File: tutorial.xml

package info (click to toggle)
gap-ctbllib 1.3.11-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 76,256 kB
  • sloc: xml: 41,608; makefile: 219; javascript: 155
file content (1971 lines) | stat: -rw-r--r-- 65,766 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971

<!-- %W  tutorial.xml    GAP 4 package CTblLib              Thomas Breuer -->


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Chapter Label="ch:tutorial">
<Heading>Tutorial for the &GAP; Character Table Library</Heading>

This chapter gives an overview of the basic functionality
provided by the &GAP; Character Table Library.
The main concepts and interface functions are presented in
the sections&nbsp;<Ref Sect="sect:concepts"/> and
<Ref Sect="sect:accesstbl"/>,
Section&nbsp;<Ref Sect="sect:tutsectctbllib"/> shows a few small examples.

<P/>

In order to force that the output of the examples consists only of
ASCII characters,
we set the user preference <C>DisplayFunction</C>
of the <Package>AtlasRep</Package> to the value <C>"Print"</C>.
This is necessary because the &LaTeX; and HTML versions of &GAPDoc;
documents support only ASCII characters.

<P/>

<Example><![CDATA[
gap> origpref:= UserPreference( "AtlasRep", "DisplayFunction" );;
gap> SetUserPreference( "AtlasRep", "DisplayFunction", "Print" );
]]></Example>

<P/>

Some of the examples need functionalities from other &GAP; packages
in the sense that the output looks different if these packages
are not available.

<P/>

<Example><![CDATA[
gap> LoadPackage( "Browse", false );
true
gap> LoadPackage( "SpinSym", false );
true
gap> LoadPackage( "TomLib", false );
true
]]></Example>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:concepts">
<Heading>Concepts used in the &GAP; Character Table Library</Heading>

The main idea behind working with the &GAP; Character Table Library
is to deal with character tables of groups
but <E>without</E> having access to these groups.
This situation occurs for example if one extracts information from the
printed &ATLAS; of Finite Groups (<Cite Key="CCN85"/>).

<P/>

This restriction means first of all that we need a way to access the
character tables, see Section <Ref Sect="sect:accesstbl"/> for that.
Once we have such a character table,
we can compute all those data about the underlying group <M>G</M>, say,
that are determined by the character table.
Chapter <Ref Chap="Attributes and Properties for Groups and Character Tables"
BookName="ref"/> lists such attributes and properties.
For example, it can be computed from the character table of <M>G</M>
whether <M>G</M> is solvable or not.

<P/>

Questions that cannot be answered using only the character table of <M>G</M>
can perhaps be treated using additional information.
For example, the structure of subgroups of <M>G</M> is in general not
determined by the character table of <M>G</M>,
but the character table may yield partial information.
Two examples can be found in the sections
<Ref Subsect="subsect:sylowstructure3on"/> and
<Ref Subsect="subsect:permcharfi23"/>.

<P/>

In the character table context,
the role of homomorphisms between two groups is taken by
<E>class fusions</E>.
Monomorphisms correspond to subgroup fusions,
epimorphisms correspond to factor fusions.
Given two character tables of a group <M>G</M> and a subgroup <M>H</M>
of <M>G</M>,
one can in general compute only <E>candidates</E> for the class fusion of
<M>H</M> into <M>G</M>,
for example using <Ref Func="PossibleClassFusions" BookName="ref"/>.
Note that <M>G</M> may contain several nonconjugate subgroups isomorphic
with <M>H</M>, which may have different class fusions.

<!--
<P/>

If no subgroup fusion from the character table of the group <M>H</M> into
the character table of the group <M>G</M> is possible
then one has proved that <M>G</M> contains no subgroup isomorphic with
<M>H</M>.
If one knows that <M>G</M> contains subgroups isomorphic with
<M>H</M> and if the class fusion between the character tables of these
groups is unique (up to character table automorphisms) then this class fusion
can be used to induce or restrict characters.
-->

<P/>

One can often reduce a question about a group <M>G</M> to a question about
its maximal subgroups.
In the character table context,
it is often sufficient to know the character table of <M>G</M>,
the character tables of its maximal subgroups,
and their class fusions into <M>G</M>.
We are in this situation if the attribute <Ref Attr="Maxes"/> is set in
the character table of <M>G</M>.

<P/>

<E>Summary:</E>
The character theoretic approach that is supported by the
&GAP; Character Table Library, that is, an approach without explicitly
using the underlying groups,
has the advantages that it can be used to answer many questions,
and that these computations are usually cheap,
compared to computations with groups.
Disadvantages are that this approach is not always successful,
and that answers are often <Q>nonconstructive</Q> in the sense that one
can show the existence of something without getting one's hands on it.

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:accesstbl">
<Heading>Accessing a Character Table from the Library</Heading>

As stated in Section <Ref Sect="sect:concepts"/>,
we must define how character tables from the &GAP; Character Table Library
can be accessed.


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:accesstblbyname">
<Heading>Accessing a Character Table via a name</Heading>

The most common way to access a character table from the
&GAP; Character Table Library is to call
<Ref Func="CharacterTable" Label="for a string"/> with argument
a string that is an <E>admissible name</E> for the character table.
Typical admissible names are similar to the group names used in the
&ATLAS; of Finite Groups <Cite Key="CCN85"/>.
One of these names is the
<Ref Attr="Identifier" Label="for character tables" BookName="ref"/> value
of the character table,
this name is used by &GAP; when it prints library character tables.

<P/>

For example, an admissible name for the character table of an
almost simple group is the &ATLAS; name,
such as <C>A5</C>, <C>M11</C>, or <C>L2(11).2</C>.

Other names may be admissible, for example <C>S6</C> is admissible for
the symmetric group on six points,
which is called <M>A_6.2_1</M> in the &ATLAS;.

<Example><![CDATA[
gap> CharacterTable( "J1" );
CharacterTable( "J1" )
gap> CharacterTable( "L2(11)" );
CharacterTable( "L2(11)" )
gap> CharacterTable( "S5" );
CharacterTable( "A5.2" )
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:accesstblbyproperties">
<Heading>Accessing a Character Table via properties</Heading>

If one does not know an admissible name of the character table of a group
one is interested in, or if one does not know whether ths character table
is available at all,
one can use <Ref Func="AllCharacterTableNames"/> to compute a list of
identifiers of all available character tables with given properties.
Analogously, <Ref Func="OneCharacterTableName"/> can be used to compute
one such identifier.

<Example><![CDATA[
gap> AllCharacterTableNames( Size, 168 );
[ "(2^2xD14):3", "2^3.7.3", "L3(2)", "L3(4)M7", "L3(4)M8" ]
gap> OneCharacterTableName( NrConjugacyClasses, n -> n <= 4 );
"S3"
]]></Example>

For certain filters, such as <Ref Attr="Size" BookName="ref"/> and
<Ref Attr="NrConjugacyClasses" BookName="ref"/>,
the computations are fast because the values for all library tables
are precomputed.
See <Ref Func="AllCharacterTableNames"/> for an overview of these filters.

<P/>

The function <Ref Func="BrowseCTblLibInfo"/> provides an interactive overview
of available character tables,
which allows one for example to search also for substrings in identifiers of
character tables.
This function is available only if the <Package>Browse</Package> package
has been loaded.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:accesstblbytom">
<Heading>Accessing a Character Table via a Table of Marks</Heading>

Let <M>G</M> be a group whose table of marks is available via the
<Package>TomLib</Package> package (see <Cite Key="TomLib"/> for how to access
tables of marks from this library)
then the &GAP; Character Table Library contains the character table of
<M>G</M>,
and one can access this table by using the table of marks as an argument of
<Ref Meth="CharacterTable" Label="for a table of marks"/>.

<Example><![CDATA[
gap> tom:= TableOfMarks( "M11" );
TableOfMarks( "M11" )
gap> t:= CharacterTable( tom );
CharacterTable( "M11" )
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:accesstblbytbl">
<Heading>Accessing a Character Table relative to another Character Table
</Heading>

If one has already a character table from the &GAP; Character Table Library
that belongs to the group <M>G</M>, say,
then names of related tables can be found as follows.

<P/>

The value of the attribute <Ref Attr="Maxes"/>, if known, is the list of
identifiers of the character tables of all classes of maximal subgroups
of <M>G</M>.

<Example><![CDATA[
gap> t:= CharacterTable( "M11" );
CharacterTable( "M11" )
gap> HasMaxes( t );
true
gap> Maxes( t );
[ "A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4" ]
]]></Example>

If the <Ref Attr="Maxes"/> value of the character table with identifier
<M>id</M>, say, is known then the character table of the groups in the
<M>i</M>-th class of maximal subgroups can be accessed via the
<Q>relative name</Q> <M>id</M><C>M</C><M>i</M>.

<Example><![CDATA[
gap> CharacterTable( "M11M2" );
CharacterTable( "L2(11)" )
]]></Example>

The value of the attribute <Ref Attr="NamesOfFusionSources" BookName="ref"/>
is the list of identifiers of those character tables which store
class fusions to <M>G</M>.
So these character tables belong to subgroups of <M>G</M>
and groups that have <M>G</M> as a factor group.

<Example><![CDATA[
gap> NamesOfFusionSources( t );
[ "A5.2", "A6.2_3", "P48/G1/L1/V1/ext2", "P48/G1/L1/V2/ext2", 
  "L2(11)", "2.S4", "3^5:M11", "3^6.M11", "3^(2+5+10).(M11x2S4)", 
  "s4", "3^2:Q8.2", "M11N2", "5:4", "11:5" ]
]]></Example>

The value of the attribute <Ref Attr="ComputedClassFusions" BookName="ref"/>
is the list of records whose <C>name</C> components are the identifiers
of those character tables to which class fusions are stored.
So these character tables belong to overgroups and factor groups of <M>G</M>.

