File: ctounit1.tbl

package info (click to toggle)
gap-ctbllib 1.3.9-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 74,872 kB
  • sloc: xml: 41,268; makefile: 215; javascript: 155
file content (14555 lines) | stat: -rw-r--r-- 978,919 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
#############################################################################
##
#W  ctounit1.tbl                GAP table library               Thomas Breuer
##
##  This file contains the ordinary character tables of groups related to
##  the unitary group $U_4(3)$ of the ATLAS.
##
#H  ctbllib history
#H  ---------------
#H  $Log: ctounit1.tbl,v $
#H  Revision 4.47  2012/04/23 16:16:16  gap
#H  next step of consolidation:
#H
#H  - removed a few unnecessary duplicate tables,
#H    and changed some related fusions, names of maxes, table constructions
#H  - make sure that duplicate tables arise only via `ConstructPermuted'
#H    constructions
#H  - added some relative names
#H  - added fusions A11.2 -> A12.2, L2(11).2 -> A12.2, D8x2F4(2)'.2 -> B,
#H    L2(41) -> M, (A5xA12):2 -> A17,
#H  - added maxes of A12.2, L6(2), 2.M22.2
#H  - added table of QD16.2,
#H  - fixed the syntax of two `ALN' calls
#H      TB
#H
#H  Revision 4.46  2012/03/28 13:14:00  gap
#H  added table of 6_1.U4(3).2_2'
#H      TB
#H
#H  Revision 4.45  2012/03/12 17:01:48  gap
#H  omit the fourth argument of `ConstructV4G'
#H      TB
#H
#H  Revision 4.44  2012/03/02 08:19:35  gap
#H  - added the tables of 2.U4(3).(2^2)_{133},
#H  - encode some tables of 2.U4(3).(2^2)_{122} via `ConstructIsoclinic',
#H      TB
#H
#H  Revision 4.43  2012/01/30 08:32:04  gap
#H  removed #H entries from the headers
#H      TB
#H
#H  Revision 4.42  2011/09/28 14:17:09  gap
#H  - removed revision entry and SET_TABLEFILENAME call,
#H  - added fusion Isoclinic(2.U4(3).2_1) -> 3^6:2U4(3).2_1
#H      TB
#H
#H  Revision 4.41  2010/12/01 17:52:14  gap
#H  - tomfusion of "U4(3).2_1" needs the permutation (3,4)
#H  - fusion U4(3).2_3' -> U4(3).(2^2)_{133} is relative to the fusion
#H    U4(3).2_3 -> U4(3).(2^2)_{133} (w.r.t. the automorphism induced by
#H    U4(3).D8)
#H  - added tables of "(3^2x2).U4(3)" and "(3^2x4).U4(3)"
#H    (Eamonn had asked for them)
#H
#H      TB
#H
#H  Revision 4.40  2010/11/15 16:32:26  gap
#H  replaced some fusions to U4(3).2_3 by fusions to U4(3).2_3',
#H  added comments
#H      TB
#H
#H  Revision 4.39  2010/09/15 08:11:28  gap
#H  added the fusion 6_2.U4(3).2_3' -> U4(3).2_3',
#H  adjusted the mapping between the maxes and the corresponding information
#H  in the table of marks of U4(3) and U4(3).(2^2)_{133}
#H      TB
#H
#H  Revision 4.38  2010/05/05 13:20:09  gap
#H  - added many class fusions,
#H  - changed several class fusions according to consistency conditions,
#H    after systematic checks of consistency
#H    - with Brauer tables w.r.t. the restriction of characters,
#H    - of subgroup fusions with the corresponding subgroup fusions between
#H      proper factors where the factor fusions are stored,
#H    - of subgroup fusions from maximal subgroups with subgroup fusions of
#H      extensions inside automorphic extensions
#H
#H      TB
#H
#H  Revision 4.37  2010/01/19 17:05:35  gap
#H  added several tables of maximal subgroups of central extensions of
#H  simple groups (many of them were contributed by S. Dany)
#H      TB
#H
#H  Revision 4.36  2009/04/22 12:39:08  gap
#H  added missing maxes of He.2, ON.2, HN.2, Fi24, and B
#H      TB
#H
#H  Revision 4.35  2006/06/07 07:54:27  gap
#H  unified ConstructMixed and ConstructMGA (for better programmatic access)
#H      TB
#H
#H  Revision 4.34  2005/09/14 08:31:28  gap
#H  changed fusion 2.U4(3).2_2 -> O7(3) such that the fusion is compatible
#H  with 12_1.U4(3).2_2 -> 6.O7(3)
#H      TB
#H
#H  Revision 4.33  2005/08/10 14:39:55  gap
#H  corrected InfoText values of GV4 constructed tables
#H      TB
#H
#H  Revision 4.32  2004/11/24 15:20:20  gap
#H  added missing maxes of U4(3) --Max had asked for them--
#H  and their class fusions,
#H  fixed construction entry for "(2xA6).2^2",
#H  fixed fusion "2.U4(3).2_2' -> U4(3).2_2"
#H      TB
#H
#H  Revision 4.31  2004/08/31 12:33:34  gap
#H  added tables of 4.L2(25).2_3,
#H                  L2(49).2^2,
#H                  L2(81).2^2,
#H                  L2(81).(2x4),
#H                  3.L3(4).3.2_2,
#H                  L3(9).2^2,
#H                  L4(4).2^2,
#H                  2x2^3:L3(2)x2,
#H                  (2xA6).2^2,
#H                  2xL2(11).2,
#H                  S3xTh,
#H                  41:40,
#H                  7^(1+4):(3x2.S7),
#H                  7xL2(8),
#H                  (7xL2(8)).3,
#H                  O7(3)N3A,
#H                  O8+(3).2_1',
#H                  O8+(3).2_1'',
#H                  O8+(3).2_2',
#H                  O8+(3).(2^2)_{122},
#H                  S4(9),
#H                  S4(9).2_i,
#H                  2.U4(3).2_2',
#H                  2.U4(3).(2^2)_{133},
#H                  2.U4(3).D8,
#H                  3.U6(2).S3,
#H  added fusions 3.A6.2_i -> 3.A6.2^2,
#H                L2(49).2_i -> L2(49).2^2,
#H                L3(9).2_i -> L3(9).2^2,
#H                L4(4).2_i -> L4(4).2^2,
#H                G2(3) -> O7(3),
#H                L2(17) -> S8(2),
#H                2.L3(4).2_2 -> 2.M22.2
#H                3.L3(4).2_2 -> 3.L3(4).3.2_2
#H                3.L3(4).3 -> 3.L3(4).3.2_2
#H                2^5:S6 -> 2.M22.2
#H                O8+(3) -> O8+(3).2_1',
#H                O8+(3) -> O8+(3).2_1'',
#H                O8+(3) -> O8+(3).2_2',
#H                O8+(3) -> O8+(3).(2^2)_{122},
#H                O8+(3).2_1 -> O8+(3).(2^2)_{122},
#H                O8+(3).2_2 -> O8+(3).(2^2)_{122},
#H                2.U4(3) -> 2.U4(3).2_2',
#H                2.U4(3).2_1 -> 2.U4(3).(2^2)_{133},
#H                2.U4(3).2_2 -> O7(3),
#H                2.U4(3).2_2' -> U4(3).2_2,
#H                2.U4(3).2_3 -> 2.U4(3).(2^2)_{133},
#H                2.U4(3).2_3' -> 2.U4(3).(2^2)_{133},
#H                2.U4(3).4 -> 2.U4(3).D8,
#H                3.U6(2).2 -> 3.U6(2).S3,
#H                3.U6(2).3 -> 3.U6(2).S3,
#H  replaced table of psl(3,4):d12 by L3(4).D12,
#H  changed table of O8+(3).S4 to a construction table,
#H  changed encoding of the table of 12.A6.2_3,
#H  added maxes of Sz(8), Sz(8).3,
#H      TB
#H
#H  Revision 4.30  2004/03/30 08:55:58  gap
#H  (name change also in a factor fusion)
#H      TB
#H
#H  Revision 4.29  2004/03/30 08:05:55  gap
#H  unified tables `u4q3:2^2' and `U4(3).(2^2)_{133}'
#H      TB
#H
#H  Revision 4.28  2004/01/20 10:26:13  gap
#H  added several names of the forms `<name>C<class>', `<name>N<class>'
#H      TB
#H
#H  Revision 4.27  2003/10/06 07:18:17  gap
#H  added fusion 2.U4(3).(2^2)_{122} -> 2^2.U4(3).(2^2)_{122}
#H      TB
#H
#H  Revision 4.26  2003/07/28 15:31:22  gap
#H  added some fusions concerning maxes of 6.U6(2)
#H      TB
#H
#H  Revision 4.25  2003/06/10 16:19:16  gap
#H  store in several fusions between character tables to which subgroup number
#H  in the table of marks of the supergroup the subgroup belongs
#H  (in order to make the commutative diagrams testable)
#H      TB
#H
#H  Revision 4.24  2003/05/15 17:38:27  gap
#H  next step towards the closer connection to the library of tables of marks:
#H  added fusions tbl -> tom, adjusted fusions between character tables
#H  in order to make the diagrams commute, adjusted orderings of maxes
#H      TB
#H
#H  Revision 4.23  2003/01/14 17:28:50  gap
#H  changed `InfoText' values (for a better programmatic access)
#H  and replaced `ConstructDirectProduct' by `ConstructPermuted' where
#H  there is only one factor (again better programmatic handling)
#H      TB
#H
#H  Revision 4.22  2002/10/22 12:44:15  gap
#H  added 215 factor fusions for cases <tbl> -> <tbl> / O_{<p>}(<tbl>)
#H  (they make it possible to construct <p>-modular Brauer tables
#H  for tables of the type [p^n].<fact> where the <p>-modular Brauer table
#H  of <fact> is in the library)
#H      TB
#H
#H  Revision 4.21  2002/10/14 15:20:18  gap
#H  added two fusion texts
#H      TB
#H
#H  Revision 4.20  2002/09/23 15:07:22  gap
#H  changed comment of the fusion U4(3).2_2 -> Fi22
#H      TB
#H
#H  Revision 4.19  2002/09/18 15:22:02  gap
#H  changed the `text' components of many fusions,
#H  in order to use them as a status information (for evaluation)
#H      TB
#H
#H  Revision 4.18  2002/08/21 13:53:52  gap
#H  removed names of the form `c1m<n>', `c2m<n>', `c3m<n>'
#H      TB
#H
#H  Revision 4.17  2002/07/12 06:45:57  gap
#H  further tidying up: removed `irredinfo' stuff, rearranged constructions
#H      TB
#H
#H  Revision 4.16  2002/07/08 16:06:57  gap
#H  changed `construction' component from function (call) to list of function
#H  name and arguments
#H      TB
#H
#H  Revision 4.15  2001/05/04 16:50:33  gap
#H  first revision for ctbllib
#H
#H
#H  tbl history (GAP 4)
#H  -------------------
#H  (Rev. 4.15 of ctbllib coincides with Rev. 4.14 of tbl in GAP 4)
#H  
#H  RCS file: /gap/CVS/GAP/4.0/tbl/ctounit1.tbl,v
#H  Working file: ctounit1.tbl
#H  head: 4.14
#H  branch:
#H  locks: strict
#H  access list:
#H  symbolic names:
#H  	GAP4R2: 4.12.0.6
#H  	GAP4R2PRE2: 4.12.0.4
#H  	GAP4R2PRE1: 4.12.0.2
#H  	GAP4R1: 4.6.0.2
#H  keyword substitution: kv
#H  total revisions: 16;	selected revisions: 16
#H  description:
#H  ----------------------------
#H  revision 4.14
#H  date: 2000/10/09 17:21:50;  author: gap;  state: Exp;  lines: +45 -44
#H  added tables of 3_1.U4(3).2_2' and F3+M9
#H  
#H      TB
#H  ----------------------------
#H  revision 4.13
#H  date: 2000/05/13 12:15:28;  author: gap;  state: Exp;  lines: +434 -2
#H  added some maxes of 6.Suz: [1,2,4,6,9,10,11,14,16]
#H  
#H      TB
#H  ----------------------------
#H  revision 4.12
#H  date: 1999/10/21 14:15:49;  author: gap;  state: Exp;  lines: +21 -3
#H  added many `tomidentifer' and `tomfusion' values, which yields a better
#H  interface between `tom' and `tbl';
#H  
#H  added maxes of McL.2,
#H  
#H  unified tables `J2.2M4', `2^(2+4):(3x3):2^2', `2^(2+4):(S3xS3)'.
#H  
#H      TB
#H  ----------------------------
#H  revision 4.11
#H  date: 1999/09/17 14:11:52;  author: gap;  state: Exp;  lines: +127 -69
#H  added maxes of 3.Suz.2
#H  
#H      TB
#H  ----------------------------
#H  revision 4.10
#H  date: 1999/09/14 13:30:12;  author: gap;  state: Exp;  lines: +2 -3
#H  added maxes of 3.Suz
#H  
#H      TB
#H  ----------------------------
#H  revision 4.9
#H  date: 1999/08/31 13:16:16;  author: gap;  state: Exp;  lines: +45 -2
#H  added missing tables and fusions of maximal subgroups of Suz.2
#H  
#H      TB
#H  ----------------------------
#H  revision 4.8
#H  date: 1999/08/23 10:26:59;  author: gap;  state: Exp;  lines: +6 -2
#H  unified tables of U3(5).S3 and U3(5).3.2
#H  (one CAS table, o ne ATLAS conformal table)
#H  
#H      TB
#H  ----------------------------
#H  revision 4.7
#H  date: 1999/08/18 13:59:08;  author: gap;  state: Exp;  lines: +73 -2
#H  added table of U4(3).(2^2)_{133}, and related fusions
#H  
#H      TB
#H  ----------------------------
#H  revision 4.6
#H  date: 1999/06/15 13:49:34;  author: gap;  state: Exp;  lines: +22 -2
#H  added table of 2.SuzM2 (request of a student)
#H  
#H      TB
#H  ----------------------------
#H  revision 4.5
#H  date: 1999/05/31 13:28:30;  author: gap;  state: Exp;  lines: +225 -9
#H  added table of 2.U4(3).(2^2)_{122}
#H  
#H      TB
#H  ----------------------------
#H  revision 4.4
#H  date: 1999/05/03 15:35:18;  author: gap;  state: Exp;  lines: +55 -11
#H  added tables of 2.U4(3).2_3' and 6_2.U4(3).2_3'
#H  (requested by a student in Aachen)
#H  
#H      TB
#H  ----------------------------
#H  revision 4.3
#H  date: 1997/11/25 15:46:01;  author: gap;  state: Exp;  lines: +12 -9
#H  first attempt to link the library of character tables and the
#H      library of tables of marks
#H          TB
#H  ----------------------------
#H  revision 4.2
#H  date: 1997/08/05 15:03:59;  author: gap;  state: Exp;  lines: +5 -5
#H  removed unnecessary (and ugly) `return' statements in the calls of
#H      `ConstructPermuted' and `ConstructSubdirect'
#H  ----------------------------
#H  revision 4.1
#H  date: 1997/07/17 15:48:15;  author: fceller;  state: Exp;  lines: +2 -2
#H  for version 4
#H  ----------------------------
#H  revision 1.2
#H  date: 1997/04/04 12:20:32;  author: sam;  state: Exp;  lines: +7 -23
#H  added 'ConstructPermuted', 'ConstructSubdirect',
#H  changed table constructions involving 'CharTable', 'RecFields'
#H      'Sort...' up to now
#H  ----------------------------
#H  revision 1.1
#H  date: 1996/10/21 16:02:03;  author: sam;  state: Exp;
#H  first proposal of the table library
#H  ==========================================================================
##

MOT("12_1.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,39191040,39191040,39191040,39191040,39191040,39191040,39191040,
39191040,39191040,39191040,39191040,6912,6912,6912,6912,6912,6912,69984,69984,
69984,69984,69984,69984,69984,69984,69984,69984,69984,69984,11664,11664,11664,
11664,11664,11664,11664,11664,11664,11664,11664,11664,3888,3888,3888,3888,324,
324,324,324,1152,1152,1152,1152,1152,1152,1152,1152,1152,1152,1152,1152,48,48,
48,60,60,60,60,60,60,60,60,60,60,60,60,864,864,864,864,864,864,864,864,864,
864,864,864,216,216,216,216,216,216,216,216,216,216,216,216,84,84,84,84,84,84,
84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,96,96,96,96,96,96,96,96,
96,96,96,96,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,
324,324,324,324,324,324,324,324,108,108,108,108,108,108,108,108,144,144,144,
144,144,144,144,144,144,144,144,144],
[,[1,3,5,7,9,11,1,3,5,7,9,11,1,3,5,7,9,11,19,21,23,25,27,29,19,21,23,25,27,29,
31,33,35,37,39,41,31,33,35,37,39,41,43,45,43,45,47,49,47,49,13,15,17,13,15,17,
13,15,17,13,15,17,16,18,14,66,68,70,72,74,76,66,68,70,72,74,76,19,21,23,25,27,
29,19,21,23,25,27,29,31,33,35,37,39,41,43,45,43,45,43,45,102,104,106,108,110,
112,102,104,106,108,110,112,114,116,118,120,122,124,114,116,118,120,122,124,
60,62,52,54,56,58,60,62,52,54,56,58,150,152,154,156,158,160,150,152,154,156,
158,160,138,140,142,144,146,148,138,140,142,144,146,148,166,168,166,168,162,
164,162,164,78,80,82,84,86,88,78,80,82,84,86,88],[1,4,7,10,1,4,7,10,1,4,7,10,
13,16,13,16,13,16,1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,
10,1,4,7,10,51,54,57,60,51,54,57,60,51,54,57,60,63,63,63,66,69,72,75,66,69,72,
75,66,69,72,75,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,
16,13,16,114,117,120,123,114,117,120,123,114,117,120,123,102,105,108,111,102,
105,108,111,102,105,108,111,129,132,135,126,129,132,135,126,129,132,135,126,
27,30,21,24,27,30,21,24,27,30,21,24,23,26,29,20,23,26,29,20,23,26,29,20,19,22,
25,28,19,22,25,28,51,54,57,60,51,54,57,60,51,54,57,60],,[1,6,11,4,9,2,7,12,5,
10,3,8,13,18,17,16,15,14,19,24,29,22,27,20,25,30,23,28,21,26,31,36,41,34,39,
32,37,42,35,40,33,38,43,44,45,46,47,48,49,50,51,56,61,54,59,52,57,62,55,60,53,
58,63,65,64,1,6,11,4,9,2,7,12,5,10,3,8,78,83,88,81,86,79,84,89,82,87,80,85,90,
95,94,93,92,91,96,101,100,99,98,97,114,119,124,117,122,115,120,125,118,123,
116,121,102,107,112,105,110,103,108,113,106,111,104,109,126,131,136,129,134,
127,132,137,130,135,128,133,150,155,160,153,158,151,156,161,154,159,152,157,
138,143,148,141,146,139,144,149,142,147,140,145,166,167,168,169,162,163,164,
165,170,175,180,173,178,171,176,181,174,179,172,177],,[1,8,3,10,5,12,7,2,9,4,
11,6,13,14,15,16,17,18,19,26,21,28,23,30,25,20,27,22,29,24,31,38,33,40,35,42,
37,32,39,34,41,36,43,46,45,44,47,50,49,48,51,58,53,60,55,62,57,52,59,54,61,56,
63,64,65,66,73,68,75,70,77,72,67,74,69,76,71,78,85,80,87,82,89,84,79,86,81,88,
83,90,91,92,93,94,95,96,97,98,99,100,101,1,8,3,10,5,12,7,2,9,4,11,6,1,8,3,10,
5,12,7,2,9,4,11,6,129,136,131,126,133,128,135,130,137,132,127,134,138,145,140,
147,142,149,144,139,146,141,148,143,150,157,152,159,154,161,156,151,158,153,
160,155,162,165,164,163,166,169,168,167,170,177,172,179,174,181,176,171,178,
173,180,175]],
0,
[(162,166)(163,167)(164,168)(165,169),(102,114)(103,115)(104,116)(105,117)
(106,118)(107,119)(108,120)(109,121)(110,122)(111,123)(112,124)(113,125),
(  2,  6)(  3, 11)(  5,  9)(  8, 12)( 14, 18)( 15, 17)( 20, 24)( 21, 29)
( 23, 27)( 26, 30)( 32, 36)( 33, 41)( 35, 39)( 38, 42)( 52, 56)( 53, 61)
( 55, 59)( 58, 62)( 64, 65)( 67, 71)( 68, 76)( 70, 74)( 73, 77)( 79, 83)
( 80, 88)( 82, 86)( 85, 89)( 91, 95)( 92, 94)( 97,101)( 98,100)(103,107)
(104,112)(106,110)(109,113)(115,119)(116,124)(118,122)(121,125)(127,131)
(128,136)(130,134)(133,137)(138,150)(139,155)(140,160)(141,153)(142,158)
(143,151)(144,156)(145,161)(146,154)(147,159)(148,152)(149,157)(162,166)
(163,167)(164,168)(165,169)(171,175)(172,180)(174,178)(177,181),(  2,  8)
(  4, 10)(  6, 12)( 20, 26)( 22, 28)( 24, 30)( 32, 38)( 34, 40)( 36, 42)
( 44, 46)( 48, 50)( 52, 58)( 54, 60)( 56, 62)( 67, 73)( 69, 75)( 71, 77)
( 79, 85)( 81, 87)( 83, 89)(103,109)(105,111)(107,113)(115,121)(117,123)
(119,125)(126,129)(127,136)(128,131)(130,133)(132,135)(134,137)(139,145)
(141,147)(143,149)(151,157)(153,159)(155,161)(163,165)(167,169)(171,177)
(173,179)(175,181),(  2,  6)(  3, 11)(  5,  9)(  8, 12)( 14, 18)( 15, 17)
( 20, 24)( 21, 29)( 23, 27)( 26, 30)( 32, 36)( 33, 41)( 35, 39)( 38, 42)
( 52, 56)( 53, 61)( 55, 59)( 58, 62)( 64, 65)( 67, 71)( 68, 76)( 70, 74)
( 73, 77)( 79, 83)( 80, 88)( 82, 86)( 85, 89)( 91, 95)( 92, 94)( 97,101)
( 98,100)(103,107)(104,112)(106,110)(109,113)(115,119)(116,124)(118,122)
(121,125)(127,131)(128,136)(130,134)(133,137)(138,150)(139,155)(140,160)
(141,153)(142,158)(143,151)(144,156)(145,161)(146,154)(147,159)(148,152)
(149,157)(171,175)(172,180)(174,178)(177,181)],
["ConstructProj",[["U4(3)",[]],["2.U4(3)",[]],["3_1.U4(3)",[-1,-1,-1,-1,-1,-1,
-1,-1,-13,-13,-1,-1,-1,-1,-1,-1]],["4.U4(3)",[-1,-1,-1,7,7,7,7,-1,-1,-1,-1,-1,
15,15,-1,-1]],,["6_1.U4(3)",[-1,-1,-1,-1,-1,-13,-13,-1,-1,-1,-1,-7,-7,-1,
-1]],,,,,,["12_1.U4(3)",[[-7,7,-1],[-7,7,-1],[-7,7,-1],[-7,7,-1],[-7,7,-1],[
-7,7,-1],[-55,-377,-433],[-55,-377,-433],[-7,7,-1],[-7,7,-1],[-7,7,-1],[-7,7,
-1]]]]]);
ALF("12_1.U4(3)","U4(3)",[1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,
3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,
7,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,11,11,
11,11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,14,14,
14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,16,16,
16,16,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,18,18,
18,18,19,19,19,19,20,20,20,20,20,20,20,20,20,20,20,20]);
ALF("12_1.U4(3)","2.U4(3)",[1,2,1,2,1,2,1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,5,
6,5,6,5,6,5,6,7,8,7,8,7,8,7,8,7,8,7,8,9,10,9,10,11,12,11,12,13,14,13,14,
13,14,13,14,13,14,13,14,15,15,15,16,17,16,17,16,17,16,17,16,17,16,17,18,
19,18,19,18,19,18,19,18,19,18,19,20,21,20,21,20,21,22,23,22,23,22,23,24,
25,24,25,24,25,24,25,24,25,24,25,26,27,26,27,26,27,26,27,26,27,26,27,28,
29,28,29,28,29,28,29,28,29,28,29,30,31,30,31,30,31,30,31,30,31,30,31,32,
33,32,33,32,33,32,33,32,33,32,33,34,35,34,35,36,37,36,37,38,39,38,39,38,
39,38,39,38,39,38,39]);
ALF("12_1.U4(3)","4.U4(3)",[1,2,3,4,1,2,3,4,1,2,3,4,5,6,5,6,5,6,7,8,9,10,
7,8,9,10,7,8,9,10,11,12,13,14,11,12,13,14,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,23,24,25,26,23,24,25,26,27,27,27,28,29,30,31,28,29,30,
31,28,29,30,31,32,33,34,35,32,33,34,35,32,33,34,35,36,37,36,37,36,37,38,
39,38,39,38,39,40,41,42,43,40,41,42,43,40,41,42,43,44,45,46,47,44,45,46,
47,44,45,46,47,48,49,50,51,48,49,50,51,48,49,50,51,52,53,54,55,52,53,54,
55,52,53,54,55,56,57,58,59,56,57,58,59,56,57,58,59,60,61,62,63,64,65,66,
67,68,69,70,71,68,69,70,71,68,69,70,71]);
ALF("12_1.U4(3)","3_1.U4(3)",[1,2,3,1,2,3,1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,
8,9,7,8,9,7,8,9,10,11,12,10,11,12,10,11,12,10,11,12,13,13,13,13,14,14,14,
14,15,16,17,15,16,17,15,16,17,15,16,17,18,19,20,21,22,23,21,22,23,21,22,
23,21,22,23,24,25,26,24,25,26,24,25,26,24,25,26,27,28,29,27,28,29,30,31,
32,30,31,32,33,34,35,33,34,35,33,34,35,33,34,35,36,37,38,36,37,38,36,37,
38,36,37,38,39,40,41,39,40,41,39,40,41,39,40,41,42,43,44,42,43,44,42,43,
44,42,43,44,45,46,47,45,46,47,45,46,47,45,46,47,48,48,48,48,49,49,49,49,
50,51,52,50,51,52,50,51,52,50,51,52]);
ALF("12_1.U4(3)","6_1.U4(3)",[1,2,3,4,5,6,1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,13,14,15,16,17,18,19,20,21,22,23,24,19,20,21,22,23,24,25,
26,25,26,27,28,27,28,29,30,31,32,33,34,29,30,31,32,33,34,35,36,37,38,39,
40,41,42,43,38,39,40,41,42,43,44,45,46,47,48,49,44,45,46,47,48,49,50,51,
52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,62,63,64,65,66,67,68,69,
70,71,72,73,68,69,70,71,72,73,74,75,76,77,78,79,74,75,76,77,78,79,80,81,
82,83,84,85,80,81,82,83,84,85,86,87,88,89,90,91,86,87,88,89,90,91,92,93,
92,93,94,95,94,95,96,97,98,99,100,101,96,97,98,99,100,101]);
ALF("12_1.U4(3)","12_1.U4(3).2_1",[1,2,3,4,5,2,6,7,5,8,3,7,9,10,11,12,11,
10,13,14,15,16,17,14,18,19,17,20,15,19,21,22,23,24,25,22,26,27,25,28,23,
27,29,30,31,32,33,34,35,36,37,38,39,40,41,38,42,43,41,44,39,43,45,46,46,
47,48,49,50,51,48,52,53,51,54,49,53,55,56,57,58,59,56,60,61,59,62,57,61,
63,64,65,66,65,64,67,68,69,70,69,68,71,72,73,74,75,72,76,77,75,78,73,77,
79,80,81,82,83,80,84,85,83,86,81,85,87,88,89,90,91,88,92,93,91,94,89,93,
95,96,97,98,99,100,101,102,103,104,105,106,95,100,105,98,103,96,101,106,
99,104,97,102,107,108,109,110,107,108,109,110,111,112,113,114,115,112,116,
117,115,118,113,117],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("12_1.U4(3)","12_1.U4(3).2_2",[1,2,3,4,5,6,7,2,8,4,9,6,10,11,12,13,14,
15,16,17,18,19,20,21,22,17,23,19,24,21,25,26,27,28,29,30,31,26,32,28,33,
30,34,35,36,35,37,38,39,38,40,41,42,43,44,45,46,41,47,43,48,45,49,50,51,
52,53,54,55,56,57,58,53,59,55,60,57,61,62,63,64,65,66,67,62,68,64,69,66,
70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,
82,89,84,91,86,93,88,83,90,85,92,87,94,95,96,94,97,96,98,97,99,98,95,99,
100,101,102,103,104,105,106,101,107,103,108,105,109,110,111,112,113,114,
115,110,116,112,117,114,118,119,120,121,118,121,120,119,122,123,124,125,
126,127,128,123,129,125,130,127],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("12_1.U4(3)","12_1.U4(3).2_2'",[1,2,3,4,5,6,7,6,5,4,3,2,8,9,10,11,10,
9,12,13,14,15,16,17,18,17,16,15,14,13,19,20,21,22,23,24,25,24,23,22,21,20,
26,27,28,27,29,30,31,30,32,33,34,35,36,37,38,37,36,35,34,33,39,40,40,41,
42,43,44,45,46,47,46,45,44,43,42,48,49,50,51,52,53,54,53,52,51,50,49,55,
56,57,58,57,56,59,60,61,62,61,60,63,64,65,66,67,68,69,70,71,72,73,74,63,
74,73,72,71,70,69,68,67,66,65,64,75,76,76,75,77,78,79,80,80,79,78,77,81,
82,83,84,85,86,87,88,89,90,91,92,81,92,91,90,89,88,87,86,85,84,83,82,93,
94,95,94,96,97,98,97,99,100,101,102,103,104,105,104,103,102,101,100]);

MOT("12_1.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r."
],
[78382080,39191040,39191040,78382080,39191040,78382080,39191040,78382080,
13824,6912,6912,13824,139968,69984,69984,139968,69984,139968,69984,139968,
23328,11664,11664,23328,11664,23328,11664,23328,7776,7776,7776,7776,648,648,
648,648,2304,1152,1152,2304,1152,2304,1152,2304,96,48,120,60,60,120,60,120,60,
120,1728,864,864,1728,864,1728,864,1728,432,216,216,432,432,216,216,432,168,
84,84,168,84,168,84,168,168,84,84,168,84,168,84,168,192,96,96,192,96,192,96,
192,324,324,324,324,324,324,324,324,324,324,324,324,108,108,108,108,288,144,
144,288,144,288,144,288,48384,48384,48384,48384,2880,2880,4608,4608,4608,4608,
128,864,864,864,864,72,72,72,72,72,72,72,72,64,64,64,64,40,40,40,40,576,576,
576,576,576,576,576,576,144,144,144,144,144,144,144,144,56,56,56,56,56,56,56,
56],
[,[1,3,5,6,5,1,3,6,1,3,5,6,13,15,17,18,17,13,15,18,21,23,25,26,25,21,23,26,29,
31,29,31,33,35,33,35,9,11,11,9,11,9,11,9,12,10,47,49,51,52,51,47,49,52,13,15,
17,18,17,13,15,18,21,23,25,26,29,31,29,31,71,73,75,76,75,71,73,76,79,81,83,84,
83,79,81,84,44,43,38,40,38,44,43,40,95,105,103,101,99,97,95,105,103,101,99,97,
107,109,107,109,55,57,59,60,59,55,57,60,1,6,1,6,8,4,9,9,9,9,9,13,18,13,18,28,
24,30,32,33,35,33,35,40,44,40,44,54,50,54,50,55,60,55,60,60,55,60,55,63,63,63,
63,67,67,67,67,71,76,71,76,79,84,79,84],[1,4,6,8,1,6,8,4,9,12,9,12,1,4,6,8,1,
6,8,4,1,4,6,8,1,6,8,4,1,4,6,8,1,4,6,8,37,40,42,44,37,42,44,40,45,45,47,50,52,
54,47,52,54,50,9,12,9,12,9,9,12,12,9,12,9,12,9,12,9,12,79,82,84,86,79,84,86,
82,71,74,76,78,71,76,78,74,90,92,94,87,90,94,87,92,17,19,15,14,17,19,15,14,17,
19,15,14,13,16,18,20,37,40,42,44,37,42,44,40,119,122,121,120,124,123,128,127,
126,125,129,119,122,121,120,124,123,124,123,119,122,121,120,145,144,143,142,
149,148,147,146,128,127,126,125,128,127,126,125,128,127,126,125,128,127,126,
125,170,173,172,171,166,169,168,167],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,
43,44,45,46,1,2,3,4,5,6,7,8,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,
79,80,81,82,83,84,85,86,71,72,73,74,75,76,77,78,87,88,89,90,91,92,93,94,95,96,
97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,
117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,
136,137,138,139,140,141,142,143,144,145,123,124,123,124,150,151,152,153,154,
155,156,157,158,159,160,161,162,163,164,165,170,171,172,173,166,167,168,
169],,[1,7,3,8,5,6,2,4,9,10,11,12,13,19,15,20,17,18,14,16,21,27,23,28,25,26,
22,24,29,32,31,30,33,36,35,34,37,43,39,44,41,42,38,40,45,46,47,53,49,54,51,52,
48,50,55,61,57,62,59,60,56,58,63,64,65,66,67,68,69,70,1,7,3,8,5,6,2,4,1,7,3,8,
5,6,2,4,90,89,88,87,93,94,91,92,95,102,97,104,99,106,101,96,103,98,105,100,
107,110,109,108,111,117,113,118,115,116,112,114,119,122,121,120,124,123,128,
127,126,125,129,130,133,132,131,135,134,137,136,138,141,140,139,145,144,143,
142,147,146,149,148,157,156,155,154,153,152,151,150,161,160,159,158,165,164,
163,162,119,122,121,120,119,122,121,120]],
0,
[(146,148)(147,149),( 71, 79)( 72, 80)( 73, 81)( 74, 82)( 75, 83)( 76, 84)
( 77, 85)( 78, 86)(166,170)(167,171)(168,172)(169,173),(  2,  7)(  4,  8)
( 14, 19)( 16, 20)( 22, 27)( 24, 28)( 30, 32)( 34, 36)( 38, 43)( 40, 44)
( 48, 53)( 50, 54)( 56, 61)( 58, 62)( 72, 77)( 74, 78)( 80, 85)( 82, 86)
( 87, 90)( 88, 89)( 91, 93)( 92, 94)( 96,102)( 98,104)(100,106)(108,110)
(112,117)(114,118)(120,122)(123,124)(125,128)(126,127)(131,133)(134,135)
(136,137)(139,141)(142,145)(143,144)(146,147)(148,149)(150,157)(151,156)
(152,155)(153,154)(158,161)(159,160)(162,165)(163,164)(167,169)(171,173),
(  2,  7)(  4,  8)( 14, 19)( 16, 20)( 22, 27)( 24, 28)( 30, 32)( 34, 36)
( 38, 43)( 40, 44)( 48, 53)( 50, 54)( 56, 61)( 58, 62)( 72, 77)( 74, 78)
( 80, 85)( 82, 86)( 87, 90)( 88, 89)( 91, 93)( 92, 94)( 96,102)( 98,104)
(100,106)(108,110)(112,117)(114,118)(120,122)(123,124)(125,128)(126,127)
(131,133)(134,135)(136,137)(139,141)(142,145)(143,144)(146,149)(147,148)
(150,157)(151,156)(152,155)(153,154)(158,161)(159,160)(162,165)(163,164)
(167,169)(171,173),(119,121)(120,122)(125,127)(126,128)(130,132)(131,133)
(138,140)(139,141)(142,144)(143,145)(150,152)(151,153)(154,156)(155,157)
(158,160)(159,161)(162,164)(163,165)(166,168)(167,169)(170,172)(171,173)],
["ConstructMGA","12_1.U4(3)","4.U4(3).2_1",
     [ [ 72, 73 ], [ 74, 75 ], [ 76, 77 ], [ 78, 79 ], [ 80, 81 ],
        [ 82, 83 ], [ 84, 85 ], [ 86, 87 ], [ 88, 89 ], [ 90, 91 ],
        [ 92, 93 ], [ 94, 95 ], [ 96, 97 ], [ 98, 99 ], [ 100, 101 ],
        [ 102, 103 ], [ 104, 105 ], [ 106, 107 ], [ 108, 109 ], [ 110, 111 ],
        [ 112, 113 ], [ 114, 115 ], [ 116, 117 ], [ 118, 119 ], [ 120, 121 ],
        [ 122, 123 ], [ 124, 125 ], [ 126, 127 ], [ 128, 129 ], [ 130, 131 ],
        [ 132, 133 ], [ 134, 135 ], [ 136, 137 ], [ 138, 139 ], [ 140, 141 ],
        [ 142, 143 ], [ 144, 145 ], [ 146, 147 ], [ 148, 149 ], [ 150, 151 ],
        [ 152, 153 ], [ 154, 155 ], [ 156, 157 ], [ 158, 159 ], [ 160, 161 ],
        [ 162, 163 ], [ 164, 165 ], [ 166, 167 ], [ 168, 169 ], [ 170, 171 ],
        [ 172, 173 ], [ 174, 175 ], [ 176, 177 ], [ 178, 179 ], [ 180, 181 ] ]
      , ()]);
ALF("12_1.U4(3).2_1","U4(3).2_1",[1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,8,8,9,9,9,9,9,9,9,9,10,10,
10,10,10,10,10,10,11,11,11,11,12,12,12,12,13,13,13,13,13,13,13,13,14,14,
14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,
16,16,17,17,17,17,18,18,18,18,18,18,18,18,19,19,19,19,20,20,21,21,21,21,
22,23,23,23,23,24,24,25,25,26,26,26,26,27,27,27,27,28,28,28,28,29,29,29,
29,30,30,30,30,31,31,31,31,32,32,32,32,33,33,33,33,34,34,34,34]);
ALF("12_1.U4(3).2_1","2.U4(3).2_1",[1,2,1,2,1,1,2,2,3,4,3,4,5,6,5,6,5,5,6,
6,7,8,7,8,7,7,8,8,9,10,9,10,11,12,11,12,13,14,13,14,13,13,14,14,15,15,16,
17,16,17,16,16,17,17,18,19,18,19,18,18,19,19,20,21,20,21,22,23,22,23,24,
25,24,25,24,24,25,25,26,27,26,27,26,26,27,27,28,29,28,29,28,28,29,29,30,
31,30,31,30,31,30,31,30,31,30,31,32,33,32,33,34,35,34,35,34,34,35,35,36,
37,36,37,38,39,40,41,40,41,42,43,44,43,44,45,46,47,48,49,50,49,50,51,52,
51,52,53,54,53,54,55,56,55,56,57,58,57,58,59,60,59,60,61,62,61,62,63,64,
63,64,65,66,65,66]);
ALF("12_1.U4(3).2_1","4.U4(3).2_1",[1,2,3,4,1,3,4,2,5,6,5,6,7,8,9,10,7,9,
10,8,11,12,13,14,11,13,14,12,15,16,17,18,19,20,21,22,23,24,25,26,23,25,26,
24,27,27,28,29,30,31,28,30,31,29,32,33,34,35,32,34,35,33,36,37,36,37,38,
39,38,39,40,41,42,43,40,42,43,41,44,45,46,47,44,46,47,45,48,49,50,51,48,
50,51,49,52,53,54,55,52,53,54,55,52,53,54,55,56,57,58,59,60,61,62,63,60,
62,63,61,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,
85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,
107,108,109,110,111,112,113,114,115,116,117,118]);
ALF("12_1.U4(3).2_1","3_1.U4(3).2_1",[1,2,2,1,2,1,2,1,3,4,4,3,5,6,6,5,6,5,
6,5,7,8,8,7,8,7,8,7,9,9,9,9,10,10,10,10,11,12,12,11,12,11,12,11,13,14,15,
16,16,15,16,15,16,15,17,18,18,17,18,17,18,17,19,20,20,19,21,22,22,21,23,
24,24,23,24,23,24,23,25,26,26,25,26,25,26,25,27,28,28,27,28,27,28,27,29,
30,31,29,30,31,29,30,31,29,30,31,32,32,32,32,33,34,34,33,34,33,34,33,35,
35,35,35,36,36,37,37,37,37,38,39,39,39,39,40,40,41,41,42,42,42,42,43,43,
43,43,44,44,44,44,45,45,45,45,46,46,46,46,47,47,47,47,48,48,48,48,49,49,
49,49,50,50,50,50]);
ALF("12_1.U4(3).2_1","6_1.U4(3).2_1",[1,2,3,4,3,1,2,4,5,6,7,8,9,10,11,12,
11,9,10,12,13,14,15,16,15,13,14,16,17,18,17,18,19,20,19,20,21,22,23,24,23,
21,22,24,25,26,27,28,29,30,29,27,28,30,31,32,33,34,33,31,32,34,35,36,37,
38,39,40,41,42,43,44,45,46,45,43,44,46,47,48,49,50,49,47,48,50,51,52,53,
54,53,51,52,54,55,56,57,58,59,60,55,56,57,58,59,60,61,62,61,62,63,64,65,
66,65,63,64,66,67,68,67,68,69,70,71,72,71,72,73,74,75,74,75,76,77,78,79,
80,81,80,81,82,83,82,83,84,85,84,85,86,87,86,87,88,89,88,89,90,91,90,91,
92,93,92,93,94,95,94,95,96,97,96,97]);

MOT("12_1.U4(3).2_2",
[
"origin: ATLAS of finite groups, tests: 1.o.r."
],
[78382080,39191040,78382080,39191040,78382080,39191040,78382080,78382080,
78382080,13824,13824,13824,13824,13824,13824,139968,69984,139968,69984,139968,
69984,139968,139968,139968,23328,11664,23328,11664,23328,11664,23328,23328,
23328,7776,3888,7776,648,324,648,2304,1152,2304,1152,2304,1152,2304,2304,2304,
96,96,96,120,60,120,60,120,60,120,120,120,1728,864,1728,864,1728,864,1728,
1728,1728,432,432,432,432,432,432,432,432,432,432,432,432,84,84,84,84,84,84,
84,84,84,84,84,84,96,96,96,96,96,96,648,324,648,324,648,324,648,648,648,648,
324,648,324,648,324,648,648,648,108,108,108,108,288,144,288,144,288,144,288,
288,288,311040,311040,311040,311040,311040,311040,3456,3456,3456,576,576,576,
576,576,576,576,576,576,7776,7776,7776,7776,7776,7776,7776,7776,7776,7776,
7776,7776,1296,1296,1296,1296,1296,1296,648,648,648,648,648,648,144,144,36,36,
48,48,48,60,60,60,60,60,60,144,144,144,144,144,144,72,72,72,72,72,72,108,108,
108,108,108,108,108,108,108,108,108,108],
[,[1,3,5,7,8,9,1,5,8,1,3,5,7,8,9,16,18,20,22,23,24,16,20,23,25,27,29,31,32,33,
25,29,32,34,36,34,37,39,37,10,12,14,10,12,14,10,14,12,13,15,11,52,54,56,58,59,
60,52,56,59,16,18,20,22,23,24,16,20,23,25,27,29,31,32,33,34,36,34,36,34,36,82,
84,86,88,90,92,82,84,86,88,90,92,43,45,41,45,43,41,109,111,113,115,116,117,
109,113,116,100,102,104,106,107,108,100,104,107,118,120,118,120,61,63,65,67,
68,69,61,65,68,7,3,9,7,3,9,1,8,5,10,12,14,13,15,11,13,15,11,22,18,24,22,18,24,
22,18,24,22,18,24,36,36,36,36,36,36,31,27,33,31,27,33,34,34,37,37,40,47,44,58,
54,60,58,54,60,67,63,69,67,63,69,73,75,71,73,75,71,115,111,117,115,111,117,
106,102,108,106,102,108],[1,4,7,4,1,4,7,1,7,10,13,10,13,10,13,1,4,7,4,1,4,7,1,
7,1,4,7,4,1,4,7,1,7,1,4,7,1,4,7,40,43,46,43,40,43,46,40,46,49,49,49,52,55,58,
55,52,55,58,52,58,10,13,10,13,10,13,10,10,10,10,13,10,13,10,13,10,13,10,13,10,
13,82,91,88,85,82,91,88,85,82,91,88,85,94,98,98,94,98,94,23,21,18,21,23,21,18,
23,18,20,17,24,17,20,17,24,20,24,16,19,22,19,40,43,46,43,40,43,46,40,46,131,
134,131,134,131,134,137,137,137,140,140,140,143,146,143,146,143,146,131,134,
131,134,131,134,131,134,131,134,131,134,131,134,131,134,131,134,131,134,131,
134,131,134,137,137,137,137,177,177,177,180,183,180,183,180,183,140,140,140,
140,140,140,143,146,143,146,143,146,151,154,151,154,151,154,159,156,159,156,
159,156],,[1,6,9,4,8,2,7,5,3,10,15,14,13,12,11,16,21,24,19,23,17,22,20,18,25,
30,33,28,32,26,31,29,27,34,35,36,37,38,39,40,45,48,43,47,41,46,44,42,49,51,50,
1,6,9,4,8,2,7,5,3,61,66,69,64,68,62,67,65,63,70,75,74,73,72,71,76,81,80,79,78,
77,82,93,92,91,90,89,88,87,86,85,84,83,94,96,95,99,98,97,109,114,117,112,116,
110,115,113,111,100,105,108,103,107,101,106,104,102,118,121,120,119,122,127,
130,125,129,123,128,126,124,131,136,135,134,133,132,137,139,138,140,142,141,
143,148,147,146,145,144,155,160,159,158,157,156,149,154,153,152,151,150,161,
166,165,164,163,162,167,172,171,170,169,168,173,174,175,176,177,179,178,131,
136,135,134,133,132,189,188,187,186,191,190,192,197,196,195,194,193,204,209,
208,207,206,205,198,203,202,201,200,199],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,
67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,1,2,3,4,5,6,7,2,8,4,9,6,94,95,96,
97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,
117,118,121,120,119,122,123,124,125,126,127,128,129,130,131,132,133,134,135,
136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,
155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,
174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,
193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209]],
0,
[(175,176),(119,121),(83,89)(85,91)(87,93),( 83, 89)( 85, 91)( 87, 93)
(119,121),(  2,  6)(  3,  9)(  5,  8)( 11, 15)( 12, 14)( 17, 21)( 18, 24)
( 20, 23)( 26, 30)( 27, 33)( 29, 32)( 41, 45)( 42, 48)( 44, 47)( 50, 51)
( 53, 57)( 54, 60)( 56, 59)( 62, 66)( 63, 69)( 65, 68)( 71, 75)( 72, 74)
( 77, 81)( 78, 80)( 83, 87)( 84, 92)( 86, 90)( 89, 93)( 95, 96)( 97, 99)
(100,109)(101,114)(102,117)(103,112)(104,116)(105,110)(106,115)(107,113)
(108,111)(119,121)(123,127)(124,130)(126,129)(132,136)(133,135)(138,139)
(141,142)(144,148)(145,147)(149,155)(150,160)(151,159)(152,158)(153,157)
(154,156)(162,166)(163,165)(168,172)(169,171)(178,179)(181,185)(182,184)
(186,189)(187,188)(190,191)(193,197)(194,196)(198,204)(199,209)(200,208)
(201,207)(202,206)(203,205),(  2,  6)(  3,  9)(  5,  8)( 11, 15)( 12, 14)
( 17, 21)( 18, 24)( 20, 23)( 26, 30)( 27, 33)( 29, 32)( 41, 45)( 42, 48)
( 44, 47)( 50, 51)( 53, 57)( 54, 60)( 56, 59)( 62, 66)( 63, 69)( 65, 68)
( 71, 75)( 72, 74)( 77, 81)( 78, 80)( 83, 87)( 84, 92)( 86, 90)( 89, 93)
( 95, 96)( 97, 99)(100,109)(101,114)(102,117)(103,112)(104,116)(105,110)
(106,115)(107,113)(108,111)(123,127)(124,130)(126,129)(132,136)(133,135)
(138,139)(141,142)(144,148)(145,147)(149,155)(150,160)(151,159)(152,158)
(153,157)(154,156)(162,166)(163,165)(168,172)(169,171)(178,179)(181,185)
(182,184)(186,189)(187,188)(190,191)(193,197)(194,196)(198,204)(199,209)
(200,208)(201,207)(202,206)(203,205),(131,134)(132,135)(133,136)(143,146)
(144,147)(145,148)(149,152)(150,153)(151,154)(155,158)(156,159)(157,160)
(161,164)(162,165)(163,166)(167,170)(168,171)(169,172)(173,174)(180,183)
(181,184)(182,185)(186,189)(187,190)(188,191)(192,195)(193,196)(194,197)
(198,201)(199,202)(200,203)(204,207)(205,208)(206,209)],
["ConstructMGA","12_1.U4(3)","6_1.U4(3).2_2",
     [ [ 40, 41 ], [ 42, 43 ], [ 44, 45 ], [ 46, 47 ], [ 48, 49 ],
        [ 50, 53 ], [ 51, 52 ], [ 54, 55 ], [ 56, 57 ], [ 58, 59 ],
        [ 60, 61 ], [ 62, 63 ], [ 64, 67 ], [ 65, 66 ], [ 68, 69 ],
        [ 70, 71 ], [ 134, 136 ], [ 135, 137 ], [ 138, 140 ], [ 139, 141 ],
        [ 142, 144 ], [ 143, 145 ], [ 146, 148 ], [ 147, 149 ], [ 150, 152 ],
        [ 151, 153 ], [ 154, 156 ], [ 155, 157 ], [ 158, 164 ], [ 159, 165 ],
        [ 160, 162 ], [ 161, 163 ], [ 166, 168 ], [ 167, 169 ], [ 170, 172 ],
        [ 171, 173 ], [ 174, 176 ], [ 175, 177 ], [ 178, 180 ], [ 179, 181 ] ]
      , ( 64, 80, 96,112,128,144,160,176, 70, 86,102,118,134,150,166,182, 76,
        92,108,124,140,156,172, 66, 82, 98,114,130,146,162,178, 72, 88,104,
       120,136,152,168,184, 78, 94,110,126,142,158,174, 68, 84,100,116,132,
       148,164,180, 74, 90,106,122,138,154,170)( 65, 81, 97,113,129,145,161,
       177, 71, 87,103,119,135,151,167,183, 77, 93,109,125,141,157,173, 67,
        83, 99,115,131,147,163,179, 73, 89,105,121,137,153,169,185, 79, 95,
       111,127,143,159,175, 69, 85,101,117,133,149,165,181, 75, 91,107,123,
       139,155,171)]);
ALF("12_1.U4(3).2_2","U4(3).2_2",[1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,
3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,7,7,7,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,
9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,13,
13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,15,15,15,15,15,15,15,
15,15,16,16,16,16,16,16,16,16,16,17,17,17,17,18,18,18,18,18,18,18,18,18,
19,19,19,19,19,19,20,20,20,21,21,21,22,22,22,22,22,22,23,23,23,23,23,23,
24,24,24,24,24,24,25,25,25,25,25,25,26,26,26,26,26,26,27,27,28,28,29,29,
29,30,30,30,30,30,30,31,31,31,31,31,31,32,32,32,32,32,32,33,33,33,33,33,
33,34,34,34,34,34,34]);
ALF("12_1.U4(3).2_2","2.U4(3).2_2",[1,2,1,2,1,2,1,1,1,3,4,3,4,3,4,5,6,5,6,
5,6,5,5,5,7,8,7,8,7,8,7,7,7,9,10,9,11,12,11,13,14,13,14,13,14,13,13,13,15,
15,15,16,17,16,17,16,17,16,16,16,18,19,18,19,18,19,18,18,18,20,21,20,21,
20,21,22,23,22,23,22,23,24,25,24,25,24,25,24,25,24,25,24,25,26,26,26,26,
26,26,27,28,27,28,27,28,27,27,27,29,30,29,30,29,30,29,29,29,31,32,31,32,
33,34,33,34,33,34,33,33,33,35,36,35,36,35,36,37,37,37,38,38,38,39,40,39,
40,39,40,41,42,41,42,41,42,43,44,43,44,43,44,45,46,45,46,45,46,47,48,47,
48,47,48,49,50,51,52,53,53,53,54,55,54,55,54,55,56,57,56,57,56,57,58,59,
58,59,58,59,60,61,60,61,60,61,62,63,62,63,62,63]);
ALF("12_1.U4(3).2_2","4.U4(3).2_2",[1,2,3,2,1,2,3,1,3,4,5,4,5,4,5,6,7,8,7,
6,7,8,6,8,9,10,11,10,9,10,11,9,11,12,13,14,15,16,17,18,19,20,19,18,19,20,
18,20,21,21,21,22,23,24,23,22,23,24,22,24,25,26,27,26,25,26,27,25,27,28,
29,28,29,28,29,30,31,30,31,30,31,32,33,34,35,32,33,34,35,32,33,34,35,36,
37,37,36,37,36,38,39,40,39,38,39,40,38,40,41,42,43,42,41,42,43,41,43,44,
45,46,47,48,49,50,49,48,49,50,48,50,51,52,51,52,51,52,53,53,53,54,54,54,
55,56,55,56,55,56,57,58,57,58,57,58,59,60,59,60,59,60,61,62,61,62,61,62,
63,64,63,64,63,64,65,66,67,68,69,69,69,70,71,70,71,70,71,72,73,72,73,72,
73,74,75,74,75,74,75,76,77,76,77,76,77,78,79,78,79,78,79]);
ALF("12_1.U4(3).2_2","3_1.U4(3).2_2",[1,2,3,1,2,3,1,3,2,4,5,6,4,5,6,7,8,9,
7,8,9,7,9,8,10,11,12,10,11,12,10,12,11,13,13,13,14,14,14,15,16,17,15,16,
17,15,17,16,18,19,20,21,22,23,21,22,23,21,23,22,24,25,26,24,25,26,24,26,
25,27,28,29,27,28,29,30,31,32,30,31,32,33,34,35,33,34,35,33,34,35,33,34,
35,36,37,38,37,36,38,39,40,41,39,40,41,39,41,40,42,43,44,42,43,44,42,44,
43,45,45,45,45,46,47,48,46,47,48,46,48,47,49,50,51,49,50,51,52,53,54,55,
56,57,58,59,60,58,59,60,61,62,63,61,62,63,64,65,66,64,65,66,67,68,69,67,
68,69,70,71,72,70,71,72,73,73,74,74,75,76,77,78,79,80,78,79,80,81,82,83,
81,82,83,84,85,86,84,85,86,87,88,89,87,88,89,90,91,92,90,91,92]);
ALF("12_1.U4(3).2_2","6_1.U4(3).2_2",[1,2,3,4,5,6,1,3,5,7,8,9,10,11,12,13,
14,15,16,17,18,13,15,17,19,20,21,22,23,24,19,21,23,25,26,25,27,28,27,29,
30,31,32,33,34,29,31,33,35,36,37,38,39,40,41,42,43,38,40,42,44,45,46,47,
48,49,44,46,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,62,
63,64,65,66,67,68,69,70,69,68,70,71,72,73,74,75,76,71,73,75,77,78,79,80,
81,82,77,79,81,83,84,83,84,85,86,87,88,89,90,85,87,89,91,92,93,94,95,96,
97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,
116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,
134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,
152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169]);
ALF("12_1.U4(3).2_2","6.O7(3)",[1,8,6,7,5,9,4,3,2,13,11,15,10,14,12,16,56,
17,55,16,57,17,16,17,18,59,23,58,22,60,21,20,19,24,61,25,30,78,31,37,44,
42,43,41,45,40,39,38,46,47,48,49,118,54,117,53,119,52,51,50,70,63,69,62,
70,64,69,70,69,74,72,76,71,75,73,77,67,77,66,77,68,87,153,92,152,91,157,
90,156,89,155,88,154,96,97,101,100,99,98,106,169,105,168,104,167,103,102,
107,104,164,103,166,102,165,107,106,105,108,170,109,171,122,131,123,130,
122,132,123,122,123,7,11,9,10,8,12,13,14,15,43,44,45,34,47,36,46,35,48,57,
64,56,63,55,62,56,62,55,64,57,63,61,67,61,66,61,68,58,72,60,71,59,73,65,
77,83,84,93,94,95,117,115,119,114,118,116,131,130,130,132,132,131,127,138,
129,137,128,139,165,174,164,173,166,172,169,172,168,174,167,173],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);

MOT("12_1.U4(3).2_2'",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"constructed using `PossibleCharacterTablesOfTypeMGA'"
],
[78382080,39191040,39191040,39191040,39191040,39191040,78382080,13824,6912,
6912,13824,139968,69984,69984,69984,69984,69984,139968,23328,11664,11664,11664
,11664,11664,23328,7776,3888,7776,648,324,648,2304,1152,1152,1152,1152,1152,
2304,96,48,120,60,60,60,60,60,120,1728,864,864,864,864,864,1728,432,216,216,
432,432,216,216,432,84,84,84,84,84,84,84,84,84,84,84,84,96,96,96,96,96,96,324,
324,324,324,324,324,324,324,324,324,324,324,216,108,216,216,108,216,288,144,
144,144,144,144,288,103680,103680,1152,192,192,192,2592,2592,2592,2592,432,432
,216,216,144,144,36,36,16,20,20,48,48,24,24,36,36,36,36],
[,[1,3,5,7,5,3,1,1,3,5,7,12,14,16,18,16,14,12,19,21,23,25,23,21,19,26,28,26,29
,31,29,8,10,10,8,10,10,8,11,9,41,43,45,47,45,43,41,12,14,16,18,16,14,12,19,21,
23,25,26,28,26,28,63,65,67,69,71,73,63,65,67,69,71,73,35,33,37,37,35,33,81,91,
89,87,85,83,81,91,89,87,85,83,96,98,96,93,95,93,48,50,52,54,52,50,48,7,7,1,8,
11,11,18,18,18,18,25,25,28,28,19,19,29,29,32,47,47,54,54,62,62,98,98,95,95],[1
,4,7,4,1,4,7,8,11,8,11,1,4,7,4,1,4,7,1,4,7,4,1,4,7,1,4,7,1,4,7,32,35,38,35,32,
35,38,39,39,41,44,47,44,41,44,47,8,11,8,11,8,11,8,8,11,8,11,8,11,8,11,63,72,69
,66,63,72,69,66,63,72,69,66,75,79,75,79,79,75,16,13,14,17,16,13,14,17,16,13,14
,17,12,15,18,12,15,18,32,35,38,35,32,35,38,106,107,108,109,110,111,106,107,106
,107,106,107,106,107,108,108,108,108,124,125,126,109,109,110,111,112,113,114,
115],,[1,6,3,4,5,2,7,8,9,10,11,12,17,14,15,16,13,18,19,24,21,22,23,20,25,26,27
,28,29,30,31,32,37,34,35,36,33,38,39,40,1,6,3,4,5,2,7,48,53,50,51,52,49,54,55,
56,57,58,59,60,61,62,63,70,65,72,67,74,69,64,71,66,73,68,75,78,80,76,79,77,81,
88,83,90,85,92,87,82,89,84,91,86,96,97,98,93,94,95,99,104,101,102,103,100,105,
106,107,108,109,110,111,114,115,112,113,116,117,118,119,120,121,122,123,124,
106,107,128,127,129,130,133,134,131,132],,[1,6,3,4,5,2,7,8,9,10,11,12,17,14,15
,16,13,18,19,24,21,22,23,20,25,26,27,28,29,30,31,32,37,34,35,36,33,38,39,40,41
,46,43,44,45,42,47,48,53,50,51,52,49,54,55,56,57,58,59,60,61,62,1,6,3,4,5,2,7,
2,5,4,3,6,75,78,80,76,79,77,81,88,83,90,85,92,87,82,89,84,91,86,93,94,95,96,97
,98,99,104,101,102,103,100,105,106,107,108,109,110,111,112,113,114,115,116,117
,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134]],
0,
[(122,123),(64,74)(65,73)(66,72)(67,71)(68,70),(93,96)(94,97)(95,98)(106,107)(
110,111)(112,115)(113,114)(116,117)(118,119)(120,121)(125,126)(129,130)(131,
134)(132,133),(93,96)(94,97)(95,98)(112,114)(113,115)(127,128)(131,133)(132,
134),(2,6)(13,17)(20,24)(33,37)(42,46)(49,53)(64,68)(65,73)(67,71)(70,74)(76,
78)(77,80)(82,88)(84,90)(86,92)(93,96)(94,97)(95,98)(100,104)(106,107)(110,111
)(112,115)(113,114)(116,117)(118,119)(120,121)(125,126)(129,130)(131,134)(132,
133)],
["ConstructMGA","12_1.U4(3)","2.U4(3).2_2'",[[40,41],[42,43],[44,45],[46,49],[
47,48],[50,51],[52,53],[54,55],[56,57],[58,59],[60,61],[62,63],[64,67],[65,66]
,[68,69],[70,71],[72,73],[74,75],[76,77],[78,79],[80,81],[82,83],[84,85],[86,
87],[88,91],[89,90],[92,93],[94,95],[96,97],[98,99],[100,101],[102,103],[104,
105],[106,107],[108,109],[110,111],[112,113],[114,117],[115,116],[118,119],[
120,121],[122,123],[124,125],[126,129],[127,128],[130,131],[132,133],[134,137]
,[135,136],[138,141],[139,140],[142,145],[143,144],[146,149],[147,148],[150,
153],[151,152],[154,157],[155,156],[158,165],[159,164],[160,163],[161,162],[
166,169],[167,168],[170,173],[171,172],[174,177],[175,176],[178,181],[179,180]
],()]);
ALF("12_1.U4(3).2_2'","U4(3).2_2'",[1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,
4,4,4,4,4,4,5,5,5,6,6,6,7,7,7,7,7,7,7,8,8,9,9,9,9,9,9,9,10,10,10,10,10,10,
10,11,11,11,11,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,
14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,17,17,17,18,18,18,
18,18,18,18,19,19,20,21,22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,30,
30,31,31,32,32,33,33,34,34]);
ALF("12_1.U4(3).2_2'","2.U4(3).2_2'",[1,2,1,2,1,2,1,3,4,3,4,5,6,5,6,5,6,5,
7,8,7,8,7,8,7,9,10,9,11,12,11,13,14,13,14,13,14,13,15,15,16,17,16,17,16,
17,16,18,19,18,19,18,19,18,20,21,20,21,22,23,22,23,24,25,24,25,24,25,24,
25,24,25,24,25,26,26,26,26,26,26,27,28,27,28,27,28,27,28,27,28,27,28,29,
30,29,31,32,31,33,34,33,34,33,34,33,35,36,37,38,39,40,41,42,43,44,45,46,
47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63]);
ALF("12_1.U4(3).2_2'","4.U4(3).2_2",[1,2,3,2,1,2,3,4,5,4,5,6,7,8,7,6,7,8,
12,13,14,13,12,13,14,9,10,11,15,16,17,18,19,20,19,18,19,20,21,21,22,23,24,
23,22,23,24,25,26,27,26,25,26,27,30,31,30,31,28,29,28,29,32,33,34,35,32,
33,34,35,32,33,34,35,36,37,36,37,37,36,44,45,46,47,44,45,46,47,44,45,46,
47,38,39,40,41,42,43,48,49,50,49,48,49,50,51,52,53,54,55,56,57,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79]);
ALF("12_1.U4(3).2_2'","3_1.U4(3).2_2'",[1,2,2,1,2,2,1,3,4,4,3,5,6,6,5,6,6,
5,7,8,8,7,8,8,7,9,9,9,10,10,10,11,12,12,11,12,12,11,13,14,15,16,16,15,16,
16,15,17,18,18,17,18,18,17,19,20,20,19,21,22,22,21,23,24,25,23,24,25,23,
24,25,23,24,25,26,27,27,27,26,27,28,29,30,28,29,30,28,29,30,28,29,30,31,
31,31,32,32,32,33,34,34,33,34,34,33,35,35,36,37,38,38,39,39,40,40,41,41,
42,42,43,43,44,44,45,46,46,47,47,48,48,49,49,50,50]);
ALF("12_1.U4(3).2_2'","6_1.U4(3).2_2'",[1,2,3,4,3,2,1,5,6,7,8,9,10,11,12,
11,10,9,13,14,15,16,15,14,13,17,18,17,19,20,19,21,22,23,24,23,22,21,25,26,
27,28,29,30,29,28,27,31,32,33,34,33,32,31,35,36,37,38,39,40,41,42,43,44,
45,46,47,48,43,44,45,46,47,48,49,50,51,51,49,50,52,53,54,55,56,57,52,53,
54,55,56,57,58,59,58,60,61,60,62,63,64,65,64,63,62,66,67,68,69,70,71,72,
73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94]);

