File: ctbllibr.xml

package info (click to toggle)
gap-ctbllib 1.3.11-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 76,256 kB
  • sloc: xml: 41,608; makefile: 219; javascript: 155
file content (2118 lines) | stat: -rw-r--r-- 69,953 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118

<!-- %W  ctbllibr.xml    GAP 4 package CTblLib              Thomas Breuer -->


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Chapter Label="ch:ctbllibr">
<Heading>Contents of the &GAP; Character Table Library</Heading>

<Index>character tables!library of</Index>
<Index>tables!library of</Index>
<Index>library tables</Index>
<Index>generic character tables</Index>

This chapter informs you about
<List>
<Item>
  the currently available character tables
  (see Section&nbsp;<Ref Sect="sec:contents"/>),
</Item>
<Item>
  generic character tables
  (see Section&nbsp;<Ref Sect="sec:generictables"/>),
</Item>
<Item>
  the subsets of &ATLAS; tables
  (see Section&nbsp;<Ref Sect="sec:ATLAS Tables"/>)
  and &CAS; tables
  (see Section&nbsp;<Ref Sect="sec:CAS Tables"/>),
</Item>
<Item>
  installing the library, and related user preferences
  (see Section&nbsp;<Ref Sect="sec:customize"/>).
</Item>
</List>

<P/>

The following rather technical sections are thought for those
who want to maintain or extend the Character Table Library.

<P/>

<List>
<Item>
  the technicalities of the access to library tables
  (see Section&nbsp;<Ref Sect="sec:technicalities"/>),
</Item>
<Item>
  how to extend the library
  (see Section&nbsp;<Ref Sect="sec:extending"/>), and
</Item>
<Item>
  sanity checks
  (see Section&nbsp;<Ref Sect="sec:CTblLib Sanity Checks"/>).
</Item>
</List>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:contents">
<Heading>Ordinary and Brauer Tables in the &GAP; Character Table Library
</Heading>

<Index>character tables!library of</Index>
<Index>tables!library of</Index>
<Index>library of character tables</Index>

This section gives a brief overview of the contents of the &GAP;
character table library.
For the details about, e.&nbsp;g., the structure of data files,
see Section&nbsp;<Ref Sect="sec:technicalities"/>.

<P/>

The changes in the character table library since the first release of
&GAP;&nbsp;4 are listed in a file that can be fetched from

<P/>

<URL>https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/ctbldiff.htm
</URL>.

<P/>

There are three different kinds of character tables in the &GAP; library,
namely <E>ordinary character tables</E>, <E>Brauer tables</E>,
and <E>generic character tables</E>.
Note that the Brauer table and the corresponding ordinary table of a group
determine the <E>decomposition matrix</E> of the group
(and the decomposition matrices of its blocks).
These decomposition matrices can be computed from the ordinary and modular
irreducibles with &GAP;,
see Section&nbsp;<Ref Sect="Operations Concerning Blocks" BookName="ref"/>
for details.
A collection of PDF files of the known decomposition matrices
of &ATLAS; tables in the &GAP; Character Table Library can also be
found at
 
<P/>

<URL>https://www.math.rwth-aachen.de/~MOC/decomposition/</URL>.

<P/>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:contents-ordinary">
<Heading>Ordinary Character Tables</Heading>

Two different aspects are useful to list the ordinary character tables
available in &GAP;, namely the aspect of the <E>source</E> of the tables
and that of <E>relations</E> between the tables.

<P/>

As for the source, there are first of all two big sources,
namely the &ATLAS; of Finite Groups
(see Section&nbsp;<Ref Sect="sec:ATLAS Tables"/>)
and the &CAS; library of character tables (see&nbsp;<Cite Key="NPP84"/>).
Many &ATLAS; tables are contained in the &CAS; library,
and difficulties may arise because the succession of characters and classes
in &CAS; tables and &ATLAS; tables are in general different,
so see Section&nbsp;<Ref Sect="sec:CAS Tables"/> for the relations between
these two variants of character tables of the same group.
A subset of the &CAS; tables is the set of tables of
Sylow normalizers of sporadic simple groups
as published in&nbsp;<Cite Key="Ost86"/>
&nbsp;this may be viewed as another source of character tables.
The library also contains the character tables of factor groups of space
groups (computed by W.&nbsp;Hanrath, see&nbsp;<Cite Key="Han88"/>)
that are part of&nbsp;<Cite Key="HP89"/>, in the form of two microfiches;
these tables are given in &CAS; format
(see Section&nbsp;<Ref Sect="sec:CAS Tables"/>) on the microfiches,
but they had not been part of the <Q>official</Q> &CAS; library.

<P/>

To avoid confusion about the ordering of classes and characters in a given
table, authorship and so on,
the <Ref Attr="InfoText" BookName="ref"/> value of the table
contains the information
<List>
<Mark><C>origin:&nbsp;ATLAS of finite groups</C></Mark>
<Item>
  for &ATLAS; tables (see Section&nbsp;<Ref Sect="sec:ATLAS Tables"/>),
</Item>
<Mark><C>origin:&nbsp;Ostermann</C></Mark>
<Item>
  for tables contained in&nbsp;<Cite Key="Ost86"/>,
</Item>
<Mark><C>origin:&nbsp;CAS library</C></Mark>
<Item>
  for any table of the &CAS; table library that is contained
  neither in the &ATLAS; nor in&nbsp;<Cite Key="Ost86"/>,
  and
</Item>
<Mark><C>origin:&nbsp;Hanrath library</C></Mark>
<Item>
  for tables contained in the microfiches in&nbsp;<Cite Key="HP89"/>.
</Item>
</List>

The <Ref Attr="InfoText" BookName="ref"/> value usually contains
more detailed information,
for example that the table in question is the character table of a maximal
subgroup of an almost simple group.
If the table was contained in the &CAS; library
then additional information may be available via the <Ref Func="CASInfo"/>
value.

<P/>

If one is interested in the aspect of relations between the tables,
i.&nbsp;e., the internal structure of the library of ordinary tables,
the contents can be listed up the following way.

<P/>

We have

<List>
<Item>
  all &ATLAS; tables (see Section&nbsp;<Ref Sect="sec:ATLAS Tables"/>),
  i.&nbsp;e., the tables of the simple groups which are contained in the
  &ATLAS; of Finite Groups,
  and the tables of cyclic and bicyclic extensions of these groups,
</Item>
<Item>
  most tables of maximal subgroups of sporadic simple groups
  (<E>not all</E> for the Monster group),
</Item>
<Item>
  many tables of maximal subgroups of other &ATLAS; tables;
  the <Ref Func="Maxes"/> value for the table is set if all tables of maximal
  subgroups are available,
</Item>
<Item>
  the tables of many Sylow <M>p</M>-normalizers of sporadic simple groups;
  this includes the tables printed in&nbsp;<Cite Key="Ost86"/>
  except <M>J_4N2</M>, <M>Co_1N2</M>, <M>Fi_{22}N2</M>,
  but also other tables are available;
  more generally,
  several tables of normalizers of other radical <M>p</M>-subgroups are
  available, such as normalizers of defect groups of <M>p</M>-blocks,
</Item>
<Item>
  some tables of element centralizers,
</Item>
<Item>
  some tables of Sylow <M>p</M>-subgroups,
</Item>
<Item>
  and a few other tables, e.&nbsp;g.&nbsp;<C>W(F4)</C>
<!-- %T namely which? -->
</Item>
</List>

<P/>

<E>Note</E> that class fusions stored on library tables are not guaranteed
to be compatible for any two subgroups of a group and their intersection,
and they are not guaranteed to be consistent
w.&nbsp;r.&nbsp;t.&nbsp;the composition of maps.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:contents-modular">
<Heading>Brauer Tables</Heading>

The library contains all tables of the &ATLAS; of
Brauer Tables (<Cite Key="JLPW95"/>),
and many other Brauer tables of bicyclic extensions of simple groups
which are known yet.

The Brauer tables in the library contain the information
<Verb>
origin: modular ATLAS of finite groups
</Verb>
in their <Ref Attr="InfoText" BookName="ref"/> string.

</Subsection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:generictables">
<Heading>Generic Character Tables</Heading>

<Index>character tables!generic</Index>
<Index>tables!generic</Index>
<Index>library tables!generic</Index>
<Index>spin groups!character table</Index>
<Index>symmetric groups!character table</Index>
<Index>alternating groups!character table</Index>
<Index>dihedral groups!character table</Index>
<Index>Suzuki groups!character table</Index>
<Index>Weyl groups!character table</Index>
<Index>cyclic groups!character table</Index>

Generic character tables provide a means for writing down the character
tables of all groups in a (usually infinite) series of similar groups,
e.&nbsp;g., cyclic groups, or symmetric groups, or the general linear groups
GL<M>(2,q)</M> where <M>q</M> ranges over certain prime powers.

<P/>

Let <M>\{ G_q | q \in I \}</M> be such a series,
where <M>I</M> is an index set.
The character table of one fixed member <M>G_q</M> could be computed using a
function that takes <M>q</M> as only argument
and constructs the table of <M>G_q</M>.
It is, however, often desirable to compute not only the whole table but to
access just one specific character, or to compute just one character value,
without computing the whole character table.

<P/>

For example, both the conjugacy classes and the irreducible characters of
the symmetric group <M>S_n</M> are in bijection with the partitions of
<M>n</M>.
Thus for given <M>n</M> it makes sense to ask for the character corresponding
to a particular partition,
or just for its character value at another partition.

<P/>

A generic character table in &GAP; allows one such local evaluations.
In this sense, &GAP; can deal also with character tables that are too big
to be computed and stored as a whole.

<P/>

Currently the only operations for generic tables supported by &GAP; are
the specialisation of the parameter <M>q</M> in order to compute the whole
character table of <M>G_q</M>, and local evaluation
(see&nbsp;<Ref Func="ClassParameters" BookName="ref"/> for an example).
&GAP; does <E>not</E> support the computation of, e.&nbsp;g.,
generic scalar products.

<P/>

While the numbers of conjugacy classes for the members of a series of groups
are usually not bounded,
there is always a fixed finite number of <E>types</E> (equivalence classes)
of conjugacy classes;
very often the equivalence relation is isomorphism of the centralizers of the
representatives.