<Example><![CDATA[
gap> List( ComputedClassFusions( t ), r -> r.name );
[ "A11", "M12", "M23", "HS", "McL", "ON", "3^5:M11", "B" ]
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:severaltables">
<Heading>Different character tables for the same group</Heading>

The &GAP; Character Table Library may contain several different
character tables of a given group,
in the sense that the rows and columns are sorted differently.

<P/>

For example, the &ATLAS; table of the alternating group <M>A_5</M> is
available, and since <M>A_5</M> is isomorphic with the groups
PSL<M>(2, 4)</M> and PSL<M>(2, 5)</M>, two more character tables of
<M>A_5</M> can be constructed in a natural way.
The three tables are of course permutation isomorphic.
The first two are sorted in the same way, but the rows and columns of the
third one are sorted differently.

<Example><![CDATA[
gap> t1:= CharacterTable( "A5" );;
gap> t2:= CharacterTable( "PSL", 2, 4 );;
gap> t3:= CharacterTable( "PSL", 2, 5 );;
gap> TransformingPermutationsCharacterTables( t1, t2 );
rec( columns := (), group := Group([ (4,5) ]), rows := () )
gap> TransformingPermutationsCharacterTables( t1, t3 );
rec( columns := (2,4)(3,5), group := Group([ (2,3) ]), 
  rows := (2,5,3,4) )
]]></Example>

Another situation where several character tables for the same group are
available is that a group contains several classes of isomorphic
maximal subgroups such that the class fusions are different.

<P/>

For example, the Mathieu group <M>M_{12}</M> contains two classes of
maximal subgroups of index <M>12</M>,
which are isomorphic with <M>M_{11}</M>.

<Example><![CDATA[
gap> t:= CharacterTable( "M12" );
CharacterTable( "M12" )
gap> mx:= Maxes( t );
[ "M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7", 
  "2xS5", "M8.S4", "4^2:D12", "A4xS3" ]
gap> s1:= CharacterTable( mx[1] );
CharacterTable( "M11" )
gap> s2:= CharacterTable( mx[2] );
CharacterTable( "M12M2" )
]]></Example>

The class fusions into <M>M_{12}</M> are stored on the library tables of the
maximal subgroups.
The groups in the first class of <M>M_{11}</M> type subgroups contain
elements in the classes <C>4B</C>, <C>6B</C>, and <C>8B</C> of <M>M_{12}</M>,
and the groups in the second class contain
elements in the classes <C>4A</C>, <C>6A</C>, and <C>8A</C>.
Note that according to the &ATLAS;
(see <Cite Key="CCN85" Where="p.&nbsp;33"/>),
the permutation characters of the action of <M>M_{12}</M> on the cosets
of <M>M_{11}</M> type subgroups from the two classes of maximal subgroups
are <C>1a + 11a</C> and <C>1a + 11b</C>, respectively.

<Example><![CDATA[
gap> GetFusionMap( s1, t );
[ 1, 3, 4, 7, 8, 10, 12, 12, 15, 14 ]
gap> GetFusionMap( s2, t );
[ 1, 3, 4, 6, 8, 10, 11, 11, 14, 15 ]
gap> Display( t );
M12

      2   6  4  6  1  2  5  5  1  2  1  3  3   1   .   .
      3   3  1  1  3  2  .  .  .  1  1  .  .   .   .   .
      5   1  1  .  .  .  .  .  1  .  .  .  .   1   .   .
     11   1  .  .  .  .  .  .  .  .  .  .  .   .   1   1

         1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 11a 11b
     2P  1a 1a 1a 3a 3b 2b 2b 5a 3b 3a 4a 4b  5a 11b 11a
     3P  1a 2a 2b 1a 1a 4a 4b 5a 2a 2b 8a 8b 10a 11a 11b
     5P  1a 2a 2b 3a 3b 4a 4b 1a 6a 6b 8a 8b  2a 11a 11b
    11P  1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a  1a  1a

X.1       1  1  1  1  1  1  1  1  1  1  1  1   1   1   1
X.2      11 -1  3  2 -1 -1  3  1 -1  . -1  1  -1   .   .
X.3      11 -1  3  2 -1  3 -1  1 -1  .  1 -1  -1   .   .
X.4      16  4  . -2  1  .  .  1  1  .  .  .  -1   A  /A
X.5      16  4  . -2  1  .  .  1  1  .  .  .  -1  /A   A
X.6      45  5 -3  .  3  1  1  . -1  . -1 -1   .   1   1
X.7      54  6  6  .  .  2  2 -1  .  .  .  .   1  -1  -1
X.8      55 -5  7  1  1 -1 -1  .  1  1 -1 -1   .   .   .
X.9      55 -5 -1  1  1  3 -1  .  1 -1 -1  1   .   .   .
X.10     55 -5 -1  1  1 -1  3  .  1 -1  1 -1   .   .   .
X.11     66  6  2  3  . -2 -2  1  . -1  .  .   1   .   .
X.12     99 -1  3  .  3 -1 -1 -1 -1  .  1  1  -1   .   .
X.13    120  . -8  3  .  .  .  .  .  1  .  .   .  -1  -1
X.14    144  4  .  . -3  .  . -1  1  .  .  .  -1   1   1
X.15    176 -4  . -4 -1  .  .  1 -1  .  .  .   1   .   .

A = E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9
  = (-1+Sqrt(-11))/2 = b11
]]></Example>

Permutation equivalent library tables are related to each other.
In the above example, the table <C>s2</C> is a <E>duplicate</E> of <C>s1</C>,
and there are functions for making the relations explicit.

<Example><![CDATA[
gap> IsDuplicateTable( s2 );
true
gap> IdentifierOfMainTable( s2 );
"M11"
gap> IdentifiersOfDuplicateTables( s1 );
[ "HSM9", "M12M2", "ONM11" ]
]]></Example>

See Section&nbsp;<Ref Sect="sec:duplicates"/> for details about
duplicate character tables.

</Subsection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:tutsectctbllib">
<Heading>Examples of Using the &GAP; Character Table Library</Heading>

The sections <Ref Subsect="subsect:ambivalent"/>,
<Ref Subsect="subsect:ppure"/>, and
<Ref Subsect="subsect:onepblock"/> show how the function
<Ref Func="AllCharacterTableNames"/> can be used to search for
character tables with certain properties.
The &GAP; Character Table Library serves as a tool for finding and
checking conjectures in these examples.

<P/>

In Section <Ref Subsect="subsect:permcharfi23"/>,
a question about a subgroup of the sporadic simple Fischer group
<M>G = Fi_{23}</M> is answered using only character tables from the
&GAP; Character Table Library.

<P/>

More examples can be found in
<Cite Key="GMN"/>, <Cite Key="AmbigFus"/>, <Cite Key="ctblpope"/>,
<Cite Key="ProbGenArxiv"/>, <Cite Key="Auto"/>.


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:ambivalent">
<Heading>Example: Ambivalent Simple Groups</Heading>

A group <M>G</M> is called <E>ambivalent</E> if each element in <M>G</M>
is <M>G</M>-conjugate to its inverse.
Equivalently, <M>G</M> is ambivalent if all its characters are real-valued.
We are interested in nonabelian simple ambivalent groups.
Since ambivalence is of course invariant under permutation equivalence,
we may omit duplicate character tables.

<Example><![CDATA[
gap> isambivalent:= tbl -> PowerMap( tbl, -1 )
>                            = [ 1 .. NrConjugacyClasses( tbl ) ];;
gap> AllCharacterTableNames( IsSimple, true, IsDuplicateTable, false,
>        IsAbelian, false, isambivalent, true );
[ "3D4(2)", "3D4(3)", "3D4(4)", "A10", "A14", "A5", "A6", "J1", "J2", 
  "L2(101)", "L2(109)", "L2(113)", "L2(121)", "L2(125)", "L2(13)", 
  "L2(16)", "L2(17)", "L2(25)", "L2(29)", "L2(32)", "L2(37)", 
  "L2(41)", "L2(49)", "L2(53)", "L2(61)", "L2(64)", "L2(73)", 
  "L2(8)", "L2(81)", "L2(89)", "L2(97)", "O12+(2)", "O12-(2)", 
  "O12-(3)", "O7(5)", "O8+(2)", "O8+(3)", "O8+(7)", "O8-(2)", 
  "O8-(3)", "O9(3)", "S10(2)", "S12(2)", "S4(4)", "S4(5)", "S4(8)", 
  "S4(9)", "S6(2)", "S6(4)", "S6(5)", "S8(2)" ]
]]></Example>

<!-- some comment? -->

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:ppure">
<Heading>Example: Simple <M>p</M>-pure Groups</Heading>

A group <M>G</M> is called <E><M>p</M>-pure</E> for a prime integer <M>p</M>
that divides <M>|G|</M>
if the centralizer orders of nonidentity <M>p</M>-elements in <M>G</M>
are <M>p</M>-powers.
Equivalently, <M>G</M> is <M>p</M>-pure if <M>p</M> divides <M>|G|</M>
and each element in <M>G</M> of order divisible by <M>p</M>
is a <M>p</M>-element.
(This property was studied by L. Héthelyi in 2002.)

<P/>

We are interested in small nonabelian simple <M>p</M>-pure groups.