MOT("12_2.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3]\n",
"3rd power map determined only up to matrix automorphisms\n",
"(138,142)(139,143)(140,144)(141,145), (130,134)(131,135)(132,136)(133,137)"
],
[39191040,39191040,39191040,39191040,39191040,39191040,39191040,39191040,
39191040,39191040,39191040,39191040,6912,6912,6912,6912,6912,6912,69984,69984,
69984,69984,69984,69984,69984,69984,69984,69984,69984,69984,3888,3888,3888,
3888,3888,3888,3888,3888,324,324,324,324,1152,1152,1152,1152,1152,1152,1152,
1152,1152,1152,1152,1152,48,48,48,60,60,60,60,60,60,60,60,60,60,60,60,864,864,
864,864,864,864,864,864,864,864,864,864,216,216,216,216,216,216,216,216,216,
216,216,216,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,
84,84,96,96,96,96,96,96,96,96,96,96,96,96,108,108,108,108,108,108,108,108,108,
108,108,108,108,108,108,108,144,144,144,144,144,144,144,144,144,144,144,144],
[,[1,3,5,7,9,11,1,3,5,7,9,11,1,3,5,7,9,11,19,21,23,25,27,29,19,21,23,25,27,29,
31,33,31,33,35,37,35,37,39,41,39,41,13,15,17,13,15,17,13,15,17,13,15,17,16,18,
14,58,60,62,64,66,68,58,60,62,64,66,68,19,21,23,25,27,29,19,21,23,25,27,29,31,
33,31,33,31,33,35,37,35,37,35,37,94,96,98,100,102,104,94,96,98,100,102,104,
106,108,110,112,114,116,106,108,110,112,114,116,52,54,44,46,48,50,52,54,44,46,
48,50,134,136,134,136,130,132,130,132,142,144,142,144,138,140,138,140,70,72,
74,76,78,80,70,72,74,76,78,80],[1,4,7,10,1,4,7,10,1,4,7,10,13,16,13,16,13,16,
1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,10,43,46,49,52,43,46,49,52,
43,46,49,52,55,55,55,58,61,64,67,58,61,64,67,58,61,64,67,13,16,13,16,13,16,13,
16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,106,109,112,115,106,109,
112,115,106,109,112,115,94,97,100,103,94,97,100,103,94,97,100,103,121,124,127,
118,121,124,127,118,121,124,127,118,27,30,21,24,23,26,29,20,27,30,21,24,23,26,
29,20,43,46,49,52,43,46,49,52,43,46,49,52],,[1,6,11,4,9,2,7,12,5,10,3,8,13,18,
17,16,15,14,19,24,29,22,27,20,25,30,23,28,21,26,31,32,33,34,35,36,37,38,39,40,
41,42,43,48,53,46,51,44,49,54,47,52,45,50,55,57,56,1,6,11,4,9,2,7,12,5,10,3,8,
70,75,80,73,78,71,76,81,74,79,72,77,82,87,86,85,84,83,88,93,92,91,90,89,106,
111,116,109,114,107,112,117,110,115,108,113,94,99,104,97,102,95,100,105,98,
103,96,101,118,123,128,121,126,119,124,129,122,127,120,125,134,135,136,137,
130,131,132,133,142,143,144,145,138,139,140,141,146,151,156,149,154,147,152,
157,150,155,148,153],,[1,8,3,10,5,12,7,2,9,4,11,6,13,14,15,16,17,18,19,26,21,
28,23,30,25,20,27,22,29,24,31,34,33,32,35,38,37,36,39,42,41,40,43,50,45,52,47,
54,49,44,51,46,53,48,55,56,57,58,65,60,67,62,69,64,59,66,61,68,63,70,77,72,79,
74,81,76,71,78,73,80,75,82,83,84,85,86,87,88,89,90,91,92,93,1,8,3,10,5,12,7,2,
9,4,11,6,1,8,3,10,5,12,7,2,9,4,11,6,121,128,123,118,125,120,127,122,129,124,
119,126,130,133,132,131,134,137,136,135,138,141,140,139,142,145,144,143,146,
153,148,155,150,157,152,147,154,149,156,151]],
0,
[( 94,106)( 95,107)( 96,108)( 97,109)( 98,110)( 99,111)(100,112)(101,113)
(102,114)(103,115)(104,116)(105,117),(  2,  6)(  3, 11)(  5,  9)(  8, 12)
( 14, 18)( 15, 17)( 20, 24)( 21, 29)( 23, 27)( 26, 30)( 44, 48)( 45, 53)
( 47, 51)( 50, 54)( 56, 57)( 59, 63)( 60, 68)( 62, 66)( 65, 69)( 71, 75)
( 72, 80)( 74, 78)( 77, 81)( 83, 87)( 84, 86)( 89, 93)( 90, 92)( 95, 99)
( 96,104)( 98,102)(101,105)(107,111)(108,116)(110,114)(113,117)(119,123)
(120,128)(122,126)(125,129)(130,134)(131,135)(132,136)(133,137)(138,142)
(139,143)(140,144)(141,145)(147,151)(148,156)(150,154)(153,157),(  2,  8)
(  4, 10)(  6, 12)( 20, 26)( 22, 28)( 24, 30)( 32, 34)( 36, 38)( 40, 42)
( 44, 50)( 46, 52)( 48, 54)( 59, 65)( 61, 67)( 63, 69)( 71, 77)( 73, 79)
( 75, 81)( 95,101)( 97,103)( 99,105)(107,113)(109,115)(111,117)(118,121)
(119,128)(120,123)(122,125)(124,127)(126,129)(131,133)(135,137)(139,141)
(143,145)(147,153)(149,155)(151,157),( 31, 35)( 32, 36)( 33, 37)( 34, 38)
( 82, 88)( 83, 89)( 84, 90)( 85, 91)( 86, 92)( 87, 93)(130,138)(131,139)
(132,140)(133,141)(134,142)(135,143)(136,144)(137,145)],
["ConstructProj",[["U4(3)",[]],["2.U4(3)",[]],["3_2.U4(3)",[-1,-13,-13,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1]],["4.U4(3)",[-1,-1,-1,7,7,7,7,-1,-1,-1,-1,-1,15,15,
-1,-1]],,["6_2.U4(3)",[-1,-1,-1,-7,-7,-13,-13,-1,-1,-1,-1,
-1]],,,,,,["12_2.U4(3)",[[-7,7,-1],[-7,7,-1],[-55,-377,-433],[-55,-377,-433],[
-7,7,-1],[-7,7,-1],[-7,7,-1],[-7,7,-1],[-7,7,-1]]]]]);
ALF("12_2.U4(3)","U4(3)",[1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,
3,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,9,9,9,9,
9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,
12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,
14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,17,17,17,
17,18,18,18,18,19,19,19,19,20,20,20,20,20,20,20,20,20,20,20,20]);
ALF("12_2.U4(3)","2.U4(3)",[1,2,1,2,1,2,1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,5,
6,5,6,5,6,5,6,7,8,7,8,9,10,9,10,11,12,11,12,13,14,13,14,13,14,13,14,13,14,
13,14,15,15,15,16,17,16,17,16,17,16,17,16,17,16,17,18,19,18,19,18,19,18,
19,18,19,18,19,20,21,20,21,20,21,22,23,22,23,22,23,24,25,24,25,24,25,24,
25,24,25,24,25,26,27,26,27,26,27,26,27,26,27,26,27,28,29,28,29,28,29,28,
29,28,29,28,29,30,31,30,31,32,33,32,33,34,35,34,35,36,37,36,37,38,39,38,
39,38,39,38,39,38,39,38,39]);
ALF("12_2.U4(3)","4.U4(3)",[1,2,3,4,1,2,3,4,1,2,3,4,5,6,5,6,5,6,7,8,9,10,
7,8,9,10,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,23,24,
25,26,23,24,25,26,27,27,27,28,29,30,31,28,29,30,31,28,29,30,31,32,33,34,
35,32,33,34,35,32,33,34,35,36,37,36,37,36,37,38,39,38,39,38,39,40,41,42,
43,40,41,42,43,40,41,42,43,44,45,46,47,44,45,46,47,44,45,46,47,48,49,50,
51,48,49,50,51,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,
67,68,69,70,71,68,69,70,71,68,69,70,71]);
ALF("12_2.U4(3)","3_2.U4(3)",[1,2,3,1,2,3,1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,
8,9,7,8,9,7,8,9,10,10,10,10,11,11,11,11,12,12,12,12,13,14,15,13,14,15,13,
14,15,13,14,15,16,17,18,19,20,21,19,20,21,19,20,21,19,20,21,22,23,24,22,
23,24,22,23,24,22,23,24,25,26,27,25,26,27,28,29,30,28,29,30,31,32,33,31,
32,33,31,32,33,31,32,33,34,35,36,34,35,36,34,35,36,34,35,36,37,38,39,37,
38,39,37,38,39,37,38,39,40,40,40,40,41,41,41,41,42,42,42,42,43,43,43,43,
44,45,46,44,45,46,44,45,46,44,45,46]);
ALF("12_2.U4(3)","6_2.U4(3)",[1,2,3,4,5,6,1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,13,14,15,16,17,18,19,20,19,20,21,22,21,22,23,24,23,24,25,
26,27,28,29,30,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,34,35,36,37,
38,39,40,41,42,43,44,45,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,
56,57,58,59,60,61,62,63,58,59,60,61,62,63,64,65,66,67,68,69,64,65,66,67,
68,69,70,71,72,73,74,75,70,71,72,73,74,75,76,77,76,77,78,79,78,79,80,81,
80,81,82,83,82,83,84,85,86,87,88,89,84,85,86,87,88,89]);
ALF("12_2.U4(3)","12_2.U4(3).2_1",[1,2,3,4,5,2,6,7,5,8,3,7,9,10,11,12,11,
10,13,14,15,16,17,14,18,19,17,20,15,19,21,22,23,24,25,26,27,28,29,30,31,
32,33,34,35,36,37,34,38,39,37,40,35,39,41,42,42,43,44,45,46,47,44,48,49,
47,50,45,49,51,52,53,54,55,52,56,57,55,58,53,57,59,60,61,62,61,60,63,64,
65,66,65,64,67,68,69,70,71,68,72,73,71,74,69,73,75,76,77,78,79,76,80,81,
79,82,77,81,83,84,85,86,87,84,88,89,87,90,85,89,91,92,93,94,91,92,93,94,
95,96,97,98,95,96,97,98,99,100,101,102,103,100,104,105,103,106,101,105],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("12_2.U4(3)","12_2.U4(3).2_3",[1,2,3,4,5,6,7,2,8,4,9,6,10,11,12,13,14,
15,16,17,18,19,20,21,22,17,23,19,24,21,25,26,27,28,25,28,27,26,29,30,31,
30,32,33,34,35,36,37,38,33,39,35,40,37,41,42,43,44,45,46,47,48,49,50,45,
51,47,52,49,53,54,55,56,57,58,59,54,60,56,61,58,62,63,64,65,66,67,62,63,
64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,68,75,70,77,72,79,74,69,
76,71,78,73,80,81,82,80,83,82,84,83,85,84,81,85,86,87,88,89,90,91,92,93,
86,89,88,87,90,93,92,91,94,95,96,97,98,99,100,95,101,97,102,99],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("12_2.U4(3)","12_2.U4(3).2_3'",[1,2,3,4,5,6,7,6,5,4,3,2,8,9,10,11,10,
9,12,13,14,15,16,17,18,17,16,15,14,13,19,20,21,22,19,22,21,20,23,24,25,24,
26,27,28,29,30,31,32,31,30,29,28,27,33,34,34,35,36,37,38,39,40,41,40,39,
38,37,36,42,43,44,45,46,47,48,47,46,45,44,43,49,50,51,52,53,54,49,54,53,
52,51,50,55,56,57,58,59,60,61,62,63,64,65,66,55,66,65,64,63,62,61,60,59,
58,57,56,67,68,68,67,69,70,71,72,72,71,70,69,73,74,75,76,77,78,79,80,77,
80,79,78,73,76,75,74,81,82,83,84,85,86,87,86,85,84,83,82]);

MOT("12_2.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r."
],
[78382080,39191040,39191040,78382080,39191040,78382080,39191040,78382080,
13824,6912,6912,13824,139968,69984,69984,139968,69984,139968,69984,139968,
7776,7776,7776,7776,7776,7776,7776,7776,648,648,648,648,2304,1152,1152,2304,
1152,2304,1152,2304,96,48,120,60,60,120,60,120,60,120,1728,864,864,1728,864,
1728,864,1728,432,216,216,432,432,216,216,432,168,84,84,168,84,168,84,168,168,
84,84,168,84,168,84,168,192,96,96,192,96,192,96,192,108,108,108,108,108,108,
108,108,288,144,144,288,144,288,144,288,48384,48384,48384,48384,2880,2880,
4608,4608,4608,4608,128,864,864,864,864,72,72,72,72,72,72,72,72,64,64,64,64,
40,40,40,40,576,576,576,576,576,576,576,576,144,144,144,144,144,144,144,144,
56,56,56,56,56,56,56,56],
[,[1,3,5,6,5,1,3,6,1,3,5,6,13,15,17,18,17,13,15,18,21,23,21,23,25,27,25,27,29,
31,29,31,9,11,11,9,11,9,11,9,12,10,43,45,47,48,47,43,45,48,13,15,17,18,17,13,
15,18,21,23,21,23,25,27,25,27,67,69,71,72,71,67,69,72,75,77,79,80,79,75,77,80,
40,39,34,36,34,40,39,36,91,93,91,93,95,97,95,97,51,53,55,56,55,51,53,56,1,6,1,
6,8,4,9,9,9,9,9,13,18,13,18,22,24,26,28,29,31,29,31,36,40,36,40,50,46,50,46,
51,56,51,56,56,51,56,51,59,59,59,59,63,63,63,63,67,72,67,72,75,80,75,80],[1,4,
6,8,1,6,8,4,9,12,9,12,1,4,6,8,1,6,8,4,1,4,6,8,1,4,6,8,1,4,6,8,33,36,38,40,33,
38,40,36,41,41,43,46,48,50,43,48,50,46,9,12,9,12,9,9,12,12,9,12,9,12,9,12,9,
12,75,78,80,82,75,80,82,78,67,70,72,74,67,72,74,70,86,88,90,83,86,90,83,88,17,
19,15,14,17,19,15,14,33,36,38,40,33,38,40,36,107,110,109,108,112,111,116,115,
114,113,117,107,110,109,108,112,111,112,111,107,110,109,108,133,132,131,130,
137,136,135,134,116,115,114,113,116,115,114,113,116,115,114,113,116,115,114,
113,158,161,160,159,154,157,156,155],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,
1,2,3,4,5,6,7,8,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,75,76,77,78,
79,80,81,82,67,68,69,70,71,72,73,74,83,84,85,86,87,88,89,90,91,92,93,94,95,96,
97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,
117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,111,112,
111,112,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,158,
159,160,161,154,155,156,157],,[1,7,3,8,5,6,2,4,9,10,11,12,13,19,15,20,17,18,
14,16,21,24,23,22,25,28,27,26,29,32,31,30,33,39,35,40,37,38,34,36,41,42,43,49,
45,50,47,48,44,46,51,57,53,58,55,56,52,54,59,60,61,62,63,64,65,66,1,7,3,8,5,6,
2,4,1,7,3,8,5,6,2,4,86,85,84,83,89,90,87,88,91,94,93,92,95,98,97,96,99,105,
101,106,103,104,100,102,107,110,109,108,112,111,116,115,114,113,117,118,121,
120,119,123,122,125,124,126,129,128,127,133,132,131,130,135,134,137,136,145,
144,143,142,141,140,139,138,149,148,147,146,153,152,151,150,107,110,109,108,
107,110,109,108]],
0,
[(134,136)(135,137),( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)( 72, 80)
( 73, 81)( 74, 82)(154,158)(155,159)(156,160)(157,161),(  2,  7)(  4,  8)
( 14, 19)( 16, 20)( 22, 24)( 26, 28)( 30, 32)( 34, 39)( 36, 40)( 44, 49)
( 46, 50)( 52, 57)( 54, 58)( 68, 73)( 70, 74)( 76, 81)( 78, 82)( 83, 86)
( 84, 85)( 87, 89)( 88, 90)( 92, 94)( 96, 98)(100,105)(102,106)(108,110)
(111,112)(113,116)(114,115)(119,121)(122,123)(124,125)(127,129)(130,133)
(131,132)(134,135)(136,137)(138,145)(139,144)(140,143)(141,142)(146,149)
(147,148)(150,153)(151,152)(155,157)(159,161),(  2,  7)(  4,  8)( 14, 19)
( 16, 20)( 22, 24)( 26, 28)( 30, 32)( 34, 39)( 36, 40)( 44, 49)( 46, 50)
( 52, 57)( 54, 58)( 68, 73)( 70, 74)( 76, 81)( 78, 82)( 83, 86)( 84, 85)
( 87, 89)( 88, 90)( 92, 94)( 96, 98)(100,105)(102,106)(108,110)(111,112)
(113,116)(114,115)(119,121)(122,123)(124,125)(127,129)(130,133)(131,132)
(134,137)(135,136)(138,145)(139,144)(140,143)(141,142)(146,149)(147,148)
(150,153)(151,152)(155,157)(159,161),(107,109)(108,110)(113,115)(114,116)
(118,120)(119,121)(126,128)(127,129)(130,132)(131,133)(138,140)(139,141)
(142,144)(143,145)(146,148)(147,149)(150,152)(151,153)(154,156)(155,157)
(158,160)(159,161),( 21, 25)( 22, 26)( 23, 27)( 24, 28)( 59, 63)( 60, 64)
( 61, 65)( 62, 66)( 91, 95)( 92, 96)( 93, 97)( 94, 98)(122,124)(123,125)
(146,150)(147,151)(148,152)(149,153)],
["ConstructMGA","12_2.U4(3)","4.U4(3).2_1",
     [ [ 72, 73 ], [ 74, 75 ], [ 76, 77 ], [ 78, 79 ], [ 80, 81 ],
        [ 82, 83 ], [ 84, 85 ], [ 86, 87 ], [ 88, 89 ], [ 90, 91 ],
        [ 92, 93 ], [ 94, 95 ], [ 96, 97 ], [ 98, 99 ], [ 100, 101 ],
        [ 102, 103 ], [ 104, 105 ], [ 106, 107 ], [ 108, 109 ], [ 110, 111 ],
        [ 112, 113 ], [ 114, 115 ], [ 116, 117 ], [ 118, 119 ], [ 120, 121 ],
        [ 122, 123 ], [ 124, 125 ], [ 126, 127 ], [ 128, 129 ], [ 130, 131 ],
        [ 132, 133 ], [ 134, 135 ], [ 136, 137 ], [ 138, 139 ], [ 140, 141 ],
        [ 142, 143 ], [ 144, 145 ], [ 146, 147 ], [ 148, 149 ], [ 150, 151 ],
        [ 152, 153 ], [ 154, 155 ], [ 156, 157 ] ], ()]);
ALF("12_2.U4(3).2_1","U4(3).2_1",[1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,
4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,8,8,9,9,9,9,9,9,9,9,10,10,10,10,
10,10,10,10,11,11,11,11,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,
14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,17,17,17,17,18,18,18,18,
18,18,18,18,19,19,19,19,20,20,21,21,21,21,22,23,23,23,23,24,24,25,25,26,
26,26,26,27,27,27,27,28,28,28,28,29,29,29,29,30,30,30,30,31,31,31,31,32,
32,32,32,33,33,33,33,34,34,34,34]);
ALF("12_2.U4(3).2_1","2.U4(3).2_1",[1,2,1,2,1,1,2,2,3,4,3,4,5,6,5,6,5,5,6,
6,7,8,7,8,9,10,9,10,11,12,11,12,13,14,13,14,13,13,14,14,15,15,16,17,16,17,
16,16,17,17,18,19,18,19,18,18,19,19,20,21,20,21,22,23,22,23,24,25,24,25,
24,24,25,25,26,27,26,27,26,26,27,27,28,29,28,29,28,28,29,29,30,31,30,31,
32,33,32,33,34,35,34,35,34,34,35,35,36,37,36,37,38,39,40,41,40,41,42,43,
44,43,44,45,46,47,48,49,50,49,50,51,52,51,52,53,54,53,54,55,56,55,56,57,
58,57,58,59,60,59,60,61,62,61,62,63,64,63,64,65,66,65,66]);
ALF("12_2.U4(3).2_1","4.U4(3).2_1",[1,2,3,4,1,3,4,2,5,6,5,6,7,8,9,10,7,9,
10,8,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,23,25,26,24,27,27,28,
29,30,31,28,30,31,29,32,33,34,35,32,34,35,33,36,37,36,37,38,39,38,39,40,
41,42,43,40,42,43,41,44,45,46,47,44,46,47,45,48,49,50,51,48,50,51,49,52,
53,54,55,56,57,58,59,60,61,62,63,60,62,63,61,64,65,66,67,68,69,70,71,72,
73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,
97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,
116,117,118]);
ALF("12_2.U4(3).2_1","3_2.U4(3).2_1",[1,2,2,1,2,1,2,1,3,4,4,3,5,6,6,5,6,5,
6,5,7,7,7,7,8,8,8,8,9,9,9,9,10,11,11,10,11,10,11,10,12,13,14,15,15,14,15,
14,15,14,16,17,17,16,17,16,17,16,18,19,19,18,20,21,21,20,22,23,23,22,23,
22,23,22,24,25,25,24,25,24,25,24,26,27,27,26,27,26,27,26,28,28,28,28,29,
29,29,29,30,31,31,30,31,30,31,30,32,32,32,32,33,33,34,34,34,34,35,36,36,
36,36,37,37,38,38,39,39,39,39,40,40,40,40,41,41,41,41,42,42,42,42,43,43,
43,43,44,44,44,44,45,45,45,45,46,46,46,46,47,47,47,47]);
ALF("12_2.U4(3).2_1","6_2.U4(3).2_1",[1,2,3,4,3,1,2,4,5,6,7,8,9,10,11,12,
11,9,10,12,13,14,13,14,15,16,15,16,17,18,17,18,19,20,21,22,21,19,20,22,23,
24,25,26,27,28,27,25,26,28,29,30,31,32,31,29,30,32,33,34,35,36,37,38,39,
40,41,42,43,44,43,41,42,44,45,46,47,48,47,45,46,48,49,50,51,52,51,49,50,
52,53,54,53,54,55,56,55,56,57,58,59,60,59,57,58,60,61,62,61,62,63,64,65,
66,65,66,67,68,69,68,69,70,71,72,73,74,75,74,75,76,77,76,77,78,79,78,79,
80,81,80,81,82,83,82,83,84,85,84,85,86,87,86,87,88,89,88,89,90,91,90,91]);

MOT("12_2.U4(3).2_3",
[
"origin: ATLAS of finite groups, tests: 1.o.r.,\n",
"3rd power map determined only up to matrix automorphism\n",
"(86,90)(88,92)(87,91)(89,93)"
],
[78382080,39191040,78382080,39191040,78382080,39191040,78382080,78382080,
78382080,13824,13824,13824,13824,13824,13824,139968,69984,139968,69984,139968,
69984,139968,139968,139968,3888,3888,3888,3888,648,324,648,2304,1152,2304,
1152,2304,1152,2304,2304,2304,96,96,96,120,60,120,60,120,60,120,120,120,1728,
864,1728,864,1728,864,1728,1728,1728,216,216,216,216,216,216,84,84,84,84,84,
84,84,84,84,84,84,84,96,96,96,96,96,96,108,108,108,108,108,108,108,108,288,
144,288,144,288,144,288,288,288,4320,4320,4320,288,288,288,36,36,576,576,576,
576,576,576,96,96,96,48,48,48,48,48,48,60,60,60,60,60,60,72,72,72,72,72,72,
144,144,144,144,144,144,144,144,144,144,144,144],
[,[1,3,5,7,8,9,1,5,8,1,3,5,7,8,9,16,18,20,22,23,24,16,20,23,25,27,25,27,29,31,
29,10,12,14,10,12,14,10,14,12,13,15,11,44,46,48,50,51,52,44,48,51,16,18,20,22,
23,24,16,20,23,25,27,25,27,25,27,68,70,72,74,76,78,68,70,72,74,76,78,35,37,33,
37,35,33,90,92,90,92,86,88,86,88,53,55,57,59,60,61,53,57,60,1,8,5,10,12,14,29,
29,38,34,40,38,34,40,32,39,36,41,43,42,41,43,42,44,51,48,44,51,48,59,55,61,59,
55,61,100,96,102,100,96,102,100,96,102,100,96,102],[1,4,7,4,1,4,7,1,7,10,13,
10,13,10,13,1,4,7,4,1,4,7,1,7,1,4,7,4,1,4,7,32,35,38,35,32,35,38,32,38,41,41,
41,44,47,50,47,44,47,50,44,50,10,13,10,13,10,13,10,10,10,10,13,10,13,10,13,68,
77,74,71,68,77,74,71,68,77,74,71,80,84,84,80,84,80,23,21,18,21,20,17,24,17,32,
35,38,35,32,35,38,32,38,103,103,103,106,106,106,103,103,114,111,114,111,114,
111,117,117,117,123,120,123,120,123,120,129,126,129,126,129,126,106,106,106,
106,106,106,114,111,114,111,114,111,114,111,114,111,114,111],,[1,6,9,4,8,2,7,
5,3,10,15,14,13,12,11,16,21,24,19,23,17,22,20,18,25,26,27,28,29,30,31,32,37,
40,35,39,33,38,36,34,41,43,42,1,6,9,4,8,2,7,5,3,53,58,61,56,60,54,59,57,55,62,
67,66,65,64,63,68,79,78,77,76,75,74,73,72,71,70,69,80,82,81,85,84,83,90,91,92,
93,86,87,88,89,94,99,102,97,101,95,100,98,96,103,105,104,106,108,107,109,110,
114,113,112,111,116,115,117,119,118,123,122,121,120,125,124,103,105,104,103,
105,104,135,134,133,132,137,136,141,140,139,138,143,142,147,146,145,144,149,
148],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,28,
27,26,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,1,2,3,4,5,6,7,2,8,4,9,6,80,81,82,
83,84,85,86,89,88,87,90,93,92,91,94,95,96,97,98,99,100,101,102,103,104,105,
106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,
125,129,130,131,126,127,128,132,133,134,135,136,137,138,139,140,141,142,143,
144,145,146,147,148,149]],
0,
[(126,129)(127,130)(128,131),(109,110),(69,75)(71,77)(73,79),(26,28)(87,89)
(91,93),(26,28)(69,75)(71,77)(73,79)(87,89)(91,93),( 26, 28)( 69, 75)( 71, 77)
( 73, 79)( 87, 89)( 91, 93)(111,114)(112,115)(113,116)(120,123)(121,124)
(122,125)(138,147)(139,148)(140,149)(141,144)(142,145)(143,146),(  2,  6)
(  3,  9)(  5,  8)( 11, 15)( 12, 14)( 17, 21)( 18, 24)( 20, 23)( 33, 37)
( 34, 40)( 36, 39)( 42, 43)( 45, 49)( 46, 52)( 48, 51)( 54, 58)( 55, 61)
( 57, 60)( 63, 67)( 64, 66)( 69, 73)( 70, 78)( 72, 76)( 75, 79)( 81, 82)
( 83, 85)( 86, 90)( 87, 91)( 88, 92)( 89, 93)( 95, 99)( 96,102)( 98,101)
(104,105)(107,108)(112,116)(113,115)(118,119)(121,125)(122,124)(127,131)
(128,130)(132,135)(133,134)(136,137)(138,144)(139,149)(140,148)(141,147)
(142,146)(143,145),(111,114)(112,115)(113,116)(120,123)(121,124)(122,125)
(138,147)(139,148)(140,149)(141,144)(142,145)(143,146),(111,114)(112,115)
(113,116)(120,123)(121,124)(122,125)(132,135)(133,136)(134,137)(138,141)
(139,142)(140,143)(144,147)(145,148)(146,149)],
["ConstructMGA","12_2.U4(3)","6_2.U4(3).2_3",
     [ [ 40, 41 ], [ 42, 43 ], [ 44, 45 ], [ 46, 51 ], [ 47, 50 ],
        [ 48, 53 ], [ 49, 52 ], [ 54, 55 ], [ 56, 59 ], [ 57, 58 ],
        [ 60, 61 ], [ 62, 63 ], [ 64, 67 ], [ 65, 66 ], [ 68, 69 ],
        [ 70, 71 ], [ 122, 124 ], [ 123, 125 ], [ 126, 128 ], [ 127, 129 ],
        [ 130, 136 ], [ 131, 137 ], [ 132, 134 ], [ 133, 135 ], [ 138, 140 ],
        [ 139, 141 ], [ 142, 144 ], [ 143, 145 ], [ 146, 148 ], [ 147, 149 ],
        [ 150, 152 ], [ 151, 153 ], [ 154, 156 ], [ 155, 157 ] ],
     ( 46, 62, 78, 94,110,126, 56, 72, 88,104,120, 50, 66, 82, 98,114,130, 60,
       76, 92,108,124, 54, 70, 86,102,118, 48, 64, 80, 96,112,128, 58, 74, 90,
       106,122, 52, 68, 84,100,116)( 47, 63, 79, 95,111,127, 57, 73, 89,105,
       121, 51, 67, 83, 99,115,131, 61, 77, 93,109,125, 55, 71, 87,103,119,
        49, 65, 81, 97,113,129, 59, 75, 91,107,123, 53, 69, 85,101,117)]);
ALF("12_2.U4(3).2_3","U4(3).2_3",[1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,
3,3,3,3,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,
9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,
12,12,13,13,13,13,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,17,17,
17,18,18,19,19,19,19,19,19,20,20,20,21,21,21,21,21,21,22,22,22,22,22,22,
23,23,23,23,23,23,24,24,24,24,24,24,25,25,25,25,25,25]);
ALF("12_2.U4(3).2_3","2.U4(3).2_3",[1,2,1,2,1,2,1,1,1,3,4,3,4,3,4,5,6,5,6,
5,6,5,5,5,7,8,7,8,9,10,9,11,12,11,12,11,12,11,11,11,13,13,13,14,15,14,15,
14,15,14,14,14,16,17,16,17,16,17,16,16,16,18,19,18,19,18,19,20,21,20,21,
20,21,20,21,20,21,20,21,22,22,22,22,22,22,23,24,23,24,25,26,25,26,27,28,
27,28,27,28,27,27,27,29,29,29,30,30,30,31,32,33,34,33,34,33,34,35,35,35,
36,37,36,37,36,37,38,39,38,39,38,39,40,41,40,41,40,41,42,43,42,43,42,43,
44,45,44,45,44,45]);
ALF("12_2.U4(3).2_3","4.U4(3).2_3",[1,2,3,2,1,2,3,1,3,4,5,4,5,4,5,6,7,8,7,
6,7,8,6,8,9,10,11,12,13,14,15,16,17,18,17,16,17,18,16,18,19,19,19,20,21,
22,21,20,21,22,20,22,23,24,25,24,23,24,25,23,25,26,27,26,27,26,27,28,29,
30,31,28,29,30,31,28,29,30,31,32,33,33,32,33,32,34,35,36,37,38,39,40,41,
42,43,44,43,42,43,44,42,44,45,45,45,46,46,46,47,48,49,50,49,50,49,50,51,
51,51,52,53,52,53,52,53,54,55,54,55,54,55,56,57,56,57,56,57,58,59,58,59,
58,59,60,61,60,61,60,61]);
ALF("12_2.U4(3).2_3","3_2.U4(3).2_3",[1,2,3,1,2,3,1,3,2,4,5,6,4,5,6,7,8,9,
7,8,9,7,9,8,10,10,10,10,11,11,11,12,13,14,12,13,14,12,14,13,15,16,17,18,
19,20,18,19,20,18,20,19,21,22,23,21,22,23,21,23,22,24,25,26,24,25,26,27,
28,29,27,28,29,27,28,29,27,28,29,30,31,32,31,30,32,33,33,33,33,34,34,34,
34,35,36,37,35,36,37,35,37,36,38,39,40,41,42,43,44,44,45,46,47,45,46,47,
48,49,50,51,52,53,51,52,53,54,55,56,54,55,56,57,58,59,57,58,59,60,61,62,
60,61,62,63,64,65,63,64,65]);
ALF("12_2.U4(3).2_3","6_2.U4(3).2_3",[1,2,3,4,5,6,1,3,5,7,8,9,10,11,12,13,
14,15,16,17,18,13,15,17,19,20,19,20,21,22,21,23,24,25,26,27,28,23,25,27,
29,30,31,32,33,34,35,36,37,32,34,36,38,39,40,41,42,43,38,40,42,44,45,46,
47,48,49,50,51,52,53,54,55,50,51,52,53,54,55,56,57,58,57,56,58,59,60,59,
60,61,62,61,62,63,64,65,66,67,68,63,65,67,69,70,71,72,73,74,75,76,77,78,
79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,
102,103,104,105,106,107,108,109,110,111,112,113,114,115]);

MOT("12_2.U4(3).2_3'",
[
"origin: ATLAS of finite groups, tests: 1.o.r.,\n",
"constructed using `PossibleCharacterTablesOfTypeMGA',\n",
"3rd power map determined only up to matrix automorphism\n",
"(20,22)(74,76)(78,80)"
],
[78382080,39191040,39191040,39191040,39191040,39191040,78382080,13824,6912,
6912,13824,139968,69984,69984,69984,69984,69984,139968,3888,3888,3888,3888,648
,324,648,2304,1152,1152,1152,1152,1152,2304,96,48,120,60,60,60,60,60,120,1728,
864,864,864,864,864,1728,216,216,216,216,216,216,84,84,84,84,84,84,84,84,84,84
,84,84,96,96,96,96,96,96,108,108,108,108,108,108,108,108,288,144,144,144,144,
144,288,1440,96,36,36,192,192,32,16,16,20,20,24,24,48,48,48,48],
[,[1,3,5,7,5,3,1,1,3,5,7,12,14,16,18,16,14,12,19,21,19,21,23,25,23,8,10,10,8,
10,10,8,11,9,35,37,39,41,39,37,35,12,14,16,18,16,14,12,19,21,19,21,19,21,55,57
,59,61,63,65,55,57,59,61,63,65,29,27,31,31,29,27,77,79,77,79,73,75,73,75,42,44
,46,48,46,44,42,1,8,23,23,32,32,26,33,33,35,35,48,48,87,87,87,87],[1,4,7,4,1,4
,7,8,11,8,11,1,4,7,4,1,4,7,1,4,7,4,1,4,7,26,29,32,29,26,29,32,33,33,35,38,41,
38,35,38,41,8,11,8,11,8,11,8,8,11,8,11,8,11,55,64,61,58,55,64,61,58,55,64,61,
58,67,71,67,71,71,67,16,13,14,17,16,17,14,13,26,29,32,29,26,29,32,88,89,88,88,
93,92,94,96,95,98,97,89,89,93,92,93,92],,[1,6,3,4,5,2,7,8,9,10,11,12,17,14,15,
16,13,18,19,20,21,22,23,24,25,26,31,28,29,30,27,32,33,34,1,6,3,4,5,2,7,42,47,
44,45,46,43,48,49,54,53,52,51,50,55,62,57,64,59,66,61,56,63,58,65,60,67,70,72,
68,71,69,77,78,79,80,73,74,75,76,81,86,83,84,85,82,87,88,89,90,91,93,92,94,96,
95,88,88,100,99,102,101,104,103],,[1,6,3,4,5,2,7,8,9,10,11,12,17,14,15,16,13,
18,19,22,21,20,23,24,25,26,31,28,29,30,27,32,33,34,35,40,37,38,39,36,41,42,47,
44,45,46,43,48,49,50,51,52,53,54,1,6,3,4,5,2,7,2,5,4,3,6,67,70,72,68,71,69,73,
76,75,74,77,80,79,78,81,86,83,84,85,82,87,88,89,90,91,92,93,94,95,96,98,97,99,
100,101,102,103,104]],
0,
[(97,98),(90,91),(56,66)(57,65)(58,64)(59,63)(60,62),(50,54)(51,53),(20,22)(73
,77)(74,80)(75,79)(76,78),(92,93)(95,96)(101,104)(102,103),(99,100)(101,103)(
102,104),(2,6)(13,17)(27,31)(36,40)(43,47)(56,60)(57,65)(59,63)(62,66)(68,70)(
69,72)(73,77)(74,78)(75,79)(76,80)(82,86)(92,93)(95,96)(101,104)(102,103)],
["ConstructMGA","12_2.U4(3)","2.U4(3).2_3'",[[40,41],[42,43],[44,45],[46,53],[
47,52],[48,51],[49,50],[54,55],[56,59],[57,58],[60,61],[62,63],[64,67],[65,66]
,[68,69],[70,71],[72,73],[74,77],[75,76],[78,79],[80,81],[82,83],[84,87],[85,
86],[88,89],[90,91],[92,93],[94,95],[96,97],[98,99],[100,103],[101,102],[104,
107],[105,106],[108,111],[109,110],[112,113],[114,115],[116,117],[118,119],[
120,121],[122,125],[123,124],[126,129],[127,128],[130,137],[131,136],[132,135]
,[133,134],[138,141],[139,140],[142,145],[143,144],[146,149],[147,148],[150,
153],[151,152],[154,157],[155,156]],()]);
ALF("12_2.U4(3).2_3'","U4(3).2_3'",[1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,
4,4,4,5,5,5,6,6,6,6,6,6,6,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,9,10,10,10,10,10,
10,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13,13,14,
14,14,14,15,15,15,15,15,15,15,16,17,18,18,19,19,20,21,21,22,22,23,23,24,
24,25,25]);
ALF("12_2.U4(3).2_3'","2.U4(3).2_3'",[1,2,1,2,1,2,1,3,4,3,4,5,6,5,6,5,6,5,
7,8,7,8,9,10,9,11,12,11,12,11,12,11,13,13,14,15,14,15,14,15,14,16,17,16,
17,16,17,16,18,19,18,19,18,19,20,21,20,21,20,21,20,21,20,21,20,21,22,22,
22,22,22,22,23,24,23,24,25,26,25,26,27,28,27,28,27,28,27,29,30,31,32,33,
34,35,36,37,38,39,40,41,42,43,44,45]);
ALF("12_2.U4(3).2_3'","4.U4(3).2_3",[1,2,3,2,1,2,3,4,5,4,5,6,7,8,7,6,7,8,
9,10,11,12,13,14,15,16,17,18,17,16,17,18,19,19,20,21,22,21,20,21,22,23,24,
25,24,23,24,25,26,27,26,27,26,27,28,29,30,31,28,29,30,31,28,29,30,31,32,
33,32,33,33,32,34,35,36,37,38,39,40,41,42,43,44,43,42,43,44,45,46,47,48,
49,50,51,52,53,54,55,56,57,58,59,60,61]);
ALF("12_2.U4(3).2_3'","3_2.U4(3).2_3'",[1,2,2,1,2,2,1,3,4,4,3,5,6,6,5,6,6,
5,7,7,7,7,8,8,8,9,10,10,9,10,10,9,11,12,13,14,14,13,14,14,13,15,16,16,15,
16,16,15,17,18,19,17,18,19,20,21,22,20,21,22,20,21,22,20,21,22,23,24,24,
24,23,24,25,25,25,25,26,26,26,26,27,28,28,27,28,28,27,29,30,31,31,32,32,
33,34,34,35,35,36,36,37,37,38,38]);
ALF("12_2.U4(3).2_3'","6_2.U4(3).2_3'",[1,2,3,4,3,2,1,5,6,7,8,9,10,11,12,
11,10,9,13,14,13,14,15,16,15,17,18,19,20,19,18,17,21,22,23,24,25,26,25,24,
23,27,28,29,30,29,28,27,31,32,33,34,35,36,37,38,39,40,41,42,37,38,39,40,
41,42,43,44,45,45,43,44,46,47,46,47,48,49,48,49,50,51,52,53,52,51,50,54,
55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70]);

MOT("2.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[6531840,6531840,2304,2304,11664,11664,1944,1944,1944,1944,162,162,192,192,16,
10,10,144,144,72,72,72,72,14,14,14,14,16,16,54,54,54,54,54,54,54,54,24,24],
[,[1,1,1,1,5,5,7,7,9,9,11,11,3,3,4,16,16,5,5,7,7,9,9,24,24,26,26,14,14,32,32,
30,30,36,36,34,34,18,18],[1,2,3,4,1,2,1,2,1,2,1,2,13,14,15,16,17,3,4,3,4,3,4,
26,27,24,25,29,28,5,6,5,6,5,6,5,6,13,14],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,1,2,18,19,20,21,22,23,26,27,24,25,28,29,32,33,30,31,36,37,34,35,38,39],,[1,
2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,1,2,1,2,29,28,30,31,
32,33,34,35,36,37,38,39]],
0,
[(30,32)(31,33)(34,36)(35,37),(28,29),(24,26)(25,27),(34,36)(35,37),( 7, 9)
( 8,10)(20,22)(21,23)(30,34)(31,35)(32,36)(33,37)],
["ConstructProj",[["U4(3)",[]],["2.U4(3)",[]]]]);
ALF("2.U4(3)","U4(3)",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,10,10,11,11,12,
12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,20,20]);
ALF("2.U4(3)","2.U4(3).2_1",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,25,26,27,28,29,30,31,30,31,32,33,32,33,34,35],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("2.U4(3)","2.U4(3).2_2",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,31,32,31,32,33,34],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("2.U4(3)","2.U4(3).2_2'",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,24,25,26,26,27,28,27,28,29,30,31,32,33,34],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("2.U4(3)","2.U4(3).2_3",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,13,14,15,16,
17,18,19,18,19,20,21,20,21,22,22,23,24,25,26,23,24,25,26,27,28],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("2.U4(3)","2.U4(3).2_3'",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,13,14,15,16,
17,18,19,18,19,20,21,20,21,22,22,23,24,25,26,25,26,23,24,27,28],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]); # exactly this map is required for constructing 6_2.U4(3).2_3'
ALF("2.U4(3)","Isoclinic(2.U4(3).2_1)",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,30,31,32,33,32,33,34,
35],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables"
]);
ALF("2.U4(3)","Isoclinic(2.U4(3).2_2)",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,31,32,31,32,33,
34]);
ALF("2.U4(3)","Isoclinic(2.U4(3).2_2')",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,27,28,29,30,31,32,33,
34]);
ALF("2.U4(3)","Isoclinic(2.U4(3).2_3)",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,13,
14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,25,26,23,24,25,26,27,28]);
ALF("2.U4(3)","Isoclinic(2.U4(3).2_3')",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,
13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,25,26,25,26,23,24,27,
28]);
ALF("2.U4(3)","2.U4(3).4",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,13,14,15,16,17,
18,19,18,19,20,21,22,23,24,25,26,27,26,27,26,27,26,27,28,29],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);

MOT("2.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[13063680,13063680,4608,4608,23328,23328,3888,3888,3888,3888,324,324,384,384,
32,20,20,288,288,144,144,144,144,28,28,28,28,32,32,54,54,54,54,48,48,24192,
24192,2880,2880,2304,2304,128,432,432,72,72,72,72,36,36,32,32,20,20,288,288,
288,288,72,72,72,72,28,28,28,28],
[,[1,1,1,1,5,5,7,7,9,9,11,11,3,3,4,16,16,5,5,7,7,9,9,24,24,26,26,14,14,30,30,
32,32,18,18,1,1,2,2,3,3,3,5,5,8,8,10,10,11,11,14,14,17,17,18,18,18,18,20,20,
22,22,24,24,26,26],[1,2,3,4,1,2,1,2,1,2,1,2,13,14,15,16,17,3,4,3,4,3,4,26,27,
24,25,29,28,5,6,5,6,13,14,36,37,39,38,41,40,42,36,37,39,38,39,38,36,37,52,51,
54,53,41,40,41,40,41,40,41,40,65,66,63,64],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,1,2,18,19,20,21,22,23,26,27,24,25,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44,45,46,47,48,49,50,51,52,38,39,55,56,57,58,59,60,61,62,65,66,63,
64],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,1,2,1,2,29,
28,30,31,32,33,34,35,36,37,39,38,41,40,42,43,44,46,45,48,47,49,50,52,51,54,53,
58,57,56,55,60,59,62,61,36,37,36,37]],
0,
[(28,29)(38,39)(40,41)(45,46)(47,48)(51,52)(53,54)(55,58)(56,57)(59,60)
(61,62),(28,29)(36,37)(43,44)(49,50)(55,57)(56,58)(63,64)(65,66),(24,26)
(25,27)(63,65)(64,66),(36,37)(38,39)(40,41)(43,44)(45,46)(47,48)(49,50)(51,52)
(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66),( 7, 9)( 8,10)(20,22)(21,23)
(30,32)(31,33)(45,47)(46,48)(59,61)(60,62)],
["ConstructProj",[["U4(3).2_1",[]],["2.U4(3).2_1",[]]]]);
ALF("2.U4(3).2_1","U4(3).2_1",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,10,10,11,
11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,20,20,21,21,22,23,23,
24,24,25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34]);
ALF("2.U4(3).2_1","2.U4(3).4",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,13,14,15,16,
17,18,19,18,19,20,21,22,23,24,25,26,27,26,27,28,29,30,31,32,33,34,35,36,
37,38,39,40,39,40,41,42,43,44,45,46,47,48,49,50,51,52,51,52,53,54,55,56],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("2.U4(3).2_1","2.U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,31,32,33,34,35,
35,36,36,37,38,39,40,40,41,41,42,43,44,44,45,45,46,47,47,46,48,48,49,49,
50,51,50,51],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("2.U4(3).2_1","2.U4(3).(2^2)_{12*2}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,31,32,33,33,
34,35,36,37,38,39,39,40,41,42,43,44,44,45,46,47,48,49,50,49,50,51,52,53,
54,55,56,56,55]);
ALF("2.U4(3).2_1","2.U4(3).(2^2)_{12*2*}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,31,32,33,34,
35,35,36,36,37,38,39,40,40,41,41,42,43,44,44,45,45,46,47,47,46,48,48,49,
49,50,51,50,51]);
ALF("2.U4(3).2_1","2.U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,
13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,23,24,25,26,27,28,29,
29,30,30,31,32,33,34,35,35,34,36,37,38,38,39,39,40,41,41,40,42,43,43,42,
44,45,44,45]);
ALF("2.U4(3).2_1","2.U4(3).(2^2)_{13*3}",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,
13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,23,24,25,26,27,27,28,
29,30,31,32,33,33,34,35,34,35,36,36,37,38,39,40,41,42,41,42,43,44,43,44,
45,46,46,45]);
ALF("2.U4(3).2_1","2.U4(3).(2^2)_{13*3*}",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,
13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,23,24,25,26,27,28,29,
29,30,30,31,32,33,34,35,35,34,36,37,38,38,39,39,40,41,41,40,42,43,43,42,
44,45,44,45]);

MOT("Isoclinic(2.U4(3).2_1)",
0,
0,
0,
0,
[(28,29)(36,37)(43,44)(49,50)(55,57)(56,58)(63,64)(65,66),
(24,26)(25,27)(63,65)(64,66),
( 7, 9)( 8,10)(20,22)(21,23)(30,32)(31,33)(45,47)(46,48)(59,61)(60,62),
(28,29)(38,39)(40,41)(45,46)(47,48)(51,52)(53,54)(55,58)(56,57)(59,60)(61,62)
],
["ConstructIsoclinic",[["2.U4(3).2_1"]]]);
ALF("Isoclinic(2.U4(3).2_1)","2.U4(3).(2^2)_{1*22}",[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,31,
32,33,33,34,35,36,37,38,39,39,40,41,42,43,44,44,45,46,47,48,49,50,49,50,
51,52,53,54,55,56,56,55]);
ALF("Isoclinic(2.U4(3).2_1)","2.U4(3).(2^2)_{1*2*2}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,
31,32,33,34,35,35,36,36,37,38,39,40,40,41,41,42,43,44,44,45,45,46,47,47,
46,48,48,49,49,50,51,50,51]);
ALF("Isoclinic(2.U4(3).2_1)","2.U4(3).(2^2)_{1*2*2*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,
31,32,33,33,34,35,36,37,38,39,39,40,41,42,43,44,44,45,46,47,48,49,50,49,
50,51,52,53,54,55,56,56,55]);
ALF("Isoclinic(2.U4(3).2_1)","2.U4(3).(2^2)_{1*33}",[1,2,3,4,5,6,7,8,7,8,
9,10,11,12,13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,23,24,25,26,
27,27,28,29,30,31,32,33,33,34,35,34,35,36,36,37,38,39,40,41,42,41,42,43,
44,43,44,45,46,46,45]);
ALF("Isoclinic(2.U4(3).2_1)","2.U4(3).(2^2)_{1*3*3}",[1,2,3,4,5,6,7,8,7,8,
9,10,11,12,13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,23,24,25,26,
27,28,29,29,30,30,31,32,33,34,35,35,34,36,37,38,38,39,39,40,41,41,40,42,
43,43,42,44,45,44,45]);
ALF("Isoclinic(2.U4(3).2_1)","2.U4(3).(2^2)_{1*3*3*}",[1,2,3,4,5,6,7,8,7,
8,9,10,11,12,13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,23,24,25,
26,27,27,28,29,30,31,32,33,33,34,35,34,35,36,36,37,38,39,40,41,42,41,42,
43,44,43,44,45,46,46,45]);
ALF("Isoclinic(2.U4(3).2_1)","3^6:2U4(3).2_1",[1,5,6,9,13,17,18,23,24,29,
30,33,34,37,38,42,47,48,51,53,56,59,62,65,66,67,68,69,70,71,74,75,78,79,
82,83,84,85,89,93,97,98,101,102,103,107,110,114,117,118,119,122,123,128,
129,131,132,134,135,138,139,142,143,144,145,146],[
"fusion map is unique up to table automorphisms"
]);
ALN("Isoclinic(2.U4(3).2_1)",["2.U4(3).2_1*"]);

MOT("2.U4(3).2_2",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[13063680,13063680,4608,4608,23328,23328,3888,3888,3888,3888,324,324,384,384,
32,20,20,288,288,144,144,144,144,14,14,16,108,108,108,108,54,54,48,48,103680,
103680,1152,192,192,192,2592,2592,2592,2592,432,432,216,216,144,144,36,36,16,
20,20,48,48,24,24,36,36,36,36],
[,[1,1,1,1,5,5,7,7,9,9,11,11,3,3,4,16,16,5,5,7,7,9,9,24,24,14,29,29,27,27,31,
31,18,18,1,1,1,3,4,4,5,5,5,5,9,9,7,7,9,9,11,11,13,16,16,18,18,21,21,29,29,27,
27],[1,2,3,4,1,2,1,2,1,2,1,2,13,14,15,16,17,3,4,3,4,3,4,24,25,26,5,6,5,6,5,6,
13,14,35,36,37,38,39,40,35,36,35,36,35,36,35,36,37,37,37,37,53,54,55,38,38,39,
40,41,42,43,44],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,18,19,20,21,22,23,
24,25,26,29,30,27,28,31,32,33,34,35,36,37,38,39,40,43,44,41,42,45,46,47,48,49,
50,51,52,53,35,36,57,56,58,59,62,63,60,61],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,1,2,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63]],
0,
[(51,52),(27,29)(28,30)(41,43)(42,44)(56,57)(60,62)(61,63),(35,36)(39,40)
(41,42)(43,44)(45,46)(47,48)(49,50)(54,55)(56,57)(58,59)(60,61)(62,63)],
["ConstructProj",[["U4(3).2_2",[]],["2.U4(3).2_2",[]]]]);
ALF("2.U4(3).2_2","U4(3).2_2",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,10,10,11,
11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,19,20,21,22,22,23,23,24,24,
25,25,26,26,27,27,28,28,29,30,30,31,31,32,32,33,33,34,34]);
ALF("2.U4(3).2_2","2.U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28,29,30,31,32,52,52,53,54,
55,55,56,57,57,56,58,58,59,59,60,60,61,62,63,64,64,65,66,67,67,68,69,69,
68],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("2.U4(3).2_2","2.U4(3).(2^2)_{1*22}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28,29,30,31,32,57,58,59,
60,61,62,63,64,63,64,65,66,67,68,69,70,71,71,72,73,74,75,75,76,77,78,79,
78,79]);
ALF("2.U4(3).2_2","O7(3)",[1,2,4,3,5,17,6,18,7,19,10,27,13,14,15,16,41,23,
20,25,24,26,22,33,52,35,36,55,36,54,37,56,43,46,2,3,4,14,12,15,17,20,17,
20,19,22,18,24,21,26,30,31,34,41,40,46,46,45,49,54,57,55,57]);
ALF("2.U4(3).2_2","2.U6(2)",[1,2,6,5,10,11,8,9,12,13,12,13,18,18,22,23,24,
32,31,34,33,38,37,41,42,46,48,49,50,51,52,53,68,68,3,4,7,18,20,21,25,26,
27,28,35,36,29,30,40,39,40,39,46,54,55,68,68,70,71,74,75,76,77],[
"fusion map is unique up to table automorphisms"
]);
ALN("2.U4(3).2_2",["O7(3)C2A","O7(3)N2A"]);

MOT("Isoclinic(2.U4(3).2_2)",
0,
0,
0,
0,
[(51,52),
(35,36)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(54,55)(56,57)(58,59)(60,61)
(62,63)
,(27,29)(28,30)(41,43)(42,44)(56,57)(60,62)(61,63)],
["ConstructIsoclinic",[["2.U4(3).2_2"]]]);
ALF("Isoclinic(2.U4(3).2_2)","2.U4(3).(2^2)_{12*2}",[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28,29,30,31,32,
58,57,59,60,62,61,64,63,64,63,66,65,68,67,70,69,71,71,72,74,73,75,75,77,
76,79,78,79,78]);
ALF("Isoclinic(2.U4(3).2_2)","2.U4(3).(2^2)_{1*2*2}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28,29,30,31,
32,52,52,53,54,55,55,56,57,57,56,58,58,59,59,60,60,62,61,63,64,64,65,66,
67,67,68,69,69,68]);
ALF("Isoclinic(2.U4(3).2_2)","2.U4(3).(2^2)_{12*2*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28,29,30,31,
32,52,52,53,54,55,55,56,57,57,56,58,58,59,59,60,60,61,62,63,64,64,65,66,
67,67,68,69,69,68]);
ALF("Isoclinic(2.U4(3).2_2)","2.U4(3).(2^2)_{1*2*2*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28,29,30,31,
32,57,58,59,60,61,62,63,64,63,64,65,66,67,68,69,70,71,71,72,73,74,75,75,
76,77,78,79,78,79]);
ALN("Isoclinic(2.U4(3).2_2)",["2.U4(3).2_2*"]);

MOT("2.U4(3).2_2'",
0,
0,
0,
0,
0,
["ConstructPermuted",["2.U4(3).2_2"],(7,9)(8,10)(20,22)(21,23)(27,29,31)
(28,30,32),(5,7)(6,8)(17,18,19,20,21)(22,24)(23,25)(37,39)(38,40)(43,44,
45,46,47)(51,53)(52,54)]);
ALF("2.U4(3).2_2'","U4(3).2_2'",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,10,10,
11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,19,20,21,22,22,23,23,24,
24,25,25,26,26,27,27,28,28,29,30,30,31,31,32,32,33,33,34,34]);
ALF("2.U4(3).2_2'","2.U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,29,30,31,32,70,70,71,
72,73,73,74,75,75,74,76,76,77,77,78,78,80,79,81,82,82,83,84,85,85,86,87,
87,86]);
ALF("2.U4(3).2_2'","2.U4(3).(2^2)_{12*2}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,29,30,31,32,80,81,82,
83,84,85,86,87,86,87,88,89,90,91,92,93,94,94,95,96,97,98,98,99,100,101,
102,101,102]);
ALF("2.U4(3).2_2'","2.U4(3).(2^2)_{1*22}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,29,30,31,32,80,81,82,
83,84,85,86,87,86,87,88,89,90,91,92,93,94,94,95,96,97,98,98,99,100,101,
102,101,102]);
ALF("2.U4(3).2_2'","2.U4(3).(2^2)_{1*2*2}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,29,30,31,32,70,70,71,
72,73,73,74,75,75,74,76,76,77,77,78,78,79,80,81,82,82,83,84,85,85,86,87,
87,86]);

MOT("Isoclinic(2.U4(3).2_2')",
0,
0,
0,
0,
0,
["ConstructPermuted",["Isoclinic(2.U4(3).2_2)"],(7,9)(8,10)(20,22)(21,23)(27,
29,31)(28,30,32),(5,7)(6,8)(17,18,19,20,21)(22,24)(23,25)(37,39)(38,40)(43,44,
45,46,47)(51,53)(52,54)]);
ALF("Isoclinic(2.U4(3).2_2')","2.U4(3).(2^2)_{12*2*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,29,30,31,
32,70,70,71,72,73,73,74,75,75,74,76,76,77,77,78,78,80,79,81,82,82,83,84,
85,85,86,87,87,86]);
ALF("Isoclinic(2.U4(3).2_2')","2.U4(3).(2^2)_{1*2*2*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,29,30,31,
32,80,81,82,83,84,85,86,87,86,87,88,89,90,91,92,93,94,94,95,96,97,98,98,
99,100,101,102,101,102]);
ALN("Isoclinic(2.U4(3).2_2')",["2.U4(3).2_2'*"]);

MOT("2.U4(3).2_3",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[13063680,13063680,4608,4608,23328,23328,1944,1944,324,324,384,384,32,20,20,
288,288,72,72,14,14,16,54,54,54,54,48,48,1440,96,36,36,192,192,32,16,16,20,20,
24,24,48,48,48,48],
[,[1,1,1,1,5,5,7,7,9,9,3,3,4,14,14,5,5,7,7,20,20,12,25,25,23,23,16,16,1,3,9,9,
11,11,11,13,13,14,14,16,16,27,27,27,27],[1,2,3,4,1,2,1,2,1,2,11,12,13,14,15,3,
4,3,4,20,21,22,5,6,5,6,11,12,29,30,29,29,34,33,35,37,36,39,38,30,30,34,33,34,
33],,[1,2,3,4,5,6,7,8,9,10,11,12,13,1,2,16,17,18,19,20,21,22,25,26,23,24,27,
28,29,30,31,32,34,33,35,37,36,29,29,41,40,43,42,45,44],,[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,1,2,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,
37,39,38,40,41,42,43,44,45]],
0,
[(40,41)(42,44)(43,45),(38,39),(33,34)(36,37)(42,45)(43,44),(31,32),(23,25)
(24,26)(40,41)(42,44)(43,45),(23,25)(24,26)],
["ConstructProj",[["U4(3).2_3",[]],["2.U4(3).2_3",[]]]]);
ALF("2.U4(3).2_3","U4(3).2_3",[1,1,2,2,3,3,4,4,5,5,6,6,7,8,8,9,9,10,10,11,
11,12,13,13,14,14,15,15,16,17,18,18,19,19,20,21,21,22,22,23,23,24,24,25,
25]);
ALF("2.U4(3).2_3","2.U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,23,24,25,26,46,47,48,49,50,50,51,52,52,53,
53,54,55,56,57,57,56]);
ALF("2.U4(3).2_3","2.U4(3).(2^2)_{1*33}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,47,48,49,49,50,51,52,53,54,
55,56,57,57,58,59,58,59]);

MOT("Isoclinic(2.U4(3).2_3)",
0,
0,
0,
0,
[(40,41)(42,44)(43,45),(38,39),(33,34)(36,37)(40,41)(42,43)(44,45),(31,32),
(23,25)(24,26)],
["ConstructIsoclinic",[["2.U4(3).2_3"]]]);
ALF("Isoclinic(2.U4(3).2_3)","2.U4(3).(2^2)_{13*3}",[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,47,48,49,49,50,51,
52,53,54,56,55,57,57,58,59,58,59]);
ALF("Isoclinic(2.U4(3).2_3)","2.U4(3).(2^2)_{1*3*3}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,46,47,48,49,50,
50,51,52,52,53,53,54,55,56,57,57,56]);
ALF("Isoclinic(2.U4(3).2_3)","2.U4(3).(2^2)_{13*3*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,46,47,48,49,50,
50,51,52,52,53,53,54,55,56,57,57,56]);
ALF("Isoclinic(2.U4(3).2_3)","2.U4(3).(2^2)_{1*3*3*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,47,48,49,49,50,
51,52,53,54,55,56,57,57,58,59,58,59]);
ALN("Isoclinic(2.U4(3).2_3)",["2.U4(3).2_3*"]);

MOT("2.U4(3).2_3'",
0,
0,
0,
0,
0,
["ConstructPermuted",["2.U4(3).2_3"],(),()]);
ALF("2.U4(3).2_3'","U4(3).2_3'",[1,1,2,2,3,3,4,4,5,5,6,6,7,8,8,9,9,10,10,
11,11,12,13,13,14,14,15,15,16,17,18,18,19,19,20,21,21,22,22,23,23,24,24,
25,25]);
ALF("2.U4(3).2_3'","2.U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,58,59,60,61,62,62,63,64,64,
65,65,66,67,68,69,69,68]);
ALF("2.U4(3).2_3'","2.U4(3).(2^2)_{1*33}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,60,61,62,62,63,64,65,66,67,
68,69,70,70,71,72,71,72]);
ALF("2.U4(3).2_3'","2.U4(3).(2^2)_{13*3}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,60,61,62,62,64,63,65,67,66,
68,69,70,70,72,71,72,71]);
ALF("2.U4(3).2_3'","2.U4(3).(2^2)_{1*3*3}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,58,59,60,61,62,62,63,64,64,
65,65,66,67,68,69,69,68]);

MOT("Isoclinic(2.U4(3).2_3')",
0,
0,
0,
0,
0,
["ConstructPermuted",["Isoclinic(2.U4(3).2_3)"],(),()]);
ALF("Isoclinic(2.U4(3).2_3')","2.U4(3).(2^2)_{13*3*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,58,59,60,61,62,
62,63,64,64,65,65,66,67,68,69,69,68]);
ALF("Isoclinic(2.U4(3).2_3')","2.U4(3).(2^2)_{1*3*3*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,60,61,62,62,63,
64,65,66,67,68,69,70,70,71,72,71,72]);
ALN("Isoclinic(2.U4(3).2_3')",["2.U4(3).2_3'*"]);

MOT("2.U4(3).4",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[26127360,26127360,9216,9216,46656,46656,3888,3888,648,648,768,768,64,40,40,
576,576,144,144,56,56,56,56,64,64,54,54,96,96,48384,48384,5760,5760,4608,4608,
256,864,864,72,72,72,72,64,64,40,40,576,576,576,576,72,72,56,56,56,56,48384,
48384,48384,48384,768,768,768,768,80,80,384,384,384,384,128,128,128,128,864,
864,864,864,96,96,96,96,72,72,72,72,40,40,40,40,48,48,48,48,56,56,56,56,56,56,
56,56],
[,[1,1,1,1,5,5,7,7,9,9,3,3,4,14,14,5,5,7,7,20,20,22,22,12,12,26,26,16,16,1,1,
2,2,3,3,3,5,5,8,8,9,9,12,12,15,15,16,16,16,16,18,18,20,20,22,22,30,30,30,30,
30,30,30,30,32,33,34,34,35,35,35,35,34,34,37,37,37,37,37,37,37,37,41,41,41,41,
45,45,46,46,47,47,50,50,53,53,53,53,55,55,55,55],[1,2,3,4,1,2,1,2,1,2,11,12,
13,14,15,3,4,3,4,22,23,20,21,25,24,5,6,11,12,30,31,33,32,35,34,36,30,31,33,32,
30,31,44,43,46,45,35,34,35,34,35,34,55,56,53,54,59,60,57,58,63,64,61,62,66,65,
69,70,67,68,73,74,71,72,59,60,57,58,63,64,61,62,59,60,57,58,89,90,87,88,69,70,
67,68,101,102,99,100,97,98,95,96],,[1,2,3,4,5,6,7,8,9,10,11,12,13,1,2,16,17,
18,19,22,23,20,21,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,
44,32,33,47,48,49,50,51,52,55,56,53,54,57,58,59,60,61,62,63,64,65,66,67,68,69,
70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,65,65,66,66,91,92,93,94,99,
100,101,102,95,96,97,98],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,1,
2,1,2,25,24,26,27,28,29,30,31,33,32,35,34,36,37,38,40,39,41,42,44,43,46,45,50,
49,48,47,52,51,30,31,30,31,59,60,57,58,63,64,61,62,66,65,69,70,67,68,73,74,71,
72,77,78,75,76,81,82,79,80,85,86,83,84,90,89,88,87,93,94,91,92,59,60,57,58,59,
60,57,58]],
0,
[(87,88)(89,90),( 57, 58)( 59, 60)( 61, 62)( 63, 64)( 67, 68)( 69, 70)
( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)( 81, 82)( 83, 84)( 85, 86)
( 91, 92)( 93, 94)( 95, 96)( 97, 98)( 99,100)(101,102),( 24, 25)( 32, 33)
( 34, 35)( 39, 40)( 43, 44)( 45, 46)( 47, 50)( 48, 49)( 51, 52)( 57, 59)
( 58, 60)( 61, 63)( 62, 64)( 65, 66)( 67, 69)( 68, 70)( 71, 73)( 72, 74)
( 75, 77)( 76, 78)( 79, 81)( 80, 82)( 83, 85)( 84, 86)( 87, 89)( 88, 90)
( 91, 93)( 92, 94)( 95, 97)( 96, 98)( 99,101)(100,102),( 24, 25)( 32, 33)
( 34, 35)( 39, 40)( 43, 44)( 45, 46)( 47, 50)( 48, 49)( 51, 52)( 57, 59)
( 58, 60)( 61, 63)( 62, 64)( 65, 66)( 67, 69)( 68, 70)( 71, 73)( 72, 74)
( 75, 77)( 76, 78)( 79, 81)( 80, 82)( 83, 85)( 84, 86)( 87, 90)( 88, 89)
( 91, 93)( 92, 94)( 95, 97)( 96, 98)( 99,101)(100,102),( 20, 22)( 21, 23)
( 53, 55)( 54, 56)( 95, 99)( 96,100)( 97,101)( 98,102)],
["ConstructProj",[["U4(3).4",[]],["2.U4(3).4",[]]]]);
ALF("2.U4(3).4","U4(3).4",[1,1,2,2,3,3,4,4,5,5,6,6,7,8,8,9,9,10,10,11,11,
12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,20,20,21,21,22,22,23,23,24,
24,25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,35,36,36,37,
37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,45,46,46,47,47,48,48,49,
49,50,50,51,51,52,52,53,53]);
ALF("2.U4(3).4","2.U4(3).D8",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,20,21,22,22,23,24,25,26,27,28,29,29,30,30,31,32,33,34,34,35,
36,37,37,38,38,39,40,40,39,41,41,42,43,42,43,44,45,44,45,46,47,46,47,48,
48,49,50,49,50,51,52,51,52,53,54,53,54,55,56,55,56,57,58,57,58,59,60,59,
60,61,62,61,62,63,64,65,66,65,66,63,64]);

MOT("2.U4(3).(2^2)_{122}",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[26127360,26127360,9216,9216,46656,46656,7776,7776,7776,7776,648,648,768,768,
64,40,40,576,576,288,288,288,288,28,28,32,108,108,108,108,96,96,48384,48384,
2880,2304,256,864,864,72,72,72,72,32,20,288,288,72,72,28,28,103680,2304,384,
192,2592,2592,432,216,144,72,72,32,20,96,96,24,36,36,103680,2304,384,192,2592,
2592,432,216,144,72,72,32,20,96,96,24,36,36],
[,[1,1,1,1,5,5,7,7,9,9,11,11,3,3,4,16,16,5,5,7,7,9,9,24,24,14,27,27,29,29,18,
18,1,1,2,3,3,5,5,8,10,11,11,14,17,18,18,20,22,24,24,1,1,3,4,5,5,9,7,9,11,11,
13,16,18,18,21,27,27,1,1,3,4,5,5,7,9,7,11,11,13,16,18,18,23,29,29],[1,2,3,4,1,
2,1,2,1,2,1,2,13,14,15,16,17,3,4,3,4,3,4,24,25,26,5,6,5,6,13,14,33,34,35,36,
37,33,34,35,35,33,34,44,45,36,36,36,36,50,51,52,53,54,55,52,52,52,52,53,53,53,
63,64,54,54,55,56,57,70,71,72,73,70,70,70,70,71,71,71,81,82,72,72,73,74,75],,[
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,18,19,20,21,22,23,24,25,26,27,28,29,
30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,35,46,47,48,49,50,51,52,53,54,55,
57,56,58,59,60,61,62,63,52,66,65,67,69,68,70,71,72,73,75,74,76,77,78,79,80,81,
70,84,83,85,87,86],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,1,2,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
49,33,34,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,
75,76,77,78,79,80,81,82,83,84,85,86,87]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[TENSOR,[2,3]],[21,21,5,5,-6,-6,3,3,3,3,3,3,1,1,1,1,1,2,2,-1,-1,-1,-1,0,0,-1,
0,0,0,0,-2,-2,-7,-7,1,5,-3,2,2,1,1,-1,-1,-1,1,2,2,-1,-1,0,0,9,1,-3,1,0,0,-3,3,
1,1,1,-1,-1,0,0,1,0,0,9,1,-3,1,0,0,-3,3,1,1,1,-1,-1,0,0,1,0,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[35,35,3,3,8,8,8,8,-1,-1,-1,-1,3,3,-1,0,0,0,0,0,0,3,3,0,0,-1,2,
2,-1,-1,0,0,7,7,-5,-1,-1,-2,-2,-2,1,1,1,-1,0,2,2,2,-1,0,0,15,-1,-1,3,6,6,3,0,
-1,-1,-1,-1,0,2,2,0,0,0,-5,-5,3,-1,4,4,-2,1,-2,1,1,-1,0,0,0,-1,1,1],
[TENSOR,[9,2]],
[TENSOR,[9,3]],
[TENSOR,[9,4]],[35,35,3,3,8,8,-1,-1,8,8,-1,-1,3,3,-1,0,0,0,0,3,3,0,0,0,0,-1,
-1,-1,2,2,0,0,7,7,-5,-1,-1,-2,-2,1,-2,1,1,-1,0,2,2,-1,2,0,0,-5,-5,3,-1,4,4,-2,
1,-2,1,1,-1,0,0,0,-1,1,1,15,-1,-1,3,6,6,3,0,-1,-1,-1,-1,0,2,2,0,0,0],
[TENSOR,[13,2]],
[TENSOR,[13,3]],
[TENSOR,[13,4]],[90,90,10,10,9,9,9,9,9,9,0,0,-2,-2,2,0,0,1,1,1,1,1,1,-1,-1,0,
0,0,0,0,1,1,6,6,10,10,2,-3,-3,1,1,0,0,0,0,1,1,1,1,-1,-1,30,6,2,2,3,3,3,3,3,0,
0,0,0,-1,-1,-1,0,0,30,6,2,2,3,3,3,3,3,0,0,0,0,-1,-1,-1,0,0],
[TENSOR,[17,2]],
[TENSOR,[17,3]],
[TENSOR,[17,4]],[140,140,12,12,5,5,-4,-4,-4,-4,5,5,4,4,0,0,0,-3,-3,0,0,0,0,0,
0,0,-1,-1,-1,-1,1,1,28,28,0,4,4,1,1,0,0,1,1,0,0,1,1,-2,-2,0,0,20,4,4,0,-7,-7,
2,2,-2,1,1,0,0,1,1,0,-1,-1,20,4,4,0,-7,-7,2,2,-2,1,1,0,0,1,1,0,-1,-1],
[TENSOR,[21,2]],
[TENSOR,[21,3]],
[TENSOR,[21,4]],[189,189,-3,-3,27,27,0,0,0,0,0,0,5,5,1,-1,-1,3,3,0,0,0,0,0,0,
1,0,0,0,0,-1,-1,21,21,9,-3,-3,3,3,0,0,0,0,1,-1,3,3,0,0,0,0,9,9,1,-3,9,9,0,0,0,
0,0,1,-1,1,1,0,0,0,9,9,1,-3,9,9,0,0,0,0,0,1,-1,1,1,0,0,0],
[TENSOR,[25,2]],
[TENSOR,[25,3]],
[TENSOR,[25,4]],[210,210,2,2,21,21,3,3,3,3,3,3,-2,-2,-2,0,0,5,5,-1,-1,-1,-1,0,
0,0,0,0,0,0,1,1,14,14,-10,10,2,5,5,-1,-1,-1,-1,0,0,1,1,1,1,0,0,30,-10,2,-2,3,
3,3,3,-1,-1,-1,0,0,-1,-1,1,0,0,30,-10,2,-2,3,3,3,3,-1,-1,-1,0,0,-1,-1,1,0,0],
[TENSOR,[29,2]],
[TENSOR,[29,3]],
[TENSOR,[29,4]],[560,560,-16,-16,20,20,20,20,2,2,2,2,0,0,0,0,0,-4,-4,-4,-4,2,
2,0,0,0,-1,-1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,-16,0,0,8,8,2,
-4,2,2,2,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[33,2]],[560,560,-16,-16,20,20,2,2,20,20,2,2,0,0,0,0,0,-4,-4,2,2,-4,
-4,0,0,0,2,2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-80,16,0,0,-8,-8,-2,4,-2,-2,-2,0,0,0,0,0,1,1],
[TENSOR,[35,2]],[315,315,11,11,-9,-9,18,18,-9,-9,0,0,-1,-1,-1,0,0,-1,-1,2,2,
-1,-1,0,0,1,0,0,0,0,-1,-1,-21,-21,-5,7,-1,-3,-3,-2,1,0,0,1,0,1,1,-2,1,0,0,75,
3,-1,3,3,3,-3,0,-3,0,0,1,0,-1,-1,0,0,0,15,-9,-5,-1,-3,-3,0,3,0,0,0,1,0,1,1,-1,
0,0],
[TENSOR,[37,2]],
[TENSOR,[37,3]],
[TENSOR,[37,4]],[315,315,11,11,-9,-9,-9,-9,18,18,0,0,-1,-1,-1,0,0,-1,-1,-1,-1,
2,2,0,0,1,0,0,0,0,-1,-1,-21,-21,-5,7,-1,-3,-3,1,-2,0,0,1,0,1,1,1,-2,0,0,15,-9,
-5,-1,-3,-3,0,3,0,0,0,1,0,1,1,-1,0,0,75,3,-1,3,3,3,-3,0,-3,0,0,1,0,-1,-1,0,0,
0],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[420,420,4,4,-39,-39,6,6,6,6,-3,-3,4,4,0,0,0,1,1,-2,-2,-2,-2,
0,0,0,0,0,0,0,1,1,28,28,0,12,-4,1,1,0,0,1,1,0,0,-3,-3,0,0,0,0,60,-4,4,0,-3,-3,
-6,0,2,-1,-1,0,0,1,1,0,0,0,60,-4,4,0,-3,-3,-6,0,2,-1,-1,0,0,1,1,0,0,0],
[TENSOR,[45,2]],
[TENSOR,[45,3]],
[TENSOR,[45,4]],[1120,1120,-32,-32,-68,-68,4,4,4,4,4,4,0,0,0,0,0,4,4,4,4,4,4,
0,0,0,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1280,1280,0,0,-16,-16,
-16,-16,-16,-16,2,2,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,2,2,2,2,0,0,-64,-64,0,0,0,8,
8,0,0,2,2,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[50,3]],[729,729,9,9,0,0,0,0,0,0,0,0,-3,-3,1,-1,-1,0,0,0,0,0,0,1,1,-1,
0,0,0,0,0,0,-27,-27,9,9,1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,1,81,9,-3,-3,0,0,0,0,0,
0,0,-1,1,0,0,0,0,0,81,9,-3,-3,0,0,0,0,0,0,0,-1,1,0,0,0,0,0],
[TENSOR,[52,2]],
[TENSOR,[52,3]],
[TENSOR,[52,4]],[896,896,0,0,32,32,-4,-4,-4,-4,-4,-4,0,0,0,1,1,0,0,0,0,0,0,0,
0,0,-1,-1,-1,-1,0,0,0,0,16,0,0,0,0,-2,-2,0,0,0,1,0,0,0,0,0,0,64,0,0,0,-8,-8,4,
-2,0,0,0,0,-1,0,0,0,1,1,64,0,0,0,-8,-8,4,-2,0,0,0,0,-1,0,0,0,1,1],
[TENSOR,[56,2]],
[TENSOR,[56,3]],
[TENSOR,[56,4]],[20,-20,4,-4,-7,7,2,-2,2,-2,2,-2,4,-4,0,0,0,1,-1,-2,2,-2,2,-1,
1,0,-1,1,-1,1,1,-1,-8,8,0,0,0,1,-1,0,0,-2,2,0,0,-3,3,0,0,-1,1,0,0,0,0,
3*E(3)-3*E(3)^2,-3*E(3)+3*E(3)^2,0,0,0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,
-E(3)+E(3)^2,E(3)-E(3)^2,0,0,0,0,3*E(3)-3*E(3)^2,-3*E(3)+3*E(3)^2,0,0,0,0,0,0,
0,E(3)-E(3)^2,-E(3)+E(3)^2,0,-E(3)+E(3)^2,E(3)-E(3)^2],
[TENSOR,[60,2]],
[TENSOR,[60,3]],
[TENSOR,[60,4]],[112,-112,-16,16,4,-4,22,-22,4,-4,4,-4,0,0,0,2,-2,-4,4,2,-2,
-4,4,0,0,0,4,-4,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[112,-112,-16,16,4,
-4,4,-4,22,-22,4,-4,0,0,0,2,-2,-4,4,-4,4,2,-2,0,0,0,-2,2,4,-4,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],[140,-140,-4,4,32,-32,14,-14,14,-14,-4,4,4,-4,0,0,0,8,-8,
2,-2,2,-2,0,0,0,2,-2,2,-2,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[140,-140,-4,
4,-22,22,14,-14,-4,4,-4,4,4,-4,0,0,0,2,-2,2,-2,-4,4,0,0,0,-1,1,2,-2,-2,2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6*E(3)-6*E(3)^2,-6*E(3)+6*E(3)^2,0,
0,0,0,0,0,0,2*E(3)-2*E(3)^2,-2*E(3)+2*E(3)^2,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[67,2]],[140,-140,-4,4,-22,22,-4,4,14,-14,-4,4,4,-4,0,0,0,2,-2,-4,4,2,
-2,0,0,0,2,-2,-1,1,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6*E(3)+6*E(3)^2,6*E(3)-6*E(3)^2,0,0,0,0,0,0,0,
-2*E(3)+2*E(3)^2,2*E(3)-2*E(3)^2,0,-E(3)+E(3)^2,E(3)-E(3)^2],
[TENSOR,[69,2]],[120,-120,-8,8,12,-12,-6,6,-6,6,3,-3,0,0,0,0,0,4,-4,-2,2,-2,2,
1,-1,0,0,0,0,0,0,0,8,-8,0,0,0,8,-8,0,0,-1,1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,
0,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,0],
[TENSOR,[71,2]],
[TENSOR,[71,4]],
[TENSOR,[71,3]],[420,-420,20,-20,42,-42,6,-6,6,-6,6,-6,4,-4,0,0,0,2,-2,2,-2,2,
-2,0,0,0,0,0,0,0,-2,2,56,-56,0,0,0,2,-2,0,0,2,-2,0,0,-6,6,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[75,3]],[1008,-1008,-16,16,36,-36,36,-36,-18,18,0,0,0,0,0,-2,2,-4,4,
-4,4,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1008,-1008,-16,
16,36,-36,-18,18,36,-36,0,0,0,0,0,-2,2,-4,4,2,-2,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0],[540,-540,12,-12,-27,27,0,0,0,0,0,0,4,-4,0,0,0,-3,
3,0,0,0,0,1,-1,0,0,0,0,0,1,-1,-48,48,0,0,0,-3,3,0,0,0,0,0,0,-3,3,0,0,1,-1,0,0,
0,0,-9*E(3)+9*E(3)^2,9*E(3)-9*E(3)^2,0,0,0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,
0,0,0,0,0,0,-9*E(3)+9*E(3)^2,9*E(3)-9*E(3)^2,0,0,0,0,0,0,0,E(3)-E(3)^2,
-E(3)+E(3)^2,0,0,0],
[TENSOR,[79,2]],
[TENSOR,[79,4]],
[TENSOR,[79,3]],[1120,-1120,-32,32,-68,68,4,-4,4,-4,4,-4,0,0,0,0,0,4,-4,4,-4,
4,-4,0,0,0,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1260,-1260,28,-28,
-36,36,18,-18,18,-18,0,0,-12,12,0,0,0,4,-4,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0],[1280,-1280,0,0,-16,16,-16,16,-16,16,2,-2,0,0,0,0,
0,0,0,0,0,0,0,-1,1,0,2,-2,2,-2,0,0,-64,64,0,0,0,8,-8,0,0,2,-2,0,0,0,0,0,0,-1,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[85,3]],[1792,-1792,0,0,64,-64,-8,8,-8,8,-8,8,0,0,0,2,-2,0,0,0,0,0,0,
0,0,0,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],
[(61,62)(79,80),(56,57)(65,66)(68,69)(74,75)(83,84)(86,87),(33,34)(38,39)
(42,43)(46,47)(50,51)(74,75)(79,80)(83,84)(86,87),( 7, 9)( 8,10)(20,22)(21,23)
(27,29)(28,30)(40,41)(48,49)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)
(59,77)(60,78)(61,79)(62,80)(63,81)(64,82)(65,83)(66,84)(67,85)(68,86)
(69,87)]);
ALF("2.U4(3).(2^2)_{122}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,7,
7,8,9,9,10,10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,20,21,22,22,
23,24,25,25,26,27,28,28,29,30,31,31,32,33,34,35,36,36,37,38,39,40,40,41,
42,43,43,44,45,45,46,47,48,49,50,50,51,52,53,54,54,55,56,57,57,58,59,59]);
ALF("2.U4(3).(2^2)_{122}","O8+(3)",[1,2,5,2,6,27,7,31,10,34,17,43,19,23,
20,24,72,30,27,37,31,40,34,55,97,57,58,106,61,109,75,84,3,4,20,19,23,28,
29,89,92,44,45,57,112,77,76,78,81,98,99,2,5,23,20,27,27,34,31,40,52,53,56,
72,84,84,89,106,106,2,5,23,20,27,27,31,34,37,51,50,56,72,84,84,92,109,109],[
"fusion map is unique up to table automorphisms"
]);
ALF("2.U4(3).(2^2)_{122}","2^2.U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,92,92,
93,94,95,96,96,97,98,99,99,100,101,102,102,103,104,105,105,74,75,76,77,78,
79,80,81,82,83,84,85,86,87,88,89,90,91,134,135,136,137,138,138,139,140,
141,142,142,143,144,145,145,146,147,147]);
ALF("2.U4(3).(2^2)_{122}","2.U4(3).D8",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,13,
14,15,16,17,18,19,18,19,20,21,22,23,24,23,24,25,26,27,28,29,30,31,32,33,
34,34,35,36,37,38,39,40,41,41,42,43,67,68,69,70,71,72,73,74,75,76,77,78,
79,80,81,82,83,84,67,68,69,70,71,72,73,74,75,77,76,78,79,80,81,82,83,84]);
ALN("2.U4(3).(2^2)_{122}",["O8+(3)C2A","O8+(3)N2A"]);

