pkg">GAP</strong> Character Table Library</span></h3>

<p>This chapter informs you about</p>


<ul>
<li><p>the currently available character tables (see Section <a href="chap4.html#X80EEFF8B79856A75"><span class="RefLink">4.1</span></a>),</p>

</li>
<li><p>generic character tables (see Section <a href="chap4.html#X81E3F9A384365282"><span class="RefLink">4.2</span></a>),</p>

</li>
<li><p>the subsets of <strong class="pkg">Atlas</strong> tables (see Section <a href="chap4.html#X7F44BD4B79473085"><span class="RefLink">4.3</span></a>) and <strong class="pkg">CAS</strong> tables (see Section <a href="chap4.html#X7BC3F0B0814D5B67"><span class="RefLink">4.4</span></a>),</p>

</li>
<li><p>installing the library, and related user preferences (see Section <a href="chap4.html#X835811C279FB1E56"><span class="RefLink">4.5</span></a>).</p>

</li>
</ul>
<p>The following rather technical sections are thought for those who want to maintain or extend the Character Table Library.</p>


<ul>
<li><p>the technicalities of the access to library tables (see Section <a href="chap4.html#X8782716579A1B993"><span class="RefLink">4.6</span></a>),</p>

</li>
<li><p>how to extend the library (see Section <a href="chap4.html#X78FFDF0F83E7EB0D"><span class="RefLink">4.7</span></a>), and</p>

</li>
<li><p>sanity checks (see Section <a href="chap4.html#X7E3235FD7864A672"><span class="RefLink">4.8</span></a>).</p>

</li>
</ul>
<p><a id="X80EEFF8B79856A75" name="X80EEFF8B79856A75"></a></p>

<h4>4.1 <span class="Heading">Ordinary and Brauer Tables in the <strong class="pkg">GAP</strong> Character Table Library
</span></h4>

<p>This section gives a brief overview of the contents of the <strong class="pkg">GAP</strong> character table library. For the details about, e. g., the structure of data files, see Section <a href="chap4.html#X8782716579A1B993"><span class="RefLink">4.6</span></a>.</p>

<p>The changes in the character table library since the first release of <strong class="pkg">GAP</strong> 4 are listed in a file that can be fetched from</p>

<p><span class="URL"><a href="https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/ctbldiff.htm ">https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/ctbldiff.htm </a></span>.</p>

<p>There are three different kinds of character tables in the <strong class="pkg">GAP</strong> library, namely <em>ordinary character tables</em>, <em>Brauer tables</em>, and <em>generic character tables</em>. Note that the Brauer table and the corresponding ordinary table of a group determine the <em>decomposition matrix</em> of the group (and the decomposition matrices of its blocks). These decomposition matrices can be computed from the ordinary and modular irreducibles with <strong class="pkg">GAP</strong>, see Section <a href="../../../doc/ref/chap71.html#X8733F0EA801785D4"><span class="RefLink">Reference: Operations Concerning Blocks</span></a> for details. A collection of PDF files of the known decomposition matrices of <strong class="pkg">Atlas</strong> tables in the <strong class="pkg">GAP</strong> Character Table Library can also be found at</p>

<p><span class="URL"><a href="https://www.math.rwth-aachen.de/~MOC/decomposition/">https://www.math.rwth-aachen.de/~MOC/decomposition/</a></span>.</p>

<p><a id="X8569BC8E7A9D4BCE" name="X8569BC8E7A9D4BCE"></a></p>

<h5>4.1-1 <span class="Heading">Ordinary Character Tables</span></h5>

<p>Two different aspects are useful to list the ordinary character tables available in <strong class="pkg">GAP</strong>, namely the aspect of the <em>source</em> of the tables and that of <em>relations</em> between the tables.</p>

<p>As for the source, there are first of all two big sources, namely the <strong class="pkg">Atlas</strong> of Finite Groups (see Section <a href="chap4.html#X7F44BD4B79473085"><span class="RefLink">4.3</span></a>) and the <strong class="pkg">CAS</strong> library of character tables (see <a href="chapBib.html#biBNPP84">[NPP84]</a>). Many <strong class="pkg">Atlas</strong> tables are contained in the <strong class="pkg">CAS</strong> library, and difficulties may arise because the succession of characters and classes in <strong class="pkg">CAS</strong> tables and <strong class="pkg">Atlas</strong> tables are in general different, so see Section <a href="chap4.html#X7BC3F0B0814D5B67"><span class="RefLink">4.4</span></a> for the relations between these two variants of character tables of the same group. A subset of the <strong class="pkg">CAS</strong> tables is the set of tables of Sylow normalizers of sporadic simple groups as published in <a href="chapBib.html#biBOst86">[Ost86]</a>  this may be viewed as another source of character tables. The library also contains the character tables of factor groups of space groups (computed by W. Hanrath, see <a href="chapBib.html#biBHan88">[Han88]</a>) that are part of <a href="chapBib.html#biBHP89">[HP89]</a>, in the form of two microfiches; these tables are given in <strong class="pkg">CAS</strong> format (see Section <a href="chap4.html#X7BC3F0B0814D5B67"><span class="RefLink">4.4</span></a>) on the microfiches, but they had not been part of the <q>official</q> <strong class="pkg">CAS</strong> library.</p>

<p>To avoid confusion about the ordering of classes and characters in a given table, authorship and so on, the <code class="func">InfoText</code> (<a href="../../../doc/ref/chap12.html#X871562FD7F982C12"><span class="RefLink">Reference: InfoText</span></a>) value of the table contains the information</p>


<dl>
<dt><strong class="Mark"><code class="code">origin: ATLAS of finite groups</code></strong></dt>
<dd><p>for <strong class="pkg">Atlas</strong> tables (see Section <a href="chap4.html#X7F44BD4B79473085"><span class="RefLink">4.3</span></a>),</p>

</dd>
<dt><strong class="Mark"><code class="code">origin: Ostermann</code></strong></dt>
<dd><p>for tables contained in <a href="chapBib.html#biBOst86">[Ost86]</a>,</p>

</dd>
<dt><strong class="Mark"><code class="code">origin: CAS library</code></strong></dt>
<dd><p>for any table of the <strong class="pkg">CAS</strong> table library that is contained neither in the <strong class="pkg">Atlas</strong> nor in <a href="chapBib.html#biBOst86">[Ost86]</a>, and</p>

</dd>
<dt><strong class="Mark"><code class="code">origin: Hanrath library</code></strong></dt>
<dd><p>for tables contained in the microfiches in <a href="chapBib.html#biBHP89">[HP89]</a>.</p>

</dd>
</dl>
<p>The <code class="func">InfoText</code> (<a href="../../../doc/ref/chap12.html#X871562FD7F982C12"><span class="RefLink">Reference: InfoText</span></a>) value usually contains more detailed information, for example that the table in question is the character table of a maximal subgroup of an almost simple group. If the table was contained in the <strong class="pkg">CAS</strong> library then additional information may be available via the <code class="func">CASInfo</code> (<a href="chap4.html#X786A80A279674E91"><span class="RefLink">4.4-1</span></a>) value.</p>

<p>If one is interested in the aspect of relations between the tables, i. e., the internal structure of the library of ordinary tables, the contents can be listed up the following way.</p>

<p>We have</p>


<ul>
<li><p>all <strong class="pkg">Atlas</strong> tables (see Section <a href="chap4.html#X7F44BD4B79473085"><span class="RefLink">4.3</span></a>), i. e., the tables of the simple groups which are contained in the <strong class="pkg">Atlas</strong> of Finite Groups, and the tables of cyclic and bicyclic extensions of these groups,</p>

</li>
<li><p>most tables of maximal subgroups of sporadic simple groups (<em>not all</em> for the Monster group),</p>

</li>
<li><p>many tables of maximal subgroups of other <strong class="pkg">Atlas</strong> tables; the <code class="func">Maxes</code> (<a href="chap3.html#X8150E63F7DBDF252"><span class="RefLink">3.7-1</span></a>) value for the table is set if all tables of maximal subgroups are available,</p>

</li>
<li><p>the tables of many Sylow <span class="SimpleMath">p</span>-normalizers of sporadic simple groups; this includes the tables printed in <a href="chapBib.html#biBOst86">[Ost86]</a> except <span class="SimpleMath">J_4N2</span>, <span class="SimpleMath">Co_1N2</span>, <span class="SimpleMath">Fi_22N2</span>, but also other tables are available; more generally, several tables of normalizers of other radical <span class="SimpleMath">p</span>-subgroups are available, such as normalizers of defect groups of <span class="SimpleMath">p</span>-blocks,</p>

</li>
<li><p>some tables of element centralizers,</p>

</li>
<li><p>some tables of Sylow <span class="SimpleMath">p</span>-subgroups,</p>

</li>
<li><p>and a few other tables, e. g. <code class="code">W(F4)</code></p>

</li>
</ul>
<p><em>Note</em> that class fusions stored on library tables are not guaranteed to be compatible for any two subgroups of a group and their intersection, and they are not guaranteed to be consistent w. r. t. the composition of maps.</p>

<p><a id="X7AD048607A08C6FF" name="X7AD048607A08C6FF"></a></p>

<h5>4.1-2 <span class="Heading">Brauer Tables</span></h5>

<p>The library contains all tables of the <strong class="pkg">Atlas</strong> of Brauer Tables (<a href="chapBib.html#biBJLPW95">[JLPW95]</a>), and many other Brauer tables of bicyclic extensions of simple groups which are known yet. The Brauer tables in the library contain the information</p>


<pre class="normal">

origin: modular ATLAS of finite groups

</pre>

<p>in their <code class="func">InfoText</code> (<a href="../../../doc/ref/chap12.html#X871562FD7F982C12"><span class="RefLink">Reference: InfoText</span></a>) string.</p>

<p><a id="X81E3F9A384365282" name="X81E3F9A384365282"></a></p>

<h4>4.2 <span class="Heading">Generic Character Tables</span></h4>

<p>Generic character tables provide a means for writing down the character tables of all groups in a (usually infinite) series of similar groups, e. g., cyclic groups, or symmetric groups, or the general linear groups GL<span class="SimpleMath">(2,q)</span> where <span class="SimpleMath">q</span> ranges over certain prime powers.</p>

<p>Let <span class="SimpleMath">{ G_q | q ∈ I }</span> be such a series, where <span class="SimpleMath">I</span> is an index set. The character table of one fixed member <span class="SimpleMath">G_q</span> could be computed using a function that takes <span class="SimpleMath">q</span> as only argument and constructs the table of <span class="SimpleMath">G_q</span>. It is, however, often desirable to compute not only the whole table but to access just one specific character, or to compute just one character value, without computing the whole character table.</p>

<p>For example, both the conjugacy classes and the irreducible characters of the symmetric group <span class="SimpleMath">S_n</span> are in bijection with the partitions of <span class="SimpleMath">n</span>. Thus for given <span class="SimpleMath">n</span> it makes sense to ask for the character corresponding to a particular partition, or just for its character value at another partition.</p>

<p>A generic character table in <strong class="pkg">GAP</strong> allows one such local evaluations. In this sense, <strong class="pkg">GAP</strong> can deal also with character tables that are too big to be computed and stored as a whole.</p>

<p>Currently the only operations for generic tables supported by <strong class="pkg">GAP</strong> are the specialisation of the parameter <span class="SimpleMath">q</span> in order to compute the whole character table of <span class="SimpleMath">G_q</span>, and local evaluation (see <code class="func">ClassParameters</code> (<a href="../../../doc/ref/chap71.html#X8333E8038308947E"><span class="RefLink">Reference: ClassParameters</span></a>) for an example). <strong class="pkg">GAP</strong> does <em>not</em> support the computation of, e. g., generic scalar products.</p>

<p>While the numbers of conjugacy classes for the members of a series of groups are usually not bounded, there is always a fixed finite number of <em>types</em> (equivalence classes) of conjugacy classes; very often the equivalence relation is isomorphism of the centralizers of the representatives.</p>

<p>For each type <span class="SimpleMath">t</span> of classes and a fixed <span class="SimpleMath">q ∈ I</span>, a <em>parametrisation</em> of the classes in <span class="SimpleMath">t</span> is a function that assigns to each conjugacy class of <span class="SimpleMath">G_q</span> in <span class="SimpleMath">t</span> a <em>parameter</em> by which it is uniquely determined. Thus the classes are indexed by pairs <span class="SimpleMath">[t,p_t]</span> consisting of a type <span class="SimpleMath">t</span> and a parameter <span class="SimpleMath">p_t</span> for that type.</p>

<p>For any generic table, there has to be a fixed number of types of irreducible characters of <span class="SimpleMath">G_q</span>, too. Like the classes, the characters of each type are parametrised.</p>

<p>In <strong class="pkg">GAP</strong>, the parametrisations of classes and characters for tables computed from generic tables is stored using the attributes <code class="func">ClassParameters</code> (<a href="../../../doc/ref/chap71.html#X8333E8038308947E"><span class="RefLink">Reference: ClassParameters</span></a>) and <code class="func">CharacterParameters</code> (<a href="../../../doc/ref/chap71.html#X8333E8038308947E"><span class="RefLink">Reference: CharacterParameters</span></a>).</p>

<p><a id="X78CD9A2D8680506B" name="X78CD9A2D8680506B"></a></p>

<h5>4.2-1 <span class="Heading">Available generic character tables</span></h5>

<p>Currently, generic tables of the following groups –in alphabetical order– are available in <strong class="pkg">GAP</strong>. (A list of the names of generic tables known to <strong class="pkg">GAP</strong> is <code class="code">LIBTABLE.GENERIC.firstnames</code>.) We list the function calls needed to get a specialized table, the generic table itself can be accessed by calling <code class="func">CharacterTable</code> (<a href="../../../doc/ref/chap71.html#X7FCA7A7A822BDA33"><span class="RefLink">Reference: CharacterTable</span></a>) with the first argument only; for example, <code class="code">CharacterTable( "Cyclic" )</code> yields the generic table of cyclic groups.</p>


