1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
|
<!-- %W ctbllibr.xml GAP 4 package CTblLib Thomas Breuer -->
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Chapter Label="ch:ctbllibr">
<Heading>Contents of the &GAP; Character Table Library</Heading>
<Index>character tables!library of</Index>
<Index>tables!library of</Index>
<Index>library tables</Index>
<Index>generic character tables</Index>
This chapter informs you about
<List>
<Item>
the currently available character tables
(see Section <Ref Sect="sec:contents"/>),
</Item>
<Item>
generic character tables
(see Section <Ref Sect="sec:generictables"/>),
</Item>
<Item>
the subsets of &ATLAS; tables
(see Section <Ref Sect="sec:ATLAS Tables"/>)
and &CAS; tables
(see Section <Ref Sect="sec:CAS Tables"/>),
</Item>
<Item>
installing the library, and related user preferences
(see Section <Ref Sect="sec:customize"/>).
</Item>
</List>
<P/>
The following rather technical sections are thought for those
who want to maintain or extend the Character Table Library.
<P/>
<List>
<Item>
the technicalities of the access to library tables
(see Section <Ref Sect="sec:technicalities"/>),
</Item>
<Item>
how to extend the library
(see Section <Ref Sect="sec:extending"/>), and
</Item>
<Item>
sanity checks
(see Section <Ref Sect="sec:CTblLib Sanity Checks"/>).
</Item>
</List>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:contents">
<Heading>Ordinary and Brauer Tables in the &GAP; Character Table Library
</Heading>
<Index>character tables!library of</Index>
<Index>tables!library of</Index>
<Index>library of character tables</Index>
This section gives a brief overview of the contents of the &GAP;
character table library.
For the details about, e. g., the structure of data files,
see Section <Ref Sect="sec:technicalities"/>.
<P/>
The changes in the character table library since the first release of
&GAP; 4 are listed in a file that can be fetched from
<P/>
<URL>https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/ctbldiff.htm
</URL>.
<P/>
There are three different kinds of character tables in the &GAP; library,
namely <E>ordinary character tables</E>, <E>Brauer tables</E>,
and <E>generic character tables</E>.
Note that the Brauer table and the corresponding ordinary table of a group
determine the <E>decomposition matrix</E> of the group
(and the decomposition matrices of its blocks).
These decomposition matrices can be computed from the ordinary and modular
irreducibles with &GAP;,
see Section <Ref Sect="Operations Concerning Blocks" BookName="ref"/>
for details.
A collection of PDF files of the known decomposition matrices
of &ATLAS; tables in the &GAP; Character Table Library can also be
found at
<P/>
<URL>https://www.math.rwth-aachen.de/~MOC/decomposition/</URL>.
<P/>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:contents-ordinary">
<Heading>Ordinary Character Tables</Heading>
Two different aspects are useful to list the ordinary character tables
available in &GAP;, namely the aspect of the <E>source</E> of the tables
and that of <E>relations</E> between the tables.
<P/>
As for the source, there are first of all two big sources,
namely the &ATLAS; of Finite Groups
(see Section <Ref Sect="sec:ATLAS Tables"/>)
and the &CAS; library of character tables (see <Cite Key="NPP84"/>).
Many &ATLAS; tables are contained in the &CAS; library,
and difficulties may arise because the succession of characters and classes
in &CAS; tables and &ATLAS; tables are in general different,
so see Section <Ref Sect="sec:CAS Tables"/> for the relations between
these two variants of character tables of the same group.
A subset of the &CAS; tables is the set of tables of
Sylow normalizers of sporadic simple groups
as published in <Cite Key="Ost86"/>
this may be viewed as another source of character tables.
The library also contains the character tables of factor groups of space
groups (computed by W. Hanrath, see <Cite Key="Han88"/>)
that are part of <Cite Key="HP89"/>, in the form of two microfiches;
these tables are given in &CAS; format
(see Section <Ref Sect="sec:CAS Tables"/>) on the microfiches,
but they had not been part of the <Q>official</Q> &CAS; library.
<P/>
To avoid confusion about the ordering of classes and characters in a given
table, authorship and so on,
the <Ref Attr="InfoText" BookName="ref"/> value of the table
contains the information
<List>
<Mark><C>origin: ATLAS of finite groups</C></Mark>
<Item>
for &ATLAS; tables (see Section <Ref Sect="sec:ATLAS Tables"/>),
</Item>
<Mark><C>origin: Ostermann</C></Mark>
<Item>
for tables contained in <Cite Key="Ost86"/>,
</Item>
<Mark><C>origin: CAS library</C></Mark>
<Item>
for any table of the &CAS; table library that is contained
neither in the &ATLAS; nor in <Cite Key="Ost86"/>,
and
</Item>
<Mark><C>origin: Hanrath library</C></Mark>
<Item>
for tables contained in the microfiches in <Cite Key="HP89"/>.
</Item>
</List>
The <Ref Attr="InfoText" BookName="ref"/> value usually contains
more detailed information,
for example that the table in question is the character table of a maximal
subgroup of an almost simple group.
If the table was contained in the &CAS; library
then additional information may be available via the <Ref Func="CASInfo"/>
value.
<P/>
If one is interested in the aspect of relations between the tables,
i. e., the internal structure of the library of ordinary tables,
the contents can be listed up the following way.
<P/>
We have
<List>
<Item>
all &ATLAS; tables (see Section <Ref Sect="sec:ATLAS Tables"/>),
i. e., the tables of the simple groups which are contained in the
&ATLAS; of Finite Groups,
and the tables of cyclic and bicyclic extensions of these groups,
</Item>
<Item>
most tables of maximal subgroups of sporadic simple groups
(<E>not all</E> for the Monster group),
</Item>
<Item>
many tables of maximal subgroups of other &ATLAS; tables;
the <Ref Func="Maxes"/> value for the table is set if all tables of maximal
subgroups are available,
</Item>
<Item>
the tables of many Sylow <M>p</M>-normalizers of sporadic simple groups;
this includes the tables printed in <Cite Key="Ost86"/>
except <M>J_4N2</M>, <M>Co_1N2</M>, <M>Fi_{22}N2</M>,
but also other tables are available;
more generally,
several tables of normalizers of other radical <M>p</M>-subgroups are
available, such as normalizers of defect groups of <M>p</M>-blocks,
</Item>
<Item>
some tables of element centralizers,
</Item>
<Item>
some tables of Sylow <M>p</M>-subgroups,
</Item>
<Item>
and a few other tables, e. g. <C>W(F4)</C>
<!-- %T namely which? -->
</Item>
</List>
<P/>
<E>Note</E> that class fusions stored on library tables are not guaranteed
to be compatible for any two subgroups of a group and their intersection,
and they are not guaranteed to be consistent
w. r. t. the composition of maps.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:contents-modular">
<Heading>Brauer Tables</Heading>
The library contains all tables of the &ATLAS; of
Brauer Tables (<Cite Key="JLPW95"/>),
and many other Brauer tables of bicyclic extensions of simple groups
which are known yet.
The Brauer tables in the library contain the information
<Verb>
origin: modular ATLAS of finite groups
</Verb>
in their <Ref Attr="InfoText" BookName="ref"/> string.
</Subsection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:generictables">
<Heading>Generic Character Tables</Heading>
<Index>character tables!generic</Index>
<Index>tables!generic</Index>
<Index>library tables!generic</Index>
<Index>spin groups!character table</Index>
<Index>symmetric groups!character table</Index>
<Index>alternating groups!character table</Index>
<Index>dihedral groups!character table</Index>
<Index>Suzuki groups!character table</Index>
<Index>Weyl groups!character table</Index>
<Index>cyclic groups!character table</Index>
Generic character tables provide a means for writing down the character
tables of all groups in a (usually infinite) series of similar groups,
e. g., cyclic groups, or symmetric groups, or the general linear groups
GL<M>(2,q)</M> where <M>q</M> ranges over certain prime powers.
<P/>
Let <M>\{ G_q | q \in I \}</M> be such a series,
where <M>I</M> is an index set.
The character table of one fixed member <M>G_q</M> could be computed using a
function that takes <M>q</M> as only argument
and constructs the table of <M>G_q</M>.
It is, however, often desirable to compute not only the whole table but to
access just one specific character, or to compute just one character value,
without computing the whole character table.
<P/>
For example, both the conjugacy classes and the irreducible characters of
the symmetric group <M>S_n</M> are in bijection with the partitions of
<M>n</M>.
Thus for given <M>n</M> it makes sense to ask for the character corresponding
to a particular partition,
or just for its character value at another partition.
<P/>
A generic character table in &GAP; allows one such local evaluations.
In this sense, &GAP; can deal also with character tables that are too big
to be computed and stored as a whole.
<P/>
Currently the only operations for generic tables supported by &GAP; are
the specialisation of the parameter <M>q</M> in order to compute the whole
character table of <M>G_q</M>, and local evaluation
(see <Ref Func="ClassParameters" BookName="ref"/> for an example).
&GAP; does <E>not</E> support the computation of, e. g.,
generic scalar products.
<P/>
While the numbers of conjugacy classes for the members of a series of groups
are usually not bounded,
there is always a fixed finite number of <E>types</E> (equivalence classes)
of conjugacy classes;
very often the equivalence relation is isomorphism of the centralizers of the
representatives.
<P/>
For each type <M>t</M> of classes and a fixed <M>q \in I</M>,
a <E>parametrisation</E> of the classes in <M>t</M> is a function
that assigns to each conjugacy class of <M>G_q</M> in <M>t</M>
a <E>parameter</E> by which it is uniquely determined.
Thus the classes are indexed by pairs <M>[t,p_t]</M> consisting of
a type <M>t</M> and a parameter <M>p_t</M> for that type.
<P/>
For any generic table, there has to be a fixed number of types of irreducible
characters of <M>G_q</M>, too.
Like the classes, the characters of each type are parametrised.