<P/>

<Example><![CDATA[
gap> isppure:= function( p )
>      return tbl -> Size( tbl ) mod p = 0 and
>        ForAll( OrdersClassRepresentatives( tbl ),
>                n -> n mod p <> 0 or IsPrimePowerInt( n ) );
>    end;;
gap> for i in [ 2, 3, 5, 7, 11, 13 ] do
>      Print( i, "\n",
>        AllCharacterTableNames( IsSimple, true, IsAbelian, false,
>            IsDuplicateTable, false, isppure( i ), true ),
>        "\n" );
>    od;
2
[ "A5", "A6", "L2(16)", "L2(17)", "L2(31)", "L2(32)", "L2(64)", 
  "L2(8)", "L3(2)", "L3(4)", "Sz(32)", "Sz(8)" ]
3
[ "A5", "A6", "L2(17)", "L2(19)", "L2(27)", "L2(53)", "L2(8)", 
  "L2(81)", "L3(2)", "L3(4)" ]
5
[ "A5", "A6", "A7", "L2(11)", "L2(125)", "L2(25)", "L2(49)", "L3(4)", 
  "M11", "M22", "S4(7)", "Sz(32)", "Sz(8)", "U4(2)", "U4(3)" ]
7
[ "A7", "A8", "A9", "G2(3)", "HS", "J1", "J2", "L2(13)", "L2(49)", 
  "L2(8)", "L2(97)", "L3(2)", "L3(4)", "M22", "O8+(2)", "S6(2)", 
  "Sz(8)", "U3(3)", "U3(5)", "U4(3)", "U6(2)" ]
11
[ "A11", "A12", "A13", "Co2", "HS", "J1", "L2(11)", "L2(121)", 
  "L2(23)", "L5(3)", "M11", "M12", "M22", "M23", "M24", "McL", 
  "O10+(3)", "O12+(3)", "ON", "Suz", "U5(2)", "U6(2)" ]
13
[ "2E6(2)", "2F4(2)'", "3D4(2)", "A13", "A14", "A15", "F4(2)", 
  "Fi22", "G2(3)", "G2(4)", "L2(13)", "L2(25)", "L2(27)", "L3(3)", 
  "L4(3)", "O7(3)", "O8+(3)", "S4(5)", "S6(3)", "Suz", "Sz(8)", 
  "U3(4)" ]
]]></Example>

<P/>

Looking at these examples, we may observe that the alternating group
<M>A_n</M> of degree <M>n</M> is
<M>2</M>-pure iff <M>n \in \{ 4, 5, 6 \}</M>,
<M>3</M>-pure iff <M>n \in \{ 3, 4, 5, 6 \}</M>, and
<M>p</M>-pure, for <M>p \geq 5</M>, iff <M>n \in \{ p, p+1, p+2 \}</M>.

<P/>

Also, the Suzuki groups <M>Sz(q)</M> are <M>2</M>-pure
since the centralizers of nonidentity <M>2</M>-elements are contained in
Sylow <M>2</M>-subgroups.

<P/>

From the inspection of the generic character table(s) of <M>PSL(2, q)</M>,
we see that <M>PSL(2, p^d)</M> is <M>p</M>-pure
Additionally, exactly the following cases of <M>l</M>-purity occur,
for a prime <M>l</M>.

<List>
<Item>
  <M>q</M> is even and <M>q-1</M> or <M>q+1</M> is a power of <M>l</M>.
</Item>
<Item>
  For <M>q \equiv 1 \pmod{4}</M>, <M>(q+1)/2</M> is a power of <M>l</M>
  or <M>q-1</M> is a power of <M>l = 2</M>.
</Item>
<Item>
  For <M>q \equiv 3 \pmod{4}</M>, <M>(q-1)/2</M> is a power of <M>l</M>
  or <M>q+1</M> is a power of <M>l = 2</M>.
</Item>
</List>

<!--
  somehow, the special case L3(2) came up in this context;
  there is a paper by Bob Guralnick on subgroups of prime power index
  in simple groups
-->

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:onepblock">
<Heading>Example: Simple Groups with only one <M>p</M>-Block</Heading>

Are there nonabelian simple groups with only one <M>p</M>-block,
for some prime <M>p</M>?

<Example><![CDATA[
gap> fun:= function( tbl )
>      local result, p, bl;
> 
>      result:= false;
>      for p in PrimeDivisors( Size( tbl ) ) do
>        bl:= PrimeBlocks( tbl, p );
>        if Length( bl.defect ) = 1 then
>          result:= true;
>          Print( "only one block: ", Identifier( tbl ), ", p = ", p, "\n" );
>        fi;
>      od;
> 
>      return result;
> end;;
gap> AllCharacterTableNames( IsSimple, true, IsAbelian, false,
>                            IsDuplicateTable, false, fun, true );
only one block: M22, p = 2
only one block: M24, p = 2
[ "M22", "M24" ]
]]></Example>

We see that the sporadic simple groups <M>M_{22}</M> and <M>M_{24}</M>
have only one <M>2</M>-block.

<!--
  for alternating groups, see James/Kerber;
  Lie groups in def. characteristics do always have a Steinberg character,
  so there must be at least two blocks
-->

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:sylowstructure3on">
<Heading>Example:The Sylow <M>3</M> subgroup of <M>3.O'N</M></Heading>

We want to determine the structure of the Sylow <M>3</M>-subgroups of the
triple cover <M>G = 3.O'N</M> of the sporadic simple O'Nan group <M>O'N</M>.
The Sylow <M>3</M>-subgroup of <M>O'N</M> is an elementary abelian group
of order <M>3^4</M>,
since the Sylow <M>3</M> normalizer in <M>O'N</M> has the structure
<M>3^4:2^{1+4}D_{10}</M> (see <Cite Key="CCN85" Where="p.&nbsp;132"/>).

<Example><![CDATA[
gap> CharacterTable( "ONN3" );
CharacterTable( "3^4:2^(1+4)D10" )
]]></Example>

Let <M>P</M> be a Sylow <M>3</M>-subgroup of <M>G</M>.
Then <M>P</M> is not abelian,
since the centralizer order of any preimage of an element of order three
in the simple factor group of <M>G</M> is not divisible by <M>3^5</M>.
Moreover, the exponent of <M>P</M> is three.

<Example><![CDATA[
gap> 3t:= CharacterTable( "3.ON" );;
gap> orders:= OrdersClassRepresentatives( 3t );;
gap> ord3:= PositionsProperty( orders, x -> x = 3 );
[ 2, 3, 7 ]
gap> sizes:= SizesCentralizers( 3t ){ ord3 };
[ 1382446517760, 1382446517760, 3240 ]
gap> Size( 3t );
1382446517760
gap> Collected( Factors( sizes[3] ) );
[ [ 2, 3 ], [ 3, 4 ], [ 5, 1 ] ]
gap> 9 in orders;
false
]]></Example>

So both the centre and the Frattini subgroup of <M>P</M> are equal to the
centre of <M>G</M>,
hence <M>P</M> is an extraspecial group <M>3^{1+4}_+</M>.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:primpermchars2A6">
<Heading>Example: Primitive Permutation Characters of <M>2.A_6</M></Heading>

It is often interesting to compute the primitive permutation characters
of a group <M>G</M>,
that is, the characters of the permutation actions of <M>G</M> on the cosets
of its maximal subgroups.
These characters can be computed for example when the character tables of
<M>G</M>, the character tables of its maximal subgroups,
and the class fusions from these character tables into the table of <M>G</M>
are known.

<Example><![CDATA[
gap> tbl:= CharacterTable( "2.A6" );;
gap> HasMaxes( tbl );
true
gap> maxes:= Maxes( tbl );
[ "2.A5", "2.A6M2", "3^2:8", "2.Symm(4)", "2.A6M5" ]
gap> mx:= List( maxes, CharacterTable );;
gap> prim1:= List( mx, s -> TrivialCharacter( s )^tbl );;
gap> Display( tbl,
>      rec( chars:= prim1, centralizers:= false, powermap:= false ) );
2.A6

       1a 2a 4a 3a 6a 3b 6b 8a 8b 5a 10a 5b 10b

Y.1     6  6  2  3  3  .  .  .  .  1   1  1   1
Y.2     6  6  2  .  .  3  3  .  .  1   1  1   1
Y.3    10 10  2  1  1  1  1  2  2  .   .  .   .
Y.4    15 15  3  3  3  .  .  1  1  .   .  .   .
Y.5    15 15  3  .  .  3  3  1  1  .   .  .   .
]]></Example>

These permutation characters are the ones listed in
<Cite Key="CCN85" Where="p.&nbsp;4"/>.

<Example><![CDATA[
gap> PermCharInfo( tbl, prim1 ).ATLAS;
[ "1a+5a", "1a+5b", "1a+9a", "1a+5a+9a", "1a+5b+9a" ]
]]></Example>

Alternatively, one can compute the primitive permutation characters
from the table of marks if this table and the fusion into it are known.

<Example><![CDATA[
gap> tom:= TableOfMarks( tbl );
TableOfMarks( "2.A6" )
gap> allperm:= PermCharsTom( tbl, tom );;
gap> prim2:= allperm{ MaximalSubgroupsTom( tom )[1] };;
gap> Display( tbl,
>      rec( chars:= prim2, centralizers:= false, powermap:= false ) );
2.A6

       1a 2a 4a 3a 6a 3b 6b 8a 8b 5a 10a 5b 10b

Y.1     6  6  2  3  3  .  .  .  .  1   1  1   1
Y.2     6  6  2  .  .  3  3  .  .  1   1  1   1
Y.3    10 10  2  1  1  1  1  2  2  .   .  .   .
Y.4    15 15  3  .  .  3  3  1  1  .   .  .   .
Y.5    15 15  3  3  3  .  .  1  1  .   .  .   .
]]></Example>

We see that the two approaches yield the same permutation characters,
but the two lists are sorted in a different way.
The latter is due to the fact that the rows of the table of marks are
ordered in a way that is not compatible with the ordering of maximal
subgroups for the character table.
Moreover, there is no way to choose the fusion from the character table
to the table of marks in such a way that the two lists of
permutation characters would become equal.
The component <C>perm</C> in the <Ref Attr="FusionToTom"/> record of
the character table describes the incompatibility.