<P/>

For each type <M>t</M> of classes and a fixed <M>q \in I</M>,
a <E>parametrisation</E> of the classes in <M>t</M> is a function
that assigns to each conjugacy class of <M>G_q</M> in <M>t</M>
a <E>parameter</E> by which it is uniquely determined.
Thus the classes are indexed by pairs <M>[t,p_t]</M> consisting of
a type <M>t</M> and a parameter <M>p_t</M> for that type.

<P/>

For any generic table, there has to be a fixed number of types of irreducible
characters of <M>G_q</M>, too.
Like the classes, the characters of each type are parametrised.

<P/>

In &GAP;, the parametrisations of classes and characters for tables
computed from generic tables is stored using the attributes
<Ref Attr="ClassParameters" BookName="ref"/> and
<Ref Attr="CharacterParameters" BookName="ref"/>.


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:generictablesavailable">
<Heading>Available generic character tables</Heading>

Currently, generic tables of the following groups
&ndash;in alphabetical order&ndash; are available in &GAP;.
(A list of the names of generic tables known to &GAP; is
<C>LIBTABLE.GENERIC.firstnames</C>.)
We list the function calls needed to get a specialized table,
the generic table itself can be accessed by calling
<Ref Func="CharacterTable" BookName="ref"/>
with the first argument only;
for example, <C>CharacterTable( "Cyclic" )</C> yields the generic table of
cyclic groups.

<List>
<Mark><C>CharacterTable( "Alternating", </C><M>n</M><C> )</C></Mark>
<Item>
  the table of the <E>alternating</E> group on <M>n</M> letters,
</Item>
<Mark><C>CharacterTable( "Cyclic", </C><M>n</M><C> )</C></Mark>
<Item>
  the table of the <E>cyclic</E> group of order <M>n</M>,
</Item>
<Mark><C>CharacterTable( "Dihedral", </C><M>2n</M><C> )</C></Mark>
<Item>
  the table of the <E>dihedral</E> group of order <M>2n</M>,
</Item>
<Mark><C>CharacterTable( "DoubleCoverAlternating", </C><M>n</M><C> )</C></Mark>
<Item>
  the table of the <E>Schur double cover of the alternating</E> group
  on <M>n</M> letters (see&nbsp;<Cite Key="Noe02"/>),
</Item>
<Mark><C>CharacterTable( "DoubleCoverSymmetric", </C><M>n</M><C> )</C></Mark>
<Item>
  the table of the <E>standard Schur double cover of the symmetric</E> group
  on <M>n</M> letters (see&nbsp;<Cite Key="Noe02"/>),
</Item>
<Mark><C>CharacterTable( "GL", 2, </C><M>q</M><C> )</C></Mark>
<Item>
  the table of the <E>general linear</E> group <C>GL(2,</C><M>q</M><C>)</C>,
  for a prime power <M>q</M>,
</Item>
<Mark><C>CharacterTable( "GU", 3, </C><M>q</M><C> )</C></Mark>
<Item>
  the table of the <E>general unitary</E> group <C>GU(3,</C><M>q</M><C>)</C>,
  for a prime power <M>q</M>,
</Item>
<Mark><C>CharacterTable( "P:Q", </C><M>[ p, q ]</M><C> )</C> and
  <C>CharacterTable( "P:Q", </C><M>[ p, q, k ]</M><C> )</C></Mark>
<Item>
  the table of the <E>Frobenius extension</E> of the nontrivial cyclic group
  of odd order <M>p</M> by the nontrivial cyclic group of order <M>q</M>
  where <M>q</M> divides <M>p_i-1</M> for all prime divisors <M>p_i</M> of
  <M>p</M>;
  if <M>p</M> is a prime power then <M>q</M> determines the group uniquely
  and thus the first version can be used,
  otherwise the action of the residue class of <M>k</M> modulo <M>p</M> is
  taken for forming orbits of length <M>q</M> each on the nonidentity
  elements of the group of order <M>p</M>,
</Item>
<Mark><C>CharacterTable( "PSL", 2, </C><M>q</M><C> )</C></Mark>
<Item>
  the table of the <E>projective special linear</E> group
  <C>PSL(2,</C><M>q</M><C>)</C>, for a prime power <M>q</M>,
</Item>
<Mark><C>CharacterTable( "SL", 2, </C><M>q</M><C> )</C></Mark>
<Item>
  the table of the <E>special linear</E> group <C>SL(2,</C><M>q</M><C>)</C>,
  for a prime power <M>q</M>,
</Item>
<Mark><C>CharacterTable( "SU", 3, </C><M>q</M><C> )</C></Mark>
<Item>
  the table of the <E>special unitary</E> group <C>SU(3,</C><M>q</M><C>)</C>,
  for a prime power <M>q</M>,
</Item>
<Mark><C>CharacterTable( "Suzuki", </C><M>q</M><C> )</C></Mark>
<Item>
  the table of the <E>Suzuki</E> group
  <C>Sz(</C><M>q</M><C>)</C> <M>= {}^2B_2(q)</M>,
  for <M>q</M> an odd power of <M>2</M>,
</Item>
<Mark><C>CharacterTable( "Symmetric", </C><M>n</M><C> )</C></Mark>
<Item>
  the table of the <E>symmetric</E> group on <M>n</M> letters,
</Item>
<Mark><C>CharacterTable( "WeylB", </C><M>n</M><C> )</C></Mark>
<Item>
  the table of the <E>Weyl</E> group of type <M>B_n</M>,
</Item>
<Mark><C>CharacterTable( "WeylD", </C><M>n</M><C> )</C></Mark>
<Item>
  the table of the <E>Weyl</E> group of type <M>D_n</M>.
</Item>
</List>

In addition to the above calls that really use generic tables,
the following calls to
<Ref Func="CharacterTable" BookName="ref"/> are to some extent <Q>generic</Q>
constructions.
But note that no local evaluation is possible in these cases,
as no generic table object exists in &GAP; that can be asked for local
information.

<List>
<Mark><C>CharacterTable( "Quaternionic", </C><M>4n</M><C> )</C></Mark>
<Item>
  the table of the <E>generalized quaternionic</E> group of order <M>4n</M>,
</Item>
<Mark><C>CharacterTableWreathSymmetric( tbl, </C><M>n</M><C> )</C></Mark>
<Item>
  the character table of the wreath product of the group whose table is
  <C>tbl</C> with the symmetric group on <M>n</M> letters,
  see&nbsp;<Ref Func="CharacterTableWreathSymmetric" BookName="ref"/>.
</Item>
</List>

</Subsection>

<#Include Label="CharacterTableSpecialized">


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:generictablecomponents">
<Heading>Components of generic character tables</Heading>

Any generic table in &GAP; is represented by a record.
The following components are supported for generic character table records.

<List>
<Mark><C>centralizers</C></Mark>
<Item>
    list of functions, one for each class type <M>t</M>,
    with arguments <M>q</M> and <M>p_t</M>,
    returning the centralizer order of the class <M>[t,p_t]</M>,
</Item>
<Mark><C>charparam</C></Mark>
<Item>
    list of functions, one for each character type <M>t</M>,
    with argument <M>q</M>, returning the list of character parameters
    of type <M>t</M>,
</Item>
<Mark><C>classparam</C></Mark>
<Item>
    list of functions, one for each class type <M>t</M>,
    with argument <M>q</M>,
    returning the list of class parameters of type <M>t</M>,
</Item>
<Mark><C>classtext</C></Mark>
<Item>
    list of functions, one for each class type <M>t</M>,
    with arguments <M>q</M> and <M>p_t</M>,
    returning a representative of the class with parameter <M>[t,p_t]</M>
    (note that this element need <E>not</E> actually lie in the group
    in question,
    for example it may be a diagonal matrix but the characteristic polynomial
    in the group s irreducible),
</Item>
<Mark><C>domain</C></Mark>
<Item>
    function of <M>q</M> returning <K>true</K> if <M>q</M>
    is a valid parameter, and <K>false</K> otherwise,
</Item>
<Mark><C>identifier</C></Mark>
<Item>
    identifier string of the generic table,
</Item>
<Mark><C>irreducibles</C></Mark>
<Item>
    list of list of functions,
    in row <M>i</M> and column <M>j</M> the function of three arguments,
    namely <M>q</M> and the parameters <M>p_t</M> and <M>p_s</M>
    of the class type <M>t</M> and the character type <M>s</M>,
</Item>
<Mark><C>isGenericTable</C></Mark>
<Item>
    always <K>true</K>
</Item>
<Mark><C>libinfo</C></Mark>
<Item>
    record with components <C>firstname</C>
    (<Ref Attr="Identifier" Label="for character tables" BookName="ref"/>
    value of the table)
    and <C>othernames</C> (list of other admissible names)
</Item>
<Mark><C>matrix</C></Mark>
<Item>
    function of <M>q</M> returning the matrix of irreducibles of <M>G_q</M>,
</Item>
<Mark><C>orders</C></Mark>
<Item>
    list of functions, one for each class type <M>t</M>,
    with arguments <M>q</M> and <M>p_t</M>, returning the representative order
    of elements of type <M>t</M> and parameter <M>p_t</M>,
</Item>
<Mark><C>powermap</C></Mark>
<Item>
    list of functions, one for each class type <M>t</M>,
    each with three arguments <M>q</M>, <M>p_t</M>, and <M>k</M>,
    returning the pair <M>[s,p_s]</M> of type and parameter for the
    <M>k</M>-th power of the class with parameter <M>[t,p_t]</M>,
</Item>
<Mark><C>size</C></Mark>
<Item>
    function of <M>q</M> returning the order of <M>G_q</M>,
</Item>
<Mark><C>specializedname</C></Mark>
<Item>
    function of <M>q</M> returning the
    <Ref Attr="Identifier" Label="for character tables" BookName="ref"/>
    value of the table of <M>G_q</M>,
</Item>
<Mark><C>text</C></Mark>
<Item>
    string informing about the generic table
</Item>
</List>

<P/>

In the specialized table, the <Ref Func="ClassParameters" BookName="ref"/>
and <Ref Func="CharacterParameters" BookName="ref"/> values
are the lists of parameters <M>[t,p_t]</M> of classes and characters,
respectively.