<P/>
In &GAP;, the parametrisations of classes and characters for tables
computed from generic tables is stored using the attributes
<Ref Attr="ClassParameters" BookName="ref"/> and
<Ref Attr="CharacterParameters" BookName="ref"/>.
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:generictablesavailable">
<Heading>Available generic character tables</Heading>
Currently, generic tables of the following groups
–in alphabetical order– are available in &GAP;.
(A list of the names of generic tables known to &GAP; is
<C>LIBTABLE.GENERIC.firstnames</C>.)
We list the function calls needed to get a specialized table,
the generic table itself can be accessed by calling
<Ref Func="CharacterTable" BookName="ref"/>
with the first argument only;
for example, <C>CharacterTable( "Cyclic" )</C> yields the generic table of
cyclic groups.
<List>
<Mark><C>CharacterTable( "Alternating", </C><M>n</M><C> )</C></Mark>
<Item>
the table of the <E>alternating</E> group on <M>n</M> letters,
</Item>
<Mark><C>CharacterTable( "Cyclic", </C><M>n</M><C> )</C></Mark>
<Item>
the table of the <E>cyclic</E> group of order <M>n</M>,
</Item>
<Mark><C>CharacterTable( "Dihedral", </C><M>2n</M><C> )</C></Mark>
<Item>
the table of the <E>dihedral</E> group of order <M>2n</M>,
</Item>
<Mark><C>CharacterTable( "DoubleCoverAlternating", </C><M>n</M><C> )</C></Mark>
<Item>
the table of the <E>Schur double cover of the alternating</E> group
on <M>n</M> letters (see <Cite Key="Noe02"/>),
</Item>
<Mark><C>CharacterTable( "DoubleCoverSymmetric", </C><M>n</M><C> )</C></Mark>
<Item>
the table of the <E>standard Schur double cover of the symmetric</E> group
on <M>n</M> letters (see <Cite Key="Noe02"/>),
</Item>
<Mark><C>CharacterTable( "GL", 2, </C><M>q</M><C> )</C></Mark>
<Item>
the table of the <E>general linear</E> group <C>GL(2,</C><M>q</M><C>)</C>,
for a prime power <M>q</M>,
</Item>
<Mark><C>CharacterTable( "GU", 3, </C><M>q</M><C> )</C></Mark>
<Item>
the table of the <E>general unitary</E> group <C>GU(3,</C><M>q</M><C>)</C>,
for a prime power <M>q</M>,
</Item>
<Mark><C>CharacterTable( "P:Q", </C><M>[ p, q ]</M><C> )</C> and
<C>CharacterTable( "P:Q", </C><M>[ p, q, k ]</M><C> )</C></Mark>
<Item>
the table of the <E>Frobenius extension</E> of the nontrivial cyclic group
of odd order <M>p</M> by the nontrivial cyclic group of order <M>q</M>
where <M>q</M> divides <M>p_i-1</M> for all prime divisors <M>p_i</M> of
<M>p</M>;
if <M>p</M> is a prime power then <M>q</M> determines the group uniquely
and thus the first version can be used,
otherwise the action of the residue class of <M>k</M> modulo <M>p</M> is
taken for forming orbits of length <M>q</M> each on the nonidentity
elements of the group of order <M>p</M>,
</Item>
<Mark><C>CharacterTable( "PSL", 2, </C><M>q</M><C> )</C></Mark>
<Item>
the table of the <E>projective special linear</E> group
<C>PSL(2,</C><M>q</M><C>)</C>, for a prime power <M>q</M>,
</Item>
<Mark><C>CharacterTable( "SL", 2, </C><M>q</M><C> )</C></Mark>
<Item>
the table of the <E>special linear</E> group <C>SL(2,</C><M>q</M><C>)</C>,
for a prime power <M>q</M>,
</Item>
<Mark><C>CharacterTable( "SU", 3, </C><M>q</M><C> )</C></Mark>
<Item>
the table of the <E>special unitary</E> group <C>SU(3,</C><M>q</M><C>)</C>,
for a prime power <M>q</M>,
</Item>
<Mark><C>CharacterTable( "Suzuki", </C><M>q</M><C> )</C></Mark>
<Item>
the table of the <E>Suzuki</E> group
<C>Sz(</C><M>q</M><C>)</C> <M>= {}^2B_2(q)</M>,
for <M>q</M> an odd power of <M>2</M>,
</Item>
<Mark><C>CharacterTable( "Symmetric", </C><M>n</M><C> )</C></Mark>
<Item>
the table of the <E>symmetric</E> group on <M>n</M> letters,
</Item>
<Mark><C>CharacterTable( "WeylB", </C><M>n</M><C> )</C></Mark>
<Item>
the table of the <E>Weyl</E> group of type <M>B_n</M>,
</Item>
<Mark><C>CharacterTable( "WeylD", </C><M>n</M><C> )</C></Mark>
<Item>
the table of the <E>Weyl</E> group of type <M>D_n</M>.
</Item>
</List>
In addition to the above calls that really use generic tables,
the following calls to
<Ref Func="CharacterTable" BookName="ref"/> are to some extent <Q>generic</Q>
constructions.
But note that no local evaluation is possible in these cases,
as no generic table object exists in &GAP; that can be asked for local
information.
<List>
<Mark><C>CharacterTable( "Quaternionic", </C><M>4n</M><C> )</C></Mark>
<Item>
the table of the <E>generalized quaternionic</E> group of order <M>4n</M>,
</Item>
<Mark><C>CharacterTableWreathSymmetric( tbl, </C><M>n</M><C> )</C></Mark>
<Item>
the character table of the wreath product of the group whose table is
<C>tbl</C> with the symmetric group on <M>n</M> letters,
see <Ref Func="CharacterTableWreathSymmetric" BookName="ref"/>.
</Item>
</List>
</Subsection>
<#Include Label="CharacterTableSpecialized">
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:generictablecomponents">
<Heading>Components of generic character tables</Heading>
Any generic table in &GAP; is represented by a record.
The following components are supported for generic character table records.
<List>
<Mark><C>centralizers</C></Mark>
<Item>
list of functions, one for each class type <M>t</M>,
with arguments <M>q</M> and <M>p_t</M>,
returning the centralizer order of the class <M>[t,p_t]</M>,
</Item>
<Mark><C>charparam</C></Mark>
<Item>
list of functions, one for each character type <M>t</M>,
with argument <M>q</M>, returning the list of character parameters
of type <M>t</M>,
</Item>
<Mark><C>classparam</C></Mark>
<Item>
list of functions, one for each class type <M>t</M>,
with argument <M>q</M>,
returning the list of class parameters of type <M>t</M>,
</Item>
<Mark><C>classtext</C></Mark>
<Item>
list of functions, one for each class type <M>t</M>,
with arguments <M>q</M> and <M>p_t</M>,
returning a representative of the class with parameter <M>[t,p_t]</M>
(note that this element need <E>not</E> actually lie in the group
in question,
for example it may be a diagonal matrix but the characteristic polynomial
in the group s irreducible),
</Item>
<Mark><C>domain</C></Mark>
<Item>
function of <M>q</M> returning <K>true</K> if <M>q</M>
is a valid parameter, and <K>false</K> otherwise,
</Item>
<Mark><C>identifier</C></Mark>
<Item>
identifier string of the generic table,
</Item>
<Mark><C>irreducibles</C></Mark>
<Item>
list of list of functions,
in row <M>i</M> and column <M>j</M> the function of three arguments,
namely <M>q</M> and the parameters <M>p_t</M> and <M>p_s</M>
of the class type <M>t</M> and the character type <M>s</M>,
</Item>
<Mark><C>isGenericTable</C></Mark>
<Item>
always <K>true</K>
</Item>
<Mark><C>libinfo</C></Mark>
<Item>
record with components <C>firstname</C>
(<Ref Attr="Identifier" Label="for character tables" BookName="ref"/>
value of the table)
and <C>othernames</C> (list of other admissible names)
</Item>
<Mark><C>matrix</C></Mark>
<Item>
function of <M>q</M> returning the matrix of irreducibles of <M>G_q</M>,
</Item>
<Mark><C>orders</C></Mark>
<Item>
list of functions, one for each class type <M>t</M>,
with arguments <M>q</M> and <M>p_t</M>, returning the representative order
of elements of type <M>t</M> and parameter <M>p_t</M>,
</Item>
<Mark><C>powermap</C></Mark>
<Item>
list of functions, one for each class type <M>t</M>,
each with three arguments <M>q</M>, <M>p_t</M>, and <M>k</M>,
returning the pair <M>[s,p_s]</M> of type and parameter for the
<M>k</M>-th power of the class with parameter <M>[t,p_t]</M>,
</Item>
<Mark><C>size</C></Mark>
<Item>
function of <M>q</M> returning the order of <M>G_q</M>,
</Item>
<Mark><C>specializedname</C></Mark>
<Item>
function of <M>q</M> returning the
<Ref Attr="Identifier" Label="for character tables" BookName="ref"/>
value of the table of <M>G_q</M>,
</Item>
<Mark><C>text</C></Mark>
<Item>
string informing about the generic table
</Item>
</List>
<P/>
In the specialized table, the <Ref Func="ClassParameters" BookName="ref"/>
and <Ref Func="CharacterParameters" BookName="ref"/> values
are the lists of parameters <M>[t,p_t]</M> of classes and characters,
respectively.
<P/>
If the <C>matrix</C> component is present then its value implements a method
to compute the complete table of small members <M>G_q</M> more efficiently
than via local evaluation;
this method will be called when the generic table is used to compute the
whole character table for a given <M>q</M>
(see <Ref Func="CharacterTableSpecialized"/>).
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:generictableCn">
<Heading>Example: The generic table of cyclic groups</Heading>
For the cyclic group <M>C_q = \langle x \rangle</M> of order <M>q</M>,
there is one type of classes.