<dl>
<dt><strong class="Mark"><code class="code">CharacterTable( "Alternating", </code><span class="SimpleMath">n</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>alternating</em> group on <span class="SimpleMath">n</span> letters,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "Cyclic", </code><span class="SimpleMath">n</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>cyclic</em> group of order <span class="SimpleMath">n</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "Dihedral", </code><span class="SimpleMath">2n</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>dihedral</em> group of order <span class="SimpleMath">2n</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "DoubleCoverAlternating", </code><span class="SimpleMath">n</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>Schur double cover of the alternating</em> group on <span class="SimpleMath">n</span> letters (see <a href="chapBib.html#biBNoe02">[Noe02]</a>),</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "DoubleCoverSymmetric", </code><span class="SimpleMath">n</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>standard Schur double cover of the symmetric</em> group on <span class="SimpleMath">n</span> letters (see <a href="chapBib.html#biBNoe02">[Noe02]</a>),</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "GL", 2, </code><span class="SimpleMath">q</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>general linear</em> group <code class="code">GL(2,</code><span class="SimpleMath">q</span><code class="code">)</code>, for a prime power <span class="SimpleMath">q</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "GU", 3, </code><span class="SimpleMath">q</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>general unitary</em> group <code class="code">GU(3,</code><span class="SimpleMath">q</span><code class="code">)</code>, for a prime power <span class="SimpleMath">q</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "P:Q", </code><span class="SimpleMath">[ p, q ]</span><code class="code"> )</code> and
  <code class="code">CharacterTable( "P:Q", </code><span class="SimpleMath">[ p, q, k ]</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>Frobenius extension</em> of the nontrivial cyclic group of odd order <span class="SimpleMath">p</span> by the nontrivial cyclic group of order <span class="SimpleMath">q</span> where <span class="SimpleMath">q</span> divides <span class="SimpleMath">p_i-1</span> for all prime divisors <span class="SimpleMath">p_i</span> of <span class="SimpleMath">p</span>; if <span class="SimpleMath">p</span> is a prime power then <span class="SimpleMath">q</span> determines the group uniquely and thus the first version can be used, otherwise the action of the residue class of <span class="SimpleMath">k</span> modulo <span class="SimpleMath">p</span> is taken for forming orbits of length <span class="SimpleMath">q</span> each on the nonidentity elements of the group of order <span class="SimpleMath">p</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "PSL", 2, </code><span class="SimpleMath">q</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>projective special linear</em> group <code class="code">PSL(2,</code><span class="SimpleMath">q</span><code class="code">)</code>, for a prime power <span class="SimpleMath">q</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "SL", 2, </code><span class="SimpleMath">q</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>special linear</em> group <code class="code">SL(2,</code><span class="SimpleMath">q</span><code class="code">)</code>, for a prime power <span class="SimpleMath">q</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "SU", 3, </code><span class="SimpleMath">q</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>special unitary</em> group <code class="code">SU(3,</code><span class="SimpleMath">q</span><code class="code">)</code>, for a prime power <span class="SimpleMath">q</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "Suzuki", </code><span class="SimpleMath">q</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>Suzuki</em> group <code class="code">Sz(</code><span class="SimpleMath">q</span><code class="code">)</code> <span class="SimpleMath">= ^2B_2(q)</span>, for <span class="SimpleMath">q</span> an odd power of <span class="SimpleMath">2</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "Symmetric", </code><span class="SimpleMath">n</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>symmetric</em> group on <span class="SimpleMath">n</span> letters,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "WeylB", </code><span class="SimpleMath">n</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>Weyl</em> group of type <span class="SimpleMath">B_n</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTable( "WeylD", </code><span class="SimpleMath">n</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>Weyl</em> group of type <span class="SimpleMath">D_n</span>.</p>

</dd>
</dl>
<p>In addition to the above calls that really use generic tables, the following calls to <code class="func">CharacterTable</code> (<a href="../../../doc/ref/chap71.html#X7FCA7A7A822BDA33"><span class="RefLink">Reference: CharacterTable</span></a>) are to some extent <q>generic</q> constructions. But note that no local evaluation is possible in these cases, as no generic table object exists in <strong class="pkg">GAP</strong> that can be asked for local information.</p>


<dl>
<dt><strong class="Mark"><code class="code">CharacterTable( "Quaternionic", </code><span class="SimpleMath">4n</span><code class="code"> )</code></strong></dt>
<dd><p>the table of the <em>generalized quaternionic</em> group of order <span class="SimpleMath">4n</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">CharacterTableWreathSymmetric( tbl, </code><span class="SimpleMath">n</span><code class="code"> )</code></strong></dt>
<dd><p>the character table of the wreath product of the group whose table is <code class="code">tbl</code> with the symmetric group on <span class="SimpleMath">n</span> letters, see <code class="func">CharacterTableWreathSymmetric</code> (<a href="../../../doc/ref/chap71.html#X79B75C8582426BC5"><span class="RefLink">Reference: CharacterTableWreathSymmetric</span></a>).</p>

</dd>
</dl>
<p><a id="X78DA225F78F381C9" name="X78DA225F78F381C9"></a></p>

<h5>4.2-2 CharacterTableSpecialized</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CharacterTableSpecialized</code>( <var class="Arg">gentbl</var>, <var class="Arg">q</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>For a record <var class="Arg">gentbl</var> representing a generic character table, and a parameter value <var class="Arg">q</var>, <code class="func">CharacterTableSpecialized</code> returns a character table object computed by evaluating <var class="Arg">gentbl</var> at <var class="Arg">q</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c5:= CharacterTableSpecialized( CharacterTable( "Cyclic" ), 5 );</span>
CharacterTable( "C5" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( c5 );</span>
C5

     5  1  1  1  1  1

       1a 5a 5b 5c 5d
    5P 1a 1a 1a 1a 1a

X.1     1  1  1  1  1
X.2     1  A  B /B /A
X.3     1  B /A  A /B
X.4     1 /B  A /A  B
X.5     1 /A /B  B  A

A = E(5)
B = E(5)^2
</pre></div>

<p>(Also <code class="code">CharacterTable( "Cyclic", 5 )</code> could have been used to construct the above table.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">HasClassParameters( c5 );  HasCharacterParameters( c5 );</span>
true
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassParameters( c5 );  CharacterParameters( c5 );</span>
[ [ 1, 0 ], [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ] ]
[ [ 1, 0 ], [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassParameters( CharacterTable( "Symmetric", 3 ) );</span>
[ [ 1, [ 1, 1, 1 ] ], [ 1, [ 2, 1 ] ], [ 1, [ 3 ] ] ]
</pre></div>

<p>Here are examples for the <q>local evaluation</q> of generic character tables, first a character value of the cyclic group shown above, then a character value and a representative order of a symmetric group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterTable( "Cyclic" ).irreducibles[1][1]( 5, 2, 3 );</span>
E(5)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "Symmetric" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl.irreducibles[1][1]( 5, [ 3, 2 ], [ 2, 2, 1 ] );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl.orders[1]( 5, [ 2, 1, 1, 1 ] );</span>
2
</pre></div>

<p><a id="X7C2CB9E07990B63D" name="X7C2CB9E07990B63D"></a></p>

<h5>4.2-3 <span class="Heading">Components of generic character tables</span></h5>

<p>Any generic table in <strong class="pkg">GAP</strong> is represented by a record. The following components are supported for generic character table records.</p>


<dl>
<dt><strong class="Mark"><code class="code">centralizers</code></strong></dt>
<dd><p>list of functions, one for each class type <span class="SimpleMath">t</span>, with arguments <span class="SimpleMath">q</span> and <span class="SimpleMath">p_t</span>, returning the centralizer order of the class <span class="SimpleMath">[t,p_t]</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">charparam</code></strong></dt>
<dd><p>list of functions, one for each character type <span class="SimpleMath">t</span>, with argument <span class="SimpleMath">q</span>, returning the list of character parameters of type <span class="SimpleMath">t</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">classparam</code></strong></dt>
<dd><p>list of functions, one for each class type <span class="SimpleMath">t</span>, with argument <span class="SimpleMath">q</span>, returning the list of class parameters of type <span class="SimpleMath">t</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">classtext</code></strong></dt>
<dd><p>list of functions, one for each class type <span class="SimpleMath">t</span>, with arguments <span class="SimpleMath">q</span> and <span class="SimpleMath">p_t</span>, returning a representative of the class with parameter <span class="SimpleMath">[t,p_t]</span> (note that this element need <em>not</em> actually lie in the group in question, for example it may be a diagonal matrix but the characteristic polynomial in the group s irreducible),</p>

</dd>
<dt><strong class="Mark"><code class="code">domain</code></strong></dt>
<dd><p>function of <span class="SimpleMath">q</span> returning <code class="keyw">true</code> if <span class="SimpleMath">q</span> is a valid parameter, and <code class="keyw">false</code> otherwise,</p>

</dd>
<dt><strong class="Mark"><code class="code">identifier</code></strong></dt>
<dd><p>identifier string of the generic table,</p>

</dd>
<dt><strong class="Mark"><code class="code">irreducibles</code></strong></dt>
<dd><p>list of list of functions, in row <span class="SimpleMath">i</span> and column <span class="SimpleMath">j</span> the function of three arguments, namely <span class="SimpleMath">q</span> and the parameters <span class="SimpleMath">p_t</span> and <span class="SimpleMath">p_s</span> of the class type <span class="SimpleMath">t</span> and the character type <span class="SimpleMath">s</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">isGenericTable</code></strong></dt>
<dd><p>always <code class="keyw">true</code></p>

</dd>
<dt><strong class="Mark"><code class="code">libinfo</code></strong></dt>
<dd><p>record with components <code class="code">firstname</code> (<code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) value of the table) and <code class="code">othernames</code> (list of other admissible names)</p>

</dd>
<dt><strong class="Mark"><code class="code">matrix</code></strong></dt>
<dd><p>function of <span class="SimpleMath">q</span> returning the matrix of irreducibles of <span class="SimpleMath">G_q</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">orders</code></strong></dt>
<dd><p>list of functions, one for each class type <span class="SimpleMath">t</span>, with arguments <span class="SimpleMath">q</span> and <span class="SimpleMath">p_t</span>, returning the representative order of elements of type <span class="SimpleMath">t</span> and parameter <span class="SimpleMath">p_t</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">powermap</code></strong></dt>
<dd><p>list of functions, one for each class type <span class="SimpleMath">t</span>, each with three arguments <span class="SimpleMath">q</span>, <span class="SimpleMath">p_t</span>, and <span class="SimpleMath">k</span>, returning the pair <span class="SimpleMath">[s,p_s]</span> of type and parameter for the <span class="SimpleMath">k</span>-th power of the class with parameter <span class="SimpleMath">[t,p_t]</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">size</code></strong></dt>
<dd><p>function of <span class="SimpleMath">q</span> returning the order of <span class="SimpleMath">G_q</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">specializedname</code></strong></dt>
<dd><p>function of <span class="SimpleMath">q</span> returning the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) value of the table of <span class="SimpleMath">G_q</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">text</code></strong></dt>
<dd><p>string informing about the generic table</p>

</dd>
</dl>
<p>In the specialized table, the <code class="func">ClassParameters</code> (<a href="../../../doc/ref/chap71.html#X8333E8038308947E"><span class="RefLink">Reference: ClassParameters</span></a>) and <code class="func">CharacterParameters</code> (<a href="../../../doc/ref/chap71.html#X8333E8038308947E"><span class="RefLink">Reference: CharacterParameters</span></a>) values are the lists of parameters <span class="SimpleMath">[t,p_t]</span> of classes and characters, respectively.</p>

<p>If the <code class="code">matrix</code> component is present then its value implements a method to compute the complete table of small members <span class="SimpleMath">G_q</span> more efficiently than via local evaluation; this method will be called when the generic table is used to compute the whole character table for a given <span class="SimpleMath">q</span> (see <code class="func">CharacterTableSpecialized</code> (<a href="chap4.html#X78DA225F78F381C9"><span class="RefLink">4.2-2</span></a>)).</p>

<p><a id="X7D693E9787073E30" name="X7D693E9787073E30"></a></p>

<h5>4.2-4 <span class="Heading">Example: The generic table of cyclic groups</span></h5>

<p>For the cyclic group <span class="SimpleMath">C_q = ⟨ x ⟩</span> of order <span class="SimpleMath">q</span>, there is one type of classes. The class parameters are integers <span class="SimpleMath">k ∈ { 0, ..., q-1 }</span>, the class with parameter <span class="SimpleMath">k</span> consists of the group element <span class="SimpleMath">x^k</span>. Group order and centralizer orders are the identity function <span class="SimpleMath">q ↦ q</span>, independent of the parameter <span class="SimpleMath">k</span>. The representative order function maps the parameter pair <span class="SimpleMath">[q,k]</span> to <span class="SimpleMath">q / gcd(q,k)</span>, which is the order of <span class="SimpleMath">x^k</span> in <span class="SimpleMath">C_q</span>; the <span class="SimpleMath">p</span>-th power map is the function mapping the triple <span class="SimpleMath">(q,k,p)</span> to the parameter <span class="SimpleMath">[1,(kp mod q)]</span>.</p>

<p>There is one type of characters, with parameters <span class="SimpleMath">l ∈ { 0, ..., q-1 }</span>; for <span class="SimpleMath">e_q</span> a primitive complex <span class="SimpleMath">q</span>-th root of unity, the character values are <span class="SimpleMath">χ_l(x^k) = e_q^kl</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Print( CharacterTable( "Cyclic" ), "\n" );</span>
rec(
  centralizers := [ function ( n, k )
            return n;
        end ],
  charparam := [ function ( n )
            return [ 0 .. n - 1 ];
        end ],
  classparam := [ function ( n )
            return [ 0 .. n - 1 ];
        end ],
  domain := &lt;Category "(IsInt and IsPosRat)"&gt;,
  identifier := "Cyclic",
  irreducibles := [ [ function ( n, k, l )
                return E( n ) ^ (k * l);
            end ] ],
  isGenericTable := true,
  libinfo := rec(
      firstname := "Cyclic",
      othernames := [  ] ),
  orders := [ function ( n, k )
            return n / Gcd( n, k );
        end ],
  powermap := [ function ( n, k, pow )
            return [ 1, k * pow mod n ];
        end ],
  size := function ( n )
        return n;
    end,
  specializedname := function ( q )
        return Concatenation( "C", String( q ) );
    end,
  text := "generic character table for cyclic groups" )
</pre></div>

<p><a id="X81231BCE79486FA3" name="X81231BCE79486FA3"></a></p>

<h5>4.2-5 <span class="Heading">Example: The generic table of the general linear group GL<span class="SimpleMath">(2,q)</span>
</span></h5>

<p>We have four types <span class="SimpleMath">t_1, t_2, t_3, t_4</span> of classes, according to the rational canonical form of the elements. <span class="SimpleMath">t_1</span> describes scalar matrices, <span class="SimpleMath">t_2</span> nonscalar diagonal matrices, <span class="SimpleMath">t_3</span> companion matrices of <span class="SimpleMath">(X - ρ)^2</span> for nonzero elements <span class="SimpleMath">ρ ∈ F_q</span>, and <span class="SimpleMath">t_4</span> companion matrices of irreducible polynomials of degree <span class="SimpleMath">2</span> over <span class="SimpleMath">F_q</span>.</p>

<p>The sets of class parameters of the types are in bijection with nonzero elements in <span class="SimpleMath">F_q</span> for <span class="SimpleMath">t_1</span> and <span class="SimpleMath">t_3</span>, with the set</p>

<p class="pcenter">{ { ρ, τ }; ρ, τ ∈ F_q, ρ ≠ 0, τ ≠ 0, ρ ≠ τ }</p>

<p>for <span class="SimpleMath">t_2</span>, and with the set <span class="SimpleMath">{ { ϵ, ϵ^q }; ϵ ∈ F_{q^2} ∖ F_q }</span> for <span class="SimpleMath">t_4</span>.</p>

<p>The centralizer order functions are <span class="SimpleMath">q ↦ (q^2-1)(q^2-q)</span> for type <span class="SimpleMath">t_1</span>, <span class="SimpleMath">q ↦ (q-1)^2</span> for type <span class="SimpleMath">t_2</span>, <span class="SimpleMath">q ↦ q(q-1)</span> for type <span class="SimpleMath">t_3</span>, and <span class="SimpleMath">q ↦ q^2-1</span> for type <span class="SimpleMath">t_4</span>.</p>