MOT("2.U4(3).(2^2)_{1*22}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
[26127360,26127360,9216,9216,46656,46656,7776,7776,7776,7776,648,648,768,768,
64,40,40,576,576,288,288,288,288,28,28,32,108,108,108,108,96,96,24192,5760,
5760,4608,4608,256,432,144,144,144,144,36,64,64,40,40,288,288,144,144,144,144,
28,28,207360,207360,2304,384,384,384,2592,2592,864,864,432,432,288,288,36,32,
40,40,48,48,48,36,36,207360,207360,2304,384,384,384,2592,2592,864,864,432,432,
288,288,36,32,40,40,48,48,48,36,36],
[,[1,1,1,1,5,5,7,7,9,9,11,11,3,3,4,16,16,5,5,7,7,9,9,24,24,14,27,27,29,29,18,
18,2,1,1,4,4,4,6,7,7,9,9,12,13,13,16,16,19,19,21,21,23,23,25,25,1,1,1,3,4,4,5,
5,9,9,7,7,9,9,11,13,16,16,18,21,21,27,27,1,1,1,3,4,4,5,5,7,7,9,9,7,7,11,13,16,
16,18,23,23,29,29],[1,2,3,4,1,2,1,2,1,2,1,2,13,14,15,16,17,3,4,3,4,3,4,24,25,
26,5,6,5,6,13,14,33,34,35,36,37,38,33,34,35,34,35,33,45,46,47,48,36,37,36,37,
36,37,55,56,57,58,59,60,61,62,57,58,57,58,57,58,59,59,59,72,73,74,60,61,62,63,
64,80,81,82,83,84,85,80,81,80,81,80,81,82,82,82,95,96,97,83,84,85,86,87],,[1,2
,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,18,19,20,21,22,23,24,25,26,27,28,29,30,31
,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,34,35,49,50,51,52,53,54,56,55,57
,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,57,58,75,76,77,78,79,80,81,82,83
,84,85,86,87,88,89,90,91,92,93,94,95,80,81,98,99,100,101,102],,[1,2,3,4,5,6,7,
8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,1,2,26,27,28,29,30,31,32,33,34,
35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,33,33,57,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,
87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1],
[TENSOR,[2,3]],[21,21,5,5,-6,-6,3,3,3,3,3,3,1,1,1,1,1,2,2,-1,-1,-1,-1,0,0,-1,
0,0,0,0,-2,-2,-7,1,1,5,5,-3,2,1,1,1,1,-1,-1,-1,1,1,2,2,-1,-1,-1,-1,0,0,9,9,1,
-3,1,1,0,0,-3,-3,3,3,1,1,1,-1,-1,-1,0,1,1,0,0,9,9,1,-3,1,1,0,0,-3,-3,3,3,1,1,1
,-1,-1,-1,0,1,1,0,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[35,35,3,3,8,8,8,8,-1,-1,-1,-1,3,3,-1,0,0,0,0,0,0,3,3,0,0,-1,2
,2,-1,-1,0,0,7,-5,-5,-1,-1,-1,-2,-2,-2,1,1,1,-1,-1,0,0,2,2,2,2,-1,-1,0,0,15,15
,-1,-1,3,3,6,6,3,3,0,0,-1,-1,-1,-1,0,0,2,0,0,0,0,-5,-5,-5,3,-1,-1,4,4,-2,-2,1,
1,-2,-2,1,-1,0,0,0,-1,-1,1,1],
[TENSOR,[9,2]],
[TENSOR,[9,3]],
[TENSOR,[9,4]],[35,35,3,3,8,8,-1,-1,8,8,-1,-1,3,3,-1,0,0,0,0,3,3,0,0,0,0,-1,
-1,-1,2,2,0,0,7,-5,-5,-1,-1,-1,-2,1,1,-2,-2,1,-1,-1,0,0,2,2,-1,-1,2,2,0,0,-5,
-5,-5,3,-1,-1,4,4,-2,-2,1,1,-2,-2,1,-1,0,0,0,-1,-1,1,1,15,15,-1,-1,3,3,6,6,3,3
,0,0,-1,-1,-1,-1,0,0,2,0,0,0,0],
[TENSOR,[13,2]],
[TENSOR,[13,3]],
[TENSOR,[13,4]],[90,90,10,10,9,9,9,9,9,9,0,0,-2,-2,2,0,0,1,1,1,1,1,1,-1,-1,0,
0,0,0,0,1,1,6,10,10,10,10,2,-3,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,-1,-1,30,30,6,2,2
,2,3,3,3,3,3,3,3,3,0,0,0,0,-1,-1,-1,0,0,30,30,6,2,2,2,3,3,3,3,3,3,3,3,0,0,0,0,
-1,-1,-1,0,0],
[TENSOR,[17,2]],
[TENSOR,[17,3]],
[TENSOR,[17,4]],[140,140,12,12,5,5,-4,-4,-4,-4,5,5,4,4,0,0,0,-3,-3,0,0,0,0,0,
0,0,-1,-1,-1,-1,1,1,28,0,0,4,4,4,1,0,0,0,0,1,0,0,0,0,1,1,-2,-2,-2,-2,0,0,20,20
,4,4,0,0,-7,-7,2,2,2,2,-2,-2,1,0,0,0,1,0,0,-1,-1,20,20,4,4,0,0,-7,-7,2,2,2,2,
-2,-2,1,0,0,0,1,0,0,-1,-1],
[TENSOR,[21,2]],
[TENSOR,[21,3]],
[TENSOR,[21,4]],[189,189,-3,-3,27,27,0,0,0,0,0,0,5,5,1,-1,-1,3,3,0,0,0,0,0,0,
1,0,0,0,0,-1,-1,21,9,9,-3,-3,-3,3,0,0,0,0,0,1,1,-1,-1,3,3,0,0,0,0,0,0,9,9,9,1,
-3,-3,9,9,0,0,0,0,0,0,0,1,-1,-1,1,0,0,0,0,9,9,9,1,-3,-3,9,9,0,0,0,0,0,0,0,1,-1
,-1,1,0,0,0,0],
[TENSOR,[25,2]],
[TENSOR,[25,3]],
[TENSOR,[25,4]],[210,210,2,2,21,21,3,3,3,3,3,3,-2,-2,-2,0,0,5,5,-1,-1,-1,-1,0
,0,0,0,0,0,0,1,1,14,-10,-10,10,10,2,5,-1,-1,-1,-1,-1,0,0,0,0,1,1,1,1,1,1,0,0,
30,30,-10,2,-2,-2,3,3,3,3,3,3,-1,-1,-1,0,0,0,-1,1,1,0,0,30,30,-10,2,-2,-2,3,3,
3,3,3,3,-1,-1,-1,0,0,0,-1,1,1,0,0],
[TENSOR,[29,2]],
[TENSOR,[29,3]],
[TENSOR,[29,4]],[560,560,-16,-16,20,20,20,20,2,2,2,2,0,0,0,0,0,-4,-4,-4,-4,2,
2,0,0,0,-1,-1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,80,
-16,0,0,0,8,8,2,2,-4,-4,2,2,2,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0],
[TENSOR,[33,2]],[560,560,-16,-16,20,20,2,2,20,20,2,2,0,0,0,0,0,-4,-4,2,2,-4,
-4,0,0,0,2,2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,80,-16,0,0,0,8,8,2,2,-4,-4,2,2,2,0,0
,0,0,0,0,-1,-1],
[TENSOR,[35,2]],[315,315,11,11,-9,-9,18,18,-9,-9,0,0,-1,-1,-1,0,0,-1,-1,2,2,
-1,-1,0,0,1,0,0,0,0,-1,-1,-21,-5,-5,7,7,-1,-3,-2,-2,1,1,0,1,1,0,0,1,1,-2,-2,1,
1,0,0,75,75,3,-1,3,3,3,3,-3,-3,0,0,-3,-3,0,1,0,0,-1,0,0,0,0,15,15,-9,-5,-1,-1,
-3,-3,0,0,3,3,0,0,0,1,0,0,1,-1,-1,0,0],
[TENSOR,[37,2]],
[TENSOR,[37,3]],
[TENSOR,[37,4]],[315,315,11,11,-9,-9,-9,-9,18,18,0,0,-1,-1,-1,0,0,-1,-1,-1,-1
,2,2,0,0,1,0,0,0,0,-1,-1,-21,-5,-5,7,7,-1,-3,1,1,-2,-2,0,1,1,0,0,1,1,1,1,-2,-2
,0,0,15,15,-9,-5,-1,-1,-3,-3,0,0,3,3,0,0,0,1,0,0,1,-1,-1,0,0,75,75,3,-1,3,3,3,
3,-3,-3,0,0,-3,-3,0,1,0,0,-1,0,0,0,0],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[420,420,4,4,-39,-39,6,6,6,6,-3,-3,4,4,0,0,0,1,1,-2,-2,-2,-2,
0,0,0,0,0,0,0,1,1,28,0,0,12,12,-4,1,0,0,0,0,1,0,0,0,0,-3,-3,0,0,0,0,0,0,60,60,
-4,4,0,0,-3,-3,-6,-6,0,0,2,2,-1,0,0,0,1,0,0,0,0,60,60,-4,4,0,0,-3,-3,-6,-6,0,0
,2,2,-1,0,0,0,1,0,0,0,0],
[TENSOR,[45,2]],
[TENSOR,[45,3]],
[TENSOR,[45,4]],[1120,1120,-32,-32,-68,-68,4,4,4,4,4,4,0,0,0,0,0,4,4,4,4,4,4,
0,0,0,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],[1280,1280,0,0,-16,-16,-16,-16,-16,-16,2,2,0,0,0,0,0,0,0,0,0,0,0,-1,-1,
0,2,2,2,2,0,0,-64,0,0,0,0,0,8,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],
[TENSOR,[50,3]],[729,729,9,9,0,0,0,0,0,0,0,0,-3,-3,1,-1,-1,0,0,0,0,0,0,1,1,-1
,0,0,0,0,0,0,-27,9,9,9,9,1,0,0,0,0,0,0,-1,-1,-1,-1,0,0,0,0,0,0,1,1,81,81,9,-3,
-3,-3,0,0,0,0,0,0,0,0,0,-1,1,1,0,0,0,0,0,81,81,9,-3,-3,-3,0,0,0,0,0,0,0,0,0,-1
,1,1,0,0,0,0,0],
[TENSOR,[52,2]],
[TENSOR,[52,3]],
[TENSOR,[52,4]],[896,896,0,0,32,32,-4,-4,-4,-4,-4,-4,0,0,0,1,1,0,0,0,0,0,0,0,
0,0,-1,-1,-1,-1,0,0,0,16,16,0,0,0,0,-2,-2,-2,-2,0,0,0,1,1,0,0,0,0,0,0,0,0,64,
64,0,0,0,0,-8,-8,4,4,-2,-2,0,0,0,0,-1,-1,0,0,0,1,1,64,64,0,0,0,0,-8,-8,4,4,-2,
-2,0,0,0,0,-1,-1,0,0,0,1,1],
[TENSOR,[56,2]],
[TENSOR,[56,3]],
[TENSOR,[56,4]],[40,-40,8,-8,-14,14,4,-4,4,-4,4,-4,8,-8,0,0,0,2,-2,-4,4,-4,4,
-2,2,0,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],[56,-56,-8,8,2,-2,11,-11,2,-2,2,-2,0,0,0,1,-1,-2,2,1,-1,-2,2,0,0,0,2,-2
,-1,1,0,0,0,-4,4,8,-8,0,0,-1,1,2,-2,0,0,0,1,-1,2,-2,-1,1,2,-2,0,0,24,-24,0,0,4
,-4,6,-6,0,0,3,-3,0,0,0,0,-1,1,0,1,-1,0,0,16,-16,0,0,0,0,-2,2,1,-1,4,-4,3,-3,0
,0,1,-1,0,0,0,1,-1],
[TENSOR,[61,2]],
[TENSOR,[61,3]],
[TENSOR,[61,4]],[56,-56,-8,8,2,-2,2,-2,11,-11,2,-2,0,0,0,1,-1,-2,2,-2,2,1,-1,
0,0,0,-1,1,2,-2,0,0,0,-4,4,8,-8,0,0,2,-2,-1,1,0,0,0,1,-1,2,-2,2,-2,-1,1,0,0,16
,-16,0,0,0,0,-2,2,1,-1,4,-4,3,-3,0,0,1,-1,0,0,0,1,-1,24,-24,0,0,4,-4,6,-6,0,0,
3,-3,0,0,0,0,-1,1,0,1,-1,0,0],
[TENSOR,[65,2]],
[TENSOR,[65,3]],
[TENSOR,[65,4]],[70,-70,-2,2,16,-16,7,-7,7,-7,-2,2,2,-2,0,0,0,4,-4,1,-1,1,-1,
0,0,0,1,-1,1,-1,2,-2,0,-10,10,4,-4,0,0,-1,1,-1,1,0,2,-2,0,0,-2,2,1,-1,1,-1,0,0
,20,-20,0,0,2,-2,2,-2,5,-5,-1,1,3,-3,0,0,0,0,0,-1,1,-1,1,20,-20,0,0,2,-2,2,-2,
5,-5,-1,1,3,-3,0,0,0,0,0,-1,1,-1,1],
[TENSOR,[69,2]],
[TENSOR,[69,3]],
[TENSOR,[69,4]],[140,-140,-4,4,-22,22,14,-14,-4,4,-4,4,4,-4,0,0,0,2,-2,2,-2,
-4,4,0,0,0,-1,1,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,40,
-40,0,0,4,-4,4,-4,-8,8,-2,2,0,0,0,0,0,0,0,-2,2,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],
[TENSOR,[73,2]],[140,-140,-4,4,-22,22,-4,4,14,-14,-4,4,4,-4,0,0,0,2,-2,-4,4,2
,-2,0,0,0,2,-2,-1,1,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,40,-40,0,0,4,-4,4,-4,-8,8,-2,2,0,0,0,
0,0,0,0,-2,2,1,-1],
[TENSOR,[75,2]],[240,-240,-16,16,24,-24,-12,12,-12,12,6,-6,0,0,0,0,0,8,-8,-4,
4,-4,4,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0],[420,-420,20,-20,42,-42,6,-6,6,-6,6,-6,4,-4,0,0,0,2,-2,2,-2,2,-2,0,
0,0,0,0,0,0,-2,2,0,-20,20,-8,8,0,0,-2,2,-2,2,0,0,0,0,0,4,-4,-2,2,-2,2,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0],
[TENSOR,[78,3]],[504,-504,-8,8,18,-18,18,-18,-9,9,0,0,0,0,0,-1,1,-2,2,-2,2,1,
-1,0,0,0,0,0,0,0,0,0,0,4,-4,8,-8,0,0,-2,2,1,-1,0,0,0,-1,1,2,-2,2,-2,-1,1,0,0,
96,-96,0,0,0,0,6,-6,3,-3,0,0,-3,3,0,0,1,-1,0,0,0,0,0,24,-24,0,0,-4,4,6,-6,0,0,
3,-3,0,0,0,0,-1,1,0,-1,1,0,0],
[TENSOR,[80,2]],
[TENSOR,[80,3]],
[TENSOR,[80,4]],[504,-504,-8,8,18,-18,-9,9,18,-18,0,0,0,0,0,-1,1,-2,2,1,-1,-2
,2,0,0,0,0,0,0,0,0,0,0,4,-4,8,-8,0,0,1,-1,-2,2,0,0,0,-1,1,2,-2,-1,1,2,-2,0,0,
24,-24,0,0,-4,4,6,-6,0,0,3,-3,0,0,0,0,-1,1,0,-1,1,0,0,96,-96,0,0,0,0,6,-6,3,-3
,0,0,-3,3,0,0,1,-1,0,0,0,0,0],
[TENSOR,[84,2]],
[TENSOR,[84,3]],
[TENSOR,[84,4]],[1080,-1080,24,-24,-54,54,0,0,0,0,0,0,8,-8,0,0,0,-6,6,0,0,0,0
,2,-2,0,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],[560,-560,-16,16,-34,34,2,-2,2,-2,2,-2,0,0,0,0,0,2,-2,2,-2,2,-2,0,0,0,-1
,1,-1,1,0,0,0,0,0,16,-16,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,2,0,0,80,-80,0,0,0
,0,-10,10,-4,4,2,-2,0,0,0,0,0,0,0,0,0,-1,1,80,-80,0,0,0,0,-10,10,-4,4,2,-2,0,0
,0,0,0,0,0,0,0,-1,1],
[TENSOR,[89,2]],
[TENSOR,[89,3]],
[TENSOR,[89,4]],[630,-630,14,-14,-18,18,9,-9,9,-9,0,0,-6,6,0,0,0,2,-2,-1,1,-1
,1,0,0,0,0,0,0,0,0,0,0,-10,10,4,-4,0,0,-1,1,-1,1,0,-2,2,0,0,-2,2,1,-1,1,-1,0,0
,60,-60,0,0,-2,2,6,-6,-3,3,-3,3,3,-3,0,0,0,0,0,1,-1,0,0,60,-60,0,0,-2,2,6,-6,
-3,3,-3,3,3,-3,0,0,0,0,0,1,-1,0,0],
[TENSOR,[93,2]],
[TENSOR,[93,3]],
[TENSOR,[93,4]],[1280,-1280,0,0,-16,16,-16,16,-16,16,2,-2,0,0,0,0,0,0,0,0,0,0
,0,-1,1,0,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,
E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[97,3]],[896,-896,0,0,32,-32,-4,4,-4,4,-4,4,0,0,0,1,-1,0,0,0,0,0,0,0,
0,0,-1,1,-1,1,0,0,0,-16,16,0,0,0,0,2,-2,2,-2,0,0,0,-1,1,0,0,0,0,0,0,0,0,64,-64
,0,0,0,0,-8,8,4,-4,-2,2,0,0,0,0,-1,1,0,0,0,1,-1,64,-64,0,0,0,0,-8,8,4,-4,-2,2,
0,0,0,0,-1,1,0,0,0,1,-1],
[TENSOR,[99,2]],
[TENSOR,[99,3]],
[TENSOR,[99,4]]],
[(55,56),
( 34, 35)( 36, 37)( 40, 41)( 42, 43)( 45, 46)( 47, 48)( 49, 50)( 51, 52)
( 53, 54)( 80, 81)( 84, 85)( 86, 87)( 88, 89)( 90, 91)( 92, 93)( 96, 97)
( 99,100)(101,102)
,
( 34, 35)( 36, 37)( 40, 41)( 42, 43)( 45, 46)( 47, 48)( 49, 50)( 51, 52)
( 53, 54)( 57, 58)( 61, 62)( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 73, 74)
( 76, 77)( 78, 79)
,
(  7,  9)(  8, 10)( 20, 22)( 21, 23)( 27, 29)( 28, 30)( 40, 42)( 41, 43)
( 51, 53)( 52, 54)( 57, 80)( 58, 81)( 59, 82)( 60, 83)( 61, 84)( 62, 85)
( 63, 86)( 64, 87)( 65, 88)( 66, 89)( 67, 90)( 68, 91)( 69, 92)( 70, 93)
( 71, 94)( 72, 95)( 73, 96)( 74, 97)( 75, 98)( 76, 99)( 77,100)( 78,101)
( 79,102)
]);
ALF("2.U4(3).(2^2)_{1*22}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,7,
7,8,9,9,10,10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,19,19,20,20,21,22,
23,23,24,24,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,34,35,35,36,
36,37,37,38,38,39,39,40,41,42,42,43,44,44,45,45,46,46,47,48,49,49,50,50,
51,51,52,52,53,53,54,55,56,56,57,58,58,59,59]);
ALF("2.U4(3).(2^2)_{1*22}","O7(3).2",[1,2,4,3,5,16,6,17,7,18,9,26,12,13,
14,15,37,22,19,24,23,25,21,30,47,32,33,49,34,50,39,42,57,54,55,58,56,59,
80,66,67,69,68,87,74,73,77,75,82,78,84,81,83,79,95,96,2,3,4,13,11,14,16,
19,18,21,17,23,20,25,28,31,37,36,42,41,44,49,51,54,53,55,60,59,58,65,61,
66,62,69,63,67,64,71,74,77,76,86,85,83,90,89]);

MOT("2.U4(3).(2^2)_{12*2}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(55,56),
(34,35)(36,37)(40,41)(42,43)(45,46)(47,48)(49,50)(51,52)(53,54)(57,58)(61,62)
(63,64)(65,66)(67,68)(69,70)(73,74)(76,77)(78,79)
,
( 57, 58)( 61, 62)( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 73, 74)( 76, 77)
( 78, 79)( 80, 81)( 84, 85)( 86, 87)( 88, 89)( 90, 91)( 92, 93)( 96, 97)
( 99,100)(101,102)
],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{1*22}"]],[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,80,81,82,83,84,85,
86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102],(57,58)(61,62)(63,64)
(65,66)(67,68)(69,70)(73,74)(76,77)(78,79),(61,64)(62,63)(65,68)(66,67)(69,72)
(70,71)(73,74)(78,79)(80,83)(81,82)(84,87)(85,86)(89,92)(90,91)(93,96)(94,95)
(97,98)(99,102)(100,101)]);
ALF("2.U4(3).(2^2)_{12*2}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,7,
7,8,9,9,10,10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,19,19,20,20,21,22,
23,23,24,24,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,34,35,35,36,
36,37,37,38,38,39,39,40,41,42,42,43,44,44,45,45,46,46,47,48,49,49,50,50,
51,51,52,52,53,53,54,55,56,56,57,58,58,59,59]);

MOT("2.U4(3).(2^2)_{1*2*2}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(61,62)(79,80),(56,57)(65,66)(68,69)(74,75)(83,84)(86,87),
(33,34)(38,39)(42,43)(46,47)(50,51)(56,57)(61,62)(65,66)(68,69)],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{122}"]],[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85,86,87],(61,62),(35,36)(69,70)(71,72)(79,80)]);
ALF("2.U4(3).(2^2)_{1*2*2}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,7,8,9,9,10,10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,20,21,22,
22,23,24,25,25,26,27,28,28,29,30,31,31,32,33,34,35,36,36,37,38,39,40,40,
41,42,43,43,44,45,45,46,47,48,49,50,50,51,52,53,54,54,55,56,57,57,58,59,
59]);

MOT("2.U4(3).(2^2)_{12*2*}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(61,62)(79,80),(56,57)(65,66)(68,69)(74,75)(83,84)(86,87),
(33,34)(38,39)(42,43)(46,47)(50,51)(74,75)(79,80)(83,84)(86,87),
( 7, 9)( 8,10)(20,22)(21,23)(27,29)(28,30)(40,41)(48,49)(52,70)(53,71)(54,72)
(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,79)(62,80)(63,81)(64,82)(65,83)
(66,84)(67,85)(68,86)(69,87)
],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{122}"]],[1..51]]);
ALF("2.U4(3).(2^2)_{12*2*}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,7,8,9,9,10,10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,20,21,22,
22,23,24,25,25,26,27,28,28,29,30,31,31,32,33,34,35,36,36,37,38,39,40,40,
41,42,43,43,44,45,45,46,47,48,49,50,50,51,52,53,54,54,55,56,57,57,58,59,
59]);

MOT("2.U4(3).(2^2)_{1*2*2*}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(55,56),
( 34, 35)( 36, 37)( 40, 41)( 42, 43)( 45, 46)( 47, 48)( 49, 50)( 51, 52)
( 53, 54)( 80, 81)( 84, 85)( 86, 87)( 88, 89)( 90, 91)( 92, 93)( 96, 97)
( 99,100)(101,102)
,
( 34, 35)( 36, 37)( 40, 41)( 42, 43)( 45, 46)( 47, 48)( 49, 50)( 51, 52)
( 53, 54)( 57, 58)( 61, 62)( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 73, 74)
( 76, 77)( 78, 79)
,
(  7,  9)(  8, 10)( 20, 22)( 21, 23)( 27, 29)( 28, 30)( 40, 42)( 41, 43)
( 51, 53)( 52, 54)( 57, 80)( 58, 81)( 59, 82)( 60, 83)( 61, 84)( 62, 85)
( 63, 86)( 64, 87)( 65, 88)( 66, 89)( 67, 90)( 68, 91)( 69, 92)( 70, 93)
( 71, 94)( 72, 95)( 73, 96)( 74, 97)( 75, 98)( 76, 99)( 77,100)( 78,101)
( 79,102)
],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{1*22}"]],[1..56]]);
ALF("2.U4(3).(2^2)_{1*2*2*}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,7,8,9,9,10,10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,19,19,20,20,21,
22,23,23,24,24,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,34,35,35,
36,36,37,37,38,38,39,39,40,41,42,42,43,44,44,45,45,46,46,47,48,49,49,50,
50,51,51,52,52,53,53,54,55,56,56,57,58,58,59,59]);

MOT("2.U4(3).(2^2)_{133}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
[26127360,26127360,9216,9216,46656,46656,3888,3888,648,648,768,768,64,40,40,
576,576,144,144,28,28,32,54,54,96,96,48384,48384,2880,2304,256,864,864,72,72,
72,72,32,20,288,288,72,72,28,28,2880,192,72,72,192,64,16,20,48,48,48,48,2880,
192,72,72,192,64,16,20,48,48,48,48],
[,[1,1,1,1,5,5,7,7,9,9,3,3,4,14,14,5,5,7,7,20,20,12,23,23,16,16,1,1,2,3,3,5,5,
8,8,9,9,12,15,16,16,18,18,20,20,1,3,9,9,11,11,13,14,16,16,25,25,1,3,9,9,11,11,
13,14,16,16,25,25],[1,2,3,4,1,2,1,2,1,2,11,12,13,14,15,3,4,3,4,20,21,22,5,6,11
,12,27,28,29,30,31,27,28,29,29,27,28,38,39,30,30,30,30,44,45,46,47,46,46,50,51
,52,53,47,47,50,50,58,59,58,58,62,63,64,65,59,59,62,62],,[1,2,3,4,5,6,7,8,9,10
,11,12,13,1,2,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,
37,38,29,40,41,42,43,44,45,46,47,48,49,50,51,52,46,55,54,57,56,58,59,60,61,62,
63,64,58,67,66,69,68],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,1,2,22
,23,24,25,26,27,28,29,30,31,32,33,35,34,36,37,38,39,40,41,43,42,27,28,46,47,48
,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1],
[TENSOR,[2,3]],[21,21,5,5,-6,-6,3,3,3,3,1,1,1,1,1,2,2,-1,-1,0,0,-1,0,0,-2,-2,
-7,-7,1,5,-3,2,2,1,1,-1,-1,-1,1,2,2,-1,-1,0,0,1,-3,1,1,3,-1,-1,1,0,0,0,0,1,-3,
1,1,3,-1,-1,1,0,0,0,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[70,70,6,6,16,16,7,7,-2,-2,6,6,-2,0,0,0,0,3,3,0,0,-2,1,1,0,0,
14,14,-10,-2,-2,-4,-4,-1,-1,2,2,-2,0,4,4,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0],
[TENSOR,[9,3]],[90,90,10,10,9,9,9,9,0,0,-2,-2,2,0,0,1,1,1,1,-1,-1,0,0,0,1,1,6
,6,10,10,2,-3,-3,1,1,0,0,0,0,1,1,1,1,-1,-1,0,4,0,0,2,-2,0,0,1,1,-1,-1,0,4,0,0,
2,-2,0,0,1,1,-1,-1],
[TENSOR,[11,2]],
[TENSOR,[11,3]],
[TENSOR,[11,4]],[140,140,12,12,5,5,-4,-4,5,5,4,4,0,0,0,-3,-3,0,0,0,0,0,-1,-1,
1,1,28,28,0,4,4,1,1,0,0,1,1,0,0,1,1,-2,-2,0,0,10,2,1,1,2,2,0,0,-1,-1,-1,-1,10,
2,1,1,2,2,0,0,-1,-1,-1,-1],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[189,189,-3,-3,27,27,0,0,0,0,5,5,1,-1,-1,3,3,0,0,0,0,1,0,0,-1
,-1,21,21,9,-3,-3,3,3,0,0,0,0,1,-1,3,3,0,0,0,0,9,1,0,0,1,1,-1,-1,1,1,1,1,9,1,0
,0,1,1,-1,-1,1,1,1,1],
[TENSOR,[19,2]],
[TENSOR,[19,3]],
[TENSOR,[19,4]],[210,210,2,2,21,21,3,3,3,3,-2,-2,-2,0,0,5,5,-1,-1,0,0,0,0,0,1
,1,14,14,-10,10,2,5,5,-1,-1,-1,-1,0,0,1,1,1,1,0,0,-10,2,-1,-1,4,0,0,0,-1,-1,1,
1,-10,2,-1,-1,4,0,0,0,-1,-1,1,1],
[TENSOR,[23,2]],
[TENSOR,[23,3]],
[TENSOR,[23,4]],[1120,1120,-32,-32,40,40,22,22,4,4,0,0,0,0,0,-8,-8,-2,-2,0,0,
0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[630,630,22,22,-18,-18,9,9,0,0,-2,-2,-2,0,0,-2,-2,1,1,0,0,2
,0,0,-2,-2,-42,-42,-10,14,-2,-6,-6,-1,-1,0,0,2,0,2,2,-1,-1,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[28,3]],[420,420,4,4,-39,-39,6,6,-3,-3,4,4,0,0,0,1,1,-2,-2,0,0,0,0,0,
1,1,28,28,0,12,-4,1,1,0,0,1,1,0,0,-3,-3,0,0,0,0,-10,-2,-1,-1,2,2,0,0,1,1,-1,-1
,-10,-2,-1,-1,2,2,0,0,1,1,-1,-1],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[1120,1120,-32,-32,-68,-68,4,4,4,4,0,0,0,0,0,4,4,4,4,0,0,0,-2
,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0],[1280,1280,0,0,-16,-16,-16,-16,2,2,0,0,0,0,0,0,0,0,0,-1,-1,0,
2,2,0,0,-64,-64,0,0,0,8,8,0,0,2,2,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[35,3]],[729,729,9,9,0,0,0,0,0,0,-3,-3,1,-1,-1,0,0,0,0,1,1,-1,0,0,0,0
,-27,-27,9,9,1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,1,9,-3,0,0,3,-1,1,-1,0,0,0,0,9,-3,0
,0,3,-1,1,-1,0,0,0,0],
[TENSOR,[37,2]],
[TENSOR,[37,3]],
[TENSOR,[37,4]],[896,896,0,0,32,32,-4,-4,-4,-4,0,0,0,1,1,0,0,0,0,0,0,0,-1,-1,
0,0,0,0,16,0,0,0,0,-2,-2,0,0,0,1,0,0,0,0,0,0,16,0,-2,-2,0,0,0,1,0,0,0,0,16,0,
-2,-2,0,0,0,1,0,0,0,0],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[20,-20,4,-4,-7,7,2,-2,2,-2,4,-4,0,0,0,1,-1,-2,2,-1,1,0,-1,1,
1,-1,-8,8,0,0,0,1,-1,0,0,-2,2,0,0,-3,3,0,0,-1,1,0,0,0,0,0,0,0,0,E(3)-E(3)^2,
-E(3)+E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2
,E(3)-E(3)^2,-E(3)+E(3)^2],
[TENSOR,[45,2]],
[TENSOR,[45,3]],
[TENSOR,[45,4]],[112,-112,-16,16,4,-4,13,-13,4,-4,0,0,0,2,-2,-4,4,-1,1,0,0,0,
1,-1,0,0,0,0,0,0,0,0,0,3*E(4),-3*E(4),0,0,0,0,0,0,3*E(4),-3*E(4),0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[49,3]],[140,-140,-4,4,32,-32,14,-14,-4,4,4,-4,0,0,0,8,-8,2,-2,0,0,0,
2,-2,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[280,-280,-8,8,-44,44,10,-10,-8,8,8,-8,0,0,0,4,-4,-2,2,0,0,
0,1,-1,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],[120,-120,-8,8,12,-12,-6,6,3,-3,0,0,0,0,0,4,-4,-2,2,1,-1,
0,0,0,0,0,8,-8,0,0,0,8,-8,0,0,-1,1,0,0,0,0,0,0,1,-1,0,0,3,-3,0,0,0,0,0,0,0,0,0
,0,3,-3,0,0,0,0,0,0,0,0],
[TENSOR,[53,2]],
[TENSOR,[53,3]],
[TENSOR,[53,4]],[420,-420,20,-20,42,-42,6,-6,6,-6,4,-4,0,0,0,2,-2,2,-2,0,0,0,
0,0,-2,2,56,-56,0,0,0,2,-2,0,0,2,-2,0,0,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[57,3]],[1008,-1008,-16,16,36,-36,9,-9,0,0,0,0,0,-2,2,-4,4,-1,1,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,3*E(4),-3*E(4),0,0,0,0,0,0,-3*E(4),3*E(4),0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[59,3]],[540,-540,12,-12,-27,27,0,0,0,0,4,-4,0,0,0,-3,3,0,0,1,-1,0,0,
0,1,-1,-48,48,0,0,0,-3,3,0,0,0,0,0,0,-3,3,0,0,1,-1,0,0,0,0,0,0,0,0,E(3)-E(3)^2
,-E(3)+E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,E(3)-E(3)^2,
-E(3)+E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2],
[TENSOR,[61,2]],
[TENSOR,[61,3]],
[TENSOR,[61,4]],[1120,-1120,-32,32,-68,68,4,-4,4,-4,0,0,0,0,0,4,-4,4,-4,0,0,0
,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[1260,-1260,28,-28,-36,36,18,-18,0,0,-12,12,0,0,0,4,-4,-2,2
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0],[1280,-1280,0,0,-16,16,-16,16,2,-2,0,0,0,0,0,0,0,0,0,
-1,1,0,2,-2,0,0,-64,64,0,0,0,8,-8,0,0,2,-2,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[67,3]],[1792,-1792,0,0,64,-64,-8,8,-8,8,0,0,0,2,-2,0,0,0,0,0,0,0,-2,
2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0]],
[(48,49)(60,61),(34,35)(42,43),(54,55)(56,57)(66,67)(68,69),
(46,58)(47,59)(48,60)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)
(57,69),(27,28)(32,33)(36,37)(40,41)(44,45)(60,61)(66,67)(68,69)]);
ALF("2.U4(3).(2^2)_{133}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,7,
8,8,9,9,10,10,11,11,12,13,13,14,14,15,15,16,17,18,19,19,20,20,21,21,22,23,
24,24,25,25,26,26,27,28,29,29,30,31,32,33,34,34,35,35,36,37,38,38,39,40,
41,42,43,43,44,44]);
ALF("2.U4(3).(2^2)_{133}","2.U4(3).D8",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,34,35,36,37,
38,39,40,41,41,42,43,85,86,87,88,89,90,91,92,93,94,95,96,85,86,87,88,89,
90,91,92,93,94,95,96]);

MOT("2.U4(3).(2^2)_{1*33}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
[26127360,26127360,9216,9216,46656,46656,3888,3888,648,648,768,768,64,40,40,
576,576,144,144,28,28,32,54,54,96,96,24192,5760,5760,4608,4608,256,432,72,72,
36,64,64,40,40,288,288,72,72,28,28,2880,192,36,384,384,64,32,32,40,40,24,48,48
,2880,192,36,384,384,64,32,32,40,40,24,48,48],
[,[1,1,1,1,5,5,7,7,9,9,3,3,4,14,14,5,5,7,7,20,20,12,23,23,16,16,2,1,1,4,4,4,6,
7,7,10,11,11,14,14,17,17,19,19,21,21,1,3,9,11,11,11,13,13,14,14,16,25,25,1,3,9
,11,11,11,13,13,14,14,16,25,25],[1,2,3,4,1,2,1,2,1,2,11,12,13,14,15,3,4,3,4,20
,21,22,5,6,11,12,27,28,29,30,31,32,27,28,29,27,37,38,39,40,30,31,30,31,45,46,
47,48,47,51,50,52,54,53,56,55,48,51,50,60,61,60,64,63,65,67,66,69,68,61,64,63]
,,[1,2,3,4,5,6,7,8,9,10,11,12,13,1,2,16,17,18,19,20,21,22,23,24,25,26,27,28,29
,30,31,32,33,34,35,36,37,38,28,29,41,42,43,44,46,45,47,48,49,51,50,52,54,53,47
,47,57,59,58,60,61,62,64,63,65,67,66,60,60,70,72,71],,[1,2,3,4,5,6,7,8,9,10,11
,12,13,14,15,16,17,18,19,1,2,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,
38,39,40,41,42,43,44,27,27,47,48,49,50,51,52,53,54,56,55,57,58,59,60,61,62,63,
64,65,66,67,69,68,70,71,72]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[TENSOR,[2,3]],[21,21,5,5,-6,-6,3,3,3,3,1,1,1,1,1,2,2,-1,-1,0,0,-1,0,0,-2,-2,
-7,1,1,5,5,-3,2,1,1,-1,-1,-1,1,1,2,2,-1,-1,0,0,1,-3,1,3,3,-1,-1,-1,1,1,0,0,0,1
,-3,1,3,3,-1,-1,-1,1,1,0,0,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[70,70,6,6,16,16,7,7,-2,-2,6,6,-2,0,0,0,0,3,3,0,0,-2,1,1,0,0,
14,-10,-10,-2,-2,-2,-4,-1,-1,2,-2,-2,0,0,4,4,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[9,3]],[90,90,10,10,9,9,9,9,0,0,-2,-2,2,0,0,1,1,1,1,-1,-1,0,0,0,1,1,6
,10,10,10,10,2,-3,1,1,0,0,0,0,0,1,1,1,1,-1,-1,0,4,0,2,2,-2,0,0,0,0,1,-1,-1,0,4
,0,2,2,-2,0,0,0,0,1,-1,-1],
[TENSOR,[11,2]],
[TENSOR,[11,3]],
[TENSOR,[11,4]],[140,140,12,12,5,5,-4,-4,5,5,4,4,0,0,0,-3,-3,0,0,0,0,0,-1,-1,
1,1,28,0,0,4,4,4,1,0,0,1,0,0,0,0,1,1,-2,-2,0,0,10,2,1,2,2,2,0,0,0,0,-1,-1,-1,
10,2,1,2,2,2,0,0,0,0,-1,-1,-1],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[189,189,-3,-3,27,27,0,0,0,0,5,5,1,-1,-1,3,3,0,0,0,0,1,0,0,-1
,-1,21,9,9,-3,-3,-3,3,0,0,0,1,1,-1,-1,3,3,0,0,0,0,9,1,0,1,1,1,-1,-1,-1,-1,1,1,
1,9,1,0,1,1,1,-1,-1,-1,-1,1,1,1],
[TENSOR,[19,2]],
[TENSOR,[19,3]],
[TENSOR,[19,4]],[210,210,2,2,21,21,3,3,3,3,-2,-2,-2,0,0,5,5,-1,-1,0,0,0,0,0,1
,1,14,-10,-10,10,10,2,5,-1,-1,-1,0,0,0,0,1,1,1,1,0,0,-10,2,-1,4,4,0,0,0,0,0,-1
,1,1,-10,2,-1,4,4,0,0,0,0,0,-1,1,1],
[TENSOR,[23,2]],
[TENSOR,[23,3]],
[TENSOR,[23,4]],[1120,1120,-32,-32,40,40,22,22,4,4,0,0,0,0,0,-8,-8,-2,-2,0,0,
0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],[630,630,22,22,-18,-18,9,9,0,0,-2,-2,-2,0,0,-2,-2,1,1
,0,0,2,0,0,-2,-2,-42,-10,-10,14,14,-2,-6,-1,-1,0,2,2,0,0,2,2,-1,-1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[28,3]],[420,420,4,4,-39,-39,6,6,-3,-3,4,4,0,0,0,1,1,-2,-2,0,0,0,0,0,
1,1,28,0,0,12,12,-4,1,0,0,1,0,0,0,0,-3,-3,0,0,0,0,-10,-2,-1,2,2,2,0,0,0,0,1,-1
,-1,-10,-2,-1,2,2,2,0,0,0,0,1,-1,-1],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[1120,1120,-32,-32,-68,-68,4,4,4,4,0,0,0,0,0,4,4,4,4,0,0,0,-2
,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],[1280,1280,0,0,-16,-16,-16,-16,2,2,0,0,0,0,0,0,0,0,0,-1
,-1,0,2,2,0,0,-64,0,0,0,0,0,8,0,0,2,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[35,3]],[729,729,9,9,0,0,0,0,0,0,-3,-3,1,-1,-1,0,0,0,0,1,1,-1,0,0,0,0
,-27,9,9,9,9,1,0,0,0,0,-1,-1,-1,-1,0,0,0,0,1,1,9,-3,0,3,3,-1,1,1,-1,-1,0,0,0,9
,-3,0,3,3,-1,1,1,-1,-1,0,0,0],
[TENSOR,[37,2]],
[TENSOR,[37,3]],
[TENSOR,[37,4]],[896,896,0,0,32,32,-4,-4,-4,-4,0,0,0,1,1,0,0,0,0,0,0,0,-1,-1,
0,0,0,16,16,0,0,0,0,-2,-2,0,0,0,1,1,0,0,0,0,0,0,16,0,-2,0,0,0,0,0,1,1,0,0,0,16
,0,-2,0,0,0,0,0,1,1,0,0,0],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[40,-40,8,-8,-14,14,4,-4,4,-4,8,-8,0,0,0,2,-2,-4,4,-2,2,0,-2,
2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0],[112,-112,-16,16,4,-4,13,-13,4,-4,0,0,0,2,-2,-4,4,-1,1,0
,0,0,1,-1,0,0,0,-8,8,16,-16,0,0,1,-1,0,0,0,2,-2,4,-4,1,-1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[46,3]],[70,-70,-2,2,16,-16,7,-7,-2,2,2,-2,0,0,0,4,-4,1,-1,0,0,0,1,-1
,2,-2,0,-10,10,4,-4,0,0,-1,1,0,2,-2,0,0,-2,2,1,-1,0,0,0,0,0,2*E(8)-2*E(8)^3,
-2*E(8)+2*E(8)^3,0,E(8)-E(8)^3,-E(8)+E(8)^3,0,0,0,-E(8)+E(8)^3,E(8)-E(8)^3,0,0
,0,2*E(8)-2*E(8)^3,-2*E(8)+2*E(8)^3,0,E(8)-E(8)^3,-E(8)+E(8)^3,0,0,0,
-E(8)+E(8)^3,E(8)-E(8)^3],
[TENSOR,[48,2]],
[TENSOR,[48,3]],
[TENSOR,[48,4]],[280,-280,-8,8,-44,44,10,-10,-8,8,8,-8,0,0,0,4,-4,-2,2,0,0,0,
1,-1,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],[240,-240,-16,16,24,-24,-12,12,6,-6,0,0,0,0,0,8,-8,-4
,4,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[420,-420,20,-20,42,-42,6,-6,6,-6,4,-4,0,0,0,
2,-2,2,-2,0,0,0,0,0,-2,2,0,-20,20,-8,8,0,0,-2,2,0,0,0,0,0,4,-4,-2,2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[54,3]],[1008,-1008,-16,16,36,-36,9,-9,0,0,0,0,0,-2,2,-4,4,-1,1,0,0,0
,0,0,0,0,0,8,-8,16,-16,0,0,-1,1,0,0,0,-2,2,4,-4,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[56,3]],[1080,-1080,24,-24,-54,54,0,0,0,0,8,-8,0,0,0,-6,6,0,0,2,-2,0,
0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0],[560,-560,-16,16,-34,34,2,-2,2,-2,0,0,0,0,0,2,-2,2,-2,
0,0,0,-1,1,0,0,0,0,0,16,-16,0,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,0,
4*E(8)-4*E(8)^3,-4*E(8)+4*E(8)^3,0,0,0,0,0,0,E(8)-E(8)^3,-E(8)+E(8)^3,0,0,0,
4*E(8)-4*E(8)^3,-4*E(8)+4*E(8)^3,0,0,0,0,0,0,E(8)-E(8)^3,-E(8)+E(8)^3],
[TENSOR,[59,2]],
[TENSOR,[59,3]],
[TENSOR,[59,4]],[630,-630,14,-14,-18,18,9,-9,0,0,-6,6,0,0,0,2,-2,-1,1,0,0,0,0
,0,0,0,0,-10,10,4,-4,0,0,-1,1,0,-2,2,0,0,-2,2,1,-1,0,0,0,0,0,2*E(8)-2*E(8)^3,
-2*E(8)+2*E(8)^3,0,-E(8)+E(8)^3,E(8)-E(8)^3,0,0,0,-E(8)+E(8)^3,E(8)-E(8)^3,0,0
,0,2*E(8)-2*E(8)^3,-2*E(8)+2*E(8)^3,0,-E(8)+E(8)^3,E(8)-E(8)^3,0,0,0,
-E(8)+E(8)^3,E(8)-E(8)^3],
[TENSOR,[63,2]],
[TENSOR,[63,3]],
[TENSOR,[63,4]],[1280,-1280,0,0,-16,16,-16,16,2,-2,0,0,0,0,0,0,0,0,0,-1,1,0,2
,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,
E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[67,3]],[896,-896,0,0,32,-32,-4,4,-4,4,0,0,0,1,-1,0,0,0,0,0,0,0,-1,1,
0,0,0,-16,16,0,0,0,0,2,-2,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(5)-E(5)^2-E(5)^3+E(5)^4,-E(5)+E(5)^2+E(5)^3-E(5)^4,0,0,0,0,0,0,0,0,0,0,0,
E(5)-E(5)^2-E(5)^3+E(5)^4,-E(5)+E(5)^2+E(5)^3-E(5)^4,0,0,0],
[TENSOR,[69,2]],
[TENSOR,[69,3]],
[TENSOR,[69,4]]],
[(55,56)(68,69),(45,46),(50,51)(53,54)(58,59)(63,64)(66,67)(71,72),
(47,60)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)
(58,71)(59,72)
,(28,29)(30,31)(34,35)(37,38)(39,40)(41,42)(43,44)(63,64)(66,67)(68,69)(71,72)
]);
ALF("2.U4(3).(2^2)_{1*33}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,7,
8,8,9,9,10,10,11,11,12,13,13,14,14,15,16,16,17,17,18,19,20,20,21,22,22,23,
23,24,24,25,25,26,26,27,28,29,30,30,31,32,32,33,33,34,35,35,36,37,38,39,
39,40,41,41,42,42,43,44,44]);

MOT("2.U4(3).(2^2)_{13*3}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(55,56)(68,69),(45,46),(50,51)(53,54)(58,59)(63,64)(66,67)(71,72),
(28,29)(30,31)(34,35)(37,38)(39,40)(41,42)(43,44)(55,56)(63,64)(66,67)(71,72)]
,
["ConstructIsoclinic",[["2.U4(3).(2^2)_{1*33}"]],[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,25,26,60,61,62,63,64,65,66,67,68,69,70,71,
72]]);
ALF("2.U4(3).(2^2)_{13*3}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,7,
8,8,9,9,10,10,11,11,12,13,13,14,14,15,16,16,17,17,18,19,20,20,21,22,22,23,
23,24,24,25,25,26,26,27,28,29,30,30,31,32,32,33,33,34,35,35,36,37,38,39,
39,40,41,41,42,42,43,44,44]);

MOT("2.U4(3).(2^2)_{1*3*3}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(48,49)(60,61),(34,35)(42,43),(54,55)(56,57)(66,67)(68,69),
(27,28)(32,33)(36,37)(40,41)(44,45)(48,49)(54,55)(56,57)],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{133}"]],[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,25,26,58,59,60,61,62,63,64,65,66,67,68,
69]]);
ALF("2.U4(3).(2^2)_{1*3*3}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,8,8,9,9,10,10,11,11,12,13,13,14,14,15,15,16,17,18,19,19,20,20,21,21,22,
23,24,24,25,25,26,26,27,28,29,29,30,31,32,33,34,34,35,35,36,37,38,38,39,
40,41,42,43,43,44,44]);

MOT("2.U4(3).(2^2)_{13*3*}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(48,49)(60,61),(34,35)(42,43),(54,55)(56,57)(66,67)(68,69),
(46,58)(47,59)(48,60)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)
(57,69)
,(27,28)(32,33)(36,37)(40,41)(44,45)(60,61)(66,67)(68,69)],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{133}"]],[1..45]]);
ALF("2.U4(3).(2^2)_{13*3*}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,8,8,9,9,10,10,11,11,12,13,13,14,14,15,15,16,17,18,19,19,20,20,21,21,22,
23,24,24,25,25,26,26,27,28,29,29,30,31,32,33,34,34,35,35,36,37,38,38,39,
40,41,42,43,43,44,44]);

MOT("2.U4(3).(2^2)_{1*3*3*}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(55,56)(68,69),(45,46),(50,51)(53,54)(58,59)(63,64)(66,67)(71,72),
(47,60)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)
(58,71)(59,72)
,(28,29)(30,31)(34,35)(37,38)(39,40)(41,42)(43,44)(63,64)(66,67)(68,69)(71,72)
],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{1*33}"]],[1..46]]);
ALF("2.U4(3).(2^2)_{1*3*3*}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,8,8,9,9,10,10,11,11,12,13,13,14,14,15,16,16,17,17,18,19,20,20,21,22,22,
23,23,24,24,25,25,26,26,27,28,29,30,30,31,32,32,33,33,34,35,35,36,37,38,
39,39,40,41,41,42,42,43,44,44]);

MOT("2.U4(3).D8",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
[52254720,52254720,18432,18432,93312,93312,7776,7776,1296,1296,1536,1536,128,
80,80,1152,1152,288,288,56,56,64,108,108,192,192,96768,96768,5760,4608,512,
1728,1728,72,144,144,64,40,576,576,72,56,56,48384,48384,768,768,80,384,384,128
,128,864,864,96,96,72,72,40,40,48,48,56,56,56,56,103680,2304,384,192,2592,2592
,432,216,144,72,72,32,20,96,96,24,36,36,2880,192,72,72,192,64,16,20,48,48,48,
48],
[,[1,1,1,1,5,5,7,7,9,9,3,3,4,14,14,5,5,7,7,20,20,12,23,23,16,16,1,1,2,3,3,5,5,
8,9,9,12,15,16,16,18,20,20,27,27,27,27,29,30,30,30,30,32,32,32,32,35,35,38,38,
39,39,42,42,42,42,1,1,3,4,5,5,7,7,7,9,9,11,14,16,16,19,23,23,1,3,9,9,11,11,13,
14,16,16,25,25],[1,2,3,4,1,2,1,2,1,2,11,12,13,14,15,3,4,3,4,20,21,22,5,6,11,12
,27,28,29,30,31,27,28,29,27,28,37,38,30,30,30,42,43,44,45,46,47,48,49,50,51,52
,44,45,46,47,44,45,59,60,49,50,63,64,65,66,67,68,69,70,67,67,67,67,68,68,68,78
,79,69,69,70,71,72,85,86,85,85,89,90,91,92,86,86,89,89],,[1,2,3,4,5,6,7,8,9,10
,11,12,13,1,2,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,
37,29,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,48,48,61,62,
65,66,63,64,67,68,69,70,72,71,73,74,75,76,77,78,67,81,80,82,84,83,85,86,87,88,
89,90,91,85,94,93,96,95],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,1,2
,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,27,28,44,45,46,47
,48,49,50,51,52,53,54,55,56,57,58,60,59,61,62,44,45,44,45,67,68,69,70,71,72,73
,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1],
[TENSOR,[2,3]],[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[21,21,
5,5,-6,-6,3,3,3,3,1,1,1,1,1,2,2,-1,-1,0,0,-1,0,0,-2,-2,-7,-7,1,5,-3,2,2,1,-1,
-1,-1,1,2,2,-1,0,0,7,7,-1,-1,-1,-3,-3,1,1,-2,-2,2,2,1,1,-1,-1,0,0,0,0,0,0,9,1,
-3,1,0,0,-3,3,1,1,1,-1,-1,0,0,1,0,0,1,-3,1,1,3,-1,-1,1,0,0,0,0],
[TENSOR,[6,2]],
[TENSOR,[6,3]],
[TENSOR,[6,4]],[42,42,10,10,-12,-12,6,6,6,6,2,2,2,2,2,4,4,-2,-2,0,0,-2,0,0,-4
,-4,14,14,-2,-10,6,-4,-4,-2,2,2,2,-2,-4,-4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[70,70,6,6,16,16,7,7,-2,-2,6,6,-2,0,0,0,0,3,3,0,0,-2,1,1,0,0,14,14,-10,-2,-2,
-4,-4,-1,2,2,-2,0,4,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,
-6,2,2,10,10,1,1,-3,0,0,-2,0,2,2,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[11,2]],[70,70,6,6,16,16,7,7,-2,-2,6,6,-2,0,0,0,0,3,3,0,0,-2,1,1,0,0,
-14,-14,10,2,2,4,4,1,-2,-2,2,0,-4,-4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,20,4,-4,4,2,2,5,-1,1,-2,-2,0,0,2,2,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0
],
[TENSOR,[13,2]],[90,90,10,10,9,9,9,9,0,0,-2,-2,2,0,0,1,1,1,1,-1,-1,0,0,0,1,1,
6,6,10,10,2,-3,-3,1,0,0,0,0,1,1,1,-1,-1,6,6,-2,-2,0,4,4,0,0,-3,-3,1,1,0,0,0,0,
1,1,-1,-1,-1,-1,30,6,2,2,3,3,3,3,3,0,0,0,0,-1,-1,-1,0,0,0,4,0,0,2,-2,0,0,1,1,
-1,-1],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[180,180,20,20,18,18,18,18,0,0,-4,-4,4,0,0,2,2,2,2,-2,-2,0,0,
0,2,2,-12,-12,-20,-20,-4,6,6,-2,0,0,0,0,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0],[140,140,12,12,5,5,-4,-4,5,5,4,4,0,0,0,-3,-3,0,0,0,0,0,-1,-1,1,1,28,28,0,4
,4,1,1,0,1,1,0,0,1,1,-2,0,0,14,14,-2,-2,0,2,2,2,2,5,5,1,1,-1,-1,0,0,-1,-1,0,0,
0,0,20,4,4,0,-7,-7,2,2,-2,1,1,0,0,1,1,0,-1,-1,10,2,1,1,2,2,0,0,-1,-1,-1,-1],
[TENSOR,[20,2]],
[TENSOR,[20,3]],
[TENSOR,[20,4]],[280,280,24,24,10,10,-8,-8,10,10,8,8,0,0,0,-6,-6,0,0,0,0,0,-2
,-2,2,2,-56,-56,0,-8,-8,-2,-2,0,-2,-2,0,0,-2,-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],[189,189,-3,-3,27,27,0,0,0,0,5,5,1,-1,-1,3,3,0,0,0,0,1,0,0,-1,-1,21,21,9,
-3,-3,3,3,0,0,0,1,-1,3,3,0,0,0,21,21,5,5,-1,1,1,1,1,3,3,-1,-1,0,0,-1,-1,1,1,0,
0,0,0,9,9,1,-3,9,9,0,0,0,0,0,1,-1,1,1,0,0,0,9,1,0,0,1,1,-1,-1,1,1,1,1],
[TENSOR,[25,2]],
[TENSOR,[25,3]],
[TENSOR,[25,4]],[378,378,-6,-6,54,54,0,0,0,0,10,10,2,-2,-2,6,6,0,0,0,0,2,0,0,
-2,-2,-42,-42,-18,6,6,-6,-6,0,0,0,-2,2,-6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
],[210,210,2,2,21,21,3,3,3,3,-2,-2,-2,0,0,5,5,-1,-1,0,0,0,0,0,1,1,14,14,-10,10
,2,5,5,-1,-1,-1,0,0,1,1,1,0,0,28,28,4,4,0,2,2,-2,-2,1,1,1,1,1,1,0,0,-1,-1,0,0,
0,0,30,-10,2,-2,3,3,3,3,-1,-1,-1,0,0,-1,-1,1,0,0,-10,2,-1,-1,4,0,0,0,-1,-1,1,1
],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[420,420,4,4,42,42,6,6,6,6,-4,-4,-4,0,0,10,10,-2,-2,0,0,0,0,0
,2,2,-28,-28,20,-20,-4,-10,-10,2,2,2,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],[1120,1120,-32,-32,40,40,22,22,4,4,0,0,0,0,0,-8,-8,-2,-2,0,0,0,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
80,-16,0,0,8,8,2,-4,2,2,2,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[35,2]],[630,630,22,22,-18,-18,9,9,0,0,-2,-2,-2,0,0,-2,-2,1,1,0,0,2,0
,0,-2,-2,-42,-42,-10,14,-2,-6,-6,-1,0,0,2,0,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,90,-6,-6,2,0,0,-3,3,-3,0,0,2,0,0,0,-1,0,0,0,0,0,0,0,0,0
,0,0,0,0,0],
[TENSOR,[37,2]],[630,630,22,22,-18,-18,9,9,0,0,-2,-2,-2,0,0,-2,-2,1,1,0,0,2,0
,0,-2,-2,42,42,10,-14,2,6,6,1,0,0,-2,0,-2,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,60,12,4,4,6,6,-3,-3,-3,0,0,0,0,-2,-2,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0],
[TENSOR,[39,2]],[420,420,4,4,-39,-39,6,6,-3,-3,4,4,0,0,0,1,1,-2,-2,0,0,0,0,0,
1,1,28,28,0,12,-4,1,1,0,1,1,0,0,-3,-3,0,0,0,14,14,-2,-2,0,-2,-2,-2,-2,5,5,1,1,
-1,-1,0,0,1,1,0,0,0,0,60,-4,4,0,-3,-3,-6,0,2,-1,-1,0,0,1,1,0,0,0,-10,-2,-1,-1,
2,2,0,0,1,1,-1,-1],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[840,840,8,8,-78,-78,12,12,-6,-6,8,8,0,0,0,2,2,-4,-4,0,0,0,0,
0,2,2,-56,-56,0,-24,8,-2,-2,0,-2,-2,0,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
,[1120,1120,-32,-32,-68,-68,4,4,4,4,0,0,0,0,0,4,4,4,4,0,0,0,-2,-2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,56,56,-8,-8,0,0,0,0,0,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[46,3]],[1280,1280,0,0,-16,-16,-16,-16,2,2,0,0,0,0,0,0,0,0,0,-1,-1,0,
2,2,0,0,-64,-64,0,0,0,8,8,0,2,2,0,0,0,0,0,-1,-1,64,64,0,0,0,0,0,0,0,-8,-8,0,0,
-2,-2,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],
[TENSOR,[48,3]],[1280,1280,0,0,-16,-16,-16,-16,2,2,0,0,0,0,0,0,0,0,0,-1,-1,0,
2,2,0,0,64,64,0,0,0,-8,-8,0,-2,-2,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,
E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,
-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,
-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[50,3]],[729,729,9,9,0,0,0,0,0,0,-3,-3,1,-1,-1,0,0,0,0,1,1,-1,0,0,0,0
,-27,-27,9,9,1,0,0,0,0,0,-1,-1,0,0,0,1,1,27,27,3,3,1,-3,-3,1,1,0,0,0,0,0,0,1,1
,0,0,-1,-1,-1,-1,81,9,-3,-3,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,9,-3,0,0,3,-1,1,-1,0,
0,0,0],
[TENSOR,[52,2]],
[TENSOR,[52,3]],
[TENSOR,[52,4]],[1458,1458,18,18,0,0,0,0,0,0,-6,-6,2,-2,-2,0,0,0,0,2,2,-2,0,0
,0,0,54,54,-18,-18,-2,0,0,0,0,0,2,2,0,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[
896,896,0,0,32,32,-4,-4,-4,-4,0,0,0,1,1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,16,0,0,0,0
,-2,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,64,0,0,0
,-8,-8,4,-2,0,0,0,0,-1,0,0,0,1,1,16,0,-2,-2,0,0,0,1,0,0,0,0],
[TENSOR,[57,2]],
[TENSOR,[57,3]],
[TENSOR,[57,4]],[1792,1792,0,0,64,64,-8,-8,-8,-8,0,0,0,2,2,0,0,0,0,0,0,0,-2,
-2,0,0,0,0,-32,0,0,0,0,4,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[20,
-20,4,-4,-7,7,2,-2,2,-2,4,-4,0,0,0,1,-1,-2,2,-1,1,0,-1,1,1,-1,-8,8,0,0,0,1,-1,
0,-2,2,0,0,-3,3,0,-1,1,-6,6,2,-2,0,2,-2,-2,2,3,-3,-1,1,0,0,0,0,-1,1,1,-1,1,-1,
0,0,0,0,3*E(3)-3*E(3)^2,-3*E(3)+3*E(3)^2,0,0,0,0,0,0,0,E(3)-E(3)^2,
-E(3)+E(3)^2,0,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,
E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2],
[TENSOR,[62,2]],
[TENSOR,[62,3]],
[TENSOR,[62,4]],[40,-40,8,-8,-14,14,4,-4,4,-4,8,-8,0,0,0,2,-2,-4,4,-2,2,0,-2,
2,2,-2,16,-16,0,0,0,-2,2,0,4,-4,0,0,6,-6,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[
224,-224,-32,32,8,-8,26,-26,8,-8,0,0,0,4,-4,-8,8,-2,2,0,0,0,2,-2,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[140,-140,-4,4,32,-32,14
,-14,-4,4,4,-4,0,0,0,8,-8,2,-2,0,0,0,2,-2,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,14,-14,6,-6,0,2,-2,-2,2,-4,4,0,0,2,-2,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[68,3]],[280,-280,-8,8,-44,44,10,-10,-8,8,8,-8,0,0,0,4,-4,-2,2,0,0,0,
1,-1,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,6*E(3)-6*E(3)^2,-6*E(3)+6*E(3)^2,0,0,0,0,0,0,0,
2*E(3)-2*E(3)^2,-2*E(3)+2*E(3)^2,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0],
[TENSOR,[70,2]],[120,-120,-8,8,12,-12,-6,6,3,-3,0,0,0,0,0,4,-4,-2,2,1,-1,0,0,
0,0,0,8,-8,0,0,0,8,-8,0,-1,1,0,0,0,0,0,1,-1,20,-20,4,-4,0,0,0,0,0,2,-2,-2,2,-1
,1,0,0,0,0,-1,1,-1,1,0,0,0,0,0,0,0,0,0,3,-3,0,0,0,0,0,0,0,0,0,3,-3,0,0,0,0,0,0
,0,0],
[TENSOR,[72,2]],
[TENSOR,[72,3]],
[TENSOR,[72,4]],[240,-240,-16,16,24,-24,-12,12,6,-6,0,0,0,0,0,8,-8,-4,4,2,-2,
0,0,0,0,0,-16,16,0,0,0,-16,16,0,2,-2,0,0,0,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],[420,-420,20,-20,42,-42,6,-6,6,-6,4,-4,0,0,0,2,-2,2,-2,0,0,0,0,0,-2,2,56,
-56,0,0,0,2,-2,0,2,-2,0,0,-6,6,0,0,0,42,-42,2,-2,0,6,-6,2,-2,6,-6,2,-2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[77,3]],[420,-420,20,-20,42,-42,6,-6,6,-6,4,-4,0,0,0,2,-2,2,-2,0,0,0,
0,0,-2,2,-56,56,0,0,0,-2,2,0,-2,2,0,0,6,-6,0,0,0,14,-14,6,-6,0,-2,2,2,-2,-4,4,
0,0,2,-2,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0],
[TENSOR,[79,3]],[2016,-2016,-32,32,72,-72,18,-18,0,0,0,0,0,-4,4,-8,8,-2,2,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[540
,-540,12,-12,-27,27,0,0,0,0,4,-4,0,0,0,-3,3,0,0,1,-1,0,0,0,1,-1,-48,48,0,0,0,
-3,3,0,0,0,0,0,-3,3,0,1,-1,6,-6,-2,2,0,2,-2,-2,2,-3,3,1,-1,0,0,0,0,-1,1,-1,1,
-1,1,0,0,0,0,-9*E(3)+9*E(3)^2,9*E(3)-9*E(3)^2,0,0,0,0,0,0,0,E(3)-E(3)^2,
-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,-E(3)+E(3)^2,
E(3)-E(3)^2],
[TENSOR,[82,2]],
[TENSOR,[82,3]],
[TENSOR,[82,4]],[1080,-1080,24,-24,-54,54,0,0,0,0,8,-8,0,0,0,-6,6,0,0,2,-2,0,
0,0,2,-2,96,-96,0,0,0,6,-6,0,0,0,0,0,6,-6,0,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1120,-1120,-32,32,-68,68,4,-4,4,-4,0,0,0,0,0,4,-4,4,-4,0,0,0,-2,2,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,56,-56,-8,8,0,0,0,0,0,2,-2,-2,2,2,-2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[87,3]],[1260,-1260,28,-28,-36,36,18,-18,0,0,-12,12,0,0,0,4,-4,-2,2,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,42,-42,2,-2,0,-6,6,-2,2,6,-6,2,
-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],
[TENSOR,[89,3]],[1280,-1280,0,0,-16,16,-16,16,2,-2,0,0,0,0,0,0,0,0,0,-1,1,0,2
,-2,0,0,-64,64,0,0,0,8,-8,0,2,-2,0,0,0,0,0,-1,1,64,-64,0,0,0,0,0,0,0,-8,8,0,0,
-2,2,0,0,0,0,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],
[TENSOR,[91,3]],[1280,-1280,0,0,-16,16,-16,16,2,-2,0,0,0,0,0,0,0,0,0,-1,1,0,2
,-2,0,0,64,-64,0,0,0,-8,8,0,-2,2,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,
-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,
-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,
E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[93,3]],[1792,-1792,0,0,64,-64,-8,8,-8,8,0,0,0,2,-2,0,0,0,0,0,0,0,-2,
2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(40)^7+E(40)^13-E(40)^21-E(40)^23-E(40)^29+E(40)^31+E(40)^37+E(40)^39,
E(40)^7-E(40)^13+E(40)^21+E(40)^23+E(40)^29-E(40)^31-E(40)^37-E(40)^39,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[95,3]]],
[(76,77)(87,88),(63,65)(64,66),(59,60),(71,72)(80,81)(83,84)(93,94)(95,96),
(44,45)(46,47)(49,50)(51,52)(53,54)(55,56)(57,58)(61,62)(63,64)(65,66)(87,88)
(93,94)(95,96)]);