The class parameters are integers <M>k \in \{ 0, \ldots, q-1 \}</M>,
the class with parameter <M>k</M> consists of the group element <M>x^k</M>.
Group order and centralizer orders are the identity function
<M>q \mapsto q</M>, independent of the parameter <M>k</M>.
The representative order function maps the parameter pair <M>[q,k]</M> to
<M>q / \gcd(q,k)</M>, which is the order of <M>x^k</M> in <M>C_q</M>;
the <M>p</M>-th power map is the function mapping the triple <M>(q,k,p)</M>
to the parameter <M>[1,(kp \bmod q)]</M>.
<P/>
There is one type of characters,
with parameters <M>l \in \{ 0, \ldots, q-1 \}</M>;
for <M>e_q</M> a primitive complex <M>q</M>-th root of unity,
the character values are <M>\chi_l(x^k) = e_q^{kl}</M>.
<P/>
<Example><![CDATA[
gap> Print( CharacterTable( "Cyclic" ), "\n" );
rec(
centralizers := [ function ( n, k )
return n;
end ],
charparam := [ function ( n )
return [ 0 .. n - 1 ];
end ],
classparam := [ function ( n )
return [ 0 .. n - 1 ];
end ],
domain := <Category "(IsInt and IsPosRat)">,
identifier := "Cyclic",
irreducibles := [ [ function ( n, k, l )
return E( n ) ^ (k * l);
end ] ],
isGenericTable := true,
libinfo := rec(
firstname := "Cyclic",
othernames := [ ] ),
orders := [ function ( n, k )
return n / Gcd( n, k );
end ],
powermap := [ function ( n, k, pow )
return [ 1, k * pow mod n ];
end ],
size := function ( n )
return n;
end,
specializedname := function ( q )
return Concatenation( "C", String( q ) );
end,
text := "generic character table for cyclic groups" )
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:generictableGL2">
<Heading>Example: The generic table of the general linear group GL<M>(2,q)</M>
</Heading>
We have four types <M>t_1, t_2, t_3, t_4</M> of classes,
according to the rational canonical form of the elements.
<M>t_1</M> describes scalar matrices,
<M>t_2</M> nonscalar diagonal matrices,
<M>t_3</M> companion matrices of <M>(X - \rho)^2</M> for nonzero elements
<M>\rho \in F_q</M>,
and
<M>t_4</M> companion matrices of irreducible polynomials of degree <M>2</M>
over <M>F_q</M>.
<P/>
The sets of class parameters of the types are in bijection with
nonzero elements in <M>F_q</M> for <M>t_1</M> and <M>t_3</M>,
with the set
<Display Mode="M">
\{ \{ \rho, \tau \};
\rho, \tau \in F_q, \rho ¬eq; 0, \tau ¬eq; 0, \rho ¬eq; \tau \}
</Display>
for <M>t_2</M>,
and with the set
<M>\{ \{ \epsilon, \epsilon^q \}; \epsilon \in F_{{q^2}} \setminus F_q \}</M>
for <M>t_4</M>.
<P/>
The centralizer order functions are
<M>q \mapsto (q^2-1)(q^2-q)</M> for type <M>t_1</M>,
<M>q \mapsto (q-1)^2</M> for type <M>t_2</M>,
<M>q \mapsto q(q-1)</M> for type <M>t_3</M>, and
<M>q \mapsto q^2-1</M> for type <M>t_4</M>.
<P/>
The representative order function of <M>t_1</M> maps <M>(q, \rho)</M> to the
order of <M>\rho</M> in <M>F_q</M>,
that of <M>t_2</M> maps <M>(q, \{ \rho, \tau \})</M> to the least common
multiple of the orders of <M>\rho</M> and <M>\tau</M>.
<P/>
The file contains something similar to the following table.
<P/>
<Listing>
rec(
identifier := "GL2",
specializedname := ( q -> Concatenation( "GL(2,", String(q), ")" ) ),
size := ( q -> (q^2-1)*(q^2-q) ),
text := "generic character table of GL(2,q), see Robert Steinberg: ...",
centralizers := [ function( q, k ) return (q^2-1) * (q^2-q); end,
..., ..., ... ],
classparam := [ ( q -> [ 0 .. q-2 ] ), ..., ..., ... ],
charparam := [ ( q -> [ 0 .. q-2 ] ), ..., ..., ... ],
powermap := [ function( q, k, pow ) return [ 1, (k*pow) mod (q-1) ]; end,
..., ..., ... ],
orders:= [ function( q, k ) return (q-1)/Gcd( q-1, k ); end,
..., ..., ... ],
irreducibles := [ [ function( q, k, l ) return E(q-1)^(2*k*l); end,
..., ..., ... ],
[ ..., ..., ..., ... ],
[ ..., ..., ..., ... ],
[ ..., ..., ..., ... ] ],
classtext := [ ..., ..., ..., ... ],
domain := IsPrimePowerInt,
isGenericTable := true )
</Listing>
</Subsection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:ATLAS Tables">
<Heading>&ATLAS; Tables</Heading>
<Index>character tables!ATLAS</Index>
<Index>tables!library</Index>
<Index>library of character tables</Index>
The &GAP; character table library contains all character tables of bicyclic
extensions of simple groups
that are included in the &ATLAS; of Finite Groups
(<Cite Key="CCN85"/>, from now on called &ATLAS;),
and the Brauer tables contained in the &ATLAS; of Brauer
Characters (<Cite Key="JLPW95"/>).
<P/>
These tables have the information
<Verb>
origin: ATLAS of finite groups
</Verb>
or
<Verb>
origin: modular ATLAS of finite groups
</Verb>
in their <Ref Attr="InfoText" BookName="ref"/> value,
they are simply called &ATLAS; tables further on.
<P/>
The property <Ref Prop="IsAtlasCharacterTable"/> describes
which character tables are &ATLAS; tables.
<P/>
For displaying &ATLAS; tables with the row labels used in
the &ATLAS;, or for displaying decomposition matrices,
see <Ref Func="LaTeXStringDecompositionMatrix" BookName="ref"/>
and <Ref Func="AtlasLabelsOfIrreducibles"/>.
<P/>
In addition to the information given in Chapters 6 to 8 of the
&ATLAS; which tell you how to read the printed tables,
there are some rules relating these to the corresponding &GAP; tables.
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:Improvements">
<Heading>Improvements to the &ATLAS;</Heading>
For the &GAP; Character Table Library not the printed versions of the
&ATLAS; of Finite Groups and the &ATLAS; of Brauer Characters are relevant
but the revised versions given by the currently three lists of improvements
that are maintained by Simon Norton.
The first such list is contained in <Cite Key="BN95"/>,
and is printed in the Appendix of <Cite Key="JLPW95"/>;
it contains the improvements that had been known until the
<Q>&ATLAS; of Brauer Characters</Q> was published.
The second list contains the improvements to the &ATLAS; of Finite Groups
that were found since the publication of <Cite Key="JLPW95"/>.
It can be found in the internet, an HTML version at
<P/>
<URL>http://web.mat.bham.ac.uk/atlas/html/atlasmods.html</URL>
<P/>
and a DVI version at
<P/>
<URL>http://web.mat.bham.ac.uk/atlas/html/atlasmods.dvi</URL>.
<!-- find better addresses, and update the lists -->
<P/>
The third list contains the improvements to the &ATLAS; of Brauer Characters,
HTML and PDF versions can be found in the internet at
<P/>
<URL>https://www.math.rwth-aachen.de/~MOC/ABCerr.html</URL>
<P/>
and
<P/>
<URL>https://www.math.rwth-aachen.de/~MOC/ABCerr.pdf</URL>,
<P/>
respectively.
<P/>
Also some tables are regarded as &ATLAS; tables that are
not printed in the &ATLAS; but available in &ATLAS; format,
according to the lists of improvements mentioned above.
Currently these are the tables related to <M>L_2(49)</M>, <M>L_2(81)</M>,
<M>L_6(2)</M>, <M>O_8^-(3)</M>, <M>O_8^+(3)</M>, <M>S_{10}(2)</M>,
and <M>{}^2E_6(2).3</M>.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:Power Maps">
<Heading>Power Maps</Heading>
For the tables of <M>3.McL</M>, <M>3_2.U_4(3)</M> and its covers,
and <M>3_2.U_4(3).2_3</M> and its covers,
the power maps are not uniquely determined by the information
from the &ATLAS; but determined only up to matrix automorphisms
(see <Ref Func="MatrixAutomorphisms" BookName="ref"/>)
of the irreducible characters.
In these cases, the first possible map according to lexicographical
ordering was chosen, and the automorphisms are listed in the
<Ref Attr="InfoText" BookName="ref"/> strings of the tables.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:Projective Characters and Projections">
<Heading>Projective Characters and Projections</Heading>
If <M>G</M> (or <M>G.a</M>) has a nontrivial Schur multiplier then the
attribute <Ref Func="ProjectivesInfo"/> of the &GAP; table object of <M>G</M>
(or <M>G.a</M>) is set;
the <C>chars</C> component of the record in question
is the list of values lists of those faithful projective irreducibles
that are printed in the &ATLAS; (so-called <E>proxy character</E>),
and the <C>map</C> component lists the positions of columns in the covering
for which the column is printed in the &ATLAS;
(a so-called <E>proxy class</E>, this preimage is denoted by <M>g_0</M> in
Chapter 7, Section 14 of the &ATLAS;).
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:Tables of Isoclinic Groups">
<Heading>Tables of Isoclinic Groups</Heading>
As described in Chapter 6, Section 7 and
in Chapter 7, Section 18 of the &ATLAS;,
there exist two (often nonisomorphic) groups of structure
<M>2.G.2</M> for a simple group <M>G</M>, which are isoclinic.