<p>The representative order function of <span class="SimpleMath">t_1</span> maps <span class="SimpleMath">(q, ρ)</span> to the order of <span class="SimpleMath">ρ</span> in <span class="SimpleMath">F_q</span>, that of <span class="SimpleMath">t_2</span> maps <span class="SimpleMath">(q, { ρ, τ })</span> to the least common multiple of the orders of <span class="SimpleMath">ρ</span> and <span class="SimpleMath">τ</span>.</p>

<p>The file contains something similar to the following table.</p>


<div class="example"><pre>
rec(
identifier := "GL2",
specializedname := ( q -&gt; Concatenation( "GL(2,", String(q), ")" ) ),
size := ( q -&gt; (q^2-1)*(q^2-q) ),
text := "generic character table of GL(2,q), see Robert Steinberg: ...",
centralizers := [ function( q, k ) return (q^2-1) * (q^2-q); end,
                  ..., ..., ... ],
classparam := [ ( q -&gt; [ 0 .. q-2 ] ), ..., ..., ... ],
charparam := [ ( q -&gt; [ 0 .. q-2 ] ), ..., ..., ... ],
powermap := [ function( q, k, pow ) return [ 1, (k*pow) mod (q-1) ]; end,
              ..., ..., ... ],
orders:= [ function( q, k ) return (q-1)/Gcd( q-1, k ); end,
           ..., ..., ... ],
irreducibles := [ [ function( q, k, l ) return E(q-1)^(2*k*l); end,
                    ..., ..., ... ],
                  [ ..., ..., ..., ... ],
                  [ ..., ..., ..., ... ],
                  [ ..., ..., ..., ... ] ],
classtext := [ ..., ..., ..., ... ],
domain := IsPrimePowerInt,
isGenericTable := true )
</pre></div>

<p><a id="X7F44BD4B79473085" name="X7F44BD4B79473085"></a></p>

<h4>4.3 <span class="Heading"><strong class="pkg">Atlas</strong> Tables</span></h4>

<p>The <strong class="pkg">GAP</strong> character table library contains all character tables of bicyclic extensions of simple groups that are included in the <strong class="pkg">Atlas</strong> of Finite Groups (<a href="chapBib.html#biBCCN85">[CCN+85]</a>, from now on called <strong class="pkg">Atlas</strong>), and the Brauer tables contained in the <strong class="pkg">Atlas</strong> of Brauer Characters (<a href="chapBib.html#biBJLPW95">[JLPW95]</a>).</p>

<p>These tables have the information</p>


<pre class="normal">

origin: ATLAS of finite groups

</pre>

<p>or</p>


<pre class="normal">

origin: modular ATLAS of finite groups

</pre>

<p>in their <code class="func">InfoText</code> (<a href="../../../doc/ref/chap12.html#X871562FD7F982C12"><span class="RefLink">Reference: InfoText</span></a>) value, they are simply called <strong class="pkg">Atlas</strong> tables further on.</p>

<p>The property <code class="func">IsAtlasCharacterTable</code> (<a href="chap3.html#X867813EB79DC6953"><span class="RefLink">3.7-6</span></a>) describes which character tables are <strong class="pkg">Atlas</strong> tables.</p>

<p>For displaying <strong class="pkg">Atlas</strong> tables with the row labels used in the <strong class="pkg">Atlas</strong>, or for displaying decomposition matrices, see <code class="func">LaTeXStringDecompositionMatrix</code> (<a href="../../../doc/ref/chap71.html#X83EC921380AF9B3B"><span class="RefLink">Reference: LaTeXStringDecompositionMatrix</span></a>) and <code class="func">AtlasLabelsOfIrreducibles</code> (<a href="chap4.html#X7ADC9DC980CF0685"><span class="RefLink">4.3-6</span></a>).</p>

<p>In addition to the information given in Chapters 6 to 8 of the <strong class="pkg">Atlas</strong> which tell you how to read the printed tables, there are some rules relating these to the corresponding <strong class="pkg">GAP</strong> tables.</p>

<p><a id="X7CC608CD8690F9B1" name="X7CC608CD8690F9B1"></a></p>

<h5>4.3-1 <span class="Heading">Improvements to the <strong class="pkg">Atlas</strong></span></h5>

<p>For the <strong class="pkg">GAP</strong> Character Table Library not the printed versions of the <strong class="pkg">Atlas</strong> of Finite Groups and the <strong class="pkg">Atlas</strong> of Brauer Characters are relevant but the revised versions given by the currently three lists of improvements that are maintained by Simon Norton. The first such list is contained in <a href="chapBib.html#biBBN95">[BN95]</a>, and is printed in the Appendix of <a href="chapBib.html#biBJLPW95">[JLPW95]</a>; it contains the improvements that had been known until the <q><strong class="pkg">Atlas</strong> of Brauer Characters</q> was published. The second list contains the improvements to the <strong class="pkg">Atlas</strong> of Finite Groups that were found since the publication of <a href="chapBib.html#biBJLPW95">[JLPW95]</a>. It can be found in the internet, an HTML version at</p>

<p><span class="URL"><a href="http://web.mat.bham.ac.uk/atlas/html/atlasmods.html">http://web.mat.bham.ac.uk/atlas/html/atlasmods.html</a></span></p>

<p>and a DVI version at</p>

<p><span class="URL"><a href="http://web.mat.bham.ac.uk/atlas/html/atlasmods.dvi">http://web.mat.bham.ac.uk/atlas/html/atlasmods.dvi</a></span>.</p>

<p>The third list contains the improvements to the <strong class="pkg">Atlas</strong> of Brauer Characters, HTML and PDF versions can be found in the internet at</p>

<p><span class="URL"><a href="https://www.math.rwth-aachen.de/~MOC/ABCerr.html">https://www.math.rwth-aachen.de/~MOC/ABCerr.html</a></span></p>

<p>and</p>

<p><span class="URL"><a href="https://www.math.rwth-aachen.de/~MOC/ABCerr.pdf">https://www.math.rwth-aachen.de/~MOC/ABCerr.pdf</a></span>,</p>

<p>respectively.</p>

<p>Also some tables are regarded as <strong class="pkg">Atlas</strong> tables that are not printed in the <strong class="pkg">Atlas</strong> but available in <strong class="pkg">Atlas</strong> format, according to the lists of improvements mentioned above. Currently these are the tables related to <span class="SimpleMath">L_2(49)</span>, <span class="SimpleMath">L_2(81)</span>, <span class="SimpleMath">L_6(2)</span>, <span class="SimpleMath">O_8^-(3)</span>, <span class="SimpleMath">O_8^+(3)</span>, <span class="SimpleMath">S_10(2)</span>, and <span class="SimpleMath">^2E_6(2).3</span>.</p>

<p><a id="X7FED949A86575949" name="X7FED949A86575949"></a></p>

<h5>4.3-2 <span class="Heading">Power Maps</span></h5>

<p>For the tables of <span class="SimpleMath">3.McL</span>, <span class="SimpleMath">3_2.U_4(3)</span> and its covers, and <span class="SimpleMath">3_2.U_4(3).2_3</span> and its covers, the power maps are not uniquely determined by the information from the <strong class="pkg">Atlas</strong> but determined only up to matrix automorphisms (see <code class="func">MatrixAutomorphisms</code> (<a href="../../../doc/ref/chap71.html#X84353BB884AF0365"><span class="RefLink">Reference: MatrixAutomorphisms</span></a>)) of the irreducible characters. In these cases, the first possible map according to lexicographical ordering was chosen, and the automorphisms are listed in the <code class="func">InfoText</code> (<a href="../../../doc/ref/chap12.html#X871562FD7F982C12"><span class="RefLink">Reference: InfoText</span></a>) strings of the tables.</p>

<p><a id="X824823F47BB6AD6C" name="X824823F47BB6AD6C"></a></p>

<h5>4.3-3 <span class="Heading">Projective Characters and Projections</span></h5>

<p>If <span class="SimpleMath">G</span> (or <span class="SimpleMath">G.a</span>) has a nontrivial Schur multiplier then the attribute <code class="func">ProjectivesInfo</code> (<a href="chap3.html#X82DC2E7779322DA8"><span class="RefLink">3.7-2</span></a>) of the <strong class="pkg">GAP</strong> table object of <span class="SimpleMath">G</span> (or <span class="SimpleMath">G.a</span>) is set; the <code class="code">chars</code> component of the record in question is the list of values lists of those faithful projective irreducibles that are printed in the <strong class="pkg">Atlas</strong> (so-called <em>proxy character</em>), and the <code class="code">map</code> component lists the positions of columns in the covering for which the column is printed in the <strong class="pkg">Atlas</strong> (a so-called <em>proxy class</em>, this preimage is denoted by <span class="SimpleMath">g_0</span> in Chapter 7, Section 14 of the <strong class="pkg">Atlas</strong>).</p>

<p><a id="X78732CDF85FB6774" name="X78732CDF85FB6774"></a></p>

<h5>4.3-4 <span class="Heading">Tables of Isoclinic Groups</span></h5>

<p>As described in Chapter 6, Section 7 and in Chapter 7, Section 18 of the <strong class="pkg">Atlas</strong>, there exist two (often nonisomorphic) groups of structure <span class="SimpleMath">2.G.2</span> for a simple group <span class="SimpleMath">G</span>, which are isoclinic. The table in the <strong class="pkg">GAP</strong> Character Table Library is the one printed in the <strong class="pkg">Atlas</strong>, the table of the isoclinic variant can be constructed using <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>).</p>

<p><a id="X7C4B91CD84D5CDCC" name="X7C4B91CD84D5CDCC"></a></p>

<h5>4.3-5 <span class="Heading">Ordering of Characters and Classes</span></h5>

<p>(Throughout this section, <span class="SimpleMath">G</span> always means the simple group involved.)</p>

<ol>
<li><p>For <span class="SimpleMath">G</span> itself, the ordering of classes and characters in the <strong class="pkg">GAP</strong> table coincides with the one in the <strong class="pkg">Atlas</strong>.</p>

</li>
<li><p>For an automorphic extension <span class="SimpleMath">G.a</span>, there are three types of characters.</p>


<ul>
<li><p>If a character <span class="SimpleMath">χ</span> of <span class="SimpleMath">G</span> extends to <span class="SimpleMath">G.a</span> then the different extensions <span class="SimpleMath">χ^0, χ^1, ..., χ^{a-1}</span> are consecutive in the table of <span class="SimpleMath">G.a</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, Chapter 7, Section 16]</a>).</p>

</li>
<li><p>If some characters of <span class="SimpleMath">G</span> fuse to give a single character of <span class="SimpleMath">G.a</span> then the position of that character in the table of <span class="SimpleMath">G.a</span> is given by the position of the first involved character of <span class="SimpleMath">G</span>.</p>

</li>
<li><p>If both extension and fusion occur for a character then the resulting characters are consecutive in the table of <span class="SimpleMath">G.a</span>, and each replaces the first involved character of <span class="SimpleMath">G</span>.</p>

</li>
</ul>
</li>
<li><p>Similarly, there are different types of classes for an automorphic extension <span class="SimpleMath">G.a</span>, as follows.</p>


<ul>
<li><p>If some classes collapse then the resulting class replaces the first involved class of <span class="SimpleMath">G</span>.</p>

</li>
<li><p>For <span class="SimpleMath">a &gt; 2</span>, any proxy class and its algebraic conjugates that are not printed in the <strong class="pkg">Atlas</strong> are consecutive in the table of <span class="SimpleMath">G.a</span>; if more than two classes of <span class="SimpleMath">G.a</span> have the same proxy class (the only case that actually occurs is for <span class="SimpleMath">a = 5</span>) then the ordering of non-printed classes is the natural one of corresponding Galois conjugacy operators <span class="SimpleMath">*k</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, Chapter 7, Section 19]</a>).</p>

</li>
<li><p>For <span class="SimpleMath">a_1</span>, <span class="SimpleMath">a_2</span> dividing <span class="SimpleMath">a</span> such that <span class="SimpleMath">a_1 ≤ a_2</span>, the classes of <span class="SimpleMath">G.a_1</span> in <span class="SimpleMath">G.a</span> precede the classes of <span class="SimpleMath">G.a_2</span> not contained in <span class="SimpleMath">G.a_1</span>. This ordering is the same as in the <strong class="pkg">Atlas</strong>, with the only exception <span class="SimpleMath">U_3(8).6</span>.</p>

</li>
</ul>
</li>
<li><p>For a central extension <span class="SimpleMath">M.G</span>, there are two different types of characters, as follows.</p>


<ul>
<li><p>Each character can be regarded as a faithful character of a factor group <span class="SimpleMath">m.G</span>, where <span class="SimpleMath">m</span> divides <span class="SimpleMath">M</span>. Characters with the same kernel are consecutive as in the <strong class="pkg">Atlas</strong>, the ordering of characters with different kernels is given by the order of precedence <span class="SimpleMath">1, 2, 4, 3, 6, 12</span> for the different values of <span class="SimpleMath">m</span>.</p>

</li>
<li><p>If <span class="SimpleMath">m &gt; 2</span>, a faithful character of <span class="SimpleMath">m.G</span> that is printed in the <strong class="pkg">Atlas</strong> (a so-called <em>proxy character</em>) represents two or more Galois conjugates. In each <strong class="pkg">Atlas</strong> table in <strong class="pkg">GAP</strong>, a proxy character always precedes the non-printed characters with this proxy. The case <span class="SimpleMath">m = 12</span> is the only one that actually occurs where more than one character for a proxy is not printed. In this case, the non-printed characters are ordered according to the corresponding Galois conjugacy operators <span class="SimpleMath">*5</span>, <span class="SimpleMath">*7</span>, <span class="SimpleMath">*11</span> (in this order).</p>

</li>
</ul>
</li>
<li><p>For the classes of a central extension we have the following.</p>


<ul>
<li><p>The preimages of a <span class="SimpleMath">G</span>-class in <span class="SimpleMath">M.G</span> are subsequent, the ordering is the same as that of the lifting order rows in <a href="chapBib.html#biBCCN85">[CCN+85, Chapter 7, Section 7]</a>.</p>

</li>
<li><p>The primitive roots of unity chosen to represent the generating central element (i. e., the element in the second class of the <strong class="pkg">GAP</strong> table) are <code class="code">E(3)</code>, <code class="code">E(4)</code>, <code class="code">E(6)^5</code> (<code class="code">= E(2)*E(3)</code>), and <code class="code">E(12)^7</code> (<code class="code">= E(3)*E(4)</code>), for <span class="SimpleMath">m = 3</span>, <span class="SimpleMath">4</span>, <span class="SimpleMath">6</span>, and <span class="SimpleMath">12</span>, respectively.</p>

</li>
</ul>
</li>
<li><p>For tables of bicyclic extensions <span class="SimpleMath">m.G.a</span>, both the rules for automorphic and central extensions hold. Additionally we have the following three rules.</p>


<ul>
<li><p>Whenever classes of the subgroup <span class="SimpleMath">m.G</span> collapse in <span class="SimpleMath">m.G.a</span> then the resulting class replaces the first involved class.</p>

</li>
<li><p>Whenever characters of the subgroup <span class="SimpleMath">m.G</span> collapse fuse in <span class="SimpleMath">m.G.a</span> then the result character replaces the first involved character.</p>

</li>
<li><p>Extensions of a character are subsequent, and the extensions of a proxy character precede the extensions of characters with this proxy that are not printed.</p>