<P/>

If the <C>matrix</C> component is present then its value implements a method
to compute the complete table of small members <M>G_q</M> more efficiently
than via local evaluation;
this method will be called when the generic table is used to compute the
whole character table for a given <M>q</M>
(see&nbsp;<Ref Func="CharacterTableSpecialized"/>).

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:generictableCn">
<Heading>Example: The generic table of cyclic groups</Heading>

For the cyclic group <M>C_q = \langle x \rangle</M> of order <M>q</M>,
there is one type of classes.
The class parameters are integers <M>k \in \{ 0, \ldots, q-1 \}</M>,
the class with parameter <M>k</M> consists of the group element <M>x^k</M>.
Group order and centralizer orders are the identity function
<M>q \mapsto q</M>, independent of the parameter <M>k</M>.
The representative order function maps the parameter pair <M>[q,k]</M> to
<M>q / \gcd(q,k)</M>, which is the order of <M>x^k</M> in <M>C_q</M>;
the <M>p</M>-th power map is the function mapping the triple <M>(q,k,p)</M>
to the parameter <M>[1,(kp \bmod q)]</M>.

<P/>

There is one type of characters,
with parameters <M>l \in \{ 0, \ldots, q-1 \}</M>;
for <M>e_q</M> a primitive complex <M>q</M>-th root of unity,
the character values are <M>\chi_l(x^k) = e_q^{kl}</M>.

<P/>

<Example><![CDATA[
gap> Print( CharacterTable( "Cyclic" ), "\n" );
rec(
  centralizers := [ function ( n, k )
            return n;
        end ],
  charparam := [ function ( n )
            return [ 0 .. n - 1 ];
        end ],
  classparam := [ function ( n )
            return [ 0 .. n - 1 ];
        end ],
  domain := <Category "(IsInt and IsPosRat)">,
  identifier := "Cyclic",
  irreducibles := [ [ function ( n, k, l )
                return E( n ) ^ (k * l);
            end ] ],
  isGenericTable := true,
  libinfo := rec(
      firstname := "Cyclic",
      othernames := [  ] ),
  orders := [ function ( n, k )
            return n / Gcd( n, k );
        end ],
  powermap := [ function ( n, k, pow )
            return [ 1, k * pow mod n ];
        end ],
  size := function ( n )
        return n;
    end,
  specializedname := function ( q )
        return Concatenation( "C", String( q ) );
    end,
  text := "generic character table for cyclic groups" )
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:generictableGL2">
<Heading>Example: The generic table of the general linear group GL<M>(2,q)</M>
</Heading>

We have four types <M>t_1, t_2, t_3, t_4</M> of classes,
according to the rational canonical form of the elements.
<M>t_1</M> describes scalar matrices,
<M>t_2</M> nonscalar diagonal matrices,
<M>t_3</M> companion matrices of <M>(X - \rho)^2</M> for nonzero elements
<M>\rho \in F_q</M>,
and
<M>t_4</M> companion matrices of irreducible polynomials of degree <M>2</M>
over <M>F_q</M>.

<P/>

The sets of class parameters of the types are in bijection with
nonzero elements in <M>F_q</M> for <M>t_1</M> and <M>t_3</M>,
with the set
<Display Mode="M">
  \{ \{ \rho, \tau \};
     \rho, \tau \in F_q, \rho &noteq; 0, \tau &noteq; 0, \rho &noteq; \tau \}
</Display>
for <M>t_2</M>,
and with the set
<M>\{ \{ \epsilon, \epsilon^q \}; \epsilon \in F_{{q^2}} \setminus F_q \}</M>
for <M>t_4</M>.

<P/>

The centralizer order functions are
<M>q \mapsto (q^2-1)(q^2-q)</M> for type <M>t_1</M>,
<M>q \mapsto (q-1)^2</M> for type <M>t_2</M>,
<M>q \mapsto q(q-1)</M> for type <M>t_3</M>, and
<M>q \mapsto q^2-1</M> for type <M>t_4</M>.

<P/>

The representative order function of <M>t_1</M> maps <M>(q, \rho)</M> to the
order of <M>\rho</M> in <M>F_q</M>,
that of <M>t_2</M> maps <M>(q, \{ \rho, \tau \})</M> to the least common
multiple of the orders of <M>\rho</M> and <M>\tau</M>.

<P/>

The file contains something similar to the following table.

<P/>

<Listing>
rec(
identifier := "GL2",
specializedname := ( q -> Concatenation( "GL(2,", String(q), ")" ) ),
size := ( q -> (q^2-1)*(q^2-q) ),
text := "generic character table of GL(2,q), see Robert Steinberg: ...",
centralizers := [ function( q, k ) return (q^2-1) * (q^2-q); end,
                  ..., ..., ... ],
classparam := [ ( q -> [ 0 .. q-2 ] ), ..., ..., ... ],
charparam := [ ( q -> [ 0 .. q-2 ] ), ..., ..., ... ],
powermap := [ function( q, k, pow ) return [ 1, (k*pow) mod (q-1) ]; end,
              ..., ..., ... ],
orders:= [ function( q, k ) return (q-1)/Gcd( q-1, k ); end,
           ..., ..., ... ],
irreducibles := [ [ function( q, k, l ) return E(q-1)^(2*k*l); end,
                    ..., ..., ... ],
                  [ ..., ..., ..., ... ],
                  [ ..., ..., ..., ... ],
                  [ ..., ..., ..., ... ] ],
classtext := [ ..., ..., ..., ... ],
domain := IsPrimePowerInt,
isGenericTable := true )
</Listing>

</Subsection>
</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:ATLAS Tables">
<Heading>&ATLAS; Tables</Heading>

<Index>character tables!ATLAS</Index>
<Index>tables!library</Index>
<Index>library of character tables</Index>

The &GAP; character table library contains all character tables of bicyclic
extensions of simple groups
that are included in the &ATLAS; of Finite Groups
(<Cite Key="CCN85"/>, from now on called &ATLAS;),
and the Brauer tables contained in the &ATLAS; of Brauer
Characters (<Cite Key="JLPW95"/>).

<P/>

These tables have the information
<Verb>
origin: ATLAS of finite groups
</Verb>
or
<Verb>
origin: modular ATLAS of finite groups
</Verb>
in their <Ref Attr="InfoText" BookName="ref"/> value,
they are simply called &ATLAS; tables further on.

<P/>

The property <Ref Prop="IsAtlasCharacterTable"/> describes
which character tables are &ATLAS; tables.

<P/>

For displaying &ATLAS; tables with the row labels used in
the &ATLAS;, or for displaying decomposition matrices,
see&nbsp;<Ref Func="LaTeXStringDecompositionMatrix" BookName="ref"/>
and&nbsp;<Ref Func="AtlasLabelsOfIrreducibles"/>.

<P/>

In addition to the information given in Chapters&nbsp;6 to&nbsp;8 of the
&ATLAS; which tell you how to read the printed tables,
there are some rules relating these to the corresponding &GAP; tables.


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:Improvements">
<Heading>Improvements to the &ATLAS;</Heading>

For the &GAP; Character Table Library not the printed versions of the
&ATLAS; of Finite Groups and the &ATLAS; of Brauer Characters are relevant
but the revised versions given by the currently three lists of improvements
that are maintained by Simon Norton.
The first such list is contained in&nbsp;<Cite Key="BN95"/>,
and is printed in the Appendix of&nbsp;<Cite Key="JLPW95"/>;
it contains the improvements that had been known until the
<Q>&ATLAS; of Brauer Characters</Q> was published.
The second list contains the improvements to the &ATLAS; of Finite Groups
that were found since the publication of&nbsp;<Cite Key="JLPW95"/>.
It can be found in the internet, an HTML version at

<P/>

<URL>http://web.mat.bham.ac.uk/atlas/html/atlasmods.html</URL>

<P/>

and a DVI version at

<P/>

<URL>http://web.mat.bham.ac.uk/atlas/html/atlasmods.dvi</URL>.

<!-- find better addresses, and update the lists -->

<P/>

The third list contains the improvements to the &ATLAS; of Brauer Characters,
HTML and PDF versions can be found in the internet at

<P/>

<URL>https://www.math.rwth-aachen.de/~MOC/ABCerr.html</URL>

<P/>

and

<P/>

<URL>https://www.math.rwth-aachen.de/~MOC/ABCerr.pdf</URL>,

<P/>

respectively.

<P/>

Also some tables are regarded as &ATLAS; tables that are
not printed in the &ATLAS; but available in &ATLAS; format,
according to the lists of improvements mentioned above.
Currently these are the tables related to <M>L_2(49)</M>, <M>L_2(81)</M>,
<M>L_6(2)</M>, <M>O_8^-(3)</M>, <M>O_8^+(3)</M>, <M>S_{10}(2)</M>,
and <M>{}^2E_6(2).3</M>.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:Power Maps">
<Heading>Power Maps</Heading>

For the tables of <M>3.McL</M>, <M>3_2.U_4(3)</M> and its covers,
and <M>3_2.U_4(3).2_3</M> and its covers,
the power maps are not uniquely determined by the information
from the &ATLAS; but determined only up to matrix automorphisms
(see&nbsp;<Ref Func="MatrixAutomorphisms" BookName="ref"/>)
of the irreducible characters.
In these cases, the first possible map according to lexicographical
ordering was chosen, and the automorphisms are listed in the
<Ref Attr="InfoText" BookName="ref"/> strings of the tables.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:Projective Characters and Projections">
<Heading>Projective Characters and Projections</Heading>

If <M>G</M> (or <M>G.a</M>) has a nontrivial Schur multiplier then the
attribute <Ref Func="ProjectivesInfo"/> of the &GAP; table object of <M>G</M>
(or <M>G.a</M>) is set;
the <C>chars</C> component of the record in question
is the list of values lists of those faithful projective irreducibles
that are printed in the &ATLAS; (so-called <E>proxy character</E>),
and the <C>map</C> component lists the positions of columns in the covering
for which the column is printed in the &ATLAS;
(a so-called <E>proxy class</E>, this preimage is denoted by <M>g_0</M> in
Chapter&nbsp;7, Section&nbsp;14 of the &ATLAS;).