The table in the &GAP; Character Table Library is the one printed in the
&ATLAS;,
the table of the isoclinic variant can be constructed using
<Ref Func="CharacterTableIsoclinic" BookName="ref"/>.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsec:Ordering of Characters and Classes">
<Heading>Ordering of Characters and Classes</Heading>
(Throughout this section, <M>G</M> always means the simple group involved.)
<Enum>
<Item>
For <M>G</M> itself, the ordering of classes and characters in the &GAP;
table coincides with the one in the &ATLAS;.
</Item>
<Item>
For an automorphic extension <M>G.a</M>,
there are three types of characters.
<List>
<Item>
If a character <M>\chi</M> of <M>G</M> extends to <M>G.a</M> then the
different extensions <M>\chi^0, \chi^1, \ldots, \chi^{{a-1}}</M>
are consecutive in the table of <M>G.a</M>
(see <Cite Key="CCN85" Where="Chapter 7, Section 16"/>).
</Item>
<Item>
If some characters of <M>G</M> fuse to give a single character of
<M>G.a</M> then the position of that character in the table of <M>G.a</M>
is given by the position of the first involved character of <M>G</M>.
</Item>
<Item>
If both extension and fusion occur for a character
then the resulting characters are consecutive in the table of <M>G.a</M>,
and each replaces the first involved character of <M>G</M>.
</Item>
</List>
</Item>
<Item>
Similarly, there are different types of classes for an automorphic
extension <M>G.a</M>, as follows.
<List>
<Item>
If some classes collapse then the resulting class replaces the first
involved class of <M>G</M>.
</Item>
<Item>
For <M>a > 2</M>,
any proxy class and its algebraic conjugates that are not
printed in the &ATLAS; are consecutive in the table of <M>G.a</M>;
if more than two classes of <M>G.a</M> have the same proxy class
(the only case that actually occurs is for <M>a = 5</M>)
then the ordering of non-printed classes is the natural one of
corresponding Galois conjugacy operators <M>*k</M>
(see <Cite Key="CCN85" Where="Chapter 7, Section 19"/>).
</Item>
<Item>
For <M>a_1</M>, <M>a_2</M> dividing <M>a</M> such that <M>a_1 \leq a_2</M>,
the classes of <M>G.a_1</M> in <M>G.a</M> precede the classes of
<M>G.a_2</M> not contained in <M>G.a_1</M>.
This ordering is the same as in the &ATLAS;,
with the only exception <M>U_3(8).6</M>.
</Item>
</List>
</Item>
<Item>
For a central extension <M>M.G</M>, there are two different types of
characters, as follows.
<List>
<Item>
Each character can be regarded as a faithful character of a factor group
<M>m.G</M>, where <M>m</M> divides <M>M</M>.
Characters with the same kernel are consecutive as in the
&ATLAS;,
the ordering of characters with different kernels is given by the order
of precedence <M>1, 2, 4, 3, 6, 12</M> for the different values of <M>m</M>.
</Item>
<Item>
If <M>m > 2</M>,
a faithful character of <M>m.G</M> that is printed in the &ATLAS;
(a so-called <E>proxy character</E>) represents two or more Galois
conjugates.
In each &ATLAS; table in &GAP;,
a proxy character always precedes the non-printed characters with this
proxy.
The case <M>m = 12</M> is the only one that actually occurs
where more than one character for a proxy is not printed.
In this case, the non-printed characters are ordered according to the
corresponding Galois conjugacy operators <M>*5</M>, <M>*7</M>,
<M>*11</M>
(in this order).
</Item>
</List>
</Item>
<Item>
For the classes of a central extension we have the following.
<List>
<Item>
The preimages of a <M>G</M>-class in <M>M.G</M> are subsequent,
the ordering is the same as that of the lifting order rows in
<Cite Key="CCN85" Where="Chapter 7, Section 7"/>.
</Item>
<Item>
The primitive roots of unity chosen to represent the generating
central element (i. e., the element in the second class of the &GAP;
table) are <C>E(3)</C>, <C>E(4)</C>,
<C>E(6)^5</C> (<C>= E(2)*E(3)</C>),
and <C>E(12)^7</C> (<C>= E(3)*E(4)</C>),
for <M>m = 3</M>, <M>4</M>, <M>6</M>, and <M>12</M>, respectively.
</Item>
</List>
</Item>
<Item>
For tables of bicyclic extensions <M>m.G.a</M>, both the rules for
automorphic and central extensions hold.
Additionally we have the following three rules.
<List>
<Item>
Whenever classes of the subgroup <M>m.G</M> collapse in <M>m.G.a</M>
then the resulting class replaces the first involved class.
</Item>
<Item>
Whenever characters of the subgroup <M>m.G</M> collapse fuse in <M>m.G.a</M>
then the result character replaces the first involved character.
</Item>
<Item>
Extensions of a character are subsequent, and the extensions of a
proxy character precede the extensions of characters with this proxy
that are not printed.
</Item>
<Item>
Preimages of a class of <M>G.a</M> in <M>m.G.a</M> are subsequent,
and the preimages of a proxy class precede the preimages of non-printed
classes with this proxy.
</Item>
</List>
</Item>
</Enum>
</Subsection>
<#Include Label="AtlasLabelsOfIrreducibles">
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:explsATLAS">
<Heading>Examples of the &ATLAS; Format for &GAP; Tables</Heading>
<Index>character tables!CAS</Index>
<Index>tables!library</Index>
<Index>library of character tables</Index>
We give three little examples for the conventions stated in
Section <Ref Sect="sec:ATLAS Tables"/>,
listing both the &ATLAS; format and the table displayed by &GAP;.
<P/>
First, let <M>G</M> be the trivial group.
We consider the cyclic group <M>C_6</M> of order <M>6</M>.
It can be viewed in several ways, namely
<List>
<Item>
as a downward extension of the factor group <M>C_2</M> which contains
<M>G</M> as a subgroup,
or equivalently,
as an upward extension of the subgroup <M>C_3</M> which has a factor group
isomorphic to <M>G</M>:
</Item>
</List>
<Alt Only="LaTeX">
<![CDATA[
\setlength{\unitlength}{0.1cm}
\begin{picture}(110,67)
\put(8,36){
\begin{picture}(29,29)
\put(0,29){\line(1,0){14}}
\put(0,15){\line(1,0){14}}
\put(0,14){\line(1,0){14}}
\put(0,0){\line(1,0){14}}
\put(15,29){\line(1,0){14}}
\put(15,15){\line(1,0){14}}
\put(15,14){\line(1,0){14}}
\put(15,0){\line(1,0){14}}
\put(0,15){\line(0,1){14}}
\put(0,0){\line(0,1){14}}
\put(14,15){\line(0,1){14}}
\put(15,15){\line(0,1){14}}
\put(29,15){\line(0,1){14}}
\put(14,0){\line(0,1){14}}
\put(15,0){\line(0,1){14}}
\put(29,0){\line(0,1){14}}
\put(7,7){\makebox(0,0){3.G}}
\put(22,7){\makebox(0,0){3.G.2}}
\put(7,22){\makebox(0,0){G}}
\put(22,22){\makebox(0,0){G.2}}
\end{picture}}
\put(50,65){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2in}
\baselineskip2.7ex
\parskip0ex
\ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \par
\ \par
\ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1\ \par
\ \ p\ power\ \ \ \ \ \ \ \ \ \ \ A\ \par
\ \ p'\ part\ \ \ \ \ \ \ \ \ \ \ A\ \par
\ \ ind\ \ 1A\ fus\ ind\ \ 2A\ \par
\ \par
$\chi_1$\ \ +\ \ \ 1\ \ \ :\ \ ++\ \ \ 1\ \par
\ \par
\ \ ind\ \ \ 1\ fus\ ind\ \ \ 2\ \par
\ \ \ \ \ \ \ \ 3\ \ \ \ \ \ \ \ \ \ \ 6\ \par
\ \ \ \ \ \ \ \ 3\ \ \ \ \ \ \ \ \ \ \ 6\ \par
\ \par
$\chi_2$\ o2\ \ \ 1\ \ \ :\ oo2\ \ \ 1\
\end{minipage}}}
\put(99,65){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2.2in}
\baselineskip2.7ex
\parskip0ex
\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \par
\ \ \ \ \ \ 1a\ \ 3a\ \ 3b\ \ 2a\ \ 6a\ \ 6b \par
\ \ 2P\ \ 1a\ \ 3b\ \ 3a\ \ 1a\ \ 3b\ \ 3a \par
\ \ 3P\ \ 1a\ \ 1a\ \ 1a\ \ 2a\ \ 2a\ \ 2a \par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
X.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ -1\ \ -1\ \ -1 \par
X.3\ \ \ \ 1\ \ \ A\ \ /A\ \ \ 1\ \ \ A\ \ /A \par
X.4\ \ \ \ 1\ \ \ A\ \ /A\ \ -1\ \ -A\ -/A \par
X.5\ \ \ \ 1\ \ /A\ \ \ A\ \ \ 1\ \ /A\ \ \ A \par
X.6\ \ \ \ 1\ \ /A\ \ \ A\ \ -1\ -/A\ \ -A \par
\ \par
A\ =\ E(3) \par
\ \ =\ (-1+ER(-3))/2\ =\ b3 \par
\end{minipage}}}
\end{picture}
]]>
</Alt>
<Alt Not="LaTeX">
<Listing>
┌───────┐ ┌───────┐ ; @ ; ; @ 2 1 1 1 1 1 1
│ │ │ │ 1 1 3 1 1 1 1 1 1
│ G │ │ G.2 │ p power A
│ │ │ │ p' part A 1a 3a 3b 2a 6a 6b
└───────┘ └───────┘ ind 1A fus ind 2A 2P 1a 3b 3a 1a 3b 3a
┌───────┐ ┌───────┐ 3P 1a 1a 1a 2a 2a 2a
│ │ │ │ χ_1 + 1 : ++ 1
│ 3.G │ │ 3.G.2 │ X.1 1 1 1 1 1 1
│ │ │ │ ind 1 fus ind 2 X.2 1 1 1 -1 -1 -1
└───────┘ └───────┘ 3 6 X.3 1 A /A 1 A /A
3 6 X.4 1 A /A -1 -A -/A
X.5 1 /A A 1 /A A
χ_2 o2 1 : oo2 1 X.6 1 /A A -1 -/A -A
A = E(3)
= (-1+ER(-3))/2 = b3
</Listing>
</Alt>
<List>
<Mark></Mark>
<Item>
<C>X.1</C>, <C>X.2</C> extend <M>\chi_1</M>.