<Example><![CDATA[
gap> FusionToTom( tbl );
rec( map := [ 1, 2, 5, 4, 8, 3, 7, 11, 11, 6, 13, 6, 13 ], 
  name := "2.A6", perm := (4,5), 
  text := "fusion map is unique up to table autom." )
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:permcharfi23">
<Heading>Example: A Permutation Character of <M>Fi_{23}</M></Heading>

Let <M>x</M> be a <C>3B</C> element in the sporadic simple Fischer group
<M>G = Fi_{23}</M>.
The normalizer <M>M</M> of <M>x</M> in <M>G</M> is a maximal subgroup
of the type <M>3^{{1+8}}_+.2^{{1+6}}_-.3^{{1+2}}_+.2S_4</M>.
We are interested in the distribution of the elements of the
normal subgroup <M>N</M> of the type <M>3^{{1+8}}_+</M> in <M>M</M>
to the conjugacy classes of <M>G</M>.

<P/>

This information can be computed from the permutation character
<M>\pi = 1_N^G</M>, so we try to compute this permutation character.
We have <M>\pi = (1_N^M)^G</M>,
and <M>1_N^M</M> can be computed as the inflation of
the regular character of the factor group <M>M/N</M> to <M>M</M>.
Note that the character tables of <M>G</M> and <M>M</M> are available,
as well as the class fusion of <M>M</M> in <M>G</M>,
and that <M>N</M> is the largest normal <M>3</M>-subgroup of <M>M</M>.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "Fi23" );
CharacterTable( "Fi23" )
gap> mx:= Maxes( t );
[ "2.Fi22", "O8+(3).3.2", "2^2.U6(2).2", "S8(2)", "S3xO7(3)", 
  "2..11.m23", "3^(1+8).2^(1+6).3^(1+2).2S4", "Fi23M8", "A12.2", 
  "(2^2x2^(1+8)).(3xU4(2)).2", "2^(6+8):(A7xS3)", "S4xS6(2)", 
  "S4(4).4", "L2(23)" ]
gap> m:= CharacterTable( mx[7] );
CharacterTable( "3^(1+8).2^(1+6).3^(1+2).2S4" )
gap> n:= ClassPositionsOfPCore( m, 3 );
[ 1 .. 6 ]
gap> f:= m / n;
CharacterTable( "3^(1+8).2^(1+6).3^(1+2).2S4/[ 1, 2, 3, 4, 5, 6 ]" )
gap> reg:= 0 * [ 1 .. NrConjugacyClasses( f ) ];;
gap> reg[1]:= Size( f );;
gap> infl:= reg{ GetFusionMap( m, f ) };
[ 165888, 165888, 165888, 165888, 165888, 165888, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
gap> ind:= Induced( m, t, [ infl ] );
[ ClassFunction( CharacterTable( "Fi23" ),
  [ 207766624665600, 0, 0, 0, 603832320, 127567872, 6635520, 663552, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0 ] ) ]
gap> PermCharInfo( t, ind ).contained;
[ [ 1, 0, 0, 0, 864, 1538, 3456, 13824, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ]
gap> PositionsProperty( OrdersClassRepresentatives( t ), x -> x = 3 );
[ 5, 6, 7, 8 ]
]]></Example>

Thus <M>N</M> contains <M>864</M> elements in the class <C>3A</C>,
<M>1\,538</M> elements in the class <C>3B</C>, and so on.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:commutatorlength">
<Heading>Example: Non-commutators in the commutator group</Heading>

In general, not every element in the commutator group of a group is itself
a commutator.
Are there examples in the Character Table Library,
and if yes, what is a smallest one?

<Example><![CDATA[
gap> nam:= OneCharacterTableName( CommutatorLength, x -> x > 1
>                                 : OrderedBy:= Size );
"3.(A4x3):2"
gap> Size( CharacterTable( nam ) );
216
]]></Example>

The smallest groups with this property have order <M>96</M>.

<Example><![CDATA[
gap> OneSmallGroup( Size, [ 2 .. 100 ],
>                   G -> CommutatorLength( G ) > 1, true );
<pc group of size 96 with 6 generators>
]]></Example>

(Note the different syntax:
<Ref Func="OneSmallGroup" BookName="smallgrp"/> does not admit a function
such as <C>x -> x > 1</C> for describing the admissible values.)

<P/>

Nonabelian simple groups cannot be expected to have non-commutators,
by the main theorem in <Cite Key="LOST2010"/>.

<Example><![CDATA[
gap> OneCharacterTableName( IsSimple, true, IsAbelian, false,
>                           IsDuplicateTable, false,
>                           CommutatorLength, x -> x > 1
>                           : OrderedBy:= Size );
fail
]]></Example>

Perfect groups can contain non-commutators.

<Example><![CDATA[
gap> nam:= OneCharacterTableName( IsPerfect, true,
>                                 IsDuplicateTable, false,
>                                 CommutatorLength, x -> x > 1
>                                 : OrderedBy:= Size );
"P1/G1/L1/V1/ext2"
gap> Size( CharacterTable( nam ) );
960
]]></Example>

This is in fact the smallest example of a perfect group that contains
non-commutators.

<Example><![CDATA[
gap> for n in [ 2 .. 960 ] do
>      for i in [ 1 .. NrPerfectGroups( n ) ] do
>        g:= PerfectGroup( n,  i);
>        if CommutatorLength( g ) <> 1 then
>          Print( [ n, i ], "\n" );
>        fi;
>      od;
>    od;
[ 960, 2 ]
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:J4mod11deg887778">
<Heading>Example: An irreducible <M>11</M>-modular character of <M>J_4</M>
(December 2018)</Heading>

Let <M>G</M> be the sporadic simple Janko group <M>J_4</M>.
For the ordinary irreducible characters of degree <M>1333</M> of <M>G</M>,
the reductions modulo <M>11</M> are known to be irreducible Brauer characters.

<P/>

David Craven asked Richard Parker how to show that the antisymmetric squares
of these Brauer characters are irreducible.
Richard proposed the following.

<P/>

Restrict the given ordinary character <M>\chi</M>, say,
to a subgroup <M>S</M> of <M>J_4</M>
whose <M>11</M>-modular character table is known,
decompose the restriction <M>\chi_S</M> into irreducible Brauer characters,
and compute those constituents that are constant on all subsets of
conjugacy classes that fuse in <M>J_4</M>.
If the Brauer character <M>\chi_S</M> cannot be written as a sum
of two such constituents then <M>\chi</M>,
as a Brauer character of <M>J_4</M>, is irreducible.

<P/>

Here is a &GAP; session that shows how to apply this idea.

<P/>

The group <M>J_4</M> has exactly two ordinary irreducible characters of
degree <M>1333</M>.
They are complex conjugate, and so are their antisymmetric squares.
Thus we may consider just one of the two.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "J4" );;
gap> deg1333:= Filtered( Irr( t ), x -> x[1] = 1333 );;
gap> antisym:= AntiSymmetricParts( t, deg1333, 2 );;
gap> List(  antisym, x -> Position( Irr( t ), x ) );
[ 7, 6 ]
gap> ComplexConjugate( antisym[1] ) = antisym[2];
true
gap> chi:= antisym[1];;  chi[1];
887778
]]></Example>

Let <M>S</M> be a maximal subgroup of the structure <M>2^{11}:M_{24}</M>
in <M>J_4</M>.
Fortunately,
the <M>11</M>-modular character table of <M>S</M> is available
(it had been constructed by Christoph Jansen),
and we can restrict the interesting character to this table.

<Example><![CDATA[
gap> s:= CharacterTable( Maxes( t )[1] );;
gap> Size( s ) = 2^11 * Size( CharacterTable( "M24" ) );
true
gap> rest:= RestrictedClassFunction( chi, s );;
gap> smod11:= s mod 11;;
gap> rest:= RestrictedClassFunction( rest, smod11 );;
]]></Example>

The restriction is a sum of nine pairwise different irreducible
Brauer characters of <M>S</M>.

<Example><![CDATA[
gap> dec:= Decomposition( Irr( smod11 ), [ rest ], "nonnegative" )[1];;
gap> Sum( dec );
9
gap> constpos:= PositionsProperty( dec, x -> x <> 0 );
[ 15, 36, 46, 53, 55, 58, 63, 67, 69 ]
]]></Example>

Next we compute those sets of classes of <M>S</M> which fuse in <M>J_4</M>.

<Example><![CDATA[
gap> smod11fuss:= GetFusionMap( smod11, s );;
gap> sfust:= GetFusionMap( s, t );;
gap> fus:= CompositionMaps( sfust, smod11fuss );;
gap> inv:= Filtered( InverseMap( fus ), IsList );
[ [ 3, 4, 5 ], [ 2, 6, 7 ], [ 8, 9 ], [ 10, 11, 16 ], 
  [ 12, 14, 15, 17, 18, 21 ], [ 13, 19, 20, 22 ], [ 26, 27, 28, 30 ], 
  [ 25, 29, 31 ], [ 34, 39 ], [ 35, 37, 38 ], [ 40, 42 ], [ 41, 43 ], 
  [ 44, 47, 48 ], [ 45, 49, 50 ], [ 46, 51 ], [ 56, 57 ], [ 63, 64 ], 
  [ 69, 70 ] ]
]]></Example>

Finally, we run over all <M>2^9</M> subsets of the irreducible constituents.