MOT("O8+(3)M16",
[
"16th maximal subgroup of O8+(3),\n",
"differs from O8+(3)M15 only by fusion map"
],
0,
0,
0,
0,
["ConstructPermuted",["2.U4(3).(2^2)_{122}"]]);
ALF("O8+(3)M16","O8+(3)",[1,3,5,3,6,28,8,32,11,35,17,44,19,23,21,25,73,30,
28,38,32,41,35,55,98,57,59,107,62,110,76,84,2,4,21,19,23,27,29,90,93,43,
45,57,113,77,75,79,82,97,99,3,5,23,21,28,28,35,32,41,51,53,56,73,84,84,90,
107,107,3,5,23,21,28,28,32,35,38,52,50,56,73,84,84,93,110,110],[
"fusion map is unique up to table automorphisms,\n",
"equal to the map from O8+(3)M15, mapped under an outer autom."
]);
ALF("O8+(3)M16","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,10,
10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,20,21,22,22,23,24,25,
25,26,27,28,28,29,30,31,31,32,33,34,35,36,36,37,38,39,40,40,41,42,43,43,
44,45,45,46,47,48,49,50,50,51,52,53,54,54,55,56,57,57,58,59,59]);

MOT("O8+(3)M17",
[
"17th maximal subgroup of O8+(3),\n",
"differs from O8+(3)M15 only by fusion map"
],
0,
0,
0,
0,
["ConstructPermuted",["2.U4(3).(2^2)_{122}"]]);
ALF("O8+(3)M17","O8+(3)",[1,4,5,4,6,29,9,33,12,36,17,45,19,23,22,26,74,30,
29,39,33,42,36,55,99,57,60,108,63,111,77,84,2,3,22,19,23,27,28,91,94,43,
44,57,114,76,75,80,83,97,98,4,5,23,22,29,29,36,33,42,51,52,56,74,84,84,91,
108,108,4,5,23,22,29,29,33,36,39,53,50,56,74,84,84,94,111,111],[
"fusion map is unique up to table automorphisms,\n",
"equal to the map from O8+(3)M15, mapped under an outer autom."
]);
ALF("O8+(3)M17","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,10,
10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,20,21,22,22,23,24,25,
25,26,27,28,28,29,30,31,31,32,33,34,35,36,36,37,38,39,40,40,41,42,43,43,
44,45,45,46,47,48,49,50,50,51,52,53,54,54,55,56,57,57,58,59,59]);

MOT("3^2.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[29393280,29393280,29393280,29393280,29393280,29393280,29393280,29393280,
29393280,10368,10368,10368,10368,10368,10368,10368,10368,10368,52488,52488,
52488,52488,52488,52488,52488,52488,52488,2916,2916,2916,2916,2916,2916,81,864
,864,864,864,864,864,864,864,864,144,144,144,144,144,144,144,144,144,45,45,45,
45,45,45,45,45,45,648,648,648,648,648,648,648,648,648,324,324,324,324,324,324,
324,324,324,324,324,324,324,324,324,324,324,324,63,63,63,63,63,63,63,63,63,63,
63,63,63,63,63,63,63,63,72,72,72,72,72,72,72,72,72,81,81,81,81,81,81,81,81,81,
81,81,81,108,108,108,108,108,108,108,108,108],
[,[1,3,2,7,9,8,4,6,5,1,3,2,7,9,8,4,6,5,19,21,20,25,27,26,22,24,23,28,30,29,32,
31,33,34,10,12,11,16,18,17,13,15,14,10,12,11,16,18,17,13,15,14,53,55,54,59,61,
60,56,58,57,19,21,20,25,27,26,22,24,23,28,30,29,28,30,29,28,30,29,33,32,31,31,
33,32,32,31,33,89,91,90,95,97,96,92,94,93,98,100,99,104,106,105,101,103,102,35
,37,36,41,43,42,38,40,39,119,121,120,116,118,117,126,125,127,123,122,124,62,64
,63,68,70,69,65,67,66],[1,1,1,1,1,1,1,1,1,10,10,10,10,10,10,10,10,10,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,35,35,35,35,35,35,35,35,35,44,44,44,44,44,44,44,44,44,
53,53,53,53,53,53,53,53,53,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,98,98,98,98,98,98,98,98,98,89,89,89,89,89,89,89,
89,89,107,107,107,107,107,107,107,107,107,27,27,27,23,23,23,25,25,25,22,22,22,
35,35,35,35,35,35,35,35,35],,[1,3,2,7,9,8,4,6,5,10,12,11,16,18,17,13,15,14,19,
21,20,25,27,26,22,24,23,28,30,29,32,31,33,34,35,37,36,41,43,42,38,40,39,44,46,
45,50,52,51,47,49,48,1,3,2,7,9,8,4,6,5,62,64,63,68,70,69,65,67,66,71,73,72,77,
79,78,74,76,75,80,82,81,86,88,87,83,85,84,98,100,99,104,106,105,101,103,102,89
,91,90,95,97,96,92,94,93,107,109,108,113,115,114,110,112,111,119,121,120,116,
118,117,126,125,127,123,122,124,128,130,129,134,136,135,131,133,132],,[1,2,3,4
,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,
32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,
58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,
84,85,86,87,88,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,107,108,109,110,111,112,113
,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,
133,134,135,136]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[21,21,21,21,21,21,21,21,21,5,5,5,5,5
,5,5,5,5,-6,-6,-6,-6,-6,-6,-6,-6,-6,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,
-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2],[35,35,35,35,35,35,
35,35,35,3,3,3,3,3,3,3,3,3,8,8,8,8,8,8,8,8,8,8,8,8,-1,-1,-1,-1,3,3,3,3,3,3,3,3
,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,
-1,-1,-1,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0],[35,35,35,35,35,35,
35,35,35,3,3,3,3,3,3,3,3,3,8,8,8,8,8,8,8,8,8,-1,-1,-1,8,8,8,-1,3,3,3,3,3,3,3,3
,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,
3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0],[90,90,90,90,90,90,
90,90,90,10,10,10,10,10,10,10,10,10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,-2,-2,-2,
-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1],[140,140,
140,140,140,140,140,140,140,12,12,12,12,12,12,12,12,12,5,5,5,5,5,5,5,5,5,-4,-4
,-4,-4,-4,-4,5,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,
-3,-3,-3,-3,-3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,
1,1,1],[189,189,189,189,189,189,189,189,189,-3,-3,-3,-3,-3,-3,-3,-3,-3,27,27,
27,27,27,27,27,27,27,0,0,0,0,0,0,0,5,5,5,5,5,5,5,5,5,1,1,1,1,1,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,
-1,-1,-1,-1,-1,-1,-1,-1],[210,210,210,210,210,210,210,210,210,2,2,2,2,2,2,2,2,
2,21,21,21,21,21,21,21,21,21,3,3,3,3,3,3,3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,5,5,5,5,5,5,5,5,5,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1],[280,280,280,280,280,280,280
,280,280,-8,-8,-8,-8,-8,-8,-8,-8,-8,10,10,10,10,10,10,10,10,10,10,10,10,1,1,1,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0],
[GALOIS,[9,2]],[280,280,280,280,280,280,280,280,280,-8,-8,-8,-8,-8,-8,-8,-8,
-8,10,10,10,10,10,10,10,10,10,1,1,1,10,10,10,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,1,1,1,1,1,1,1,1,1,-2,-2,-2,
-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,
1,1,1,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0],
[GALOIS,[11,2]],[315,315,315,315,315,315,315,315,315,11,11,11,11,11,11,11,11,
11,-9,-9,-9,-9,-9,-9,-9,-9,-9,18,18,18,-9,-9,-9,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,
2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1
,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1],[315,315,
315,315,315,315,315,315,315,11,11,11,11,11,11,11,11,11,-9,-9,-9,-9,-9,-9,-9,-9
,-9,-9,-9,-9,18,18,18,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,
2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,
0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1],[420,420,420,420,420,420,420,420,420,4
,4,4,4,4,4,4,4,4,-39,-39,-39,-39,-39,-39,-39,-39,-39,6,6,6,6,6,6,-3,4,4,4,4,4,
4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1],[560,560,560,560,560
,560,560,560,560,-16,-16,-16,-16,-16,-16,-16,-16,-16,-34,-34,-34,-34,-34,-34,
-34,-34,-34,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,
0,0,0,0],[640,640,640,640,640,640,640,640,640,0,0,0,0,0,0,0,0,0,-8,-8,-8,-8,-8
,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0
,0],
[GALOIS,[17,3]],[729,729,729,729,729,729,729,729,729,9,9,9,9,9,9,9,9,9,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,1,1,1,1,1,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],[896,896,896,896,896,896,896,896,896,0,0,0,0,0,0,0,0,
0,32,32,32,32,32,32,32,32,32,-4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0],[36,36,36,36*E(3),36*E(3),36*E(3),36*E(3)^2,
36*E(3)^2,36*E(3)^2,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,9,9,
9,9*E(3),9*E(3),9*E(3),9*E(3)^2,9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,4,4,4,4*E(3),
4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,1,1,1,E(3),E(3),
E(3),E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,-2,-2,-2,
-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3)
,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,
E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2],
[GALOIS,[21,2]],[45,45,45,45*E(3),45*E(3),45*E(3),45*E(3)^2,45*E(3)^2,
45*E(3)^2,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-9,-9
,-9,-9*E(3),-9*E(3),-9*E(3),-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,0,0,0,0,0,0,0,1,1,1,
E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,
0,0,0,0,0,0,0,0,0,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20
,E(21)^5+E(21)^17+E(21)^20,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(21)^2+E(21)^8+E(21)^11,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2],
[GALOIS,[23,2]],
[GALOIS,[23,10]],
[GALOIS,[23,5]],[126,126,126,126*E(3),126*E(3),126*E(3),126*E(3)^2,126*E(3)^2
,126*E(3)^2,14,14,14,14*E(3),14*E(3),14*E(3),14*E(3)^2,14*E(3)^2,14*E(3)^2,-9,
-9,-9,-9*E(3),-9*E(3),-9*E(3),-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,0,0,0,0,0,0,0,2,2,
2,2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,2*E(3),2*E(3),2*E(3),
2*E(3)^2,2*E(3)^2,2*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,
-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3)^2,
2*E(3)^2,2*E(3)^2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,
-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[27,2]],[189,189,189,189*E(3),189*E(3),189*E(3),189*E(3)^2,189*E(3)^2
,189*E(3)^2,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,27,
27,27,27*E(3),27*E(3),27*E(3),27*E(3)^2,27*E(3)^2,27*E(3)^2,0,0,0,0,0,0,0,5,5,
5,5*E(3),5*E(3),5*E(3),5*E(3)^2,5*E(3)^2,5*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,
E(3)^2,E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,3,3,3,3*E(3),
3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,0
,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[29,2]],[315,315,315,315*E(3),315*E(3),315*E(3),315*E(3)^2,315*E(3)^2
,315*E(3)^2,11,11,11,11*E(3),11*E(3),11*E(3),11*E(3)^2,11*E(3)^2,11*E(3)^2,18,
18,18,18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,-1,
-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3)^2,
2*E(3)^2,2*E(3)^2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,
2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,
2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2],
[GALOIS,[31,2]],[315,315,315,315*E(3),315*E(3),315*E(3),315*E(3)^2,315*E(3)^2
,315*E(3)^2,-5,-5,-5,-5*E(3),-5*E(3),-5*E(3),-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,18,
18,18,18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,3,3,
3,3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,
-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[33,2]],[315,315,315,315*E(3),315*E(3),315*E(3),315*E(3)^2,315*E(3)^2
,315*E(3)^2,-5,-5,-5,-5*E(3),-5*E(3),-5*E(3),-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,18,
18,18,18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,3,3,
3,3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,
4*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,
-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[35,2]],[630,630,630,630*E(3),630*E(3),630*E(3),630*E(3)^2,630*E(3)^2
,630*E(3)^2,6,6,6,6*E(3),6*E(3),6*E(3),6*E(3)^2,6*E(3)^2,6*E(3)^2,-45,-45,-45,
-45*E(3),-45*E(3),-45*E(3),-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,0,0,0,0,0,0,0,2,2,
2,2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3),
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,3,3,3,3*E(3),3*E(3),
3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1
,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[37,2]],[720,720,720,720*E(3),720*E(3),720*E(3),720*E(3)^2,720*E(3)^2
,720*E(3)^2,16,16,16,16*E(3),16*E(3),16*E(3),16*E(3)^2,16*E(3)^2,16*E(3)^2,18,
18,18,18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2*E(3),-2*E(3),
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-1,-1,
-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[39,2]],[729,729,729,729*E(3),729*E(3),729*E(3),729*E(3)^2,729*E(3)^2
,729*E(3)^2,9,9,9,9*E(3),9*E(3),9*E(3),9*E(3)^2,9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3)
,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,
E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[41,2]],[756,756,756,756*E(3),756*E(3),756*E(3),756*E(3)^2,756*E(3)^2
,756*E(3)^2,-12,-12,-12,-12*E(3),-12*E(3),-12*E(3),-12*E(3)^2,-12*E(3)^2,
-12*E(3)^2,27,27,27,27*E(3),27*E(3),27*E(3),27*E(3)^2,27*E(3)^2,27*E(3)^2,0,0,
0,0,0,0,0,-4,-4,-4,-4*E(3),-4*E(3),-4*E(3),-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,0,0,0
,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,3,3,3,3*E(3),3*E(3),
3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1
,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[43,2]],[945,945,945,945*E(3),945*E(3),945*E(3),945*E(3)^2,945*E(3)^2
,945*E(3)^2,-15,-15,-15,-15*E(3),-15*E(3),-15*E(3),-15*E(3)^2,-15*E(3)^2,
-15*E(3)^2,-27,-27,-27,-27*E(3),-27*E(3),-27*E(3),-27*E(3)^2,-27*E(3)^2,
-27*E(3)^2,0,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),
E(3),E(3),E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3*E(3),-3*E(3),
-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,0,0,
0,0,0,0,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2],
[GALOIS,[45,2]],[15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,6,6*E(3),6*E(3)^2
,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[47,2]],[21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,6,6*E(3),6*E(3)^2,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,0,0,0,0,0
,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[49,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3)
,105*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2
,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[51,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3)
,105*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,3,3*E(3),3*E(3)^2,
0,0,0,0,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,
0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[53,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3)
,105*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,-12,-12*E(3)
,-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,12,12*E(3),
12*E(3)^2,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2],
[GALOIS,[55,2]],[210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3)
,210*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,15,15*E(3),15*E(3)^2,0,0,0,0,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[57,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)
,315*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-36
,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,9,9*E(3),
9*E(3)^2,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[59,2]],[336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3)
,336*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,-6,
-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,6,6*E(3),6*E(3)^2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)
,E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[61,2]],[360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3)
,360*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,-18,-18*E(3)
,-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-9,-9*E(3),
-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2
,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[63,2]],
[GALOIS,[63,10]],
[GALOIS,[63,5]],[384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3)
,384*E(3)^2,0,0,0,0,0,0,0,0,0,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,
24*E(3),24*E(3)^2,12,12*E(3),12*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[67,2]],[420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3)
,420*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,33,33*E(3),
33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,-6,-6*E(3),-6*E(3)^2,0,0,0
,0,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[69,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3)
,630*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,-9,-9*E(3),-9*E(3)^2,0,0,0,0,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,
-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,
3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)
,-E(3)^2],
[GALOIS,[71,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3)
,729*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[73,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3)
,756*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),
-12*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,0,0,
0,0,0,0,0,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,0,0,0
,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[75,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3)
,945*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),
-15*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),
-27*E(3)^2,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,0,0
,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[77,2]],[15,15*E(3),15*E(3)^2,15*E(3)^2,15,15*E(3),15*E(3),15*E(3)^2,
15,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,6,6*E(3),6*E(3)^2,
6*E(3)^2,6,6*E(3),6*E(3),6*E(3)^2,6,0,0,0,3*E(3),3*E(3)^2,3,0,3,3*E(3),
3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3)
,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)
,2*E(3)^2,2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),
E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3)
,E(3),E(3)^2,1,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0],
[GALOIS,[79,2]],[21,21*E(3),21*E(3)^2,21*E(3)^2,21,21*E(3),21*E(3),21*E(3)^2,
21,5,5*E(3),5*E(3)^2,5*E(3)^2,5,5*E(3),5*E(3),5*E(3)^2,5,3,3*E(3),3*E(3)^2,
3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,0,0,0,6*E(3),6*E(3)^2,6,0,1,E(3),E(3)^2,
E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2,2*E(3),
2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1],
[GALOIS,[81,2]],[105,105*E(3),105*E(3)^2,105*E(3)^2,105,105*E(3),105*E(3),
105*E(3)^2,105,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3),9*E(3)^2,9,15,
15*E(3),15*E(3)^2,15*E(3)^2,15,15*E(3),15*E(3),15*E(3)^2,15,0,0,0,3*E(3),
3*E(3)^2,3,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,
E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),
3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)
,3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),
E(3),E(3)^2,1,0,0,0,0,0,0,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),
E(3)^2,1],
[GALOIS,[83,2]],[105,105*E(3),105*E(3)^2,105*E(3)^2,105,105*E(3),105*E(3),
105*E(3)^2,105,-7,-7*E(3),-7*E(3)^2,-7*E(3)^2,-7,-7*E(3),-7*E(3),-7*E(3)^2,-7,
15,15*E(3),15*E(3)^2,15*E(3)^2,15,15*E(3),15*E(3),15*E(3)^2,15,0,0,0,3*E(3),
3*E(3)^2,3,0,5,5*E(3),5*E(3)^2,5*E(3)^2,5,5*E(3),5*E(3),5*E(3)^2,5,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3)^2,
-1,-E(3),-E(3),-E(3)^2,-1,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,
2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1],
[GALOIS,[85,2]],[105,105*E(3),105*E(3)^2,105*E(3)^2,105,105*E(3),105*E(3),
105*E(3)^2,105,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3),9*E(3)^2,9,-12,
-12*E(3),-12*E(3)^2,-12*E(3)^2,-12,-12*E(3),-12*E(3),-12*E(3)^2,-12,0,0,0,
12*E(3),12*E(3)^2,12,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),E(3)^2
,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,
E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2],
[GALOIS,[87,2]],[210,210*E(3),210*E(3)^2,210*E(3)^2,210,210*E(3),210*E(3),
210*E(3)^2,210,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,3,3*E(3),
3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,0,0,0,15*E(3),15*E(3)^2,15,0,-2,
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,-1,-E(3)
,-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3)
,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1],
[GALOIS,[89,2]],[315,315*E(3),315*E(3)^2,315*E(3)^2,315,315*E(3),315*E(3),
315*E(3)^2,315,-5,-5*E(3),-5*E(3)^2,-5*E(3)^2,-5,-5*E(3),-5*E(3),-5*E(3)^2,-5,
-36,-36*E(3),-36*E(3)^2,-36*E(3)^2,-36,-36*E(3),-36*E(3),-36*E(3)^2,-36,0,0,0,
9*E(3),9*E(3)^2,9,0,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,4,4*E(3),
4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3),4*E(3)^2,4,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2
,-2*E(3),-2*E(3),-2*E(3)^2,-2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,
-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[91,2]],[336,336*E(3),336*E(3)^2,336*E(3)^2,336,336*E(3),336*E(3),
336*E(3)^2,336,16,16*E(3),16*E(3)^2,16*E(3)^2,16,16*E(3),16*E(3),16*E(3)^2,16,
-6,-6*E(3),-6*E(3)^2,-6*E(3)^2,-6,-6*E(3),-6*E(3),-6*E(3)^2,-6,0,0,0,6*E(3),
6*E(3)^2,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),
E(3),E(3)^2,1,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,
-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0],
[GALOIS,[93,2]],[360,360*E(3),360*E(3)^2,360*E(3)^2,360,360*E(3),360*E(3),
360*E(3)^2,360,8,8*E(3),8*E(3)^2,8*E(3)^2,8,8*E(3),8*E(3),8*E(3)^2,8,-18,
-18*E(3),-18*E(3)^2,-18*E(3)^2,-18,-18*E(3),-18*E(3),-18*E(3)^2,-18,0,0,0,
-9*E(3),-9*E(3)^2,-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2
,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2,2*E(3),2*E(3)^2,
2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[95,2]],
[GALOIS,[95,10]],
[GALOIS,[95,5]],[384,384*E(3),384*E(3)^2,384*E(3)^2,384,384*E(3),384*E(3),
384*E(3)^2,384,0,0,0,0,0,0,0,0,0,24,24*E(3),24*E(3)^2,24*E(3)^2,24,24*E(3),
24*E(3),24*E(3)^2,24,0,0,0,12*E(3),12*E(3)^2,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0],
[GALOIS,[99,2]],[420,420*E(3),420*E(3)^2,420*E(3)^2,420,420*E(3),420*E(3),
420*E(3)^2,420,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3),4*E(3)^2,4,33,
33*E(3),33*E(3)^2,33*E(3)^2,33,33*E(3),33*E(3),33*E(3)^2,33,0,0,0,-6*E(3),
-6*E(3)^2,-6,0,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3),4*E(3)^2,4,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,-2,
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,1,E(3),E(3)^2,E(3)^2,1
,E(3),E(3),E(3)^2,1],
[GALOIS,[101,2]],[630,630*E(3),630*E(3)^2,630*E(3)^2,630,630*E(3),630*E(3),
630*E(3)^2,630,6,6*E(3),6*E(3)^2,6*E(3)^2,6,6*E(3),6*E(3),6*E(3)^2,6,9,9*E(3),
9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3),9*E(3)^2,9,0,0,0,-9*E(3),-9*E(3)^2,-9,0,2,
2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,-3,-3*E(3),
-3*E(3)^2,-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,0,0,0,0,0,0,0,0,0,3,3*E(3)
,3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3)^2,-1,
-E(3),-E(3),-E(3)^2,-1],
[GALOIS,[103,2]],[729,729*E(3),729*E(3)^2,729*E(3)^2,729,729*E(3),729*E(3),
729*E(3)^2,729,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3),9*E(3)^2,9,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3*E(3)^2,-3,-3*E(3),-3*E(3),
-3*E(3)^2,-3,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,-1,-E(3),-E(3)^2,
-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,
E(3),E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[105,2]],[756,756*E(3),756*E(3)^2,756*E(3)^2,756,756*E(3),756*E(3),
756*E(3)^2,756,-12,-12*E(3),-12*E(3)^2,-12*E(3)^2,-12,-12*E(3),-12*E(3),
-12*E(3)^2,-12,27,27*E(3),27*E(3)^2,27*E(3)^2,27,27*E(3),27*E(3),27*E(3)^2,27,
0,0,0,0,0,0,0,-4,-4*E(3),-4*E(3)^2,-4*E(3)^2,-4,-4*E(3),-4*E(3),-4*E(3)^2,-4,0
,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,3,3*E(3),3*E(3)^2,
3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1],
[GALOIS,[107,2]],[945,945*E(3),945*E(3)^2,945*E(3)^2,945,945*E(3),945*E(3),
945*E(3)^2,945,-15,-15*E(3),-15*E(3)^2,-15*E(3)^2,-15,-15*E(3),-15*E(3),
-15*E(3)^2,-15,-27,-27*E(3),-27*E(3)^2,-27*E(3)^2,-27,-27*E(3),-27*E(3),
-27*E(3)^2,-27,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,
-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,
0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1],
[GALOIS,[109,2]],[36,36*E(3),36*E(3)^2,36*E(3),36*E(3)^2,36,36*E(3)^2,36,
36*E(3),4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),9,9*E(3),
9*E(3)^2,9*E(3),9*E(3)^2,9,9*E(3)^2,9,9*E(3),0,0,0,0,0,0,0,4,4*E(3),4*E(3)^2,
4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3),
E(3)^2,1,E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),-2,-2*E(3),
-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,
-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1
,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3)],
[GALOIS,[111,2]],[45,45*E(3),45*E(3)^2,45*E(3),45*E(3)^2,45,45*E(3)^2,45,
45*E(3),-3,-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-9,
-9*E(3),-9*E(3)^2,-9*E(3),-9*E(3)^2,-9,-9*E(3)^2,-9,-9*E(3),0,0,0,0,0,0,0,1,
E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,
E(3),0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,-1,-E(3),
-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3)],
[GALOIS,[113,2]],
[GALOIS,[113,10]],
[GALOIS,[113,5]],[126,126*E(3),126*E(3)^2,126*E(3),126*E(3)^2,126,126*E(3)^2,
126,126*E(3),14,14*E(3),14*E(3)^2,14*E(3),14*E(3)^2,14,14*E(3)^2,14,14*E(3),-9
,-9*E(3),-9*E(3)^2,-9*E(3),-9*E(3)^2,-9,-9*E(3)^2,-9,-9*E(3),0,0,0,0,0,0,0,2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2*E(3),
2*E(3)^2,2,2*E(3)^2,2,2*E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),-1,
-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),2,2*E(3),2*E(3)^2,2*E(3),
2*E(3)^2,2,2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,
2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3)],
[GALOIS,[117,2]],[189,189*E(3),189*E(3)^2,189*E(3),189*E(3)^2,189,189*E(3)^2,
189,189*E(3),-3,-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),27
,27*E(3),27*E(3)^2,27*E(3),27*E(3)^2,27,27*E(3)^2,27,27*E(3),0,0,0,0,0,0,0,5,
5*E(3),5*E(3)^2,5*E(3),5*E(3)^2,5,5*E(3)^2,5,5*E(3),1,E(3),E(3)^2,E(3),E(3)^2,
1,E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),3,3*E(3),
3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,
E(3),0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,
-E(3)],
[GALOIS,[119,2]],[315,315*E(3),315*E(3)^2,315*E(3),315*E(3)^2,315,315*E(3)^2,
315,315*E(3),11,11*E(3),11*E(3)^2,11*E(3),11*E(3)^2,11,11*E(3)^2,11,11*E(3),18
,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,-1,
-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2
,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,
2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3)],
[GALOIS,[121,2]],[315,315*E(3),315*E(3)^2,315*E(3),315*E(3)^2,315,315*E(3)^2,
315,315*E(3),-5,-5*E(3),-5*E(3)^2,-5*E(3),-5*E(3)^2,-5,-5*E(3)^2,-5,-5*E(3),18
,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,3,
3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),-1,-E(3),-E(3)^2,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,
-2*E(3)^2,-2,-2*E(3),4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,
-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[123,2]],[315,315*E(3),315*E(3)^2,315*E(3),315*E(3)^2,315,315*E(3)^2,
315,315*E(3),-5,-5*E(3),-5*E(3)^2,-5*E(3),-5*E(3)^2,-5,-5*E(3)^2,-5,-5*E(3),18
,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,3,
3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),-1,-E(3),-E(3)^2,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3)^2
,4,4*E(3),-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,
-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[125,2]],[630,630*E(3),630*E(3)^2,630*E(3),630*E(3)^2,630,630*E(3)^2,
630,630*E(3),6,6*E(3),6*E(3)^2,6*E(3),6*E(3)^2,6,6*E(3)^2,6,6*E(3),-45,
-45*E(3),-45*E(3)^2,-45*E(3),-45*E(3)^2,-45,-45*E(3)^2,-45,-45*E(3),0,0,0,0,0,
0,0,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),-2,-2*E(3),-2*E(3)^2
,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2
,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3)],
[GALOIS,[127,2]],[720,720*E(3),720*E(3)^2,720*E(3),720*E(3)^2,720,720*E(3)^2,
720,720*E(3),16,16*E(3),16*E(3)^2,16*E(3),16*E(3)^2,16,16*E(3)^2,16,16*E(3),18
,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,
-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,
-2*E(3)^2,-2,-2*E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-1,
-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[129,2]],[729,729*E(3),729*E(3)^2,729*E(3),729*E(3)^2,729,729*E(3)^2,
729,729*E(3),9,9*E(3),9*E(3)^2,9*E(3),9*E(3)^2,9,9*E(3)^2,9,9*E(3),0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,
-3*E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,
E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[131,2]],[756,756*E(3),756*E(3)^2,756*E(3),756*E(3)^2,756,756*E(3)^2,
756,756*E(3),-12,-12*E(3),-12*E(3)^2,-12*E(3),-12*E(3)^2,-12,-12*E(3)^2,-12,
-12*E(3),27,27*E(3),27*E(3)^2,27*E(3),27*E(3)^2,27,27*E(3)^2,27,27*E(3),0,0,0,
0,0,0,0,-4,-4*E(3),-4*E(3)^2,-4*E(3),-4*E(3)^2,-4,-4*E(3)^2,-4,-4*E(3),0,0,0,0
,0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),3,3*E(3),3*E(3)^2,3*E(3),
3*E(3)^2,3,3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),
-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3)],
[GALOIS,[133,2]],[945,945*E(3),945*E(3)^2,945*E(3),945*E(3)^2,945,945*E(3)^2,
945,945*E(3),-15,-15*E(3),-15*E(3)^2,-15*E(3),-15*E(3)^2,-15,-15*E(3)^2,-15,
-15*E(3),-27,-27*E(3),-27*E(3)^2,-27*E(3),-27*E(3)^2,-27,-27*E(3)^2,-27,
-27*E(3),0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),1,E(3),E(3)^2
,E(3),E(3)^2,1,E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3*E(3),
-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),0,0,0,0,
0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3)],
[GALOIS,[135,2]]],
[
( 89, 98)( 90, 99)( 91,100)( 92,101)( 93,102)( 94,103)( 95,104)( 96,105)
( 97,106)
,
(  4,  9)(  5,  7)(  6,  8)( 13, 18)( 14, 16)( 15, 17)( 22, 27)( 23, 25)
( 24, 26)( 28, 33)( 29, 31)( 30, 32)( 38, 43)( 39, 41)( 40, 42)( 47, 52)
( 48, 50)( 49, 51)( 56, 61)( 57, 59)( 58, 60)( 65, 70)( 66, 68)( 67, 69)
( 71, 80)( 72, 81)( 73, 82)( 74, 88)( 75, 86)( 76, 87)( 77, 84)( 78, 85)
( 79, 83)( 92, 97)( 93, 95)( 94, 96)(101,106)(102,104)(103,105)(110,115)
(111,113)(112,114)(116,125)(117,126)(118,127)(119,123)(120,124)(121,122)
(131,136)(132,134)(133,135)
,
(  2,  3)(  4,  5)(  7,  9)( 11, 12)( 13, 14)( 16, 18)( 20, 21)( 22, 23)
( 25, 27)( 28, 33)( 29, 32)( 30, 31)( 36, 37)( 38, 39)( 41, 43)( 45, 46)
( 47, 48)( 50, 52)( 54, 55)( 56, 57)( 59, 61)( 63, 64)( 65, 66)( 68, 70)
( 71, 80)( 72, 82)( 73, 81)( 74, 84)( 75, 83)( 76, 85)( 77, 88)( 78, 87)
( 79, 86)( 90, 91)( 92, 93)( 95, 97)( 99,100)(101,102)(104,106)(108,109)
(110,111)(113,115)(116,123)(117,122)(118,124)(119,125)(120,127)(121,126)
(129,130)(131,132)(134,136)
,
(  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 20, 24)( 21, 26)
( 23, 27)( 29, 30)( 36, 40)( 37, 42)( 39, 43)( 45, 49)( 46, 51)( 48, 52)
( 54, 58)( 55, 60)( 57, 61)( 63, 67)( 64, 69)( 66, 70)( 72, 76)( 73, 78)
( 75, 79)( 81, 85)( 82, 87)( 84, 88)( 90, 94)( 91, 96)( 93, 97)( 99,103)
(100,105)(102,106)(108,112)(109,114)(111,115)(116,119)(117,121)(118,120)
(129,133)(130,135)(132,136)
]);
ALF("3^2.U4(3)","3_1.U4(3)",[1,2,3,1,2,3,1,2,3,4,5,6,4,5,6,4,5,6,7,8,9,7,
8,9,7,8,9,10,11,12,13,13,13,14,15,16,17,15,16,17,15,16,17,18,19,20,18,19,
20,18,19,20,21,22,23,21,22,23,21,22,23,24,25,26,24,25,26,24,25,26,27,28,
29,27,28,29,27,28,29,30,31,32,30,31,32,30,31,32,33,34,35,33,34,35,33,34,
35,36,37,38,36,37,38,36,37,38,39,40,41,39,40,41,39,40,41,42,43,44,45,46,
47,48,48,48,49,49,49,50,51,52,50,51,52,50,51,52]);
ALF("3^2.U4(3)","3_2.U4(3)",[1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,
8,8,9,9,9,10,10,10,11,11,11,12,13,13,13,14,14,14,15,15,15,16,16,16,17,17,
17,18,18,18,19,19,19,20,20,20,21,21,21,22,22,22,23,23,23,24,24,24,25,25,
25,26,26,26,27,27,27,28,28,28,29,29,29,30,30,30,31,31,31,32,32,32,33,33,
33,34,34,34,35,35,35,36,36,36,37,37,37,38,38,38,39,39,39,40,40,40,41,41,
41,42,42,42,43,43,43,44,44,44,45,45,45,46,46,46]);
ALF("3^2.U4(3)","U4(3)",[1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,
3,3,3,4,4,4,5,5,5,6,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,
10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,
12,12,12,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,15,15,15,
15,15,15,15,15,15,16,16,16,17,17,17,18,18,18,19,19,19,20,20,20,20,20,20,
20,20,20]);
ALF("3^2.U4(3)","3^2.U4(3).2_3'",[1,2,3,5,6,4,6,4,5,7,8,9,11,12,10,12,10,
11,13,14,15,17,18,16,18,16,17,19,20,21,20,21,19,22,23,24,25,27,28,26,28,
26,27,29,30,31,33,34,32,34,32,33,35,36,37,39,40,38,40,38,39,41,42,43,45,
46,44,46,44,45,47,48,49,50,51,52,53,54,55,47,48,49,55,53,54,51,52,50,56,
57,58,60,61,59,64,62,63,56,57,58,63,64,62,61,59,60,65,66,67,69,70,68,70,
68,69,74,75,76,71,72,73,73,71,72,74,75,76,77,78,79,81,82,80,82,80,81],[
"fusion map is unique up to table autom."
]);
ALF("3^2.U4(3)","3^2.U4(3).(2^2)_{133}",[1,2,2,4,4,3,4,3,4,5,6,6,8,8,7,8,
7,8,9,10,10,12,12,11,12,11,12,13,14,14,14,14,13,15,16,17,17,19,19,18,19,
18,19,20,21,21,23,23,22,23,22,23,24,25,25,27,27,26,27,26,27,28,29,29,31,
31,30,31,30,31,32,33,33,34,35,36,34,36,35,32,33,33,35,34,36,35,36,34,37,
38,38,40,41,39,40,39,41,37,38,38,41,40,39,41,39,40,42,43,43,45,45,44,45,
44,45,46,48,47,46,47,48,48,46,47,46,48,47,49,50,50,52,52,51,52,51,52],[
"fusion map is unique up to table autom."
]);
ALF("3^2.U4(3)","3^2.U4(3).D8",[1,3,3,2,2,3,2,3,2,6,5,5,4,4,5,4,5,4,9,7,7,
8,8,7,8,7,8,11,10,10,10,10,11,12,15,13,13,14,14,13,14,13,14,17,18,18,16,
16,18,16,18,16,21,20,20,19,19,20,19,20,19,24,22,22,23,23,22,23,22,23,28,
25,25,26,27,25,26,25,27,28,25,25,27,26,25,27,25,26,31,29,29,30,30,29,30,
29,30,31,29,29,30,30,29,30,29,30,34,32,32,33,33,32,33,32,33,36,35,37,36,
37,35,35,36,37,36,35,37,40,39,39,38,38,39,38,39,38],[
"fusion map is unique"
]);

MOT("3^2.U4(3).2_3'",
[
"2nd maximal subgroup of 3.Suz,\n",
"table constructed with GAP from the tables of 3.Suz and SuzM2,\n",
"tests: 1.o.r., pow[2,3,5,7]"
],
[58786560,58786560,58786560,29393280,29393280,29393280,20736,20736,20736,
10368,10368,10368,104976,104976,104976,52488,52488,52488,2916,2916,2916,162,
1728,1728,1728,864,864,864,288,288,288,144,144,144,90,90,90,45,45,45,1296,
1296,1296,648,648,648,324,324,324,324,324,324,324,324,324,63,63,63,63,63,63,
63,63,63,144,144,144,72,72,72,81,81,81,81,81,81,216,216,216,108,108,108,4320,
4320,4320,288,288,288,18,288,288,288,96,96,96,24,24,24,30,30,30,36,36,36,72,
72,72,72,72,72],
[,[1,3,2,4,6,5,1,3,2,4,6,5,13,15,14,16,18,17,19,21,20,22,7,9,8,10,12,11,7,9,8,
10,12,11,35,37,36,38,40,39,13,15,14,16,18,17,19,21,20,19,21,20,19,21,20,56,58,
57,62,64,63,59,61,60,23,25,24,26,28,27,74,76,75,71,73,72,41,43,42,44,46,45,1,
3,2,7,9,8,22,23,25,24,23,25,24,29,31,30,35,37,36,41,43,42,77,79,78,77,79,78],[
1,1,1,1,1,1,7,7,7,7,7,7,1,1,1,1,1,1,1,1,1,1,23,23,23,23,23,23,29,29,29,29,29,
29,35,35,35,35,35,35,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,56,56,56,56,56,56,56,56,56,
65,65,65,65,65,65,18,18,18,17,17,17,23,23,23,23,23,23,83,83,83,86,86,86,83,90,
90,90,93,93,93,96,96,96,99,99,99,86,86,86,90,90,90,90,90,90],,[1,3,2,4,6,5,7,
9,8,10,12,11,13,15,14,16,18,17,19,21,20,22,23,25,24,26,28,27,29,31,30,32,34,
33,1,3,2,4,6,5,41,43,42,44,46,45,47,49,48,53,55,54,50,52,51,56,58,57,59,61,60,
62,64,63,65,67,66,68,70,69,74,76,75,71,73,72,77,79,78,80,82,81,83,85,84,86,88,
87,89,90,92,91,93,95,94,96,98,97,83,85,84,102,104,103,105,107,106,108,110,
109],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
53,54,55,1,2,3,4,5,6,4,5,6,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,
82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,
106,107,108,109,110]],
0,
[(59,62)(60,63)(61,64),(105,108)(106,109)(107,110),(  2,  3)(  5,  6)(  8,  9)
( 11, 12)( 14, 15)( 17, 18)( 20, 21)( 24, 25)( 27, 28)( 30, 31)( 33, 34)
( 36, 37)( 39, 40)( 42, 43)( 45, 46)( 48, 49)( 50, 53)( 51, 55)( 52, 54)
( 57, 58)( 60, 61)( 63, 64)( 66, 67)( 69, 70)( 71, 74)( 72, 76)( 73, 75)
( 78, 79)( 81, 82)( 84, 85)( 87, 88)( 91, 92)( 94, 95)( 97, 98)(100,101)
(103,104)(106,107)(109,110)],
["ConstructProj",[["3_2.U4(3).2_3'",[]],,["3^2.U4(3).2_3'",[-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]]]]);
ALF("3^2.U4(3).2_3'","3_2.U4(3).2_3'",[1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,
6,7,7,7,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14,14,14,15,15,15,16,
16,16,17,17,17,18,18,18,19,19,19,20,20,20,21,21,21,22,22,22,23,23,23,24,
24,24,25,25,25,26,26,26,27,27,27,28,28,28,29,29,29,30,30,30,31,32,32,32,
33,33,33,34,34,34,35,35,35,36,36,36,37,37,37,38,38,38]);
ALF("3^2.U4(3).2_3'","3.Suz",[1,2,3,10,11,12,4,5,6,35,36,37,10,11,12,13,
14,15,13,14,15,16,17,18,19,75,76,77,23,24,25,81,82,83,32,33,34,99,100,101,
35,36,37,44,45,46,44,45,46,38,39,40,41,42,43,48,49,50,111,112,113,114,115,
116,51,52,53,117,118,119,60,61,62,63,64,65,75,76,77,78,79,80,7,8,9,23,24,
25,47,51,52,53,51,52,53,57,58,59,69,70,71,81,82,83,117,118,119,117,118,
119],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
#ALF("3^2.U4(3).2_3'","3^2.U4(3).(2^2)_{133}",[1,3,3,2,4,4,5,7,7,6,8,8,9,
#11,11,10,12,12,13,14,14,15,16,18,18,17,19,19,20,22,22,21,23,23,24,26,26,
#25,27,27,28,30,30,29,31,31,32,36,36,34,35,33,34,33,35,37,39,39,38,40,41,
#38,41,40,42,44,44,43,45,45,46,47,48,46,48,47,49,51,51,50,52,52,71,72,72,
#73,74,74,75,76,77,77,78,79,79,80,81,81,82,83,83,84,85,85,86,87,88,86,88,
#87],[
#"fusion map is unique up to table autom.,\n",
#"representative compatible with factors"
#]);
#T ConstructMGA is too restrictive!!
ALF("3^2.U4(3).2_3'","3^2.U4(3).(2^2)_{133}",[1,2,2,3,4,4,5,6,6,7,8,8,9,
10,10,11,12,12,13,14,14,15,16,17,17,18,19,19,20,21,21,22,23,23,24,25,25,
26,27,27,28,29,29,30,31,31,32,33,33,34,35,36,34,36,35,37,38,38,39,40,41,
39,41,40,42,43,43,44,45,45,46,47,48,46,48,47,49,50,50,51,52,52,53,54,54,
55,56,56,57,58,59,59,60,61,61,62,63,63,64,65,65,66,67,67,68,69,70,68,70,
69],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("3^2.U4(3).2_3'","U4(3).2_3'",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,
4,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,
10,10,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13,14,14,14,15,
15,15,15,15,15,16,16,16,17,17,17,18,19,19,19,20,20,20,21,21,21,22,22,22,
23,23,23,24,24,24,25,25,25]);
ARC("3^2.U4(3).2_3'","projectives",["(3^2x2).U4(3).2_3'",[[12,-12*E(3),
12*E(3)^2,6,-6*E(3),6*E(3)^2,-4,4*E(3),-4*E(3)^2,-2,2*E(3),-2*E(3)^2,-6,6*E(3)
,-6*E(3)^2,-3,3*E(3),-3*E(3)^2,3,-3*E(3),3*E(3)^2,0,4,-4*E(3),4*E(3)^2,2,
-2*E(3),2*E(3)^2,0,0,0,0,0,0,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,2,-2*E(3),
2*E(3)^2,1,-E(3),E(3)^2,-1,E(3),-E(3)^2,E(3)+3*E(3)^2,3*E(3)+2*E(3)^2,
2*E(3)-E(3)^2,-3*E(3)-E(3)^2,-E(3)+2*E(3)^2,2*E(3)+3*E(3)^2,-2,2*E(3),
-2*E(3)^2,-1,E(3),-E(3)^2,1,-E(3),E(3)^2,0,0,0,0,0,0,-E(3)+E(3)^2,
E(3)+2*E(3)^2,2*E(3)+E(3)^2,E(3)-E(3)^2,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,-2,
2*E(3),-2*E(3)^2,-1,E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0],
[GALOIS,[1,2]],[20,-20,20,-20,20,-20,4,-4,4,-4,4,-4,-7,7,-7,7,-7,7,2,-2,2,2,4
,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,-2,2,-2,-1
,1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2,E(3)-E(3)^2,
-E(3)+E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2],[70,-70,70,-70
,70,-70,-2,2,-2,2,-2,2,16,-16,16,-16,16,-16,7,-7,7,-2,2,-2,2,-2,2,-2,0,0,0,0,0
,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,1,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,-1,1,1,-1,1,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,-2*E(8)+2*E(8)^3,
2*E(8)-2*E(8)^3,-2*E(8)+2*E(8)^3,0,0,0,-E(8)+E(8)^3,E(8)-E(8)^3,-E(8)+E(8)^3,0
,0,0,0,0,0,E(8)-E(8)^3,-E(8)+E(8)^3,E(8)-E(8)^3,E(8)-E(8)^3,-E(8)+E(8)^3,
E(8)-E(8)^3],[90,-90*E(3),90*E(3)^2,-90,90*E(3),-90*E(3)^2,2,-2*E(3),2*E(3)^2,
-2,2*E(3),-2*E(3)^2,-18,18*E(3),-18*E(3)^2,18,-18*E(3),18*E(3)^2,0,0,0,0,6,
-6*E(3),6*E(3)^2,-6,6*E(3),-6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3),
2*E(3)^2,-2,2*E(3),-2*E(3)^2,2,-2*E(3),2*E(3)^2,-2*E(3),2*E(3)^2,-2,2*E(3)^2,
-2,2*E(3),-1,E(3),-E(3)^2,1,-E(3),E(3)^2,-1,E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(8)+2*E(8)^3,2*E(24)^11-2*E(24)^17,
2*E(24)-2*E(24)^19,0,0,0,-E(8)+E(8)^3,E(24)^11-E(24)^17,E(24)-E(24)^19,0,0,0,0
,0,0,E(8)-E(8)^3,-E(24)^11+E(24)^17,-E(24)+E(24)^19,E(8)-E(8)^3,
-E(24)^11+E(24)^17,-E(24)+E(24)^19],
[GALOIS,[5,17]],[112,-112,112,-112,112,-112,-16,16,-16,16,-16,16,4,-4,4,-4,4,
-4,13,-13,13,4,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-4,4,-4,4,-4,4,-1,1,-1,1
,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[120,-120,120,-120,120,-120,
-8,8,-8,8,-8,8,12,-12,12,-12,12,-12,-6,6,-6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,4,-4,4,-4,4,-4,-2,2,-2,2,-2,2,-2,2,-2,1,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
,[140,-140,140,-140,140,-140,-4,4,-4,4,-4,4,-22,22,-22,22,-22,22,5,-5,5,-4,4,
-4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-1,1,-1,1,-1,1,-1,1,-1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,
E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[9,2]],[168,-168*E(3),168*E(3)^2,84,-84*E(3),84*E(3)^2,8,-8*E(3),
8*E(3)^2,4,-4*E(3),4*E(3)^2,-30,30*E(3),-30*E(3)^2,-15,15*E(3),-15*E(3)^2,6,
-6*E(3),6*E(3)^2,0,8,-8*E(3),8*E(3)^2,4,-4*E(3),4*E(3)^2,0,0,0,0,0,0,-2,2*E(3)
,-2*E(3)^2,-1,E(3),-E(3)^2,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,-4,4*E(3),
-4*E(3)^2,-2*E(3),2*E(3)^2,-2,2*E(3)^2,-2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-2*E(3)-E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,
-E(3)+E(3)^2,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[11,2]],[180,-180,180,90,-90,90,4,-4,4,2,-2,2,-36,36,-36,-18,18,-18,0
,0,0,0,12,-12,12,6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,2,-2,2,4,-4,4,2,-2,2,-2
,2,-2,-2,2,-2,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[240,-240*E(3),240*E(3)^2,120,
-120*E(3),120*E(3)^2,-16,16*E(3),-16*E(3)^2,-8,8*E(3),-8*E(3)^2,-12,12*E(3),
-12*E(3)^2,-6,6*E(3),-6*E(3)^2,15,-15*E(3),15*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,-4,4*E(3),-4*E(3)^2,-2,2*E(3),-2*E(3)^2,-1,E(3),-E(3)^2,
E(3)+3*E(3)^2,3*E(3)+2*E(3)^2,2*E(3)-E(3)^2,-3*E(3)-E(3)^2,-E(3)+2*E(3)^2,
2*E(3)+3*E(3)^2,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,-1,E(3),-E(3)^2,0,0,0,0,0,0,
E(3)+2*E(3)^2,2*E(3)+E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)-E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],
[GALOIS,[14,2]],[252,-252*E(3),252*E(3)^2,126,-126*E(3),126*E(3)^2,-20,
20*E(3),-20*E(3)^2,-10,10*E(3),-10*E(3)^2,36,-36*E(3),36*E(3)^2,18,-18*E(3),
18*E(3)^2,9,-9*E(3),9*E(3)^2,0,4,-4*E(3),4*E(3)^2,2,-2*E(3),2*E(3)^2,0,0,0,0,0
,0,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,4,-4*E(3),4*E(3)^2,2,-2*E(3),2*E(3)^2,1,
-E(3),E(3)^2,-E(3)-3*E(3)^2,-3*E(3)-2*E(3)^2,-2*E(3)+E(3)^2,3*E(3)+E(3)^2,
E(3)-2*E(3)^2,-2*E(3)-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,
-4*E(3),4*E(3)^2,2,-2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0],
[GALOIS,[16,2]],[252,-252*E(3),252*E(3)^2,-252,252*E(3),-252*E(3)^2,12,
-12*E(3),12*E(3)^2,-12,12*E(3),-12*E(3)^2,-18,18*E(3),-18*E(3)^2,18,-18*E(3),
18*E(3)^2,0,0,0,0,-4,4*E(3),-4*E(3)^2,4,-4*E(3),4*E(3)^2,0,0,0,0,0,0,2,-2*E(3)
,2*E(3)^2,-2,2*E(3),-2*E(3)^2,6,-6*E(3),6*E(3)^2,-6,6*E(3),-6*E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3),2*E(3)^2,-2,
2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[18,2]],[252,-252*E(3),252*E(3)^2,-252,252*E(3),-252*E(3)^2,-20,
20*E(3),-20*E(3)^2,20,-20*E(3),20*E(3)^2,-18,18*E(3),-18*E(3)^2,18,-18*E(3),
18*E(3)^2,0,0,0,0,4,-4*E(3),4*E(3)^2,-4,4*E(3),-4*E(3)^2,0,0,0,0,0,0,2,-2*E(3)
,2*E(3)^2,-2,2*E(3),-2*E(3)^2,-2,2*E(3),-2*E(3)^2,2,-2*E(3),2*E(3)^2,-2,2*E(3)
,-2*E(3)^2,2*E(3),-2*E(3)^2,2,-2*E(3)^2,2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-2,2*E(3),-2*E(3)^2,2,-2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[20,2]],[252,-252,252,126,-126,126,12,-12,12,6,-6,6,-18,18,-18,-9,9,
-9,0,0,0,0,-4,4,-4,-2,2,-2,0,0,0,0,0,0,2,-2,2,1,-1,1,6,-6,6,3,-3,3,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(12)^7+2*E(12)^11,2*E(12)^7-2*E(12)^11,
-2*E(12)^7+2*E(12)^11,0,0,0,0,0,0,2,-2,2,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[22,5]],[252,-252,252,126,-126,126,-20,20,-20,-10,10,-10,-18,18,-18,
-9,9,-9,0,0,0,0,4,-4,4,2,-2,2,0,0,0,0,0,0,2,-2,2,1,-1,1,-2,2,-2,-1,1,-1,-2,2,
-2,4*E(3)-2*E(3)^2,-4*E(3)+2*E(3)^2,4*E(3)-2*E(3)^2,2*E(3)-4*E(3)^2,
-2*E(3)+4*E(3)^2,2*E(3)-4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,
2,-2,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[24,2]],[420,-420,420,-420,420,-420,20,-20,20,-20,20,-20,42,-42,42,
-42,42,-42,6,-6,6,6,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2
,2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,2,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[420,-420*E(3),
420*E(3)^2,210,-210*E(3),210*E(3)^2,-12,12*E(3),-12*E(3)^2,-6,6*E(3),-6*E(3)^2
,-48,48*E(3),-48*E(3)^2,-24,24*E(3),-24*E(3)^2,-3,3*E(3),-3*E(3)^2,0,12,
-12*E(3),12*E(3)^2,6,-6*E(3),6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
-3*E(3),3*E(3)^2,-3,3*E(3),-3*E(3)^2,3,-3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,E(3)-E(3)^2,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,
2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],
[GALOIS,[27,2]],[504,-504*E(3),504*E(3)^2,-504,504*E(3),-504*E(3)^2,-8,8*E(3)
,-8*E(3)^2,8,-8*E(3),8*E(3)^2,-36,36*E(3),-36*E(3)^2,36,-36*E(3),36*E(3)^2,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3),-E(3)^2,1,-E(3),E(3)^2,4,-4*E(3),4*E(3)^2
,-4,4*E(3),-4*E(3)^2,-2,2*E(3),-2*E(3)^2,2*E(3),-2*E(3)^2,2,-2*E(3)^2,2,
-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-E(5)+E(5)^2+E(5)^3-E(5)^4,E(15)^2+E(15)^8-E(15)^11-E(15)^14,
E(15)+E(15)^4-E(15)^7-E(15)^13,0,0,0,0,0,0,0,0,0],
[GALOIS,[29,2]],[540,-540*E(3),540*E(3)^2,-540,540*E(3),-540*E(3)^2,12,
-12*E(3),12*E(3)^2,-12,12*E(3),-12*E(3)^2,54,-54*E(3),54*E(3)^2,-54,54*E(3),
-54*E(3)^2,0,0,0,0,4,-4*E(3),4*E(3)^2,-4,4*E(3),-4*E(3)^2,0,0,0,0,0,0,0,0,0,0,
0,0,6,-6*E(3),6*E(3)^2,-6,6*E(3),-6*E(3)^2,0,0,0,0,0,0,0,0,0,1,-E(3),E(3)^2,-1
,E(3),-E(3)^2,1,-E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3),-2*E(3)^2,2,
-2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[31,2]],[540,-540,540,-540,540,-540,12,-12,12,-12,12,-12,-27,27,-27,
27,-27,27,0,0,0,0,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,-3,3,-3,3,0,0,0,
0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2,
E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2],[
540,-540*E(3)^2,540*E(3),-540,540*E(3)^2,-540*E(3),12,-12*E(3)^2,12*E(3),-12,
12*E(3)^2,-12*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),0,0,0,0,4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,
-3*E(3),3,-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2],
[GALOIS,[34,2]],[540,-540,540,270,-270,270,12,-12,12,6,-6,6,54,-54,54,27,-27,
27,0,0,0,0,4,-4,4,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,6,-6,6,3,-3,3,0,0,0,0,0,0,0,0
,0,1,-1,1,E(21)^2+E(21)^8+E(21)^10+E(21)^11+E(21)^13+E(21)^19,
-E(21)^2-E(21)^8-E(21)^10-E(21)^11-E(21)^13-E(21)^19,
E(21)^2+E(21)^8+E(21)^10+E(21)^11+E(21)^13+E(21)^19,
-E(21)-E(21)^4-E(21)^5-E(21)^16-E(21)^17-E(21)^20,
E(21)+E(21)^4+E(21)^5+E(21)^16+E(21)^17+E(21)^20,
-E(21)-E(21)^4-E(21)^5-E(21)^16-E(21)^17-E(21)^20,0,0,0,0,0,0,0,0,0,0,0,0,-2,2
,-2,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[540,
-540*E(3)^2,540*E(3),270,-270*E(3)^2,270*E(3),12,-12*E(3)^2,12*E(3),6,
-6*E(3)^2,6*E(3),54,-54*E(3)^2,54*E(3),27,-27*E(3)^2,27*E(3),0,0,0,0,4,
-4*E(3)^2,4*E(3),2,-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,6,-6*E(3)^2,6*E(3)
,3,-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),
E(21)+E(21)^4+E(21)^5+E(21)^16+E(21)^17+E(21)^20,
E(21)+E(21)^2+E(21)^4+E(21)^8-E(21)^10+E(21)^11-E(21)^13+E(21)^16-E(21)^19,
E(21)^2-E(21)^5+E(21)^8-E(21)^10+E(21)^11-E(21)^13-E(21)^17-E(21)^19-E(21)^20,
-E(21)^2-E(21)^8-E(21)^10-E(21)^11-E(21)^13-E(21)^19,
E(21)+E(21)^4-E(21)^5-E(21)^10-E(21)^13+E(21)^16-E(21)^17-E(21)^19-E(21)^20,
E(21)+E(21)^2+E(21)^4-E(21)^5+E(21)^8+E(21)^11+E(21)^16-E(21)^17-E(21)^20,0,0,
0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),-1,E(3)^2,-E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[36,2]],
[GALOIS,[37,2]],
[GALOIS,[37,5]],
[GALOIS,[37,10]],[560,-560,560,-560,560,-560,-16,16,-16,16,-16,16,-34,34,-34,
34,-34,34,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,
-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,1,-1,0,0,0,0,0,0,0,0,0
,0,0,0,0,4*E(8)-4*E(8)^3,-4*E(8)+4*E(8)^3,4*E(8)-4*E(8)^3,0,0,0,0,0,0,0,0,0,0,
0,0,E(8)-E(8)^3,-E(8)+E(8)^3,E(8)-E(8)^3,E(8)-E(8)^3,-E(8)+E(8)^3,E(8)-E(8)^3]
,[630,-630,630,-630,630,-630,14,-14,14,-14,14,-14,-18,18,-18,18,-18,18,9,-9,9,
0,-6,6,-6,6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-1,1,-1,1,-1,1,-1,1,-1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-2*E(8)+2*E(8)^3,2*E(8)-2*E(8)^3,-2*E(8)+2*E(8)^3,0,0,0,E(8)-E(8)^3,
-E(8)+E(8)^3,E(8)-E(8)^3,0,0,0,0,0,0,E(8)-E(8)^3,-E(8)+E(8)^3,E(8)-E(8)^3,
E(8)-E(8)^3,-E(8)+E(8)^3,E(8)-E(8)^3],[630,-630*E(3)^2,630*E(3),-630,
630*E(3)^2,-630*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),36,
-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),0,0,0,0,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,
0,0,0,0,0,-2*E(8)+2*E(8)^3,-2*E(24)+2*E(24)^19,-2*E(24)^11+2*E(24)^17,0,0,0,
E(8)-E(8)^3,E(24)-E(24)^19,E(24)^11-E(24)^17,0,0,0,0,0,0,E(8)-E(8)^3,
E(24)-E(24)^19,E(24)^11-E(24)^17,E(8)-E(8)^3,E(24)-E(24)^19,E(24)^11-E(24)^17]
,
[GALOIS,[44,17]],[672,-672*E(3),672*E(3)^2,336,-336*E(3),336*E(3)^2,32,
-32*E(3),32*E(3)^2,16,-16*E(3),16*E(3)^2,-12,12*E(3),-12*E(3)^2,-6,6*E(3),
-6*E(3)^2,6,-6*E(3),6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3),2*E(3)^2,1,
-E(3),E(3)^2,-4,4*E(3),-4*E(3)^2,-2,2*E(3),-2*E(3)^2,-4,4*E(3),-4*E(3)^2,
-2*E(3),2*E(3)^2,-2,2*E(3)^2,-2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(3)-E(3)^2,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,
2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],
[GALOIS,[46,2]],[720,-720*E(3),720*E(3)^2,-720,720*E(3),-720*E(3)^2,16,
-16*E(3),16*E(3)^2,-16,16*E(3),-16*E(3)^2,18,-18*E(3),18*E(3)^2,-18,18*E(3),
-18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3),-2*E(3)^2,2,
-2*E(3),2*E(3)^2,-2,2*E(3),-2*E(3)^2,2*E(3),-2*E(3)^2,2,-2*E(3)^2,2,-2*E(3),-1
,E(3),-E(3)^2,1,-E(3),E(3)^2,-1,E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,4*E(8)-4*E(8)^3,-4*E(24)^11+4*E(24)^17,-4*E(24)+4*E(24)^19,0,
0,0,0,0,0,0,0,0,0,0,0,E(8)-E(8)^3,-E(24)^11+E(24)^17,-E(24)+E(24)^19,
E(8)-E(8)^3,-E(24)^11+E(24)^17,-E(24)+E(24)^19],
[GALOIS,[48,17]],[768,-768*E(3),768*E(3)^2,384,-384*E(3),384*E(3)^2,0,0,0,0,0
,0,48,-48*E(3),48*E(3)^2,24,-24*E(3),24*E(3)^2,12,-12*E(3),12*E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,0,-2,2*E(3),-2*E(3)^2,-1,E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-2,2*E(3),-2*E(3)^2,-1,E(3),-E(3)^2,1,-E(3),E(3)^2,0,0,0,0,0,0,
2*E(3)+E(3)^2,E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)+2*E(3)^2,2*E(3)+E(3)^2,
E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],
[GALOIS,[50,2]],[840,-840*E(3),840*E(3)^2,420,-420*E(3),420*E(3)^2,-24,
24*E(3),-24*E(3)^2,-12,12*E(3),-12*E(3)^2,-42,42*E(3),-42*E(3)^2,-21,21*E(3),
-21*E(3)^2,12,-12*E(3),12*E(3)^2,0,-8,8*E(3),-8*E(3)^2,-4,4*E(3),-4*E(3)^2,0,0
,0,0,0,0,0,0,0,0,0,0,6,-6*E(3),6*E(3)^2,3,-3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,-2,2*E(3),-2*E(3)^2,-1,E(3),-E(3)^2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[52,2]],[896,-896,896,-896,896,-896,0,0,0,0,0,0,32,-32,32,-32,32,-32,
-4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,E(5)-E(5)^2-E(5)^3+E(5)^4,-E(5)+E(5)^2+E(5)^3-E(5)^4,
E(5)-E(5)^2-E(5)^3+E(5)^4,0,0,0,0,0,0,0,0,0],[1008,-1008,1008,504,-504,504,-16
,16,-16,-8,8,-8,-72,72,-72,-36,36,-36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,
-1,1,-1,8,-8,8,4,-4,4,-4,4,-4,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1008,-1008,1008,-1008,1008,-1008,-16,16,-16,16,-16,16,36,-36,36,-36,36,-36,9,
-9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,2,-4,4,-4,4,-4,4,-1,1,-1,1,-1,1,-1
,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1080,-1080,1080,540,-540,540,24,-24,24
,12,-12,12,-54,54,-54,-27,27,-27,0,0,0,0,8,-8,8,4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0
,-6,6,-6,-3,3,-3,0,0,0,0,0,0,0,0,0,2,-2,2,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0
,0,2,-2,2,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[
1260,-1260,1260,630,-630,630,-36,36,-36,-18,18,-18,72,-72,72,36,-36,36,0,0,0,0
,4,-4,4,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0],[1260,-1260*E(3),1260*E(3)^2,-1260,1260*E(3),
-1260*E(3)^2,-4,4*E(3),-4*E(3)^2,4,-4*E(3),4*E(3)^2,-9,9*E(3),-9*E(3)^2,9,
-9*E(3),9*E(3)^2,0,0,0,0,-4,4*E(3),-4*E(3)^2,4,-4*E(3),4*E(3)^2,0,0,0,0,0,0,0,
0,0,0,0,0,-1,E(3),-E(3)^2,1,-E(3),E(3)^2,2,-2*E(3),2*E(3)^2,-2*E(3),2*E(3)^2,
-2,2*E(3)^2,-2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3),
-E(3)^2,1,-E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)-E(3)^2,
-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,
-E(3)+E(3)^2,E(3)+2*E(3)^2,2*E(3)+E(3)^2],
[GALOIS,[59,2]],[1260,-1260*E(3),1260*E(3)^2,630,-630*E(3),630*E(3)^2,-36,
36*E(3),-36*E(3)^2,-18,18*E(3),-18*E(3)^2,18,-18*E(3),18*E(3)^2,9,-9*E(3),
9*E(3)^2,-9,9*E(3),-9*E(3)^2,0,4,-4*E(3),4*E(3)^2,2,-2*E(3),2*E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,-6,6*E(3),-6*E(3)^2,-3,3*E(3),-3*E(3)^2,-3,3*E(3),-3*E(3)^2,3,
-3*E(3),3*E(3)^2,-3,3*E(3),-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-2,2*E(3),-2*E(3)^2,-1,E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0],
[GALOIS,[61,2]],[1260,-1260*E(3),1260*E(3)^2,630,-630*E(3),630*E(3)^2,-4,
4*E(3),-4*E(3)^2,-2,2*E(3),-2*E(3)^2,18,-18*E(3),18*E(3)^2,9,-9*E(3),9*E(3)^2,
-9,9*E(3),-9*E(3)^2,0,-4,4*E(3),-4*E(3)^2,-2,2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,
0,0,0,0,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,-1,E(3),-E(3)^2,E(3)+3*E(3)^2,
3*E(3)+2*E(3)^2,2*E(3)-E(3)^2,-3*E(3)-E(3)^2,-E(3)+2*E(3)^2,2*E(3)+3*E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0,2*E(12)^7-2*E(12)^11,-2*E(12)^7-4*E(12)^11,
-4*E(12)^7-2*E(12)^11,0,0,0,0,0,0,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[63,7]],
[GALOIS,[63,5]],
[GALOIS,[63,11]],[1280,-1280,1280,-1280,1280,-1280,0,0,0,0,0,0,-16,16,-16,16,
-16,16,-16,16,-16,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0,2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1440,-1440,1440,720,-720,720,
32,-32,32,16,-16,16,36,-36,36,18,-18,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-4,4,-4,-2,2,-2,-4,4,-4,-2,2,-2,2,-2,2,-2,2,-2,-1,1,-1,1,-1,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],[1680,-1680*E(3),1680*E(3)^2,840,-840*E(3),840*E(3)^2,16,-16*E(3),
16*E(3)^2,8,-8*E(3),8*E(3)^2,24,-24*E(3),24*E(3)^2,12,-12*E(3),12*E(3)^2,6,
-6*E(3),6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,8*E(3),-8*E(3)^2,-4,
4*E(3),-4*E(3)^2,4,-4*E(3),4*E(3)^2,2*E(3),-2*E(3)^2,2,-2*E(3)^2,2,-2*E(3),0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[69,2]],[1680,-1680*E(3),1680*E(3)^2,840,-840*E(3),840*E(3)^2,16,
-16*E(3),16*E(3)^2,8,-8*E(3),8*E(3)^2,-84,84*E(3),-84*E(3)^2,-42,42*E(3),
-42*E(3)^2,-3,3*E(3),-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(3)
,4*E(3)^2,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,-E(3)-3*E(3)^2,-3*E(3)-2*E(3)^2,
-2*E(3)+E(3)^2,3*E(3)+E(3)^2,E(3)-2*E(3)^2,-2*E(3)-3*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,E(3)+2*E(3)^2,2*E(3)+E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)-E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],
[GALOIS,[71,2]],[2520,-2520,2520,1260,-1260,1260,-8,8,-8,-4,4,-4,-18,18,-18,
-9,9,-9,0,0,0,0,-8,8,-8,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-1,1,-1,4,-4,4
,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-1,1,-1,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],]);
ALN("3^2.U4(3).2_3'",["3.SuzN3C"]);