<C>X.3</C>, <C>X.4</C> extend the proxy character <M>\chi_2</M>.
<C>X.5</C>, <C>X.6</C> extend the not printed character with proxy
<M>\chi_2</M>.
The classes <C>1a</C>, <C>3a</C>, <C>3b</C> are preimages of <C>1A</C>,
and <C>2a</C>, <C>6a</C>, <C>6b</C> are preimages of <C>2A</C>.
</Item>
</List>
<List>
<Item>
as a downward extension of the factor group <M>C_3</M> which contains
<M>G</M> as a subgroup,
or equivalently,
as an upward extension of the subgroup <M>C_2</M> which has a factor group
isomorphic to <M>G</M>:
</Item>
</List>
<Alt Only="LaTeX">
<![CDATA[
\begin{picture}(110,67)
\put(8,36){
\begin{picture}(29,29)
\put(0,29){\line(1,0){14}}
\put(0,15){\line(1,0){14}}
\put(0,14){\line(1,0){14}}
\put(0,0){\line(1,0){14}}
\put(15,29){\line(1,0){14}}
\put(15,15){\line(1,0){14}}
\put(15,14){\line(1,0){14}}
\put(15,0){\line(1,0){14}}
\put(0,15){\line(0,1){14}}
\put(0,0){\line(0,1){14}}
\put(14,15){\line(0,1){14}}
\put(15,15){\line(0,1){14}}
\put(29,15){\line(0,1){14}}
\put(14,0){\line(0,1){14}}
\put(15,0){\line(0,1){14}}
\put(29,0){\line(0,1){14}}
\put(7,7){\makebox(0,0){2.G}}
\put(22,7){\makebox(0,0){2.G.3}}
\put(7,22){\makebox(0,0){G}}
\put(22,22){\makebox(0,0){G.3}}
\end{picture}}
\put(50,65){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2in}
\baselineskip2.7ex
\parskip0ex
\ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @ \par
\ \par
\ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1 \par
\ \ p\ power\ \ \ \ \ \ \ \ \ \ \ A \par
\ \ p'\ part\ \ \ \ \ \ \ \ \ \ \ A \par
\ \ ind\ \ 1A\ fus\ ind\ \ 3A \par
\ \par
$\chi_1$\ \ +\ \ \ 1\ \ \ :\ +oo\ \ \ 1 \par
\ \par
\ \ ind\ \ \ 1\ fus\ ind\ \ \ 3 \par
\ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ \ 6 \par
\ \par
$\chi_2$\ \ +\ \ \ 1\ \ \ :\ +oo\ \ \ 1 \par
\end{minipage}}}
\put(99,65){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2.2in}
\baselineskip2.7ex
\parskip0ex
\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \par
\ \ \ \ \ \ 1a\ \ 2a\ \ 3a\ \ 6a\ \ 3b\ \ 6b \par
\ \ 2P\ \ 1a\ \ 1a\ \ 3b\ \ 3b\ \ 3a\ \ 3a \par
\ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 2a\ \ 1a\ \ 2a \par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
X.2\ \ \ \ 1\ \ \ 1\ \ \ A\ \ \ A\ \ /A\ \ /A \par
X.3\ \ \ \ 1\ \ \ 1\ \ /A\ \ /A\ \ \ A\ \ \ A \par
X.4\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ 1\ \ -1 \par
X.5\ \ \ \ 1\ \ -1\ \ \ A\ \ -A\ \ /A\ -/A \par
X.6\ \ \ \ 1\ \ -1\ \ /A\ -/A\ \ \ A\ \ -A \par
\ \par
A\ =\ E(3) \par
\ \ =\ (-1+ER(-3))/2\ =\ b3 \par
\end{minipage}}}
\end{picture}
]]>
</Alt>
<Alt Not="LaTeX">
<Listing>
┌───────┐ ┌───────┐ ; @ ; ; @ 2 1 1 1 1 1 1
│ │ │ │ 1 1 3 1 1 1 1 1 1
│ G │ │ G.3 │ p power A
│ │ │ │ p' part A 1a 2a 3a 6a 3b 6b
└───────┘ └───────┘ ind 1A fus ind 3A 2P 1a 1a 3b 3b 3a 3a
┌───────┐ ┌───────┐ 3P 1a 2a 1a 2a 1a 2a
│ │ │ │ χ_1 + 1 : +oo 1
│ 2.G │ │ 2.G.3 │ X.1 1 1 1 1 1 1
│ │ │ │ ind 1 fus ind 3 X.2 1 1 A A /A /A
└───────┘ └───────┘ 2 6 X.3 1 1 /A /A A A
X.4 1 -1 1 -1 1 -1
χ_2 + 1 : +oo 1 X.5 1 -1 A -A /A -/A
X.6 1 -1 /A -/A A -A
A = E(3)
= (-1+ER(-3))/2 = b3
</Listing>
</Alt>
<List>
<Mark></Mark>
<Item>
<C>X.1</C> to <C>X.3</C> extend <M>\chi_1</M>,
<C>X.4</C> to <C>X.6</C> extend <M>\chi_2</M>.
The classes <C>1a</C> and <C>2a</C> are preimages of <C>1A</C>,
<C>3a</C> and <C>6a</C> are preimages of the proxy class <C>3A</C>,
and <C>3b</C> and <C>6b</C> are preimages of the not printed class
with proxy <C>3A</C>.
</Item>
</List>
<List>
<Item>
as a downward extension of the factor groups <M>C_3</M> and <M>C_2</M> which
have <M>G</M> as a factor group:
</Item>
</List>
<Alt Only="LaTeX">
<![CDATA[
\begin{picture}(110,120)
\put(8,58){
\begin{picture}(14,59)
\put(0,59){\line(1,0){14}}
\put(0,45){\line(1,0){14}}
\put(0,44){\line(1,0){14}}
\put(0,30){\line(1,0){14}}
\put(0,29){\line(1,0){14}}
\put(0,15){\line(1,0){14}}
\put(0,14){\line(1,0){14}}
\put(0,0){\line(1,0){14}}
\put(0,45){\line(0,1){14}}
\put(0,30){\line(0,1){14}}
\put(0,15){\line(0,1){14}}
\put(0,0){\line(0,1){14}}
\put(14,45){\line(0,1){14}}
\put(14,30){\line(0,1){14}}
\put(14,15){\line(0,1){14}}
\put(14,0){\line(0,1){14}}
\put(7,7){\makebox(0,0){6.G}}
\put(7,22){\makebox(0,0){3.G}}
\put(7,37){\makebox(0,0){2.G}}
\put(7,52){\makebox(0,0){G}}
\end{picture}}
\put(50,117){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2in}
\baselineskip2.7ex
\parskip0ex
\ \ \ \ ;\ \ \ @ \par
\ \ \par
\ \ \ \ \ \ \ \ 1 \par
\ \ p\ power \par
\ \ p'\ part \par
\ \ ind\ \ 1A \par
\ \ \par
$\chi_1$\ \ +\ \ \ 1 \par
\ \ \par
\ \ ind\ \ \ 1 \par
\ \ \ \ \ \ \ \ 2 \par
\ \ \par
$\chi_2$\ \ +\ \ \ 1 \par
\ \ \par
\ \ ind\ \ \ 1 \par
\ \ \ \ \ \ \ \ 3 \par
\ \ \ \ \ \ \ \ 3 \par
\ \ \par
$\chi_3$\ o2\ \ \ 1 \par
\ \ \par
\ \ ind\ \ \ 1 \par
\ \ \ \ \ \ \ \ 6 \par
\ \ \ \ \ \ \ \ 3 \par
\ \ \ \ \ \ \ \ 2 \par
\ \ \ \ \ \ \ \ 3 \par
\ \ \ \ \ \ \ \ 6 \par
\ \ \par
$\chi_4$\ o2\ \ \ 1 \par
\end{minipage}}}
\put(99,117){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2.2in}
\baselineskip2.7ex
\parskip0ex
\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \par
\ \ \ \ \ \ 1a\ \ 6a\ \ 3a\ \ 2a\ \ 3b\ \ 6b \par
\ \ 2P\ \ 1a\ \ 3a\ \ 3b\ \ 1a\ \ 3a\ \ 3b \par
\ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 2a\ \ 1a\ \ 2a \par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
X.2\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ 1\ \ -1 \par
X.3\ \ \ \ 1\ \ \ A\ \ /A\ \ \ 1\ \ \ A\ \ /A \par
X.4\ \ \ \ 1\ \ /A\ \ \ A\ \ \ 1\ \ /A\ \ \ A \par
X.5\ \ \ \ 1\ \ -A\ \ /A\ \ -1\ \ \ A\ -/A \par
X.6\ \ \ \ 1\ -/A\ \ \ A\ \ -1\ \ /A\ \ -A \par
\ \par
A\ =\ E(3) \par
\ \ =\ (-1+ER(-3))/2\ =\ b3 \par
\end{minipage}}}
\end{picture}
]]>
</Alt>
<Alt Not="LaTeX">
<Listing>
┌───────┐ ; @ 2 1 1 1 1 1 1
│ │ 1 3 1 1 1 1 1 1
│ G │ p power
│ │ p' part 1a 6a 3a 2a 3b 6b
└───────┘ ind 1A 2P 1a 3a 3b 1a 3a 3b
┌───────┐ 3P 1a 2a 1a 2a 1a 2a
│ │ χ_1 + 1
│ 2.G │ X.1 1 1 1 1 1 1
│ │ ind 1 X.2 1 ─1 1 ─1 1 ─1
└───────┘ 2 X.3 1 A /A 1 A /A
┌───────┐ X.4 1 /A A 1 /A A
│ │ χ_2 + 1 X.5 1 ─A /A ─1 A ─/A
│ 3.G │ X.6 1 ─/A A ─1 /A ─A
│ │ ind 1
└───────┘ 3 A = E(3)
┌───────┐ 3 = (─1+ER(─3))/2 = b3
│ │
│ 6.G │ χ_3 o2 1
│ │
└───────┘ ind 1
6
3
2
3
6
χ_4 o2 1
</Listing>
</Alt>
<List>
<Mark></Mark>
<Item>
<C>X.1</C>, <C>X.2</C> correspond to <M>\chi_1, \chi_2</M>, respectively;
<C>X.3</C>, <C>X.5</C> correspond to the proxies <M>\chi_3</M>,
<M>\chi_4</M>, and
<C>X.4</C>, <C>X.6</C> to the not printed characters with these proxies.