<Example><![CDATA[
gap> const:= Irr( smod11 ){ constpos };;
gap> zero:= 0 * TrivialCharacter( smod11 );;
gap> comb:= List( Combinations( const ), x -> Sum( x, zero ) );;
gap> cand:= Filtered( comb,
>               x -> ForAll( inv, l -> Length( Set( x{ l } ) ) = 1 ) );;
gap> List( cand, x -> x[1] );
[ 0, 887778 ]
]]></Example>

We see that no proper subset of the constituents yields a Brauer character
that can be restricted from <M>J_4</M>.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:nonprojtensor">
<Heading>Example: Tensor Products that are Generalized Projectives
(October 2019)</Heading>

Let <M>G</M> be a finite group and <M>p</M> be a prime integer.
If the tensor product <M>\Phi</M>, say,
of two ordinary irreducible characters of <M>G</M>
vanishes on all <M>p</M>-singular elements of <M>G</M> then
<M>\Phi</M> is a <M>&ZZ;</M>-linear combination of the
<E>projective indecomposable characters</E>
<M>\Phi_{\varphi} = \sum_{{\chi \in &Irr;(G)}} d_{{\chi \varphi}} \chi</M>
of <M>G</M>,
where <M>\varphi</M> runs over the irreducible <M>p</M>-modular
Brauer characters of <M>G</M> and <M>d_{{\chi \varphi}}</M> is the
decomposition number of <M>\chi</M> and <M>\varphi</M>.
(See for example <Cite Key="Nav98" Where="p. 25"/> or
<Cite Key="LP10" Where="Def. 4.3.1"/>.)
Such class functions are called generalized projective characters.

<P/>

In fact, very often <M>\Phi</M> is a projective character, that is,
the coefficients of the decomposition into
projective indecomposable characters are nonnegative.

<P/>

We are interested in examples where this is <E>not</E> the case.
For that, we write a small &GAP; function that computes,
for a given <M>p</M>-modular character table,
those tensor products of ordinary irreducible characters
that are generalized projective characters but are not projective.

<P/>

Many years ago, Richard Parker had been interested in the question
whether such tensor products can exist for a given group.
Note that forming tensor products that vanish on <M>p</M>-singular elements
is a recipe for creating projective characters,
provided one knows in advance that the answer is negative for the
given group.

<P/>

<Example><![CDATA[
gap> GenProjNotProj:= function( modtbl )
>      local p, tbl, X, PIMs, n, psingular, list, labels, i, j, psi,
>            pos, dec, poss;
> 
>      p:= UnderlyingCharacteristic( modtbl );
>      tbl:= OrdinaryCharacterTable( modtbl );
>      X:= Irr( tbl );
>      PIMs:= TransposedMat( DecompositionMatrix( modtbl ) ) * X;
>      n:= Length( X );
>      psingular:= Difference( [ 1 .. n ], GetFusionMap( modtbl, tbl ) );
>      list:= [];
>      labels:= [];
>      for i in [ 1 .. n ] do
>        for j in [ 1 .. i ] do
>          psi:= List( [ 1 .. n ], x -> X[i][x] * X[j][x] );
>          if IsZero( psi{ psingular } ) then
>            # This is a generalized projective character.
>            pos:= Position( list, psi );
>            if pos = fail then
>              Add( list, psi );
>              Add( labels, [ [ j, i ] ] );
>            else
>              Add( labels[ pos ], [ j, i ] );
>            fi;
>          fi;
>        od;
>      od;
> 
>      if Length( list ) > 0 then
>        # Decompose the generalized projective tensor products
>        # into the projective indecomposables.
>        dec:= Decomposition( PIMs, list, "nonnegative" );
>        poss:= Positions( dec, fail );
>        return Set( Concatenation( labels{ poss } ) );
>      else
>        return [];
>      fi;
>      end;;
]]></Example>

<P/>

One group for which the function returns a nonempty result is the sporadic
simple Janko group <M>J_2</M> in characteristic <M>2</M>.

<P/>

<Example><![CDATA[
gap> tbl:= CharacterTable( "J2" );;
gap> modtbl:= tbl mod 2;;
gap> pairs:= GenProjNotProj( modtbl );
[ [ 6, 12 ] ]
gap> irr:= Irr( tbl );;
gap> PIMs:= TransposedMat( DecompositionMatrix( modtbl ) ) * irr;;
gap> SolutionMat( PIMs, irr[6] * irr[12] );
[ 0, 0, 0, 1, 1, 1, 0, 0, -2, 3 ]
]]></Example>

<P/>

Checking all available tables from the library takes several hours of
CPU time and also requires a lot of space;
<!-- "6x2.F4(2)" needs more than 7GB -->
finally, it yields the following result.

<P/>

<Example><![CDATA[
gap> examples:= [];;
gap> for name in AllCharacterTableNames( IsDuplicateTable, false ) do
>      tbl:= CharacterTable( name );
>      for p in PrimeDivisors( Size( tbl ) ) do
>        modtbl:= tbl mod p;
>        if modtbl <> fail then
>          res:= GenProjNotProj( modtbl );
>          if not IsEmpty( res ) then
>            AddSet( examples, [ name, p, Length( res ) ] );
>         fi;
>       fi;
>     od;
>   od;
gap> examples;
[ [ "(A5xJ2):2", 2, 4 ], [ "(D10xJ2).2", 2, 9 ], [ "2.Suz", 3, 1 ], 
  [ "2.Suz.2", 3, 4 ], [ "2xCo2", 5, 4 ], [ "3.Suz", 2, 6 ], 
  [ "3.Suz.2", 2, 4 ], [ "Co2", 5, 1 ], [ "Co3", 2, 4 ], 
  [ "Isoclinic(2.Suz.2)", 3, 4 ], [ "J2", 2, 1 ], [ "Suz", 2, 2 ], 
  [ "Suz", 3, 1 ], [ "Suz.2", 3, 4 ] ]
]]></Example>

This list looks rather <Q>sporadic</Q>.
The number of examples is small, and all groups in question except two
(the subdirect products of <M>S_5</M> and <M>J_2.2</M>,
and of <M>5:4</M> and <M>J_2.2</M>, respectively)
are extensions of sporadic simple groups.

<P/>

Note that the following cases could be omitted
because the characters in question belong to proper factor groups:
<M>2.Suz</M> mod <M>3</M>, <M>2.Suz.2</M> mod <M>3</M>,
and its isoclinic variant.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:elabsubgroup">
<Heading>Example: Certain elementary abelian subgroups in quasisimple groups
(November 2020)</Heading>

In October 2020, Bob Guralnick asked:
Does each quasisimple group <M>G</M> contain an elementary abelian
subgroup that contains elements from all conjugacy classes
of involutions in <M>G</M>?
(Such a subgroup is called a <E>broad</E> subgroup of <M>G</M>.
See <Cite Key="GR20"/> for the paper.)

<P/>

In the case of simple groups,
theoretical arguments suffice to show that the answer is positive for
simple groups of alternating and Lie type,
thus it remains to inspect the sporadic simple groups.

<P/>

In the case of nonsimple quasisimple groups,
again groups having a sporadic simple factor group have to be checked,
and also the central extensions of groups of Lie type by exceptional
multipliers have to be checked computationally.

<P/>

In the following situations,
the answer is positive for a given group <M>G</M>.

<P/>

<Enum>
<Item>
    <M>G</M> has at most two classes of involutions.
    (Take an involution <M>x</M> in the centre of a Sylow <M>2</M>-subgroup
    <M>P</M> of <M>G</M>;
    if there is a conjugacy class of involutions in <M>G</M>
    different from <M>x^G</M> then <M>P</M> contains an element in the other
    involution class.)
</Item>
<Item>
    <M>G</M> has exactly three classes of involutions
    such that there are representatives <M>x</M>, <M>y</M>, <M>z</M>
    with the property <M>x y = z</M>.
    (The subgroup <M>\langle x, y \rangle</M> is a Klein four group;
    note that <M>x</M> and <M>y</M> commute because
    <M>x^{{-1}} y^{{-1}} x y = (x y)^2 = z^2 = 1</M> holds.)
</Item>
<Item>
    <M>G</M> has a central elementary abelian <M>2</M>-subgroup <M>N</M>,
    and there is an elementary abelian <M>2</M>-subgroup <M>P / N</M> in
    <M>G / N</M> containing elements from all those involution classes of
    <M>G / N</M> that lift to involutions of <M>G</M>, but no elements from
    other involution classes of <M>G / N</M>.
    (Just take the preimage <M>P</M>, which is elementary abelian.)
    <P/>
    This condition is satisfied for example if the answer is positive for
    <M>G / N</M> and <E>all</E> involutions of <M>G / N</M> lift to
    involutions in <M>G</M>,
    or if exactly one class of involutions of <M>G / N</M> lifts to
    involutions in <M>G</M>.
</Item>
</Enum>

<P/>

The following function evaluates the first two of the above criteria
and easy cases of the third one, for the given character table
of the group <M>G</M>.