</li>
<li><p>Preimages of a class of <span class="SimpleMath">G.a</span> in <span class="SimpleMath">m.G.a</span> are subsequent, and the preimages of a proxy class precede the preimages of non-printed classes with this proxy.</p>

</li>
</ul>
</li>
</ol>
<p><a id="X7ADC9DC980CF0685" name="X7ADC9DC980CF0685"></a></p>

<h5>4.3-6 AtlasLabelsOfIrreducibles</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AtlasLabelsOfIrreducibles</code>( <var class="Arg">tbl</var>[, <var class="Arg">short</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">tbl</var> be the (ordinary or Brauer) character table of a bicyclic extension of a simple group that occurs in the <strong class="pkg">Atlas</strong> of Finite Groups <a href="chapBib.html#biBCCN85">[CCN+85]</a> or the <strong class="pkg">Atlas</strong> of Brauer Characters <a href="chapBib.html#biBJLPW95">[JLPW95]</a>. <code class="func">AtlasLabelsOfIrreducibles</code> returns a list of strings, the <span class="SimpleMath">i</span>-th entry being a label for the <span class="SimpleMath">i</span>-th irreducible character of <var class="Arg">tbl</var>.</p>

<p>The labels have the following form. We state the rules only for ordinary characters, the rules for Brauer characters are obtained by replacing <span class="SimpleMath">χ</span> by <span class="SimpleMath">φ</span>.</p>

<p>First consider only downward extensions <span class="SimpleMath">m.G</span> of a simple group <span class="SimpleMath">G</span>. If <span class="SimpleMath">m ≤ 2</span> then only labels of the form <span class="SimpleMath">χ_i</span> occur, which denotes the <span class="SimpleMath">i</span>-th ordinary character shown in the <strong class="pkg">Atlas</strong>.</p>

<p>The labels of faithful ordinary characters of groups <span class="SimpleMath">m.G</span> with <span class="SimpleMath">m ≥ 3</span> are of the form <span class="SimpleMath">χ_i</span>, <span class="SimpleMath">χ_i^*</span>, or <span class="SimpleMath">χ_i^{*k}</span>, which means the <span class="SimpleMath">i</span>-th character printed in the <strong class="pkg">Atlas</strong>, the unique character that is not printed and for which <span class="SimpleMath">χ_i</span> acts as proxy (see <a href="chapBib.html#biBCCN85">[CCN+85, Chapter 7, Sections 8 and 19]</a>), and the image of the printed character <span class="SimpleMath">χ_i</span> under the algebraic conjugacy operator <span class="SimpleMath">*k</span>, respectively.</p>

<p>For groups <span class="SimpleMath">m.G.a</span> with <span class="SimpleMath">a &gt; 1</span>, the labels of the irreducible characters are derived from the labels of the irreducible constituents of their restrictions to <span class="SimpleMath">m.G</span>, as follows.</p>

<ol>
<li><p>If the ordinary irreducible character <span class="SimpleMath">χ_i</span> of <span class="SimpleMath">m.G</span> extends to <span class="SimpleMath">m.G.a</span> then the <span class="SimpleMath">a^'</span> extensions are denoted by <span class="SimpleMath">χ_{i,0}, χ_{i,1}, ..., χ_{i,a^'}</span>, where <span class="SimpleMath">χ_{i,0}</span> is the character whose values are printed in the <strong class="pkg">Atlas</strong>.</p>

</li>
<li><p>The label <span class="SimpleMath">χ_{i_1 + i_2 + ⋯ + i_a}</span> means that <span class="SimpleMath">a</span> different characters <span class="SimpleMath">χ_{i_1}, χ_{i_2}, ..., χ_{i_a}</span> of <span class="SimpleMath">m.G</span> induce to an irreducible character of <span class="SimpleMath">m.G.a</span> with this label.</p>

<p>If either <code class="keyw">true</code> or the string <code class="code">"short"</code> is entered as the second argument then the label has the short form <span class="SimpleMath">χ_{i_1+}</span>. Note that <span class="SimpleMath">i_2, i_3, ..., i_a</span> can be read off from the fusion signs in the <strong class="pkg">Atlas</strong>.</p>

</li>
<li><p>Finally, the label <span class="SimpleMath">χ_{i_1,j_1 + i_2,j_2 + ⋯ + i_{a^'},j_{a^'}}</span> means that the characters <span class="SimpleMath">χ_{i_1}, χ_{i_2}, ..., χ_{i_{a^'}}</span> of <span class="SimpleMath">m.G</span> extend to a group that lies properly between <span class="SimpleMath">m.G</span> and <span class="SimpleMath">m.G.a</span>, and the extensions <span class="SimpleMath">χ_{i_1, j_1}, χ_{i_2, j_2}, ... χ_{i_{a^'},j_{a^'}}</span> induce to an irreducible character of <span class="SimpleMath">m.G.a</span> with this label.</p>

<p>If <code class="keyw">true</code> or the string <code class="code">"short"</code> was entered as the second argument then the label has the short form <span class="SimpleMath">χ_{i,j+}</span>.</p>

</li>
</ol>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasLabelsOfIrreducibles( CharacterTable( "3.A7.2" ) );</span>
[ "\\chi_{1,0}", "\\chi_{1,1}", "\\chi_{2,0}", "\\chi_{2,1}", 
  "\\chi_{3+4}", "\\chi_{5,0}", "\\chi_{5,1}", "\\chi_{6,0}", 
  "\\chi_{6,1}", "\\chi_{7,0}", "\\chi_{7,1}", "\\chi_{8,0}", 
  "\\chi_{8,1}", "\\chi_{9,0}", "\\chi_{9,1}", "\\chi_{17+17\\ast 2}",
  "\\chi_{18+18\\ast 2}", "\\chi_{19+19\\ast 2}", 
  "\\chi_{20+20\\ast 2}", "\\chi_{21+21\\ast 2}", 
  "\\chi_{22+23\\ast 8}", "\\chi_{22\\ast 8+23}" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasLabelsOfIrreducibles( CharacterTable( "3.A7.2" ), "short" );</span>
[ "\\chi_{1,0}", "\\chi_{1,1}", "\\chi_{2,0}", "\\chi_{2,1}", 
  "\\chi_{3+}", "\\chi_{5,0}", "\\chi_{5,1}", "\\chi_{6,0}", 
  "\\chi_{6,1}", "\\chi_{7,0}", "\\chi_{7,1}", "\\chi_{8,0}", 
  "\\chi_{8,1}", "\\chi_{9,0}", "\\chi_{9,1}", "\\chi_{17+}", 
  "\\chi_{18+}", "\\chi_{19+}", "\\chi_{20+}", "\\chi_{21+}", 
  "\\chi_{22+}", "\\chi_{23+}" ]
</pre></div>

<p><a id="X827044A37C04C0D1" name="X827044A37C04C0D1"></a></p>

<h5>4.3-7 <span class="Heading">Examples of the <strong class="pkg">Atlas</strong> Format for <strong class="pkg">GAP</strong> Tables</span></h5>

<p>We give three little examples for the conventions stated in Section <a href="chap4.html#X7F44BD4B79473085"><span class="RefLink">4.3</span></a>, listing both the <strong class="pkg">Atlas</strong> format and the table displayed by <strong class="pkg">GAP</strong>.</p>

<p>First, let <span class="SimpleMath">G</span> be the trivial group. We consider the cyclic group <span class="SimpleMath">C_6</span> of order <span class="SimpleMath">6</span>. It can be viewed in several ways, namely</p>


<ul>
<li><p>as a downward extension of the factor group <span class="SimpleMath">C_2</span> which contains <span class="SimpleMath">G</span> as a subgroup, or equivalently, as an upward extension of the subgroup <span class="SimpleMath">C_3</span> which has a factor group isomorphic to <span class="SimpleMath">G</span>:</p>

</li>
</ul>

<div class="example"><pre>
┌───────┐ ┌───────┐       ;   @   ;   ;   @      2   1   1   1   1   1   1
│       │ │       │           1           1      3   1   1   1   1   1   1
│   G   │ │  G.2  │     p power           A
│       │ │       │     p' part           A         1a  3a  3b  2a  6a  6b
└───────┘ └───────┘     ind  1A fus ind  2A     2P  1a  3b  3a  1a  3b  3a
┌───────┐ ┌───────┐                             3P  1a  1a  1a  2a  2a  2a
│       │ │       │  χ_1  +   1   :  ++   1
│  3.G  │ │ 3.G.2 │                           X.1    1   1   1   1   1   1
│       │ │       │     ind   1 fus ind   2   X.2    1   1   1  -1  -1  -1
└───────┘ └───────┘           3           6   X.3    1   A  /A   1   A  /A
                              3           6   X.4    1   A  /A  -1  -A -/A
                                              X.5    1  /A   A   1  /A   A
                     χ_2 o2   1   : oo2   1   X.6    1  /A   A  -1 -/A  -A

                                              A = E(3)
                                                = (-1+ER(-3))/2 = b3
</pre></div>


<dl>
<dt><strong class="Mark"></strong></dt>
<dd><p><code class="code">X.1</code>, <code class="code">X.2</code> extend <span class="SimpleMath">χ_1</span>. <code class="code">X.3</code>, <code class="code">X.4</code> extend the proxy character <span class="SimpleMath">χ_2</span>. <code class="code">X.5</code>, <code class="code">X.6</code> extend the not printed character with proxy <span class="SimpleMath">χ_2</span>. The classes <code class="code">1a</code>, <code class="code">3a</code>, <code class="code">3b</code> are preimages of <code class="code">1A</code>, and <code class="code">2a</code>, <code class="code">6a</code>, <code class="code">6b</code> are preimages of <code class="code">2A</code>.</p>

</dd>
</dl>

<ul>
<li><p>as a downward extension of the factor group <span class="SimpleMath">C_3</span> which contains <span class="SimpleMath">G</span> as a subgroup, or equivalently, as an upward extension of the subgroup <span class="SimpleMath">C_2</span> which has a factor group isomorphic to <span class="SimpleMath">G</span>:</p>

</li>
</ul>

<div class="example"><pre>
┌───────┐ ┌───────┐       ;   @   ;   ;   @      2   1   1   1   1   1   1
│       │ │       │           1           1      3   1   1   1   1   1   1
│   G   │ │  G.3  │     p power           A
│       │ │       │     p' part           A         1a  2a  3a  6a  3b  6b
└───────┘ └───────┘     ind  1A fus ind  3A     2P  1a  1a  3b  3b  3a  3a
┌───────┐ ┌───────┐                             3P  1a  2a  1a  2a  1a  2a
│       │ │       │  χ_1  +   1   : +oo   1
│  2.G  │ │ 2.G.3 │                           X.1    1   1   1   1   1   1
│       │ │       │     ind   1 fus ind   3   X.2    1   1   A   A  /A  /A
└───────┘ └───────┘           2           6   X.3    1   1  /A  /A   A   A
                                              X.4    1  -1   1  -1   1  -1
                     χ_2  +   1   : +oo   1   X.5    1  -1   A  -A  /A -/A
                                              X.6    1  -1  /A -/A   A  -A

                                              A = E(3)
                                                = (-1+ER(-3))/2 = b3
</pre></div>


<dl>
<dt><strong class="Mark"></strong></dt>
<dd><p><code class="code">X.1</code> to <code class="code">X.3</code> extend <span class="SimpleMath">χ_1</span>, <code class="code">X.4</code> to <code class="code">X.6</code> extend <span class="SimpleMath">χ_2</span>. The classes <code class="code">1a</code> and <code class="code">2a</code> are preimages of <code class="code">1A</code>, <code class="code">3a</code> and <code class="code">6a</code> are preimages of the proxy class <code class="code">3A</code>, and <code class="code">3b</code> and <code class="code">6b</code> are preimages of the not printed class with proxy <code class="code">3A</code>.</p>

</dd>
</dl>

<ul>
<li><p>as a downward extension of the factor groups <span class="SimpleMath">C_3</span> and <span class="SimpleMath">C_2</span> which have <span class="SimpleMath">G</span> as a factor group:</p>

</li>
</ul>

<div class="example"><pre>
┌───────┐           ;   @        2   1   1   1   1   1   1
│       │               1        3   1   1   1   1   1   1
│   G   │         p power
│       │         p' part           1a  6a  3a  2a  3b  6b
└───────┘         ind  1A       2P  1a  3a  3b  1a  3a  3b
┌───────┐                       3P  1a  2a  1a  2a  1a  2a
│       │      χ_1  +   1
│  2.G  │                     X.1    1   1   1   1   1   1
│       │         ind   1     X.2    1  ─1   1  ─1   1  ─1
└───────┘               2     X.3    1   A  /A   1   A  /A
┌───────┐                     X.4    1  /A   A   1  /A   A
│       │      χ_2  +   1     X.5    1  ─A  /A  ─1   A ─/A
│  3.G  │                     X.6    1 ─/A   A  ─1  /A  ─A
│       │         ind   1
└───────┘               3     A = E(3)
┌───────┐               3       = (─1+ER(─3))/2 = b3
│       │
│  6.G  │      χ_3 o2   1
│       │
└───────┘         ind   1
                        6
                        3
                        2
                        3
                        6

               χ_4 o2   1
</pre></div>


<dl>
<dt><strong class="Mark"></strong></dt>
<dd><p><code class="code">X.1</code>, <code class="code">X.2</code> correspond to <span class="SimpleMath">χ_1, χ_2</span>, respectively; <code class="code">X.3</code>, <code class="code">X.5</code> correspond to the proxies <span class="SimpleMath">χ_3</span>, <span class="SimpleMath">χ_4</span>, and <code class="code">X.4</code>, <code class="code">X.6</code> to the not printed characters with these proxies. The factor fusion onto <span class="SimpleMath">3.G</span> is given by <code class="code">[ 1, 2, 3, 1, 2, 3 ]</code>, that onto <span class="SimpleMath">G.2</span> by <code class="code">[ 1, 2, 1, 2, 1, 2 ]</code>.</p>

</dd>
</dl>

<ul>
<li><p>as an upward extension of the subgroups <span class="SimpleMath">C_3</span> or <span class="SimpleMath">C_2</span> which both contain a subgroup isomorphic to <span class="SimpleMath">G</span>:</p>

</li>
</ul>

<div class="example"><pre>
┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐
│       │ │       │ │       │ │       │
│   G   │ │  G.2  │ │  G.3  │ │  G.6  │
│       │ │       │ │       │ │       │
└───────┘ └───────┘ └───────┘ └───────┘

     ;   @   ;   ;   @   ;   ;   @   ;     ;   @

         1           1           1             1
   p power           A           A            AA
   p' part           A           A            AA
   ind  1A fus ind  2A fus ind  3A fus   ind  6A

χ_1  +   1   :  ++   1   : +oo   1   :+oo+oo   1


    2   1   1   1   1   1   1
    3   1   1   1   1   1   1

       1a  2a  3a  3b  6a  6b
   2P  1a  1a  3b  3a  3b  3a
   3P  1a  2a  1a  1a  2a  2a
 X.1    1   1   1   1   1   1
 X.2    1  -1   A  /A  -A -/A
 X.3    1   1  /A   A  /A   A
 X.4    1  -1   1   1  -1  -1
 X.5    1   1   A  /A   A  /A
 X.6    1  -1  /A   A -/A  -A