The factor fusion onto <M>3.G</M> is given by <C>[ 1, 2, 3, 1, 2, 3 ]</C>,
that onto <M>G.2</M> by <C>[ 1, 2, 1, 2, 1, 2 ]</C>.
</Item>
</List>
<List>
<Item>
as an upward extension of the subgroups <M>C_3</M> or <M>C_2</M> which both
contain a subgroup isomorphic to <M>G</M>:
</Item>
</List>
<Alt Only="LaTeX">
<![CDATA[
\begin{picture}(110,65)
\put(8,49){
\begin{picture}(59,14)
\put(0,0){\line(1,0){14}}
\put(0,0){\line(0,1){14}}
\put(0,14){\line(1,0){14}}
\put(14,0){\line(0,1){14}}
\put(7,7){\makebox(0,0){G}}
\put(15,0){\line(1,0){14}}
\put(15,0){\line(0,1){14}}
\put(15,14){\line(1,0){14}}
\put(29,0){\line(0,1){14}}
\put(22,7){\makebox(0,0){G.2}}
\put(30,0){\line(1,0){14}}
\put(30,0){\line(0,1){14}}
\put(30,14){\line(1,0){14}}
\put(44,0){\line(0,1){14}}
\put(37,7){\makebox(0,0){G.3}}
\put(45,0){\line(1,0){14}}
\put(45,0){\line(0,1){14}}
\put(45,14){\line(1,0){14}}
\put(59,0){\line(0,1){14}}
\put(52,7){\makebox(0,0){G.6}}
\end{picture}}
\put(8,41){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{4in}
\baselineskip2.7ex
\parskip0ex
\ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \ \ ;\ \ \ \ \ ;\ \ \ @\ \par
\ \par
\ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ \ \ 1\ \par
\ \ p\ power\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ \ AA\ \par
\ \ p'\ part\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ \ AA\ \par
\ \ ind\ \ 1A\ fus\ ind\ \ 2A\ fus\ ind\ \ 3A\ fus\ \ \ ind\ \ 6A\ \par
\ \par
$\chi_1$\ \ +\ \ \ 1\ \ \ :\ \ ++\ \ \ 1\ \ \ :\ +oo\ \ \ 1\ \ \ :+oo+oo\ \ \ 1\ \par
\end{minipage}}}
\put(103,63){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2.2in}
\baselineskip2.7ex
\parskip0ex
\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
\ \par
\ \ \ \ \ \ 1a\ \ 2a\ \ 3a\ \ 3b\ \ 6a\ \ 6b \par
\ \ 2P\ \ 1a\ \ 1a\ \ 3b\ \ 3a\ \ 3b\ \ 3a \par
\ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 1a\ \ 2a\ \ 2a \par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
X.2\ \ \ \ 1\ \ -1\ \ \ A\ \ /A\ \ -A\ -/A \par
X.3\ \ \ \ 1\ \ \ 1\ \ /A\ \ \ A\ \ /A\ \ \ A \par
X.4\ \ \ \ 1\ \ -1\ \ \ 1\ \ \ 1\ \ -1\ \ -1 \par
X.5\ \ \ \ 1\ \ \ 1\ \ \ A\ \ /A\ \ \ A\ \ /A \par
X.6\ \ \ \ 1\ \ -1\ \ /A\ \ \ A\ -/A\ \ -A \par
\ \par
A\ =\ E(3) \par
\ \ =\ (-1+ER(-3))/2\ =\ b3 \par
\end{minipage}}}
\end{picture}
]]>
</Alt>
<Alt Not="LaTeX">
<Listing>
┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐
│ │ │ │ │ │ │ │
│ G │ │ G.2 │ │ G.3 │ │ G.6 │
│ │ │ │ │ │ │ │
└───────┘ └───────┘ └───────┘ └───────┘
; @ ; ; @ ; ; @ ; ; @
1 1 1 1
p power A A AA
p' part A A AA
ind 1A fus ind 2A fus ind 3A fus ind 6A
χ_1 + 1 : ++ 1 : +oo 1 :+oo+oo 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
1a 2a 3a 3b 6a 6b
2P 1a 1a 3b 3a 3b 3a
3P 1a 2a 1a 1a 2a 2a
X.1 1 1 1 1 1 1
X.2 1 -1 A /A -A -/A
X.3 1 1 /A A /A A
X.4 1 -1 1 1 -1 -1
X.5 1 1 A /A A /A
X.6 1 -1 /A A -/A -A
A = E(3)
= (-1+ER(-3))/2 = b3
</Listing>
</Alt>
<List>
<Mark></Mark>
<Item>
The classes <C>1a</C>, <C>2a</C> correspond to <M>1A</M>, <M>2A</M>,
respectively.
<C>3a</C>, <C>6a</C> correspond to the proxies <M>3A</M>, <M>6A</M>,
and <C>3b</C>, <C>6b</C> to the not printed classes with these proxies.
</Item>
</List>
<P/>
The second example explains the fusion case.
Again, <M>G</M> is the trivial group.
<P/>
<Alt Only="LaTeX">
<![CDATA[
\setlength{\unitlength}{0.1cm}
\begin{picture}(110,125)
\put(0,63){
\begin{picture}(29,59)
\put(0,59){\line(1,0){14}}
\put(0,45){\line(1,0){14}}
\put(0,44){\line(1,0){14}}
\put(0,30){\line(1,0){14}}
\put(0,29){\line(1,0){14}}
\put(0,15){\line(1,0){14}}
\put(0,14){\line(1,0){14}}
\put(0,0){\line(1,0){14}}
\put(0,45){\line(0,1){14}}
\put(0,30){\line(0,1){14}}
\put(0,15){\line(0,1){14}}
\put(0,0){\line(0,1){14}}
\put(14,45){\line(0,1){14}}
\put(14,30){\line(0,1){14}}
\put(14,15){\line(0,1){14}}
\put(14,0){\line(0,1){14}}
\put(15,59){\line(1,0){14}}
\put(15,45){\line(1,0){14}}
\put(15,44){\line(1,0){14}}
\put(15,30){\line(1,0){14}}
\put(15,29){\line(1,0){14}}
\put(15,14){\line(1,0){14}}
\put(15,45){\line(0,1){14}}
\put(15,30){\line(0,1){14}}
\put(15,15){\line(0,1){14}}
\put(15,0){\line(0,1){14}}
\put(29,45){\line(0,1){14}}
\put(29,30){\line(0,1){14}}
\put(7,7){\makebox(0,0){6.G}}
\put(7,22){\makebox(0,0){3.G}}
\put(7,37){\makebox(0,0){2.G}}
\put(7,52){\makebox(0,0){G}}
\put(22,7){\makebox(0,0){6.G.2}}
\put(22,22){\makebox(0,0){3.G.2}}
\put(22,37){\makebox(0,0){2.G.2}}
\put(22,52){\makebox(0,0){G.2}}
\end{picture}}
\put(44,122){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2in}
\baselineskip2.7ex
\parskip0ex
\ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ @\ \par
\ \ \ \par
\ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ 1\ \par
\ \ p\ power\ \ \ \ \ \ \ \ \ \ A\ \par
\ \ p'\ part\ \ \ \ \ \ \ \ \ \ A\ \par
\ \ ind\ \ 1A\ fus\ ind\ 2A\ \par
\ \ \ \par
$\chi_1$\ \ +\ \ \ 1\ \ \ :\ \ ++\ \ 1\ \par
\ \ \ \par
\ \ ind\ \ \ 1\ fus\ ind\ \ 2\ \par
\ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ 2\ \par
\ \ \ \par
$\chi_2$\ \ +\ \ \ 1\ \ \ :\ \ ++\ \ 1\ \par
\ \ \ \par
\ \ ind\ \ \ 1\ fus\ ind\ \ 2\ \par
\ \ \ \ \ \ \ \ 3\ \par
\ \ \ \ \ \ \ \ 3\ \par
\ \ \ \par
$\chi_3$\ o2\ \ \ 1\ \ \ *\ \ \ +\ \par
\ \ \ \par
\ \ ind\ \ \ 1\ fus\ ind\ \ 2\ \par
\ \ \ \ \ \ \ \ 6\ \ \ \ \ \ \ \ \ \ 2\par
\ \ \ \ \ \ \ \ 3\ \par
\ \ \ \ \ \ \ \ 2\ \par
\ \ \ \ \ \ \ \ 3\ \par
\ \ \ \ \ \ \ \ 6\ \par
\ \ \ \par
$\chi_4$\ o2\ \ \ 1\ \ \ *\ \ \ +\ \par
\end{minipage}}}
\put(95,122){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{2.2in}
\baselineskip2.7ex
\parskip0ex
$3.G.2$ \par
\ \par
\ \ \ 2\ \ \ 1\ \ \ .\ \ \ 1 \par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ . \par
\ \par
\ \ \ \ \ \ 1a\ \ 3a\ \ 2a \par
\ \ 2P\ \ 1a\ \ 3a\ \ 1a \par
\ \ 3P\ \ 1a\ \ 1a\ \ 2a \par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1 \par
X.2\ \ \ \ 1\ \ \ 1\ \ -1 \par
X.3\ \ \ \ 2\ \ -1\ \ \ . \par
\ \par
\
\ \par
$6.G.2$ \par
\ \par
\ \ \ 2\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 2\ \ \ 2\ \ \ 2 \par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ .\ \ \ . \par
\ \par
\ \ \ \ \ \ 1a\ \ 6a\ \ 3a\ \ 2a\ \ 2b\ \ 2c \par
\ \ 2P\ \ 1a\ \ 3a\ \ 3a\ \ 1a\ \ 1a\ \ 1a \par
\ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 2a\ \ 2b\ \ 2c \par
\ \par
Y.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
Y.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ -1\ \ -1 \par
Y.3\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ 1\ \ -1 \par
Y.4\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ -1\ \ \ 1 \par
Y.5\ \ \ \ 2\ \ -1\ \ -1\ \ \ 2\ \ \ .\ \ \ . \par
Y.6\ \ \ \ 2\ \ \ 1\ \ -1\ \ -2\ \ \ .\ \ \ . \par
\end{minipage}}}
\end{picture}
]]>
</Alt>
<Alt Not="LaTeX">
<Listing>
┌───────┐ ┌───────┐ ; @ ; ; @ 3.G.2
│ │ │ │ 1 1
│ G │ │ G.2 │ p power A 2 1 . 1
│ │ │ │ p' part A 3 1 1 .