MOT("3^2.U4(3).(2^2)_{133}",
[
"3rd maximal subgroup of 3.Suz.2"
],
[117573120,58786560,58786560,29393280,41472,20736,20736,10368,209952,104976,
104976,52488,5832,2916,324,3456,1728,1728,864,576,288,288,144,180,90,90,45,
2592,1296,1296,648,648,324,324,324,324,126,63,63,63,63,288,144,144,72,81,81,
81,432,216,216,108,8640,4320,576,288,36,576,288,192,96,48,24,60,30,72,36,72,
72,72,8640,4320,576,288,36,576,288,192,96,48,24,60,30,72,36,72,72,72,24192,
2880,2304,256,432,36,36,32,20,144,36,14],
[,[1,2,3,4,1,2,3,4,9,10,11,12,13,14,15,5,6,7,8,5,6,7,8,24,25,26,27,9,10,11,12,
13,14,13,14,14,37,38,39,40,41,16,17,18,19,46,47,48,28,29,30,31,1,2,5,6,15,16,
17,16,17,20,21,24,25,28,29,49,50,50,1,3,5,7,15,16,18,16,18,20,22,24,26,28,30,
49,51,51,1,1,5,5,9,13,15,16,24,28,32,37],[1,1,1,1,5,5,5,5,1,1,1,1,1,1,1,16,16,
16,16,20,20,20,20,24,24,24,24,5,5,5,5,5,5,5,5,5,37,37,37,37,37,42,42,42,42,12,
12,12,16,16,16,16,53,53,55,55,53,58,58,60,60,62,62,64,64,55,55,58,58,58,71,71,
73,73,71,76,76,78,78,80,80,82,82,73,73,76,76,76,89,90,91,92,89,90,89,96,97,91,
91,100],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,1,2,3,4,
28,29,30,31,32,33,34,35,36,37,38,39,41,40,42,43,44,45,46,47,48,49,50,51,52,53,
54,55,56,57,58,59,60,61,62,63,53,54,66,67,68,70,69,71,72,73,74,75,76,77,78,79,
80,81,71,72,84,85,86,88,87,89,90,91,92,93,94,95,96,90,98,99,100],,[1,2,3,4,5,
6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,
33,34,35,36,1,2,3,4,4,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,
86,87,88,89,90,91,92,93,94,95,96,97,98,99,89]],
0,
[(40,41),(87,88),(69,70),( 2, 3)( 6, 7)(10,11)(17,18)(21,22)(25,26)(29,30)(33,
36)(38,39)(43,44)(50,51)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,
78)(61,79)(62,80)(63,81)(64,82)(65,83)(66,84)(67,85)(68,86)(69,87)(70,88)],
["ConstructMGA","3^2.U4(3).2_3'","3_2.U4(3).(2^2)_{133}",
 [ [ 39, 41 ], [ 40, 42 ], [ 43, 44 ], [ 45, 47 ], [ 46, 48 ],
   [ 49, 51 ], [ 50, 52 ], [ 53, 55 ], [ 54, 56 ], [ 57, 59 ], [ 58, 60 ],
   [ 61, 62 ], [ 63, 65 ], [ 64, 66 ], [ 67, 69 ], [ 68, 70 ], [ 71, 73 ],
   [ 72, 74 ], [ 75, 77 ], [ 76, 78 ], [ 79, 80 ], [ 81, 82 ], [ 83, 84 ],
   [ 85, 86 ], [ 87, 88 ], [ 89, 90 ], [ 91, 92 ], [ 93, 94 ], [ 95, 98 ],
   [ 96, 97 ], [ 99, 100 ], [ 101, 102 ], [ 103, 104 ], [ 105, 106 ],
   [ 107, 108 ], [ 109, 110 ] ], ()]);
ALF("3^2.U4(3).(2^2)_{133}","3_2.U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,7,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,18,19,19,
20,20,20,21,21,22,22,23,23,23,24,24,25,25,56,56,57,57,58,59,59,60,60,61,
61,62,62,63,63,64,64,64,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,49,50,51,52,53,54,55]);
ALF("3^2.U4(3).(2^2)_{133}","3.Suz.2",[1,2,7,8,3,4,24,25,7,8,9,10,9,10,11,
12,13,49,50,16,17,53,54,22,23,64,65,24,25,29,30,29,30,26,27,28,32,33,71,
72,73,34,35,74,75,40,41,42,49,50,51,52,5,6,16,17,31,34,35,34,35,38,39,45,
46,53,54,74,75,75,76,80,78,92,82,84,98,85,99,88,102,89,104,92,93,98,100,
100,76,77,78,78,80,81,82,87,91,92,93,95],[
"fusion map is unique up to table automorphisms"
]);
ALF("3^2.U4(3).(2^2)_{133}","U4(3).(2^2)_{133}",[1,1,1,1,2,2,2,2,3,3,3,3,
4,4,5,6,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,10,11,11,11,11,11,12,12,
12,12,13,13,13,14,14,14,14,36,36,37,37,38,39,39,40,40,41,41,42,42,43,43,
44,44,44,27,27,28,28,29,30,30,31,31,32,32,33,33,34,34,35,35,35,15,16,17,
18,19,20,21,22,23,24,25,26]);

MOT("3^2.U4(3).D8",
[
"origin: ATLAS of finite groups,\n",
"table was constructed by Dixon's algorithm,\n",
"tests: 1.o.r., pow[2,3,5,7]"
],
[235146240,58786560,58786560,20736,20736,82944,104976,104976,419904,5832,
11664,648,1728,1728,6912,288,1152,288,90,90,360,1296,1296,5184,324,648,648,
1296,63,63,252,144,144,576,162,162,162,216,216,864,48384,5760,4608,512,864,72,
72,64,40,288,72,28,24192,384,80,192,64,432,48,36,20,24,28,28,155520,311040,
3456,6912,576,1152,576,288,3888,3888,3888,648,1296,324,648,144,36,48,96,30,60,
144,72,36,72,54,54,54,4320,8640,576,288,36,288,576,96,192,24,48,30,60,72,36,
72,72,72],
[,[1,2,3,2,3,1,7,8,9,10,11,12,5,4,6,4,6,5,19,20,21,7,8,9,10,11,10,11,29,30,31,
13,14,15,35,36,37,23,22,24,1,1,6,6,9,11,12,15,21,24,28,31,41,41,42,43,43,45,
45,47,49,50,52,52,2,1,2,1,4,6,6,4,8,9,8,11,11,10,11,11,12,14,15,19,21,24,23,
27,28,36,35,37,3,1,6,5,12,13,15,13,15,18,17,20,21,24,22,39,39,40],[1,1,1,6,6,
6,1,1,1,1,1,1,15,15,15,17,17,17,21,21,21,6,6,6,6,6,6,6,31,31,31,34,34,34,8,8,
8,15,15,15,41,42,43,44,41,42,41,48,49,43,43,52,53,54,55,56,57,53,54,53,61,56,
63,64,66,66,68,68,70,70,71,71,66,66,66,66,66,66,66,68,68,83,83,85,85,70,70,71,
71,73,73,73,94,94,95,95,94,99,99,101,101,103,103,105,105,95,95,99,99,99],,[1,
2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,2,3,1,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,42,50,51,52,53,54,55,56,
57,58,59,60,55,62,64,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,
83,65,66,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,93,94,106,
107,109,108,110],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,24,25,26,27,28,3,2,1,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,
50,51,41,53,54,55,56,57,58,59,60,61,62,53,53,65,66,67,68,69,70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,
101,102,103,104,105,106,107,108,109,110]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
[TENSOR,[2,3]],[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0],[21,21,21,5,5,5,-6,-6,-6,3,3,3,1,1,1,1,1,1,1,1,1,2,2,2,-1,-1,
-1,-1,0,0,0,-1,-1,-1,0,0,0,-2,-2,-2,-7,1,5,-3,2,1,-1,-1,1,2,-1,0,7,-1,-1,-3,1,
-2,2,1,-1,0,0,0,9,9,1,1,-3,-3,1,1,0,0,0,-3,-3,3,3,1,1,-1,-1,-1,-1,0,0,1,1,0,0,
0,1,1,-3,-3,1,3,3,-1,-1,-1,-1,1,1,0,0,0,0,0],
[TENSOR,[6,2]],
[TENSOR,[6,3]],
[TENSOR,[6,4]],[42,42,42,10,10,10,-12,-12,-12,6,6,6,2,2,2,2,2,2,2,2,2,4,4,4,
-2,-2,-2,-2,0,0,0,-2,-2,-2,0,0,0,-4,-4,-4,14,-2,-10,6,-4,-2,2,2,-2,-4,2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[70,70,70,6,6,6,16,16,16,7,7,-2,6,6,6,-2,
-2,-2,0,0,0,0,0,0,3,3,3,3,0,0,0,-2,-2,-2,1,1,1,0,0,0,14,-10,-2,-2,-4,-1,2,-2,
0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,10,10,-6,-6,2,2,2,2,10,10,10,1,1,1,1,-3,0,-2,
-2,0,0,2,2,-1,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[70,70,70,6,6,6,
16,16,16,7,7,-2,6,6,6,-2,-2,-2,0,0,0,0,0,0,3,3,3,3,0,0,0,-2,-2,-2,1,1,1,0,0,0,
-14,10,2,2,4,1,-2,2,0,-4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,20,20,4,4,-4,-4,4,4,2,2,
2,5,5,-1,-1,1,-2,0,0,0,0,2,2,1,1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],
[TENSOR,[11,3]],
[TENSOR,[12,3]],[90,90,90,10,10,10,9,9,9,9,9,0,-2,-2,-2,2,2,2,0,0,0,1,1,1,1,1,
1,1,-1,-1,-1,0,0,0,0,0,0,1,1,1,6,10,10,2,-3,1,0,0,0,1,1,-1,6,-2,0,4,0,-3,1,0,
0,1,-1,-1,30,30,6,6,2,2,2,2,3,3,3,3,3,3,3,3,0,0,0,0,0,-1,-1,-1,-1,0,0,0,0,0,4,
4,0,2,2,-2,-2,0,0,0,0,1,1,-1,-1,-1],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[180,180,180,20,20,20,18,18,18,18,18,0,-4,-4,-4,4,4,4,0,0,0,2,
2,2,2,2,2,2,-2,-2,-2,0,0,0,0,0,0,2,2,2,-12,-20,-20,-4,6,-2,0,0,0,-2,-2,2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[140,140,140,12,12,12,5,5,5,-4,-4,5,4,4,4,
0,0,0,0,0,0,-3,-3,-3,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,1,28,0,4,4,1,0,1,0,0,1,
-2,0,14,-2,0,2,2,5,1,-1,0,-1,0,0,20,20,4,4,4,4,0,0,-7,-7,-7,2,2,2,2,-2,1,0,0,
0,0,1,1,0,0,-1,-1,-1,10,10,2,2,1,2,2,2,2,0,0,0,0,-1,-1,-1,-1,-1],
[TENSOR,[20,2]],
[TENSOR,[20,3]],
[TENSOR,[20,4]],[280,280,280,24,24,24,10,10,10,-8,-8,10,8,8,8,0,0,0,0,0,0,-6,
-6,-6,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-56,0,-8,-8,-2,0,-2,0,0,-2,4,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[189,189,189,-3,-3,-3,27,27,27,0,0,0,5,5,5,1,
1,1,-1,-1,-1,3,3,3,0,0,0,0,0,0,0,1,1,1,0,0,0,-1,-1,-1,21,9,-3,-3,3,0,0,1,-1,3,
0,0,21,5,-1,1,1,3,-1,0,-1,1,0,0,9,9,9,9,1,1,-3,-3,9,9,9,0,0,0,0,0,0,1,1,-1,-1,
1,1,0,0,0,0,0,9,9,1,1,0,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1],
[TENSOR,[25,2]],
[TENSOR,[25,3]],
[TENSOR,[25,4]],[378,378,378,-6,-6,-6,54,54,54,0,0,0,10,10,10,2,2,2,-2,-2,-2,
6,6,6,0,0,0,0,0,0,0,2,2,2,0,0,0,-2,-2,-2,-42,-18,6,6,-6,0,0,-2,2,-6,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[210,210,210,2,2,2,21,21,21,3,3,3,-2,-2,-2,
-2,-2,-2,0,0,0,5,5,5,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,1,1,1,14,-10,10,2,5,-1,-1,
0,0,1,1,0,28,4,0,2,-2,1,1,1,0,-1,0,0,30,30,-10,-10,2,2,-2,-2,3,3,3,3,3,3,3,-1,
-1,0,0,0,0,-1,-1,1,1,0,0,0,-10,-10,2,2,-1,4,4,0,0,0,0,0,0,-1,-1,1,1,1],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[420,420,420,4,4,4,42,42,42,6,6,6,-4,-4,-4,-4,-4,-4,0,0,0,10,
10,10,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,2,2,2,-28,20,-20,-4,-10,2,2,0,0,-2,-2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1120,1120,1120,-32,-32,-32,40,40,40,22,
22,4,0,0,0,0,0,0,0,0,0,-8,-8,-8,-2,-2,-2,-2,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,80,-16,-16,0,0,0,0,8,8,8,2,2,-4,-4,2,
2,0,0,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[35,3]],[630,630,630,22,22,22,-18,-18,-18,9,9,0,-2,-2,-2,-2,-2,-2,0,0,
0,-2,-2,-2,1,1,1,1,0,0,0,2,2,2,0,0,0,-2,-2,-2,-42,-10,14,-2,-6,-1,0,2,0,2,-1,
0,0,0,0,0,0,0,0,0,0,0,0,0,90,90,-6,-6,-6,-6,2,2,0,0,0,-3,-3,3,3,-3,0,2,2,0,0,
0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[630,630,630,22,22,22,
-18,-18,-18,9,9,0,-2,-2,-2,-2,-2,-2,0,0,0,-2,-2,-2,1,1,1,1,0,0,0,2,2,2,0,0,0,
-2,-2,-2,42,10,-14,2,6,1,0,-2,0,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,60,60,12,12,4,
4,4,4,6,6,6,-3,-3,-3,-3,-3,0,0,0,0,0,-2,-2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0],
[TENSOR,[37,3]],
[TENSOR,[38,3]],[420,420,420,4,4,4,-39,-39,-39,6,6,-3,4,4,4,0,0,0,0,0,0,1,1,1,
-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,1,1,1,28,0,12,-4,1,0,1,0,0,-3,0,0,14,-2,0,-2,-2,
5,1,-1,0,1,0,0,60,60,-4,-4,4,4,0,0,-3,-3,-3,-6,-6,0,0,2,-1,0,0,0,0,1,1,0,0,0,
0,0,-10,-10,-2,-2,-1,2,2,2,2,0,0,0,0,1,1,-1,-1,-1],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[840,840,840,8,8,8,-78,-78,-78,12,12,-6,8,8,8,0,0,0,0,0,0,2,2,
2,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,2,2,2,-56,0,-24,8,-2,0,-2,0,0,6,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1120,1120,1120,-32,-32,-32,-68,-68,-68,4,4,4,0,
0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,56,-8,0,0,0,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[46,2]],[1280,1280,1280,0,0,0,-16,-16,-16,-16,-16,2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-1,-1,-1,0,0,0,2,2,2,0,0,0,-64,0,0,0,8,0,2,0,0,0,0,-1,64,0,0,0,
0,-8,0,-2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1280,1280,1280,0,0,0,-16,-16,-16,-16,-16,2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,0,0,2,2,2,0,0,0,64,0,0,0,-8,0,-2,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23
 +E(28)^27,-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],
[TENSOR,[48,2]],
[TENSOR,[49,2]],[729,729,729,9,9,9,0,0,0,0,0,0,-3,-3,-3,1,1,1,-1,-1,-1,0,0,0,
0,0,0,0,1,1,1,-1,-1,-1,0,0,0,0,0,0,-27,9,9,1,0,0,0,-1,-1,0,0,1,27,3,1,-3,1,0,
0,0,1,0,-1,-1,81,81,9,9,-3,-3,-3,-3,0,0,0,0,0,0,0,0,0,-1,-1,1,1,0,0,0,0,0,0,0,
9,9,-3,-3,0,3,3,-1,-1,1,1,-1,-1,0,0,0,0,0],
[TENSOR,[52,2]],
[TENSOR,[52,3]],
[TENSOR,[52,4]],[1458,1458,1458,18,18,18,0,0,0,0,0,0,-6,-6,-6,2,2,2,-2,-2,-2,
0,0,0,0,0,0,0,2,2,2,-2,-2,-2,0,0,0,0,0,0,54,-18,-18,-2,0,0,0,2,2,0,0,-2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[896,896,896,0,0,0,32,32,32,-4,-4,-4,0,0,0,0,
0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,16,0,0,0,-2,0,0,1,0,0,0,
0,0,4,0,0,0,0,0,-1,0,0,0,64,64,0,0,0,0,0,0,-8,-8,-8,4,4,-2,-2,0,0,0,0,-1,-1,0,
0,0,0,1,1,1,16,16,0,0,-2,0,0,0,0,0,0,1,1,0,0,0,0,0],
[TENSOR,[57,2]],
[TENSOR,[57,3]],
[TENSOR,[57,4]],[1792,1792,1792,0,0,0,64,64,64,-8,-8,-8,0,0,0,0,0,0,2,2,2,0,0,
0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,-32,0,0,0,4,0,0,-2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],[60,15,-30,-1,2,-4,-12,6,24,-3,6,0,-6,3,12,-1,-4,2,0,
0,0,-4,2,8,-1,-4,5,2,-2,1,4,-2,1,4,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-5,10,3,-6,-1,2,2,-1,-8,4,4,-2,4,1,-2,0,0,1,-2,0,0,-4,2,-1,
2,1,1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[62,3]],[84,21,-42,5,-10,20,-6,3,12,-6,12,0,-2,1,4,1,4,-2,1,-2,4,2,-1,
-4,-4,2,2,8,0,0,0,2,-1,-4,0,-3,3,1,-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,11,-22,3,-6,-1,2,-6,3,5,2,-7,2,-4,2,-4,0,0,1,-2,1,-2,2,-1,0,0,-1,2,
-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[64,3]],[420,105,-210,9,-18,36,-30,15,60,-3,6,0,-2,1,4,1,4,-2,0,0,0,
-6,3,12,-3,6,-3,6,0,0,0,-2,1,4,0,3,-3,1,-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-25,50,-9,18,-1,2,2,-1,5,2,-7,-4,8,-1,2,0,0,-1,2,0,0,2,-1,-1,
2,-1,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[66,3]],[420,105,-210,-7,14,-28,-30,15,60,-3,6,0,-10,5,20,1,4,-2,0,0,
0,2,-1,-4,-1,-4,5,2,0,0,0,2,-1,-4,0,3,-3,-1,2,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,5,-10,-3,6,1,-2,-2,1,-19,14,5,2,-4,-1,2,0,0,-1,2,0,0,-2,1,
1,-2,-1,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[68,3]],[420,105,-210,9,-18,36,24,-12,-48,-12,24,0,-2,1,4,1,4,-2,0,0,
0,0,0,0,0,0,0,0,0,0,0,-2,1,4,-3,0,3,-2,4,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,35,-70,3,-6,3,-6,-6,3,2,8,-10,-4,8,2,-4,0,0,-1,2,0,0,0,0,0,0,2,
-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[70,3]],[840,210,-420,2,-4,8,-6,3,12,-15,30,0,4,-2,-8,-2,-8,4,0,0,0,2,
-1,-4,-1,-4,5,2,0,0,0,0,0,0,-3,3,0,1,-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-50,100,6,-12,2,-4,4,-2,1,-14,13,-2,4,1,-2,0,0,0,0,0,0,2,-1,1,-2,
1,1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[72,3]],[1260,315,-630,-5,10,-20,72,-36,-144,-9,18,0,-6,3,12,-1,-4,2,
0,0,0,-8,4,16,1,4,-5,-2,0,0,0,2,-1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,45,-90,-3,6,-3,6,-2,1,0,0,0,-6,12,-3,6,0,0,1,-2,0,0,0,0,1,
-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[74,3]],[1344,336,-672,16,-32,64,12,-6,-24,-6,12,0,0,0,0,0,0,0,1,-2,4,
4,-2,-8,4,-2,-2,-8,0,0,0,0,0,0,3,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,64,-128,0,0,0,0,0,0,-2,-8,10,-2,4,4,-8,0,0,0,0,-1,2,0,0,0,0,-2,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[76,3]],[1536,384,-768,0,0,0,-48,24,96,-12,24,0,0,0,0,0,0,0,-1,2,-4,0,
0,0,0,0,0,0,2,-1,-4,0,0,0,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,64,-128,0,0,0,0,0,0,16,-8,-8,4,-8,-2,4,0,0,0,0,-1,2,0,0,0,0,1,1,-2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[78,3]],[1680,420,-840,4,-8,16,-66,33,132,6,-12,0,-8,4,16,0,0,0,0,0,0,
-2,1,4,4,-2,-2,-8,0,0,0,0,0,0,-3,0,3,1,-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-20,40,12,-24,4,-8,0,0,13,-2,-11,-2,4,-2,4,0,0,0,0,0,0,-2,1,0,0,
-2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[80,3]],[2520,630,-1260,6,-12,24,-18,9,36,9,-18,0,-4,2,8,-2,-8,4,0,0,
0,6,-3,-12,-3,6,-3,6,0,0,0,0,0,0,0,0,0,-1,2,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,30,-60,6,-12,2,-4,-4,2,-15,-6,21,0,0,-3,6,0,0,0,0,0,0,2,-1,
-1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[82,3]],[2880,720,-1440,16,-32,64,72,-36,-144,18,-36,0,0,0,0,0,0,0,0,
0,0,-8,4,16,-2,-8,10,4,2,-1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[2916,729,-1458,9,-18,36,0,0,0,0,0,0,6,-3,
-12,1,4,-2,-1,2,-4,0,0,0,0,0,0,0,-2,1,4,2,-1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-81,162,-9,18,3,-6,-6,3,0,0,0,0,0,0,0,0,0,1,-2,
-1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[85,3]],[3024,756,-1512,-12,24,-48,-54,27,108,0,0,0,8,-4,-16,0,0,0,1,
-2,4,-6,3,12,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-36,72,12,-24,-4,8,0,0,-9,18,-9,0,0,0,0,0,0,0,0,-1,2,2,-1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[87,3]],[3780,945,-1890,-15,30,-60,54,-27,-108,0,0,0,-2,1,4,1,4,-2,0,
0,0,6,-3,-12,0,0,0,0,0,0,0,-2,1,4,0,0,0,1,-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-45,90,3,-6,-5,10,-6,3,9,-18,9,0,0,0,0,0,0,-1,2,0,0,-2,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[89,3]],[144,-72,36,-8,4,16,9,-18,36,0,0,0,4,-8,16,0,0,0,-2,1,4,1,-2,
4,-2,4,4,-8,1,-2,4,0,0,0,0,0,0,-2,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-12,4,-2,0,
2,-4,2,-4,0,0,1,-2,-2,1,-1,-1,2],
[TENSOR,[91,2]],[360,-180,90,12,-6,-24,-18,36,-72,0,0,0,2,-4,8,-4,8,2,0,0,0,6,
-12,24,0,0,0,0,-1,2,-4,-2,4,-8,0,0,0,-4,2,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0],[504,-252,126,-28,14,56,-9,18,-36,0,0,0,2,-4,8,
-4,8,2,-2,1,4,-1,2,-4,2,-4,-4,8,0,0,0,0,0,0,0,0,0,2,-1,-4,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,6,-12,-4,2,0,4,-8,0,0,0,0,1,-2,2,-1,1,1,-2],
[TENSOR,[94,2]],[756,-378,189,6,-3,-12,27,-54,108,0,0,0,5,-10,20,-2,4,1,2,-1,
-4,3,-6,12,0,0,0,0,0,0,0,1,-2,4,0,0,0,2,-1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,18,
2,-1,0,-1,2,-1,2,1,-2,1,-2,2,-1,-1,-1,2],
[TENSOR,[96,2]],[1260,-630,315,-22,11,44,18,-36,72,0,0,0,-1,2,-4,2,-4,-1,0,0,
0,2,-4,8,2,-4,-4,8,0,0,0,1,-2,4,0,0,0,-4,2,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-15,
30,6,-3,0,3,-6,-1,2,-1,2,0,0,0,0,0,0,0],
[TENSOR,[98,2]],[2520,-1260,630,20,-10,-40,36,-72,144,0,0,0,6,-12,24,4,-8,-2,
0,0,0,-4,8,-16,2,-4,-4,8,0,0,0,-2,4,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[2520,-1260,630,-12,6,24,-45,90,-180,0,0,
0,2,-4,8,4,-8,-2,0,0,0,3,-6,12,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,-4,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-8,4,0,2,-4,-2,4,0,0,0,0,-2,1,-1,-1,2],
[TENSOR,[101,2]],[2880,-1440,720,-32,16,64,18,-36,72,0,0,0,0,0,0,0,0,0,0,0,0,
-2,4,-8,-2,4,4,-8,-1,2,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-3*E(8)+3*E(8)^3,3*E(8)-3*E(8)^3,0],
[TENSOR,[103,2]],[2916,-1458,729,-18,9,36,0,0,0,0,0,0,-3,6,-12,-2,4,1,2,-1,-4,
0,0,0,0,0,0,0,1,-2,4,-1,2,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,18,-6,
3,0,-3,6,1,-2,-1,2,1,-2,0,0,0,0,0],
[TENSOR,[105,2]],[3024,-1512,756,24,-12,-48,27,-54,108,0,0,0,-4,8,-16,0,0,0,
-2,1,4,3,-6,12,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-6,12,-4,2,0,2,-4,2,-4,0,0,-1,2,2,-1,-1,-1,2],
[TENSOR,[107,2]],[3780,-1890,945,30,-15,-60,-27,54,-108,0,0,0,1,-2,4,-2,4,1,0,
0,0,-3,6,-12,0,0,0,0,0,0,0,1,-2,4,0,0,0,-2,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-15,
30,-2,1,0,1,-2,1,-2,1,-2,0,0,-2,1,1,1,-2],
[TENSOR,[109,2]]],
[(108,109),(63,64)]);
ALF("3^2.U4(3).D8","Co1",[1,6,5,22,18,2,6,7,5,7,6,8,45,49,9,54,12,47,64,
62,16,22,23,18,23,20,21,22,74,75,27,80,82,29,35,36,37,48,49,45,3,4,12,12,
19,24,25,30,43,47,54,59,13,13,14,34,34,50,50,56,72,83,88,88,20,2,24,4,51,
10,11,53,23,18,21,22,20,23,22,24,26,84,30,92,41,46,55,52,53,69,68,70,19,3,
12,47,25,80,29,80,29,83,34,90,40,47,54,82,82,80],[
"fusion map is unique"
]);
ALF("3^2.U4(3).D8","U4(3).D8",[1,1,1,2,2,2,3,3,3,4,4,5,6,6,6,7,7,7,8,8,8,
9,9,9,10,10,10,10,11,11,11,12,12,12,13,13,13,14,14,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,39,40,40,41,41,
42,42,43,43,43,44,44,45,45,46,47,48,48,49,49,50,50,51,51,52,52,52,53,53,
54,54,55,56,56,57,57,58,58,59,59,60,60,61,61,61]);

MOT("3_1.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[9797760,9797760,9797760,3456,3456,3456,17496,17496,17496,2916,2916,2916,972,
81,288,288,288,48,48,48,15,15,15,216,216,216,108,108,108,108,108,108,21,21,21,
21,21,21,24,24,24,81,81,81,81,81,81,27,27,36,36,36],
[,[1,3,2,1,3,2,7,9,8,10,12,11,13,14,4,6,5,4,6,5,21,23,22,7,9,8,10,12,11,13,13,
13,33,35,34,36,38,37,15,17,16,45,47,46,42,44,43,49,48,24,26,25],[1,1,1,4,4,4,
1,1,1,1,1,1,1,1,15,15,15,18,18,18,21,21,21,4,4,4,4,4,4,4,4,4,36,36,36,33,33,
33,39,39,39,9,9,9,8,8,8,7,7,15,15,15],,[1,3,2,4,6,5,7,9,8,10,12,11,13,14,15,
17,16,18,20,19,1,3,2,24,26,25,27,29,28,30,32,31,36,38,37,33,35,34,39,41,40,45,
47,46,42,44,43,49,48,50,52,51],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,25,26,27,28,29,30,31,32,1,2,3,1,2,3,39,40,41,42,43,44,45,46,
47,48,49,50,51,52]],
0,
[(48,49),(33,36)(34,37)(35,38),( 2, 3)( 5, 6)( 8, 9)(11,12)(16,17)(19,20)
(22,23)(25,26)(28,29)(31,32)(34,35)(37,38)(40,41)(42,45)(43,47)(44,46)(48,49)
(51,52),( 2, 3)( 5, 6)( 8, 9)(11,12)(16,17)(19,20)(22,23)(25,26)(28,29)(31,32)
(34,35)(37,38)(40,41)(42,45)(43,47)(44,46)(51,52)],
["ConstructProj",[["U4(3)",[]],,["3_1.U4(3)",[-1,-1,-1,-1,-1,-1,-1,-1,-13,-13,
-1,-1,-1,-1,-1,-1]]]]);
ALF("3_1.U4(3)","U4(3)",[1,1,1,2,2,2,3,3,3,4,4,4,5,6,7,7,7,8,8,8,9,9,9,10,
10,10,11,11,11,12,12,12,13,13,13,14,14,14,15,15,15,16,16,16,17,17,17,18,
19,20,20,20]);
ALF("3_1.U4(3)","3_1.U4(3).2_1",[1,2,2,3,4,4,5,6,6,7,8,8,9,10,11,12,12,13,
14,14,15,16,16,17,18,18,19,20,20,21,22,22,23,24,24,25,26,26,27,28,28,29,
30,31,29,31,30,32,32,33,34,34],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("3_1.U4(3)","3_1.U4(3).2_2",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,33,34,35,36,37,
38,39,40,41,42,43,44,45,45,46,47,48],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("3_1.U4(3)","3_1.U4(3).2_2'",[1,2,2,3,4,4,5,6,6,7,8,8,9,10,11,12,12,
13,14,14,15,16,16,17,18,18,19,20,20,21,22,22,23,24,25,23,25,24,26,27,27,
28,29,30,28,30,29,31,32,33,34,34],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);

MOT("3_1.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[19595520,9797760,6912,3456,34992,17496,5832,2916,1944,162,576,288,96,48,30,
15,432,216,216,108,216,108,42,21,42,21,48,24,81,81,81,27,72,36,12096,1440,
1152,128,216,36,36,18,16,10,144,144,36,36,14,14],
[,[1,2,1,2,5,6,7,8,9,10,3,4,3,4,15,16,5,6,7,8,9,9,23,24,25,26,11,12,29,30,31,
32,17,18,1,1,3,3,5,7,9,10,11,15,17,17,19,21,23,25],[1,1,3,3,1,1,1,1,1,1,11,11,
13,13,15,15,3,3,3,3,3,3,25,25,23,23,27,27,6,6,6,5,11,11,35,36,37,38,35,36,36,
35,43,44,37,37,37,37,50,49],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,1,2,17,18,19,
20,21,22,25,26,23,24,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,36,45,
46,47,48,50,49],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,
2,1,2,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,45,47,48,35,
35]],
0,
[(45,46),(23,25)(24,26)(49,50)],
["ConstructMGA","3_1.U4(3)","U4(3).2_1",
     [ [ 21, 22 ], [ 23, 24 ], [ 25, 26 ], [ 27, 28 ], [ 29, 30 ],
        [ 31, 32 ], [ 33, 34 ], [ 35, 36 ], [ 37, 38 ], [ 39, 40 ],
        [ 41, 42 ], [ 43, 44 ], [ 45, 46 ], [ 47, 48 ], [ 49, 50 ],
        [ 51, 52 ] ], ()]);
ALF("3_1.U4(3).2_1","U4(3).2_1",[1,1,2,2,3,3,4,4,5,6,7,7,8,8,9,9,10,10,11,
11,12,12,13,13,14,14,15,15,16,16,16,17,18,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34]);
ALF("3_1.U4(3).2_1","3_1.U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,27,28,29,30,31,32,61,62,
63,64,65,66,67,68,69,70,71,71,72,73,74,74],[
"fusion map is unique"
]);

MOT("3_1.U4(3).2_2",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[19595520,19595520,19595520,6912,6912,6912,34992,34992,34992,5832,5832,5832,
1944,162,576,576,576,96,96,96,30,30,30,432,432,432,216,216,216,216,216,216,21,
21,21,48,48,48,162,162,162,162,162,162,27,72,72,72,155520,155520,155520,3456,
3456,3456,576,576,576,288,288,288,3888,3888,3888,3888,3888,3888,648,648,648,
324,324,324,72,18,48,48,48,30,30,30,72,72,72,36,36,36,54,54,54,54,54,54],
[,[1,3,2,1,3,2,7,9,8,10,12,11,13,14,4,6,5,4,6,5,21,23,22,7,9,8,10,12,11,13,13,
13,33,35,34,15,17,16,42,44,43,39,41,40,45,24,26,25,1,3,2,1,3,2,4,6,5,4,6,5,7,
9,8,7,9,8,13,13,13,10,12,11,13,14,15,17,16,21,23,22,24,26,25,27,29,28,42,44,
43,39,41,40],[1,1,1,4,4,4,1,1,1,1,1,1,1,1,15,15,15,18,18,18,21,21,21,4,4,4,4,
4,4,4,4,4,33,33,33,36,36,36,9,9,9,8,8,8,7,15,15,15,49,49,49,52,52,52,55,55,55,
58,58,58,49,49,49,49,49,49,49,49,49,49,49,49,52,52,75,75,75,78,78,78,55,55,55,
58,58,58,63,63,63,65,65,65],,[1,3,2,4,6,5,7,9,8,10,12,11,13,14,15,17,16,18,20,
19,1,3,2,24,26,25,27,29,28,30,32,31,33,35,34,36,38,37,42,44,43,39,41,40,45,46,
48,47,49,51,50,52,54,53,55,57,56,58,60,59,64,66,65,61,63,62,67,69,68,70,72,71,
73,74,75,77,76,49,51,50,81,83,82,84,86,85,90,92,91,87,89,88],,[1,2,3,4,5,6,7,
8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,1,2,
3,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,
87,88,89,90,91,92]],
0,
[( 2, 3)( 5, 6)( 8, 9)(11,12)(16,17)(19,20)(22,23)(25,26)(28,29)(31,32)(34,35)
(37,38)(39,42)(40,44)(41,43)(47,48)(50,51)(53,54)(56,57)(59,60)(61,64)(62,66)
(63,65)(68,69)(71,72)(76,77)(79,80)(82,83)(85,86)(87,90)(88,92)(89,91)],
["ConstructProj",[["U4(3).2_2",[]],,["3_1.U4(3).2_2",[-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1]]]]);
ALF("3_1.U4(3).2_2","U4(3).2_2",[1,1,1,2,2,2,3,3,3,4,4,4,5,6,7,7,7,8,8,8,
9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14,14,14,15,15,15,16,16,16,17,
18,18,18,19,19,19,20,20,20,21,21,21,22,22,22,23,23,23,24,24,24,25,25,25,
26,26,26,27,28,29,29,29,30,30,30,31,31,31,32,32,32,33,33,33,34,34,34]);
ALF("3_1.U4(3).2_2","3.U6(2)",[1,3,2,7,9,8,16,18,17,13,15,14,19,19,26,28,
27,38,40,39,41,43,42,53,55,54,56,58,57,62,64,63,66,68,67,72,74,73,82,81,
83,86,85,84,87,112,114,113,4,6,5,10,12,11,26,28,27,35,37,36,44,46,45,47,
49,48,59,61,60,50,52,51,65,65,72,74,73,88,90,89,112,114,113,121,123,122,
128,127,129,132,131,130],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("3_1.U4(3).2_2","3_1.U4(3).(2^2)_{122}",[1,2,2,3,4,4,5,6,6,7,8,8,9,10,
11,12,12,13,14,14,15,16,16,17,18,18,19,20,20,21,22,22,23,24,24,25,26,26,
27,28,29,27,29,28,30,31,32,32,33,34,34,35,36,36,37,38,38,39,40,40,41,42,
43,41,43,42,44,45,45,46,47,47,48,49,50,51,51,52,53,53,54,55,55,56,57,57,
58,59,60,58,60,59],[
"fusion map is unique"
]);

MOT("3_1.U4(3).2_2'",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]\n"
],
[19595520,9797760,6912,3456,34992,17496,5832,2916,1944,162,576,288,96,48,30,15
,432,216,216,108,216,108,21,21,21,48,24,81,81,81,54,54,72,36,51840,1152,192,96
,1296,1296,216,108,72,18,16,10,24,12,18,18],
[,[1,2,1,2,5,6,7,8,9,10,3,4,3,4,15,16,5,6,7,8,9,9,23,25,24,11,12,28,29,30,32,
31,17,18,1,1,3,3,5,5,7,9,7,10,11,15,17,21,32,31],[1,1,3,3,1,1,1,1,1,1,11,11,13
,13,15,15,3,3,3,3,3,3,23,23,23,26,26,6,6,6,5,5,11,11,35,36,37,38,35,35,35,35,
36,36,45,46,37,38,39,40],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,1,2,17,18,19,20,21
,22,23,24,25,26,27,28,29,30,32,31,33,34,35,36,37,38,40,39,41,42,43,44,45,35,47
,48,50,49],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,2,26
,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50]],
0,
[(24,25),(31,32)(39,40)(49,50)],
["ConstructMGA","3_1.U4(3)","U4(3).2_2'",
     [ [ 21, 22 ], [ 23, 24 ], [ 25, 26 ], [ 27, 28 ], [ 29, 30 ], [ 31, 32 ],
       [ 33, 34 ], [ 35, 36 ], [ 37, 40 ], [ 38, 39 ], [ 41, 42 ], [ 43, 44 ],
       [ 45, 46 ], [ 47, 48 ], [ 49, 50 ], [ 51, 52 ] ], ()]);
ALF("3_1.U4(3).2_2'","U4(3).2_2'",[1,1,2,2,3,3,4,4,5,6,7,7,8,8,9,9,10,10,
11,11,12,12,13,13,13,14,14,15,15,15,16,17,18,18,19,20,21,22,23,24,25,26,
27,28,29,30,31,32,33,34]);
ALF("3_1.U4(3).2_2'","3_1.U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,24,25,26,27,28,29,30,30,31,32,75,76,
77,78,79,79,80,81,82,83,84,85,86,87,88,88],[
"fusion map is unique"
]);

MOT("3_1.U4(3).(2^2)_{122}",
[
"constructed using `PossibleCharacterTablesOfTypeMGA'"
],
[39191040,19595520,13824,6912,69984,34992,11664,5832,3888,324,1152,576,192,96,
60,30,864,432,432,216,432,216,42,21,96,48,162,162,162,54,144,72,311040,155520,
6912,3456,1152,576,576,288,3888,3888,3888,1296,648,648,324,144,36,96,48,60,30,
144,72,72,36,54,54,54,24192,2880,2304,256,432,72,72,36,32,20,144,72,72,14,
103680,2304,384,192,1296,432,216,144,36,32,20,48,24,18],
[,[1,2,1,2,5,6,7,8,9,10,3,4,3,4,15,16,5,6,7,8,9,9,23,24,11,12,27,28,29,30,17,
18,1,2,1,2,3,4,3,4,5,6,6,9,9,7,8,9,10,11,12,15,16,17,18,19,20,27,28,29,1,1,3,3
,5,7,9,10,11,15,17,19,21,23,1,1,3,3,5,7,9,7,10,11,15,17,21,30],[1,1,3,3,1,1,1,
1,1,1,11,11,13,13,15,15,3,3,3,3,3,3,23,23,25,25,6,6,6,5,11,11,33,33,35,35,37,
37,39,39,33,33,33,33,33,33,33,35,35,50,50,52,52,37,37,39,39,43,43,43,61,62,63,
64,61,62,62,61,69,70,63,63,63,74,75,76,77,78,75,75,75,76,76,84,85,77,78,79],,[
1,2,3,4,5,6,7,8,9,10,11,12,13,14,1,2,17,18,19,20,21,22,23,24,25,26,27,28,29,30
,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,33,34,54,55,56
,57,58,59,60,61,62,63,64,65,66,67,68,69,62,71,72,73,74,75,76,77,78,79,80,81,82
,83,84,75,86,87,88],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
,1,2,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,61,
75,76,77,78,79,80,81,82,83,84,85,86,87,88]],
0,
[],
["ConstructMGA","3_1.U4(3).2_2","U4(3).(2^2)_{122}",[[35,37],[36,38],[39,41],[
40,42],[43,45],[44,46],[47,49],[48,50],[51,53],[52,54],[55,57],[56,58],[59,61]
,[60,62],[63,65],[64,66],[67,68],[69,71],[70,72],[73,75],[74,76],[77,79],[78,
80],[81,83],[82,84],[85,87],[86,88],[89,91],[90,92]],()]);
ALF("3_1.U4(3).(2^2)_{122}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,6,7,7,
8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,15,16,17,17,32,32,33,33,34,34,
35,35,36,36,36,37,37,38,38,39,40,41,41,42,42,43,43,44,44,45,45,45,18, 19,
20,21,22,23,24,25,26,27,28,29,30,31,46,47,48,49,50,51,52,53,54,55,56, 57,
58,59]);

MOT("3_2.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]\n",
"3rd power map determined only up to matrix automorphisms (40,41), (42,43)"
],
[9797760,9797760,9797760,3456,3456,3456,17496,17496,17496,972,972,81,288,288,
288,48,48,48,15,15,15,216,216,216,108,108,108,108,108,108,21,21,21,21,21,21,
24,24,24,27,27,27,27,36,36,36],
[,[1,3,2,1,3,2,7,9,8,10,11,12,4,6,5,4,6,5,19,21,20,7,9,8,10,10,10,11,11,11,31,
33,32,34,36,35,13,15,14,41,40,43,42,22,24,23],[1,1,1,4,4,4,1,1,1,1,1,1,13,13,
13,16,16,16,19,19,19,4,4,4,4,4,4,4,4,4,34,34,34,31,31,31,37,37,37,9,8,9,8,13,
13,13],,[1,3,2,4,6,5,7,9,8,10,11,12,13,15,14,16,18,17,1,3,2,22,24,23,25,27,26,
28,30,29,34,36,35,31,33,32,37,39,38,41,40,43,42,44,46,45],,[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,1,2,3,1,2,3,37,
38,39,40,41,42,43,44,45,46]],
0,
[(31,34)(32,35)(33,36),( 2, 3)( 5, 6)( 8, 9)(14,15)(17,18)(20,21)(23,24)
(26,27)(29,30)(32,33)(35,36)(38,39)(40,41)(42,43)(45,46),(10,11)(25,28)(26,29)
(27,30)(40,42)(41,43)],
["ConstructProj",[["U4(3)",[]],,["3_2.U4(3)",[-1,-13,-13,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1]]]]);
ALF("3_2.U4(3)","U4(3)",[1,1,1,2,2,2,3,3,3,4,5,6,7,7,7,8,8,8,9,9,9,10,10,
10,11,11,11,12,12,12,13,13,13,14,14,14,15,15,15,16,17,18,19,20,20,20]);
ALF("3_2.U4(3)","3_2.U4(3).2_1",[1,2,2,3,4,4,5,6,6,7,8,9,10,11,11,12,13,
13,14,15,15,16,17,17,18,19,19,20,21,21,22,23,23,24,25,25,26,27,27,28,28,
29,29,30,31,31],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("3_2.U4(3)","3_2.U4(3).2_3",[1,2,3,4,5,6,7,8,9,10,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,24,25,26,27,28,29,27,28,29,30,31,32,33,
34,33,34,35,36,37],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("3_2.U4(3)","3_2.U4(3).2_3'",[1,2,2,3,4,4,5,6,6,7,7,8,9,10,10,11,12,
12,13,14,14,15,16,16,17,18,19,17,19,18,20,21,22,20,22,21,23,24,24,25,26,
26,25,27,28,28],[
"fusion map determined up to table aut. by compatibility\n",
"with factors"
]);
ALF("3_2.U4(3)","3.McL",[1,3,2,4,6,5,7,9,8,10,10,10,11,13,12,11,13,12,17,
19,18,20,22,21,23,25,24,23,25,24,26,28,27,29,31,30,32,34,33,35,36,35,36,
46,48,47],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);

MOT("3_2.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[19595520,9797760,6912,3456,34992,17496,1944,1944,162,576,288,96,48,30,15,432,
216,216,108,216,108,42,21,42,21,48,24,27,27,72,36,12096,1440,1152,128,216,36,
36,18,16,10,144,144,36,36,14,14],
[,[1,2,1,2,5,6,7,8,9,3,4,3,4,14,15,5,6,7,7,8,8,22,23,24,25,10,11,28,29,16,17,
1,1,3,3,5,7,8,9,10,14,16,16,18,20,22,24],[1,1,3,3,1,1,1,1,1,10,10,12,12,14,14,
3,3,3,3,3,3,24,24,22,22,26,26,6,6,10,10,32,33,34,35,32,33,33,32,40,41,34,34,
34,34,47,46],,[1,2,3,4,5,6,7,8,9,10,11,12,13,1,2,16,17,18,19,20,21,24,25,22,
23,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,33,42,43,44,45,47,46],,[1,2,3,
4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,1,2,1,2,26,27,28,29,30,31,32,
33,34,35,36,37,38,39,40,41,43,42,44,45,32,32]],
0,
[(42,43),(22,24)(23,25)(46,47),( 7, 8)(18,20)(19,21)(28,29)(37,38)(44,45)],
["ConstructMGA","3_2.U4(3)","U4(3).2_1",
     [ [ 21, 22 ], [ 23, 24 ], [ 25, 26 ], [ 27, 28 ], [ 29, 30 ],
        [ 31, 32 ], [ 33, 34 ], [ 35, 36 ], [ 37, 38 ], [ 39, 40 ],
        [ 41, 42 ], [ 43, 44 ], [ 45, 46 ] ], ()]);
ALF("3_2.U4(3).2_1","U4(3).2_1",[1,1,2,2,3,3,4,5,6,7,7,8,8,9,9,10,10,11,
11,12,12,13,13,14,14,15,15,16,17,18,18,19,20,21,22,23,24,25,26,27,28,29,
30,31,32,33,34]);
ALF("3_2.U4(3).2_1","3_2.U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,7,8,9,10,11,12,
13,14,15,16,17,18,17,18,19,20,19,20,21,22,23,23,24,25,44,45,46,47,48,49,
49,50,51,52,53,53,54,54,55,55]);

MOT("3_2.U4(3).2_3",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,5,7]\n",
"3rd power map determined only up to table automorphism (33,34)"
],
[19595520,19595520,19595520,6912,6912,6912,34992,34992,34992,972,162,576,576,
576,96,96,96,30,30,30,432,432,432,108,108,108,21,21,21,48,48,48,27,27,72,72,
72,4320,4320,4320,288,288,288,18,288,288,288,96,96,96,24,24,24,30,30,30,36,36,
36,72,72,72,72,72,72],
[,[1,3,2,1,3,2,7,9,8,10,11,4,6,5,4,6,5,18,20,19,7,9,8,10,10,10,27,29,28,12,14,
13,34,33,21,23,22,1,3,2,4,6,5,11,12,14,13,12,14,13,15,17,16,18,20,19,21,23,22,
35,37,36,35,37,36],[1,1,1,4,4,4,1,1,1,1,1,12,12,12,15,15,15,18,18,18,4,4,4,4,
4,4,27,27,27,30,30,30,9,8,12,12,12,38,38,38,41,41,41,38,45,45,45,48,48,48,51,
51,51,54,54,54,41,41,41,45,45,45,45,45,45],,[1,3,2,4,6,5,7,9,8,10,11,12,14,13,
15,17,16,1,3,2,21,23,22,24,26,25,27,29,28,30,32,31,34,33,35,37,36,38,40,39,41,
43,42,44,45,47,46,48,50,49,51,53,52,38,40,39,57,59,58,60,62,61,63,65,64],,[1,
2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,1,2,3,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,
57,58,59,60,61,62,63,64,65]],
0,
[(60,63)(61,64)(62,65),( 2, 3)( 5, 6)( 8, 9)(13,14)(16,17)(19,20)(22,23)
(25,26)(28,29)(31,32)(33,34)(36,37)(39,40)(42,43)(46,47)(49,50)(52,53)(55,56)
(58,59)(60,63)(61,65)(62,64),( 2, 3)( 5, 6)( 8, 9)(13,14)(16,17)(19,20)(22,23)
(25,26)(28,29)(31,32)(33,34)(36,37)(39,40)(42,43)(46,47)(49,50)(52,53)(55,56)
(58,59)(61,62)(64,65)],
["ConstructProj",[["U4(3).2_3",[]],,["3_2.U4(3).2_3",[-1,-1,-1,-1,-1,-1,-1,17,
-1,-1,-1]]]]);
ALF("3_2.U4(3).2_3","U4(3).2_3",[1,1,1,2,2,2,3,3,3,4,5,6,6,6,7,7,7,8,8,8,
9,9,9,10,10,10,11,11,11,12,12,12,13,14,15,15,15,16,16,16,17,17,17,18,19,
19,19,20,20,20,21,21,21,22,22,22,23,23,23,24,24,24,25,25,25]);
ALF("3_2.U4(3).2_3","3_2.U4(3).(2^2)_{133}",[1,2,2,3,4,4,5,6,6,7,8,9,10,
10,11,12,12,13,14,14,15,16,16,17,18,18,19,20,20,21,22,22,23,23,24,25,25,
26,27,27,28,29,29,30,31,32,32,33,34,34,35,36,36,37,38,38,39,40,40,41,42,
43,41,43,42],[
"fusion map is unique up to table autom.,\n",
"unique map that is compatible with Brauer tables"
]);

MOT("3_2.U4(3).2_3'",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[19595520,9797760,6912,3456,34992,17496,972,162,576,288,96,48,30,15,432,216,
108,108,108,21,21,21,48,24,27,27,72,36,1440,96,18,96,32,8,10,12,24,24],
[,[1,2,1,2,5,6,7,8,3,4,3,4,13,14,5,6,7,7,7,20,22,21,9,10,26,25,15,16,1,3,8,9,
9,11,13,15,27,27],[1,1,3,3,1,1,1,1,9,9,11,11,13,13,3,3,3,3,3,20,20,20,23,23,6,
6,9,9,29,30,29,32,33,34,35,30,32,32],,[1,2,3,4,5,6,7,8,9,10,11,12,1,2,15,16,
17,19,18,20,21,22,23,24,26,25,27,28,29,30,31,32,33,34,29,36,37,38],,[1,2,3,4,
5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,1,2,2,23,24,25,26,27,28,29,30,31,32,
33,34,35,36,37,38]],
0,
[(37,38),(21,22),(18,19),(25,26)],
["ConstructMGA","3_2.U4(3)","U4(3).2_3'",
     [ [ 21, 22 ], [ 23, 26 ], [ 24, 25 ], [ 27, 28 ], [ 29, 30 ],
        [ 31, 32 ], [ 33, 36 ], [ 34, 35 ], [ 37, 38 ], [ 39, 40 ],
        [ 41, 42 ], [ 43, 44 ], [ 45, 46 ] ], ()]);
ARC("3_2.U4(3).2_3'","projectives",["3^2.U4(3).2_3'",[[36,36,4,4,9,9,0,0,4,4,
0,0,1,1,1,1,-2,-2*E(3),-2*E(3)^2,1,1,1,0,0,0,0,1,1,-6,2,0,-2,-2,0,-1,-1,1,1],[
90,90,-6,-6,-18,-18,0,0,2,2,2,2,0,0,6,6,0,0,0,-1,-1,-1,-2,-2,0,0,2,2,0,0,0,0,
0,0,0,0,0,0],[126,126,14,14,-9,-9,0,0,2,2,2,2,1,1,-1,-1,2,2*E(3),2*E(3)^2,0,0,
0,0,0,0,0,-1,-1,6,2,0,4,0,0,1,-1,1,1],[189,189,-3,-3,27,27,0,0,5,5,1,1,-1,-1,
3,3,0,0,0,0,0,0,1,1,0,0,-1,-1,9,1,0,1,1,-1,-1,1,1,1],[315,315,11,11,18,18,0,0,
-1,-1,-1,-1,0,0,2,2,2,2*E(3),2*E(3)^2,0,0,0,1,1,0,0,2,2,-15,-3,0,3,-1,-1,0,0,
0,0],[630,630,6,6,-45,-45,0,0,2,2,-2,-2,0,0,3,3,0,0,0,0,0,0,0,0,0,0,-1,-1,0,4,
0,2,-2,0,0,1,-1,-1],[630,630,-10,-10,36,36,0,0,6,6,-2,-2,0,0,-4,-4,2,2*E(3),
2*E(3)^2,0,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[720,720,16,16,18,18,0,0,0,
0,0,0,0,0,-2,-2,-2,-2*E(3),-2*E(3)^2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(24)+E(24)^11-E(24)^17-E(24)^19,-E(24)-E(24)^11+E(24)^17+E(24)^19],[729,729,
9,9,0,0,0,0,-3,-3,1,1,-1,-1,0,0,0,0,0,1,1,1,-1,-1,0,0,0,0,-9,3,0,-3,1,-1,1,0,
0,0],[756,756,-12,-12,27,27,0,0,-4,-4,0,0,1,1,3,3,0,0,0,0,0,0,0,0,0,0,-1,-1,6,
-2,0,-2,-2,0,1,1,1,1],[945,945,-15,-15,-27,-27,0,0,1,1,1,1,0,0,-3,-3,0,0,0,0,
0,0,1,1,0,0,1,1,15,-1,0,-1,-1,-1,0,-1,-1,-1],[30,-15,-2,1,12,-6,3,0,6,-3,-2,1,
0,0,4,-2,1,E(3)+3*E(3)^2,3*E(3)+E(3)^2,2,-1,-1,2,-1,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0],[42,-21,10,-5,6,-3,6,0,2,-1,2,-1,2,-1,
-2,1,4,-2*E(3),-2*E(3)^2,0,0,0,-2,1,E(3)+2*E(3)^2,2*E(3)+E(3)^2,2,-1,0,0,0,0,
0,0,0,0,0,0],[210,-105,18,-9,30,-15,3,0,2,-1,2,-1,0,0,6,-3,3,3,3,0,0,0,2,-1,
-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,2,-1,0,0,0,0,0,0,0,0,0,0],[210,-105,-14,7,30,
-15,3,0,10,-5,2,-1,0,0,-2,1,1,E(3)+3*E(3)^2,3*E(3)+E(3)^2,0,0,0,-2,1,
-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,-2,1,0,0,0,0,0,0,0,0,0,0],[210,-105,18,-9,-24,
12,12,0,2,-1,2,-1,0,0,0,0,0,0,0,0,0,0,2,-1,-E(3)+E(3)^2,E(3)-E(3)^2,-4,2,0,0,
0,0,0,0,0,0,0,0],[420,-210,4,-2,6,-3,15,0,-4,2,-4,2,0,0,-2,1,1,E(3)+3*E(3)^2,
3*E(3)+E(3)^2,0,0,0,0,0,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,2,-1,0,0,0,0,0,0,0,0,0,
0],[630,-315,-10,5,-72,36,9,0,6,-3,-2,1,0,0,8,-4,-1,-E(3)-3*E(3)^2,
-3*E(3)-E(3)^2,0,0,0,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[672,-336,32,-16,-12,6,
6,0,0,0,0,0,2,-1,-4,2,-4,2*E(3),2*E(3)^2,0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0],[720,-360,16,-8,-36,18,-9,0,0,0,0,0,0,0,4,-2,1,
E(3)+3*E(3)^2,3*E(3)+E(3)^2,-1,E(21)+E(21)^4+E(21)^5+E(21)^16+E(21)^17
 +E(21)^20,E(21)^2+E(21)^8+E(21)^10+E(21)^11+E(21)^13+E(21)^19,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],
[GALOIS,[20,10]],[768,-384,0,0,48,-24,12,0,0,0,0,0,-2,1,0,0,0,0,0,-2,1,1,0,0,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0],[840,-420,8,-4,66,-33,-6,
0,8,-4,0,0,0,0,2,-1,-4,2*E(3),2*E(3)^2,0,0,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,2,
-1,0,0,0,0,0,0,0,0,0,0],[1260,-630,12,-6,18,-9,-9,0,4,-2,-4,2,0,0,-6,3,3,3,3,
0,0,0,0,0,0,0,-2,1,0,0,0,0,0,0,0,0,0,0],[1458,-729,18,-9,0,0,0,0,-6,3,2,-1,-2,
1,0,0,0,0,0,2,-1,-1,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1512,-756,-24,12,54,
-27,0,0,-8,4,0,0,2,-1,6,-3,0,0,0,0,0,0,0,0,0,0,-2,1,0,0,0,0,0,0,0,0,0,0],[
1890,-945,-30,15,-54,27,0,0,2,-1,2,-1,0,0,-6,3,0,0,0,0,0,0,2,-1,0,0,2,-1,0,0,
0,0,0,0,0,0,0,0]],]);
ARC("3_2.U4(3).2_3'","CAS",[rec(name:="3.u4(3):2",
permclasses:=( 5,11, 7,13,24,10, 6,12, 8,14,25,15,17,19,21,27,22,28,23, 9)
(16,18,20,26),
permchars:=( 2,11, 5,21,25,10,15,22,19,18, 7, 3,12,16,24,20, 8,14,23, 9, 4)
( 6,13)(27,36,33,37,34,31,29)(28,38,35,32,30),
text:="test:= 1. o.r., sym 2 decompose correctly")]);
ALF("3_2.U4(3).2_3'","U4(3).2_3'",[1,1,2,2,3,3,4,5,6,6,7,7,8,8,9,9,10,10,
10,11,11,11,12,12,13,14,15,15,16,17,18,19,20,21,22,23,24,25]);
ALF("3_2.U4(3).2_3'","3_2.U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,18,19,20,20,21,22,23,23,24,25,56,57,58,59,60,61,62,63,
64,64],[
"fusion map is unique"
]);
ALF("3_2.U4(3).2_3'","3.McL.2",[1,2,3,4,5,6,7,7,8,9,8,9,12,13,14,15,16,17,
17,18,19,20,21,22,23,23,30,31,41,42,43,44,45,45,46,47,53,54],[
"fusion map is unique up to table automorphisms"
]);
ALF("3_2.U4(3).2_3'","Suz",[1,4,2,13,4,5,5,6,7,27,9,29,12,37,13,16,16,14,
15,18,41,42,19,43,22,23,27,28,3,9,17,19,19,21,25,29,43,43],[
"fusion map is unique up to table automorphisms"
]);
ALN("3_2.U4(3).2_3'",["3.u4(3):2","SuzN3A"]);

MOT("3_2.U4(3).(2^2)_{133}",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,19595520,13824,6912,69984,34992,1944,324,1152,576,192,96,60,30,864,
432,216,108,42,21,96,48,27,144,72,8640,4320,576,288,36,576,288,192,96,48,24,
60,30,72,36,72,72,72,24192,2880,2304,256,432,36,36,32,20,144,36,14,2880,192,
36,192,64,16,20,24,24],
[,[1,2,1,2,5,6,7,8,3,4,3,4,13,14,5,6,7,7,19,20,9,10,23,15,16,1,2,3,4,8,9,10,9,
10,11,12,13,14,15,16,24,25,25,1,1,3,3,5,7,8,9,13,15,17,19,1,3,8,9,9,11,13,15,
24],[1,1,3,3,1,1,1,1,9,9,11,11,13,13,3,3,3,3,19,19,21,21,6,9,9,26,26,28,28,26,
31,31,33,33,35,35,37,37,28,28,31,31,31,44,45,46,47,44,45,44,51,52,46,46,55,56,
57,56,59,60,61,62,57,59],,[1,2,3,4,5,6,7,8,9,10,11,12,1,2,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,26,27,39,40,41,43,42,44,45,46,
47,48,49,50,51,45,53,54,55,56,57,58,59,60,61,56,63,64],,[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,1,2,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,
37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,44,56,57,58,59,60,61,62,
63,64]],
0,
[(42,43)],
["ConstructMGA","3_2.U4(3).2_3","U4(3).(2^2)_{133}",
[[26,28],[27,29],[30,31],[32,34],[33,35],[36,38],[37,39],[40,42],[41,43],[44,
45],[46,48],[47,49],[50,52],[51,53],[54,56],[55,57],[58,60],[59,61],[62,64],
[63,65]],()]);
ALF("3_2.U4(3).(2^2)_{133}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,5,6,6,7,7,
8,8,9,9,10,10,11,11,12,12,13,14,14,27,27,28,28,29,30,30,31,31,32,32,33,33,
34,34,35,35,35,15,16,17,18,19,20,21,22,23,24,25,26,36,37,38,39,40,41,42,
43,44]);
ALF("3_2.U4(3).(2^2)_{133}","Suz.2",[1,4,2,13,4,5,5,6,7,25,9,27,12,33,13,
15,15,14,17,36,18,37,21,25,26,38,42,40,54,44,46,60,47,61,50,64,51,66,54,
55,60,62,62,38,39,40,40,42,43,44,49,53,54,55,57,3,9,16,18,18,20,23,27,37],[
"fusion map is unique"
]);
ALN("3_2.U4(3).(2^2)_{133}",["Suz.2N3A"]);

MOT("4.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"constructions: SU(4,3)"
],
[13063680,13063680,13063680,13063680,2304,2304,23328,23328,23328,23328,3888,
3888,3888,3888,3888,3888,3888,3888,324,324,324,324,384,384,384,384,16,20,20,
20,20,288,288,288,288,72,72,72,72,28,28,28,28,28,28,28,28,32,32,32,32,108,108,
108,108,108,108,108,108,108,108,108,108,108,108,108,108,48,48,48,48],
[,[1,3,1,3,1,3,7,9,7,9,11,13,11,13,15,17,15,17,19,21,19,21,5,5,5,5,6,28,30,28,
30,7,9,7,9,11,13,15,17,40,42,40,42,44,46,44,46,24,26,24,26,56,58,56,58,52,54,
52,54,64,66,64,66,60,62,60,62,32,34,32,34],[1,4,3,2,5,6,1,4,3,2,1,4,3,2,1,4,3,
2,1,4,3,2,23,26,25,24,27,28,31,30,29,5,6,5,6,5,6,5,6,44,47,46,45,40,43,42,41,
51,50,49,48,7,10,9,8,7,10,9,8,7,10,9,8,7,10,9,8,23,26,25,24],,[1,2,3,4,5,6,7,
8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,1,2,3,4,32,33,34,35,
36,37,38,39,44,45,46,47,40,41,42,43,48,49,50,51,56,57,58,59,52,53,54,55,64,65,
66,67,60,61,62,63,68,69,70,71],,[1,4,3,2,5,6,7,10,9,8,11,14,13,12,15,18,17,16,
19,22,21,20,23,26,25,24,27,28,31,30,29,32,35,34,33,36,37,38,39,1,4,3,2,1,4,3,
2,51,50,49,48,52,55,54,53,56,59,58,57,60,63,62,61,64,67,66,65,68,71,70,69]],
0,
[(52,56)(53,57)(54,58)(55,59)(60,64)(61,65)(62,66)(63,67),(40,44)(41,45)
(42,46)(43,47),( 2, 4)( 8,10)(12,14)(16,18)(20,22)(24,26)(29,31)(33,35)(41,43)
(45,47)(48,51)(49,50)(53,55)(57,59)(61,63)(65,67)(69,71),(60,64)(61,65)(62,66)
(63,67),(11,15)(12,16)(13,17)(14,18)(36,38)(37,39)(52,60)(53,61)(54,62)(55,63)
(56,64)(57,65)(58,66)(59,67)],
["ConstructProj",[["U4(3)",[]],["2.U4(3)",[]],,["4.U4(3)",[-1,-1,-1,7,7,7,7,
-1,-1,-1,-1,-1,15,15,-1,-1]]]]);
ALF("4.U4(3)","U4(3)",[1,1,1,1,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,
7,8,9,9,9,9,10,10,10,10,11,11,12,12,13,13,13,13,14,14,14,14,15,15,15,15,
16,16,16,16,17,17,17,17,18,18,18,18,19,19,19,19,20,20,20,20]);
ALF("4.U4(3)","2.U4(3)",[1,2,1,2,3,4,5,6,5,6,7,8,7,8,9,10,9,10,11,12,11,
12,13,14,13,14,15,16,17,16,17,18,19,18,19,20,21,22,23,24,25,24,25,26,27,
26,27,28,29,28,29,30,31,30,31,32,33,32,33,34,35,34,35,36,37,36,37,38,39,
38,39]);
ALF("4.U4(3)","4.U4(3).2_1",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,
43,44,45,46,47,48,49,50,51,52,53,54,55,52,53,54,55,56,57,58,59,56,57,58,
59,60,61,62,63],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("4.U4(3)","4.U4(3).2_2",[1,2,3,2,4,5,6,7,8,7,9,10,11,10,12,13,14,13,
15,16,17,16,18,19,20,19,21,22,23,24,23,25,26,27,26,28,29,30,31,32,33,34,
35,32,35,34,33,36,37,37,36,38,39,40,39,41,42,43,42,44,45,46,47,44,47,46,
45,48,49,50,49],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("4.U4(3)","4.U4(3).2_3",[1,2,3,2,4,5,6,7,8,7,9,10,11,12,9,12,11,10,13,
14,15,14,16,17,18,17,19,20,21,22,21,23,24,25,24,26,27,26,27,28,29,30,31,
28,31,30,29,32,33,33,32,34,35,36,37,38,39,40,41,34,37,36,35,38,41,40,39,
42,43,44,43],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("4.U4(3)","4.U4(3).4",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,32,33,34,35,36,
37,38,39,40,41,42,43,44,45,46,47,48,49,46,47,48,49,46,47,48,49,46,47,48,
49,50,51,52,53],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);

MOT("4.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[26127360,26127360,26127360,26127360,4608,4608,46656,46656,46656,46656,7776,
7776,7776,7776,7776,7776,7776,7776,648,648,648,648,768,768,768,768,32,40,40,
40,40,576,576,576,576,144,144,144,144,56,56,56,56,56,56,56,56,64,64,64,64,108,
108,108,108,108,108,108,108,96,96,96,96,48384,48384,48384,48384,2880,2880,
4608,4608,4608,4608,128,864,864,864,864,72,72,72,72,72,72,72,72,64,64,64,64,
40,40,40,40,576,576,576,576,576,576,576,576,144,144,144,144,144,144,144,144,
56,56,56,56,56,56,56,56],
[,[1,3,1,3,1,3,7,9,7,9,11,13,11,13,15,17,15,17,19,21,19,21,5,5,5,5,6,28,30,28,
30,7,9,7,9,11,13,15,17,40,42,40,42,44,46,44,46,24,26,24,26,52,54,52,54,56,58,
56,58,32,34,32,34,1,3,1,3,2,4,5,5,5,5,5,7,9,7,9,12,14,16,18,19,21,19,21,26,24,
26,24,29,31,29,31,32,34,32,34,34,32,34,32,36,36,36,36,38,38,38,38,40,42,40,42,
44,46,44,46],[1,4,3,2,5,6,1,4,3,2,1,4,3,2,1,4,3,2,1,4,3,2,23,26,25,24,27,28,
31,30,29,5,6,5,6,5,6,5,6,44,47,46,45,40,43,42,41,51,50,49,48,7,10,9,8,7,10,9,
8,23,26,25,24,64,67,66,65,69,68,73,72,71,70,74,64,67,66,65,69,68,69,68,64,67,
66,65,90,89,88,87,94,93,92,91,73,72,71,70,73,72,71,70,73,72,71,70,73,72,71,70,
115,118,117,116,111,114,113,112],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,26,27,1,2,3,4,32,33,34,35,36,37,38,39,44,45,46,47,40,
41,42,43,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,
71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,68,69,68,69,95,96,
97,98,99,100,101,102,103,104,105,106,107,108,109,110,115,116,117,118,111,112,
113,114],,[1,4,3,2,5,6,7,10,9,8,11,14,13,12,15,18,17,16,19,22,21,20,23,26,25,
24,27,28,31,30,29,32,35,34,33,36,37,38,39,1,4,3,2,1,4,3,2,51,50,49,48,52,55,
54,53,56,59,58,57,60,63,62,61,64,67,66,65,69,68,73,72,71,70,74,75,78,77,76,80,
79,82,81,83,86,85,84,90,89,88,87,92,91,94,93,102,101,100,99,98,97,96,95,106,
105,104,103,110,109,108,107,64,67,66,65,64,67,66,65]],
0,
[(91,93)(92,94),( 40, 44)( 41, 45)( 42, 46)( 43, 47)(111,115)(112,116)
(113,117)(114,118),(  2,  4)(  8, 10)( 12, 14)( 16, 18)( 20, 22)( 24, 26)
( 29, 31)( 33, 35)( 41, 43)( 45, 47)( 48, 51)( 49, 50)( 53, 55)( 57, 59)
( 61, 63)( 65, 67)( 68, 69)( 70, 73)( 71, 72)( 76, 78)( 79, 80)( 81, 82)
( 84, 86)( 87, 90)( 88, 89)( 91, 92)( 93, 94)( 95,102)( 96,101)( 97,100)
( 98, 99)(103,106)(104,105)(107,110)(108,109)(112,114)(116,118),(  2,  4)
(  8, 10)( 12, 14)( 16, 18)( 20, 22)( 24, 26)( 29, 31)( 33, 35)( 41, 43)
( 45, 47)( 48, 51)( 49, 50)( 53, 55)( 57, 59)( 61, 63)( 65, 67)( 68, 69)
( 70, 73)( 71, 72)( 76, 78)( 79, 80)( 81, 82)( 84, 86)( 87, 90)( 88, 89)
( 91, 94)( 92, 93)( 95,102)( 96,101)( 97,100)( 98, 99)(103,106)(104,105)
(107,110)(108,109)(112,114)(116,118),( 11, 15)( 12, 16)( 13, 17)( 14, 18)
( 36, 38)( 37, 39)( 52, 56)( 53, 57)( 54, 58)( 55, 59)( 79, 81)( 80, 82)
(103,107)(104,108)(105,109)(106,110),(  2,  4)(  8, 10)( 12, 14)( 16, 18)
( 20, 22)( 24, 26)( 29, 31)( 33, 35)( 41, 43)( 45, 47)( 48, 51)( 49, 50)
( 53, 55)( 57, 59)( 61, 63)( 64, 66)( 68, 69)( 70, 71)( 72, 73)( 75, 77)
( 79, 80)( 81, 82)( 83, 85)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95,100)
( 96, 99)( 97,102)( 98,101)(103,104)(105,106)(107,108)(109,110)(111,113)
(115,117)],
["ConstructProj",[["U4(3).2_1",[]],["2.U4(3).2_1",[]],,["4.U4(3).2_1",[-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,15,15,-1,31]]]]);
ALF("4.U4(3).2_1","U4(3).2_1",[1,1,1,1,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,
6,7,7,7,7,8,9,9,9,9,10,10,10,10,11,11,12,12,13,13,13,13,14,14,14,14,15,15,
15,15,16,16,16,16,17,17,17,17,18,18,18,18,19,19,19,19,20,20,21,21,21,21,
22,23,23,23,23,24,24,25,25,26,26,26,26,27,27,27,27,28,28,28,28,29,29,29,
29,30,30,30,30,31,31,31,31,32,32,32,32,33,33,33,33,34,34,34,34]);
ALF("4.U4(3).2_1","2.U4(3).2_1",[1,2,1,2,3,4,5,6,5,6,7,8,7,8,9,10,9,10,11,
12,11,12,13,14,13,14,15,16,17,16,17,18,19,18,19,20,21,22,23,24,25,24,25,
26,27,26,27,28,29,28,29,30,31,30,31,32,33,32,33,34,35,34,35,36,37,36,37,
38,39,40,41,40,41,42,43,44,43,44,45,46,47,48,49,50,49,50,51,52,51,52,53,
54,53,54,55,56,55,56,57,58,57,58,59,60,59,60,61,62,61,62,63,64,63,64,65,
66,65,66]);
ALF("4.U4(3).2_1","4.U4(3).4",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,32,33,34,35,
36,37,38,39,40,41,42,43,44,45,46,47,48,49,46,47,48,49,50,51,52,53,54,55,
56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,69,70,71,72,73,74,75,76,77,
78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,91,92,93,94,95,96,97,
98,99,100,101,102],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);