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:Tables of Isoclinic Groups">
<Heading>Tables of Isoclinic Groups</Heading>

As described in Chapter&nbsp;6, Section&nbsp;7 and
in Chapter&nbsp;7, Section&nbsp;18 of the &ATLAS;,
there exist two (often nonisomorphic) groups of structure
<M>2.G.2</M> for a simple group <M>G</M>, which are isoclinic.
The table in the &GAP; Character Table Library is the one printed in the
&ATLAS;,
the table of the isoclinic variant can be constructed using
<Ref Func="CharacterTableIsoclinic" BookName="ref"/>.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:Ordering of Characters and Classes">
<Heading>Ordering of Characters and Classes</Heading>

(Throughout this section, <M>G</M> always means the simple group involved.)
<Enum>
<Item>
  For <M>G</M> itself, the ordering of classes and characters in the &GAP;
  table coincides with the one in the &ATLAS;.
</Item>
<Item>
  For an automorphic extension <M>G.a</M>,
  there are three types of characters.
  <List>
  <Item>
    If a character <M>\chi</M> of <M>G</M> extends to <M>G.a</M> then the
    different extensions <M>\chi^0, \chi^1, \ldots, \chi^{{a-1}}</M>
    are consecutive in the table of <M>G.a</M>
    (see <Cite Key="CCN85" Where="Chapter&nbsp;7, Section&nbsp;16"/>).
  </Item>
  <Item>
    If some characters of <M>G</M> fuse to give a single character of
    <M>G.a</M> then the position of that character in the table of <M>G.a</M>
    is given by the position of the first involved character of <M>G</M>.
  </Item>
  <Item>
    If both extension and fusion occur for a character
    then the resulting characters are consecutive in the table of <M>G.a</M>,
    and each replaces the first involved character of <M>G</M>.
  </Item>
  </List>
</Item>
<Item>
  Similarly, there are different types of classes for an automorphic
  extension <M>G.a</M>, as follows.
  <List>
  <Item>
    If some classes collapse then the resulting class replaces the first
    involved class of <M>G</M>.
  </Item>
  <Item>
    For <M>a &gt; 2</M>,
    any proxy class and its algebraic conjugates that are not
    printed in the &ATLAS; are consecutive in the table of <M>G.a</M>;
    if more than two classes of <M>G.a</M> have the same proxy class
    (the only case that actually occurs is for <M>a = 5</M>)
    then the ordering of non-printed classes is the natural one of
    corresponding Galois conjugacy operators <M>*k</M>
    (see <Cite Key="CCN85" Where="Chapter&nbsp;7, Section&nbsp;19"/>).
  </Item>
  <Item>
    For <M>a_1</M>, <M>a_2</M> dividing <M>a</M> such that <M>a_1 \leq a_2</M>,
    the classes of <M>G.a_1</M> in <M>G.a</M> precede the classes of
    <M>G.a_2</M> not contained in <M>G.a_1</M>.
    This ordering is the same as in the &ATLAS;,
    with the only exception <M>U_3(8).6</M>.
  </Item>
  </List>
</Item>
<Item>
  For a central extension <M>M.G</M>, there are two different types of
  characters, as follows.
  <List>
  <Item>
    Each character can be regarded as a faithful character of a factor group
    <M>m.G</M>, where <M>m</M> divides <M>M</M>.
    Characters with the same kernel are consecutive as in the
    &ATLAS;,
    the ordering of characters with different kernels is given by the order
    of precedence <M>1, 2, 4, 3, 6, 12</M> for the different values of <M>m</M>.
  </Item>
  <Item>
    If <M>m &gt; 2</M>,
    a faithful character of <M>m.G</M> that is printed in the &ATLAS;
    (a so-called <E>proxy character</E>) represents two or more Galois
    conjugates.
    In each &ATLAS; table in &GAP;,
    a proxy character always precedes the non-printed characters with this
    proxy.
    The case <M>m = 12</M> is the only one that actually occurs
    where more than one character for a proxy is not printed.
    In this case, the non-printed characters are ordered according to the
    corresponding Galois conjugacy operators <M>*5</M>, <M>*7</M>,
    <M>*11</M>
    (in this order).
  </Item>
  </List>
</Item>
<Item>
  For the classes of a central extension we have the following.
  <List>
  <Item>
    The preimages of a <M>G</M>-class in <M>M.G</M> are subsequent,
    the ordering is the same as that of the lifting order rows in
    <Cite Key="CCN85" Where="Chapter&nbsp;7, Section&nbsp;7"/>.
  </Item>
  <Item>
    The primitive roots of unity chosen to represent the generating
    central element (i.&nbsp;e., the element in the second class of the &GAP;
    table) are  <C>E(3)</C>, <C>E(4)</C>,
    <C>E(6)^5</C> (<C>= E(2)*E(3)</C>),
    and <C>E(12)^7</C> (<C>= E(3)*E(4)</C>),
    for <M>m = 3</M>, <M>4</M>, <M>6</M>, and <M>12</M>, respectively.
  </Item>
  </List>
</Item>
<Item>
  For tables of bicyclic extensions <M>m.G.a</M>, both the rules for
  automorphic and central extensions hold.
  Additionally we have the following three rules.
  <List>
  <Item>
    Whenever classes of the subgroup <M>m.G</M> collapse in <M>m.G.a</M>
    then the resulting class replaces the first involved class.
  </Item>
  <Item>
    Whenever characters of the subgroup <M>m.G</M> collapse fuse in <M>m.G.a</M>
    then the result character replaces the first involved character.
  </Item>
  <Item>
    Extensions of a character are subsequent, and the extensions of a
    proxy character precede the extensions of characters with this proxy
    that are not printed.
  </Item>
  <Item>
    Preimages of a class of <M>G.a</M> in <M>m.G.a</M> are subsequent,
    and the preimages of a proxy class precede the preimages of non-printed
    classes with this proxy.
  </Item>
  </List>
</Item>
</Enum>

</Subsection>

<#Include Label="AtlasLabelsOfIrreducibles">


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:explsATLAS">
<Heading>Examples of the &ATLAS; Format for &GAP; Tables</Heading>

<Index>character tables!CAS</Index>
<Index>tables!library</Index>
<Index>library of character tables</Index>

We give three little examples for the conventions stated in
Section&nbsp;<Ref Sect="sec:ATLAS Tables"/>,
listing both the &ATLAS; format and the table displayed by &GAP;.

<P/>

First, let <M>G</M> be the trivial group.
We consider the cyclic group <M>C_6</M> of order <M>6</M>.
It can be viewed in several ways, namely
<List>
<Item>
  as a downward extension of the factor group <M>C_2</M> which contains
  <M>G</M> as a subgroup,
  or equivalently,
  as an upward extension of the subgroup <M>C_3</M> which has a factor group
  isomorphic to <M>G</M>:
</Item>
</List>

<Alt Only="LaTeX">
<![CDATA[
\setlength{\unitlength}{0.1cm}
\begin{picture}(110,67)
\put(8,36){
\begin{picture}(29,29)
\put(0,29){\line(1,0){14}}
\put(0,15){\line(1,0){14}}
\put(0,14){\line(1,0){14}}
\put(0,0){\line(1,0){14}}
\put(15,29){\line(1,0){14}}
\put(15,15){\line(1,0){14}}
\put(15,14){\line(1,0){14}}
\put(15,0){\line(1,0){14}}
\put(0,15){\line(0,1){14}}
\put(0,0){\line(0,1){14}}
\put(14,15){\line(0,1){14}}
\put(15,15){\line(0,1){14}}
\put(29,15){\line(0,1){14}}
\put(14,0){\line(0,1){14}}
\put(15,0){\line(0,1){14}}
\put(29,0){\line(0,1){14}}
\put(7,7){\makebox(0,0){3.G}}
\put(22,7){\makebox(0,0){3.G.2}}
\put(7,22){\makebox(0,0){G}}
\put(22,22){\makebox(0,0){G.2}}
\end{picture}}

\put(50,65){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2in}
\baselineskip2.7ex
\parskip0ex

\ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \par
\ \par
\ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1\ \par
\ \ p\ power\ \ \ \ \ \ \ \ \ \ \ A\ \par
\ \ p'\ part\ \ \ \ \ \ \ \ \ \ \ A\ \par
\ \ ind\ \ 1A\ fus\ ind\ \ 2A\ \par
\ \par
$\chi_1$\ \ +\ \ \ 1\ \ \ :\ \ ++\ \ \ 1\ \par
\ \par
\ \ ind\ \ \ 1\ fus\ ind\ \ \ 2\ \par
\ \ \ \ \ \ \ \ 3\ \ \ \ \ \ \ \ \ \ \ 6\ \par
\ \ \ \ \ \ \ \ 3\ \ \ \ \ \ \ \ \ \ \ 6\ \par
\ \par
$\chi_2$\ o2\ \ \ 1\ \ \ :\ oo2\ \ \ 1\ 
\end{minipage}}}

\put(99,65){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2.2in}
\baselineskip2.7ex
\parskip0ex

\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \par
\ \ \ \ \ \ 1a\ \ 3a\ \ 3b\ \ 2a\ \ 6a\ \ 6b \par
\ \ 2P\ \ 1a\ \ 3b\ \ 3a\ \ 1a\ \ 3b\ \ 3a \par
\ \ 3P\ \ 1a\ \ 1a\ \ 1a\ \ 2a\ \ 2a\ \ 2a \par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
X.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ -1\ \ -1\ \ -1 \par
X.3\ \ \ \ 1\ \ \ A\ \ /A\ \ \ 1\ \ \ A\ \ /A \par
X.4\ \ \ \ 1\ \ \ A\ \ /A\ \ -1\ \ -A\ -/A \par
X.5\ \ \ \ 1\ \ /A\ \ \ A\ \ \ 1\ \ /A\ \ \ A \par
X.6\ \ \ \ 1\ \ /A\ \ \ A\ \ -1\ -/A\ \ -A \par
\ \par
A\ =\ E(3) \par
\ \ =\ (-1+ER(-3))/2\ =\ b3 \par