<P/>

<Example><![CDATA[
gap> ApplyCriteria:= "dummy";;  # Avoid a syntax error ...
gap> ApplyCriteria:= function( tbl )
>    local id, ord, invpos, cen, facttbl, factfus, invmap, factord,
>           factinvpos, imgs;
>    id:= ReplacedString( Identifier( tbl ), " ", "" );
>    ord:= OrdersClassRepresentatives( tbl );
>    invpos:= PositionsProperty( ord, x -> x <= 2 );
>    if Length( invpos ) <= 3 then
>      # There are at most 2 involution classes.
>      Print( "#I  ", id, ": ",
>             "done (", Length( invpos ) - 1, " inv. class(es))\n" );
>      return true;
>    elif Length( invpos ) = 4 and
>         ClassMultiplicationCoefficient( tbl, invpos[2], invpos[3],
>                                              invpos[4] ) <> 0 then
>      Print( "#I  ", id, ": ",
>             "done (3 inv. classes, nonzero str. const.)\n" );
>      return true;
>    fi;
>    cen:= Intersection( invpos, ClassPositionsOfCentre( tbl ) );
>    if Length( cen ) > 1 then
>      # Consider the factor modulo the largest central el. ab. 2-group.
>      facttbl:= tbl / cen;
>      factfus:= GetFusionMap( tbl, facttbl );
>      invmap:= InverseMap( factfus );
>      factord:= OrdersClassRepresentatives( facttbl );
>      factinvpos:= PositionsProperty( factord, x -> x <= 2 );
>      if ForAll( factinvpos,
>             i -> invmap[i] in invpos or
>                  ( IsList( invmap[i] ) and
>                    IsSubset( invpos, invmap[i] ) ) ) then
>        # All involutions of the factor group lift to involutions.
>        if ApplyCriteria( facttbl ) = true then
>          Print( "#I  ", id, ": ",
>                 "done (all inv. in ",
>                 ReplacedString( Identifier( facttbl ), " ", "" ),
>                 " lift to inv.)\n" );
>          return true;
>        fi;
>      fi;
>      imgs:= Set( factfus{ invpos } );
>      if Length( imgs ) = 2 and
>         ForAll( imgs,
>             i -> invmap[i] in invpos or
>                  ( IsList( invmap[i] ) and
>                    IsSubset( invpos, invmap[i] ) ) ) then
>        # There is a C2 subgroup of the factor
>        # such that its involution lifts to involutions,
>        # and the lifts of the C2 cover all involution classes of 'tbl'.
>        Print( "#I  ", id, ": ",
>               "done (all inv. in ", id,
>               " are lifts of a C2\n",
>               "#I  in the factor modulo ",
>               ReplacedString( String( cen ), " ", "" ), ")\n" );
>        return true;
>      fi;
>    fi;
>    Print( "#I  ", id, ": ",
>           "OPEN (", Length( invpos  ) - 1, " inv. class(es))\n" );
>    return false;
> end;;
]]></Example>

<P/>

We start with the sporadic simple groups.

<P/>

<Example><![CDATA[
gap> SizeScreen( [ 72 ] );;
gap> spor:= AllCharacterTableNames( IsSporadicSimple, true,
>                                   IsDuplicateTable, false );
[ "B", "Co1", "Co2", "Co3", "F3+", "Fi22", "Fi23", "HN", "HS", "He", 
  "J1", "J2", "J3", "J4", "Ly", "M", "M11", "M12", "M22", "M23", 
  "M24", "McL", "ON", "Ru", "Suz", "Th" ]
gap> Filtered( spor,
>        x -> not ApplyCriteria( CharacterTable( x ) ) );
#I  B: OPEN (4 inv. class(es))
#I  Co1: OPEN (3 inv. class(es))
#I  Co2: done (3 inv. classes, nonzero str. const.)
#I  Co3: done (2 inv. class(es))
#I  F3+: done (2 inv. class(es))
#I  Fi22: done (3 inv. classes, nonzero str. const.)
#I  Fi23: done (3 inv. classes, nonzero str. const.)
#I  HN: done (2 inv. class(es))
#I  HS: done (2 inv. class(es))
#I  He: done (2 inv. class(es))
#I  J1: done (1 inv. class(es))
#I  J2: done (2 inv. class(es))
#I  J3: done (1 inv. class(es))
#I  J4: done (2 inv. class(es))
#I  Ly: done (1 inv. class(es))
#I  M: done (2 inv. class(es))
#I  M11: done (1 inv. class(es))
#I  M12: done (2 inv. class(es))
#I  M22: done (1 inv. class(es))
#I  M23: done (1 inv. class(es))
#I  M24: done (2 inv. class(es))
#I  McL: done (1 inv. class(es))
#I  ON: done (1 inv. class(es))
#I  Ru: done (2 inv. class(es))
#I  Suz: done (2 inv. class(es))
#I  Th: done (1 inv. class(es))
[ "B", "Co1" ]
]]></Example>

<P/>

The two open cases can be handled as follows.

<P/>

The group <M>G = B</M> contains maximal subgroups of the type
<M>5:4 \times HS.2</M> (the normalizers of <C>5A</C> elements,
see <Cite Key="CCN85" Where="p.&nbsp;217"/>).
The direct factor <M>H = HS.2</M> of such a subgroup
has four classes of involutions,
which fuse to the four involution classes of <M>G</M>.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "B" );;
gap> invpos:= Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4, 5 ]
gap> mx:= List( Maxes( t ), CharacterTable );;
gap> s:= First( mx,
>          x -> Size( x ) = 20 * Size( CharacterTable( "HS.2" ) ) );
CharacterTable( "5:4xHS.2" )
gap> fus:= GetFusionMap( s, t );;
gap> prod:= ClassPositionsOfDirectProductDecompositions( s );
[ [ [ 1, 40 .. 157 ], [ 1 .. 39 ] ] ]
gap> fusinB:= List( prod[1], l -> fus{ l } );
[ [ 1, 18, 8, 3, 8 ], 
  [ 1, 3, 4, 6, 8, 9, 14, 19, 18, 18, 25, 22, 31, 36, 43, 51, 50, 54, 
      57, 81, 100, 2, 5, 8, 11, 16, 21, 20, 24, 34, 33, 48, 52, 59, 
      76, 106, 100, 100, 137 ] ]
gap> IsSubset( fusinB[2], invpos );
true
gap> h:= CharacterTable( "HS.2" );;
gap> fusinB[2]{ Positions( OrdersClassRepresentatives( h ), 2 ) };
[ 3, 4, 2, 5 ]
]]></Example>

<P/>

The table of marks of <M>H</M> is known.
We find five classes of elementary abelian subgroups of order eight
in <M>H</M> that contain elements from all four involution classes of
<M>H</M>.

<P/>

<Example><![CDATA[
gap> tom:= TableOfMarks( h );
TableOfMarks( "HS.2" )
gap> ord:= OrdersTom( tom );;
gap> invpos:= Positions( ord, 2 );
[ 2, 3, 534, 535 ]
gap> 8pos:= Positions( ord, 8 );;
gap> filt:= Filtered( 8pos,
>        x -> ForAll( invpos,
>               y -> Length( IntersectionsTom( tom, x, y ) ) >= y
>                    and IntersectionsTom( tom, x, y )[y] <> 0 ) );
[ 587, 589, 590, 593, 595 ]
gap> reps:= List( filt, i -> RepresentativeTom( tom, i ) );;
gap> ForAll( reps, IsElementaryAbelian );
true
]]></Example>

<P/>

The group <M>G = Co_1</M> has a maximal subgroup <M>H</M> of type
<M>A_9 \times S_3</M>
(see <Cite Key="CCN85" Where="p.&nbsp;183"/>)
that contains elements from all three involution classes of <M>G</M>.
Moreover, the factor <M>S_3</M> contains <C>2A</C> elements,
and the factor <M>A_9</M> contains <C>2B</C> and <C>2C</C> elements.
This yields the desired elementary abelian subgroup of order eight.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "Co1" );;
gap> invpos:= Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4 ]
gap> mx:= List( Maxes( t ), CharacterTable );;
gap> s:= First( mx, x -> Size( x ) = 3 * Factorial( 9 ) );
CharacterTable( "A9xS3" )
gap> fus:= GetFusionMap( s, t );;
gap> prod:= ClassPositionsOfDirectProductDecompositions( s );
[ [ [ 1 .. 3 ], [ 1, 4 .. 52 ] ] ]
gap> List( prod[1], l -> fus{ l } );
[ [ 1, 8, 2 ], 
  [ 1, 3, 4, 5, 7, 6, 13, 14, 15, 19, 24, 28, 36, 37, 39, 50, 61, 61 
     ] ]
]]></Example>

<!--  alternative arguments for some sporadic groups (not needed)
<P/>

The group <M>G = Co_2</M> has a maximal subgroup <M>H</M> of type <M>HS.2</M>
that contains elements from all classes of involutions in <M>G</M>.
As we have seen in the case of the group <M>B</M>,
there are elementary abelian subgroups of order eight in <M>H</M>
that contain elements from all classes of involutions in <M>H</M>
and hence also elements from all three involution classes in <M>G</M>.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "Co2" );;
gap> invpos:= Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4 ]
gap> mx:= List( Maxes( t ), CharacterTable );;
gap> s:= First( mx, x -> Size( x ) = Size( CharacterTable( "HS.2" ) ) );
CharacterTable( "HS.2" )
gap> IsSubset( GetFusionMap( s, t ), invpos );
true
]]></Example>

<P/>

For <M>G = Fi_{22}</M>, consider the maximal subgroup <M>2^{10}.M_{22}</M>
of <M>G</M>:
Its <M>2</M>-core is elementary abelian and covers all three
involution classes of <M>G</M>.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "Fi22" );;
gap> invpos:= Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4 ]
gap> mx:= List( Maxes( t ), CharacterTable );;
gap> s:= First( mx,
>          x -> Size( x ) = 2^10 * Size( CharacterTable( "M22" ) ) );
CharacterTable( "2^10:m22" )
gap> corepos:= ClassPositionsOfPCore( s, 2 );
[ 1 .. 4 ]
gap> OrdersClassRepresentatives( t ){ corepos };
[ 1, 2, 2, 2 ]
gap> GetFusionMap( s, t ){ corepos };
[ 1, 2, 3, 4 ]
]]></Example>

<P/>

An analogous argument can be applied to <M>G = Fi_{23}</M>.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "Fi23" );;
gap> invpos:= Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4 ]
gap> mx:= List( Maxes( t ), CharacterTable );;
gap> s:= First( mx,
>          x -> Size( x ) = 2^11 * Size( CharacterTable( "M23" ) ) );
CharacterTable( "2..11.m23" )
gap> corepos:= ClassPositionsOfPCore( s, 2 );
[ 1 .. 4 ]
gap> OrdersClassRepresentatives( t ){ corepos };
[ 1, 2, 2, 2 ]
gap> GetFusionMap( s, t ){ corepos };
[ 1, 2, 3, 4 ]
]]></Example>

-->
<P/>

Thus we know that the answer is positive for each sporadic simple group.
Next we look at the relevant covering groups of sporadic simple groups.
For a quasisimple group with a sporadic simple factor,
the Schur multiplier has at most the prime factors <M>2</M> and <M>3</M>;
only the extension by the <M>2</M>-part of the multipier must be checked.