MOT("4.U4(3).2_2",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[26127360,13063680,26127360,4608,4608,46656,23328,46656,7776,3888,7776,7776,
3888,7776,648,324,648,768,384,768,32,40,20,40,576,288,576,144,144,144,144,28,
28,28,28,32,32,216,108,216,216,108,216,108,108,108,108,96,48,96,103680,103680,
1152,192,192,192,2592,2592,2592,2592,432,432,216,216,144,144,36,36,16,20,20,
48,48,24,24,36,36,36,36],
[,[1,3,1,1,3,6,8,6,9,11,9,12,14,12,15,17,15,4,4,4,5,22,24,22,6,8,6,9,11,12,14,
32,34,32,34,19,19,41,43,41,38,40,38,44,46,44,46,25,27,25,3,3,1,4,5,5,8,8,8,8,
14,14,11,11,12,12,15,15,18,24,24,27,27,29,29,43,43,40,40],[1,2,3,4,5,1,2,3,1,
2,3,1,2,3,1,2,3,18,19,20,21,22,23,24,4,5,4,4,5,4,5,32,33,34,35,36,37,6,7,8,6,
7,8,6,7,8,7,18,19,20,51,52,53,54,55,56,51,52,51,52,51,52,51,52,53,53,53,53,69,
70,71,54,54,55,56,57,58,59,60],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,1,2,3,25,26,27,28,29,30,31,32,35,34,33,36,37,41,42,43,38,39,40,44,47,
46,45,48,49,50,51,52,53,54,55,56,59,60,57,58,61,62,63,64,65,66,67,68,69,51,52,
73,72,74,75,78,79,76,77],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30,31,1,2,3,2,36,37,38,39,40,41,42,43,44,47,46,45,
48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,
74,75,76,77,78,79]],
0,
[(67,68),(45,47),(38,41)(39,42)(40,43)(45,47)(57,59)(58,60)(72,73)(76,78)
(77,79),(33,35),(33,35)(45,47),(38,41)(39,42)(40,43)(57,59)(58,60)(72,73)
(76,78)(77,79),(51,52)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(70,71)(72,73)
(74,75)(76,77)(78,79)],
["ConstructMGA","4.U4(3)","2.U4(3).2_2",
     [ [ 40, 41 ], [ 42, 43 ], [ 44, 45 ], [ 46, 47 ], [ 48, 49 ],
        [ 50, 53 ], [ 51, 52 ], [ 54, 55 ], [ 56, 57 ], [ 58, 59 ],
        [ 60, 61 ], [ 62, 63 ], [ 64, 67 ], [ 65, 66 ], [ 68, 69 ],
        [ 70, 71 ] ], ()]);
ALF("4.U4(3).2_2","U4(3).2_2",[1,1,1,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,
9,9,9,10,10,10,11,11,12,12,13,13,13,13,14,14,15,15,15,16,16,16,17,17,17,
17,18,18,18,19,19,20,21,22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,30,
30,31,31,32,32,33,33,34,34]);
ALF("4.U4(3).2_2","2.U4(3).2_2",[1,2,1,3,4,5,6,5,7,8,7,9,10,9,11,12,11,13,
14,13,15,16,17,16,18,19,18,20,21,22,23,24,25,24,25,26,26,27,28,27,29,30,
29,31,32,31,32,33,34,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63]);
ALF("4.U4(3).2_2","2.O7(3)",[1,3,2,5,4,6,27,7,8,28,9,10,29,11,16,38,17,21,
23,22,24,25,61,26,34,30,33,36,35,37,32,47,79,48,78,50,51,52,83,53,52,82,
53,54,84,55,85,64,68,65,3,4,5,23,20,24,27,30,27,30,29,32,28,35,31,37,43,
44,49,61,60,68,68,67,73,82,86,83,86],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);

MOT("4.U4(3).2_3",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[26127360,13063680,26127360,4608,4608,46656,23328,46656,3888,3888,3888,3888,
648,324,648,768,384,768,32,40,20,40,576,288,576,72,72,28,28,28,28,32,32,108,
108,108,108,108,108,108,108,96,48,96,1440,96,36,36,192,192,32,16,16,20,20,24,
24,48,48,48,48],
[,[1,3,1,1,3,6,8,6,9,11,9,11,13,15,13,4,4,4,5,20,22,20,6,8,6,9,11,28,30,28,30,
17,17,38,40,38,40,34,36,34,36,23,25,23,1,4,13,13,18,18,16,19,19,20,20,25,25,
44,44,44,44],[1,2,3,4,5,1,2,3,1,2,3,2,1,2,3,16,17,18,19,20,21,22,4,5,4,4,5,28,
29,30,31,32,33,6,7,8,7,6,7,8,7,16,17,18,45,46,45,45,50,49,51,53,52,55,54,46,
46,50,49,50,49],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,1,2,3,23,24,
25,26,27,28,31,30,29,32,33,38,39,40,41,34,35,36,37,42,43,44,45,46,47,48,50,49,
51,53,52,45,45,57,56,59,58,61,60],,[1,2,3,4,5,6,7,8,9,12,11,10,13,14,15,16,17,
18,19,20,21,22,23,24,25,26,27,1,2,3,2,32,33,34,37,36,35,38,41,40,39,42,43,44,
45,46,47,48,49,50,51,52,53,55,54,56,57,58,59,60,61]],
0,
[(56,57)(58,60)(59,61),(54,55),(49,50)(52,53)(58,61)(59,60),(47,48),(34,38)
(35,39)(36,40)(37,41)(56,57)(58,60)(59,61),(29,31),(10,12)(29,31)(35,37)
(39,41),(10,12)(29,31)(35,37)(39,41)(49,50)(52,53)(58,61)(59,60),(34,38)
(35,39)(36,40)(37,41),(10,12)(35,37)(39,41)],
["ConstructMGA","4.U4(3)","2.U4(3).2_3",
     [ [ 40, 41 ], [ 42, 43 ], [ 44, 45 ], [ 46, 51 ], [ 47, 50 ],
        [ 48, 53 ], [ 49, 52 ], [ 54, 55 ], [ 56, 59 ], [ 57, 58 ],
        [ 60, 61 ], [ 62, 63 ], [ 64, 67 ], [ 65, 66 ], [ 68, 69 ],
        [ 70, 71 ] ], ()]);
ALF("4.U4(3).2_3","U4(3).2_3",[1,1,1,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,8,8,
8,9,9,9,10,10,11,11,11,11,12,12,13,13,13,13,14,14,14,14,15,15,15,16,17,18,
18,19,19,20,21,21,22,22,23,23,24,24,25,25]);
ALF("4.U4(3).2_3","2.U4(3).2_3",[1,2,1,3,4,5,6,5,7,8,7,8,9,10,9,11,12,11,
13,14,15,14,16,17,16,18,19,20,21,20,21,22,22,23,24,23,24,25,26,25,26,27,
28,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45]);

MOT("4.U4(3).4",
[
"origin: ATLAS of finite groups, test: 1.o.r., pow[2,3,5,7],\n",
"constructions: GU(4,3)"
],
[52254720,52254720,52254720,52254720,9216,9216,93312,93312,93312,93312,7776,
7776,7776,7776,1296,1296,1296,1296,1536,1536,1536,1536,64,80,80,80,80,1152,
1152,1152,1152,144,144,112,112,112,112,112,112,112,112,128,128,128,128,108,
108,108,108,192,192,192,192,96768,96768,96768,96768,5760,5760,9216,9216,9216,
9216,256,1728,1728,1728,1728,72,72,144,144,144,144,128,128,128,128,80,80,80,
80,1152,1152,1152,1152,1152,1152,1152,1152,144,144,144,144,112,112,112,112,
112,112,112,112,96768,96768,96768,96768,96768,96768,96768,96768,1536,1536,
1536,1536,1536,1536,1536,1536,80,80,768,768,768,768,768,768,768,768,128,128,
128,128,1728,1728,1728,1728,1728,1728,1728,1728,192,192,192,192,192,192,192,
192,144,144,144,144,144,144,144,144,80,80,80,80,80,80,80,80,96,96,96,96,96,96,
96,96,112,112,112,112,112,112,112,112,112,112,112,112,112,112,112,112],
[,[1,3,1,3,1,3,7,9,7,9,11,13,11,13,15,17,15,17,5,5,5,5,6,24,26,24,26,7,9,7,9,
11,13,34,36,34,36,38,40,38,40,20,22,20,22,46,48,46,48,28,30,28,30,1,3,1,3,2,4,
5,5,5,5,5,7,9,7,9,12,14,15,17,15,17,22,20,22,20,25,27,25,27,28,30,28,30,30,28,
30,28,32,32,32,32,34,36,34,36,38,40,38,40,54,56,54,56,54,56,54,56,54,56,54,56,
54,56,54,56,58,59,60,62,60,62,63,61,63,61,63,61,60,62,65,67,65,67,65,67,65,67,
65,67,65,67,65,67,65,67,71,73,71,73,71,73,71,73,81,79,81,79,80,82,80,82,83,85,
83,85,90,88,90,88,95,97,95,97,95,97,95,97,99,101,99,101,99,101,99,101],[1,4,3,
2,5,6,1,4,3,2,1,4,3,2,1,4,3,2,19,22,21,20,23,24,27,26,25,5,6,5,6,5,6,38,41,40,
39,34,37,36,35,45,44,43,42,7,10,9,8,19,22,21,20,54,57,56,55,59,58,63,62,61,60,
64,54,57,56,55,59,58,54,57,56,55,78,77,76,75,82,81,80,79,63,62,61,60,63,62,61,
60,63,62,61,60,99,102,101,100,95,98,97,96,107,108,109,110,103,104,105,106,115,
116,117,118,111,112,113,114,120,119,125,126,127,128,121,122,123,124,131,132,
129,130,107,108,109,110,103,104,105,106,115,116,117,118,111,112,113,114,107,
108,109,110,103,104,105,106,163,164,161,162,159,160,157,158,125,126,127,128,
121,122,123,124,185,186,187,188,181,182,183,184,177,178,179,180,173,174,175,
176],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,1,2,3,4,28,
29,30,31,32,33,38,39,40,41,34,35,36,37,42,43,44,45,46,47,48,49,50,51,52,53,54,
55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,58,59,
58,59,83,84,85,86,87,88,89,90,91,92,93,94,99,100,101,102,95,96,97,98,103,104,
105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,
124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,
143,144,145,146,147,148,149,150,151,152,153,154,155,156,119,119,119,119,120,
120,120,120,165,166,167,168,169,170,171,172,181,182,183,184,185,186,187,188,
173,174,175,176,177,178,179,180],,[1,4,3,2,5,6,7,10,9,8,11,14,13,12,15,18,17,
16,19,22,21,20,23,24,27,26,25,28,31,30,29,32,33,1,4,3,2,1,4,3,2,45,44,43,42,
46,49,48,47,50,53,52,51,54,57,56,55,59,58,63,62,61,60,64,65,68,67,66,70,69,71,
74,73,72,78,77,76,75,80,79,82,81,90,89,88,87,86,85,84,83,94,93,92,91,54,57,56,
55,54,57,56,55,107,108,109,110,103,104,105,106,115,116,117,118,111,112,113,
114,120,119,125,126,127,128,121,122,123,124,131,132,129,130,137,138,139,140,
133,134,135,136,145,146,147,148,141,142,143,144,153,154,155,156,149,150,151,
152,164,161,162,163,160,157,158,159,169,170,171,172,165,166,167,168,107,108,
109,110,103,104,105,106,107,108,109,110,103,104,105,106]],
0,
[(157,159)(158,160)(161,163)(162,164),( 79, 81)( 80, 82)(157,158,159,160)
(161,162,163,164),( 34, 38)( 35, 39)( 36, 40)( 37, 41)( 95, 99)( 96,100)
( 97,101)( 98,102)(173,181)(174,182)(175,183)(176,184)(177,185)(178,186)
(179,187)(180,188),(  2,  4)(  8, 10)( 12, 14)( 16, 18)( 20, 22)( 25, 27)
( 29, 31)( 35, 37)( 39, 41)( 42, 45)( 43, 44)( 47, 49)( 51, 53)( 55, 57)
( 58, 59)( 60, 63)( 61, 62)( 66, 68)( 69, 70)( 72, 74)( 75, 78)( 76, 77)
( 79, 82)( 80, 81)( 83, 90)( 84, 89)( 85, 88)( 86, 87)( 91, 94)( 92, 93)
( 96, 98)(100,102)(103,107)(104,108)(105,109)(106,110)(111,115)(112,116)
(113,117)(114,118)(119,120)(121,125)(122,126)(123,127)(124,128)(129,131)
(130,132)(133,137)(134,138)(135,139)(136,140)(141,145)(142,146)(143,147)
(144,148)(149,153)(150,154)(151,155)(152,156)(157,161)(158,162)(159,163)
(160,164)(165,169)(166,170)(167,171)(168,172)(173,177)(174,178)(175,179)
(176,180)(181,185)(182,186)(183,187)(184,188),(103,105)(104,106)(107,109)
(108,110)(111,113)(112,114)(115,117)(116,118)(121,123)(122,124)(125,127)
(126,128)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)(145,147)
(146,148)(149,151)(150,152)(153,155)(154,156)(165,167)(166,168)(169,171)
(170,172)(173,175)(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)
(186,188),( 54, 56)( 55, 57)( 60, 62)( 61, 63)( 65, 67)( 66, 68)( 71, 73)
( 72, 74)( 75, 77)( 76, 78)( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)
( 92, 94)( 95, 97)( 96, 98)( 99,101)(100,102)(103,104,105,106)(107,108,109,110
 )(111,112,113,114)(115,116,117,118)(121,122,123,124)(125,126,127,128)
(129,130)(131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)
(145,146,147,148)(149,150,151,152)(153,154,155,156)(165,166,167,168)
(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)
(185,186,187,188)],
["ConstructProj",[["U4(3).4",[]],["2.U4(3).4",[]],,["4.U4(3).4",[-1,-1,-1,-1,
-1,-1,-1,-1,15,15,-1,31]]]]);
ALF("4.U4(3).4","2.U4(3).4",[1,2,1,2,3,4,5,6,5,6,7,8,7,8,9,10,9,10,11,12,
11,12,13,14,15,14,15,16,17,16,17,18,19,20,21,20,21,22,23,22,23,24,25,24,
25,26,27,26,27,28,29,28,29,30,31,30,31,32,33,34,35,34,35,36,37,38,37,38,
39,40,41,42,41,42,43,44,43,44,45,46,45,46,47,48,47,48,49,50,49,50,51,52,
51,52,53,54,53,54,55,56,55,56,57,58,57,58,59,60,59,60,61,62,61,62,63,64,
63,64,65,66,67,68,67,68,69,70,69,70,71,72,73,74,75,76,75,76,77,78,77,78,
79,80,79,80,81,82,81,82,83,84,83,84,85,86,85,86,87,88,87,88,89,90,89,90,
91,92,91,92,93,94,93,94,95,96,95,96,97,98,97,98,99,100,99,100,101,102,101,
102]);
ALF("4.U4(3).4","U4(3).4",[1,1,1,1,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,
8,8,8,8,9,9,9,9,10,10,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,15,
15,15,15,16,16,16,16,17,17,18,18,18,18,19,20,20,20,20,21,21,22,22,22,22,
23,23,23,23,24,24,24,24,25,25,25,25,26,26,26,26,27,27,27,27,28,28,28,28,
29,29,29,29,30,30,30,30,31,31,31,31,32,32,32,32,33,33,33,33,34,35,36,36,
36,36,37,37,37,37,38,38,39,39,40,40,40,40,41,41,41,41,42,42,42,42,43,43,
43,43,44,44,44,44,45,45,45,45,46,46,46,46,47,47,47,47,48,48,48,48,49,49,
49,49,50,50,50,50,51,51,51,51,52,52,52,52,53,53,53,53]);
ALF("4.U4(3).4","U5(3)",[1,8,2,9,3,15,4,47,20,46,5,52,23,53,6,57,24,58,12,
17,18,16,42,19,85,45,86,22,64,21,63,25,71,28,107,80,106,29,105,81,108,35,
41,40,34,43,115,84,116,54,66,69,65,2,13,3,14,32,33,10,16,17,11,18,20,55,
22,56,100,99,24,72,26,73,39,40,41,38,117,119,120,118,50,65,61,48,49,62,66,
51,60,74,75,59,80,112,78,109,81,110,79,111,8,11,13,12,9,10,14,12,15,17,14,
18,15,16,13,18,82,83,31,38,37,35,30,39,36,34,36,41,37,40,47,51,55,54,46,
50,56,54,63,61,56,69,64,62,55,69,57,68,72,70,58,67,73,70,144,143,146,139,
142,140,141,145,89,96,94,91,90,95,93,92,107,101,112,113,106,104,109,113,
105,103,110,114,108,102,111,114],[
"fusion map is unique up to table aut."
]);
ALN("4.U4(3).4",["U5(3)M2"]);

MOT("6_1.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[19595520,19595520,19595520,19595520,19595520,19595520,6912,6912,6912,6912,
6912,6912,34992,34992,34992,34992,34992,34992,5832,5832,5832,5832,5832,5832,
1944,1944,162,162,576,576,576,576,576,576,48,48,48,30,30,30,30,30,30,432,432,
432,432,432,432,216,216,216,216,216,216,216,216,216,216,216,216,42,42,42,42,
42,42,42,42,42,42,42,42,48,48,48,48,48,48,162,162,162,162,162,162,162,162,162,
162,162,162,54,54,54,54,72,72,72,72,72,72],
[,[1,3,5,1,3,5,1,3,5,1,3,5,13,15,17,13,15,17,19,21,23,19,21,23,25,25,27,27,7,
9,11,7,9,11,10,12,8,38,40,42,38,40,42,13,15,17,13,15,17,19,21,23,19,21,23,25,
25,25,25,25,25,62,64,66,62,64,66,68,70,72,68,70,72,32,34,30,32,34,30,86,88,90,
86,88,90,80,82,84,80,82,84,94,94,92,92,44,46,48,44,46,48],[1,4,1,4,1,4,7,10,7,
10,7,10,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,29,32,29,32,29,32,35,35,35,38,41,38,
41,38,41,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,68,71,68,71,68,71,62,65,
62,65,62,65,77,74,77,74,77,74,15,18,15,18,15,18,17,14,17,14,17,14,13,16,13,16,
29,32,29,32,29,32],,[1,6,5,4,3,2,7,12,11,10,9,8,13,18,17,16,15,14,19,24,23,22,
21,20,25,26,27,28,29,34,33,32,31,30,35,37,36,1,6,5,4,3,2,44,49,48,47,46,45,50,
55,54,53,52,51,56,61,60,59,58,57,68,73,72,71,70,69,62,67,66,65,64,63,74,79,78,
77,76,75,86,91,90,89,88,87,80,85,84,83,82,81,94,95,92,93,96,101,100,99,98,
97],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,
54,55,56,57,58,59,60,61,1,2,3,4,5,6,1,2,3,4,5,6,77,78,79,74,75,76,80,81,82,83,
84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101]],
0,
[(92,94)(93,95),(74,77)(75,78)(76,79),(62,68)(63,69)(64,70)(65,71)(66,72)
(67,73),(  2,  6)(  3,  5)(  8, 12)(  9, 11)( 14, 18)( 15, 17)( 20, 24)
( 21, 23)( 30, 34)( 31, 33)( 36, 37)( 39, 43)( 40, 42)( 45, 49)( 46, 48)
( 51, 55)( 52, 54)( 57, 61)( 58, 60)( 63, 67)( 64, 66)( 69, 73)( 70, 72)
( 75, 79)( 76, 78)( 80, 86)( 81, 91)( 82, 90)( 83, 89)( 84, 88)( 85, 87)
( 92, 94)( 93, 95)( 97,101)( 98,100),(  2,  6)(  3,  5)(  8, 12)(  9, 11)
( 14, 18)( 15, 17)( 20, 24)( 21, 23)( 30, 34)( 31, 33)( 36, 37)( 39, 43)
( 40, 42)( 45, 49)( 46, 48)( 51, 55)( 52, 54)( 57, 61)( 58, 60)( 63, 67)
( 64, 66)( 69, 73)( 70, 72)( 75, 79)( 76, 78)( 80, 86)( 81, 91)( 82, 90)
( 83, 89)( 84, 88)( 85, 87)( 97,101)( 98,100)],
["ConstructProj",[["U4(3)",[]],["2.U4(3)",[]],["3_1.U4(3)",[-1,-1,-1,-1,-1,-1,
-1,-1,-13,-13,-1,-1,-1,-1,-1,-1]],,,["6_1.U4(3)",[-1,-1,-1,-1,-1,-13,-13,-1,
-1,-1,-1,-7,-7,-1,-1]]]]);
ALF("6_1.U4(3)","U4(3)",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,
5,5,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,11,
12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,14,14,14,15,15,15,15,15,15,
16,16,16,16,16,16,17,17,17,17,17,17,18,18,19,19,20,20,20,20,20,20]);
ALF("6_1.U4(3)","2.U4(3)",[1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,5,6,7,8,7,8,7,
8,9,10,11,12,13,14,13,14,13,14,15,15,15,16,17,16,17,16,17,18,19,18,19,18,
19,20,21,20,21,20,21,22,23,22,23,22,23,24,25,24,25,24,25,26,27,26,27,26,
27,28,29,28,29,28,29,30,31,30,31,30,31,32,33,32,33,32,33,34,35,36,37,38,
39,38,39,38,39]);
ALF("6_1.U4(3)","3_1.U4(3)",[1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,8,9,10,11,12,
10,11,12,13,13,14,14,15,16,17,15,16,17,18,19,20,21,22,23,21,22,23,24,25,
26,24,25,26,27,28,29,27,28,29,30,31,32,30,31,32,33,34,35,33,34,35,36,37,
38,36,37,38,39,40,41,39,40,41,42,43,44,42,43,44,45,46,47,45,46,47,48,48,
49,49,50,51,52,50,51,52]);
ALF("6_1.U4(3)","6_1.U4(3).2_1",[1,2,3,4,3,2,5,6,7,8,7,6,9,10,11,12,11,10,
13,14,15,16,15,14,17,18,19,20,21,22,23,24,23,22,25,26,26,27,28,29,30,29,
28,31,32,33,34,33,32,35,36,37,38,37,36,39,40,41,42,41,40,43,44,45,46,45,
44,47,48,49,50,49,48,51,52,53,54,53,52,55,56,57,58,59,60,55,60,59,58,57,
56,61,62,61,62,63,64,65,66,65,64],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("6_1.U4(3)","6_1.U4(3).2_2",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,
65,66,67,62,63,64,65,66,67,68,69,70,68,69,70,71,72,73,74,75,76,77,78,79,
80,81,82,83,84,83,84,85,86,87,88,89,90],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("6_1.U4(3)","6_1.U4(3).2_2'",[1,2,3,4,3,2,5,6,7,8,7,6,9,10,11,12,11,
10,13,14,15,16,15,14,17,18,19,20,21,22,23,24,23,22,25,26,26,27,28,29,30,
29,28,31,32,33,34,33,32,35,36,37,38,37,36,39,40,41,42,41,40,43,44,45,46,
47,48,43,48,47,46,45,44,49,50,50,49,51,51,52,53,54,55,56,57,52,57,56,55,
54,53,58,59,60,61,62,63,64,65,64,63]);

MOT("6_1.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,19595520,19595520,39191040,13824,6912,6912,13824,69984,34992,34992,
69984,11664,5832,5832,11664,3888,3888,324,324,1152,576,576,1152,96,48,60,30,
30,60,864,432,432,864,432,216,216,432,432,216,216,432,84,42,42,84,84,42,42,84,
96,48,48,96,162,162,162,162,162,162,54,54,144,72,72,144,24192,24192,2880,2880,
2304,2304,128,432,432,72,72,72,72,36,36,32,32,20,20,288,288,288,288,72,72,72,
72,28,28,28,28],
[,[1,3,3,1,1,3,3,1,9,11,11,9,13,15,15,13,17,17,19,19,5,7,7,5,8,6,27,29,29,27,
9,11,11,9,13,15,15,13,17,17,17,17,43,45,45,43,47,49,49,47,24,22,22,24,55,59,
57,55,59,57,61,61,31,33,33,31,1,1,4,4,5,5,5,9,9,16,16,18,18,19,19,24,24,30,30,
31,31,31,31,35,35,39,39,43,43,47,47],[1,4,1,4,5,8,5,8,1,4,1,4,1,4,1,4,1,4,1,4,
21,24,21,24,25,25,27,30,27,30,5,8,5,8,5,8,5,8,5,8,5,8,47,50,47,50,43,46,43,46,
54,51,54,51,11,10,11,10,11,10,9,12,21,24,21,24,67,68,70,69,72,71,73,67,68,70,
69,70,69,67,68,83,82,85,84,72,71,72,71,72,71,72,71,96,97,94,95],,[1,2,3,4,5,6,
7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,1,2,3,4,31,32,33,34,
35,36,37,38,39,40,41,42,47,48,49,50,43,44,45,46,51,52,53,54,55,56,57,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,69,70,86,
87,88,89,90,91,92,93,96,97,94,95],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,1,
2,3,4,1,2,3,4,54,53,52,51,55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,69,72,
71,73,74,75,77,76,79,78,80,81,83,82,85,84,89,88,87,86,91,90,93,92,67,68,67,
68]],
0,
[(51,54)(52,53)(69,70)(71,72)(76,77)(78,79)(82,83)(84,85)(86,89)(87,88)(90,91)
(92,93),(43,47)(44,48)(45,49)(46,50)(94,96)(95,97),(67,68)(69,70)(71,72)
(74,75)(76,77)(78,79)(80,81)(82,83)(84,85)(86,87)(88,89)(90,91)(92,93)(94,95)
(96,97)],
["ConstructMGA","6_1.U4(3)","2.U4(3).2_1",
     [ [ 40, 41 ], [ 42, 43 ], [ 44, 45 ], [ 46, 47 ], [ 48, 49 ],
        [ 50, 51 ], [ 52, 53 ], [ 54, 55 ], [ 56, 57 ], [ 58, 59 ],
        [ 60, 61 ], [ 62, 63 ], [ 64, 65 ], [ 66, 67 ], [ 68, 69 ],
        [ 70, 71 ], [ 72, 73 ], [ 74, 75 ], [ 76, 77 ], [ 78, 79 ],
        [ 80, 81 ], [ 82, 83 ], [ 84, 85 ], [ 86, 87 ], [ 88, 89 ],
        [ 90, 91 ], [ 92, 93 ], [ 94, 95 ], [ 96, 97 ], [ 98, 99 ],
        [ 100, 101 ] ], ()]);
ALF("6_1.U4(3).2_1","U4(3).2_1",[1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,6,6,
7,7,7,7,8,8,9,9,9,9,10,10,10,10,11,11,11,11,12,12,12,12,13,13,13,13,14,14,
14,14,15,15,15,15,16,16,16,16,16,16,17,17,18,18,18,18,19,19,20,20,21,21,
22,23,23,24,24,25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,
34]);
ALF("6_1.U4(3).2_1","2.U4(3).2_1",[1,2,1,2,3,4,3,4,5,6,5,6,7,8,7,8,9,10,
11,12,13,14,13,14,15,15,16,17,16,17,18,19,18,19,20,21,20,21,22,23,22,23,
24,25,24,25,26,27,26,27,28,29,28,29,30,31,30,31,30,31,32,33,34,35,34,35,
36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
60,61,62,63,64,65,66]);
ALF("6_1.U4(3).2_1","3_1.U4(3).2_1",[1,2,2,1,3,4,4,3,5,6,6,5,7,8,8,7,9,9,
10,10,11,12,12,11,13,14,15,16,16,15,17,18,18,17,19,20,20,19,21,22,22,21,
23,24,24,23,25,26,26,25,27,28,28,27,29,30,31,29,30,31,32,32,33,34,34,33,
35,35,36,36,37,37,38,39,39,40,40,41,41,42,42,43,43,44,44,45,45,46,46,47,
47,48,48,49,49,50,50]);

MOT("6_1.U4(3).2_2",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,39191040,39191040,39191040,39191040,39191040,13824,13824,13824,
13824,13824,13824,69984,69984,69984,69984,69984,69984,11664,11664,11664,11664,
11664,11664,3888,3888,324,324,1152,1152,1152,1152,1152,1152,96,96,96,60,60,60,
60,60,60,864,864,864,864,864,864,432,432,432,432,432,432,432,432,432,432,432,
432,42,42,42,42,42,42,48,48,48,324,324,324,324,324,324,324,324,324,324,324,
324,54,54,144,144,144,144,144,144,311040,311040,311040,311040,311040,311040,
3456,3456,3456,576,576,576,576,576,576,576,576,576,7776,7776,7776,7776,7776,
7776,7776,7776,7776,7776,7776,7776,1296,1296,1296,1296,1296,1296,648,648,648,
648,648,648,144,144,36,36,48,48,48,60,60,60,60,60,60,144,144,144,144,144,144,
72,72,72,72,72,72,108,108,108,108,108,108,108,108,108,108,108,108],
[,[1,3,5,1,3,5,1,3,5,1,3,5,13,15,17,13,15,17,19,21,23,19,21,23,25,25,27,27,7,
9,11,7,9,11,10,12,8,38,40,42,38,40,42,13,15,17,13,15,17,19,21,23,19,21,23,25,
25,25,25,25,25,62,64,66,62,64,66,32,34,30,77,79,81,77,79,81,71,73,75,71,73,75,
83,83,44,46,48,44,46,48,1,3,5,1,3,5,1,3,5,7,9,11,10,12,8,10,12,8,13,15,17,13,
15,17,13,15,17,13,15,17,25,25,25,25,25,25,19,21,23,19,21,23,25,25,27,27,29,31,
33,38,40,42,38,40,42,44,46,48,44,46,48,53,55,51,53,55,51,77,79,81,77,79,81,71,
73,75,71,73,75],[1,4,1,4,1,4,7,10,7,10,7,10,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,
29,32,29,32,29,32,35,35,35,38,41,38,41,38,41,7,10,7,10,7,10,7,10,7,10,7,10,7,
10,7,10,7,10,62,65,62,65,62,65,68,68,68,15,18,15,18,15,18,17,14,17,14,17,14,
13,16,29,32,29,32,29,32,91,94,91,94,91,94,97,97,97,100,100,100,103,106,103,
106,103,106,91,94,91,94,91,94,91,94,91,94,91,94,91,94,91,94,91,94,91,94,91,94,
91,94,97,97,97,97,137,137,137,140,143,140,143,140,143,100,100,100,100,100,100,
103,106,103,106,103,106,111,114,111,114,111,114,119,116,119,116,119,116],,[1,
6,5,4,3,2,7,12,11,10,9,8,13,18,17,16,15,14,19,24,23,22,21,20,25,26,27,28,29,
34,33,32,31,30,35,37,36,1,6,5,4,3,2,44,49,48,47,46,45,50,55,54,53,52,51,56,61,
60,59,58,57,62,67,66,65,64,63,68,70,69,77,82,81,80,79,78,71,76,75,74,73,72,83,
84,85,90,89,88,87,86,91,96,95,94,93,92,97,99,98,100,102,101,103,108,107,106,
105,104,115,120,119,118,117,116,109,114,113,112,111,110,121,126,125,124,123,
122,127,132,131,130,129,128,133,134,135,136,137,139,138,91,96,95,94,93,92,149,
148,147,146,151,150,152,157,156,155,154,153,164,169,168,167,166,165,158,163,
162,161,160,159],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
49,50,51,52,53,54,55,56,57,58,59,60,61,1,2,3,4,5,6,68,69,70,71,72,73,74,75,76,
77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,
102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,
121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,
140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,
159,160,161,162,163,164,165,166,167,168,169]],
0,
[(135,136),(  2,  6)(  3,  5)(  8, 12)(  9, 11)( 14, 18)( 15, 17)( 20, 24)
( 21, 23)( 30, 34)( 31, 33)( 36, 37)( 39, 43)( 40, 42)( 45, 49)( 46, 48)
( 51, 55)( 52, 54)( 57, 61)( 58, 60)( 63, 67)( 64, 66)( 69, 70)( 71, 77)
( 72, 82)( 73, 81)( 74, 80)( 75, 79)( 76, 78)( 86, 90)( 87, 89)( 92, 96)
( 93, 95)( 98, 99)(101,102)(104,108)(105,107)(109,115)(110,120)(111,119)
(112,118)(113,117)(114,116)(122,126)(123,125)(128,132)(129,131)(138,139)
(141,145)(142,144)(146,149)(147,148)(150,151)(153,157)(154,156)(158,164)
(159,169)(160,168)(161,167)(162,166)(163,165),( 91, 94)( 92, 95)( 93, 96)
(103,106)(104,107)(105,108)(109,112)(110,113)(111,114)(115,118)(116,119)
(117,120)(121,124)(122,125)(123,126)(127,130)(128,131)(129,132)(133,134)
(140,143)(141,144)(142,145)(146,149)(147,150)(148,151)(152,155)(153,156)
(154,157)(158,161)(159,162)(160,163)(164,167)(165,168)(166,169)],
["ConstructProj",[["U4(3).2_2",[]],["2.U4(3).2_2",[]],["3_1.U4(3).2_2",[-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]],,,["6_1.U4(3).2_2",[-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1]]]]);
ALF("6_1.U4(3).2_2","U4(3).2_2",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,
4,4,4,4,5,5,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,
11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,15,15,15,15,15,15,
16,16,16,16,16,16,17,17,18,18,18,18,18,18,19,19,19,19,19,19,20,20,20,21,
21,21,22,22,22,22,22,22,23,23,23,23,23,23,24,24,24,24,24,24,25,25,25,25,
25,25,26,26,26,26,26,26,27,27,28,28,29,29,29,30,30,30,30,30,30,31,31,31,
31,31,31,32,32,32,32,32,32,33,33,33,33,33,33,34,34,34,34,34,34]);
ALF("6_1.U4(3).2_2","2.U4(3).2_2",[1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,5,6,7,
8,7,8,7,8,9,10,11,12,13,14,13,14,13,14,15,15,15,16,17,16,17,16,17,18,19,
18,19,18,19,20,21,20,21,20,21,22,23,22,23,22,23,24,25,24,25,24,25,26,26,
26,27,28,27,28,27,28,29,30,29,30,29,30,31,32,33,34,33,34,33,34,35,36,35,
36,35,36,37,37,37,38,38,38,39,40,39,40,39,40,41,42,41,42,41,42,43,44,43,
44,43,44,45,46,45,46,45,46,47,48,47,48,47,48,49,50,51,52,53,53,53,54,55,
54,55,54,55,56,57,56,57,56,57,58,59,58,59,58,59,60,61,60,61,60,61,62,63,
62,63,62,63]);
ALF("6_1.U4(3).2_2","3_1.U4(3).2_2",[1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,8,9,
10,11,12,10,11,12,13,13,14,14,15,16,17,15,16,17,18,19,20,21,22,23,21,22,
23,24,25,26,24,25,26,27,28,29,27,28,29,30,31,32,30,31,32,33,34,35,33,34,
35,36,37,38,39,40,41,39,40,41,42,43,44,42,43,44,45,45,46,47,48,46,47,48,
49,50,51,49,50,51,52,53,54,55,56,57,58,59,60,58,59,60,61,62,63,61,62,63,
64,65,66,64,65,66,67,68,69,67,68,69,70,71,72,70,71,72,73,73,74,74,75,76,
77,78,79,80,78,79,80,81,82,83,81,82,83,84,85,86,84,85,86,87,88,89,87,88,
89,90,91,92,90,91,92]);
ALF("6_1.U4(3).2_2","3.U6(2)M5",[1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,8,9,10,
11,12,10,11,12,13,13,14,14,15,16,17,15,16,17,18,19,20,21,22,23,21,22,23,
24,25,26,24,25,26,27,28,29,27,28,29,30,31,32,30,31,32,33,34,35,33,34,35,
36,37,38,39,40,41,39,40,41,42,43,44,42,43,44,45,45,46,47,48,46,47,48,49,
50,51,49,50,51,52,53,54,55,56,57,58,59,60,58,59,60,61,62,63,61,62,63,64,
65,66,64,65,66,67,68,69,67,68,69,70,71,72,70,71,72,73,73,74,74,75,76,77,
78,79,80,78,79,80,81,82,83,81,82,83,84,85,86,84,85,86,87,88,89,87,88,89,
90,91,92,90,91,92]);
ALF("6_1.U4(3).2_2","6.U6(2)",[1,6,5,4,3,2,16,15,14,13,18,17,28,33,32,31,
30,29,22,27,26,25,24,23,34,35,34,35,48,50,49,48,50,49,60,62,61,63,68,67,
66,65,64,90,89,88,87,92,91,96,95,94,93,98,97,108,107,106,105,110,109,113,
118,117,116,115,114,128,130,129,138,137,136,135,134,139,142,141,140,145,
144,143,146,147,190,192,191,190,192,191,7,12,11,10,9,8,19,21,20,48,50,49,
54,59,58,57,56,55,69,74,73,72,71,70,75,80,79,78,77,76,99,104,103,102,101,
100,81,86,85,84,83,82,112,111,112,111,128,130,129,148,153,152,151,150,149,
190,192,191,190,192,191,196,201,200,199,198,197,212,211,210,209,208,213,
216,215,214,219,218,217],[
"fusion map is unique up to table autom.,\n",
"representative compatible with relevant factors"
]);
ALF("6_1.U4(3).2_2","3.O7(3)",[1,5,3,4,2,6,10,8,12,7,11,9,13,38,13,37,13,
39,14,41,16,40,15,42,17,43,20,59,25,29,27,28,26,30,31,32,33,34,84,36,83,
35,85,51,45,51,44,51,46,55,53,57,52,56,54,58,49,58,48,58,50,65,109,67,108,
66,110,71,72,73,75,119,74,118,76,117,76,114,75,116,74,115,77,120,87,95,87,
94,87,96,4,8,6,7,5,9,10,11,12,28,29,30,22,32,24,31,23,33,39,46,38,45,37,
44,38,44,37,46,39,45,43,49,43,48,43,50,40,53,42,52,41,54,47,58,62,63,68,
69,70,83,81,85,80,84,82,95,94,94,96,96,95,91,100,93,99,92,101,115,123,114,
122,116,121,119,121,118,123,117,122],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);

MOT("6_1.U4(3).2_2'",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,19595520,19595520,39191040,13824,6912,6912,13824,69984,34992,34992,
69984,11664,5832,5832,11664,3888,3888,324,324,1152,576,576,1152,96,48,60,30,30
,60,864,432,432,864,432,216,216,432,432,216,216,432,42,42,42,42,42,42,48,48,48
,162,162,162,162,162,162,108,108,108,108,144,72,72,144,103680,103680,1152,192,
192,192,2592,2592,2592,2592,432,432,216,216,144,144,36,36,16,20,20,48,48,24,24
,36,36,36,36],
[,[1,3,3,1,1,3,3,1,9,11,11,9,13,15,15,13,17,17,19,19,5,7,7,5,8,6,27,29,29,27,9
,11,11,9,13,15,15,13,17,17,17,17,43,45,47,43,45,47,24,22,22,52,56,54,52,56,54,
60,60,58,58,31,33,33,31,1,1,1,5,8,8,9,9,9,9,13,13,17,17,13,13,19,19,21,27,27,
31,31,42,42,60,60,58,58],[1,4,1,4,5,8,5,8,1,4,1,4,1,4,1,4,1,4,1,4,21,24,21,24,
25,25,27,30,27,30,5,8,5,8,5,8,5,8,5,8,5,8,43,46,43,46,43,46,49,49,49,11,10,11,
10,11,10,9,12,9,12,21,24,21,24,66,67,68,69,70,71,66,67,66,67,66,67,66,67,68,68
,68,68,84,85,86,69,69,70,71,72,73,74,75],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
,16,17,18,19,20,21,22,23,24,25,26,1,2,3,4,31,32,33,34,35,36,37,38,39,40,41,42,
43,44,45,46,47,48,49,51,50,52,53,54,55,56,57,60,61,58,59,62,63,64,65,66,67,68,
69,70,71,74,75,72,73,76,77,78,79,80,81,82,83,84,66,67,88,87,89,90,93,94,91,92]
,,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36,37,38,39,40,41,42,1,2,3,4,3,2,49,51,50,52,53,54,55,56,
57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,
83,84,85,86,87,88,89,90,91,92,93,94]],
0,
[(82,83),(50,51),
(58,60)(59,61)(66,67)(70,71)(72,75)(73,74)(76,77)(78,79)(80,81)(85,86)(89,90)
(91,94)(92,93)
,(58,60)(59,61)(72,74)(73,75)(87,88)(91,93)(92,94),
(44,48)(45,47)(58,60)(59,61)(66,67)(70,71)(72,75)(73,74)(76,77)(78,79)(80,81)
(85,86)(89,90)(91,94)(92,93)
],
["ConstructMGA","6_1.U4(3)","2.U4(3).2_2'",[[40,41],[42,43],[44,45],[46,47],[
48,49],[50,51],[52,53],[54,55],[56,59],[57,58],[60,61],[62,63],[64,65],[66,67]
,[68,69],[70,71],[72,73],[74,75],[76,77],[78,79],[80,81],[82,85],[83,84],[86,
87],[88,89],[90,91],[92,93],[94,97],[95,96],[98,99],[100,101]],()]);
ALF("6_1.U4(3).2_2'","U4(3).2_2'",[1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,6,
6,7,7,7,7,8,8,9,9,9,9,10,10,10,10,11,11,11,11,12,12,12,12,13,13,13,13,13,
13,14,14,14,15,15,15,15,15,15,16,16,17,17,18,18,18,18,19,19,20,21,22,22,
23,23,24,24,25,25,26,26,27,27,28,28,29,30,30,31,31,32,32,33,33,34,34]);
ALF("6_1.U4(3).2_2'","2.U4(3).2_2'",[1,2,1,2,3,4,3,4,5,6,5,6,7,8,7,8,9,10,
11,12,13,14,13,14,15,15,16,17,16,17,18,19,18,19,20,21,20,21,22,23,22,23,
24,25,24,25,24,25,26,26,26,27,28,27,28,27,28,29,30,31,32,33,34,33,34,35,
36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
60,61,62,63]);
ALF("6_1.U4(3).2_2'","3_1.U4(3).2_2'",[1,2,2,1,3,4,4,3,5,6,6,5,7,8,8,7,9,
9,10,10,11,12,12,11,13,14,15,16,16,15,17,18,18,17,19,20,20,19,21,22,22,21,
23,24,25,23,24,25,26,27,27,28,29,30,28,29,30,31,31,32,32,33,34,34,33,35,
35,36,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,46,46,47,47,48,48,
49,49,50,50]);

MOT("6_2.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]\n",
"3rd power map determined only up to matrix automorphisms (80,82)(81,83)\n",
"and (76,78)(77,79)"
],
[19595520,19595520,19595520,19595520,19595520,19595520,6912,6912,6912,6912,
6912,6912,34992,34992,34992,34992,34992,34992,1944,1944,1944,1944,162,162,576,
576,576,576,576,576,48,48,48,30,30,30,30,30,30,432,432,432,432,432,432,216,
216,216,216,216,216,216,216,216,216,216,216,42,42,42,42,42,42,42,42,42,42,42,
42,48,48,48,48,48,48,54,54,54,54,54,54,54,54,72,72,72,72,72,72],
[,[1,3,5,1,3,5,1,3,5,1,3,5,13,15,17,13,15,17,19,19,21,21,23,23,7,9,11,7,9,11,
10,12,8,34,36,38,34,36,38,13,15,17,13,15,17,19,19,19,19,19,19,21,21,21,21,21,
21,58,60,62,58,60,62,64,66,68,64,66,68,28,30,26,28,30,26,78,78,76,76,82,82,80,
80,40,42,44,40,42,44],[1,4,1,4,1,4,7,10,7,10,7,10,1,4,1,4,1,4,1,4,1,4,1,4,25,
28,25,28,25,28,31,31,31,34,37,34,37,34,37,7,10,7,10,7,10,7,10,7,10,7,10,7,10,
7,10,7,10,64,67,64,67,64,67,58,61,58,61,58,61,73,70,73,70,73,70,15,18,17,14,
15,18,17,14,25,28,25,28,25,28],,[1,6,5,4,3,2,7,12,11,10,9,8,13,18,17,16,15,14,
19,20,21,22,23,24,25,30,29,28,27,26,31,33,32,1,6,5,4,3,2,40,45,44,43,42,41,46,
51,50,49,48,47,52,57,56,55,54,53,64,69,68,67,66,65,58,63,62,61,60,59,70,75,74,
73,72,71,78,79,76,77,82,83,80,81,84,89,88,87,86,85],,[1,2,3,4,5,6,7,8,9,10,11,
12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,
38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,1,2,3,4,5,6,1,2,3,
4,5,6,73,74,75,70,71,72,76,77,78,79,80,81,82,83,84,85,86,87,88,89]],
0,
[(70,73)(71,74)(72,75),(58,64)(59,65)(60,66)(61,67)(62,68)(63,69),( 2, 6)
( 3, 5)( 8,12)( 9,11)(14,18)(15,17)(26,30)(27,29)(32,33)(35,39)(36,38)(41,45)
(42,44)(47,51)(48,50)(53,57)(54,56)(59,63)(60,62)(65,69)(66,68)(71,75)(72,74)
(76,78)(77,79)(80,82)(81,83)(85,89)(86,88),(19,21)(20,22)(46,52)(47,53)(48,54)
(49,55)(50,56)(51,57)(76,80)(77,81)(78,82)(79,83)],
["ConstructProj",[["U4(3)",[]],["2.U4(3)",[]],["3_2.U4(3)",[-1,-13,-13,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1]],,,["6_2.U4(3)",[-1,-1,-1,-7,-7,-13,-13,-1,-1,-1,-1,
-1]]]]);
ALF("6_2.U4(3)","U4(3)",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,6,6,
7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,11,12,12,
12,12,12,12,13,13,13,13,13,13,14,14,14,14,14,14,15,15,15,15,15,15,16,16,
17,17,18,18,19,19,20,20,20,20,20,20]);
ALF("6_2.U4(3)","2.U4(3)",[1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,5,6,7,8,9,10,
11,12,13,14,13,14,13,14,15,15,15,16,17,16,17,16,17,18,19,18,19,18,19,20,
21,20,21,20,21,22,23,22,23,22,23,24,25,24,25,24,25,26,27,26,27,26,27,28,
29,28,29,28,29,30,31,32,33,34,35,36,37,38,39,38,39,38,39]);
ALF("6_2.U4(3)","3_2.U4(3)",[1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,8,9,10,10,11,
11,12,12,13,14,15,13,14,15,16,17,18,19,20,21,19,20,21,22,23,24,22,23,24,
25,26,27,25,26,27,28,29,30,28,29,30,31,32,33,31,32,33,34,35,36,34,35,36,
37,38,39,37,38,39,40,40,41,41,42,42,43,43,44,45,46,44,45,46]);
ALF("6_2.U4(3)","6_2.U4(3).2_1",[1,2,3,4,3,2,5,6,7,8,7,6,9,10,11,12,11,10,
13,14,15,16,17,18,19,20,21,22,21,20,23,24,24,25,26,27,28,27,26,29,30,31,
32,31,30,33,34,35,36,35,34,37,38,39,40,39,38,41,42,43,44,43,42,45,46,47,
48,47,46,49,50,51,52,51,50,53,54,53,54,55,56,55,56,57,58,59,60,59,58],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("6_2.U4(3)","6_2.U4(3).2_3",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,
39,40,41,42,43,44,45,46,47,48,49,44,45,46,47,48,49,50,51,52,53,54,55,50,
51,52,53,54,55,56,57,58,56,57,58,59,60,61,62,59,60,61,62,63,64,65,66,67,
68],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("6_2.U4(3)","6_2.U4(3).2_3'",[1,2,3,4,3,2,5,6,7,8,7,6,9,10,11,12,11,10,
13,14,13,14,15,16,17,18,19,20,19,18,21,22,22,23,24,25,26,25,24,27,28,29,30,
29,28,31,32,33,34,35,36,31,36,35,34,33,32,37,38,39,40,41,42,37,42,41,40,39,
38,43,44,44,43,45,45,46,47,48,49,48,49,46,47,50,51,52,53,52,51],[
"fusion map determined up to table aut. by compatibility\n",
"with factors"
]);

MOT("6_2.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,19595520,19595520,39191040,13824,6912,6912,13824,69984,34992,34992,
69984,3888,3888,3888,3888,324,324,1152,576,576,1152,96,48,60,30,30,60,864,432,
432,864,432,216,216,432,432,216,216,432,84,42,42,84,84,42,42,84,96,48,48,96,
54,54,54,54,144,72,72,144,24192,24192,2880,2880,2304,2304,128,432,432,72,72,
72,72,36,36,32,32,20,20,288,288,288,288,72,72,72,72,28,28,28,28],
[,[1,3,3,1,1,3,3,1,9,11,11,9,13,13,15,15,17,17,5,7,7,5,8,6,25,27,27,25,9,11,
11,9,13,13,13,13,15,15,15,15,41,43,43,41,45,47,47,45,22,20,20,22,53,53,55,55,
29,31,31,29,1,1,4,4,5,5,5,9,9,14,14,16,16,17,17,22,22,28,28,29,29,29,29,33,33,
37,37,41,41,45,45],[1,4,1,4,5,8,5,8,1,4,1,4,1,4,1,4,1,4,19,22,19,22,23,23,25,
28,25,28,5,8,5,8,5,8,5,8,5,8,5,8,45,48,45,48,41,44,41,44,52,49,52,49,11,10,11,
10,19,22,19,22,61,62,64,63,66,65,67,61,62,64,63,64,63,61,62,77,76,79,78,66,65,
66,65,66,65,66,65,90,91,88,89],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,1,2,3,4,29,30,31,32,33,34,35,36,37,38,39,40,45,46,47,48,41,
42,43,44,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,
72,73,74,75,76,77,63,64,80,81,82,83,84,85,86,87,90,91,88,89],,[1,2,3,4,5,6,7,
8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,
34,35,36,37,38,39,40,1,2,3,4,1,2,3,4,52,51,50,49,53,54,55,56,57,58,59,60,61,
62,64,63,66,65,67,68,69,71,70,73,72,74,75,77,76,79,78,83,82,81,80,85,84,87,86,
61,62,61,62]],
0,
[(49,52)(50,51)(63,64)(65,66)(70,71)(72,73)(76,77)(78,79)(80,83)(81,82)(84,85)
(86,87),(41,45)(42,46)(43,47)(44,48)(88,90)(89,91),(61,62)(63,64)(65,66)
(68,69)(70,71)(72,73)(74,75)(76,77)(78,79)(80,81)(82,83)(84,85)(86,87)(88,89)
(90,91),(13,15)(14,16)(33,37)(34,38)(35,39)(36,40)(53,55)(54,56)(70,72)(71,73)
(84,86)(85,87)],
["ConstructMGA","6_2.U4(3)","2.U4(3).2_1",
     [ [ 40, 41 ], [ 42, 43 ], [ 44, 45 ], [ 46, 47 ], [ 48, 49 ],
        [ 50, 51 ], [ 52, 53 ], [ 54, 55 ], [ 56, 57 ], [ 58, 59 ],
        [ 60, 61 ], [ 62, 63 ], [ 64, 65 ], [ 66, 67 ], [ 68, 69 ],
        [ 70, 71 ], [ 72, 73 ], [ 74, 75 ], [ 76, 77 ], [ 78, 79 ],
        [ 80, 81 ], [ 82, 83 ], [ 84, 85 ], [ 86, 87 ], [ 88, 89 ] ], ()]);
ALF("6_2.U4(3).2_1","U4(3).2_1",[1,1,1,1,2,2,2,2,3,3,3,3,4,4,5,5,6,6,7,7,
7,7,8,8,9,9,9,9,10,10,10,10,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,
14,15,15,15,15,16,16,17,17,18,18,18,18,19,19,20,20,21,21,22,23,23,24,24,
25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34]);
ALF("6_2.U4(3).2_1","2.U4(3).2_1",[1,2,1,2,3,4,3,4,5,6,5,6,7,8,9,10,11,12,
13,14,13,14,15,15,16,17,16,17,18,19,18,19,20,21,20,21,22,23,22,23,24,25,
24,25,26,27,26,27,28,29,28,29,30,31,32,33,34,35,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,
66]);
ALF("6_2.U4(3).2_1","3_2.U4(3).2_1",[1,2,2,1,3,4,4,3,5,6,6,5,7,7,8,8,9,9,
10,11,11,10,12,13,14,15,15,14,16,17,17,16,18,19,19,18,20,21,21,20,22,23,
23,22,24,25,25,24,26,27,27,26,28,28,29,29,30,31,31,30,32,32,33,33,34,34,
35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,45,46,46,47,
47]);

MOT("6_2.U4(3).2_3",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]\n",
"3rd power map determined only up to table automorphism (59,61)(60,62)"
],
[39191040,39191040,39191040,39191040,39191040,39191040,13824,13824,13824,
13824,13824,13824,69984,69984,69984,69984,69984,69984,1944,1944,324,324,1152,
1152,1152,1152,1152,1152,96,96,96,60,60,60,60,60,60,864,864,864,864,864,864,
216,216,216,216,216,216,42,42,42,42,42,42,48,48,48,54,54,54,54,144,144,144,
144,144,144,4320,4320,4320,288,288,288,36,36,576,576,576,576,576,576,96,96,96,
48,48,48,48,48,48,60,60,60,60,60,60,72,72,72,72,72,72,144,144,144,144,144,144,
144,144,144,144,144,144],
[,[1,3,5,1,3,5,1,3,5,1,3,5,13,15,17,13,15,17,19,19,21,21,7,9,11,7,9,11,10,12,
8,32,34,36,32,34,36,13,15,17,13,15,17,19,19,19,19,19,19,50,52,54,50,52,54,26,
28,24,61,61,59,59,38,40,42,38,40,42,1,3,5,7,9,11,21,21,23,25,27,23,25,27,23,
25,27,29,31,30,29,31,30,32,34,36,32,34,36,38,40,42,38,40,42,63,65,67,63,65,67,
63,65,67,63,65,67],[1,4,1,4,1,4,7,10,7,10,7,10,1,4,1,4,1,4,1,4,1,4,23,26,23,
26,23,26,29,29,29,32,35,32,35,32,35,7,10,7,10,7,10,7,10,7,10,7,10,50,53,50,53,
50,53,56,56,56,15,18,17,14,23,26,23,26,23,26,69,69,69,72,72,72,69,69,80,77,80,
77,80,77,83,83,83,89,86,89,86,89,86,95,92,95,92,95,92,72,72,72,72,72,72,80,77,
80,77,80,77,80,77,80,77,80,77],,[1,6,5,4,3,2,7,12,11,10,9,8,13,18,17,16,15,14,
19,20,21,22,23,28,27,26,25,24,29,31,30,1,6,5,4,3,2,38,43,42,41,40,39,44,49,48,
47,46,45,50,55,54,53,52,51,56,58,57,61,62,59,60,63,68,67,66,65,64,69,71,70,72,
74,73,75,76,80,79,78,77,82,81,83,85,84,89,88,87,86,91,90,69,71,70,69,71,70,
101,100,99,98,103,102,107,106,105,104,109,108,113,112,111,110,115,114],,[1,2,
3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,1,2,3,4,5,6,56,57,58,
59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,
85,86,87,88,89,90,91,95,96,97,92,93,94,98,99,100,101,102,103,104,105,106,107,
108,109,110,111,112,113,114,115]],
0,
[(92,95)(93,96)(94,97),( 77, 80)( 78, 81)( 79, 82)( 86, 89)( 87, 90)( 88, 91)
(104,113)(105,114)(106,115)(107,110)(108,111)(109,112),(75,76),(  2,  6)
(  3,  5)(  8, 12)(  9, 11)( 14, 18)( 15, 17)( 24, 28)( 25, 27)( 30, 31)
( 33, 37)( 34, 36)( 39, 43)( 40, 42)( 45, 49)( 46, 48)( 51, 55)( 52, 54)
( 57, 58)( 59, 61)( 60, 62)( 64, 68)( 65, 67)( 70, 71)( 73, 74)( 78, 82)
( 79, 81)( 84, 85)( 87, 91)( 88, 90)( 93, 97)( 94, 96)( 98,101)( 99,100)
(102,103)(104,110)(105,115)(106,114)(107,113)(108,112)(109,111),( 77, 80)
( 78, 81)( 79, 82)( 86, 89)( 87, 90)( 88, 91)( 98,101)( 99,102)(100,103)
(104,107)(105,108)(106,109)(110,113)(111,114)(112,115)],
["ConstructProj",[["U4(3).2_3",[]],["2.U4(3).2_3",[]],["3_2.U4(3).2_3",[-1,-1,
-1,-1,-1,-1,-1,17,-1,-1,-1]],,,["6_2.U4(3).2_3",[17,-1,-1,-1,11,-1,17,17,
-1]]]]);
ALF("6_2.U4(3).2_3","U4(3).2_3",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,
5,5,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,
11,11,11,12,12,12,13,13,14,14,15,15,15,15,15,15,16,16,16,17,17,17,18,18,
19,19,19,19,19,19,20,20,20,21,21,21,21,21,21,22,22,22,22,22,22,23,23,23,
23,23,23,24,24,24,24,24,24,25,25,25,25,25,25]);
ALF("6_2.U4(3).2_3","2.U4(3).2_3",[1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,5,6,7,
8,9,10,11,12,11,12,11,12,13,13,13,14,15,14,15,14,15,16,17,16,17,16,17,18,
19,18,19,18,19,20,21,20,21,20,21,22,22,22,23,24,25,26,27,28,27,28,27,28,
29,29,29,30,30,30,31,32,33,34,33,34,33,34,35,35,35,36,37,36,37,36,37,38,
39,38,39,38,39,40,41,40,41,40,41,42,43,42,43,42,43,44,45,44,45,44,45]);
ALF("6_2.U4(3).2_3","3_2.U4(3).2_3",[1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,8,9,
10,10,11,11,12,13,14,12,13,14,15,16,17,18,19,20,18,19,20,21,22,23,21,22,
23,24,25,26,24,25,26,27,28,29,27,28,29,30,31,32,33,33,34,34,35,36,37,35,
36,37,38,39,40,41,42,43,44,44,45,46,47,45,46,47,48,49,50,51,52,53,51,52,
53,54,55,56,54,55,56,57,58,59,57,58,59,60,61,62,60,61,62,63,64,65,63,64,
65]);

MOT("6_2.U4(3).2_3'",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,19595520,19595520,39191040,13824,6912,6912,13824,69984,34992,34992,
69984,1944,1944,324,324,1152,576,576,1152,96,48,60,30,30,60,864,432,432,864,
216,216,216,216,216,216,42,42,42,42,42,42,48,48,48,54,54,54,54,144,72,72,144,
1440,96,36,36,192,192,32,16,16,20,20,24,24,48,48,48,48],
[,[1,3,3,1,1,3,3,1,9,11,11,9,13,13,15,15,5,7,7,5,8,6,23,25,25,23,9,11,11,9,
13,13,13,13,13,13,37,39,41,37,39,41,20,18,18,48,48,46,46,27,29,29,27,1,5,15,
15,17,17,17,21,21,23,23,27,27,50,50,50,50],[1,4,1,4,5,8,5,8,1,4,1,4,1,4,1,4,
17,20,17,20,21,21,23,26,23,26,5,8,5,8,5,8,5,8,5,8,37,40,37,40,37,40,43,43,43,
11,10,11,10,17,20,17,20,54,55,54,54,59,58,60,62,61,64,63,55,55,59,58,59,58],,
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,27,28,29,
30,31,36,35,34,33,32,37,38,39,40,41,42,43,45,44,48,49,46,47,50,51,52,53,54,
55,56,57,59,58,60,62,61,54,54,66,65,68,67,70,69],,[1,2,3,4,5,6,7,8,9,10,11,
12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,1,
2,3,4,3,2,43,45,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,63,
65,66,67,68,69,70]],
0,
[(65,66)(67,69)(68,70),(63,64),(58,59)(61,62)(67,70)(68,69),(56,57),(44,45),
(38,42)(39,41),(32,36)(33,35),(46,48)(47,49)],
["ConstructMGA","6_2.U4(3)","2.U4(3).2_3'",
     [ [ 40, 41 ], [ 42, 45 ], [ 43, 44 ], [ 46, 47 ], [ 48, 49 ],
        [ 50, 51 ], [ 52, 55 ], [ 53, 54 ], [ 56, 57 ], [ 58, 59 ],
        [ 60, 61 ], [ 62, 63 ], [ 64, 65 ], [ 66, 67 ], [ 68, 71 ],
        [ 69, 70 ], [ 72, 75 ], [ 73, 74 ], [ 76, 79 ], [ 77, 78 ],
        [ 80, 81 ], [ 82, 83 ], [ 84, 85 ], [ 86, 87 ], [ 88, 89 ] ], ()]);
ALF("6_2.U4(3).2_3'","U4(3).2_3'",[1,1,1,1,2,2,2,2,3,3,3,3,4,4,5,5,6,6,6,
6,7,7,8,8,8,8,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,13,13,
14,14,15,15,15,15,16,17,18,18,19,19,20,21,21,22,22,23,23,24,24,25,25]);
ALF("6_2.U4(3).2_3'","2.U4(3).2_3'",[1,2,1,2,3,4,3,4,5,6,5,6,7,8,9,10,11,12,
11,12,13,13,14,15,14,15,16,17,16,17,18,19,18,19,18,19,20,21,20,21,20,21,22,
22,22,23,24,25,26,27,28,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,
44,45]);
ALF("6_2.U4(3).2_3'","3_2.U4(3).2_3'",[1,2,2,1,3,4,4,3,5,6,6,5,7,7,8,8,9,
10,10,9,11,12,13,14,14,13,15,16,16,15,17,18,19,17,18,19,20,21,22,20,21,22,
23,24,24,25,25,26,26,27,28,28,27,29,30,31,31,32,32,33,34,34,35,35,36,36,
37,37,38,38]);

MOT("Isoclinic(6_2.U4(3).2_3')",
[
"2nd maximal subgroup of 2.Suz,\n",
"isoclinic group of the 6_2.U4(3).2_3' given in the ATLAS"
],
0,
0,
0,
[(65,66)(67,69)(68,70),(63,64),(58,59)(61,62)(67,70)(68,69),(56,57),(44,45),
(38,42)(39,41),(32,36)(33,35),(46,48)(47,49)],
["ConstructIsoclinic",[["6_2.U4(3).2_3'"]]]);
ALF("Isoclinic(6_2.U4(3).2_3')","2.Suz",[1,7,6,2,3,22,21,4,6,9,8,7,8,9,10,
11,13,45,46,12,15,49,19,64,63,20,21,28,27,22,27,24,25,28,23,26,30,72,73,
31,71,74,32,75,76,36,37,38,39,46,47,48,45,5,15,29,29,32,32,32,35,35,42,42,
49,49,75,76,76,75],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("Isoclinic(6_2.U4(3).2_3')","3_2.U4(3).2_3'",[1,2,2,1,3,4,4,3,5,6,6,5,
7,7,8,8,9,10,10,9,11,12,13,14,14,13,15,16,16,15,17,18,19,17,18,19,20,21,
22,20,21,22,23,24,24,25,25,26,26,27,28,28,27,29,30,31,31,32,32,33,34,34,
35,35,36,36,37,37,38,38]);
ALN("Isoclinic(6_2.U4(3).2_3')",["6_2.U4(3).2_3'*","2.SuzN3A"]);