\end{minipage}}}
\end{picture}
]]>
</Alt>
<Alt Not="LaTeX">
<Listing>
┌───────┐ ┌───────┐       ;   @   ;   ;   @      2   1   1   1   1   1   1
│       │ │       │           1           1      3   1   1   1   1   1   1
│   G   │ │  G.2  │     p power           A
│       │ │       │     p' part           A         1a  3a  3b  2a  6a  6b
└───────┘ └───────┘     ind  1A fus ind  2A     2P  1a  3b  3a  1a  3b  3a
┌───────┐ ┌───────┐                             3P  1a  1a  1a  2a  2a  2a
│       │ │       │  χ_1  +   1   :  ++   1
│  3.G  │ │ 3.G.2 │                           X.1    1   1   1   1   1   1
│       │ │       │     ind   1 fus ind   2   X.2    1   1   1  -1  -1  -1
└───────┘ └───────┘           3           6   X.3    1   A  /A   1   A  /A
                              3           6   X.4    1   A  /A  -1  -A -/A
                                              X.5    1  /A   A   1  /A   A
                     χ_2 o2   1   : oo2   1   X.6    1  /A   A  -1 -/A  -A

                                              A = E(3)
                                                = (-1+ER(-3))/2 = b3
</Listing>
</Alt>

<List>
<Mark></Mark>
<Item>
<C>X.1</C>, <C>X.2</C> extend  <M>\chi_1</M>.
<C>X.3</C>, <C>X.4</C> extend the proxy character <M>\chi_2</M>.
<C>X.5</C>, <C>X.6</C> extend the not printed character with proxy
<M>\chi_2</M>.
The classes <C>1a</C>, <C>3a</C>, <C>3b</C> are preimages of <C>1A</C>,
and <C>2a</C>, <C>6a</C>, <C>6b</C> are preimages of <C>2A</C>.
</Item>
</List>

<List>
<Item>
  as a downward extension of the factor group <M>C_3</M> which contains
  <M>G</M> as a subgroup,
  or equivalently,
  as an upward extension of the subgroup <M>C_2</M> which has a factor group
  isomorphic to <M>G</M>:
</Item>
</List>

<Alt Only="LaTeX">
<![CDATA[
\begin{picture}(110,67)
\put(8,36){
\begin{picture}(29,29)
\put(0,29){\line(1,0){14}}
\put(0,15){\line(1,0){14}}
\put(0,14){\line(1,0){14}}
\put(0,0){\line(1,0){14}}
\put(15,29){\line(1,0){14}}
\put(15,15){\line(1,0){14}}
\put(15,14){\line(1,0){14}}
\put(15,0){\line(1,0){14}}
\put(0,15){\line(0,1){14}}
\put(0,0){\line(0,1){14}}
\put(14,15){\line(0,1){14}}
\put(15,15){\line(0,1){14}}
\put(29,15){\line(0,1){14}}
\put(14,0){\line(0,1){14}}
\put(15,0){\line(0,1){14}}
\put(29,0){\line(0,1){14}}
\put(7,7){\makebox(0,0){2.G}}
\put(22,7){\makebox(0,0){2.G.3}}
\put(7,22){\makebox(0,0){G}}
\put(22,22){\makebox(0,0){G.3}}
\end{picture}}

\put(50,65){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2in}
\baselineskip2.7ex
\parskip0ex

\ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @ \par
\ \par
\ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1 \par
\ \ p\ power\ \ \ \ \ \ \ \ \ \ \ A \par
\ \ p'\ part\ \ \ \ \ \ \ \ \ \ \ A \par
\ \ ind\ \ 1A\ fus\ ind\ \ 3A \par
\ \par
$\chi_1$\ \ +\ \ \ 1\ \ \ :\ +oo\ \ \ 1 \par
\ \par
\ \ ind\ \ \ 1\ fus\ ind\ \ \ 3 \par
\ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ \ 6 \par
\ \par
$\chi_2$\ \ +\ \ \ 1\ \ \ :\ +oo\ \ \ 1 \par
\end{minipage}}}

\put(99,65){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2.2in}
\baselineskip2.7ex
\parskip0ex

\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \par
\ \ \ \ \ \ 1a\ \ 2a\ \ 3a\ \ 6a\ \ 3b\ \ 6b \par
\ \ 2P\ \ 1a\ \ 1a\ \ 3b\ \ 3b\ \ 3a\ \ 3a \par
\ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 2a\ \ 1a\ \ 2a \par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
X.2\ \ \ \ 1\ \ \ 1\ \ \ A\ \ \ A\ \ /A\ \ /A \par
X.3\ \ \ \ 1\ \ \ 1\ \ /A\ \ /A\ \ \ A\ \ \ A \par
X.4\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ 1\ \ -1 \par
X.5\ \ \ \ 1\ \ -1\ \ \ A\ \ -A\ \ /A\ -/A \par
X.6\ \ \ \ 1\ \ -1\ \ /A\ -/A\ \ \ A\ \ -A \par
\ \par
A\ =\ E(3) \par
\ \ =\ (-1+ER(-3))/2\ =\ b3 \par
\end{minipage}}}
\end{picture}
]]>
</Alt>
<Alt Not="LaTeX">
<Listing>
┌───────┐ ┌───────┐       ;   @   ;   ;   @      2   1   1   1   1   1   1
│       │ │       │           1           1      3   1   1   1   1   1   1
│   G   │ │  G.3  │     p power           A
│       │ │       │     p' part           A         1a  2a  3a  6a  3b  6b
└───────┘ └───────┘     ind  1A fus ind  3A     2P  1a  1a  3b  3b  3a  3a
┌───────┐ ┌───────┐                             3P  1a  2a  1a  2a  1a  2a
│       │ │       │  χ_1  +   1   : +oo   1
│  2.G  │ │ 2.G.3 │                           X.1    1   1   1   1   1   1
│       │ │       │     ind   1 fus ind   3   X.2    1   1   A   A  /A  /A
└───────┘ └───────┘           2           6   X.3    1   1  /A  /A   A   A
                                              X.4    1  -1   1  -1   1  -1
                     χ_2  +   1   : +oo   1   X.5    1  -1   A  -A  /A -/A
                                              X.6    1  -1  /A -/A   A  -A

                                              A = E(3)
                                                = (-1+ER(-3))/2 = b3
</Listing>
</Alt>

<List>
<Mark></Mark>
<Item>
<C>X.1</C> to <C>X.3</C> extend <M>\chi_1</M>,
<C>X.4</C> to <C>X.6</C> extend <M>\chi_2</M>.
The classes <C>1a</C> and <C>2a</C> are preimages of <C>1A</C>,
<C>3a</C> and <C>6a</C> are preimages of the proxy class <C>3A</C>,
and <C>3b</C> and <C>6b</C> are preimages of the not printed class
with proxy <C>3A</C>.
</Item>
</List>

<List>
<Item>
  as a downward extension of the factor groups <M>C_3</M> and <M>C_2</M> which
  have <M>G</M> as a factor group:
</Item>
</List>

<Alt Only="LaTeX">
<![CDATA[
\begin{picture}(110,120)
\put(8,58){
\begin{picture}(14,59)
\put(0,59){\line(1,0){14}}
\put(0,45){\line(1,0){14}}
\put(0,44){\line(1,0){14}}
\put(0,30){\line(1,0){14}}
\put(0,29){\line(1,0){14}}
\put(0,15){\line(1,0){14}}
\put(0,14){\line(1,0){14}}
\put(0,0){\line(1,0){14}}
\put(0,45){\line(0,1){14}}
\put(0,30){\line(0,1){14}}
\put(0,15){\line(0,1){14}}
\put(0,0){\line(0,1){14}}
\put(14,45){\line(0,1){14}}
\put(14,30){\line(0,1){14}}
\put(14,15){\line(0,1){14}}
\put(14,0){\line(0,1){14}}
\put(7,7){\makebox(0,0){6.G}}
\put(7,22){\makebox(0,0){3.G}}
\put(7,37){\makebox(0,0){2.G}}
\put(7,52){\makebox(0,0){G}}
\end{picture}}

\put(50,117){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2in}
\baselineskip2.7ex
\parskip0ex

\ \ \ \ ;\ \ \ @ \par
\ \  \par
\ \ \ \ \ \ \ \ 1 \par
\ \ p\ power \par
\ \ p'\ part \par
\ \ ind\ \ 1A \par
\ \  \par
$\chi_1$\ \ +\ \ \ 1 \par
\ \  \par
\ \ ind\ \ \ 1 \par
\ \ \ \ \ \ \ \ 2 \par
\ \  \par
$\chi_2$\ \ +\ \ \ 1 \par
\ \  \par
\ \ ind\ \ \ 1 \par
\ \ \ \ \ \ \ \ 3 \par
\ \ \ \ \ \ \ \ 3 \par
\ \  \par
$\chi_3$\ o2\ \ \ 1 \par
\ \  \par
\ \ ind\ \ \ 1 \par
\ \ \ \ \ \ \ \ 6 \par
\ \ \ \ \ \ \ \ 3 \par
\ \ \ \ \ \ \ \ 2 \par
\ \ \ \ \ \ \ \ 3 \par
\ \ \ \ \ \ \ \ 6 \par
\ \  \par
$\chi_4$\ o2\ \ \ 1 \par
\end{minipage}}}

\put(99,117){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2.2in}
\baselineskip2.7ex
\parskip0ex