 A = E(3)
   = (-1+ER(-3))/2 = b3
</pre></div>


<dl>
<dt><strong class="Mark"></strong></dt>
<dd><p>The classes <code class="code">1a</code>, <code class="code">2a</code> correspond to <span class="SimpleMath">1A</span>, <span class="SimpleMath">2A</span>, respectively. <code class="code">3a</code>, <code class="code">6a</code> correspond to the proxies <span class="SimpleMath">3A</span>, <span class="SimpleMath">6A</span>, and <code class="code">3b</code>, <code class="code">6b</code> to the not printed classes with these proxies.</p>

</dd>
</dl>
<p>The second example explains the fusion case. Again, <span class="SimpleMath">G</span> is the trivial group.</p>


<div class="example"><pre>
┌───────┐ ┌───────┐        ;   @   ;   ;  @      3.G.2
│       │ │       │            1          1
│   G   │ │  G.2  │      p power          A         2   1   .   1
│       │ │       │      p' part          A         3   1   1   .
└───────┘ └───────┘      ind  1A fus ind 2A
┌───────┐ ┌───────┐                                    1a 3a 2a
│       │ │       │   χ_1  +   1   :  ++  1        2P  1a 3a 1a
│  2.G  │ │ 2.G.2 │                                3P  1a 1a 2a
│       │ │       │      ind   1 fus ind  2
└───────┘ └───────┘            2          2      X.1    1  1  1
┌───────┐ ┌───────                               X.2    1  1 ─1
│       │ │           χ_2  +   1   :  ++  1      X.3    2 ─1  .
│  3.G  │ │ 3.G.2
│       │ │              ind   1 fus ind  2
└───────┘                      3                 6.G.2
┌───────┐ ┌───────             3
│       │ │                                         2   2  1  1  2  2  2
│  6.G  │ │ 6.G.2     χ_3 o2   1   *   +            3   1  1  1  1  .  .
│       │ │
└───────┘                ind   1 fus ind  2            1a 6a 3a 2a 2b 2c
                               6          2        2P  1a 3a 3a 1a 1a 1a
                               3                   3P  1a 2a 1a 2a 2b 2c
                               2
                               3                 Y.1    1  1  1  1  1  1
                               6                 Y.2    1  1  1  1 -1 -1
                                                 Y.3    1 -1  1 -1  1 -1
                      χ_4 o2   1   *   +         Y.4    1 -1  1 -1 -1  1
                                                 Y.5    2 -1 -1  2  .  .
                                                 Y.6    2  1 -1 -2  .  .
</pre></div>

<p>The tables of <span class="SimpleMath">G</span>, <span class="SimpleMath">2.G</span>, <span class="SimpleMath">3.G</span>, <span class="SimpleMath">6.G</span> and <span class="SimpleMath">G.2</span> are known from the first example, that of <span class="SimpleMath">2.G.2</span> will be given in the next one. So here we print only the <strong class="pkg">GAP</strong> tables of <span class="SimpleMath">3.G.2 ≅ D_6</span> and <span class="SimpleMath">6.G.2 ≅ D_12</span>.</p>

<p>In <span class="SimpleMath">3.G.2</span>, the characters <code class="code">X.1</code>, <code class="code">X.2</code> extend <span class="SimpleMath">χ_1</span>; <span class="SimpleMath">χ_3</span> and its non-printed partner fuse to give <code class="code">X.3</code>, and the two preimages of <code class="code">1A</code> of order <span class="SimpleMath">3</span> collapse.</p>

<p>In <span class="SimpleMath">6.G.2</span>, <code class="code">Y.1</code> to <code class="code">Y.4</code> are extensions of <span class="SimpleMath">χ_1</span>, <span class="SimpleMath">χ_2</span>, so these characters are the inflated characters from <span class="SimpleMath">2.G.2</span> (with respect to the factor fusion <code class="code">[ 1, 2, 1, 2, 3, 4 ]</code>). <code class="code">Y.5</code> is inflated from <span class="SimpleMath">3.G.2</span> (with respect to the factor fusion <code class="code">[ 1, 2, 2, 1, 3, 3 ]</code>), and <code class="code">Y.6</code> is the result of the fusion of <span class="SimpleMath">χ_4</span> and its non-printed partner.</p>

<p>For the last example, let <span class="SimpleMath">G</span> be the elementary abelian group <span class="SimpleMath">2^2</span> of order <span class="SimpleMath">4</span>. Consider the following tables.</p>


<div class="example"><pre>
┌───────┐ ┌───────┐          ;   @   @   @   @   ;   ;   @
│       │ │       │              4   4   4   4           1
│   G   │ │  G.3  │        p power   A   A   A           A
│       │ │       │        p' part   A   A   A           A
└───────┘ └───────┘        ind  1A  2A  2B  2C fus ind  3A
┌───────┐ ┌───────┐
│       │ │       │     χ_1  +   1   1   1   1   : +oo   1
│  2.G  │ │ 2.G.3 │     χ_2  +   1   1  ─1  ─1   .   +   0
│       │ │       │     χ_3  +   1  ─1   1  ─1   |
└───────┘ └───────┘     χ_4  +   1  ─1  ─1   1   |

                           ind   1   4   4   4 fus ind   3
                                 2                       6

                        χ_5  -   2   0   0   0   : -oo   1

  G.3

     2   2   2   .   .
     3   1   .   1   1

        1a  2a  3a  3b
    2P  1a  1a  3b  3a
    3P  1a  2a  1a  1a

  X.1    1   1   1   1
  X.2    1   1   A  /A
  X.3    1   1  /A   A         2.G.3
  X.4    3  -1   .   .
                                  2   3   3   2   1   1   1   1
  A = E(3)                        3   1   1   .   1   1   1   1
    = (-1+ER(-3))/2 = b3
                                     1a  2a  4a  3a  6a  3b  6b
  2.G                            2P  1a  1a  2a  3b  3b  3a  3a
                                 3P  1a  2a  4a  1a  2a  1a  2a
     2   3   3   2   2   2
                               X.1    1   1   1   1   1   1   1
        1a  2a  4a  4b  4c     X.2    1   1   1   A   A  /A  /A
    2P  1a  1a  2a  1a  1a     X.3    1   1   1  /A  /A   A   A
    3P  1a  2a  4a  4b  4c     X.4    3   3  -1   .   .   .   .
                               X.5    2  -2   .   1   1   1   1
  X.1    1   1   1   1   1     X.6    2  -2   .   A  -A  /A -/A
  X.2    1   1   1  -1  -1     X.7    2  -2   .  /A -/A   A  -A
  X.3    1   1  -1   1  -1
  X.4    1   1  -1  -1   1     A = E(3)
  X.5    2  -2   .   .   .       = (-1+ER(-3))/2 = b3
</pre></div>

<p>In the table of <span class="SimpleMath">G.3 ≅ A_4</span>, the characters <span class="SimpleMath">χ_2</span>, <span class="SimpleMath">χ_3</span>, and <span class="SimpleMath">χ_4</span> fuse, and the classes <code class="code">2A</code>, <code class="code">2B</code> and <code class="code">2C</code> collapse. For getting the table of <span class="SimpleMath">2.G ≅ Q_8</span>, one just has to split the class <code class="code">2A</code> and adjust the representative orders. Finally, the table of <span class="SimpleMath">2.G.3 ≅ SL_2(3)</span> is given; the class fusion corresponding to the injection <span class="SimpleMath">2.G ↪ 2.G.3</span> is <code class="code">[ 1, 2, 3, 3, 3 ]</code>, and the factor fusion corresponding to the epimorphism <span class="SimpleMath">2.G.3 → G.3</span> is <code class="code">[ 1, 1, 2, 3, 3, 4, 4 ]</code>.</p>

<p><a id="X7BC3F0B0814D5B67" name="X7BC3F0B0814D5B67"></a></p>

<h4>4.4 <span class="Heading"><strong class="pkg">CAS</strong> Tables</span></h4>

<p>One of the predecessors of <strong class="pkg">GAP</strong> was <strong class="pkg">CAS</strong> (<em>C</em>haracter <em>A</em>lgorithm <em>S</em>ystem, see <a href="chapBib.html#biBNPP84">[NPP84]</a>), which had also a library of character tables. All these character tables are available in <strong class="pkg">GAP</strong> except if stated otherwise in the file <code class="file">doc/ctbldiff.pdf</code>. This sublibrary has been completely revised before it was included in <strong class="pkg">GAP</strong>, for example, errors have been corrected and power maps have been completed.</p>

<p>Any <strong class="pkg">CAS</strong> table is accessible by each of its <strong class="pkg">CAS</strong> names (except if stated otherwise in <code class="file">doc/ctbldiff.pdf</code>), that is, the table name or the filename used in <strong class="pkg">CAS</strong>.</p>

<p><a id="X786A80A279674E91" name="X786A80A279674E91"></a></p>

<h5>4.4-1 CASInfo</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CASInfo</code>( <var class="Arg">tbl</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">tbl</var> be an ordinary character table in the <strong class="pkg">GAP</strong> library that was (up to permutations of classes and characters) contained already in the <strong class="pkg">CAS</strong> table library. When one fetches <var class="Arg">tbl</var> from the library, one does in general not get the original <strong class="pkg">CAS</strong> table. Namely, in many cases (mostly <strong class="pkg">Atlas</strong> tables, see Section <a href="chap4.html#X7F44BD4B79473085"><span class="RefLink">4.3</span></a>), the identifier of the table (see <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>)) as well as the ordering of classes and characters are different for the <strong class="pkg">CAS</strong> table and its <strong class="pkg">GAP</strong> version.</p>

<p>Note that in several cases, the <strong class="pkg">CAS</strong> library contains different tables of the same group, in particular these tables may have different names and orderings of classes and characters.</p>

<p>The <code class="func">CASInfo</code> value of <var class="Arg">tbl</var>, if stored, is a list of records, each describing the relation between <var class="Arg">tbl</var> and a character table in the <strong class="pkg">CAS</strong> library. The records have the components</p>


<dl>
<dt><strong class="Mark"><code class="code">name</code></strong></dt>
<dd><p>the name of the <strong class="pkg">CAS</strong> table,</p>

</dd>
<dt><strong class="Mark"><code class="code">permchars</code> and <code class="code">permclasses</code></strong></dt>
<dd><p>permutations of the <code class="func">Irr</code> (<a href="../../../doc/ref/chap71.html#X873B3CC57E9A5492"><span class="RefLink">Reference: Irr</span></a>) values and the classes of <var class="Arg">tbl</var>, respectively, that must be applied in order to get the orderings in the original <strong class="pkg">CAS</strong> table, and</p>

</dd>
<dt><strong class="Mark"><code class="code">text</code></strong></dt>
<dd><p>the text that was stored on the <strong class="pkg">CAS</strong> table (which may contain incorrect statements).</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "m10" );</span>
CharacterTable( "A6.2_3" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">HasCASInfo( tbl );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CASInfo( tbl );</span>
[ rec( name := "m10", permchars := (3,5)(4,8,7,6), permclasses := (), 
      text := "names:     m10\norder:     2^4.3^2.5 = 720\nnumber of c\
lasses: 8\nsource:    cambridge atlas\ncomments:  point stabilizer of \
mathieu-group m11\ntest:      orth, min, sym[3]\n" ) ]
</pre></div>

<p>The class fusions stored on tables from the <strong class="pkg">CAS</strong> library have been computed anew with <strong class="pkg">GAP</strong>; the <code class="code">text</code> component of such a fusion record tells if the fusion map is equal to that in the <strong class="pkg">CAS</strong> library, up to the permutation of classes between the table in <strong class="pkg">CAS</strong> and its <strong class="pkg">GAP</strong> version.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">First( ComputedClassFusions( tbl ), x -&gt; x.name = "M11" );</span>
rec( map := [ 1, 2, 3, 4, 5, 4, 7, 8 ], name := "M11", 
  text := "fusion is unique up to table automorphisms,\nthe representa\
tive is equal to the fusion map on the CAS table" )
</pre></div>

<p><a id="X835811C279FB1E56" name="X835811C279FB1E56"></a></p>

<h4>4.5 <span class="Heading">Customizations of the <strong class="pkg">GAP</strong> Character Table Library</span></h4>

<p><a id="X8202ACD57ACD5CAC" name="X8202ACD57ACD5CAC"></a></p>

<h5>4.5-1 <span class="Heading">Installing the <strong class="pkg">GAP</strong> Character Table Library</span></h5>

<p>To install the package unpack the archive file in a directory in the <code class="file">pkg</code> directory of your local copy of <strong class="pkg">GAP</strong> 4. This might be the <code class="file">pkg</code> directory of the <strong class="pkg">GAP</strong> 4 home directory, see Section <a href="../../../doc/ref/chap76.html#X82473E4B8756C6CD"><span class="RefLink">Reference: Installing a GAP Package</span></a> for details. It is however also possible to keep an additional <code class="file">pkg</code> directory in your private directories, see <a href="../../../doc/ref/chap9.html#X7A4973627A5DB27D"><span class="RefLink">Reference: GAP Root Directories</span></a>. The latter possibility <em>must</em> be chosen if you do not have write access to the <strong class="pkg">GAP</strong> root directory.</p>

<p>The package consists entirely of <strong class="pkg">GAP</strong> code, no external binaries need to be compiled.</p>

<p>For checking the installation of the package, you should start <strong class="pkg">GAP</strong> and call</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ReadPackage( "ctbllib", "tst/testinst.g" );</span>
</pre></div>

<p>If the installation is o. k. then <code class="keyw">true</code> is printed, and the <strong class="pkg">GAP</strong> prompt appears again; otherwise the output lines tell you what should be changed.</p>

<p>More testfiles are available in the <code class="file">tst</code> directory of the package.</p>

<p>PDF and HTML versions of the package manual are available in the <code class="file">doc</code> directory of the package.</p>

<p><a id="X83FA9D6B86150501" name="X83FA9D6B86150501"></a></p>

<h5>4.5-2 <span class="Heading">Unloading Character Table Data</span></h5>

<p>Data files from the <strong class="pkg">GAP</strong> Character Table Library may be read only once during a <strong class="pkg">GAP</strong> session –this is efficient but requires memory– or the cached data may be erased as soon as a second data file is to be read –this requires less memory but is usually less efficient.</p>

<p>One can choose between these two possibilities via the user preference <code class="code">"UnloadCTblLibFiles"</code> of the <strong class="pkg">CTblLib</strong> package, see <code class="func">UserPreference</code> (<a href="../../../doc/ref/chap3.html#X7B0AD104839B6C3C"><span class="RefLink">Reference: UserPreference</span></a>). The default value of this preference is <code class="keyw">true</code>, that is, the contents of only one data file is kept in memory. Call <code class="code">SetUserPreference( "CTblLib", "UnloadCTblLibFiles", false );</code> if you want to change this behaviour.</p>

<p><a id="X7E859C3482F27089" name="X7E859C3482F27089"></a></p>

<h5>4.5-3 <span class="Heading">Changing the display format of several functions</span></h5>