MOT("U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[3265920,1152,5832,972,972,81,96,16,5,72,36,36,7,7,8,27,27,27,27,12],
[,[1,1,3,4,5,6,2,2,9,3,4,5,13,14,7,17,16,19,18,10],[1,2,1,1,1,1,7,8,9,2,2,2,
14,13,15,3,3,3,3,7],,[1,2,3,4,5,6,7,8,1,10,11,12,14,13,15,17,16,19,18,20],,[1,
2,3,4,5,6,7,8,9,10,11,12,1,1,15,16,17,18,19,20]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[21,5,-6,3,3,3,1,1,1,2,-1,-1,0,0,
-1,0,0,0,0,-2],[35,3,8,8,-1,-1,3,-1,0,0,0,3,0,0,-1,2,2,-1,-1,0],[35,3,8,-1,8,
-1,3,-1,0,0,3,0,0,0,-1,-1,-1,2,2,0],[90,10,9,9,9,0,-2,2,0,1,1,1,-1,-1,0,0,0,0,
0,1],[140,12,5,-4,-4,5,4,0,0,-3,0,0,0,0,0,-1,-1,-1,-1,1],[189,-3,27,0,0,0,5,1,
-1,3,0,0,0,0,1,0,0,0,0,-1],[210,2,21,3,3,3,-2,-2,0,5,-1,-1,0,0,0,0,0,0,0,1],[
280,-8,10,10,1,1,0,0,0,-2,-2,1,0,0,0,2*E(3)-E(3)^2,-E(3)+2*E(3)^2,1,1,0],
[GALOIS,[9,2]],[280,-8,10,1,10,1,0,0,0,-2,1,-2,0,0,0,1,1,2*E(3)-E(3)^2,
-E(3)+2*E(3)^2,0],
[GALOIS,[11,2]],[315,11,-9,18,-9,0,-1,-1,0,-1,2,-1,0,0,1,0,0,0,0,-1],[315,11,
-9,-9,18,0,-1,-1,0,-1,-1,2,0,0,1,0,0,0,0,-1],[420,4,-39,6,6,-3,4,0,0,1,-2,-2,
0,0,0,0,0,0,0,1],[560,-16,-34,2,2,2,0,0,0,2,2,2,0,0,0,-1,-1,-1,-1,0],[640,0,
-8,-8,-8,1,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,1,1,1,0],
[GALOIS,[17,3]],[729,9,0,0,0,0,-3,1,-1,0,0,0,1,1,-1,0,0,0,0,0],[896,0,32,-4,
-4,-4,0,0,1,0,0,0,0,0,0,-1,-1,-1,-1,0]],
[(16,17)(18,19),(13,14),(18,19),( 4, 5)(11,12)(16,18)(17,19)]);
ARC("U4(3)","CAS",[rec(name:="u4q3",
permchars:=( 9,12,10,11),
permclasses:=(16,18,17,19),
text:=[
"names:u4q3; psu4[3]\n",
"2a3(3)    (lie-not.)\n",
"order: 2^7.3^6.5.7 = 3,265,920\n",
"number of classes: 20\n",
"source:wright, donald\n",
"the irreducible characters of the simple group\n",
"of m. suzuki of order 448,345,497,600\n",
"j.algebra 29\n",
"(1974),303-323\n",
"test: 1. o.r., sym 2 decompose correctly\n",
"comments: - \n",
""])]);
ARC("U4(3)","projectives",["2.U4(3)",[[20,4,-7,2,2,2,4,0,0,1,-2,-2,-1,-1,0,-1,
-1,-1,-1,1],[56,-8,2,11,2,2,0,0,1,-2,1,-2,0,0,0,2,2,-1,-1,0],[56,-8,2,2,11,2,
0,0,1,-2,-2,1,0,0,0,-1,-1,2,2,0],[70,-2,16,7,7,-2,2,0,0,4,1,1,0,0,0,1,1,1,1,
2],[70,-2,-11,7,-2,-2,2,0,0,1,1,-2,0,0,0,2*E(3)-E(3)^2,-E(3)+2*E(3)^2,1,1,-1],
[GALOIS,[5,2]],[70,-2,-11,-2,7,-2,2,0,0,1,-2,1,0,0,0,1,1,2*E(3)-E(3)^2,
-E(3)+2*E(3)^2,-1],
[GALOIS,[7,2]],[120,-8,12,-6,-6,3,0,0,0,4,-2,-2,1,1,0,0,0,0,0,0],[210,10,21,3,
3,3,2,0,0,1,1,1,0,0,2*E(4),0,0,0,0,-1],
[GALOIS,[10,3]],[504,-8,18,18,-9,0,0,0,-1,-2,-2,1,0,0,0,0,0,0,0,0],[504,-8,18,
-9,18,0,0,0,-1,-2,1,-2,0,0,0,0,0,0,0,0],[540,12,-27,0,0,0,4,0,0,-3,0,0,1,1,0,
0,0,0,0,1],[560,-16,-34,2,2,2,0,0,0,2,2,2,0,0,0,-1,-1,-1,-1,0],[630,14,-18,9,
9,0,-6,0,0,2,-1,-1,0,0,0,0,0,0,0,0],[640,0,-8,-8,-8,1,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,1,1,1,0],
[GALOIS,[17,3]],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,0,-1,-1,-1,-1,
0]],"4.U4(3)",[[20,0,-7,2,2,2,2,0,0,-3,0,0,-1,-1,-1-E(4),-1,-1,-1,-1,-1],[120,
0,12,-6,-6,3,4,0,0,0,0,0,1,1,0,0,0,0,0,-2],[140,0,5,-4,-4,5,-2,0,0,-3,0,0,0,0,
1+E(4),-1,-1,-1,-1,1],[224,0,8,8,-10,-1,0,0,-1,0,0,0,0,0,0,-2*E(3)+E(3)^2,
E(3)-2*E(3)^2,-1,-1,0],
[GALOIS,[4,2]],[224,0,8,-10,8,-1,0,0,-1,0,0,0,0,0,0,-1,-1,-2*E(3)+E(3)^2,
E(3)-2*E(3)^2,0],
[GALOIS,[6,2]],[280,0,37,10,10,1,4,0,0,-3,0,0,0,0,0,1,1,1,1,1],[280,0,-17,10,
-8,1,4,0,0,3,0,0,0,0,0,-2,-2,1,1,1],[280,0,-17,-8,10,1,4,0,0,3,0,0,0,0,0,1,1,
-2,-2,1],[420,0,-39,6,6,-3,2,0,0,-3,0,0,0,0,1+E(4),0,0,0,0,-1],[540,0,-27,0,0,
0,-2,0,0,-3,0,0,1,1,-1-E(4),0,0,0,0,1],[640,0,-8,-8,-8,1,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,1,1,1,0],
[GALOIS,[13,3]],[840,0,3,12,12,3,-4,0,0,3,0,0,0,0,0,0,0,0,0,-1],[896,0,32,-4,
-4,-4,0,0,1,0,0,0,0,0,0,-1,-1,-1,-1,0]],"3_1.U4(3)",[[15,-1,6,3,0,0,3,-1,0,2,
-1,2,1,1,1,E(3)+2*E(3)^2,2*E(3)+E(3)^2,0,0,0],[21,5,3,6,0,0,1,1,1,-1,2,2,0,0,
-1,2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,1],[105,9,15,3,0,0,1,1,0,3,3,0,0,0,1,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,1],[105,-7,15,3,0,0,5,1,0,-1,-1,2,0,0,-1,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,-1],[105,9,-12,12,0,0,1,1,0,0,0,0,0,0,1,
E(3)-E(3)^2,-E(3)+E(3)^2,0,0,-2],[210,2,3,15,0,0,-2,-2,0,-1,-1,2,0,0,0,
-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,0,0,1],[315,-5,-36,9,0,0,3,-1,0,4,1,-2,0,0,-1,0,
0,0,0,0],[336,16,-6,6,0,0,0,0,1,-2,-2,-2,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,
0],[360,8,-18,-9,0,0,0,0,0,2,-1,2,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,0,
0,0,0,0],
[GALOIS,[9,3]],[384,0,24,12,0,0,0,0,-1,0,0,0,-1,-1,0,E(3)+2*E(3)^2,
2*E(3)+E(3)^2,0,0,0],[420,4,33,-6,0,0,4,0,0,1,-2,-2,0,0,0,E(3)-E(3)^2,
-E(3)+E(3)^2,0,0,1],[630,6,9,-9,0,0,2,-2,0,-3,3,0,0,0,0,0,0,0,0,-1],[729,9,0,
0,0,0,-3,1,-1,0,0,0,1,1,-1,0,0,0,0,0],[756,-12,27,0,0,0,-4,0,1,3,0,0,0,0,0,0,
0,0,0,-1],[945,-15,-27,0,0,0,1,1,0,-3,0,0,0,0,1,0,0,0,0,1]],"3_2.U4(3)",[[36,
4,9,0,0,0,4,0,1,1,-2,-2,1,1,0,0,0,0,0,1],[45,-3,-9,0,0,0,1,1,0,3,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,-1,0,0,0,0,1],
[GALOIS,[2,3]],[126,14,-9,0,0,0,2,2,1,-1,2,2,0,0,0,0,0,0,0,-1],[189,-3,27,0,0,
0,5,1,-1,3,0,0,0,0,1,0,0,0,0,-1],[315,11,18,0,0,0,-1,-1,0,2,2,2,0,0,1,0,0,0,0,
2],[315,-5,18,0,0,0,3,-1,0,-2,-2,4,0,0,-1,0,0,0,0,0],[315,-5,18,0,0,0,3,-1,0,
-2,4,-2,0,0,-1,0,0,0,0,0],[630,6,-45,0,0,0,2,-2,0,3,0,0,0,0,0,0,0,0,0,-1],[
720,16,18,0,0,0,0,0,0,-2,-2,-2,-1,-1,0,0,0,0,0,0],[729,9,0,0,0,0,-3,1,-1,0,0,
0,1,1,-1,0,0,0,0,0],[756,-12,27,0,0,0,-4,0,1,3,0,0,0,0,0,0,0,0,0,-1],[945,-15,
-27,0,0,0,1,1,0,-3,0,0,0,0,1,0,0,0,0,1]],"6_1.U4(3)",[[6,-2,-3,3,0,0,2,0,1,1,
1,-2,-1,-1,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,0,-1],[84,4,-15,6,0,0,4,0,-1,1,-2,-2,
0,0,0,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,0,0,1],[120,-8,-6,15,0,0,0,0,0,-2,1,-2,1,
1,0,2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0],[126,-10,18,9,0,0,2,0,1,2,-1,2,0,0,0,0,
0,0,0,2],[210,-6,-24,-3,0,0,6,0,0,0,3,0,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,
0],[270,6,27,0,0,0,2,0,0,3,0,0,-E(7)-E(7)^2-E(7)^4,-E(7)^3-E(7)^5-E(7)^6,0,0,
0,0,0,-1],
[GALOIS,[6,3]],[336,16,-6,6,0,0,0,0,1,-2,-2,-2,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,
0,0,0],[384,0,24,12,0,0,0,0,-1,0,0,0,-1,-1,0,E(3)+2*E(3)^2,2*E(3)+E(3)^2,0,0,
0],[420,-12,-21,12,0,0,-4,0,0,3,0,0,0,0,0,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,
-1],[630,-18,9,-9,0,0,2,0,0,-3,-3,0,0,0,0,0,0,0,0,-1],[630,-2,9,-9,0,0,-2,0,0,
1,1,-2,0,0,2*E(4),0,0,0,0,1],
[GALOIS,[12,3]],[840,8,12,6,0,0,0,0,0,-4,2,2,0,0,0,-E(3)-2*E(3)^2,
-2*E(3)-E(3)^2,0,0,0],[840,8,-42,-3,0,0,0,0,0,2,-1,2,0,0,0,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,0,0,0]],"6_2.U4(3)",[[90,2,-18,0,0,0,6,0,0,2,2,2,-1,-1,0,0,0,0,
0,0],[126,-10,-9,0,0,0,2,0,1,-1,-4,2,0,0,0,0,0,0,0,-1],[126,-10,-9,0,0,0,2,0,
1,-1,2,-4,0,0,0,0,0,0,0,-1],[126,6,-9,0,0,0,-2,0,1,3,0,0,0,0,2*E(4),0,0,0,0,
1],
[GALOIS,[4,3]],[270,6,27,0,0,0,2,0,0,3,0,0,-E(7)-E(7)^2-E(7)^4,
-E(7)^3-E(7)^5-E(7)^6,0,0,0,0,0,-1],
[GALOIS,[6,3]],[504,-8,-36,0,0,0,0,0,-1,4,-2,-2,0,0,0,0,0,0,0,0],[540,12,-27,
0,0,0,4,0,0,-3,0,0,1,1,0,0,0,0,0,1],[630,-18,36,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,
0,2],[720,16,18,0,0,0,0,0,0,-2,-2,-2,-1,-1,0,0,0,0,0,0],[1260,-4,-9,0,0,0,-4,
0,0,-1,2,2,0,0,0,0,0,0,0,-1]],"12_1.U4(3)",[[84,0,-15,6,0,0,2,0,-1,-3,0,0,0,0,
-1-E(4),-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,0,0,-1],[120,0,21,6,0,0,4,0,0,-3,0,0,1,
1,0,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,1],[216,0,-27,0,0,0,4,0,1,-3,0,0,-1,-1,0,0,0,
0,0,1],[384,0,24,12,0,0,0,0,-1,0,0,0,-1,-1,0,E(3)+2*E(3)^2,2*E(3)+E(3)^2,0,0,
0],[420,0,-21,12,0,0,2,0,0,3,0,0,0,0,1+E(4),-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,
-1],[420,0,33,-6,0,0,2,0,0,-3,0,0,0,0,1+E(4),E(3)-E(3)^2,-E(3)+E(3)^2,0,0,
-1],[480,0,-24,6,0,0,0,0,0,0,0,0,-E(7)-E(7)^2-E(7)^4,-E(7)^3-E(7)^5-E(7)^6,0,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0],
[GALOIS,[7,10]],[504,0,-9,-18,0,0,4,0,-1,3,0,0,0,0,0,0,0,0,0,1],[756,0,27,0,0,
0,2,0,1,3,0,0,0,0,-1-E(4),0,0,0,0,-1],[840,0,-15,-12,0,0,-4,0,0,-3,0,0,0,0,0,
-E(3)+E(3)^2,E(3)-E(3)^2,0,0,-1],[840,0,12,6,0,0,-4,0,0,0,0,0,0,0,0,
-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,0,0,2]],"12_2.U4(3)",[[36,0,9,0,0,0,2,0,1,-3,0,
0,1,1,1+E(4),0,0,0,0,-1],[216,0,-27,0,0,0,4,0,1,-3,0,0,-1,-1,0,0,0,0,0,1],[
360,0,9,0,0,0,-4,0,0,-3,0,0,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,
-1],
[GALOIS,[3,3]],[504,0,-36,0,0,0,4,0,-1,0,0,0,0,0,0,0,0,0,0,-2],[504,0,45,0,0,
0,4,0,-1,-3,0,0,0,0,0,0,0,0,0,1],[540,0,-27,0,0,0,-2,0,0,-3,0,0,1,1,-1-E(4),0,
0,0,0,1],[756,0,27,0,0,0,2,0,1,3,0,0,0,0,-1-E(4),0,0,0,0,-1],[1260,0,-9,0,0,0,
-2,0,0,3,0,0,0,0,1+E(4),0,0,0,0,1]],]);
ARC("U4(3)","isSimple",true);
ARC("U4(3)","extInfo",["(3^2x4)","D8"]);
ARC("U4(3)","tomfusion",rec(name:="U4(3)",map:=[1,2,3,5,6,4,10,11,12,13,
14,15,19,19,28,38,38,39,39,52],text:=[
"fusion map is unique up to table autom."
],perm:=(8,9)));
ALF("U4(3)","U4(3).2_1",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,16,17,17,
18]);
ALF("U4(3)","U4(3).2_2",[1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,15,16,17,17,
18]);
ALF("U4(3)","U4(3).2_2'",[1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,15,15,16,17,
18]);
ALF("U4(3)","U4(3).2_3",[1,2,3,4,4,5,6,7,8,9,10,10,11,11,12,13,14,13,14,
15]);
ALF("U4(3)","U4(3).2_3'",[1,2,3,4,4,5,6,7,8,9,10,10,11,11,12,13,14,14,13,
15]);
ALF("U4(3)","U4(3).4",[1,2,3,4,4,5,6,7,8,9,10,10,11,12,13,14,14,14,14,15]);
ALF("U4(3)","Co3",[1,2,4,5,5,5,8,8,10,11,13,13,16,16,19,21,21,21,21,27],[
"fusion map is unique, equal to that on the CAS table"
]);
ALF("U4(3)","Fi22",[1,3,6,5,7,7,9,13,14,17,18,23,26,26,28,31,31,32,32,38],[
"fusion is unique up to table automorphisms,\n",
"the representative is equal to the fusion map on the CAS table"
]);
ALF("U4(3)","McL",[1,2,3,4,4,4,5,5,7,8,9,9,10,11,12,13,14,13,14,18],[
"fusion map is unique up to table automorphisms,\n",
"compatible with 3_2.U4(3) -> 3.McL"
]);
ARC("U4(3)","maxes",["3^4:A6","U4(2)","U4(3)M3","L3(4)","L3(4)",
"3^(1+4)_+.2S4","U3(3)","2^4:a6","U4(3)M9","A7","A7","U4(3)M12","U4(3)M12",
"2(A4xA4).2^2","A6.2_3","A6.2_3"]);
ALN("U4(3)",["c3u1","f22u1","u4q3"]);

MOT("U4(3).(2^2)_{122}",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[13063680,4608,23328,3888,3888,324,384,64,20,288,144,144,14,32,54,54,48,24192,
2880,2304,256,432,72,72,36,32,20,144,72,72,14,103680,2304,384,192,1296,432,
216,144,36,32,20,48,24,18,103680,2304,384,192,1296,432,216,144,36,32,20,48,24,
18],
[,[1,1,3,4,5,6,2,2,9,3,4,5,13,7,15,16,10,1,1,2,2,3,4,5,6,7,9,10,11,12,13,1,1,
2,2,3,5,4,5,6,7,9,10,11,15,1,1,2,2,3,4,5,4,6,7,9,10,12,16],[1,2,1,1,1,1,7,8,9,
2,2,2,13,14,3,3,7,18,19,20,21,18,19,19,18,26,27,20,20,20,31,32,33,34,35,32,32,
32,33,33,41,42,34,35,36,46,47,48,49,46,46,46,47,47,55,56,48,49,50],,[1,2,3,4,
5,6,7,8,1,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,19,28,29,30,31,
32,33,34,35,36,37,38,39,40,41,32,43,44,45,46,47,48,49,50,51,52,53,54,55,46,57,
58,59],,[1,2,3,4,5,6,7,8,9,10,11,12,1,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,18,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
53,54,55,56,57,58,59]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[TENSOR,[2,3]],[21,5,-6,3,3,3,1,1,1,2,-1,-1,0,-1,0,0,-2,-7,1,5,-3,2,1,1,-1,-1,
1,2,-1,-1,0,9,1,-3,1,0,-3,3,1,1,-1,-1,0,1,0,9,1,-3,1,0,-3,3,1,1,-1,-1,0,1,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[35,3,8,8,-1,-1,3,-1,0,0,0,3,0,-1,2,-1,0,7,-5,-1,-1,-2,-2,1,1,
-1,0,2,2,-1,0,15,-1,-1,3,6,3,0,-1,-1,-1,0,2,0,0,-5,-5,3,-1,4,-2,1,-2,1,-1,0,0,
-1,1],
[TENSOR,[9,2]],
[TENSOR,[9,3]],
[TENSOR,[9,4]],[35,3,8,-1,8,-1,3,-1,0,0,3,0,0,-1,-1,2,0,7,-5,-1,-1,-2,1,-2,1,
-1,0,2,-1,2,0,-5,-5,3,-1,4,-2,1,-2,1,-1,0,0,-1,1,15,-1,-1,3,6,3,0,-1,-1,-1,0,
2,0,0],
[TENSOR,[13,2]],
[TENSOR,[13,3]],
[TENSOR,[13,4]],[90,10,9,9,9,0,-2,2,0,1,1,1,-1,0,0,0,1,6,10,10,2,-3,1,1,0,0,0,
1,1,1,-1,30,6,2,2,3,3,3,3,0,0,0,-1,-1,0,30,6,2,2,3,3,3,3,0,0,0,-1,-1,0],
[TENSOR,[17,2]],
[TENSOR,[17,3]],
[TENSOR,[17,4]],[140,12,5,-4,-4,5,4,0,0,-3,0,0,0,0,-1,-1,1,28,0,4,4,1,0,0,1,0,
0,1,-2,-2,0,20,4,4,0,-7,2,2,-2,1,0,0,1,0,-1,20,4,4,0,-7,2,2,-2,1,0,0,1,0,-1],
[TENSOR,[21,2]],
[TENSOR,[21,3]],
[TENSOR,[21,4]],[189,-3,27,0,0,0,5,1,-1,3,0,0,0,1,0,0,-1,21,9,-3,-3,3,0,0,0,1,
-1,3,0,0,0,9,9,1,-3,9,0,0,0,0,1,-1,1,0,0,9,9,1,-3,9,0,0,0,0,1,-1,1,0,0],
[TENSOR,[25,2]],
[TENSOR,[25,3]],
[TENSOR,[25,4]],[210,2,21,3,3,3,-2,-2,0,5,-1,-1,0,0,0,0,1,14,-10,10,2,5,-1,-1,
-1,0,0,1,1,1,0,30,-10,2,-2,3,3,3,-1,-1,0,0,-1,1,0,30,-10,2,-2,3,3,3,-1,-1,0,0,
-1,1,0],
[TENSOR,[29,2]],
[TENSOR,[29,3]],
[TENSOR,[29,4]],[560,-16,20,20,2,2,0,0,0,-4,-4,2,0,0,-1,2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,80,-16,0,0,8,2,-4,2,2,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[33,2]],[560,-16,20,2,20,2,0,0,0,-4,2,-4,0,0,2,-1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-80,16,0,0,-8,-2,4,-2,-2,0,0,0,0,1],
[TENSOR,[35,2]],[315,11,-9,18,-9,0,-1,-1,0,-1,2,-1,0,1,0,0,-1,-21,-5,7,-1,-3,
-2,1,0,1,0,1,-2,1,0,75,3,-1,3,3,-3,0,-3,0,1,0,-1,0,0,15,-9,-5,-1,-3,0,3,0,0,1,
0,1,-1,0],
[TENSOR,[37,2]],
[TENSOR,[37,3]],
[TENSOR,[37,4]],[315,11,-9,-9,18,0,-1,-1,0,-1,-1,2,0,1,0,0,-1,-21,-5,7,-1,-3,
1,-2,0,1,0,1,1,-2,0,15,-9,-5,-1,-3,0,3,0,0,1,0,1,-1,0,75,3,-1,3,3,-3,0,-3,0,1,
0,-1,0,0],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[420,4,-39,6,6,-3,4,0,0,1,-2,-2,0,0,0,0,1,28,0,12,-4,1,0,0,1,
0,0,-3,0,0,0,60,-4,4,0,-3,-6,0,2,-1,0,0,1,0,0,60,-4,4,0,-3,-6,0,2,-1,0,0,1,0,
0],
[TENSOR,[45,2]],
[TENSOR,[45,3]],
[TENSOR,[45,4]],[1120,-32,-68,4,4,4,0,0,0,4,4,4,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1280,0,
-16,-16,-16,2,0,0,0,0,0,0,-1,0,2,2,0,-64,0,0,0,8,0,0,2,0,0,0,0,0,-1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[50,3]],[729,9,0,0,0,0,-3,1,-1,0,0,0,1,-1,0,0,0,-27,9,9,1,0,0,0,0,-1,
-1,0,0,0,1,81,9,-3,-3,0,0,0,0,0,-1,1,0,0,0,81,9,-3,-3,0,0,0,0,0,-1,1,0,0,0],
[TENSOR,[52,2]],
[TENSOR,[52,3]],
[TENSOR,[52,4]],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,-1,-1,0,0,16,0,0,0,-2,-2,0,
0,1,0,0,0,0,64,0,0,0,-8,4,-2,0,0,0,-1,0,0,1,64,0,0,0,-8,4,-2,0,0,0,-1,0,0,1],
[TENSOR,[56,2]],
[TENSOR,[56,3]],
[TENSOR,[56,4]]],
[( 4, 5)(11,12)(15,16)(23,24)(29,30)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)
(38,52)(39,53)(40,54)(41,55)(42,56)(43,57)(44,58)(45,59)]);
ALF("U4(3).(2^2)_{122}","U4(3).D8",[1,2,3,4,4,5,6,7,8,9,10,10,11,12,13,13,
14,15,16,17,18,19,20,20,21,22,23,24,25,25,26,39,40,41,42,43,44,45,46,47,
48,49,50,51,52,39,40,41,42,43,44,45,46,47,48,49,50,51,52]);
ALF("U4(3).(2^2)_{122}","U6(2).2",[1,3,6,5,7,7,10,13,14,17,18,20,22,24,26,
27,33,38,39,40,41,44,45,47,46,50,53,55,54,57,59,2,4,10,12,15,19,16,21,21,
24,28,33,35,37,38,39,40,42,44,43,46,45,47,51,52,55,58,62],[
"fusion map is unique up to table aut."
]);

MOT("U4(3).(2^2)_{133}",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"computed from the tables of U4(3), U4(3).2_1, U4(3).2_3, U4(3).2_3'"
],
[13063680,4608,23328,1944,324,384,64,20,288,72,14,32,27,48,24192,2880,2304,
256,432,36,36,32,20,144,36,14,2880,192,36,192,64,16,20,24,24,2880,192,36,192,
64,16,20,24,24],
[,[1,1,3,4,5,2,2,8,3,4,11,6,13,9,1,1,2,2,3,4,5,6,8,9,10,11,1,2,5,6,6,7,8,9,14,
1,2,5,6,6,7,8,9,14],[1,2,1,1,1,6,7,8,2,2,11,12,3,6,15,16,17,18,15,16,15,22,23,
17,17,26,27,28,27,30,31,32,33,28,30,36,37,36,39,40,41,42,37,39],,[1,2,3,4,5,6,
7,1,9,10,11,12,13,14,15,16,17,18,19,20,21,22,16,24,25,26,27,28,29,30,31,32,27,
34,35,36,37,38,39,40,41,36,43,44],,[1,2,3,4,5,6,7,8,9,10,1,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,15,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,
44]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[TENSOR,[2,3]],[21,5,-6,3,3,1,1,1,2,-1,0,-1,0,-2,-7,1,5,-3,2,1,-1,-1,1,2,-1,0,
1,-3,1,3,-1,-1,1,0,0,1,-3,1,3,-1,-1,1,0,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[70,6,16,7,-2,6,-2,0,0,3,0,-2,1,0,14,-10,-2,-2,-4,-1,2,-2,0,4,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[9,3]],[90,10,9,9,0,-2,2,0,1,1,-1,0,0,1,6,10,10,2,-3,1,0,0,0,1,1,-1,0,
4,0,2,-2,0,0,1,-1,0,4,0,2,-2,0,0,1,-1],
[TENSOR,[11,2]],
[TENSOR,[11,3]],
[TENSOR,[11,4]],[140,12,5,-4,5,4,0,0,-3,0,0,0,-1,1,28,0,4,4,1,0,1,0,0,1,-2,0,
10,2,1,2,2,0,0,-1,-1,10,2,1,2,2,0,0,-1,-1],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[189,-3,27,0,0,5,1,-1,3,0,0,1,0,-1,21,9,-3,-3,3,0,0,1,-1,3,0,
0,9,1,0,1,1,-1,-1,1,1,9,1,0,1,1,-1,-1,1,1],
[TENSOR,[19,2]],
[TENSOR,[19,3]],
[TENSOR,[19,4]],[210,2,21,3,3,-2,-2,0,5,-1,0,0,0,1,14,-10,10,2,5,-1,-1,0,0,1,
1,0,-10,2,-1,4,0,0,0,-1,1,-10,2,-1,4,0,0,0,-1,1],
[TENSOR,[23,2]],
[TENSOR,[23,3]],
[TENSOR,[23,4]],[1120,-32,40,22,4,0,0,0,-8,-2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[630,22,-18,9,0,-2,-2,0,-2,1,0,2,0,-2,
-42,-10,14,-2,-6,-1,0,2,0,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[28,3]],[420,4,-39,6,-3,4,0,0,1,-2,0,0,0,1,28,0,12,-4,1,0,1,0,0,-3,0,
0,-10,-2,-1,2,2,0,0,1,-1,-10,-2,-1,2,2,0,0,1,-1],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[1120,-32,-68,4,4,0,0,0,4,4,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1280,0,-16,-16,2,0,0,0,0,0,-1,0,2,0,-64,
0,0,0,8,0,2,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[35,3]],[729,9,0,0,0,-3,1,-1,0,0,1,-1,0,0,-27,9,9,1,0,0,0,-1,-1,0,0,1,
9,-3,0,3,-1,1,-1,0,0,9,-3,0,3,-1,1,-1,0,0],
[TENSOR,[37,2]],
[TENSOR,[37,3]],
[TENSOR,[37,4]],[896,0,32,-4,-4,0,0,1,0,0,0,0,-1,0,0,16,0,0,0,-2,0,0,1,0,0,0,
16,0,-2,0,0,0,1,0,0,16,0,-2,0,0,0,1,0,0],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]]],
[(27,36)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)]);
ARC("U4(3).(2^2)_{133}","maxes",["U4(3).2_1","U4(3).2_3","U4(3).2_3'",
"3^4:(M10x2)","L3(4).2^2","U4(3).(2^2)_{133}M6","3^(1+4)+.2^(1+4)-.S3",
"2xU3(3).2","2(A4xA4).4.2^2","2xa6.2^2","U4(3).(2^2)_{133}M11",
"U4(3).(2^2)_{133}M12","(4^2x2)(2xS4)"]);
ARC("U4(3).(2^2)_{133}","tomfusion",rec(name:="U4(3).2^2_133",map:=[1,6,7,
9,8,14,15,25,30,31,43,88,115,124,2,5,10,13,26,32,29,89,120,123,125,156,3,
12,27,84,86,90,122,126,406,4,11,28,85,87,91,121,127,407],text:=[
"fusion map is unique up to table autom."
],perm:=(10,12,11)));
ARC("U4(3).(2^2)_{133}","CAS",[rec(name:="u4q3:2^2",
permclasses:=(),
permchars:=(2,3)(6,7)(12,13)(16,17)(20,21)(24,25)(31,32)(38,39)(42,43),
text:=[
"origin: CAS library,\n",
"maximal subgroup of Co3,\n",
"Source: Atlas [Atlas-table character X.16 extends to both types of u4q3:2\n",
"involved, but does not extend to u4q3:2^2 !!].\n",
"Test: 1.OR, JAMES, JAMES,n=3,\n",
"and restricted characters decompose properly.\n"])]);
ALF("U4(3).(2^2)_{133}","U4(3).D8",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,53,54,55,56,57,58,59,60,61,53,54,55,56,
57,58,59,60,61]);
ALF("U4(3).(2^2)_{133}","Co3",[1,2,4,5,5,8,8,10,11,13,16,19,21,27,2,3,7,8,
12,14,13,19,23,26,28,29,3,7,14,17,18,18,23,26,40,3,8,14,18,17,19,23,27,41],[
"fusion map is unique up to table automorphisms,\n",
"the representative is equal to the fusion map on the CAS table"
]);

MOT("U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"constructions: PSO(-1,6,3)"
],
[6531840,2304,11664,1944,1944,162,192,32,10,144,72,72,14,14,16,27,27,24,12096,
1440,1152,128,216,36,36,18,16,10,144,144,36,36,14,14],
[,[1,1,3,4,5,6,2,2,9,3,4,5,13,14,7,16,17,10,1,1,2,2,3,4,5,6,7,9,10,10,11,12,
13,14],[1,2,1,1,1,1,7,8,9,2,2,2,14,13,15,3,3,7,19,20,21,22,19,20,20,19,27,28,
21,21,21,21,34,33],,[1,2,3,4,5,6,7,8,1,10,11,12,14,13,15,16,17,18,19,20,21,22,
23,24,25,26,27,20,29,30,31,32,34,33],,[1,2,3,4,5,6,7,8,9,10,11,12,1,1,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,30,29,31,32,19,19]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1],[21,5,-6,3,3,3,1,1,1,2,-1,-1,0,0,-1,0,0,-2,-7,1,5,-3,2,1,1,-1,-1,1,2,2,-1,
-1,0,0],
[TENSOR,[3,2]],[35,3,8,8,-1,-1,3,-1,0,0,0,3,0,0,-1,2,-1,0,7,-5,-1,-1,-2,-2,1,
1,-1,0,2,2,2,-1,0,0],
[TENSOR,[5,2]],[35,3,8,-1,8,-1,3,-1,0,0,3,0,0,0,-1,-1,2,0,7,-5,-1,-1,-2,1,-2,
1,-1,0,2,2,-1,2,0,0],
[TENSOR,[7,2]],[90,10,9,9,9,0,-2,2,0,1,1,1,-1,-1,0,0,0,1,6,10,10,2,-3,1,1,0,0,
0,1,1,1,1,-1,-1],
[TENSOR,[9,2]],[140,12,5,-4,-4,5,4,0,0,-3,0,0,0,0,0,-1,-1,1,28,0,4,4,1,0,0,1,
0,0,1,1,-2,-2,0,0],
[TENSOR,[11,2]],[189,-3,27,0,0,0,5,1,-1,3,0,0,0,0,1,0,0,-1,21,9,-3,-3,3,0,0,0,
1,-1,3,3,0,0,0,0],
[TENSOR,[13,2]],[210,2,21,3,3,3,-2,-2,0,5,-1,-1,0,0,0,0,0,1,14,-10,10,2,5,-1,
-1,-1,0,0,1,1,1,1,0,0],
[TENSOR,[15,2]],[560,-16,20,20,2,2,0,0,0,-4,-4,2,0,0,0,-1,2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0],[560,-16,20,2,20,2,0,0,0,-4,2,-4,0,0,0,2,-1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[315,11,-9,18,-9,0,-1,-1,0,-1,2,-1,0,0,1,0,0,-1,-21,-5,7,
-1,-3,-2,1,0,1,0,1,1,-2,1,0,0],
[TENSOR,[19,2]],[315,11,-9,-9,18,0,-1,-1,0,-1,-1,2,0,0,1,0,0,-1,-21,-5,7,-1,
-3,1,-2,0,1,0,1,1,1,-2,0,0],
[TENSOR,[21,2]],[420,4,-39,6,6,-3,4,0,0,1,-2,-2,0,0,0,0,0,1,28,0,12,-4,1,0,0,
1,0,0,-3,-3,0,0,0,0],
[TENSOR,[23,2]],[560,-16,-34,2,2,2,0,0,0,2,2,2,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,
0,0,-6*E(4),6*E(4),0,0,0,0],
[TENSOR,[25,2]],[640,0,-8,-8,-8,1,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
E(7)^3+E(7)^5+E(7)^6,0,1,1,0,-32,0,0,0,4,0,0,1,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
E(7)^3+E(7)^5+E(7)^6],
[TENSOR,[27,2]],
[GALOIS,[27,3]],
[TENSOR,[29,2]],[729,9,0,0,0,0,-3,1,-1,0,0,0,1,1,-1,0,0,0,-27,9,9,1,0,0,0,0,
-1,-1,0,0,0,0,1,1],
[TENSOR,[31,2]],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,0,-1,-1,0,0,16,0,0,0,-2,-2,
0,0,1,0,0,0,0,0,0],
[TENSOR,[33,2]]],
[(29,30),(13,14)(33,34),( 4, 5)(11,12)(16,17)(24,25)(31,32)]);
ARC("U4(3).2_1","projectives",["2.U4(3).2_1",[[20,4,-7,2,2,2,4,0,0,1,-2,-2,-1,
-1,0,-1,-1,1,-8,0,0,0,1,0,0,-2,0,0,-3,3,0,0,-1,-1],[56,-8,2,11,2,2,0,0,1,-2,1,
-2,0,0,0,2,-1,0,0,4*E(4),-8*E(4),0,0,E(4),-2*E(4),0,0,-E(4),-2*E(4),-2*E(4),
E(4),-2*E(4),0,0],[56,-8,2,2,11,2,0,0,1,-2,-2,1,0,0,0,-1,2,0,0,4*E(4),-8*E(4),
0,0,-2*E(4),E(4),0,0,-E(4),-2*E(4),-2*E(4),-2*E(4),E(4),0,0],[70,-2,16,7,7,-2,
2,0,0,4,1,1,0,0,0,1,1,2,0,10*E(4),-4*E(4),0,0,E(4),E(4),0,-2*E(4),0,2*E(4),
2*E(4),-E(4),-E(4),0,0],[140,-4,-22,14,-4,-4,4,0,0,2,2,-4,0,0,0,-1,2,-2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0],[140,-4,-22,-4,14,-4,4,0,0,2,-4,2,0,0,0,2,-1,-2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[120,-8,12,-6,-6,3,0,0,0,4,-2,-2,1,1,0,0,0,0,8,
0,0,0,8,0,0,-1,0,0,0,0,0,0,1,1],[210,10,21,3,3,3,2,0,0,1,1,1,0,0,2*E(4),0,0,
-1,28,10*E(4),4*E(4),0,1,E(4),E(4),1,0,0,-3-2*E(4),3-2*E(4),E(4),E(4),0,0],
[GALOIS,[8,3]],[504,-8,18,18,-9,0,0,0,-1,-2,-2,1,0,0,0,0,0,0,0,-4*E(4),
-8*E(4),0,0,2*E(4),-E(4),0,0,E(4),-2*E(4),-2*E(4),-2*E(4),E(4),0,0],[504,-8,
18,-9,18,0,0,0,-1,-2,1,-2,0,0,0,0,0,0,0,-4*E(4),-8*E(4),0,0,-E(4),2*E(4),0,0,
E(4),-2*E(4),-2*E(4),E(4),-2*E(4),0,0],[540,12,-27,0,0,0,4,0,0,-3,0,0,1,1,0,0,
0,1,-48,0,0,0,-3,0,0,0,0,0,-3,3,0,0,1,1],[560,-16,-34,2,2,2,0,0,0,2,2,2,0,0,0,
-1,-1,0,0,0,-16*E(4),0,0,0,0,0,0,0,2*E(4),2*E(4),2*E(4),2*E(4),0,0],[630,14,
-18,9,9,0,-6,0,0,2,-1,-1,0,0,0,0,0,0,0,10*E(4),-4*E(4),0,0,E(4),E(4),0,2*E(4),
0,2*E(4),2*E(4),-E(4),-E(4),0,0],[640,0,-8,-8,-8,1,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,1,0,-32,0,0,0,4,0,0,1,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6],
[GALOIS,[15,3]],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,0,-1,-1,0,0,16*E(4),0,0,0,
-2*E(4),-2*E(4),0,0,E(4),0,0,0,0,0,0]],"4.U4(3).2_1",[[20,0,-7,2,2,2,2,0,0,-3,
0,0,-1,-1,-1-E(4),-1,-1,-1,-6,0,2+2*E(4),0,3,0,0,0,-1-E(4),0,-1+2*E(4),2-E(4),
-1-E(4),-1-E(4),1,1],[120,0,12,-6,-6,3,4,0,0,0,0,0,1,1,0,0,0,-2,20,0,
-4-4*E(4),0,2,0,0,-1,0,0,2+2*E(4),2+2*E(4),-1-E(4),-1-E(4),-1,-1],[140,0,5,-4,
-4,5,-2,0,0,-3,0,0,0,0,1+E(4),-1,-1,1,14,0,6+6*E(4),0,5,0,0,-1,1+E(4),0,-3,
-3*E(4),0,0,0,0],[448,0,16,16,-20,-2,0,0,-2,0,0,0,0,0,0,1,-2,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[448,0,16,-20,16,-2,0,0,-2,0,0,0,0,0,0,-2,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],[280,0,37,10,10,1,4,0,0,-3,0,0,0,0,0,1,1,1,28,0,4+4*E(4),
0,1,0,0,1,0,0,1+4*E(4),4+E(4),1+E(4),1+E(4),0,0],[280,0,-17,10,-8,1,4,0,0,3,0,
0,0,0,0,-2,1,1,28,0,4+4*E(4),0,1,0,0,1,0,0,1-2*E(4),-2+E(4),1+E(4),-2-2*E(4),
0,0],[280,0,-17,-8,10,1,4,0,0,3,0,0,0,0,0,1,-2,1,28,0,4+4*E(4),0,1,0,0,1,0,0,
1-2*E(4),-2+E(4),-2-2*E(4),1+E(4),0,0],[420,0,-39,6,6,-3,2,0,0,-3,0,0,0,0,
1+E(4),0,0,-1,-14,0,2+2*E(4),0,-5,0,0,1,1+E(4),0,-1+2*E(4),2-E(4),-1-E(4),
-1-E(4),0,0],[540,0,-27,0,0,0,-2,0,0,-3,0,0,1,1,-1-E(4),0,0,1,6,0,6+6*E(4),0,
-3,0,0,0,-1-E(4),0,-3,-3*E(4),0,0,-1,-1],[640,0,-8,-8,-8,1,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,1,0,-32,0,0,0,4,0,0,1,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6],
[GALOIS,[11,3]],[840,0,3,12,12,3,-4,0,0,3,0,0,0,0,0,0,0,-1,-28,0,12+12*E(4),0,
-1,0,0,-1,0,0,3,3*E(4),0,0,0,0],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,0,-1,-1,0,
0,0,0,0,0,0,0,0,0,E(40)^13-E(40)^21-E(40)^29+E(40)^37,0,0,0,0,0,0]],]);
ARC("U4(3).2_1","maxes",["U4(3)","3^4:(2xA6)","U4(2).2","U4(3).2_1M4",
"L3(4).2_2","L3(4).2_2","3^(1+4)+.4S4","2xU3(3)","2^4.s6","U4(3).2_1M10",
"4(A4xA4).4","A6.2^2","A6.2^2"]);
ARC("U4(3).2_1","tomfusion",rec(name:="U4(3).2_1",map:=[1,3,5,7,8,6,11,12,
20,32,34,33,37,37,68,79,78,91,2,4,9,10,30,36,35,31,67,80,88,88,90,89,112,
112],text:=[
"fusion map is unique up to table autom."
],perm:=(3,4)));
ALF("U4(3).2_1","U4(3).4",[1,2,3,4,4,5,6,7,8,9,10,10,11,12,13,14,14,15,16,
17,18,19,20,21,21,22,23,24,25,26,27,27,28,29]);
ALF("U4(3).2_1","U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,28,29,30,31,31]);
ALF("U4(3).2_1","U4(3).(2^2)_{133}",[1,2,3,4,4,5,6,7,8,9,10,10,11,11,12,
13,13,14,15,16,17,18,19,20,20,21,22,23,24,24,25,25,26,26]);
ALF("U4(3).2_1","U4(3).D8",[1,2,3,4,4,5,6,7,8,9,10,10,11,11,12,13,13,14,
15,16,17,18,19,20,20,21,22,23,24,24,25,25,26,26],[
"fusion map is unique"
]);

MOT("U4(3).2_2",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"constructions: PSU(4,3) extended by transpose-inverse"
],
[6531840,2304,11664,1944,1944,162,192,32,10,144,72,72,7,16,54,54,27,24,51840,
1152,192,96,1296,1296,216,108,72,18,16,10,24,12,18,18],
[,[1,1,3,4,5,6,2,2,9,3,4,5,13,7,16,15,17,10,1,1,2,2,3,3,5,4,5,6,7,9,10,11,16,
15],[1,2,1,1,1,1,7,8,9,2,2,2,13,14,3,3,3,7,19,20,21,22,19,19,19,19,20,20,29,
30,21,22,23,24],,[1,2,3,4,5,6,7,8,1,10,11,12,13,14,16,15,17,18,19,20,21,22,24,
23,25,26,27,28,29,19,31,32,34,33],,[1,2,3,4,5,6,7,8,9,10,11,12,1,14,15,16,17,
18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1],[21,5,-6,3,3,3,1,1,1,2,-1,-1,0,-1,0,0,0,-2,9,1,-3,1,0,0,-3,3,1,1,-1,-1,0,
1,0,0],
[TENSOR,[3,2]],[35,3,8,8,-1,-1,3,-1,0,0,0,3,0,-1,2,2,-1,0,15,-1,-1,3,6,6,3,0,
-1,-1,-1,0,2,0,0,0],
[TENSOR,[5,2]],[35,3,8,-1,8,-1,3,-1,0,0,3,0,0,-1,-1,-1,2,0,-5,-5,3,-1,4,4,-2,
1,-2,1,-1,0,0,-1,1,1],
[TENSOR,[7,2]],[90,10,9,9,9,0,-2,2,0,1,1,1,-1,0,0,0,0,1,30,6,2,2,3,3,3,3,3,0,
0,0,-1,-1,0,0],
[TENSOR,[9,2]],[140,12,5,-4,-4,5,4,0,0,-3,0,0,0,0,-1,-1,-1,1,20,4,4,0,-7,-7,2,
2,-2,1,0,0,1,0,-1,-1],
[TENSOR,[11,2]],[189,-3,27,0,0,0,5,1,-1,3,0,0,0,1,0,0,0,-1,9,9,1,-3,9,9,0,0,0,
0,1,-1,1,0,0,0],
[TENSOR,[13,2]],[210,2,21,3,3,3,-2,-2,0,5,-1,-1,0,0,0,0,0,1,30,-10,2,-2,3,3,3,
3,-1,-1,0,0,-1,1,0,0],
[TENSOR,[15,2]],[280,-8,10,10,1,1,0,0,0,-2,-2,1,0,0,2*E(3)-E(3)^2,
-E(3)+2*E(3)^2,1,0,40,-8,0,0,2*E(3)-10*E(3)^2,-10*E(3)+2*E(3)^2,1,-2,1,1,0,0,
0,0,E(3)^2,E(3)],
[TENSOR,[17,2]],
[GALOIS,[17,2]],
[TENSOR,[19,2]],[560,-16,20,2,20,2,0,0,0,-4,2,-4,0,0,2,2,-1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0],[315,11,-9,18,-9,0,-1,-1,0,-1,2,-1,0,1,0,0,0,-1,75,3,-1,3,3,
3,-3,0,-3,0,1,0,-1,0,0,0],
[TENSOR,[22,2]],[315,11,-9,-9,18,0,-1,-1,0,-1,-1,2,0,1,0,0,0,-1,15,-9,-5,-1,
-3,-3,0,3,0,0,1,0,1,-1,0,0],
[TENSOR,[24,2]],[420,4,-39,6,6,-3,4,0,0,1,-2,-2,0,0,0,0,0,1,60,-4,4,0,-3,-3,
-6,0,2,-1,0,0,1,0,0,0],
[TENSOR,[26,2]],[560,-16,-34,2,2,2,0,0,0,2,2,2,0,0,-1,-1,-1,0,0,0,0,0,
-6*E(3)+6*E(3)^2,6*E(3)-6*E(3)^2,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2],
[TENSOR,[28,2]],[1280,0,-16,-16,-16,2,0,0,0,0,0,0,-1,0,2,2,2,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[729,9,0,0,0,0,-3,1,-1,0,0,0,1,-1,0,0,0,0,81,9,-3,-3,0,0,0,
0,0,0,-1,1,0,0,0,0],
[TENSOR,[31,2]],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,-1,-1,-1,0,64,0,0,0,-8,-8,
4,-2,0,0,0,-1,0,0,1,1],
[TENSOR,[33,2]]],
[(15,16)(23,24)(33,34)]);
ARC("U4(3).2_2","CAS",[rec(name:="u4q3b",
permchars:=( 7, 8)(21,27,26,25,24,23,22)(28,29)(30,34,33,32,31),
permclasses:=(23,24)(33,34),
text:=[
"names:=u4q3b; u4q3.z2, psu4[3].z2\n",
"    order: 2^8.3^6.5.7 = 6,531,840\n",
"    number of classes: 34\n",
"    source:todd, j.a.\n",
"           the characters of a collineation group in\n",
"           five dimensions\n",
"           proc.roy.soc.london 200\n",
"           (1949), 320-336\n",
"    test: 1. o.r., sym 2 decompose correctly\n",
"    comments:extension of psu4(3) with an\n",
"             outer automorphism of order 2\n",
"             blown up using cas-system\n",
""])]);
ARC("U4(3).2_2","projectives",["2.U4(3).2_2",[[20,4,-7,2,2,2,4,0,0,1,-2,-2,-1,
0,-1,-1,-1,1,0,0,0,0,3*E(3)-3*E(3)^2,-3*E(3)+3*E(3)^2,0,0,0,0,0,0,E(3)-E(3)^2,
0,-E(3)+E(3)^2,E(3)-E(3)^2],[56,-8,2,11,2,2,0,0,1,-2,1,-2,0,0,2,2,-1,0,24,0,0,
4,6,6,0,3,0,0,0,-1,0,1,0,0],[56,-8,2,2,11,2,0,0,1,-2,-2,1,0,0,-1,-1,2,0,16,0,
0,0,-2,-2,1,4,3,0,0,1,0,0,1,1],[70,-2,16,7,7,-2,2,0,0,4,1,1,0,0,1,1,1,2,20,0,
0,2,2,2,5,-1,3,0,0,0,0,-1,-1,-1],[70,-2,-11,7,-2,-2,2,0,0,1,1,-2,0,0,
2*E(3)-E(3)^2,-E(3)+2*E(3)^2,1,-1,20,0,0,2,E(3)-5*E(3)^2,-5*E(3)+E(3)^2,-4,-1,
0,0,0,0,E(3)-E(3)^2,-1,-E(3)^2,-E(3)],
[GALOIS,[5,2]],[140,-4,-22,-4,14,-4,4,0,0,2,-4,2,0,0,2,2,-1,-2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[120,-8,12,-6,-6,3,0,0,0,4,-2,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,3,0,0,0,0,0,0],[420,20,42,6,6,6,4,0,0,2,2,2,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0],[504,-8,18,18,-9,0,0,0,-1,-2,-2,1,0,0,0,0,0,0,96,0,0,0,6,6,3,
0,-3,0,0,1,0,0,0,0],[504,-8,18,-9,18,0,0,0,-1,-2,1,-2,0,0,0,0,0,0,24,0,0,-4,6,
6,0,3,0,0,0,-1,0,-1,0,0],[540,12,-27,0,0,0,4,0,0,-3,0,0,1,0,0,0,0,1,0,0,0,0,
9*E(3)-9*E(3)^2,-9*E(3)+9*E(3)^2,0,0,0,0,0,0,-E(3)+E(3)^2,0,0,0],[560,-16,-34,
2,2,2,0,0,0,2,2,2,0,0,-1,-1,-1,0,80,0,0,0,-10,-10,-4,2,0,0,0,0,0,0,-1,-1],[
630,14,-18,9,9,0,-6,0,0,2,-1,-1,0,0,0,0,0,0,60,0,0,-2,6,6,-3,-3,3,0,0,0,0,1,0,
0],[1280,0,-16,-16,-16,2,0,0,0,0,0,0,-1,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,-1,-1,-1,0,64,0,0,0,-8,-8,4,-2,0,0,0,
-1,0,0,1,1]],"3_1.U4(3).2_2",[[15,-1,6,3,0,0,3,-1,0,2,-1,2,1,1,E(3)+2*E(3)^2,
2*E(3)+E(3)^2,0,0,5,-3,1,1,-4*E(3),-4*E(3)^2,2,-1,0,0,-1,0,-2,1,-E(3),
-E(3)^2],[21,5,3,6,0,0,1,1,1,-1,2,2,0,-1,2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,1,11,3,
-1,3,-E(3)+3*E(3)^2,3*E(3)-E(3)^2,2,2,0,0,1,1,-1,0,-E(3)^2,-E(3)],[105,9,15,3,
0,0,1,1,0,3,3,0,0,1,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,1,25,9,1,1,E(3)-3*E(3)^2,
-3*E(3)+E(3)^2,4,1,0,0,1,0,1,1,E(3)^2,E(3)],[105,-7,15,3,0,0,5,1,0,-1,-1,2,0,
-1,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,-1,5,-3,1,1,11*E(3)+3*E(3)^2,
3*E(3)+11*E(3)^2,2,-1,0,0,-1,0,1,1,-E(3)^2,-E(3)],[105,9,-12,12,0,0,1,1,0,0,0,
0,0,1,E(3)-E(3)^2,-E(3)+E(3)^2,0,-2,35,3,3,3,2*E(3)+6*E(3)^2,6*E(3)+2*E(3)^2,
-4,2,0,0,-1,0,0,0,-1,-1],[210,2,3,15,0,0,-2,-2,0,-1,-1,2,0,0,-E(3)-2*E(3)^2,
-2*E(3)-E(3)^2,0,1,50,-6,-2,2,5*E(3)+9*E(3)^2,9*E(3)+5*E(3)^2,2,-1,0,0,0,0,1,
-1,-E(3),-E(3)^2],[315,-5,-36,9,0,0,3,-1,0,4,1,-2,0,-1,0,0,0,0,45,-3,-3,1,0,0,
-6,-3,0,0,1,0,0,1,0,0],[336,16,-6,6,0,0,0,0,1,-2,-2,-2,0,0,-E(3)+E(3)^2,
E(3)-E(3)^2,0,0,64,0,0,0,-2*E(3)-6*E(3)^2,-6*E(3)-2*E(3)^2,-2,4,0,0,0,-1,0,0,
1,1],[720,16,-36,-18,0,0,0,0,0,4,-2,4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],[384,0,24,12,0,0,0,0,-1,0,0,0,-1,0,E(3)+2*E(3)^2,2*E(3)+E(3)^2,0,0,64,
0,0,0,-8*E(3),-8*E(3)^2,4,-2,0,0,0,-1,0,0,E(3),E(3)^2],[420,4,33,-6,0,0,4,0,0,
1,-2,-2,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,1,20,-12,-4,0,5*E(3)-3*E(3)^2,
-3*E(3)+5*E(3)^2,2,2,0,0,0,0,-1,0,-1,-1],[630,6,9,-9,0,0,2,-2,0,-3,3,0,0,0,0,
0,0,-1,30,6,2,2,3*E(3)-9*E(3)^2,-9*E(3)+3*E(3)^2,0,-3,0,0,0,0,-1,-1,0,0],[729,
9,0,0,0,0,-3,1,-1,0,0,0,1,-1,0,0,0,0,81,9,-3,-3,0,0,0,0,0,0,-1,1,0,0,0,0],[
756,-12,27,0,0,0,-4,0,1,3,0,0,0,0,0,0,0,-1,36,-12,4,0,9,9,0,0,0,0,0,1,1,0,0,
0],[945,-15,-27,0,0,0,1,1,0,-3,0,0,0,1,0,0,0,1,45,-3,5,-3,-9,-9,0,0,0,0,1,0,
-1,0,0,0]],"6_1.U4(3).2_2",[[6,-2,-3,3,0,0,2,0,1,1,1,-2,-1,0,E(3)-E(3)^2,
-E(3)+E(3)^2,0,-1,4,0,0,2,E(3)+3*E(3)^2,3*E(3)+E(3)^2,-2,1,0,0,0,-1,
E(3)-E(3)^2,-1,1,1],[84,4,-15,6,0,0,4,0,-1,1,-2,-2,0,0,-E(3)-2*E(3)^2,
-2*E(3)-E(3)^2,0,1,16,0,0,0,7*E(3)+9*E(3)^2,9*E(3)+7*E(3)^2,-2,-2,0,0,0,1,
E(3)-E(3)^2,0,E(3),E(3)^2],[120,-8,-6,15,0,0,0,0,0,-2,1,-2,1,0,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,0,0,40,0,0,4,-2*E(3)+6*E(3)^2,6*E(3)-2*E(3)^2,-2,1,0,0,0,0,0,1,
E(3)^2,E(3)],[126,-10,18,9,0,0,2,0,1,2,-1,2,0,0,0,0,0,2,36,0,0,2,0,0,6,3,0,0,
0,1,0,-1,0,0],[210,-6,-24,-3,0,0,6,0,0,0,3,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,
20,0,0,2,-4*E(3)-12*E(3)^2,-12*E(3)-4*E(3)^2,-4,-1,0,0,0,0,0,-1,-1,-1],[540,
12,54,0,0,0,4,0,0,6,0,0,1,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[336,16,
-6,6,0,0,0,0,1,-2,-2,-2,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,16,0,0,0,
-14*E(3)-6*E(3)^2,-6*E(3)-14*E(3)^2,-2,-2,0,0,0,1,0,0,1,1],[384,0,24,12,0,0,0,
0,-1,0,0,0,-1,0,E(3)+2*E(3)^2,2*E(3)+E(3)^2,0,0,64,0,0,0,-8*E(3),-8*E(3)^2,4,
-2,0,0,0,-1,0,0,E(3),E(3)^2],[420,-12,-21,12,0,0,-4,0,0,3,0,0,0,0,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,-1,80,0,0,0,5*E(3)+3*E(3)^2,3*E(3)+5*E(3)^2,
-4,2,0,0,0,0,-E(3)+E(3)^2,0,-E(3)^2,-E(3)],[630,-18,9,-9,0,0,2,0,0,-3,-3,0,0,
0,0,0,0,-1,60,0,0,-2,-3*E(3)-9*E(3)^2,-9*E(3)-3*E(3)^2,0,3,0,0,0,0,
E(3)-E(3)^2,1,0,0],[1260,-4,18,-18,0,0,-4,0,0,2,2,-4,0,0,0,0,0,2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],[840,8,12,6,0,0,0,0,0,-4,2,2,0,0,-E(3)-2*E(3)^2,
-2*E(3)-E(3)^2,0,0,80,0,0,0,8*E(3),8*E(3)^2,2,-4,0,0,0,0,0,0,-E(3),-E(3)^2],[
840,8,-42,-3,0,0,0,0,0,2,-1,2,0,0,2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,40,0,0,-4,
-2*E(3)+6*E(3)^2,6*E(3)-2*E(3)^2,-2,1,0,0,0,0,0,-1,E(3)^2,E(3)]],]);
ALF("U4(3).2_2","Fi22",[1,3,6,5,7,7,9,13,14,17,18,23,26,28,31,31,32,38,2,
4,9,10,16,16,19,15,24,22,27,34,38,41,56,55],[
"determined by the factorization through S3xU4(3).2_2,\n",
"with natural embedding into this group,\n",
"the fusion on the CAS table is wrong"
]);
ALF("U4(3).2_2","U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
15,16,17,32,33,34,35,36,36,37,38,39,40,41,42,43,44,45,45]);
ALF("U4(3).2_2","U4(3).D8",[1,2,3,4,4,5,6,7,8,9,10,10,11,12,13,13,13,14,
39,40,41,42,43,43,44,45,46,47,48,49,50,51,52,52],[
"fusion map is unique"
]);
ALF("U4(3).2_2","U6(2)",[1,3,6,5,7,7,10,14,15,19,20,22,24,26,29,30,31,40,
2,4,10,13,16,17,21,18,23,23,26,32,40,43,45,46],[
"fusion map is unique up to table automorphisms"
]);
ALN("U4(3).2_2",["f22u2","u4q3b"]);

MOT("U4(3).2_2'",
0,
0,
0,
0,
[(16,17)(23,24)(33,34)],
["ConstructPermuted",["U4(3).2_2"],
( 4, 5)(11,12)(15,16,17),( 5, 7)( 6, 8)(17,18,19,20,21)(22,24)(23,25)]);
ALF("U4(3).2_2'","U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
16,17,46,47,48,49,50,50,51,52,53,54,55,56,57,58,59,59]);

MOT("U4(3).2_3",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[6531840,2304,11664,972,162,192,32,10,144,36,7,16,27,27,24,1440,96,18,96,32,8,
10,12,24,24],
[,[1,1,3,4,5,2,2,8,3,4,11,6,14,13,9,1,2,5,6,6,7,8,9,15,15],[1,2,1,1,1,6,7,8,2,
2,11,12,3,3,6,16,17,16,19,20,21,22,17,19,19],,[1,2,3,4,5,6,7,1,9,10,11,12,14,
13,15,16,17,18,19,20,21,16,23,24,25],,[1,2,3,4,5,6,7,8,9,10,1,12,13,14,15,16,
17,18,19,20,21,22,23,24,25]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[21,5,-6,3,3,1,1,1,2,-1,0,-1,0,0,-2,1,-3,
1,3,-1,-1,1,0,0,0],
[TENSOR,[3,2]],[70,6,16,7,-2,6,-2,0,0,3,0,-2,1,1,0,0,0,0,0,0,0,0,0,0,0],[90,
10,9,9,0,-2,2,0,1,1,-1,0,0,0,1,0,4,0,2,-2,0,0,1,-1,-1],
[TENSOR,[6,2]],[140,12,5,-4,5,4,0,0,-3,0,0,0,-1,-1,1,10,2,1,2,2,0,0,-1,-1,-1],
[TENSOR,[8,2]],[189,-3,27,0,0,5,1,-1,3,0,0,1,0,0,-1,9,1,0,1,1,-1,-1,1,1,1],
[TENSOR,[10,2]],[210,2,21,3,3,-2,-2,0,5,-1,0,0,0,0,1,-10,2,-1,4,0,0,0,-1,1,1],
[TENSOR,[12,2]],[560,-16,20,11,2,0,0,0,-4,-1,0,0,E(3)-2*E(3)^2,-2*E(3)+E(3)^2,
0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[14,2]],[630,22,-18,9,0,-2,-2,0,-2,1,0,2,0,0,-2,0,0,0,0,0,0,0,0,0,0],[
420,4,-39,6,-3,4,0,0,1,-2,0,0,0,0,1,-10,-2,-1,2,2,0,0,1,-1,-1],
[TENSOR,[17,2]],[560,-16,-34,2,2,0,0,0,2,2,0,0,-1,-1,0,0,0,0,0,0,0,0,0,
E(24)+E(24)^11-E(24)^17-E(24)^19,-E(24)-E(24)^11+E(24)^17+E(24)^19],
[TENSOR,[19,2]],[1280,0,-16,-16,2,0,0,0,0,0,-1,0,2,2,0,0,0,0,0,0,0,0,0,0,0],[
729,9,0,0,0,-3,1,-1,0,0,1,-1,0,0,0,9,-3,0,3,-1,1,-1,0,0,0],
[TENSOR,[22,2]],[896,0,32,-4,-4,0,0,1,0,0,0,0,-1,-1,0,16,0,-2,0,0,0,1,0,0,0],
[TENSOR,[24,2]]],
[(24,25),(13,14)(24,25),(13,14)]);
ARC("U4(3).2_3","projectives",["2.U4(3).2_3",[[20,4,-7,2,2,4,0,0,1,-2,-1,0,-1,
-1,1,0,0,0,0,0,0,0,E(3)-E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2],[112,-16,4,13,4,0,0,
2,-4,-1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0],[70,-2,16,7,-2,2,0,0,4,1,0,0,1,1,2,0,0,
0,2*E(8)-2*E(8)^3,0,E(8)-E(8)^3,0,0,-E(8)+E(8)^3,-E(8)+E(8)^3],[140,-4,-22,5,
-4,4,0,0,2,-1,0,0,E(3)-2*E(3)^2,-2*E(3)+E(3)^2,-2,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[4,2]],[120,-8,12,-6,3,0,0,0,4,-2,1,0,0,0,0,0,0,3,0,0,0,0,0,0,0],[420,
20,42,6,6,4,0,0,2,2,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0],[1008,-16,36,9,0,0,0,-2,
-4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[540,12,-27,0,0,4,0,0,-3,0,1,0,0,0,1,0,0,
0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2],[560,-16,-34,2,2,0,0,0,2,2,0,
0,-1,-1,0,0,0,0,4*E(8)-4*E(8)^3,0,0,0,0,E(8)-E(8)^3,E(8)-E(8)^3],[630,14,-18,
9,0,-6,0,0,2,-1,0,0,0,0,0,0,0,0,2*E(8)-2*E(8)^3,0,-E(8)+E(8)^3,0,0,
-E(8)+E(8)^3,-E(8)+E(8)^3],[1280,0,-16,-16,2,0,0,0,0,0,-1,0,2,2,0,0,0,0,0,0,0,
0,0,0,0],[896,0,32,-4,-4,0,0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,0,E(5)-E(5)^2-E(5)^3
 +E(5)^4,0,0,0]],"3_2.U4(3).2_3",[[36,4,9,0,0,4,0,1,1,-2,1,0,0,0,1,6,-2,0,2,2,
0,1,1,-1,-1],[90,-6,-18,0,0,2,2,0,6,0,-1,-2,0,0,2,0,0,0,0,0,0,0,0,0,0],[126,
14,-9,0,0,2,2,1,-1,2,0,0,0,0,-1,6,2,0,4,0,0,1,-1,1,1],[189,-3,27,0,0,5,1,-1,3,
0,0,1,0,0,-1,9,1,0,1,1,-1,-1,1,1,1],[315,11,18,0,0,-1,-1,0,2,2,0,1,0,0,2,15,3,
0,-3,1,1,0,0,0,0],[630,-10,36,0,0,6,-2,0,-4,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,
0],[630,6,-45,0,0,2,-2,0,3,0,0,0,0,0,-1,0,4,0,2,-2,0,0,1,-1,-1],[720,16,18,0,
0,0,0,0,-2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,E(24)+E(24)^11-E(24)^17-E(24)^19,
-E(24)-E(24)^11+E(24)^17+E(24)^19],[729,9,0,0,0,-3,1,-1,0,0,1,-1,0,0,0,9,-3,0,
3,-1,1,-1,0,0,0],[756,-12,27,0,0,-4,0,1,3,0,0,0,0,0,-1,6,-2,0,-2,-2,0,1,1,1,
1],[945,-15,-27,0,0,1,1,0,-3,0,0,1,0,0,1,15,-1,0,-1,-1,-1,0,-1,-1,
-1]],"6_2.U4(3).2_3",[[90,2,-18,0,0,6,0,0,2,2,-1,0,0,0,0,0,0,0,
2*E(8)-2*E(8)^3,0,E(8)-E(8)^3,0,0,-E(8)+E(8)^3,-E(8)+E(8)^3],[252,-20,-18,0,0,
4,0,2,-2,-2,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0],[252,12,-18,0,0,-4,0,2,6,0,0,0,0,
0,2,0,0,0,0,0,0,0,0,0,0],[540,12,54,0,0,4,0,0,6,0,1,0,0,0,-2,0,0,0,0,0,0,0,0,
0,0],[504,-8,-36,0,0,0,0,-1,4,-2,0,0,0,0,0,0,0,0,0,0,0,E(5)-E(5)^2-E(5)^3
 +E(5)^4,0,0,0],[540,12,-27,0,0,4,0,0,-3,0,1,0,0,0,1,0,0,0,0,0,0,0,
E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2],[630,-18,36,0,0,2,0,0,0,0,0,0,0,0,2,0,0,
0,2*E(8)-2*E(8)^3,0,-E(8)+E(8)^3,0,0,-E(8)+E(8)^3,-E(8)+E(8)^3],[720,16,18,0,
0,0,0,0,-2,-2,-1,0,0,0,0,0,0,0,4*E(8)-4*E(8)^3,0,0,0,0,E(8)-E(8)^3,
E(8)-E(8)^3],[1260,-4,-9,0,0,-4,0,0,-1,2,0,0,0,0,-1,0,0,0,0,0,0,0,E(3)-E(3)^2,
E(3)-E(3)^2,-E(3)+E(3)^2]],]);
ARC("U4(3).2_3","maxes",["U4(3)","3^4:m10","L3(4).2_3","L3(4).2_1",
"3^(1+4):4S4","U3(3).2","2(A4xA4).4.2","M10x2","A6.2^2","U4(3).2_3M10",
"(4^2x2)S4"]);
ARC("U4(3).2_3","tomfusion",rec(name:="U4(3).2_3",map:=[1,2,4,6,5,10,12,13,18,
19,21,30,49,49,60,3,11,20,28,29,31,50,61,127,127],text:=[
"fusion map is unique"
]));
ALF("U4(3).2_3","U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,
27,28,29,30,31,32,33,34,35,35],[
"fusion map is unique up to table autom."
],"tom:1787");
ALF("U4(3).2_3","U4(3).D8",[1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,53,54,55,
56,57,58,59,60,61,61],[
"fusion map is unique"
]);
ALF("U4(3).2_3","McL.2",[1,2,3,4,4,5,5,7,8,9,10,11,12,12,16,20,21,22,23,24,24,
25,26,32,33],[
"fusion map is unique up to table automorphisms"
]);

MOT("U4(3).2_3'",
0,
0,
0,
0,
0,
["ConstructPermuted",["U4(3).2_3"],(),()]);
ALF("U4(3).2_3'","U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,
36,37,38,39,40,41,42,43,44,44],[
"fusion U4(3).2_3 -> U4(3).(2^2)_{133} mapped under U4(3).D8"
]);