\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \par
\ \ \ \ \ \ 1a\ \ 6a\ \ 3a\ \ 2a\ \ 3b\ \ 6b \par
\ \ 2P\ \ 1a\ \ 3a\ \ 3b\ \ 1a\ \ 3a\ \ 3b \par
\ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 2a\ \ 1a\ \ 2a \par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
X.2\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ 1\ \ -1 \par
X.3\ \ \ \ 1\ \ \ A\ \ /A\ \ \ 1\ \ \ A\ \ /A \par
X.4\ \ \ \ 1\ \ /A\ \ \ A\ \ \ 1\ \ /A\ \ \ A \par
X.5\ \ \ \ 1\ \ -A\ \ /A\ \ -1\ \ \ A\ -/A \par
X.6\ \ \ \ 1\ -/A\ \ \ A\ \ -1\ \ /A\ \ -A \par
\ \par
A\ =\ E(3) \par
\ \ =\ (-1+ER(-3))/2\ =\ b3 \par
\end{minipage}}}
\end{picture}
]]>
</Alt>
<Alt Not="LaTeX">
<Listing>
┌───────┐           ;   @        2   1   1   1   1   1   1
│       │               1        3   1   1   1   1   1   1
│   G   │         p power
│       │         p' part           1a  6a  3a  2a  3b  6b
└───────┘         ind  1A       2P  1a  3a  3b  1a  3a  3b
┌───────┐                       3P  1a  2a  1a  2a  1a  2a
│       │      χ_1  +   1
│  2.G  │                     X.1    1   1   1   1   1   1
│       │         ind   1     X.2    1  ─1   1  ─1   1  ─1
└───────┘               2     X.3    1   A  /A   1   A  /A
┌───────┐                     X.4    1  /A   A   1  /A   A
│       │      χ_2  +   1     X.5    1  ─A  /A  ─1   A ─/A
│  3.G  │                     X.6    1 ─/A   A  ─1  /A  ─A
│       │         ind   1
└───────┘               3     A = E(3)
┌───────┐               3       = (─1+ER(─3))/2 = b3
│       │
│  6.G  │      χ_3 o2   1
│       │
└───────┘         ind   1
                        6
                        3
                        2
                        3
                        6

               χ_4 o2   1
</Listing>
</Alt>

<List>
<Mark></Mark>
<Item>
<C>X.1</C>, <C>X.2</C> correspond to <M>\chi_1, \chi_2</M>, respectively;
<C>X.3</C>, <C>X.5</C> correspond to the proxies <M>\chi_3</M>,
<M>\chi_4</M>, and
<C>X.4</C>, <C>X.6</C> to the not printed characters with these proxies.
The factor fusion onto <M>3.G</M> is given by <C>[ 1, 2, 3, 1, 2, 3 ]</C>,
that onto <M>G.2</M> by <C>[ 1, 2, 1, 2, 1, 2 ]</C>.
</Item>
</List>

<List>
<Item>
  as an upward extension of the subgroups <M>C_3</M> or <M>C_2</M> which both
  contain a subgroup isomorphic to <M>G</M>:
</Item>
</List>

<Alt Only="LaTeX">
<![CDATA[
\begin{picture}(110,65)
\put(8,49){
\begin{picture}(59,14)
\put(0,0){\line(1,0){14}}
\put(0,0){\line(0,1){14}}
\put(0,14){\line(1,0){14}}
\put(14,0){\line(0,1){14}}
\put(7,7){\makebox(0,0){G}}
\put(15,0){\line(1,0){14}}
\put(15,0){\line(0,1){14}}
\put(15,14){\line(1,0){14}}
\put(29,0){\line(0,1){14}}
\put(22,7){\makebox(0,0){G.2}}
\put(30,0){\line(1,0){14}}
\put(30,0){\line(0,1){14}}
\put(30,14){\line(1,0){14}}
\put(44,0){\line(0,1){14}}
\put(37,7){\makebox(0,0){G.3}}
\put(45,0){\line(1,0){14}}
\put(45,0){\line(0,1){14}}
\put(45,14){\line(1,0){14}}
\put(59,0){\line(0,1){14}}
\put(52,7){\makebox(0,0){G.6}}
\end{picture}}

\put(8,41){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{4in}
\baselineskip2.7ex
\parskip0ex

\ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \ \ ;\ \ \ \ \ ;\ \ \ @\ \par
\ \par
\ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ \ \ 1\ \par
\ \ p\ power\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ \ AA\ \par
\ \ p'\ part\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ \ AA\ \par
\ \ ind\ \ 1A\ fus\ ind\ \ 2A\ fus\ ind\ \ 3A\ fus\ \ \ ind\ \ 6A\ \par
\ \par
$\chi_1$\ \ +\ \ \ 1\ \ \ :\ \ ++\ \ \ 1\ \ \ :\ +oo\ \ \ 1\ \ \ :+oo+oo\ \ \ 1\ \par
\end{minipage}}}

\put(103,63){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2.2in}
\baselineskip2.7ex
\parskip0ex

\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \par
\ \ \ \ \ \ 1a\ \ 2a\ \ 3a\ \ 3b\ \ 6a\ \ 6b \par
\ \ 2P\ \ 1a\ \ 1a\ \ 3b\ \ 3a\ \ 3b\ \ 3a \par
\ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 1a\ \ 2a\ \ 2a \par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
X.2\ \ \ \ 1\ \ -1\ \ \ A\ \ /A\ \ -A\ -/A \par
X.3\ \ \ \ 1\ \ \ 1\ \ /A\ \ \ A\ \ /A\ \ \ A \par
X.4\ \ \ \ 1\ \ -1\ \ \ 1\ \ \ 1\ \ -1\ \ -1 \par
X.5\ \ \ \ 1\ \ \ 1\ \ \ A\ \ /A\ \ \ A\ \ /A \par
X.6\ \ \ \ 1\ \ -1\ \ /A\ \ \ A\ -/A\ \ -A \par
\ \par
A\ =\ E(3) \par
\ \ =\ (-1+ER(-3))/2\ =\ b3 \par
\end{minipage}}}
\end{picture}
]]>
</Alt>
<Alt Not="LaTeX">
<Listing>
┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐
│       │ │       │ │       │ │       │
│   G   │ │  G.2  │ │  G.3  │ │  G.6  │
│       │ │       │ │       │ │       │
└───────┘ └───────┘ └───────┘ └───────┘

     ;   @   ;   ;   @   ;   ;   @   ;     ;   @

         1           1           1             1
   p power           A           A            AA
   p' part           A           A            AA
   ind  1A fus ind  2A fus ind  3A fus   ind  6A

χ_1  +   1   :  ++   1   : +oo   1   :+oo+oo   1


    2   1   1   1   1   1   1
    3   1   1   1   1   1   1

       1a  2a  3a  3b  6a  6b
   2P  1a  1a  3b  3a  3b  3a
   3P  1a  2a  1a  1a  2a  2a
 X.1    1   1   1   1   1   1
 X.2    1  -1   A  /A  -A -/A
 X.3    1   1  /A   A  /A   A
 X.4    1  -1   1   1  -1  -1
 X.5    1   1   A  /A   A  /A
 X.6    1  -1  /A   A -/A  -A

 A = E(3)
   = (-1+ER(-3))/2 = b3
</Listing>
</Alt>

<List>
<Mark></Mark>
<Item>
The classes <C>1a</C>, <C>2a</C> correspond to <M>1A</M>, <M>2A</M>,
respectively.
<C>3a</C>, <C>6a</C> correspond to the proxies <M>3A</M>, <M>6A</M>,
and <C>3b</C>, <C>6b</C> to the not printed classes with these proxies.
</Item>
</List>

<P/>

The second example explains the fusion case.
Again, <M>G</M> is the trivial group.

<P/>

<Alt Only="LaTeX">
<![CDATA[
\setlength{\unitlength}{0.1cm}
\begin{picture}(110,125)
\put(0,63){
\begin{picture}(29,59)
\put(0,59){\line(1,0){14}}
\put(0,45){\line(1,0){14}}
\put(0,44){\line(1,0){14}}
\put(0,30){\line(1,0){14}}
\put(0,29){\line(1,0){14}}
\put(0,15){\line(1,0){14}}
\put(0,14){\line(1,0){14}}
\put(0,0){\line(1,0){14}}
\put(0,45){\line(0,1){14}}
\put(0,30){\line(0,1){14}}
\put(0,15){\line(0,1){14}}
\put(0,0){\line(0,1){14}}
\put(14,45){\line(0,1){14}}
\put(14,30){\line(0,1){14}}
\put(14,15){\line(0,1){14}}
\put(14,0){\line(0,1){14}}
\put(15,59){\line(1,0){14}}
\put(15,45){\line(1,0){14}}
\put(15,44){\line(1,0){14}}
\put(15,30){\line(1,0){14}}
\put(15,29){\line(1,0){14}}
\put(15,14){\line(1,0){14}}
\put(15,45){\line(0,1){14}}
\put(15,30){\line(0,1){14}}
\put(15,15){\line(0,1){14}}
\put(15,0){\line(0,1){14}}
\put(29,45){\line(0,1){14}}
\put(29,30){\line(0,1){14}}
\put(7,7){\makebox(0,0){6.G}}
\put(7,22){\makebox(0,0){3.G}}
\put(7,37){\makebox(0,0){2.G}}
\put(7,52){\makebox(0,0){G}}
\put(22,7){\makebox(0,0){6.G.2}}
\put(22,22){\makebox(0,0){3.G.2}}
\put(22,37){\makebox(0,0){2.G.2}}
\put(22,52){\makebox(0,0){G.2}}
\end{picture}}

\put(44,122){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2in}
\baselineskip2.7ex
\parskip0ex

\ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ @\ \par
\ \ \ \par
\ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ 1\ \par
\ \ p\ power\ \ \ \ \ \ \ \ \ \ A\ \par
\ \ p'\ part\ \ \ \ \ \ \ \ \ \ A\ \par
\ \ ind\ \ 1A\ fus\ ind\ 2A\ \par
\ \ \ \par
$\chi_1$\ \ +\ \ \ 1\ \ \ :\ \ ++\ \ 1\ \par
\ \ \ \par
\ \ ind\ \ \ 1\ fus\ ind\ \ 2\ \par
\ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ 2\ \par
\ \ \ \par
$\chi_2$\ \ +\ \ \ 1\ \ \ :\ \ ++\ \ 1\ \par
\ \ \ \par
\ \ ind\ \ \ 1\ fus\ ind\ \ 2\ \par
\ \ \ \ \ \ \ \ 3\ \par
\ \ \ \ \ \ \ \ 3\ \par
\ \ \ \par
$\chi_3$\ o2\ \ \ 1\ \ \ *\ \ \ +\ \par
\ \ \ \par
\ \ ind\ \ \ 1\ fus\ ind\ \ 2\ \par
\ \ \ \ \ \ \ \ 6\ \ \ \ \ \ \ \ \ \ 2\par
\ \ \ \ \ \ \ \ 3\ \par
\ \ \ \ \ \ \ \ 2\ \par
\ \ \ \ \ \ \ \ 3\ \par
\ \ \ \ \ \ \ \ 6\ \par
\ \ \ \par
$\chi_4$\ o2\ \ \ 1\ \ \ *\ \ \ +\ \par
\end{minipage}}}