<P/>

<Example><![CDATA[
gap> sporcov:= AllCharacterTableNames( IsSporadicSimple, true,
>        IsDuplicateTable, false, OfThose, SchurCover );
[ "12.M22", "2.B", "2.Co1", "2.HS", "2.J2", "2.M12", "2.Ru", "3.F3+", 
  "3.J3", "3.McL", "3.ON", "6.Fi22", "6.Suz", "Co2", "Co3", "Fi23", 
  "HN", "He", "J1", "J4", "Ly", "M", "M11", "M23", "M24", "Th" ]
gap> Filtered( sporcov, x -> '.' in x );
[ "12.M22", "2.B", "2.Co1", "2.HS", "2.J2", "2.M12", "2.Ru", "3.F3+", 
  "3.J3", "3.McL", "3.ON", "6.Fi22", "6.Suz" ]
gap> relevant:= [ "2.M22", "4.M22", "2.B", "2.Co1", "2.HS", "2.J2",
>                 "2.M12", "2.Ru", "2.Fi22", "2.Suz" ];;
gap> Filtered( relevant,
>        x -> not ApplyCriteria( CharacterTable( x ) ) );
#I  2.M22: done (3 inv. classes, nonzero str. const.)
#I  4.M22: done (2 inv. class(es))
#I  2.B: OPEN (5 inv. class(es))
#I  2.Co1: OPEN (4 inv. class(es))
#I  2.HS: done (3 inv. classes, nonzero str. const.)
#I  2.J2: done (3 inv. classes, nonzero str. const.)
#I  2.M12: done (3 inv. classes, nonzero str. const.)
#I  2.Ru: done (3 inv. classes, nonzero str. const.)
#I  2.Fi22/[1,2]: done (3 inv. classes, nonzero str. const.)
#I  2.Fi22: done (all inv. in 2.Fi22/[1,2] lift to inv.)
#I  2.Suz: done (3 inv. classes, nonzero str. const.)
[ "2.B", "2.Co1" ]
]]></Example>

<P/>

The group <M>B</M> has four classes of involutions,
let us call them <C>2A</C>, <C>2B</C>, <C>2C</C>, and <C>2D</C>.
All except <C>2C</C> lift to involutions in <M>2.B</M>.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "B" );;
gap> 2t:= CharacterTable( "2.B" );;
gap> invpost:= Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4, 5 ]
gap> invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );
[ 2, 3, 4, 5, 7 ]
gap> GetFusionMap( 2t, t ){ invpos2t };
[ 1, 2, 3, 3, 5 ]
]]></Example>

<P/>

Thus it suffices to show that there is a subgroup of type <M>2^2</M>
in <M>B</M> that contains elements from <C>2A</C>, <C>2B</C>, and <C>2D</C>
(but no element from <C>2C</C>).
This follows from the fact that the
<M>(</M><C>2A</C>, <C>2B</C>, <C>2D</C><M>)</M> structure constant
of <M>B</M> is nonzero.

<P/>

<Example><![CDATA[
gap> ClassMultiplicationCoefficient( t, 2, 3, 5 );
120
]]></Example>

<P/>

The group <M>Co_1</M> has three classes of involutions,
let us call them <C>2A</C>, <C>2B</C>, and <C>2C</C>.
All except <C>2B</C> lift to involutions in <M>2.Co_1</M>.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "Co1" );;
gap> 2t:= CharacterTable( "2.Co1" );;
gap> invpost:= Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4 ]
gap> invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );
[ 2, 3, 4, 6 ]
gap> GetFusionMap( 2t, t ){ invpos2t };
[ 1, 2, 2, 4 ]
]]></Example>

<P/>

Thus it suffices to show that there is a subgroup of type <M>2^2</M>
in <M>Co_1</M> that contains elements from <C>2A</C> and <C>2C</C>
but no element from <C>2B</C>.
This follows from the fact that the
<M>(</M><C>2A</C>, <C>2A</C>, <C>2C</C><M>)</M> structure constant
of <M>Co_1</M> is nonzero.

<Example><![CDATA[
gap> ClassMultiplicationCoefficient( t, 2, 2, 4 );
264
]]></Example>

<P/>

Finally,
we deal with the relevant central extensions of finite simple groups
of Lie type with exceptional multipliers.
These groups are listed in <Cite Key="CCN85" Where="p.&nbsp;xvi, Table 5"/>.
The following cases belong to exceptional multipliers with nontrivial
<M>2</M>-part.

<P/>

<Table Align="|l|l|r|">
<Caption>Groups with exceptional <M>2</M>-part of their multiplier</Caption>
<HorLine/>
<Row>
   <Item>Group</Item>
   <Item>Name</Item>
   <Item>Multiplier</Item>
</Row>
<HorLine/>
<Row>
   <Item><M>A_1(4)</M></Item>
   <Item><C>"A5"</C></Item>
   <Item><M>2</M></Item>
</Row>
<Row>
   <Item><M>A_2(2)</M></Item>
   <Item><C>"L3(2)"</C></Item>
   <Item><M>2</M></Item>
</Row>
<Row>
   <Item><M>A_2(4)</M></Item>
   <Item><C>"L3(4)"</C></Item>
   <Item><M>4^2</M></Item>
</Row>
<Row>
   <Item><M>A_3(2)</M></Item>
   <Item><C>"A8"</C></Item>
   <Item><M>2</M></Item>
</Row>
<Row>
   <Item><M>{}^2A_3(2)</M></Item>
   <Item><C>"U4(2)"</C></Item>
   <Item><M>2</M></Item>
</Row>
<Row>
   <Item><M>{}^2A_5(2)</M></Item>
   <Item><C>"U6(2)"</C></Item>
   <Item><M>2^2</M></Item>
</Row>
<Row>
   <Item><M>B_2(2)</M></Item>
   <Item><C>"S6"</C></Item>
   <Item><M>2</M></Item>
</Row>
<Row>
   <Item><M>{}^2B_2(2)</M></Item>
   <Item><C>"Sz(8)"</C></Item>
   <Item><M>2^2</M></Item>
</Row>
<Row>
   <Item><M>B_3(2) \cong C_3(2)</M></Item>
   <Item><C>"S6(2)"</C></Item>
   <Item><M>2</M></Item>
</Row>
<Row>
   <Item><M>D_4(2)</M></Item>
   <Item><C>"O8+(2)"</C></Item>
   <Item><M>2^2</M></Item>
</Row>
<Row>
   <Item><M>G_2(4)</M></Item>
   <Item><C>"G2(4)"</C></Item>
   <Item><M>2</M></Item>
</Row>
<Row>
   <Item><M>F_4(2)</M></Item>
   <Item><C>"F4(2)"</C></Item>
   <Item><M>2</M></Item>
</Row>
<Row>
   <Item><M>{}^2E_6(2)</M></Item>
   <Item><C>"2E6(2)"</C></Item>
   <Item><M>2^2</M></Item>
</Row>
<HorLine/>
</Table>

<P/>

This leads to the following list of cases to be checked.
(We would not need to deal with the groups <M>A_5</M> and <M>L_3(2)</M>,
because of isomorphisms with groups of Lie type for which
the multiplier in question is not exceptional, but here we ignore this fact.)