<p>The way how the functions <code class="func">DisplayAtlasContents</code> (<a href="chap3.html#X810789F77F20C839"><span class="RefLink">3.5-6</span></a>), <code class="func">DisplayAtlasInfo</code> (<a href="../../../pkg/atlasrep/doc/chap3.html#X79DACFFA7E2D1A99"><span class="RefLink">AtlasRep: DisplayAtlasInfo</span></a>), <code class="func">DisplayAtlasMap</code> (<a href="chap3.html#X875A6BB485A49976"><span class="RefLink">3.5-8</span></a>), and <code class="func">DisplayCTblLibInfo</code> (<a href="chap3.html#X8684C73E844E7033"><span class="RefLink">3.5-1</span></a>) show tabular information can be customized via the user preference <code class="code">"DisplayFunction"</code> of the <strong class="pkg">AtlasRep</strong> package, see Section <a href="../../../pkg/atlasrep/doc/chap4.html#X81F055037F9D3068"><span class="RefLink">AtlasRep: User preference DisplayFunction</span></a>.</p>

<p><a id="X7DFAD31F84F55870" name="X7DFAD31F84F55870"></a></p>

<h5>4.5-4 <span class="Heading">User preference <code class="code">MagmaPath</code></span></h5>

<p>This preference describes the path for calling <strong class="pkg">MAGMA</strong>. An empty string (the default) means that <strong class="pkg">MAGMA</strong> is not available.</p>

<p>This preference is used by <code class="func">CharacterTableComputedByMagma</code> (<a href="chap6.html#X824D2B4A79A9E5AE"><span class="RefLink">6.5-3</span></a>).</p>

<p><a id="X8782716579A1B993" name="X8782716579A1B993"></a></p>

<h4>4.6 <span class="Heading">Technicalities of the Access to Character Tables from the Library
</span></h4>

<p><a id="X84E18B0B84F50B1E" name="X84E18B0B84F50B1E"></a></p>

<h5>4.6-1 <span class="Heading">Data Files of the <strong class="pkg">GAP</strong> Character Table Library</span></h5>

<p>The data files of the <strong class="pkg">GAP</strong> Character Table Library reside in the <code class="file">data</code> directory of the package <strong class="pkg">CTblLib</strong>.</p>

<p>The filenames start with <code class="code">ct</code> (for <q>character table</q>), followed by either <code class="code">o</code> (for <q>ordinary</q>), <code class="code">b</code> (for <q>Brauer</q>), or <code class="code">g</code> (for <q>generic</q>), then a description of the contents (up to <span class="SimpleMath">5</span> characters, e. g., <code class="code">alter</code> for the tables of alternating and related groups), and the suffix <code class="code">.tbl</code>.</p>

<p>The file <code class="code">ctb</code><span class="SimpleMath">descr</span><code class="code">.tbl</code> contains the known Brauer tables corresponding to the ordinary tables in the file <code class="code">cto</code><span class="SimpleMath">descr</span><code class="code">.tbl</code>.</p>

<p>Each data file of the table library is supposed to consist of</p>

<ol>
<li><p>comment lines, starting with a hash character <code class="code">#</code> in the first column,</p>

</li>
<li><p>an assignment to a component of <code class="code">LIBTABLE.LOADSTATUS</code>, at the end of the file, and</p>

</li>
<li><p>function calls of the form</p>


<ul>
<li><p><code class="code">MBT( </code><span class="SimpleMath">name, data</span><code class="code"> )</code> (<q>make Brauer table</q>),</p>

</li>
<li><p><code class="code">MOT( </code><span class="SimpleMath">name, data</span><code class="code"> )</code> (<q>make ordinary table</q>),</p>

</li>
<li><p><code class="code">ALF( </code><span class="SimpleMath">from, to, map</span><code class="code"> )</code>, <code class="code">ALF( </code><span class="SimpleMath">from, to, map, textlines</span><code class="code"> )</code> (<q>add library fusion</q>),</p>

</li>
<li><p><code class="code">ALN( </code><span class="SimpleMath">name, listofnames</span><code class="code"> )</code> (<q>add library name</q>), and</p>

</li>
<li><p><code class="code">ARC( </code><span class="SimpleMath">name, component, compdata</span><code class="code"> )</code> (<q>add record component</q>).</p>

</li>
</ul>
<p>Here <span class="SimpleMath">name</span> must be the identifier value of the ordinary character table corresponding to the table to which the command refers; <span class="SimpleMath">data</span> must be a comma separated sequence of <strong class="pkg">GAP</strong> objects; <span class="SimpleMath">from</span> and <span class="SimpleMath">to</span> must be identifier values of ordinary character tables, <span class="SimpleMath">map</span> a list of positive integers, <span class="SimpleMath">textlines</span> and <span class="SimpleMath">listofnames</span> lists list of strings, <span class="SimpleMath">component</span> a string, and <span class="SimpleMath">compdata</span> any <strong class="pkg">GAP</strong> object.</p>

<p><code class="code">MOT</code>, <code class="code">ALF</code>, <code class="code">ALN</code>, and <code class="code">ARC</code> occur only in files containing ordinary character tables, and <code class="code">MBT</code> occurs only in files containing Brauer tables.</p>

</li>
</ol>
<p>Besides the above calls, the data in files containing ordinary and Brauer tables may contain only the following <strong class="pkg">GAP</strong> functions. (Files containing generic character tables may contain calls to arbitrary <strong class="pkg">GAP</strong> library functions.)</p>

<p><code class="code">ACM</code>, <code class="func">Concatenation</code> (<a href="../../../doc/ref/chap21.html#X7DF510F7848CBBFD"><span class="RefLink">Reference: concatenation of lists</span></a>), <code class="func">E</code> (<a href="../../../doc/ref/chap18.html#X8631458886314588"><span class="RefLink">Reference: E</span></a>), <code class="code">EvalChars</code>, <code class="code">GALOIS</code>, <code class="func">Length</code> (<a href="../../../doc/ref/chap21.html#X780769238600AFD1"><span class="RefLink">Reference: Length</span></a>), <code class="func">ShallowCopy</code> (<a href="../../../doc/ref/chap12.html#X846BC7107C352031"><span class="RefLink">Reference: ShallowCopy</span></a>), <code class="code">TENSOR</code>, and <code class="func">TransposedMat</code> (<a href="../../../doc/ref/chap24.html#X7C52A38C79C36C35"><span class="RefLink">Reference: TransposedMat</span></a>).</p>

<p>The function <code class="code">CTblLib.RecomputeTOC</code> in the file <code class="file">gap4/maketbl.g</code> of the <strong class="pkg">CTblLib</strong> package expects the file format described above, and to some extent it checks this format.</p>

<p>The function calls may be continued over several lines of a file. A semicolon is assumed to be the last character in its line if and only if it terminates a function call.</p>

<p>Names of character tables are strings (see Chapter <a href="../../../doc/ref/chap27.html#X7D28329B7EDB8F47"><span class="RefLink">Reference: Strings and Characters</span></a>), i. e., they are enclosed in double quotes; <em>strings in table library files must not be split over several lines</em>, because otherwise the function <code class="code">CTblLib.RecomputeTOC</code> may get confused. Additionally, no character table name is allowed to contain double quotes.</p>

<p>There are three different ways how the table data can be stored in the file.</p>


<dl>
<dt><strong class="Mark">Full ordinary tables</strong></dt>
<dd><p>are encoded by a call to the function <code class="code">MOT</code>, where the arguments correspond to the relevant attribute values; each fusion into another library table is added by a call to <code class="code">ALF</code>, values to be stored in components of the table object are added with <code class="code">ARC</code>, and admissible names are notified with <code class="code">ALN</code>. The argument of <code class="code">MOT</code> that encodes the irreducible characters is abbreviated as follows. For each subset of characters that differ just by multiplication with a linear character or by Galois conjugacy, only the first one is given by its values, the others are replaced by <code class="code">[TENSOR,[i,j]]</code> (which means that the character is the tensor product of the <code class="code">i</code>-th and the <code class="code">j</code>-th character in the list) or <code class="code">[GALOIS,[i,j]]</code> (which means that the character is obtained from the <code class="code">i</code>-th character by applying <code class="code">GaloisCyc( ., j )</code> to it).</p>

</dd>
<dt><strong class="Mark">Brauer tables</strong></dt>
<dd><p>are stored relative to the corresponding ordinary tables; attribute values that can be computed by restricting from the ordinary table to <span class="SimpleMath">p</span>-regular classes are not stored, and instead of the irreducible characters the files contain (inverses of) decomposition matrices or Brauer trees for the blocks of nonzero defect.</p>

</dd>
<dt><strong class="Mark">Ordinary construction tables</strong></dt>
<dd><p>have the attribute <code class="func">ConstructionInfoCharacterTable</code> (<a href="chap3.html#X851118377D1D6EC9"><span class="RefLink">3.7-4</span></a>) set, with value a list that contains the name of the construction function used and the arguments for a call to this function; the function call is performed by <code class="func">CharacterTable</code> (<a href="../../../doc/ref/chap71.html#X7FCA7A7A822BDA33"><span class="RefLink">Reference: CharacterTable</span></a>) when the table is constructed (<em>not</em> when the file containing the table is read). One aim of this mechanism is to store structured character tables such as tables of direct products and tables of central extensions of other tables in a compact way, see Chapter <a href="chap5.html#X7B915AD178236991"><span class="RefLink">5</span></a>.</p>

</dd>
</dl>
<p><a id="X84E728FD860CAC0F" name="X84E728FD860CAC0F"></a></p>

<h5>4.6-2 LIBLIST</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LIBLIST</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p><strong class="pkg">GAP</strong>'s knowledge about the ordinary character tables in the <strong class="pkg">GAP</strong> Character Table Library is given by several JSON format files that get evaluated when the file <code class="file">gap4/ctprimar.g</code> (the <q>primary file</q> of the character table library) is read. These files can be produced from the data files, see Section <a href="chap4.html#X84E18B0B84F50B1E"><span class="RefLink">4.6-1</span></a>.</p>

<p>The information is stored in the global variable <code class="func">LIBLIST</code>, which is a record with the following components.</p>


<dl>
<dt><strong class="Mark"><code class="code">firstnames</code></strong></dt>
<dd><p>the list of <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) values of the ordinary tables,</p>

</dd>
<dt><strong class="Mark"><code class="code">files</code></strong></dt>
<dd><p>the list of filenames containing the data of ordinary tables,</p>

</dd>
<dt><strong class="Mark"><code class="code">filenames</code></strong></dt>
<dd><p>a list of positive integers, value <span class="SimpleMath">j</span> at position <span class="SimpleMath">i</span> means that the table whose identifier is the <span class="SimpleMath">i</span>-th in the <code class="code">firstnames</code> list is contained in the <span class="SimpleMath">j</span>-th file of the <code class="code">files</code> component,</p>

</dd>
<dt><strong class="Mark"><code class="code">fusionsource</code></strong></dt>
<dd><p>a list containing at position <span class="SimpleMath">i</span> the list of names of tables that store a fusion into the table whose identifier is the <span class="SimpleMath">i</span>-th in the <code class="code">firstnames</code> list,</p>

</dd>
<dt><strong class="Mark"><code class="code">allnames</code></strong></dt>
<dd><p>a list of all admissible names of ordinary library tables,</p>

</dd>
<dt><strong class="Mark"><code class="code">position</code></strong></dt>
<dd><p>a list that stores at position <span class="SimpleMath">i</span> the position in <code class="code">firstnames</code> of the identifier of the table with the <span class="SimpleMath">i</span>-th admissible name in <code class="code">allnames</code>,</p>

</dd>
<dt><strong class="Mark"><code class="code">simpleinfo</code></strong></dt>
<dd><p>a list of triples <span class="SimpleMath">[ m, name, a ]</span> describing the tables of simple groups in the library; <span class="SimpleMath">name</span> is the identifier of the table, <span class="SimpleMath">m</span><code class="code">.</code><span class="SimpleMath">name</span> and <span class="SimpleMath">name</span><code class="code">.</code><span class="SimpleMath">a</span> are admissible names for its Schur multiplier and automorphism group, respectively, if these tables are available at all,</p>

</dd>
<dt><strong class="Mark"><code class="code">sporadicSimple</code></strong></dt>
<dd><p>a list of identifiers of the tables of the <span class="SimpleMath">26</span> sporadic simple groups, and</p>

</dd>
<dt><strong class="Mark"><code class="code">GENERIC</code></strong></dt>
<dd><p>a record with information about generic tables (see Section <a href="chap4.html#X81E3F9A384365282"><span class="RefLink">4.2</span></a>).</p>

</dd>
</dl>
<p><a id="X80B7DF9C83A0F3F1" name="X80B7DF9C83A0F3F1"></a></p>

<h5>4.6-3 LibInfoCharacterTable</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LibInfoCharacterTable</code>( <var class="Arg">tblname</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>is a record with the components</p>


<dl>
<dt><strong class="Mark"><code class="code">firstName</code></strong></dt>
<dd><p>the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) value of the library table for which <var class="Arg">tblname</var> is an admissible name, and</p>

</dd>
<dt><strong class="Mark"><code class="code">fileName</code></strong></dt>
<dd><p>the name of the file in which the table data is stored.</p>

</dd>
</dl>
<p>If no such table exists in the <strong class="pkg">GAP</strong> library then <code class="keyw">fail</code> is returned.</p>

<p>If <var class="Arg">tblname</var> contains the substring <code class="code">"mod"</code> then it is regarded as the name of a Brauer table. In this case the result is computed from that for the corresponding ordinary table and the characteristic. So if the ordinary table exists then the result is a record although the Brauer table in question need not be contained in the <strong class="pkg">GAP</strong> library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LibInfoCharacterTable( "S5" );</span>
rec( fileName := "ctoalter", firstName := "A5.2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LibInfoCharacterTable( "S5mod2" );</span>
rec( fileName := "ctbalter", firstName := "A5.2mod2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LibInfoCharacterTable( "J5" );</span>
fail
</pre></div>

<p><a id="X78FFDF0F83E7EB0D" name="X78FFDF0F83E7EB0D"></a></p>

<h4>4.7 <span class="Heading">How to Extend the <strong class="pkg">GAP</strong> Character Table Library</span></h4>

<p><strong class="pkg">GAP</strong> users may want to extend the character table library in different respects.</p>


<ul>
<li><p>Probably the easiest change is to <em>add new admissible names</em> to library tables, in order to use these names in calls of <code class="func">CharacterTable</code> (<a href="chap3.html#X86C06F408706F27A"><span class="RefLink">3.1-2</span></a>). This can be done using <code class="func">NotifyNameOfCharacterTable</code> (<a href="chap4.html#X7A3B010A8790DD6E"><span class="RefLink">4.7-1</span></a>).</p>

</li>
<li><p>The next kind of changes is the <em>addition of new fusions</em> between library tables. Once a fusion map is known, it can be added to the library file containing the table of the subgroup, using the format produced by <code class="func">LibraryFusion</code> (<a href="chap4.html#X8160EA7C85DCB485"><span class="RefLink">4.7-2</span></a>).</p>

</li>
<li><p>The last kind of changes is the <em>addition of new character tables</em> to the <strong class="pkg">GAP</strong> character table library. Data files containing tables in library format (i. e., in the form of calls to <code class="code">MOT</code> or <code class="code">MBT</code>) can be produced using <code class="func">PrintToLib</code> (<a href="chap4.html#X780CBC347876A54B"><span class="RefLink">4.7-4</span></a>).</p>