└───────┘ └───────┘ ind 1A fus ind 2A
┌───────┐ ┌───────┐ 1a 3a 2a
│ │ │ │ χ_1 + 1 : ++ 1 2P 1a 3a 1a
│ 2.G │ │ 2.G.2 │ 3P 1a 1a 2a
│ │ │ │ ind 1 fus ind 2
└───────┘ └───────┘ 2 2 X.1 1 1 1
┌───────┐ ┌─────── X.2 1 1 ─1
│ │ │ χ_2 + 1 : ++ 1 X.3 2 ─1 .
│ 3.G │ │ 3.G.2
│ │ │ ind 1 fus ind 2
└───────┘ 3 6.G.2
┌───────┐ ┌─────── 3
│ │ │ 2 2 1 1 2 2 2
│ 6.G │ │ 6.G.2 χ_3 o2 1 * + 3 1 1 1 1 . .
│ │ │
└───────┘ ind 1 fus ind 2 1a 6a 3a 2a 2b 2c
6 2 2P 1a 3a 3a 1a 1a 1a
3 3P 1a 2a 1a 2a 2b 2c
2
3 Y.1 1 1 1 1 1 1
6 Y.2 1 1 1 1 -1 -1
Y.3 1 -1 1 -1 1 -1
χ_4 o2 1 * + Y.4 1 -1 1 -1 -1 1
Y.5 2 -1 -1 2 . .
Y.6 2 1 -1 -2 . .
</Listing>
</Alt>
<P/>
The tables of <M>G</M>, <M>2.G</M>, <M>3.G</M>, <M>6.G</M> and <M>G.2</M>
are known from the first
example, that of <M>2.G.2</M> will be given in the next one.
So here we print only the &GAP; tables of <M>3.G.2 \cong D_6</M> and
<M>6.G.2 \cong D_{12}</M>.
<P/>
In <M>3.G.2</M>, the characters <C>X.1</C>, <C>X.2</C> extend <M>\chi_1</M>;
<M>\chi_3</M> and its non-printed partner fuse to give <C>X.3</C>,
and the two preimages of <C>1A</C> of order <M>3</M> collapse.
<P/>
In <M>6.G.2</M>, <C>Y.1</C> to <C>Y.4</C> are extensions of <M>\chi_1</M>,
<M>\chi_2</M>,
so these characters are the inflated characters from <M>2.G.2</M>
(with respect to the factor fusion <C>[ 1, 2, 1, 2, 3, 4 ]</C>).
<C>Y.5</C> is inflated from <M>3.G.2</M>
(with respect to the factor fusion <C>[ 1, 2, 2, 1, 3, 3 ]</C>),
and <C>Y.6</C> is the result of the fusion of <M>\chi_4</M> and its
non-printed partner.
<P/>
For the last example, let <M>G</M> be the elementary abelian group <M>2^2</M>
of order <M>4</M>.
Consider the following tables.
<P/>
<Alt Only="LaTeX">
<![CDATA[
\begin{picture}(110,175)
\put(0,143){
\begin{picture}(29,29)
\put(0,29){\line(1,0){14}}
\put(0,15){\line(1,0){14}}
\put(0,14){\line(1,0){14}}
\put(0,0){\line(1,0){14}}
\put(15,29){\line(1,0){14}}
\put(15,15){\line(1,0){14}}
\put(15,14){\line(1,0){14}}
\put(15,0){\line(1,0){14}}
\put(0,15){\line(0,1){14}}
\put(0,0){\line(0,1){14}}
\put(14,15){\line(0,1){14}}
\put(15,15){\line(0,1){14}}
\put(29,15){\line(0,1){14}}
\put(14,0){\line(0,1){14}}
\put(15,0){\line(0,1){14}}
\put(29,0){\line(0,1){14}}
\put(7,7){\makebox(0,0){2.G}}
\put(22,7){\makebox(0,0){2.G.3}}
\put(7,22){\makebox(0,0){G}}
\put(22,22){\makebox(0,0){G.3}}
\end{picture}}
\put(84.9,116.8){\line(0,1){16.4}} % fusion sign in picture
\put(39,172){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{3in}
\baselineskip2.7ex
\parskip0ex
\ \ \ \ ;\ \ \ @\ \ \ @\ \ \ @\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \par
\ \par
\ \ \ \ \ \ \ \ 4\ \ \ 4\ \ \ 4\ \ \ 4\ \ \ \ \ \ \ \ \ \ \ 1\ \par
\ \ p\ power\ \ \ A\ \ \ A\ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \par
\ \ p'\ part\ \ \ A\ \ \ A\ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \par
\ \ ind\ \ 1A\ \ 2A\ \ 2B\ \ 2C\ fus\ ind\ \ 3A\ \par
\ \par
$\chi_1$\ \ +\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ :\ +oo\ \ \ 1\ \par
\ \par
$\chi_2$\ \ +\ \ \ 1\ \ \ 1\ \ -1\ \ -1\ \ \ .\ \ \ +\ \ \ 0\ \par
\ \par
$\chi_3$\ \ +\ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ .\ \par
\ \par
$\chi_4$\ \ +\ \ \ 1\ \ -1\ \ -1\ \ \ 1\ \ \ .\ \par
\ \par
\ \ ind\ \ \ 1\ \ \ 4\ \ \ 4\ \ \ 4\ fus\ ind\ \ \ 3\ \par
\ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6\ \par
\ \par
$\chi_5$\ \ -\ \ \ 2\ \ \ 0\ \ \ 0\ \ \ 0\ \ \ :\ -oo\ \ \ 1\ \par
\end{minipage}}}
\put(107,172){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{3in}
\baselineskip2.7ex
\parskip0ex
$G.3$\par
\ \par
\ \ \ 2\ \ \ 2\ \ \ 2\ \ \ .\ \ \ . \par
\ \ \ 3\ \ \ 1\ \ \ .\ \ \ 1\ \ \ 1 \par
\ \par
\ \ \ \ \ \ 1a\ \ 2a\ \ 3a\ \ 3b \par
\ \ 2P\ \ 1a\ \ 1a\ \ 3b\ \ 3a \par
\ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 1a \par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
X.2\ \ \ \ 1\ \ \ 1\ \ \ A\ \ /A \par
X.3\ \ \ \ 1\ \ \ 1\ \ /A\ \ \ A \par
X.4\ \ \ \ 3\ \ -1\ \ \ .\ \ \ . \par
\ \par
A\ =\ E(3) \par
\ \ =\ (-1+ER(-3))/2\ =\ b3 \par
\end{minipage}}}
\put(0,81){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{3in}
\baselineskip2.7ex
\parskip0ex
$2.G$\par
\ \par
\ \ \ 2\ \ \ 3\ \ \ 3\ \ \ 2\ \ \ 2\ \ \ 2\par
\ \par
\ \ \ \ \ \ 1a\ \ 2a\ \ 4a\ \ 4b\ \ 4c\par
\ \ 2P\ \ 1a\ \ 1a\ \ 2a\ \ 1a\ \ 1a\par
\ \ 3P\ \ 1a\ \ 2a\ \ 4a\ \ 4b\ \ 4c\par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
X.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ -1\ \ -1\par
X.3\ \ \ \ 1\ \ \ 1\ \ -1\ \ \ 1\ \ -1\par
X.4\ \ \ \ 1\ \ \ 1\ \ -1\ \ -1\ \ \ 1\par
X.5\ \ \ \ 2\ \ -2\ \ \ .\ \ \ .\ \ \ .\par
\end{minipage}}}
\put(70,81){\makebox(0,0)[tl]{
\small\tt
\begin{minipage}{3in}
\baselineskip2.7ex
\parskip0ex
$2.G.3$\par
\ \par
\ \ \ 2\ \ \ 3\ \ \ 3\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
\ \ \ 3\ \ \ 1\ \ \ 1\ \ \ .\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
\ \par
\ \ \ \ \ \ 1a\ \ 2a\ \ 4a\ \ 3a\ \ 6a\ \ 3b\ \ 6b\par
\ \ 2P\ \ 1a\ \ 1a\ \ 2a\ \ 3b\ \ 3b\ \ 3a\ \ 3a\par
\ \ 3P\ \ 1a\ \ 2a\ \ 4a\ \ 1a\ \ 2a\ \ 1a\ \ 2a\par
\ \par
X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
X.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ A\ \ \ A\ \ /A\ \ /A\par
X.3\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ /A\ \ /A\ \ \ A\ \ \ A\par
X.4\ \ \ \ 3\ \ \ 3\ \ -1\ \ \ .\ \ \ .\ \ \ .\ \ \ .\par
X.5\ \ \ \ 2\ \ -2\ \ \ .\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
X.6\ \ \ \ 2\ \ -2\ \ \ .\ \ \ A\ \ -A\ \ /A\ -/A\par
X.7\ \ \ \ 2\ \ -2\ \ \ .\ \ /A\ -/A\ \ \ A\ \ -A\par
\ \par
A\ =\ E(3) \par
\ \ =\ (-1+ER(-3))/2\ =\ b3 \par
\end{minipage}}}
\end{picture}
]]>
</Alt>
<Alt Not="LaTeX">
<Listing>
┌───────┐ ┌───────┐ ; @ @ @ @ ; ; @
│ │ │ │ 4 4 4 4 1
│ G │ │ G.3 │ p power A A A A
│ │ │ │ p' part A A A A
└───────┘ └───────┘ ind 1A 2A 2B 2C fus ind 3A
┌───────┐ ┌───────┐
│ │ │ │ χ_1 + 1 1 1 1 : +oo 1
│ 2.G │ │ 2.G.3 │ χ_2 + 1 1 ─1 ─1 . + 0
│ │ │ │ χ_3 + 1 ─1 1 ─1 |
└───────┘ └───────┘ χ_4 + 1 ─1 ─1 1 |
ind 1 4 4 4 fus ind 3
2 6
χ_5 - 2 0 0 0 : -oo 1
G.3
2 2 2 . .