<P/>

<Example><![CDATA[
gap> list:= [
>      [ "A5", "2.A5" ],
>      [ "L3(2)", "2.L3(2)" ],
>      [ "L3(4)", "2.L3(4)", "2^2.L3(4)", "4_1.L3(4)", "4_2.L3(4)",
>        "(2x4).L3(4)", "4^2.L3(4)" ],
>      [ "A8", "2.A8" ],
>      [ "U4(2)", "2.U4(2)"],
>      [ "U6(2)", "2.U6(2)", "2^2.U6(2)" ],
>      [ "A6", "2.A6" ],
>      [ "Sz(8)", "2.Sz(8)", "2^2.Sz(8)" ],
>      [ "S6(2)", "2.S6(2)" ],
>      [ "O8+(2)", "2.O8+(2)", "2^2.O8+(2)" ],
>      [ "G2(4)", "2.G2(4)" ],
>      [ "F4(2)", "2.F4(2)" ],
>      [ "2E6(2)", "2.2E6(2)", "2^2.2E6(2)" ] ];;
gap> Filtered( Concatenation( list ),
>        x -> not ApplyCriteria( CharacterTable( x ) ) );
#I  A5: done (1 inv. class(es))
#I  2.A5: done (1 inv. class(es))
#I  L3(2): done (1 inv. class(es))
#I  2.L3(2): done (1 inv. class(es))
#I  L3(4): done (1 inv. class(es))
#I  2.L3(4): done (3 inv. classes, nonzero str. const.)
#I  2^2.L3(4)/[1,2,3,4]: done (1 inv. class(es))
#I  2^2.L3(4): done (all inv. in 2^2.L3(4)/[1,2,3,4] lift to inv.)
#I  4_1.L3(4): done (2 inv. class(es))
#I  4_2.L3(4): done (2 inv. class(es))
#I  (2x4).L3(4): done (all inv. in (2x4).L3(4) are lifts of a C2
#I  in the factor modulo [1,2,3,4])
#I  4^2.L3(4): done (all inv. in 4^2.L3(4) are lifts of a C2
#I  in the factor modulo [1,2,3,4])
#I  A8: done (2 inv. class(es))
#I  2.A8: done (2 inv. class(es))
#I  U4(2): done (2 inv. class(es))
#I  2.U4(2): done (2 inv. class(es))
#I  U6(2): done (3 inv. classes, nonzero str. const.)
#I  2.U6(2)/[1,2]: done (3 inv. classes, nonzero str. const.)
#I  2.U6(2): done (all inv. in 2.U6(2)/[1,2] lift to inv.)
#I  2^2.U6(2)/[1,2,3,4]: done (3 inv. classes, nonzero str. const.)
#I  2^2.U6(2): done (all inv. in 2^2.U6(2)/[1,2,3,4] lift to inv.)
#I  A6: done (1 inv. class(es))
#I  2.A6: done (1 inv. class(es))
#I  Sz(8): done (1 inv. class(es))
#I  2.Sz(8): done (2 inv. class(es))
#I  2^2.Sz(8)/[1,2,3,4]: done (1 inv. class(es))
#I  2^2.Sz(8): done (all inv. in 2^2.Sz(8)/[1,2,3,4] lift to inv.)
#I  S6(2): OPEN (4 inv. class(es))
#I  2.S6(2): OPEN (3 inv. class(es))
#I  O8+(2): OPEN (5 inv. class(es))
#I  2.O8+(2): OPEN (5 inv. class(es))
#I  2^2.O8+(2): OPEN (5 inv. class(es))
#I  G2(4): done (2 inv. class(es))
#I  2.G2(4): done (3 inv. classes, nonzero str. const.)
#I  F4(2): OPEN (4 inv. class(es))
#I  2.F4(2)/[1,2]: OPEN (4 inv. class(es))
#I  2.F4(2): OPEN (9 inv. class(es))
#I  2E6(2): done (3 inv. classes, nonzero str. const.)
#I  2.2E6(2)/[1,2]: done (3 inv. classes, nonzero str. const.)
#I  2.2E6(2): done (all inv. in 2.2E6(2)/[1,2] lift to inv.)
#I  2^2.2E6(2)/[1,2,3,4]: done (3 inv. classes, nonzero str. const.)
#I  2^2.2E6(2): done (all inv. in 2^2.2E6(2)/[1,2,3,4] lift to inv.)
[ "S6(2)", "2.S6(2)", "O8+(2)", "2.O8+(2)", "2^2.O8+(2)", "F4(2)", 
  "2.F4(2)" ]
]]></Example>

<P/>

We could assume that the answer is positive for the simple groups in
the list of open cases, by theoretical arguments,
but it is easy to show this computationally.

<P/>

For <M>G = S_6(2)</M>, consider a maximal subgroup <M>2^6.L_3(2)</M>
of <M>G</M> (see <Cite Key="CCN85" Where="p.&nbsp;46"/>):
Its <M>2</M>-core is elementary abelian and covers all four
involution classes of <M>G</M>.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "S6(2)" );;
gap> invpos:= Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4, 5 ]
gap> mx:= List( Maxes( t ), CharacterTable );;
gap> s:= First( mx,
>          x -> Size( x ) = 2^6 * Size( CharacterTable( "L3(2)" ) ) );
CharacterTable( "2^6:L3(2)" )
gap> corepos:= ClassPositionsOfPCore( s, 2 );
[ 1 .. 5 ]
gap> OrdersClassRepresentatives( t ){ corepos };
[ 1, 2, 2, 2, 2 ]
gap> GetFusionMap( s, t ){ corepos };
[ 1, 3, 4, 2, 5 ]
]]></Example>

<P/>

Concerning <M>G = 2.S_6(2)</M>,
note that from the four involution classes of <M>S_6(2)</M>,
exactly <C>2B</C> and <C>2D</C> lift to involutions in <M>2.S_6(2)</M>.

<P/>

<Example><![CDATA[
gap> 2t:= CharacterTable( "2.S6(2)" );;
gap> invpost:= Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4, 5 ]
gap> invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );
[ 2, 4, 6 ]
gap> GetFusionMap( 2t, t ){ invpos2t };
[ 1, 3, 5 ]
]]></Example>

<P/>

Thus it suffices to show that there is a subgroup of type <M>2^2</M>
in <M>S_6(2)</M> that contains elements from <C>2B</C> and <C>2D</C>
but no elements from <C>2A</C> or <C>2C</C>.
This follows from the fact that the
<M>(</M><C>2B</C>, <C>2D</C>, <C>2D</C><M>)</M> structure constant
of <M>S_6(2)</M> is nonzero.

<Example><![CDATA[
gap> ClassMultiplicationCoefficient( t, 3, 5, 5 );
15
]]></Example>

<P/>

For <M>G = O_8^+(2)</M>, we consider the known table of marks.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "O8+(2)" );;
gap> tom:= TableOfMarks( t );
TableOfMarks( "O8+(2)" )
gap> ord:= OrdersTom( tom );;
gap> invpos:= Positions( ord, 2 );
[ 2, 3, 4, 5, 6 ]
gap> 8pos:= Positions( ord, 8 );;
gap> filt:= Filtered( 8pos,
>             x -> ForAll( invpos,
>                    y -> Length( IntersectionsTom( tom, x, y ) ) >= y
>                         and IntersectionsTom( tom, x, y )[y] <> 0 ) );
[ 151, 153 ]
gap> reps:= List( filt, i -> RepresentativeTom( tom, i ) );;
gap> ForAll( reps, IsElementaryAbelian );
true
]]></Example>

<P/>

Concerning <M>G = 2.O_8^+(2)</M>,
note that from the five involution classes of <M>O_8^+(2)</M>,
exactly <C>2A</C>, <C>2B</C>, and <C>2E</C> lift to involutions
in <M>2.O_8^+(2)</M>.

<P/>

<Example><![CDATA[
gap> 2t:= CharacterTable( "2.O8+(2)" );;
gap> invpost:= Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4, 5, 6 ]
gap> invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );
[ 2, 3, 4, 5, 8 ]
gap> GetFusionMap( 2t, t ){ invpos2t };
[ 1, 2, 3, 3, 6 ]
]]></Example>

<P/>

Thus it suffices to show that the
<M>(</M><C>2A</C>, <C>2B</C>, <C>2E</C><M>)</M> structure constant
of <M>O_8^+(2)</M> is nonzero.

<P/>

<Example><![CDATA[
gap> ClassMultiplicationCoefficient( t, 2, 3, 6 );
4
]]></Example>

<P/>

Concerning <M>G = 2^2.O_8^+(2)</M>,
note that from the five involution classes of <M>O_8^+(2)</M>,
exactly the first and the last lift to involutions
in <M>2^2.O_8^+(2)</M>.

<P/>

<Example><![CDATA[
gap> v4t:= CharacterTable( "2^2.O8+(2)" );;
gap> invposv4t:= Positions( OrdersClassRepresentatives( v4t ), 2 );
[ 2, 3, 4, 5, 12 ]
gap> GetFusionMap( v4t, t ){ invposv4t };
[ 1, 1, 1, 2, 6 ]
]]></Example>

<P/>

Thus it suffices to show that a corresponding structure constant
of <M>O_8^+(2)</M> is nonzero.

<P/>

<Example><![CDATA[
gap> ClassMultiplicationCoefficient( t, 2, 6, 6 );
27
]]></Example>

<P/>

For <M>G = F_4(2)</M>, consider a maximal subgroup <M>2^{10}.A_8</M>
of a maximal subgroup <M>S_8(2)</M> of <M>G</M>
(see <Cite Key="CCN85" Where="p.&nbsp;123 and 170"/>):
Its <M>2</M>-core is elementary abelian and covers all four
involution classes of <M>G</M>.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "F4(2)" );;
gap> invpost:= Positions( OrdersClassRepresentatives( t ), 2 );
[ 2, 3, 4, 5 ]
gap> "S8(2)" in Maxes( t );
true
gap> s:= CharacterTable( "S8(2)M4" );
CharacterTable( "2^10.A8" )
gap> corepos:= ClassPositionsOfPCore( s, 2 );
[ 1 .. 7 ]
gap> OrdersClassRepresentatives( s ){ corepos };
[ 1, 2, 2, 2, 2, 2, 2 ]
gap> poss:= PossibleClassFusions( s, t );;
gap> List( poss, map -> map{ corepos } );
[ [ 1, 4, 2, 3, 4, 5, 5 ], [ 1, 4, 2, 3, 4, 5, 5 ], 
  [ 1, 4, 3, 2, 4, 5, 5 ], [ 1, 4, 3, 2, 4, 5, 5 ] ]
]]></Example>

<P/>

Finally,
all involutions of <M>G</M> lift to involutions in <M>2.F_4(2)</M>.

<P/>

<Example><![CDATA[
gap> 2t:= CharacterTable( "2.F4(2)" );;
gap> invpos2t:= Positions( OrdersClassRepresentatives( 2t ), 2 );
[ 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
gap> GetFusionMap( 2t, t ){ invpos2t };
[ 1, 2, 2, 3, 3, 4, 4, 5, 5 ]
]]></Example>

</Subsection>

</Section>

</Chapter>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->