\put(95,122){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2.2in}
\baselineskip2.7ex
\parskip0ex

$3.G.2$ \par
\ \par
\ \ \ 2\ \ \ 1\ \ \ .\ \ \ 1 \par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ . \par
\ \par
\ \ \ \ \ \ 1a\ \ 3a\ \ 2a \par
\ \ 2P\ \ 1a\ \ 3a\ \ 1a \par
\ \ 3P\ \ 1a\ \ 1a\ \ 2a \par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1 \par
X.2\ \ \ \ 1\ \ \ 1\ \ -1 \par
X.3\ \ \ \ 2\ \ -1\ \ \ . \par
\ \par
\ 
\ \par
$6.G.2$ \par
\ \par
\ \ \ 2\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 2\ \ \ 2\ \ \ 2 \par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ .\ \ \ . \par
\ \par
\ \ \ \ \ \ 1a\ \ 6a\ \ 3a\ \ 2a\ \ 2b\ \ 2c \par
\ \ 2P\ \ 1a\ \ 3a\ \ 3a\ \ 1a\ \ 1a\ \ 1a \par
\ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 2a\ \ 2b\ \ 2c \par
\ \par
Y.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
Y.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ -1\ \ -1 \par
Y.3\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ 1\ \ -1 \par
Y.4\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ -1\ \ \ 1 \par
Y.5\ \ \ \ 2\ \ -1\ \ -1\ \ \ 2\ \ \ .\ \ \ . \par
Y.6\ \ \ \ 2\ \ \ 1\ \ -1\ \ -2\ \ \ .\ \ \ . \par

\end{minipage}}}
\end{picture}
]]>
</Alt>
<Alt Not="LaTeX">
<Listing>
┌───────┐ ┌───────┐        ;   @   ;   ;  @      3.G.2
│       │ │       │            1          1
│   G   │ │  G.2  │      p power          A         2   1   .   1
│       │ │       │      p' part          A         3   1   1   .
└───────┘ └───────┘      ind  1A fus ind 2A
┌───────┐ ┌───────┐                                    1a 3a 2a
│       │ │       │   χ_1  +   1   :  ++  1        2P  1a 3a 1a
│  2.G  │ │ 2.G.2 │                                3P  1a 1a 2a
│       │ │       │      ind   1 fus ind  2
└───────┘ └───────┘            2          2      X.1    1  1  1
┌───────┐ ┌───────                               X.2    1  1 ─1
│       │ │           χ_2  +   1   :  ++  1      X.3    2 ─1  .
│  3.G  │ │ 3.G.2
│       │ │              ind   1 fus ind  2
└───────┘                      3                 6.G.2
┌───────┐ ┌───────             3
│       │ │                                         2   2  1  1  2  2  2
│  6.G  │ │ 6.G.2     χ_3 o2   1   *   +            3   1  1  1  1  .  .
│       │ │
└───────┘                ind   1 fus ind  2            1a 6a 3a 2a 2b 2c
                               6          2        2P  1a 3a 3a 1a 1a 1a
                               3                   3P  1a 2a 1a 2a 2b 2c
                               2
                               3                 Y.1    1  1  1  1  1  1
                               6                 Y.2    1  1  1  1 -1 -1
                                                 Y.3    1 -1  1 -1  1 -1
                      χ_4 o2   1   *   +         Y.4    1 -1  1 -1 -1  1
                                                 Y.5    2 -1 -1  2  .  .
                                                 Y.6    2  1 -1 -2  .  .
</Listing>
</Alt>

<P/>

The tables of <M>G</M>, <M>2.G</M>, <M>3.G</M>, <M>6.G</M> and <M>G.2</M>
are known from the first
example, that of <M>2.G.2</M> will be given in the next one.
So here we print only the &GAP; tables of <M>3.G.2 \cong D_6</M> and
<M>6.G.2 \cong D_{12}</M>.

<P/>

In <M>3.G.2</M>, the characters <C>X.1</C>, <C>X.2</C> extend <M>\chi_1</M>;
<M>\chi_3</M> and its non-printed partner fuse to give <C>X.3</C>,
and the two preimages of <C>1A</C> of order <M>3</M> collapse.

<P/>

In  <M>6.G.2</M>,  <C>Y.1</C> to <C>Y.4</C> are extensions of <M>\chi_1</M>,
<M>\chi_2</M>,
so these characters are the inflated characters from <M>2.G.2</M>
(with respect to the factor fusion <C>[ 1, 2, 1, 2, 3, 4 ]</C>).
<C>Y.5</C> is inflated from <M>3.G.2</M>
(with respect to the factor fusion <C>[ 1, 2, 2, 1, 3, 3 ]</C>),
and <C>Y.6</C> is the result of the fusion of <M>\chi_4</M> and its
non-printed partner.

<P/>

For the last example, let <M>G</M> be the elementary abelian group <M>2^2</M>
of order <M>4</M>.
Consider the following tables.

<P/>

<Alt Only="LaTeX">
<![CDATA[
\begin{picture}(110,175)
\put(0,143){
\begin{picture}(29,29)
\put(0,29){\line(1,0){14}}
\put(0,15){\line(1,0){14}}
\put(0,14){\line(1,0){14}}
\put(0,0){\line(1,0){14}}
\put(15,29){\line(1,0){14}}
\put(15,15){\line(1,0){14}}
\put(15,14){\line(1,0){14}}
\put(15,0){\line(1,0){14}}
\put(0,15){\line(0,1){14}}
\put(0,0){\line(0,1){14}}
\put(14,15){\line(0,1){14}}
\put(15,15){\line(0,1){14}}
\put(29,15){\line(0,1){14}}
\put(14,0){\line(0,1){14}}
\put(15,0){\line(0,1){14}}
\put(29,0){\line(0,1){14}}
\put(7,7){\makebox(0,0){2.G}}
\put(22,7){\makebox(0,0){2.G.3}}
\put(7,22){\makebox(0,0){G}}
\put(22,22){\makebox(0,0){G.3}}
\end{picture}}

\put(84.9,116.8){\line(0,1){16.4}}  % fusion sign in picture

\put(39,172){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{3in}
\baselineskip2.7ex
\parskip0ex

\ \ \ \ ;\ \ \ @\ \ \ @\ \ \ @\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \par
\ \par
\ \ \ \ \ \ \ \ 4\ \ \ 4\ \ \ 4\ \ \ 4\ \ \ \ \ \ \ \ \ \ \ 1\ \par
\ \ p\ power\ \ \ A\ \ \ A\ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \par
\ \ p'\ part\ \ \ A\ \ \ A\ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \par
\ \ ind\ \ 1A\ \ 2A\ \ 2B\ \ 2C\ fus\ ind\ \ 3A\ \par
\ \par
$\chi_1$\ \ +\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ :\ +oo\ \ \ 1\ \par
\ \par
$\chi_2$\ \ +\ \ \ 1\ \ \ 1\ \ -1\ \ -1\ \ \ .\ \ \ +\ \ \ 0\ \par
\ \par
$\chi_3$\ \ +\ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ .\ \par
\ \par
$\chi_4$\ \ +\ \ \ 1\ \ -1\ \ -1\ \ \ 1\ \ \ .\ \par
\ \par
\ \ ind\ \ \ 1\ \ \ 4\ \ \ 4\ \ \ 4\ fus\ ind\ \ \ 3\ \par
\ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6\ \par
\ \par
$\chi_5$\ \ -\ \ \ 2\ \ \ 0\ \ \ 0\ \ \ 0\ \ \ :\ -oo\ \ \ 1\ \par
\end{minipage}}}

\put(107,172){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{3in}
\baselineskip2.7ex
\parskip0ex
$G.3$\par
\ \par
\ \ \ 2\ \ \ 2\ \ \ 2\ \ \ .\ \ \ . \par
\ \ \ 3\ \ \ 1\ \ \ .\ \ \ 1\ \ \ 1 \par
\ \par
\ \ \ \ \ \ 1a\ \ 2a\ \ 3a\ \ 3b \par
\ \ 2P\ \ 1a\ \ 1a\ \ 3b\ \ 3a \par
\ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 1a \par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
X.2\ \ \ \ 1\ \ \ 1\ \ \ A\ \ /A \par
X.3\ \ \ \ 1\ \ \ 1\ \ /A\ \ \ A \par
X.4\ \ \ \ 3\ \ -1\ \ \ .\ \ \ . \par
\ \par
A\ =\ E(3) \par
\ \ =\ (-1+ER(-3))/2\ =\ b3 \par
\end{minipage}}}

\put(0,81){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{3in}
\baselineskip2.7ex
\parskip0ex
$2.G$\par
\ \par
\ \ \ 2\ \ \ 3\ \ \ 3\ \ \ 2\ \ \ 2\ \ \ 2\par
\ \par
\ \ \ \ \ \ 1a\ \ 2a\ \ 4a\ \ 4b\ \ 4c\par
\ \ 2P\ \ 1a\ \ 1a\ \ 2a\ \ 1a\ \ 1a\par
\ \ 3P\ \ 1a\ \ 2a\ \ 4a\ \ 4b\ \ 4c\par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
X.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ -1\ \ -1\par
X.3\ \ \ \ 1\ \ \ 1\ \ -1\ \ \ 1\ \ -1\par
X.4\ \ \ \ 1\ \ \ 1\ \ -1\ \ -1\ \ \ 1\par
X.5\ \ \ \ 2\ \ -2\ \ \ .\ \ \ .\ \ \ .\par
\end{minipage}}}