3 1 . 1 1
1a 2a 3a 3b
2P 1a 1a 3b 3a
3P 1a 2a 1a 1a
X.1 1 1 1 1
X.2 1 1 A /A
X.3 1 1 /A A 2.G.3
X.4 3 -1 . .
2 3 3 2 1 1 1 1
A = E(3) 3 1 1 . 1 1 1 1
= (-1+ER(-3))/2 = b3
1a 2a 4a 3a 6a 3b 6b
2.G 2P 1a 1a 2a 3b 3b 3a 3a
3P 1a 2a 4a 1a 2a 1a 2a
2 3 3 2 2 2
X.1 1 1 1 1 1 1 1
1a 2a 4a 4b 4c X.2 1 1 1 A A /A /A
2P 1a 1a 2a 1a 1a X.3 1 1 1 /A /A A A
3P 1a 2a 4a 4b 4c X.4 3 3 -1 . . . .
X.5 2 -2 . 1 1 1 1
X.1 1 1 1 1 1 X.6 2 -2 . A -A /A -/A
X.2 1 1 1 -1 -1 X.7 2 -2 . /A -/A A -A
X.3 1 1 -1 1 -1
X.4 1 1 -1 -1 1 A = E(3)
X.5 2 -2 . . . = (-1+ER(-3))/2 = b3
</Listing>
</Alt>
<P/>
In the table of <M>G.3 \cong A_4</M>, the characters <M>\chi_2</M>,
<M>\chi_3</M>, and <M>\chi_4</M> fuse,
and the classes <C>2A</C>, <C>2B</C> and <C>2C</C> collapse.
For getting the table of <M>2.G \cong Q_8</M>,
one just has to split the class <C>2A</C> and adjust the representative
orders.
Finally, the table of <M>2.G.3 \cong SL_2(3)</M> is given;
the class fusion corresponding to the injection
<M>2.G \hookrightarrow 2.G.3</M>
is <C>[ 1, 2, 3, 3, 3 ]</C>, and the factor fusion corresponding to the
epimorphism <M>2.G.3 \rightarrow G.3</M> is <C>[ 1, 1, 2, 3, 3, 4, 4 ]</C>.
</Subsection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:CAS Tables">
<Heading>&CAS; Tables</Heading>
<Index Subkey="CAS">character tables</Index>
<Index Subkey="library">tables</Index>
<Index>library of character tables</Index>
One of the predecessors of &GAP; was
&CAS; (<E>C</E>haracter <E>A</E>lgorithm <E>S</E>ystem,
see <Cite Key="NPP84"/>),
which had also a library of character tables.
All these character tables are available in &GAP;
except if stated otherwise in the file <F>doc/ctbldiff.pdf</F>.
This sublibrary has been completely revised before it was included in &GAP;,
for example, errors have been corrected and power maps have been completed.
<P/>
Any &CAS; table is accessible by each of its &CAS; names
(except if stated otherwise in <F>doc/ctbldiff.pdf</F>), that is,
the table name or the filename used in &CAS;.
<P/>
<#Include Label="CASInfo">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:customize">
<Heading>Customizations of the &GAP; Character Table Library</Heading>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:install">
<Heading>Installing the &GAP; Character Table Library</Heading>
To install the package unpack the archive file in a
directory in the <F>pkg</F> directory of your local copy of &GAP; 4.
This might be the <F>pkg</F> directory of the &GAP; 4 home directory,
see Section <Ref Sect="Installing a GAP Package" BookName="ref"/>
for details.
It is however also possible to keep an additional <F>pkg</F> directory
in your private directories,
see <Ref Sect="GAP Root Directories" BookName="ref"/>.
The latter possibility <E>must</E> be chosen if you do not have write access
to the &GAP; root directory.
<P/>
The package consists entirely of &GAP; code,
no external binaries need to be compiled.
<P/>
<#Include Label="testinst">
<P/>
PDF and HTML versions of the package manual are available
in the <F>doc</F> directory of the package.
</Subsection>
<#Include Label="UnloadCTblLibFiles">
<#Include Label="DisplayFunction">
<#Include Label="MagmaPath">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:technicalities">
<Heading>Technicalities of the Access to Character Tables from the Library
</Heading>
<#Include Label="organization">
<#Include Label="LIBLIST">
<#Include Label="LibInfoCharacterTable">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:extending">
<Heading>How to Extend the &GAP; Character Table Library</Heading>
<Index>library tables!add</Index>
<Index>tables!add to the library</Index>
&GAP; users may want to extend the character table library in different
respects.
<P/>
<List>
<Item>
Probably the easiest change is to <E>add new admissible names</E>
to library tables, in order to use these names in calls of
<Ref Meth="CharacterTable" Label="for a string"/>.
This can be done using <Ref Func="NotifyNameOfCharacterTable"/>.
</Item>
<Item>
The next kind of changes is the <E>addition of new fusions</E>
between library tables.
Once a fusion map is known, it can be added to the library file containing
the table of the subgroup, using the format produced by
<Ref Func="LibraryFusion"/>.
</Item>
<Item>
The last kind of changes is the <E>addition of new character tables</E>
to the &GAP; character table library.
Data files containing tables in library format
(i. e., in the form of calls to <C>MOT</C> or <C>MBT</C>)
can be produced using <Ref Func="PrintToLib"/>.
<P/>
If you have an ordinary character table in library format which you want to
add to the table library, for example because it shall be accessible via
<Ref Meth="CharacterTable" Label="for a string"/>,
you must notify this table, i. e., tell &GAP; in which file it can be
found,
and which names shall be admissible for it.
This can be done using <Ref Func="NotifyCharacterTable"/>.
</Item>
</List>
<#Include Label="NotifyNameOfCharacterTable">
<#Include Label="LibraryFusion">
<#Include Label="LibraryFusionTblToTom">
<#Include Label="PrintToLib">
<#Include Label="NotifyCharacterTable">
<#Include Label="NotifyCharacterTables">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:CTblLib Sanity Checks">
<Heading>Sanity Checks for the &GAP; Character Table Library</Heading>
<#Include Label="tests">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sec:CTblLib Maintenance">
<Heading>Maintenance of the &GAP; Character Table Library</Heading>
It is of course desirable that the information in the
&GAP; Character Table Library is consistent with related data.
For example, the ordering of the classes of maximal subgroups stored in
the <Ref Attr="Maxes"/> list of the character table of a group <M>G</M>, say,
should correspond to the ordering shown for <M>G</M> in the
&ATLAS; of Finite Groups <Cite Key="CCN85"/>,
to the ordering of maximal subgroups used for <M>G</M> in the
<Package>AtlasRep</Package>,
and to the ordering of maximal subgroups in the table of marks of <M>G</M>.
The fact that the related data collections are developed independently
makes it difficult to achieve this kind of consistency.
Sometimes it is unavoidable to <Q>adjust</Q> data of the
&GAP; Character Table Library to external data.
<P/>
An important issue is the consistency of class fusions.
Usually such fusions are determined only up to table automorphisms,
and one candidate can be chosen.
However, other conditions such as known Brauer tables may restrict the
choice.
The point is that there are class fusions which predate the availability of
Brauer tables in the Character Table Library (in fact many of them have been
inherited from the table library of the <Package>CAS</Package> system),
but they are not compatible with the Brauer tables.
For example, there are four possible class fusion from <M>M_{23}</M> into
<M>Co_3</M>,
which lie in one orbit under the relevant groups of table automorphisms;
two of these maps are not compatible with the <M>3</M>-modular Brauer tables
of <M>M_{23}</M> and <M>Co_3</M>, and unfortunately the class fusion that was
stored on the <Package>CAS</Package> tables
–and that was available in version 1.0 of the &GAP;
Character Table Library– was one of the <E>not</E> compatible maps.
One could argue that the class fusion has older rights,
and that the Brauer tables should be adjusted to them, but the Brauer tables
are published in the &ATLAS; of Brauer Characters <Cite Key="JLPW95"/>,
which is an accepted standard.
</Section>
</Chapter>
|