<p>If you have an ordinary character table in library format which you want to add to the table library, for example because it shall be accessible via <code class="func">CharacterTable</code> (<a href="chap3.html#X86C06F408706F27A"><span class="RefLink">3.1-2</span></a>), you must notify this table, i. e., tell <strong class="pkg">GAP</strong> in which file it can be found, and which names shall be admissible for it. This can be done using <code class="func">NotifyCharacterTable</code> (<a href="chap4.html#X79366F797CD02DAF"><span class="RefLink">4.7-5</span></a>).</p>

</li>
</ul>
<p><a id="X7A3B010A8790DD6E" name="X7A3B010A8790DD6E"></a></p>

<h5>4.7-1 NotifyNameOfCharacterTable</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NotifyNameOfCharacterTable</code>( <var class="Arg">firstname</var>, <var class="Arg">newnames</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>notifies the strings in the list <var class="Arg">newnames</var> as new admissible names for the library table with <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) value <var class="Arg">firstname</var>. If there is already another library table for which some of these names are admissible then an error is signaled.</p>

<p><code class="func">NotifyNameOfCharacterTable</code> modifies the global variable <code class="func">LIBLIST</code> (<a href="chap4.html#X84E728FD860CAC0F"><span class="RefLink">4.6-2</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterTable( "private" );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NotifyNameOfCharacterTable( "A5", [ "private" ] );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a5:= CharacterTable( "private" );</span>
CharacterTable( "A5" )
</pre></div>

<p>One can notify alternative names for character tables inside data files, using the function <code class="code">ALN</code> instead of <code class="func">NotifyNameOfCharacterTable</code>. The idea is that the additional names of tables from those files can be ignored which are controlled by <code class="code">CTblLib.RecomputeTOC</code>. Therefore, <code class="code">ALN</code> is set to <code class="code">Ignore</code> before the file is read with <code class="code">CTblLib.ReadTbl</code>, otherwise <code class="code">ALN</code> is set to <code class="func">NotifyNameOfCharacterTable</code>.</p>

<p><a id="X8160EA7C85DCB485" name="X8160EA7C85DCB485"></a></p>

<h5>4.7-2 LibraryFusion</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LibraryFusion</code>( <var class="Arg">name</var>, <var class="Arg">fus</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>For a string <var class="Arg">name</var> that is an <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) value of an ordinary character table in the <strong class="pkg">GAP</strong> library, and a record <var class="Arg">fus</var> with the components</p>


<dl>
<dt><strong class="Mark"><code class="code">name</code></strong></dt>
<dd><p>the identifier of the destination table, or this table itself,</p>

</dd>
<dt><strong class="Mark"><code class="code">map</code></strong></dt>
<dd><p>the fusion map, a list of image positions,</p>

</dd>
<dt><strong class="Mark"><code class="code">text</code> (optional)</strong></dt>
<dd><p>a string describing properties of the fusion, and</p>

</dd>
<dt><strong class="Mark"><code class="code">specification</code> (optional)</strong></dt>
<dd><p>a string or an integer,</p>

</dd>
</dl>
<p><code class="func">LibraryFusion</code> returns a string whose printed value can be used to add the fusion in question to the library file containing the data for the table with identifier <var class="Arg">name</var>.</p>

<p>If <var class="Arg">name</var> is a character table then its <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) value is used as the corresponding string.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s5:= CharacterTable( "S5" );</span>
CharacterTable( "A5.2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( a5, s5 );</span>
[ [ 1, 2, 3, 4, 4 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fusion:= rec( name:= s5, map:= fus[1], text:= "unique" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Print( LibraryFusion( "A5", fusion ) );</span>
ALF("A5","A5.2",[1,2,3,4,4],[
"unique"
]);
</pre></div>

<p><a id="X79E06BD67F6BC3A5" name="X79E06BD67F6BC3A5"></a></p>

<h5>4.7-3 LibraryFusionTblToTom</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LibraryFusionTblToTom</code>( <var class="Arg">name</var>, <var class="Arg">fus</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>For a string <var class="Arg">name</var> that is an <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) value of an ordinary character table in the <strong class="pkg">GAP</strong> library, and a record <var class="Arg">fus</var> with the components</p>


<dl>
<dt><strong class="Mark"><code class="code">name</code></strong></dt>
<dd><p>the identifier of the destination table of marks, or this table itself,</p>

</dd>
<dt><strong class="Mark"><code class="code">map</code></strong></dt>
<dd><p>the fusion map, a list of image positions,</p>

</dd>
<dt><strong class="Mark"><code class="code">text</code> (optional)</strong></dt>
<dd><p>a string describing properties of the fusion, and</p>

</dd>
<dt><strong class="Mark"><code class="code">perm</code> (optional)</strong></dt>
<dd><p>a permutation,</p>

</dd>
</dl>
<p><code class="func">LibraryFusionTblToTom</code> returns a string whose printed value can be used to add the fusion in question to the library file containing the data for the table with identifier <var class="Arg">name</var>.</p>

<p>The meaning of the component <code class="code">perm</code> is as follows. Let <var class="Arg">prim</var> be the primitive permutation characters obtained by computing the <code class="func">PermCharsTom</code> (<a href="../../../doc/ref/chap70.html#X8016499282F0BA37"><span class="RefLink">Reference: PermCharsTom via fusion map</span></a>) value of the tables of marks, taking the sublist at the positions in the first component of the <code class="func">MaximalSubgroupsTom</code> (<a href="../../../doc/ref/chap70.html#X8325811586C00ECF"><span class="RefLink">Reference: MaximalSubgroupsTom</span></a>) value of the tables of marks, and restricting these lists via the <code class="code">map</code> component. Permuting <var class="Arg">prim</var> with the <code class="code">perm</code> component via <code class="func">Permuted</code> (<a href="../../../doc/ref/chap21.html#X7B5A19098406347A"><span class="RefLink">Reference: Permuted</span></a>) yields the list of permutation characters obtained by inducing the trivial characters of the subgroups given by the <code class="func">Maxes</code> (<a href="chap3.html#X8150E63F7DBDF252"><span class="RefLink">3.7-1</span></a>) value of the character table. If the component <code class="code">perm</code> is not present and if the character table has the attribute <code class="func">Maxes</code> (<a href="chap3.html#X8150E63F7DBDF252"><span class="RefLink">3.7-1</span></a>) set then the two ways of computing the primitive permutation characters yield the same list.</p>

<p>If <var class="Arg">name</var> is a character table then its <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) value is used as the corresponding string.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "A5" );     </span>
CharacterTable( "A5" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( "A5" );</span>
TableOfMarks( "A5" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleFusionsCharTableTom( tbl, tom );</span>
[ [ 1, 2, 3, 5, 5 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fusion:= rec( name:= tom, map:= fus[1], text:= "unique" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Print( LibraryFusionTblToTom( "A5", fusion ) );</span>
ARC("A5","tomfusion",rec(name:="A5",map:=[1,2,3,5,5],text:=[
"unique"
]));
</pre></div>

<p><a id="X780CBC347876A54B" name="X780CBC347876A54B"></a></p>

<h5>4.7-4 PrintToLib</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PrintToLib</code>( <var class="Arg">file</var>, <var class="Arg">tbl</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>prints the (ordinary or Brauer) character table <var class="Arg">tbl</var> in library format to the file <var class="Arg">file</var><code class="code">.tbl</code> (or to <var class="Arg">file</var> if this has already the suffix <code class="code">.tbl</code>).</p>

<p>If <var class="Arg">tbl</var> is an ordinary table then the value of the attribute <code class="func">NamesOfFusionSources</code> (<a href="../../../doc/ref/chap73.html#X7F6569D5786A9D49"><span class="RefLink">Reference: NamesOfFusionSources</span></a>) is ignored by <code class="func">PrintToLib</code>, since for library tables this information is extracted from the source files (see Section <a href="chap4.html#X84E18B0B84F50B1E"><span class="RefLink">4.6-1</span></a>).</p>

<p>The names of data files in the <strong class="pkg">GAP</strong> Character Table Library begin with <code class="code">cto</code> (for ordinary tables) or <code class="code">ctb</code> (for corresponding Brauer tables), see Section <a href="chap4.html#X8782716579A1B993"><span class="RefLink">4.6</span></a>. This is supported also for private extensions of the library, that is, if the filenames are chosen this way and the ordinary tables in the <code class="code">cto</code> files are notified via <code class="func">NotifyCharacterTable</code> (<a href="chap4.html#X79366F797CD02DAF"><span class="RefLink">4.7-5</span></a>) then the Brauer tables will be found in the <code class="code">ctb</code> files. Alternatively, if the filenames of the files with the ordinary tables do not start with <code class="code">cto</code> then <strong class="pkg">GAP</strong> expects the corresponding Brauer tables in the same file as the ordinary tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintToLib( "private", a5 );</span>
</pre></div>

<p>The above command appends the data of the table <code class="code">a5</code> to the file <code class="file">private.tbl</code>; the first lines printed to this file are</p>


<div class="example"><pre>
MOT("A5",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5]"
],
[60,4,3,5,5],
[,[1,1,3,5,4],[1,2,1,5,4],,[1,2,3,1,1]],
[[1,1,1,1,1],[3,-1,0,-E(5)-E(5)^4,-E(5)^2-E(5)^3],
[GALOIS,[2,2]],[4,0,1,-1,-1],[5,1,-1,0,0]],
[(4,5)]);
ARC("A5","projectives",["2.A5",[[2,0,-1,E(5)+E(5)^4,E(5)^2+E(5)^3],
[GALOIS,[1,2]],[4,0,1,-1,-1],[6,0,0,1,1]],]);
ARC("A5","extInfo",["2","2"]);
</pre></div>

<p><a id="X79366F797CD02DAF" name="X79366F797CD02DAF"></a></p>

<h5>4.7-5 NotifyCharacterTable</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NotifyCharacterTable</code>( <var class="Arg">firstname</var>, <var class="Arg">filename</var>, <var class="Arg">othernames</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>notifies a new ordinary table to the library. This table has <code class="func">Identifier</code> (<a href="../../../doc/ref/chap71.html#X79C40EE97890202F"><span class="RefLink">Reference: Identifier for character tables</span></a>) value <var class="Arg">firstname</var>, it is contained (in library format, see <code class="func">PrintToLib</code> (<a href="chap4.html#X780CBC347876A54B"><span class="RefLink">4.7-4</span></a>)) in the file with name <var class="Arg">filename</var> (without suffix <code class="code">.tbl</code>), and the names contained in the list <var class="Arg">othernames</var> are admissible for it.</p>

<p>If the initial part of <var class="Arg">filename</var> is one of <code class="code">~/</code>, <code class="code">/</code> or <code class="code">./</code> then it is interpreted as an <em>absolute</em> path. Otherwise it is interpreted <em>relative</em> to the <code class="file">data</code> directory of the <strong class="pkg">CTblLib</strong> package.</p>

<p><code class="func">NotifyCharacterTable</code> modifies the global variable <code class="func">LIBLIST</code> (<a href="chap4.html#X84E728FD860CAC0F"><span class="RefLink">4.6-2</span></a>) for the current <strong class="pkg">GAP</strong> session, after having checked that there is no other library table yet with an admissible name equal to <var class="Arg">firstname</var> or contained in <var class="Arg">othernames</var>.</p>

<p>For example, let us change the name <code class="code">A5</code> to <code class="code">icos</code> wherever it occurs in the file <code class="file">private.tbl</code> that was produced above, and then notify the <q>new</q> table in this file as follows. (The name change is needed because <strong class="pkg">GAP</strong> knows already a table with name <code class="code">A5</code> and would not accept to add another table with this name.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NotifyCharacterTable( "icos", "private", [] );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">icos:= CharacterTable( "icos" );</span>
CharacterTable( "icos" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( icos );</span>
icos

     2  2  2  .  .  .
     3  1  .  1  .  .
     5  1  .  .  1  1

       1a 2a 3a 5a 5b
    2P 1a 1a 3a 5b 5a
    3P 1a 2a 1a 5b 5a
    5P 1a 2a 3a 1a 1a

X.1     1  1  1  1  1
X.2     3 -1  .  A *A
X.3     3 -1  . *A  A
X.4     4  .  1 -1 -1
X.5     5  1 -1  .  .

A = -E(5)-E(5)^4
  = (1-ER(5))/2 = -b5
</pre></div>

<p>So the private table is treated as a library table. Note that the table can be accessed only if it has been notified in the current <strong class="pkg">GAP</strong> session. For frequently used private tables, it may be reasonable to put the <code class="func">NotifyCharacterTable</code> statements into your <code class="file">gaprc</code> file (see <a href="../../../doc/ref/chap3.html#X7FD66F977A3B02DF"><span class="RefLink">Reference: The gap.ini and gaprc files</span></a>), or into a file that is read via the <code class="file">gaprc</code> file.</p>

<p><a id="X8374B5D081F85DBC" name="X8374B5D081F85DBC"></a></p>

<h5>4.7-6 NotifyCharacterTables</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NotifyCharacterTables</code>( <var class="Arg">list</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>notifies several new ordinary tables to the library. The argument <var class="Arg">list</var> must be a dense list in which each entry is a lists of the form <code class="code">[ firstname, filename, othernames ]</code>, with the same meaning as the arguments of <code class="func">NotifyCharacterTable</code> (<a href="chap4.html#X79366F797CD02DAF"><span class="RefLink">4.7-5</span></a>).</p>

<p><a id="X7E3235FD7864A672" name="X7E3235FD7864A672"></a></p>

<h4>4.8 <span class="Heading">Sanity Checks for the <strong class="pkg">GAP</strong> Character Table Library</span></h4>

<p>The fact that the <strong class="pkg">GAP</strong> Character Table Library is designed as an open database (see Chapter <a href="chap1.html#X86DEA3CF7802FFF7"><span class="RefLink">1</span></a>) makes it especially desirable to have consistency checks available which can be run automatically whenever new data get added.</p>

<p>The file <code class="file">tst/testall.g</code> of the package contains <code class="func">Test</code> (<a href="../../../doc/ref/chap7.html#X87712F9D8732193C"><span class="RefLink">Reference: Test</span></a>) statements for executing a collection of such sanity checks; one can run them by calling <code class="code">ReadPackage( "CTblLib", "tst/testall.g" )</code>. If no problem occurs then <strong class="pkg">GAP</strong> prints only lines starting with one of the following.</p>


<div class="example"><pre>
+ Input file:
+ GAP4stones:
</pre></div>

<p>The examples in the package manual form a part of the tests, they are collected in the file <code class="file">tst/docxpl.tst</code> of the package.</p>

<p>The following tests concern only <em>ordinary</em> character tables. In all cases, let <span class="SimpleMath">tbl</span> be the ordinary character table of a group <span class="SimpleMath">G</span>, say. The return value is <code class="keyw">false</code> if an error occurred, and <code class="keyw">true</code> otherwise.</p>


<dl>
<dt><strong class="Mark"><code class="code">CTblLib.Test.InfoText( </code><span class="SimpleMath">tbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks some properties of the <code class="func">InfoText</code> (<a href="../../../doc/ref/chap12.html#X871562FD7F982C12"><span class="RefLink">Reference: InfoText</span></a>) value of <span class="SimpleMath">tbl</span>, if available. Currently it is not recommended to use this value programmatically. However, one can rely on the following structure of this value for tables in the <strong class="pkg">GAP</strong> Character Table Library.</p>