\put(70,81){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{3in}
\baselineskip2.7ex
\parskip0ex
$2.G.3$\par
\ \par
\ \ \ 2\ \ \ 3\ \ \ 3\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ .\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
\ \par
\ \ \ \ \ \ 1a\ \ 2a\ \ 4a\ \ 3a\ \ 6a\ \ 3b\ \ 6b\par
\ \ 2P\ \ 1a\ \ 1a\ \ 2a\ \ 3b\ \ 3b\ \ 3a\ \ 3a\par
\ \ 3P\ \ 1a\ \ 2a\ \ 4a\ \ 1a\ \ 2a\ \ 1a\ \ 2a\par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
X.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ A\ \ \ A\ \ /A\ \ /A\par
X.3\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ /A\ \ /A\ \ \ A\ \ \ A\par
X.4\ \ \ \ 3\ \ \ 3\ \ -1\ \ \ .\ \ \ .\ \ \ .\ \ \ .\par
X.5\ \ \ \ 2\ \ -2\ \ \ .\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
X.6\ \ \ \ 2\ \ -2\ \ \ .\ \ \ A\ \ -A\ \ /A\ -/A\par
X.7\ \ \ \ 2\ \ -2\ \ \ .\ \ /A\ -/A\ \ \ A\ \ -A\par
\ \par
A\ =\ E(3) \par
\ \ =\ (-1+ER(-3))/2\ =\ b3 \par
\end{minipage}}}
\end{picture}
]]>
</Alt>
<Alt Not="LaTeX">
<Listing>
┌───────┐ ┌───────┐          ;   @   @   @   @   ;   ;   @
│       │ │       │              4   4   4   4           1
│   G   │ │  G.3  │        p power   A   A   A           A
│       │ │       │        p' part   A   A   A           A
└───────┘ └───────┘        ind  1A  2A  2B  2C fus ind  3A
┌───────┐ ┌───────┐
│       │ │       │     χ_1  +   1   1   1   1   : +oo   1
│  2.G  │ │ 2.G.3 │     χ_2  +   1   1  ─1  ─1   .   +   0
│       │ │       │     χ_3  +   1  ─1   1  ─1   |
└───────┘ └───────┘     χ_4  +   1  ─1  ─1   1   |

                           ind   1   4   4   4 fus ind   3
                                 2                       6

                        χ_5  -   2   0   0   0   : -oo   1

  G.3

     2   2   2   .   .
     3   1   .   1   1

        1a  2a  3a  3b
    2P  1a  1a  3b  3a
    3P  1a  2a  1a  1a

  X.1    1   1   1   1
  X.2    1   1   A  /A
  X.3    1   1  /A   A         2.G.3
  X.4    3  -1   .   .
                                  2   3   3   2   1   1   1   1
  A = E(3)                        3   1   1   .   1   1   1   1
    = (-1+ER(-3))/2 = b3
                                     1a  2a  4a  3a  6a  3b  6b
  2.G                            2P  1a  1a  2a  3b  3b  3a  3a
                                 3P  1a  2a  4a  1a  2a  1a  2a
     2   3   3   2   2   2
                               X.1    1   1   1   1   1   1   1
        1a  2a  4a  4b  4c     X.2    1   1   1   A   A  /A  /A
    2P  1a  1a  2a  1a  1a     X.3    1   1   1  /A  /A   A   A
    3P  1a  2a  4a  4b  4c     X.4    3   3  -1   .   .   .   .
                               X.5    2  -2   .   1   1   1   1
  X.1    1   1   1   1   1     X.6    2  -2   .   A  -A  /A -/A
  X.2    1   1   1  -1  -1     X.7    2  -2   .  /A -/A   A  -A
  X.3    1   1  -1   1  -1
  X.4    1   1  -1  -1   1     A = E(3)
  X.5    2  -2   .   .   .       = (-1+ER(-3))/2 = b3
</Listing>
</Alt>

<P/>

In the table of <M>G.3 \cong A_4</M>, the characters <M>\chi_2</M>,
<M>\chi_3</M>, and <M>\chi_4</M> fuse,
and the classes <C>2A</C>, <C>2B</C>  and <C>2C</C> collapse.
For getting the table of <M>2.G \cong Q_8</M>,
one just has to split the class <C>2A</C> and adjust the representative
orders.
Finally, the table of <M>2.G.3 \cong SL_2(3)</M> is given;
the class fusion corresponding to the injection
<M>2.G \hookrightarrow 2.G.3</M>
is <C>[ 1, 2, 3, 3, 3 ]</C>, and the factor fusion corresponding to the
epimorphism <M>2.G.3 \rightarrow G.3</M> is <C>[ 1, 1, 2, 3, 3, 4, 4 ]</C>.

</Subsection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:CAS Tables">
<Heading>&CAS; Tables</Heading>

<Index Subkey="CAS">character tables</Index>
<Index Subkey="library">tables</Index>
<Index>library of character tables</Index>

One of the predecessors of &GAP; was
&CAS; (<E>C</E>haracter <E>A</E>lgorithm <E>S</E>ystem,
see&nbsp;<Cite Key="NPP84"/>),
which had also a library of character tables.
All these character tables are available in &GAP;
except if stated otherwise in the file <F>doc/ctbldiff.pdf</F>.
This sublibrary has been completely revised before it was included in &GAP;,
for example, errors have been corrected and power maps have been completed.

<P/>

Any &CAS; table is accessible by each of its &CAS; names
(except if stated otherwise in <F>doc/ctbldiff.pdf</F>), that is,
the table name or the filename used in &CAS;.

<P/>

<#Include Label="CASInfo">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:customize">
<Heading>Customizations of the &GAP; Character Table Library</Heading>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:install">
<Heading>Installing the &GAP; Character Table Library</Heading>

To install the package unpack the archive file in a
directory in the <F>pkg</F> directory of your local copy of &GAP;&nbsp;4.
This might be the <F>pkg</F> directory of the &GAP;&nbsp;4 home directory,
see Section&nbsp;<Ref Sect="Installing a GAP Package" BookName="ref"/>
for details.
It is however also possible to keep an additional <F>pkg</F> directory
in your private directories,
see&nbsp;<Ref Sect="GAP Root Directories" BookName="ref"/>.
The latter possibility <E>must</E> be chosen if you do not have write access
to the &GAP; root directory.

<P/>

The package consists entirely of &GAP; code,
no external binaries need to be compiled.

<P/>

<#Include Label="testinst">

<P/>

PDF and HTML versions of the package manual are available
in the <F>doc</F> directory of the package.

</Subsection>

<#Include Label="UnloadCTblLibFiles">
<#Include Label="DisplayFunction">
<#Include Label="MagmaPath">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:technicalities">
<Heading>Technicalities of the Access to Character Tables from the Library
</Heading>

<#Include Label="organization">

<#Include Label="LIBLIST">

<#Include Label="LibInfoCharacterTable">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:extending">
<Heading>How to Extend the &GAP; Character Table Library</Heading>

<Index>library tables!add</Index>
<Index>tables!add to the library</Index>

&GAP; users may want to extend the character table library in different
respects.

<P/>

<List>
<Item>
  Probably the easiest change is to <E>add new admissible names</E>
  to library tables, in order to use these names in calls of
  <Ref Meth="CharacterTable" Label="for a string"/>.
  This can be done using <Ref Func="NotifyNameOfCharacterTable"/>.
</Item>
<Item>
  The next kind of changes is the <E>addition of new fusions</E>
  between library tables.
  Once a fusion map is known, it can be added to the library file containing
  the table of the subgroup, using the format produced by
  <Ref Func="LibraryFusion"/>.
</Item>
<Item>
  The last kind of changes is the <E>addition of new character tables</E>
  to the &GAP; character table library.
  Data files containing tables in library format
  (i.&nbsp;e., in the form of calls to <C>MOT</C> or <C>MBT</C>)
  can be produced using <Ref Func="PrintToLib"/>.
  <P/>
  If you have an ordinary character table in library format which you want to
  add to the table library, for example because it shall be accessible via
  <Ref Meth="CharacterTable" Label="for a string"/>,
  you must notify this table, i.&nbsp;e., tell &GAP; in which file it can be
  found,
  and which names shall be admissible for it.
  This can be done using <Ref Func="NotifyCharacterTable"/>.
</Item>
</List>

<#Include Label="NotifyNameOfCharacterTable">

<#Include Label="LibraryFusion">
<#Include Label="LibraryFusionTblToTom">

<#Include Label="PrintToLib">

<#Include Label="NotifyCharacterTable">

<#Include Label="NotifyCharacterTables">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:CTblLib Sanity Checks">
<Heading>Sanity Checks for the &GAP; Character Table Library</Heading>

<#Include Label="tests">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:CTblLib Maintenance">
<Heading>Maintenance of the &GAP; Character Table Library</Heading>

It is of course desirable that the information in the
&GAP; Character Table Library is consistent with related data.
For example, the ordering of the classes of maximal subgroups stored in
the <Ref Attr="Maxes"/> list of the character table of a group <M>G</M>, say,
should correspond to the ordering shown for <M>G</M> in the
&ATLAS; of Finite Groups <Cite Key="CCN85"/>,
to the ordering of maximal subgroups used for <M>G</M> in the
<Package>AtlasRep</Package>,
and to the ordering of maximal subgroups in the table of marks of <M>G</M>.
The fact that the related data collections are developed independently
makes it difficult to achieve this kind of consistency.
Sometimes it is unavoidable to <Q>adjust</Q> data of the
&GAP; Character Table Library to external data.

<P/>

An important issue is the consistency of class fusions.
Usually such fusions are determined only up to table automorphisms,
and one candidate can be chosen.
However, other conditions such as known Brauer tables may restrict the
choice.
The point is that there are class fusions which predate the availability of
Brauer tables in the Character Table Library (in fact many of them have been
inherited from the table library of the <Package>CAS</Package> system),
but they are not compatible with the Brauer tables.
For example, there are four possible class fusion from <M>M_{23}</M> into
<M>Co_3</M>,
which lie in one orbit under the relevant groups of table automorphisms;
two of these maps are not compatible with the <M>3</M>-modular Brauer tables
of <M>M_{23}</M> and <M>Co_3</M>, and unfortunately the class fusion that was
stored on the <Package>CAS</Package> tables
&ndash;and that was available in version 1.0 of the &GAP;
Character Table Library&ndash; was one of the <E>not</E> compatible maps.
One could argue that the class fusion has older rights,
and that the Brauer tables should be adjusted to them, but the Brauer tables
are published in the &ATLAS; of Brauer Characters <Cite Key="JLPW95"/>,
which is an accepted standard.

</Section>

</Chapter>