<ul>
<li><p>The value is a string that consists of <code class="code">\n</code> separated lines.</p>

</li>
<li><p>If a line of the form <q>maximal subgroup of <span class="SimpleMath">grpname</span></q> occurs, where <span class="SimpleMath">grpname</span> is the name of a character table, then a class fusion from the table in question to that with name <span class="SimpleMath">grpname</span> is stored.</p>

</li>
<li><p>If a line of the form <q><span class="SimpleMath">n</span>th maximal subgroup of <span class="SimpleMath">grpname</span></q> occurs then additionally the name <span class="SimpleMath">grpname</span><code class="code">M</code><span class="SimpleMath">n</span> is admissible for <span class="SimpleMath">tbl</span>. Furthermore, if the table with name <span class="SimpleMath">grpname</span> has a <code class="func">Maxes</code> (<a href="chap3.html#X8150E63F7DBDF252"><span class="RefLink">3.7-1</span></a>) value then <span class="SimpleMath">tbl</span> is referenced in position <span class="SimpleMath">n</span> of this list.</p>

</li>
</ul>
</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.RelativeNames( </code><span class="SimpleMath">tbl</span><code class="code">[, </code><span class="SimpleMath">tblname</span><code class="code">] )</code></strong></dt>
<dd><p>checks some properties of those admissible names for <span class="SimpleMath">tbl</span> that refer to a related group <span class="SimpleMath">H</span>, say. Let <span class="SimpleMath">name</span> be an admissible name for the character table of <span class="SimpleMath">H</span>. (In particular, <span class="SimpleMath">name</span> is not an empty string.) Then the following relative names are considered.</p>


<dl>
<dt><strong class="Mark"><span class="SimpleMath">name</span><code class="code">M</code><span class="SimpleMath">n</span></strong></dt>
<dd><p><span class="SimpleMath">G</span> is isomorphic with the groups in the <span class="SimpleMath">n</span>-th class of maximal subgroups of <span class="SimpleMath">H</span>. An example is <code class="code">"M12M1"</code> for the Mathieu group <span class="SimpleMath">M_11</span>. We consider only cases where <span class="SimpleMath">name</span> does <em>not</em> contain the letter <code class="code">x</code>. For example, <code class="code">2xM12</code> denotes the direct product of a cyclic group of order two and the Mathieu group <span class="SimpleMath">M_12</span> but <em>not</em> a maximal subgroup of <q><code class="code">2x</code></q>. Similarly, <code class="code">3x2.M22M5</code> denotes the direct product of a cyclic group of order three and a group in the fifth class of maximal subgroups of <span class="SimpleMath">2.M_22</span> but <em>not</em> a maximal subgroup of <q><code class="code">3x2.M22</code></q>.</p>

</dd>
<dt><strong class="Mark"><span class="SimpleMath">name</span><code class="code">N</code><span class="SimpleMath">p</span></strong></dt>
<dd><p><span class="SimpleMath">G</span> is isomorphic with the normalizers of the Sylow <span class="SimpleMath">p</span>-subgroups of <span class="SimpleMath">H</span>. An example is <code class="code">"M24N2"</code> for the (self-normalizing) Sylow <span class="SimpleMath">2</span>-subgroup in the Mathieu group <span class="SimpleMath">M_24</span>.</p>

</dd>
<dt><strong class="Mark"><span class="SimpleMath">name</span><code class="code">N</code><span class="SimpleMath">cnam</span></strong></dt>
<dd><p><span class="SimpleMath">G</span> is isomorphic with the normalizers of the cyclic subgroups generated by the elements in the class with the name <span class="SimpleMath">cnam</span> of <span class="SimpleMath">H</span>. An example is <code class="code">"O7(3)N3A"</code> for the normalizer of an element in the class <code class="code">3A</code> of the simple group <span class="SimpleMath">O_7(3)</span>.</p>

</dd>
<dt><strong class="Mark"><span class="SimpleMath">name</span><code class="code">C</code><span class="SimpleMath">cnam</span></strong></dt>
<dd><p><span class="SimpleMath">G</span> is isomorphic with the groups in the centralizers of the elements in the class with the name <span class="SimpleMath">cnam</span> of <span class="SimpleMath">H</span>. An example is <code class="code">"M24C2A"</code> for the centralizer of an element in the class <code class="code">2A</code> in the Mathieu group <span class="SimpleMath">M_24</span>.</p>

</dd>
</dl>
<p>In these cases, <code class="code">CTblLib.Test.RelativeNames</code> checks whether a library table with the admissible name <span class="SimpleMath">name</span> exists and a class fusion to <span class="SimpleMath">tbl</span> is stored on this table.</p>

<p>In the case of Sylow <span class="SimpleMath">p</span>-normalizers, it is also checked whether <span class="SimpleMath">G</span> contains a normal Sylow <span class="SimpleMath">p</span>-subgroup of the same order as the Sylow <span class="SimpleMath">p</span>-subgroups in <span class="SimpleMath">H</span>. If the normal Sylow <span class="SimpleMath">p</span>-subgroup of <span class="SimpleMath">G</span> is cyclic then it is also checked whether <span class="SimpleMath">G</span> is the full Sylow <span class="SimpleMath">p</span>-normalizer in <span class="SimpleMath">H</span>. (In general this information cannot be read off from the character table of <span class="SimpleMath">H</span>).</p>

<p>In the case of normalizers (centralizers) of cyclic subgroups, it is also checked whether <span class="SimpleMath">H</span> really normalizes (centralizes) a subgroup of the given order, and whether the class fusion from <span class="SimpleMath">tbl</span> to the table of <span class="SimpleMath">H</span> is compatible with the relative name.</p>

<p>If the optional argument <span class="SimpleMath">tblname</span> is given then only this name is tested. If there is only one argument then all admissible names for <span class="SimpleMath">tbl</span> are tested.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.FindRelativeNames( </code><span class="SimpleMath">tbl</span><code class="code"> )</code></strong></dt>
<dd><p>runs over the class fusions stored on <span class="SimpleMath">tbl</span>. If <span class="SimpleMath">tbl</span> is the full centralizer/normalizer of a cyclic subgroup in the table to which the class fusion points then the function proposes to make the corresponding relative name an admissible name for <span class="SimpleMath">tbl</span>.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.PowerMaps( </code><span class="SimpleMath">tbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks whether all <span class="SimpleMath">p</span>-th power maps are stored on <span class="SimpleMath">tbl</span>, for prime divisors <span class="SimpleMath">p</span> of the order of <span class="SimpleMath">G</span>, and whether they are correct. (This includes the information about uniqueness of the power maps.)</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.TableAutomorphisms( </code><span class="SimpleMath">tbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks whether the table automorphisms are stored on <span class="SimpleMath">tbl</span>, and whether they are correct. Also all available Brauer tables of <span class="SimpleMath">tbl</span> are checked.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.CompatibleFactorFusions( </code><span class="SimpleMath">tbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks whether triangles and quadrangles of factor fusions from <span class="SimpleMath">tbl</span> to other library tables commute (where the entries in the list <code class="code">CTblLib.IgnoreFactorFusionsCompatibility</code> are excluded from the tests), and whether the factor fusions commute with the actions of corresponding outer automorphisms.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.FactorsModPCore( </code><span class="SimpleMath">tbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks, for all those prime divisors <span class="SimpleMath">p</span> of the order of <span class="SimpleMath">G</span> such that <span class="SimpleMath">G</span> is not <span class="SimpleMath">p</span>-solvable, whether the factor fusion to the character table of <span class="SimpleMath">G/O_p(G)</span> is stored on <span class="SimpleMath">tbl</span>.</p>

<p>Note that if <span class="SimpleMath">G</span> is not <span class="SimpleMath">p</span>-solvable and <span class="SimpleMath">O_p(G)</span> is nontrivial then we can compute the <span class="SimpleMath">p</span>-modular Brauer table of <span class="SimpleMath">G</span> if that of the factor group <span class="SimpleMath">G/O_p(G)</span> is available. The availability of this table is indicated via the availability of the factor fusion from <span class="SimpleMath">tbl</span>.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.Fusions( </code><span class="SimpleMath">tbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks the class fusions that are stored on the table <span class="SimpleMath">tbl</span>: No duplicates shall occur, each subgroup fusion or factor fusion is tested using <code class="code">CTblLib.Test.SubgroupFusion</code> or <code class="code">CTblLib.Test.FactorFusion</code>, respectively, and a fusion to the table of marks for <span class="SimpleMath">tbl</span> is tested using <code class="code">CTblLib.Test.FusionToTom</code>.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.Maxes( </code><span class="SimpleMath">tbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks for those character tables <span class="SimpleMath">tbl</span> that have the <code class="func">Maxes</code> (<a href="chap3.html#X8150E63F7DBDF252"><span class="RefLink">3.7-1</span></a>) set whether the character tables with the given names are really available, that they are ordered w.r.t. non-increasing group order, and that the fusions into <span class="SimpleMath">tbl</span> are stored.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.ClassParameters( </code><span class="SimpleMath">tbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks the compatibility of class parameters of alternating and symmetric groups (partitions describing cycle structures), using the underlying group stored in the corresponding table of marks.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.TablesOfSymmetricGroup( </code><span class="SimpleMath">n</span><code class="code"> )</code></strong></dt>
<dd><p>checks that the class parameters and character parameters of the two ordinary character tables of the symmetric group of degree <span class="SimpleMath">n</span> (from the <strong class="pkg">Atlas</strong> and from the <strong class="pkg">SpinSym</strong> package) are consistent, and that the parameters for the ordinary tables are consistent with those for the Brauer tables. The interesting values of <var class="Arg">n</var> are in <code class="code">[ 5 .. 19 ]</code>.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.Constructions( </code><span class="SimpleMath">tbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks the <code class="func">ConstructionInfoCharacterTable</code> (<a href="chap3.html#X851118377D1D6EC9"><span class="RefLink">3.7-4</span></a>) status for the table <span class="SimpleMath">tbl</span>: If this attribute value is set then tests depending on this value are executed; if this attribute is not set then it is checked whether a description of <span class="SimpleMath">tbl</span> via a construction would be appropriate.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.ExtensionInfo( </code><span class="SimpleMath">tbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks whether the attribute <code class="func">ExtensionInfoCharacterTable</code> (<a href="chap3.html#X82A008987DB887C2"><span class="RefLink">3.7-3</span></a>) is known for all nonabelian simple character tables that are not duplicates.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.GroupForGroupInfo( </code><span class="SimpleMath">tbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks that the entries in the list returned by <code class="func">GroupInfoForCharacterTable</code> (<a href="chap3.html#X78DCD38B7D96D8A4"><span class="RefLink">3.3-1</span></a>) fit to the character table <span class="SimpleMath">tbl</span>.</p>

</dd>
</dl>
<p>The following tests concern only <em>modular</em> character tables. In all cases, let <span class="SimpleMath">modtbl</span> be a Brauer character table of a group <span class="SimpleMath">G</span>, say.</p>


<dl>
<dt><strong class="Mark"><code class="code">CTblLib.Test.BlocksInfo( </code><span class="SimpleMath">modtbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks whether the decomposition matrices of all blocks of the Brauer table <span class="SimpleMath">modtbl</span> are integral, as well as the inverses of their restrictions to basic sets.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.TensorDecomposition( </code><span class="SimpleMath">modtbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks whether the tensor products of irreducible Brauer characters of the Brauer table <span class="SimpleMath">modtbl</span> decompose into Brauer characters.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.Indicators( </code><span class="SimpleMath">modtbl</span><code class="code"> )</code></strong></dt>
<dd><p>checks the <span class="SimpleMath">2</span>-nd indicators of the Brauer table <span class="SimpleMath">modtbl</span>: The indicator of a Brauer character is zero iff it has at least one nonreal value. In odd characteristic, the indicator of an irreducible Brauer character is equal to the indicator of any ordinary irreducible character that contains it as a constituent, with odd multiplicity. In characteristic two, we test that all nontrivial real irreducible Brauer characters have even degree, and that irreducible Brauer characters with indicator <span class="SimpleMath">-1</span> lie in the principal block.</p>

</dd>
<dt><strong class="Mark"><code class="code">CTblLib.Test.FactorBlocks( </code><span class="SimpleMath">modtbl</span><code class="code"> )</code></strong></dt>
<dd><p>If the Brauer table <span class="SimpleMath">modtbl</span> is encoded using references to tables of factor groups then we must make sure that the irreducible characters of the underlying ordinary table and the factors in question are sorted compatibly. (Note that we simply take over the block information about the factors, without applying an explicit mapping.)</p>

</dd>
</dl>
<p><a id="X7D24C9D17DAB50D0" name="X7D24C9D17DAB50D0"></a></p>

<h4>4.9 <span class="Heading">Maintenance of the <strong class="pkg">GAP</strong> Character Table Library</span></h4>

<p>It is of course desirable that the information in the <strong class="pkg">GAP</strong> Character Table Library is consistent with related data. For example, the ordering of the classes of maximal subgroups stored in the <code class="func">Maxes</code> (<a href="chap3.html#X8150E63F7DBDF252"><span class="RefLink">3.7-1</span></a>) list of the character table of a group <span class="SimpleMath">G</span>, say, should correspond to the ordering shown for <span class="SimpleMath">G</span> in the <strong class="pkg">Atlas</strong> of Finite Groups <a href="chapBib.html#biBCCN85">[CCN+85]</a>, to the ordering of maximal subgroups used for <span class="SimpleMath">G</span> in the <strong class="pkg">AtlasRep</strong>, and to the ordering of maximal subgroups in the table of marks of <span class="SimpleMath">G</span>. The fact that the related data collections are developed independently makes it difficult to achieve this kind of consistency. Sometimes it is unavoidable to <q>adjust</q> data of the <strong class="pkg">GAP</strong> Character Table Library to external data.</p>

<p>An important issue is the consistency of class fusions. Usually such fusions are determined only up to table automorphisms, and one candidate can be chosen. However, other conditions such as known Brauer tables may restrict the choice. The point is that there are class fusions which predate the availability of Brauer tables in the Character Table Library (in fact many of them have been inherited from the table library of the <strong class="pkg">CAS</strong> system), but they are not compatible with the Brauer tables. For example, there are four possible class fusion from <span class="SimpleMath">M_23</span> into <span class="SimpleMath">Co_3</span>, which lie in one orbit under the relevant groups of table automorphisms; two of these maps are not compatible with the <span class="SimpleMath">3</span>-modular Brauer tables of <span class="SimpleMath">M_23</span> and <span class="SimpleMath">Co_3</span>, and unfortunately the class fusion that was stored on the <strong class="pkg">CAS</strong> tables –and that was available in version 1.0 of the <strong class="pkg">GAP</strong> Character Table Library– was one of the <em>not</em> compatible maps. One could argue that the class fusion has older rights, and that the Brauer tables should be adjusted to them, but the Brauer tables are published in the <strong class="pkg">Atlas</strong> of Brauer Characters <a href="chapBib.html#biBJLPW95">[JLPW95]</a>, which is an accepted standard.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap3.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap5.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>