MOT("U4(3).4",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"constructions: PGU(4,3)"
],
[13063680,4608,23328,1944,324,384,64,20,288,72,28,28,32,27,48,24192,2880,2304,
256,432,36,36,32,20,288,288,36,28,28,24192,24192,384,384,80,80,192,192,64,64,
432,432,48,48,36,36,20,20,24,24,28,28,28,28],
[,[1,1,3,4,5,2,2,8,3,4,11,12,6,14,9,1,1,2,2,3,4,5,6,8,9,9,10,11,12,16,16,16,
16,17,17,18,18,18,18,20,20,20,20,22,22,24,24,25,26,28,28,29,29],[1,2,1,1,1,6,
7,8,2,2,12,11,13,3,6,16,17,18,19,16,17,16,23,24,18,18,18,29,28,31,30,33,32,35,
34,37,36,39,38,31,30,33,32,31,30,47,46,37,36,53,52,51,50],,[1,2,3,4,5,6,7,1,9,
10,12,11,13,14,15,16,17,18,19,20,21,22,23,17,25,26,27,29,28,30,31,32,33,34,35,
36,37,38,39,40,41,42,43,44,45,34,35,48,49,52,53,50,51],,[1,2,3,4,5,6,7,8,9,10,
1,1,13,14,15,16,17,18,19,20,21,22,23,24,26,25,27,16,16,31,30,33,32,35,34,37,
36,39,38,41,40,43,42,45,44,47,46,49,48,31,30,31,30]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,E(4),-E(4),E(4),-E(4),E(4),-E(4),E(4),-E(4),E(4),
-E(4),E(4),-E(4),E(4),-E(4),E(4),-E(4),E(4),-E(4),E(4),-E(4),E(4),-E(4),E(4),
-E(4)],
[TENSOR,[2,2]],
[TENSOR,[2,3]],[21,5,-6,3,3,1,1,1,2,-1,0,0,-1,0,-2,-7,1,5,-3,2,1,-1,-1,1,2,2,
-1,0,0,7,7,-1,-1,-1,-1,-3,-3,1,1,-2,-2,2,2,1,1,-1,-1,0,0,0,0,0,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[70,6,16,7,-2,6,-2,0,0,3,0,0,-2,1,0,14,-10,-2,-2,-4,-1,2,-2,0,
4,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[9,2]],[90,10,9,9,0,-2,2,0,1,1,-1,-1,0,0,1,6,10,10,2,-3,1,0,0,0,1,1,1,
-1,-1,6,6,-2,-2,0,0,4,4,0,0,-3,-3,1,1,0,0,0,0,1,1,-1,-1,-1,-1],
[TENSOR,[11,2]],
[TENSOR,[11,3]],
[TENSOR,[11,4]],[140,12,5,-4,5,4,0,0,-3,0,0,0,0,-1,1,28,0,4,4,1,0,1,0,0,1,1,
-2,0,0,14,14,-2,-2,0,0,2,2,2,2,5,5,1,1,-1,-1,0,0,-1,-1,0,0,0,0],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[189,-3,27,0,0,5,1,-1,3,0,0,0,1,0,-1,21,9,-3,-3,3,0,0,1,-1,3,
3,0,0,0,21,21,5,5,-1,-1,1,1,1,1,3,3,-1,-1,0,0,-1,-1,1,1,0,0,0,0],
[TENSOR,[19,2]],
[TENSOR,[19,3]],
[TENSOR,[19,4]],[210,2,21,3,3,-2,-2,0,5,-1,0,0,0,0,1,14,-10,10,2,5,-1,-1,0,0,
1,1,1,0,0,28,28,4,4,0,0,2,2,-2,-2,1,1,1,1,1,1,0,0,-1,-1,0,0,0,0],
[TENSOR,[23,2]],
[TENSOR,[23,3]],
[TENSOR,[23,4]],[1120,-32,40,22,4,0,0,0,-8,-2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[630,22,-18,9,0,-2,-2,
0,-2,1,0,0,2,0,-2,-42,-10,14,-2,-6,-1,0,2,0,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[28,2]],[420,4,-39,6,-3,4,0,0,1,-2,0,0,0,0,1,28,0,12,-4,1,0,1,0,0,-3,
-3,0,0,0,14,14,-2,-2,0,0,-2,-2,-2,-2,5,5,1,1,-1,-1,0,0,1,1,0,0,0,0],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[560,-16,-34,2,2,0,0,0,2,2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,
-6*E(4),6*E(4),0,0,0,28+28*E(4),28-28*E(4),-4-4*E(4),-4+4*E(4),0,0,0,0,0,0,
1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),0,0,0,0,0,0,0,0],
[TENSOR,[34,2]],
[TENSOR,[34,3]],
[TENSOR,[34,4]],[640,0,-8,-8,1,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
E(7)^3+E(7)^5+E(7)^6,0,1,0,-32,0,0,0,4,0,1,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
E(7)^3+E(7)^5+E(7)^6,32,32,0,0,0,0,0,0,0,0,-4,-4,0,0,-1,-1,0,0,0,0,
-E(7)-E(7)^2-E(7)^4,-E(7)-E(7)^2-E(7)^4,-E(7)^3-E(7)^5-E(7)^6,
-E(7)^3-E(7)^5-E(7)^6],
[TENSOR,[38,2]],
[TENSOR,[38,3]],
[TENSOR,[38,4]],
[GALOIS,[38,3]],
[TENSOR,[42,2]],
[TENSOR,[42,3]],
[TENSOR,[42,4]],[729,9,0,0,0,-3,1,-1,0,0,1,1,-1,0,0,-27,9,9,1,0,0,0,-1,-1,0,0,
0,1,1,27,27,3,3,1,1,-3,-3,1,1,0,0,0,0,0,0,1,1,0,0,-1,-1,-1,-1],
[TENSOR,[46,2]],
[TENSOR,[46,3]],
[TENSOR,[46,4]],[896,0,32,-4,-4,0,0,1,0,0,0,0,0,-1,0,0,16,0,0,0,-2,0,0,1,0,0,
0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0],
[TENSOR,[50,2]],
[TENSOR,[50,3]],
[TENSOR,[50,4]]],
[(25,26)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)(44,45)(46,47)(48,49)
(50,51)(52,53),(11,12)(28,29)(50,52)(51,53)]);
ARC("U4(3).4","projectives",["4.U4(3).4",[[20,0,-7,2,2,2,0,0,-3,0,-1,-1,
-1-E(4),-1,-1,-6,0,2+2*E(4),0,3,0,0,-1-E(4),0,-1+2*E(4),2-E(4),-1-E(4),1,1,
-7+E(4),-7-E(4),-3+E(4),-3-E(4),0,0,2,2,0,0,2+E(4),2-E(4),E(4),-E(4),-1+E(4),
-1-E(4),0,0,-1,-1,E(4),-E(4),E(4),-E(4)],[120,0,12,-6,3,4,0,0,0,0,1,1,0,0,-2,
20,0,-4-4*E(4),0,2,0,-1,0,0,2+2*E(4),2+2*E(4),-1-E(4),-1,-1,14+6*E(4),
14-6*E(4),-2-2*E(4),-2+2*E(4),0,0,0,0,0,0,5-3*E(4),5+3*E(4),1+E(4),1-E(4),-1,
-1,0,0,0,0,-E(4),E(4),-E(4),E(4)],[140,0,5,-4,5,-2,0,0,-3,0,0,0,1+E(4),-1,1,
14,0,6+6*E(4),0,5,0,-1,1+E(4),0,-3,-3*E(4),0,0,0,21-7*E(4),21+7*E(4),1+E(4),
1-E(4),0,0,2,2,0,0,3+2*E(4),3-2*E(4),1-2*E(4),1+2*E(4),-E(4),E(4),0,0,-1,-1,0,
0,0,0],[896,0,32,-4,-4,0,0,-4,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[280,0,37,10,1,4,0,0,-3,0,0,0,0,
1,1,28,0,4+4*E(4),0,1,0,1,0,0,1+4*E(4),4+E(4),1+E(4),0,0,28,28,-4,-4,0,0,4,4,
0,0,1,1,-1,-1,1,1,0,0,1,1,0,0,0,0],[560,0,-34,2,2,8,0,0,6,0,0,0,0,-1,2,56,0,
8+8*E(4),0,2,0,2,0,0,2-4*E(4),-4+2*E(4),-1-E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],[420,0,-39,6,-3,2,0,0,-3,0,0,0,1+E(4),0,-1,-14,0,
2+2*E(4),0,-5,0,1,1+E(4),0,-1+2*E(4),2-E(4),-1-E(4),0,0,-7+21*E(4),-7-21*E(4),
-3+5*E(4),-3-5*E(4),0,0,-2,-2,0,0,2+3*E(4),2-3*E(4),-E(4),E(4),-1,-1,0,0,1,1,
0,0,0,0],[540,0,-27,0,0,-2,0,0,-3,0,1,1,-1-E(4),0,1,6,0,6+6*E(4),0,-3,0,0,
-1-E(4),0,-3,-3*E(4),0,-1,-1,21-27*E(4),21+27*E(4),1-3*E(4),1+3*E(4),0,0,-2,
-2,0,0,3,3,1,1,0,0,0,0,1,1,E(4),-E(4),E(4),-E(4)],[640,0,-8,-8,1,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,0,-32,0,0,0,4,0,1,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,32,32,0,0,0,0,0,0,0,0,-4,-4,0,0,-1,-1,
0,0,0,0,-E(7)-E(7)^2-E(7)^4,-E(7)-E(7)^2-E(7)^4,-E(7)^3-E(7)^5-E(7)^6,
-E(7)^3-E(7)^5-E(7)^6],
[GALOIS,[9,3]],[840,0,3,12,3,-4,0,0,3,0,0,0,0,0,-1,-28,0,12+12*E(4),0,-1,0,-1,
0,0,3,3*E(4),0,0,0,28,28,-4,-4,0,0,-4,-4,0,0,1,1,-1,-1,1,1,0,0,-1,-1,0,0,0,
0],[896,0,32,-4,-4,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,E(40)^13-E(40)^21
 -E(40)^29+E(40)^37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(80)^9-E(80)^37
 -E(80)^41+E(80)^53,-E(80)^3+E(80)^31+E(80)^67-E(80)^79,0,0,0,0,0,
0]],"2.U4(3).4",[[20,4,-7,2,2,4,0,0,1,-2,-1,-1,0,-1,1,-8,0,0,0,1,0,-2,0,0,-3,
3,0,-1,-1,-6,-6,2,2,0,0,2,2,-2,-2,3,3,-1,-1,0,0,0,0,-1,-1,1,1,1,1],[112,-16,4,
13,4,0,0,2,-4,-1,0,0,0,1,0,0,8*E(4),-16*E(4),0,0,-E(4),0,0,-2*E(4),-4*E(4),
-4*E(4),-E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[70,-2,16,
7,-2,2,0,0,4,1,0,0,0,1,2,0,10*E(4),-4*E(4),0,0,E(4),0,-2*E(4),0,2*E(4),2*E(4),
-E(4),0,0,7+7*E(4),7-7*E(4),3+3*E(4),3-3*E(4),0,0,1+E(4),1-E(4),-1-E(4),
-1+E(4),-2-2*E(4),-2+2*E(4),0,0,1+E(4),1-E(4),0,0,1+E(4),1-E(4),0,0,0,0],[280,
-8,-44,10,-8,8,0,0,4,-2,0,0,0,1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[120,-8,12,-6,3,0,0,0,4,-2,1,1,0,0,0,8,0,0,
0,8,0,-1,0,0,0,0,0,1,1,20,20,4,4,0,0,0,0,0,0,2,2,-2,-2,-1,-1,0,0,0,0,-1,-1,-1,
-1],[210,10,21,3,3,2,0,0,1,1,0,0,2*E(4),0,-1,28,10*E(4),4*E(4),0,1,E(4),1,0,0,
-3-2*E(4),3-2*E(4),E(4),0,0,21-7*E(4),21+7*E(4),1-3*E(4),1+3*E(4),0,0,3+E(4),
3-E(4),1-E(4),1+E(4),3+2*E(4),3-2*E(4),1,1,-E(4),E(4),0,0,E(4),-E(4),0,0,0,0],
[GALOIS,[6,3]],[1008,-16,36,9,0,0,0,-2,-4,-1,0,0,0,0,0,0,-8*E(4),-16*E(4),0,0,
E(4),0,0,2*E(4),-4*E(4),-4*E(4),-E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0],[540,12,-27,0,0,4,0,0,-3,0,1,1,0,0,1,-48,0,0,0,-3,0,0,0,0,-3,3,0,
1,1,6,6,-2,-2,0,0,2,2,-2,-2,-3,-3,1,1,0,0,0,0,-1,-1,-1,-1,-1,-1],[560,-16,-34,
2,2,0,0,0,2,2,0,0,0,-1,0,0,0,-16*E(4),0,0,0,0,0,0,2*E(4),2*E(4),2*E(4),0,0,
28+28*E(4),28-28*E(4),-4-4*E(4),-4+4*E(4),0,0,0,0,0,0,1+E(4),1-E(4),-1-E(4),
-1+E(4),1+E(4),1-E(4),0,0,0,0,0,0,0,0],[630,14,-18,9,0,-6,0,0,2,-1,0,0,0,0,0,
0,10*E(4),-4*E(4),0,0,E(4),0,2*E(4),0,2*E(4),2*E(4),-E(4),0,0,21+21*E(4),
21-21*E(4),1+E(4),1-E(4),0,0,-3-3*E(4),-3+3*E(4),-1-E(4),-1+E(4),3+3*E(4),
3-3*E(4),1+E(4),1-E(4),0,0,0,0,0,0,0,0,0,0],[640,0,-8,-8,1,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,0,-32,0,0,0,4,0,1,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,32,32,0,0,0,0,0,0,0,0,-4,-4,0,0,-1,-1,
0,0,0,0,-E(7)-E(7)^2-E(7)^4,-E(7)-E(7)^2-E(7)^4,-E(7)^3-E(7)^5-E(7)^6,
-E(7)^3-E(7)^5-E(7)^6],
[GALOIS,[12,3]],[896,0,32,-4,-4,0,0,1,0,0,0,0,0,-1,0,0,16*E(4),0,0,0,-2*E(4),
0,0,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(40)^13-E(40)^21-E(40)^29
 +E(40)^37,-E(40)^7-E(40)^23+E(40)^31+E(40)^39,0,0,0,0,0,0]],]);
ALF("U4(3).4","U4(3).D8",[1,2,3,4,5,6,7,8,9,10,11,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,24,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,
34,34,35,35,36,36,37,38,38,37],[
"fusion map is unique up to table autom.,\n",
"unique map that is compatible with Brauer tables"
]);

MOT("U4(3).D8",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"constructions: Aut(U4(3)), PGU(4,3) extended by transpose-inverse"
],
[26127360,9216,46656,3888,648,768,128,40,576,144,28,64,54,96,48384,5760,4608,
512,864,72,72,64,40,288,72,28,24192,384,80,192,64,432,48,36,20,24,28,28,
103680,2304,384,192,1296,432,216,144,36,32,20,48,24,18,2880,192,36,192,64,16,
20,24,24],
[,[1,1,3,4,5,2,2,8,3,4,11,6,13,9,1,1,2,2,3,4,5,6,8,9,10,11,15,15,16,17,17,19,
19,21,23,24,26,26,1,1,2,2,3,4,4,4,5,6,8,9,10,13,1,2,5,6,6,7,8,9,14],[1,2,1,1,
1,6,7,8,2,2,11,12,3,6,15,16,17,18,15,16,15,22,23,17,17,26,27,28,29,30,31,27,
28,27,35,30,37,38,39,40,41,42,39,39,39,40,40,48,49,41,42,43,53,54,53,56,57,58,
59,54,56],,[1,2,3,4,5,6,7,1,9,10,11,12,13,14,15,16,17,18,19,20,21,22,16,24,25,
26,27,28,29,30,31,32,33,34,29,36,38,37,39,40,41,42,43,44,45,46,47,48,39,50,51,
52,53,54,55,56,57,58,53,60,61],,[1,2,3,4,5,6,7,8,9,10,1,12,13,14,15,16,17,18,
19,20,21,22,23,24,25,15,27,28,29,30,31,32,33,34,35,36,27,27,39,40,41,42,43,44,
45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,1,1,1,1,1,1,1,1,1],
[TENSOR,[2,3]],[2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[21,
5,-6,3,3,1,1,1,2,-1,0,-1,0,-2,-7,1,5,-3,2,1,-1,-1,1,2,-1,0,7,-1,-1,-3,1,-2,2,
1,-1,0,0,0,9,1,-3,1,0,-3,3,1,1,-1,-1,0,1,0,1,-3,1,3,-1,-1,1,0,0],
[TENSOR,[6,2]],
[TENSOR,[6,3]],
[TENSOR,[6,4]],[42,10,-12,6,6,2,2,2,4,-2,0,-2,0,-4,14,-2,-10,6,-4,-2,2,2,-2,
-4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],[70,6,16,7,-2,6,-2,0,0,3,0,-2,1,0,14,-10,-2,-2,-4,-1,2,-2,0,4,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,10,-6,2,2,10,1,1,-3,0,-2,0,2,-1,1,0,0,0,0,0,0,0,0,0],[70,6,16,
7,-2,6,-2,0,0,3,0,-2,1,0,-14,10,2,2,4,1,-2,2,0,-4,-1,0,0,0,0,0,0,0,0,0,0,0,0,
0,20,4,-4,4,2,5,-1,1,-2,0,0,2,1,-1,0,0,0,0,0,0,0,0,0],
[TENSOR,[11,3]],
[TENSOR,[12,3]],[90,10,9,9,0,-2,2,0,1,1,-1,0,0,1,6,10,10,2,-3,1,0,0,0,1,1,-1,
6,-2,0,4,0,-3,1,0,0,1,-1,-1,30,6,2,2,3,3,3,3,0,0,0,-1,-1,0,0,4,0,2,-2,0,0,1,
-1],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[180,20,18,18,0,-4,4,0,2,2,-2,0,0,2,-12,-20,-20,-4,6,-2,0,0,0,
-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],[140,12,5,-4,5,4,0,0,-3,0,0,0,-1,1,28,0,4,4,1,0,1,0,0,1,-2,0,14,-2,0,2,2,5,
1,-1,0,-1,0,0,20,4,4,0,-7,2,2,-2,1,0,0,1,0,-1,10,2,1,2,2,0,0,-1,-1],
[TENSOR,[20,2]],
[TENSOR,[20,3]],
[TENSOR,[20,4]],[280,24,10,-8,10,8,0,0,-6,0,0,0,-2,2,-56,0,-8,-8,-2,0,-2,0,0,
-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],[189,-3,27,0,0,5,1,-1,3,0,0,1,0,-1,21,9,-3,-3,3,0,0,1,-1,3,0,0,21,5,-1,1,1,
3,-1,0,-1,1,0,0,9,9,1,-3,9,0,0,0,0,1,-1,1,0,0,9,1,0,1,1,-1,-1,1,1],
[TENSOR,[25,2]],
[TENSOR,[25,3]],
[TENSOR,[25,4]],[378,-6,54,0,0,10,2,-2,6,0,0,2,0,-2,-42,-18,6,6,-6,0,0,-2,2,
-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],[210,2,21,3,3,-2,-2,0,5,-1,0,0,0,1,14,-10,10,2,5,-1,-1,0,0,1,1,0,28,4,0,2,
-2,1,1,1,0,-1,0,0,30,-10,2,-2,3,3,3,-1,-1,0,0,-1,1,0,-10,2,-1,4,0,0,0,-1,1],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[420,4,42,6,6,-4,-4,0,10,-2,0,0,0,2,-28,20,-20,-4,-10,2,2,0,0,
-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],[1120,-32,40,22,4,0,0,0,-8,-2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,80,-16,0,0,8,2,-4,2,2,0,0,0,0,-1,0,0,0,0,0,0,0,0,0],
[TENSOR,[35,3]],[630,22,-18,9,0,-2,-2,0,-2,1,0,2,0,-2,-42,-10,14,-2,-6,-1,0,2,
0,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,90,-6,-6,2,0,-3,3,-3,0,2,0,0,-1,0,0,0,0,0,0,
0,0,0,0],[630,22,-18,9,0,-2,-2,0,-2,1,0,2,0,-2,42,10,-14,2,6,1,0,-2,0,-2,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,60,12,4,4,6,-3,-3,-3,0,0,0,-2,1,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[37,3]],
[TENSOR,[38,3]],[420,4,-39,6,-3,4,0,0,1,-2,0,0,0,1,28,0,12,-4,1,0,1,0,0,-3,0,
0,14,-2,0,-2,-2,5,1,-1,0,1,0,0,60,-4,4,0,-3,-6,0,2,-1,0,0,1,0,0,-10,-2,-1,2,2,
0,0,1,-1],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[840,8,-78,12,-6,8,0,0,2,-4,0,0,0,2,-56,0,-24,8,-2,0,-2,0,0,6,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[
1120,-32,-68,4,4,0,0,0,4,4,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,56,-8,0,0,0,2,-2,
2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[46,2]],[1280,0,-16,-16,2,0,0,0,0,0,-1,0,2,0,-64,0,0,0,8,0,2,0,0,0,0,
-1,64,0,0,0,0,-8,0,-2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[
1280,0,-16,-16,2,0,0,0,0,0,-1,0,2,0,64,0,0,0,-8,0,-2,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,0,E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,-E(28)^3+E(28)^11
 +E(28)^15-E(28)^19+E(28)^23-E(28)^27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],
[TENSOR,[48,2]],
[TENSOR,[49,2]],[729,9,0,0,0,-3,1,-1,0,0,1,-1,0,0,-27,9,9,1,0,0,0,-1,-1,0,0,1,
27,3,1,-3,1,0,0,0,1,0,-1,-1,81,9,-3,-3,0,0,0,0,0,-1,1,0,0,0,9,-3,0,3,-1,1,-1,
0,0],
[TENSOR,[52,2]],
[TENSOR,[52,3]],
[TENSOR,[52,4]],[1458,18,0,0,0,-6,2,-2,0,0,2,-2,0,0,54,-18,-18,-2,0,0,0,2,2,0,
0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[
896,0,32,-4,-4,0,0,1,0,0,0,0,-1,0,0,16,0,0,0,-2,0,0,1,0,0,0,0,0,4,0,0,0,0,0,
-1,0,0,0,64,0,0,0,-8,4,-2,0,0,0,-1,0,0,1,16,0,-2,0,0,0,1,0,0],
[TENSOR,[57,2]],
[TENSOR,[57,3]],
[TENSOR,[57,4]],[1792,0,64,-8,-8,0,0,2,0,0,0,0,-2,0,0,-32,0,0,0,4,0,0,-2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],
[(37,38)]);
ARC("U4(3).D8","CAS",[rec(name:="u4q3.d8",
permclasses:=(),
permchars:=(),
text:=[
"Maximal subgroup of sporadic Conway group c2.\n",
"Source: Atlas tables (autom.gp. of u4q3)\n",
"Test: 1.OR, JAMES, JAMES,n=3,\n",
"and restricted characters decompose properly"])]);
ALF("U4(3).D8","Co2",[1,3,5,6,6,9,11,15,16,20,22,27,29,35,2,4,9,8,17,21,
19,24,32,35,37,42,7,10,13,24,27,34,38,36,52,56,57,57,2,4,9,12,17,18,19,21,
21,27,31,35,41,50,4,11,21,24,27,28,32,40,56],[
"fusion map is unique, equal to that on the CAS table"
]);
ALN("U4(3).D8",["u4q3.d8"]);

MOT("(3^2x2).U4(3)",
[
"constructed using `CharacterTableOfCommonCentralExtension'"
],
[58786560,58786560,58786560,58786560,58786560,58786560,58786560,58786560,
58786560,58786560,58786560,58786560,58786560,58786560,58786560,58786560,
58786560,58786560,20736,20736,20736,20736,20736,20736,20736,20736,20736,20736,
20736,20736,20736,20736,20736,20736,20736,20736,104976,104976,104976,104976,
104976,104976,104976,104976,104976,104976,104976,104976,104976,104976,104976,
104976,104976,104976,5832,5832,5832,5832,5832,5832,5832,5832,5832,5832,5832,
5832,162,162,1728,1728,1728,1728,1728,1728,1728,1728,1728,1728,1728,1728,1728,
1728,1728,1728,1728,1728,144,144,144,144,144,144,144,144,144,90,90,90,90,90,90
,90,90,90,90,90,90,90,90,90,90,90,90,1296,1296,1296,1296,1296,1296,1296,1296,
1296,1296,1296,1296,1296,1296,1296,1296,1296,1296,648,648,648,648,648,648,648,
648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,
648,648,648,648,648,648,648,648,648,648,126,126,126,126,126,126,126,126,126,
126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,
126,126,126,126,126,126,126,126,144,144,144,144,144,144,144,144,144,144,144,
144,144,144,144,144,144,144,162,162,162,162,162,162,162,162,162,162,162,162,
162,162,162,162,162,162,162,162,162,162,162,162,216,216,216,216,216,216,216,
216,216,216,216,216,216,216,216,216,216,216],
[,[1,3,5,1,3,5,13,15,17,13,15,17,10,12,8,10,12,8,1,3,5,1,3,5,13,15,17,13,15,17
,10,12,8,10,12,8,37,39,41,37,39,41,49,51,53,49,51,53,46,48,44,46,48,44,55,57,
59,55,57,59,65,61,63,65,61,63,67,67,19,21,23,19,21,23,31,33,35,31,33,35,28,30,
26,28,30,26,22,24,20,34,36,32,25,27,29,96,98,100,96,98,100,108,110,112,108,110
,112,105,107,103,105,107,103,37,39,41,37,39,41,49,51,53,49,51,53,46,48,44,46,
48,44,55,57,59,55,57,59,55,57,59,55,57,59,55,57,59,55,57,59,63,65,61,63,65,61,
61,63,65,61,63,65,65,61,63,65,61,63,168,170,172,168,170,172,180,182,184,180,
182,184,177,179,175,177,179,175,186,188,190,186,188,190,198,200,202,198,200,
202,195,197,193,195,197,193,72,74,70,72,74,70,84,86,82,84,86,82,75,77,79,75,77
,79,228,230,232,228,230,232,222,224,226,222,224,226,244,240,242,244,240,242,
238,234,236,238,234,236,114,116,118,114,116,118,126,128,130,126,128,130,123,
125,121,123,125,121],[1,4,1,4,1,4,4,1,4,1,4,1,1,4,1,4,1,4,19,22,19,22,19,22,22
,19,22,19,22,19,19,22,19,22,19,22,1,4,1,4,1,4,4,1,4,1,4,1,1,4,1,4,1,4,1,4,1,4,
1,4,1,4,1,4,1,4,1,4,69,72,69,72,69,72,72,69,72,69,72,69,69,72,69,72,69,72,87,
87,87,87,87,87,87,87,87,96,99,96,99,96,99,99,96,99,96,99,96,96,99,96,99,96,99,
19,22,19,22,19,22,22,19,22,19,22,19,19,22,19,22,19,22,19,22,19,22,19,22,22,19,
22,19,22,19,19,22,19,22,19,22,19,22,19,22,19,22,22,19,22,19,22,19,19,22,19,22,
19,22,186,189,186,189,186,189,189,186,189,186,189,186,186,189,186,189,186,189,
168,171,168,171,168,171,171,168,171,168,171,168,168,171,168,171,168,171,207,
204,207,204,207,204,204,207,204,207,204,207,207,204,207,204,207,204,51,54,51,
54,51,54,44,47,44,47,44,47,49,52,49,52,49,52,46,43,46,43,46,43,69,72,69,72,69,
72,72,69,72,69,72,69,69,72,69,72,69,72],,[1,6,5,4,3,2,16,15,14,13,18,17,10,9,8
,7,12,11,19,24,23,22,21,20,34,33,32,31,36,35,28,27,26,25,30,29,37,42,41,40,39,
38,52,51,50,49,54,53,46,45,44,43,48,47,55,60,59,58,57,56,65,64,63,62,61,66,67,
68,69,74,73,72,71,70,84,83,82,81,86,85,78,77,76,75,80,79,87,89,88,93,95,94,90,
92,91,1,6,5,4,3,2,16,15,14,13,18,17,10,9,8,7,12,11,114,119,118,117,116,115,129
,128,127,126,131,130,123,122,121,120,125,124,132,137,136,135,134,133,147,146,
145,144,149,148,141,140,139,138,143,142,150,155,154,153,152,151,165,164,163,
162,167,166,159,158,157,156,161,160,186,191,190,189,188,187,201,200,199,198,
203,202,195,194,193,192,197,196,168,173,172,171,170,169,183,182,181,180,185,
184,177,176,175,174,179,178,204,209,208,207,206,205,219,218,217,216,221,220,
213,212,211,210,215,214,228,233,232,231,230,229,222,227,226,225,224,223,244,
243,242,241,240,245,238,237,236,235,234,239,246,251,250,249,248,247,261,260,
259,258,263,262,255,254,253,252,257,256],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41
,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67
,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93
,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114
,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,
134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,
153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,207,
208,209,204,205,206,213,214,215,210,211,212,219,220,221,216,217,218,222,223,
224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,
243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,
262,263]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[21,21,21,21,21,
21,21,21,21,21,21,21,21,21,21,21,21,21,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,3,3,3,3,3,3,3,3,3,3,3,3,3,3
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2],[35,
35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,3,3,3,3,3,3,3,3,3,3,3,3,3,3
,3,3,3,3,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,-1,-1,-1,-1,-1,-1,-1,
-1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[35,35,35,35,35,35,35,35,35,35,35,
35,35,35,35,35,35,35,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,8,8,8,8,8,8,8,8,8,8,8
,8,8,8,8,8,8,8,-1,-1,-1,-1,-1,-1,8,8,8,8,8,8,-1,-1,3,3,3,3,3,3,3,3,3,3,3,3,3,3
,3,3,3,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0],[90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9
,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
,-2,-2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1],[140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,
140,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5,5,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,5,5,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1],[189,189,189,189,189,189,189,189,189,189,189,189,189,189
,189,189,189,189,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,27,27,
27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[210,210,210,210,210,210,210,210,210,210,
210,210,210,210,210,210,210,210,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,21,21,21,
21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,3,3,3,3,3,3,3,3,3,3,3,3,3,3,-2,-2
,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[280,280,280,280,
280,280,280,280,280,280,280,280,280,280,280,280,280,280,-8,-8,-8,-8,-8,-8,-8,
-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2
,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
,-2,-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
2*E(3)-E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0],
[GALOIS,[9,2]],[280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,
280,280,280,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,10,10,10,10,10,10,1,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2*E(3)-E(3)^2,
2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[11,2]],[315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,
315,315,315,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,-9,-9,-9,-9,
-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,18,18,18,18,18,18,-9,-9,-9,-9,-9,-9,
0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1],[315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,
315,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,-9,-9,-9,-9,-9,-9,-9
,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,18,18,18,18,18,18,0,0,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]
,[420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,
-39,-39,-39,-39,-39,-39,-39,6,6,6,6,6,6,6,6,6,6,6,6,-3,-3,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1],[560,560,560,560,560,560,560,560,560,560,560,560,560,560,560,
560,560,560,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,
-16,-16,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,
-34,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[640,640,640,640,640
,640,640,640,640,640,640,640,640,640,640,640,640,640,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,
-8,-8,-8,-8,-8,-8,-8,-8,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],
[GALOIS,[17,3]],[729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,
729,729,729,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3
,-3,-3,-3,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0],[896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,
896,896,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0],[20,-20,20,-20,20,-20,-20,20,-20,20,-20,20,20,-20,20,-20,20,-20,4,-4
,4,-4,4,-4,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4,-7,7,-7,7,-7,7,7,-7,7,-7,7,-7,-7,7,-7
,7,-7,7,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,4,-4,
4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1
,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2
,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,
1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1],[56,-56,56,-56,56,-56,-56,56,-56,56,
-56,56,56,-56,56,-56,56,-56,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,2,-2,
2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,11,-11,11,-11,11,-11,2,-2,2,-2,2,-2,2,
-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,
-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,
-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,
-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-1,1,-1,1,-1,
1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[56,-56,56,-56,56,-56,
-56,56,-56,56,-56,56,56,-56,56,-56,56,-56,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,
-8,8,-8,8,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,11,-11,
11,-11,11,-11,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,
1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,
2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,
-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[70,-70,
70,-70,70,-70,-70,70,-70,70,-70,70,70,-70,70,-70,70,-70,-2,2,-2,2,-2,2,2,-2,2,
-2,2,-2,-2,2,-2,2,-2,2,16,-16,16,-16,16,-16,-16,16,-16,16,-16,16,16,-16,16,-16
,16,-16,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,
2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4
,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,
1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,2,-2,2,-2,2,-2,-2,2,-2,
2,-2,2,2,-2,2,-2,2,-2],[70,-70,70,-70,70,-70,-70,70,-70,70,-70,70,70,-70,70,
-70,70,-70,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-11,11,-11,11,-11,11,
11,-11,11,-11,11,-11,-11,11,-11,11,-11,11,7,-7,7,-7,7,-7,-2,2,-2,2,-2,2,-2,2,2
,-2,2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,
-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,
-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,1,-1,1,-1,1,-1,1,-1,
1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1],
[GALOIS,[25,2]],[70,-70,70,-70,70,-70,-70,70,-70,70,-70,70,70,-70,70,-70,70,
-70,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-11,11,-11,11,-11,11,11,-11,
11,-11,11,-11,-11,11,-11,11,-11,11,-2,2,-2,2,-2,2,7,-7,7,-7,7,-7,-2,2,2,-2,2,
-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2
,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,2*E(3)-E(3)^2,
-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,
-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,
E(3)-2*E(3)^2,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1],
[GALOIS,[27,2]],[120,-120,120,-120,120,-120,-120,120,-120,120,-120,120,120,
-120,120,-120,120,-120,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,12,-12,12,
-12,12,-12,-12,12,-12,12,-12,12,12,-12,12,-12,12,-12,-6,6,-6,6,-6,6,-6,6,-6,6,
-6,6,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4,-2,2,-2,2,
-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,
2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1
,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[210,-210,210,-210,
210,-210,-210,210,-210,210,-210,210,210,-210,210,-210,210,-210,10,-10,10,-10,
10,-10,-10,10,-10,10,-10,10,10,-10,10,-10,10,-10,21,-21,21,-21,21,-21,-21,21,
-21,21,-21,21,21,-21,21,-21,21,-21,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,2,-2,2,
-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1
,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(4),
-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),
2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1],
[GALOIS,[30,3]],[504,-504,504,-504,504,-504,-504,504,-504,504,-504,504,504,
-504,504,-504,504,-504,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,18,-18,18,
-18,18,-18,-18,18,-18,18,-18,18,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,-9,9
,-9,9,-9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1
,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2
,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,
1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[504,-504,504,-504,504,
-504,-504,504,-504,504,-504,504,504,-504,504,-504,504,-504,-8,8,-8,8,-8,8,8,-8
,8,-8,8,-8,-8,8,-8,8,-8,8,18,-18,18,-18,18,-18,-18,18,-18,18,-18,18,18,-18,18,
-18,18,-18,-9,9,-9,9,-9,9,18,-18,18,-18,18,-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-2,2,
-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,
-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0],[540,-540,540,-540,540,-540,-540,540,-540,540,-540,540,540,-540,
540,-540,540,-540,12,-12,12,-12,12,-12,-12,12,-12,12,-12,12,12,-12,12,-12,12,
-12,-27,27,-27,27,-27,27,27,-27,27,-27,27,-27,-27,27,-27,27,-27,27,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,-3,3,-3,3,3,-3,3,-3,3,-3,-3,3,-3,3,
-3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1
,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1],[560,-560,560,
-560,560,-560,-560,560,-560,560,-560,560,560,-560,560,-560,560,-560,-16,16,-16
,16,-16,16,16,-16,16,-16,16,-16,-16,16,-16,16,-16,16,-34,34,-34,34,-34,34,34,
-34,34,-34,34,-34,-34,34,-34,34,-34,34,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,
-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[630,-630,630,-630,630,-630,-630,630,-630,
630,-630,630,630,-630,630,-630,630,-630,14,-14,14,-14,14,-14,-14,14,-14,14,-14
,14,14,-14,14,-14,14,-14,-18,18,-18,18,-18,18,18,-18,18,-18,18,-18,-18,18,-18,
18,-18,18,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,0,0,-6,6,-6,6,-6,6,6,-6,6,-6,6,-6,-6,6
,-6,6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,
-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0],[640,-640,640,-640,640,-640,-640,640,-640,640,-640,640,640,-640,640,-640,
640,-640,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,
8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,-E(7)-E(7)^2-E(7)^4
,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4
,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[37,3]],[896,-896,896,-896,896,-896,-896,896,-896,896,-896,896,896,
-896,896,-896,896,-896,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,-32,32,-32,32,
-32,-32,32,-32,32,-32,32,32,-32,32,-32,32,-32,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4
,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,
-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0],[36,36,36,36,36,36,36*E(3),36*E(3),36*E(3),36*E(3),
36*E(3),36*E(3),36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,4,
4,4,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2
,4*E(3)^2,4*E(3)^2,4*E(3)^2,9,9,9,9,9,9,9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),
9*E(3),9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,4,4,4,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3)^2,
4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,
E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,
1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2
,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),
E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2],
[GALOIS,[40,2]],[45,45,45,45,45,45,45*E(3),45*E(3),45*E(3),45*E(3),45*E(3),
45*E(3),45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,-3,-3,-3,
-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-9,-9,-9,-9,-9,-9,-9*E(3),-9*E(3),
-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,
-9*E(3)^2,-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),
E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,-1,
-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,
1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2]
,
[GALOIS,[42,2]],
[GALOIS,[42,10]],
[GALOIS,[42,5]],[126,126,126,126,126,126,126*E(3),126*E(3),126*E(3),126*E(3),
126*E(3),126*E(3),126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,
126*E(3)^2,14,14,14,14,14,14,14*E(3),14*E(3),14*E(3),14*E(3),14*E(3),14*E(3),
14*E(3)^2,14*E(3)^2,14*E(3)^2,14*E(3)^2,14*E(3)^2,14*E(3)^2,-9,-9,-9,-9,-9,-9,
-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,
-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,1,1,1,
1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,2,2,2,2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[46,2]],[189,189,189,189,189,189,189*E(3),189*E(3),189*E(3),189*E(3),
189*E(3),189*E(3),189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,
189*E(3)^2,-3,-3,-3,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,27,27,27,27,27,27,
27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3)^2,27*E(3)^2,27*E(3)^2,
27*E(3)^2,27*E(3)^2,27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,5,5,5,5,5,5*E(3),
5*E(3),5*E(3),5*E(3),5*E(3),5*E(3),5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,
5*E(3)^2,5*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,
3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[48,2]],[315,315,315,315,315,315,315*E(3),315*E(3),315*E(3),315*E(3),
315*E(3),315*E(3),315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,11,11,11,11,11,11,11*E(3),11*E(3),11*E(3),11*E(3),11*E(3),11*E(3),
11*E(3)^2,11*E(3)^2,11*E(3)^2,11*E(3)^2,11*E(3)^2,11*E(3)^2,18,18,18,18,18,18,
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,2,2,2,2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),
E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2],
[GALOIS,[50,2]],[315,315,315,315,315,315,315*E(3),315*E(3),315*E(3),315*E(3),
315*E(3),315*E(3),315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,-5,-5,-5,-5,-5,-5,-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),
-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,18,18,18,18,18,18,
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2
,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,4,4,4,4,4,4,4*E(3),4*E(3),
4*E(3),4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,
4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[52,2]],[315,315,315,315,315,315,315*E(3),315*E(3),315*E(3),315*E(3),
315*E(3),315*E(3),315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,-5,-5,-5,-5,-5,-5,-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),
-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,18,18,18,18,18,18,
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,4,
4,4,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2
,4*E(3)^2,4*E(3)^2,4*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1
,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[54,2]],[630,630,630,630,630,630,630*E(3),630*E(3),630*E(3),630*E(3),
630*E(3),630*E(3),630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,
630*E(3)^2,6,6,6,6,6,6,6*E(3),6*E(3),6*E(3),6*E(3),6*E(3),6*E(3),6*E(3)^2,
6*E(3)^2,6*E(3)^2,6*E(3)^2,6*E(3)^2,6*E(3)^2,-45,-45,-45,-45,-45,-45,-45*E(3),
-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,
-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3)
,3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1
,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2],
[GALOIS,[56,2]],[720,720,720,720,720,720,720*E(3),720*E(3),720*E(3),720*E(3),
720*E(3),720*E(3),720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,
720*E(3)^2,16,16,16,16,16,16,16*E(3),16*E(3),16*E(3),16*E(3),16*E(3),16*E(3),
16*E(3)^2,16*E(3)^2,16*E(3)^2,16*E(3)^2,16*E(3)^2,16*E(3)^2,18,18,18,18,18,18,
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2
,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-1,-1,-1,
-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],
[GALOIS,[58,2]],[729,729,729,729,729,729,729*E(3),729*E(3),729*E(3),729*E(3),
729*E(3),729*E(3),729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,
729*E(3)^2,9,9,9,9,9,9,9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3)^2,
9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),
-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2
,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[60,2]],[756,756,756,756,756,756,756*E(3),756*E(3),756*E(3),756*E(3),
756*E(3),756*E(3),756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,
756*E(3)^2,-12,-12,-12,-12,-12,-12,-12*E(3),-12*E(3),-12*E(3),-12*E(3),
-12*E(3),-12*E(3),-12*E(3)^2,-12*E(3)^2,-12*E(3)^2,-12*E(3)^2,-12*E(3)^2,
-12*E(3)^2,27,27,27,27,27,27,27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),
27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-4,-4,-4,-4,-4,-4,-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),
-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2
,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3)
,-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[62,2]],[945,945,945,945,945,945,945*E(3),945*E(3),945*E(3),945*E(3),
945*E(3),945*E(3),945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,
945*E(3)^2,-15,-15,-15,-15,-15,-15,-15*E(3),-15*E(3),-15*E(3),-15*E(3),
-15*E(3),-15*E(3),-15*E(3)^2,-15*E(3)^2,-15*E(3)^2,-15*E(3)^2,-15*E(3)^2,
-15*E(3)^2,-27,-27,-27,-27,-27,-27,-27*E(3),-27*E(3),-27*E(3),-27*E(3),
-27*E(3),-27*E(3),-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,
-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),
E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,
E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3*E(3),
-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2],
[GALOIS,[64,2]],[90,-90,90,-90,90,-90,-90*E(3),90*E(3),-90*E(3),90*E(3),
-90*E(3),90*E(3),90*E(3)^2,-90*E(3)^2,90*E(3)^2,-90*E(3)^2,90*E(3)^2,
-90*E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,-18,18,-18,18,-18,18,
18*E(3),-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),-18*E(3)^2,18*E(3)^2,
-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-6,6,
-6,6,-6,-6*E(3),6*E(3),-6*E(3),6*E(3),-6*E(3),6*E(3),6*E(3)^2,-6*E(3)^2,
6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2,-2,2,-2,2,-2,
-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),
-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,-1,1,
-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[66,2]],[126,-126,126,-126,126,-126,-126*E(3),126*E(3),-126*E(3),
126*E(3),-126*E(3),126*E(3),126*E(3)^2,-126*E(3)^2,126*E(3)^2,-126*E(3)^2,
126*E(3)^2,-126*E(3)^2,-10,10,-10,10,-10,10,10*E(3),-10*E(3),10*E(3),-10*E(3),
10*E(3),-10*E(3),-10*E(3)^2,10*E(3)^2,-10*E(3)^2,10*E(3)^2,-10*E(3)^2,
10*E(3)^2,-9,9,-9,9,-9,9,9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),
-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,
-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2
,E(3)^2,-E(3)^2,E(3)^2,-4,4,-4,4,-4,4,4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),
-4*E(3),-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,2,-2,2,-2,2,
-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[68,2]],[126,-126,126,-126,126,-126,-126*E(3),126*E(3),-126*E(3),
126*E(3),-126*E(3),126*E(3),126*E(3)^2,-126*E(3)^2,126*E(3)^2,-126*E(3)^2,
126*E(3)^2,-126*E(3)^2,-10,10,-10,10,-10,10,10*E(3),-10*E(3),10*E(3),-10*E(3),
10*E(3),-10*E(3),-10*E(3)^2,10*E(3)^2,-10*E(3)^2,10*E(3)^2,-10*E(3)^2,
10*E(3)^2,-9,9,-9,9,-9,9,9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),
-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,
-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2
,E(3)^2,-E(3)^2,E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,-4,4,-4,4,-4,4
,4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),-4*E(3)^2,4*E(3)^2,-4*E(3)^2,
4*E(3)^2,-4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[70,2]],[126,-126,126,-126,126,-126,-126*E(3),126*E(3),-126*E(3),
126*E(3),-126*E(3),126*E(3),126*E(3)^2,-126*E(3)^2,126*E(3)^2,-126*E(3)^2,
126*E(3)^2,-126*E(3)^2,6,-6,6,-6,6,-6,-6*E(3),6*E(3),-6*E(3),6*E(3),-6*E(3),
6*E(3),6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,-9,9,-9,9,-9,9
,9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),-9*E(3)^2,9*E(3)^2,-9*E(3)^2,
9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,2,2*E(3),
-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),
-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,3,-3,3,-3,3,-3,-3*E(3)
,3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,
3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),-2*E(12)^7,2*E(12)^7,
-2*E(12)^7,2*E(12)^7,-2*E(12)^7,2*E(12)^7,2*E(12)^11,-2*E(12)^11,2*E(12)^11,
-2*E(12)^11,2*E(12)^11,-2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2],
[GALOIS,[72,5]],
[GALOIS,[72,7]],
[GALOIS,[72,11]],[270,-270,270,-270,270,-270,-270*E(3),270*E(3),-270*E(3),
270*E(3),-270*E(3),270*E(3),270*E(3)^2,-270*E(3)^2,270*E(3)^2,-270*E(3)^2,
270*E(3)^2,-270*E(3)^2,6,-6,6,-6,6,-6,-6*E(3),6*E(3),-6*E(3),6*E(3),-6*E(3),
6*E(3),6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,27,-27,27,-27,
27,-27,-27*E(3),27*E(3),-27*E(3),27*E(3),-27*E(3),27*E(3),27*E(3)^2,-27*E(3)^2
,27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,
-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,3,-3,3,-3,3,-3,-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),
3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(7)-E(7)^2-E(7)^4,
E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
-E(21)-E(21)^4-E(21)^16,E(21)+E(21)^4+E(21)^16,-E(21)-E(21)^4-E(21)^16,
E(21)+E(21)^4+E(21)^16,-E(21)-E(21)^4-E(21)^16,-E(21)^2-E(21)^8-E(21)^11,
E(21)^2+E(21)^8+E(21)^11,-E(21)^2-E(21)^8-E(21)^11,E(21)^2+E(21)^8+E(21)^11,
-E(21)^2-E(21)^8-E(21)^11,E(21)^2+E(21)^8+E(21)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,E(3),
-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[76,2]],
[GALOIS,[76,10]],
[GALOIS,[76,5]],[504,-504,504,-504,504,-504,-504*E(3),504*E(3),-504*E(3),
504*E(3),-504*E(3),504*E(3),504*E(3)^2,-504*E(3)^2,504*E(3)^2,-504*E(3)^2,
504*E(3)^2,-504*E(3)^2,-8,8,-8,8,-8,8,8*E(3),-8*E(3),8*E(3),-8*E(3),8*E(3),
-8*E(3),-8*E(3)^2,8*E(3)^2,-8*E(3)^2,8*E(3)^2,-8*E(3)^2,8*E(3)^2,-36,36,-36,36
,-36,36,36*E(3),-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),-36*E(3)^2,
36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,E(3),
-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,4,-4,
4,-4,4,-4,-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),4*E(3)^2,-4*E(3)^2,
4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),
-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),-2*E(3)^2
,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],
[GALOIS,[80,2]],[540,-540,540,-540,540,-540,-540*E(3),540*E(3),-540*E(3),
540*E(3),-540*E(3),540*E(3),540*E(3)^2,-540*E(3)^2,540*E(3)^2,-540*E(3)^2,
540*E(3)^2,-540*E(3)^2,12,-12,12,-12,12,-12,-12*E(3),12*E(3),-12*E(3),12*E(3),
-12*E(3),12*E(3),12*E(3)^2,-12*E(3)^2,12*E(3)^2,-12*E(3)^2,12*E(3)^2,
-12*E(3)^2,-27,27,-27,27,-27,27,27*E(3),-27*E(3),27*E(3),-27*E(3),27*E(3),
-27*E(3),-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),
4*E(3),4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,-3,3,-3,3,3*E(3),-3*E(3),3*E(3),
-3*E(3),3*E(3),-3*E(3),-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,
3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),
E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2],
[GALOIS,[82,2]],[630,-630,630,-630,630,-630,-630*E(3),630*E(3),-630*E(3),
630*E(3),-630*E(3),630*E(3),630*E(3)^2,-630*E(3)^2,630*E(3)^2,-630*E(3)^2,
630*E(3)^2,-630*E(3)^2,-18,18,-18,18,-18,18,18*E(3),-18*E(3),18*E(3),-18*E(3),
18*E(3),-18*E(3),-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,
18*E(3)^2,36,-36,36,-36,36,-36,-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),
36*E(3),36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,
-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2],
[GALOIS,[84,2]],[720,-720,720,-720,720,-720,-720*E(3),720*E(3),-720*E(3),
720*E(3),-720*E(3),720*E(3),720*E(3)^2,-720*E(3)^2,720*E(3)^2,-720*E(3)^2,
720*E(3)^2,-720*E(3)^2,16,-16,16,-16,16,-16,-16*E(3),16*E(3),-16*E(3),16*E(3),
-16*E(3),16*E(3),16*E(3)^2,-16*E(3)^2,16*E(3)^2,-16*E(3)^2,16*E(3)^2,
-16*E(3)^2,18,-18,18,-18,18,-18,-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),
18*E(3),18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2,2,
-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),
-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0],
[GALOIS,[86,2]],[1260,-1260,1260,-1260,1260,-1260,-1260*E(3),1260*E(3),
-1260*E(3),1260*E(3),-1260*E(3),1260*E(3),1260*E(3)^2,-1260*E(3)^2,1260*E(3)^2
,-1260*E(3)^2,1260*E(3)^2,-1260*E(3)^2,-4,4,-4,4,-4,4,4*E(3),-4*E(3),4*E(3),
-4*E(3),4*E(3),-4*E(3),-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,
4*E(3)^2,-9,9,-9,9,-9,9,9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),-9*E(3)^2
,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4
,4,-4,4,-4,4,4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),-4*E(3)^2,4*E(3)^2,
-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),
-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2,-2,2
,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),
E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[88,2]],[15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2
,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2
,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)
,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[90,2]],[21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,5,
5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3)
,5*E(3)^2,5,5*E(3),5*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,6,6*E(3),
6*E(3)^2,6,6*E(3),6*E(3)^2,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2*E(3)+E(3)^2
,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[92,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3)
,105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3
,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)
,E(3)^2,1,E(3),E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[94,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3)
,105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,
-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0
,0,0,0,0,0,0,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),
5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[96,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3)
,105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),
12*E(3)^2,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2],
[GALOIS,[98,2]],[210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3)
,210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),
210*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,0,0,0,0,0,0,0,0,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2],
[GALOIS,[100,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),
-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2
,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,
4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[102,2]],[336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),
16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,-6,
-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3)
,6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)
,E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[104,2]],[360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,
8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,-18,-18*E(3),-18*E(3)^2,
-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0],
[GALOIS,[106,2]],
[GALOIS,[106,10]],
[GALOIS,[106,5]],[384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,24*E(3),24*E(3)^2,
24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),
24*E(3)^2,24,24*E(3),24*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[110,2]],[420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,
4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,33,33*E(3),33*E(3)^2,33,
33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),
33*E(3)^2,33,33*E(3),33*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,0,0,0
,0,0,0,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2
,-2*E(3)-E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[112,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,
6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3)
,9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,0,0,0,0,0,0,0,0,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[114,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,
9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0],
[GALOIS,[116,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),
-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,0,0,0
,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[118,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,
-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,
-15*E(3),-15*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,
-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2],
[GALOIS,[120,2]],[15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6*E(3)^2,6,6*E(3),
6*E(3)^2,6,6*E(3),6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,0,0,0,0,0,0,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,
3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)
,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2
,1,E(3),E(3)^2,1,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3)
,E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[122,2]],[21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21*E(3)^2,21,
21*E(3),21*E(3)^2,21,21*E(3),21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,5,
5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3),
5*E(3)^2,5,5*E(3),5*E(3)^2,5,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,
6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),
E(3),E(3)^2,1,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2
,2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0
,0,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[124,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105*E(3)^2,
105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,105,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,
9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,15,0,0,0,0,0,0,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,1,
E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),
E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2
,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[126,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105*E(3)^2,
105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,105,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7*E(3)^2,-7,-7*E(3),
-7*E(3)^2,-7,-7*E(3),-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,0,0,0,0,0,0,3*E(3),3*E(3)^2,3,3*E(3)
,3*E(3)^2,3,0,0,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5*E(3)^2,5,5*E(3),5*E(3)^2
,5,5*E(3),5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)
,E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,
0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1],
[GALOIS,[128,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105*E(3)^2,
105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,105,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,
9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3),
-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,0,0,0,0,0,0,12*E(3),12*E(3)^2,12,
12*E(3),12*E(3)^2,12,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0
,0,0,0,0,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2],
[GALOIS,[130,2]],[210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210*E(3)^2,
210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3),210*E(3)^2,210,210*E(3),
210*E(3)^2,210,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,
2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2
,3,0,0,0,0,0,0,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,0,0,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,
-2*E(3),-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[132,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3)^2,
315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3),315*E(3)^2,315,315*E(3),
315*E(3)^2,315,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5*E(3)^2,-5,-5*E(3),
-5*E(3)^2,-5,-5*E(3),-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-36,-36*E(3),
-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,
-36*E(3),-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,0,0,0,0,0,0,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,
3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)
,4*E(3)^2,4,4*E(3),4*E(3)^2,4,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[134,2]],[336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336*E(3)^2,
336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3),336*E(3)^2,336,336*E(3),
336*E(3)^2,336,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16*E(3)^2,16,16*E(3),
16*E(3)^2,16,16*E(3),16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,-6,-6*E(3),
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),
-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,0,0,0,0,0,0,6*E(3),6*E(3)^2,6,6*E(3)
,6*E(3)^2,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,
-2,-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2
,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[136,2]],[360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360*E(3)^2,
360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3),360*E(3)^2,360,360*E(3),
360*E(3)^2,360,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8*E(3)^2,8,8*E(3),8*E(3)^2,
8,8*E(3),8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3)^2,-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3),
-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,0,0,0,0,0,0,-9*E(3),-9*E(3)^2,-9,
-9*E(3),-9*E(3)^2,-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20
,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0],
[GALOIS,[138,2]],
[GALOIS,[138,10]],
[GALOIS,[138,5]],[384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384*E(3)^2,
384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3),384*E(3)^2,384,384*E(3),
384*E(3)^2,384,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,24*E(3),24*E(3)^2,24,
24*E(3),24*E(3)^2,24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3),24*E(3)^2,
24,24*E(3),24*E(3)^2,24,0,0,0,0,0,0,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,12,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2
,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[142,2]],[420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420*E(3)^2,
420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3),420*E(3)^2,420,420*E(3),
420*E(3)^2,420,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3)^2,
4,4*E(3),4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,33,33*E(3),33*E(3)^2,33,33*E(3),
33*E(3)^2,33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3),33*E(3)^2,33,
33*E(3),33*E(3)^2,33,0,0,0,0,0,0,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,0,0
,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[144,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630*E(3)^2,
630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3),630*E(3)^2,630,630*E(3),
630*E(3)^2,630,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6*E(3)^2,6,6*E(3),6*E(3)^2,
6,6*E(3),6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2
,9,0,0,0,0,0,0,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,0,0,2,2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,
-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1],
[GALOIS,[146,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729*E(3)^2,
729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3),729*E(3)^2,729,729*E(3),
729*E(3)^2,729,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,
9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],
[GALOIS,[148,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756*E(3)^2,
756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3),756*E(3)^2,756,756*E(3),
756*E(3)^2,756,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,
-12,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27*E(3)^2,27,27*E(3),27*E(3)^2,
27,27*E(3),27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4
,-4*E(3),-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,3
,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1],
[GALOIS,[150,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945*E(3)^2,
945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3),945*E(3)^2,945,945*E(3),
945*E(3)^2,945,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15*E(3)^2,-15,
-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,
-15,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27*E(3)^2,-27,-27*E(3),
-27*E(3)^2,-27,-27*E(3),-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),
E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[152,2]],[36,36*E(3),36*E(3)^2,36,36*E(3),36*E(3)^2,36*E(3),36*E(3)^2
,36,36*E(3),36*E(3)^2,36,36*E(3)^2,36,36*E(3),36*E(3)^2,36,36*E(3),4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)^2,4,
4*E(3),4*E(3)^2,4,4*E(3),9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3),9*E(3)^2,9
,9*E(3),9*E(3)^2,9,9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),0,0,0,0,0,0,0,0,0,0,0,0
,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,1
,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3)],
[GALOIS,[154,2]],[45,45*E(3),45*E(3)^2,45,45*E(3),45*E(3)^2,45*E(3),45*E(3)^2
,45,45*E(3),45*E(3)^2,45,45*E(3)^2,45,45*E(3),45*E(3)^2,45,45*E(3),-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),
E(3)^2,1,E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3
,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20
,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3)^2,1,E(3),E(3)^2,1,E(3)],
[GALOIS,[156,2]],
[GALOIS,[156,10]],
[GALOIS,[156,5]],[126,126*E(3),126*E(3)^2,126,126*E(3),126*E(3)^2,126*E(3),
126*E(3)^2,126,126*E(3),126*E(3)^2,126,126*E(3)^2,126,126*E(3),126*E(3)^2,126,
126*E(3),14,14*E(3),14*E(3)^2,14,14*E(3),14*E(3)^2,14*E(3),14*E(3)^2,14,
14*E(3),14*E(3)^2,14,14*E(3)^2,14,14*E(3),14*E(3)^2,14,14*E(3),-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,
-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3)
,2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3)
,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,
1,E(3),-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[160,2]],[189,189*E(3),189*E(3)^2,189,189*E(3),189*E(3)^2,189*E(3),
189*E(3)^2,189,189*E(3),189*E(3)^2,189,189*E(3)^2,189,189*E(3),189*E(3)^2,189,
189*E(3),-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3)^2,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,
27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,5*E(3)
,5*E(3)^2,5,5*E(3),5*E(3)^2,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3)^2,5,
5*E(3),5*E(3)^2,5,5*E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[162,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),11,11*E(3),11*E(3)^2,11,11*E(3),11*E(3)^2,11*E(3),11*E(3)^2,11,
11*E(3),11*E(3)^2,11,11*E(3)^2,11,11*E(3),11*E(3)^2,11,11*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,
2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2
,2,2*E(3),2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)],
[GALOIS,[164,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5*E(3),-5*E(3)^2,-5,
-5*E(3),-5*E(3)^2,-5,-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3)
,-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),4,4*E(3),4*E(3)^2,4,
4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),4*E(3)^2
,4,4*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[166,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5*E(3),-5*E(3)^2,-5,
-5*E(3),-5*E(3)^2,-5,-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,
4,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[168,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630*E(3),
630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2
,6,6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),
-45*E(3)^2,-45*E(3),-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45,-45*E(3)^2,-45,
-45*E(3),-45*E(3)^2,-45,-45*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,
-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,
-1,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[170,2]],[720,720*E(3),720*E(3)^2,720,720*E(3),720*E(3)^2,720*E(3),
720*E(3)^2,720,720*E(3),720*E(3)^2,720,720*E(3)^2,720,720*E(3),720*E(3)^2,720,
720*E(3),16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16*E(3),16*E(3)^2,16,
16*E(3),16*E(3)^2,16,16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2
,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)
,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0],
[GALOIS,[172,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729*E(3),
729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2
,9,9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),1,
E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[174,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756*E(3),
756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12*E(3),-12*E(3)^2,
-12,-12*E(3),-12*E(3)^2,-12,-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),27
,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2
,27,27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,
-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,
-4,-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1
,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[176,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945*E(3),
945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15*E(3),-15*E(3)^2,
-15,-15*E(3),-15*E(3)^2,-15,-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),
-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,
1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3)],
[GALOIS,[178,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),
-840*E(3),840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8*E(3),8,
-8*E(3)^2,8*E(3),-8,8*E(3)^2,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),-8,12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),-12*E(3),12,-12*E(3)^2,12*E(3),-12,
12*E(3)^2,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,0,0,0,0,0,0,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
-4*E(3),4,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[180,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),-840,
840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),840,-840*E(3)^2,840*E(3),-840,
840*E(3)^2,-840*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8,8*E(3)^2,
-8*E(3),8,-8*E(3)^2,8*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2
,12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),6,-6*E(3)^2,6*E(3),-6,
6*E(3)^2,-6*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[182,2]],[84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,-84*E(3),-84*E(3),84,
-84*E(3)^2,84*E(3),-84,84*E(3)^2,84*E(3)^2,-84*E(3),84,-84*E(3)^2,84*E(3),-84,
4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,
15*E(3),15*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,-15*E(3)^2,15*E(3),-15,
15*E(3)^2,-15*E(3),15,0,0,0,0,0,0,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,0,0,4
,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,2*E(3)^2,-2*E(3)
,2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3)
,-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1],
[GALOIS,[184,2]],[384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),
-384*E(3),384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,384*E(3)^2,-384*E(3),384,
-384*E(3)^2,384*E(3),-384,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,-24*E(3)^2,
24*E(3),-24,24*E(3)^2,-24*E(3),-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,
24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,0,0,0,0,0,0,12*E(3)^2,-12*E(3),12
,-12*E(3)^2,12*E(3),-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3)
,-1,E(3)^2,-E(3),1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[186,2]],[84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,-84*E(3),-84,84*E(3)^2,
-84*E(3),84,-84*E(3)^2,84*E(3),84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,-84*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,
15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,-15*E(3),-15,15*E(3)^2,-15*E(3),15
,-15*E(3)^2,15*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),0,0,0,0,0,0,0,0,4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3)],
[GALOIS,[188,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),
-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),10*E(3)
,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,-10*E(3)^2,10*E(3),-10,10*E(3)^2,
-10*E(3),10,18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),-18*E(3),18,
-18*E(3)^2,18*E(3),-18,18*E(3)^2,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,
0,0,0,0,0,0,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,0,0,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2],
[GALOIS,[190,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),
-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),18*E(3)
,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,-18*E(3)^2,18*E(3),-18,18*E(3)^2,
-18*E(3),18,9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),-9*E(3),9,-9*E(3)^2,9*E(3),
-9,9*E(3)^2,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,0,0,0,0,0,0,-9*E(3)^2,
9*E(3),-9,9*E(3)^2,-9*E(3),9,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,-3*E(3)^2,3*E(3),-3,
3*E(3)^2,-3*E(3),3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,-3*E(3)^2,3*E(3),-3,
3*E(3)^2,-3*E(3),3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1],
[GALOIS,[192,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),
-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,9,
-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,0,0,0,0,0,0,-9*E(3)^2,9*E(3),-9,
9*E(3)^2,-9*E(3),9,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),
-2*E(12)^11,-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),
1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1],
[GALOIS,[194,5]],
[GALOIS,[194,7]],
[GALOIS,[194,11]],[420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),
-420*E(3),420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,420*E(3)^2,-420*E(3),420,
-420*E(3)^2,420*E(3),-420,-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),12*E(3)
,-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,-12*E(3)^2,12*E(3),-12,12*E(3)^2,
-12*E(3),12,-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,21*E(3),21*E(3),-21,21*E(3)^2
,-21*E(3),21,-21*E(3)^2,-21*E(3)^2,21*E(3),-21,21*E(3)^2,-21*E(3),21,0,0,0,0,0
,0,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,0,0,-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,-4*E(3)^2,4*E(3),-4,
4*E(3)^2,-4*E(3),4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1],
[GALOIS,[198,2]],[210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),
-210*E(3),210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,210*E(3)^2,-210*E(3),210,
-210*E(3)^2,210*E(3),-210,-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6*E(3),-6,
6*E(3)^2,-6*E(3),6,-6*E(3)^2,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-24,
24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),24*E(3),-24,24*E(3)^2,-24*E(3),24,
-24*E(3)^2,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,0,0,0,0,0,0,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),3,0,0,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),
-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2
,-3*E(3),-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,3*E(3)^2,-3*E(3),3,-3*E(3)^2,
3*E(3),-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2
,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[200,2]],[336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),
-336*E(3),336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,336*E(3)^2,-336*E(3),336,
-336*E(3)^2,336*E(3),-336,16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),
-16*E(3),16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,16*E(3)^2,-16*E(3),16,-16*E(3)^2,
16*E(3),-16,-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6*E(3),-6,6*E(3)^2,-6*E(3),
6,-6*E(3)^2,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,0,0,0,0,0,0,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2
,-E(3),1,-E(3)^2,E(3),-1,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[202,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),
-840*E(3),840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8*E(3),8,
-8*E(3)^2,8*E(3),-8,8*E(3)^2,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),-8,-42,
42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),42*E(3),-42,42*E(3)^2,-42*E(3),42,
-42*E(3)^2,-42*E(3)^2,42*E(3),-42,42*E(3)^2,-42*E(3),42,0,0,0,0,0,0,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[204,2]],[120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),
-120*E(3),120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,120*E(3)^2,-120*E(3),120,
-120*E(3)^2,120*E(3),-120,-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),8*E(3),-8,
8*E(3)^2,-8*E(3),8,-8*E(3)^2,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),8,-6,
6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,0,0,0,0,0,0,15*E(3)^2,-15*E(3),15,
-15*E(3)^2,15*E(3),-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,1,-E(3)^2,E(3),-1,E(3)^2
,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[206,2]],[270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),
-270*E(3),270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,270*E(3)^2,-270*E(3),270,
-270*E(3)^2,270*E(3),-270,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3),6,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),-27*E(3),27,-27*E(3)^2,27*E(3),-27,
27*E(3)^2,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,
E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,
-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,
E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1
,E(3)^2,-E(3),1],
[GALOIS,[208,2]],
[GALOIS,[208,10]],
[GALOIS,[208,5]],[6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3),6,-6*E(3)^2,
6*E(3),-6,6*E(3)^2,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,-2,2*E(3)^2,-2*E(3),
2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3*E(3),-3,3*E(3)^2,
-3*E(3),3,-3*E(3)^2,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,0,0,0,0,0,0,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-1,E(3)^2,-E(3),
1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1],
[GALOIS,[212,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),-126,
126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),126,-126*E(3)^2,126*E(3),-126,
126*E(3)^2,-126*E(3),-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),10,
-10*E(3)^2,10*E(3),-10,10*E(3)^2,-10*E(3),-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2
,10*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),-18,18*E(3)^2,-18*E(3),
18,-18*E(3)^2,18*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),9,-9*E(3)^2
,9*E(3),-9,9*E(3)^2,-9*E(3),0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2
,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3)],
[GALOIS,[214,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630,
630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),630,-630*E(3)^2,630*E(3),-630,
630*E(3)^2,-630*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),18,
-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2
,18*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),-3,
3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3)],
[GALOIS,[216,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630,
630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),630,-630*E(3)^2,630*E(3),-630,
630*E(3)^2,-630*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3)
,-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),9,-9*E(3)^2,9*E(3)
,-9,9*E(3)^2,-9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9,-9*E(3)^2,9*E(3)
,-9,9*E(3)^2,-9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),0,0,0,0,0,0,0,0,-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,2*E(4),-2*E(12)^11
,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3)],
[GALOIS,[218,5]],
[GALOIS,[218,7]],
[GALOIS,[218,11]],[420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),-420,
420*E(3)^2,-420*E(3),420,-420*E(3)^2,420*E(3),420,-420*E(3)^2,420*E(3),-420,
420*E(3)^2,-420*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2
,12*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,21*E(3),21,-21*E(3)^2,21*E(3),
-21,21*E(3)^2,-21*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,21*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),0,0,0,0,0,0,0,0,-4,4*E(3)^2,-4*E(3),
4,-4*E(3)^2,4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),
4,-4*E(3)^2,4*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3)],
[GALOIS,[222,2]],[210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),-210,
210*E(3)^2,-210*E(3),210,-210*E(3)^2,210*E(3),210,-210*E(3)^2,210*E(3),-210,
210*E(3)^2,-210*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3)
,-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-24,24*E(3)^2,
-24*E(3),24,-24*E(3)^2,24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),
-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,
3*E(3),0,0,0,0,0,0,0,0,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),
3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[224,2]],[336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),-336,
336*E(3)^2,-336*E(3),336,-336*E(3)^2,336*E(3),336,-336*E(3)^2,336*E(3),-336,
336*E(3)^2,-336*E(3),16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),-16,
16*E(3)^2,-16*E(3),16,-16*E(3)^2,16*E(3),16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,
-16*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2
,-6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2
,-6*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),
-1,E(3)^2,-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0],
[GALOIS,[226,2]],[120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),-120,
120*E(3)^2,-120*E(3),120,-120*E(3)^2,120*E(3),120,-120*E(3)^2,120*E(3),-120,
120*E(3)^2,-120*E(3),-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),8,-8*E(3)^2,8*E(3)
,-8,8*E(3)^2,-8*E(3),-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,-15*E(3),0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[228,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),-840,
840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),840,-840*E(3)^2,840*E(3),-840,
840*E(3)^2,-840*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8,8*E(3)^2,
-8*E(3),8,-8*E(3)^2,8*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-42,
42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),42,-42*E(3)^2,42*E(3),-42,42*E(3)^2,
-42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2
,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[230,2]],[6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,-6*E(3),
6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-2,2*E(3)^2,-2*E(3),
2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),
2,-2*E(3)^2,2*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),
-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),
-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0
,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1
,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1
,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3)],
[GALOIS,[232,2]],[384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),-384,
384*E(3)^2,-384*E(3),384,-384*E(3)^2,384*E(3),384,-384*E(3)^2,384*E(3),-384,
384*E(3)^2,-384*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,-24*E(3)^2,24*E(3)
,-24,24*E(3)^2,-24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),24,
-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,
-12*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3)
,1,-E(3)^2,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1
,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1
,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[234,2]],[270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),-270,
270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),270,-270*E(3)^2,270*E(3),-270,
270*E(3)^2,-270*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2
,27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),0,0,0,0,0,0,0,0,0,0,0,0,
0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,
-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,
E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,
E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,
-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,
-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,
E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3)
,1,-E(3)^2,E(3)],
[GALOIS,[236,2]],
[GALOIS,[236,10]],
[GALOIS,[236,5]],[270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),
-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,270*E(3),-270,270*E(3)^2,
-270*E(3),270,-270*E(3)^2,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),-27*E(3)^2,27*E(3),-27,27*E(3)^2,
-27*E(3),27,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),3,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,
-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,
E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2
,E(3),-1,E(3)^2],
[GALOIS,[240,2]],
[GALOIS,[240,10]],
[GALOIS,[240,5]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,126*E(3),-126,126*E(3)^2,
-126*E(3),126,-126*E(3)^2,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),
10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),-10,-10*E(3),10,-10*E(3)^2,10*E(3),
-10,10*E(3)^2,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),-9,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3)
,-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-4,4*E(3)^2,
-4*E(3),4,-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[244,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,126*E(3),-126,126*E(3)^2,
-126*E(3),126,-126*E(3)^2,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),
10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),-10,-10*E(3),10,-10*E(3)^2,10*E(3),
-10,10*E(3)^2,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),-9,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3)
,4,-4*E(3)^2,4*E(3),-4,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[246,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,630*E(3),-630,630*E(3)^2,
-630*E(3),630,-630*E(3)^2,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),
18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,-18*E(3),18,-18*E(3)^2,18*E(3),
-18,18*E(3)^2,36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),-36*E(3)^2,36*E(3),
-36,36*E(3)^2,-36*E(3),36,36*E(3),-36,36*E(3)^2,-36*E(3),36,-36*E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2],
[GALOIS,[248,2]],[90,-90*E(3)^2,90*E(3),-90,90*E(3)^2,-90*E(3),-90*E(3)^2,
90*E(3),-90,90*E(3)^2,-90*E(3),90,90*E(3),-90,90*E(3)^2,-90*E(3),90,-90*E(3)^2
,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,
18*E(3),18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,-18*E(3),18,-18*E(3)^2,
18*E(3),-18,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-6*E(3)^2,6*E(3),-6,
6*E(3)^2,-6*E(3),-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[250,2]],[720,-720*E(3)^2,720*E(3),-720,720*E(3)^2,-720*E(3),
-720*E(3)^2,720*E(3),-720,720*E(3)^2,-720*E(3),720,720*E(3),-720,720*E(3)^2,
-720*E(3),720,-720*E(3)^2,16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),
-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),16,16*E(3),-16,16*E(3)^2,-16*E(3),16
,-16*E(3)^2,18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),-18*E(3)^2,18*E(3),
-18,18*E(3)^2,-18*E(3),18,18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[252,2]],[504,-504*E(3)^2,504*E(3),-504,504*E(3)^2,-504*E(3),
-504*E(3)^2,504*E(3),-504,504*E(3)^2,-504*E(3),504,504*E(3),-504,504*E(3)^2,
-504*E(3),504,-504*E(3)^2,-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),8*E(3)^2,
-8*E(3),8,-8*E(3)^2,8*E(3),-8,-8*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-36,
36*E(3)^2,-36*E(3),36,-36*E(3)^2,36*E(3),36*E(3)^2,-36*E(3),36,-36*E(3)^2,
36*E(3),-36,-36*E(3),36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1
,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[254,2]],[1260,-1260*E(3)^2,1260*E(3),-1260,1260*E(3)^2,-1260*E(3),
-1260*E(3)^2,1260*E(3),-1260,1260*E(3)^2,-1260*E(3),1260,1260*E(3),-1260,
1260*E(3)^2,-1260*E(3),1260,-1260*E(3)^2,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,-4*E(3),4,-4*E(3)^2,4*E(3),-4,
4*E(3)^2,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,-9*E(3)^2,
9*E(3),-9,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,
-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[256,2]],[540,-540*E(3)^2,540*E(3),-540,540*E(3)^2,-540*E(3),
-540*E(3)^2,540*E(3),-540,540*E(3)^2,-540*E(3),540,540*E(3),-540,540*E(3)^2,
-540*E(3),540,-540*E(3)^2,12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,12*E(3),-12,12*E(3)^2,-12*E(3),12
,-12*E(3)^2,-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),27*E(3)^2,-27*E(3),27
,-27*E(3)^2,27*E(3),-27,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4*E(3)^2,4*E(3),-4,
4*E(3)^2,-4*E(3),4,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,-E(3)^2],
[GALOIS,[258,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,126*E(3),-126,126*E(3)^2,
-126*E(3),126,-126*E(3)^2,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,-9,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2
,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,3,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,3*E(3),-3,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,
2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,-2*E(4),-2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),
-1,E(3)^2,-E(3),1,-E(3)^2],
[GALOIS,[260,5]],
[GALOIS,[260,7]],
[GALOIS,[260,11]]],
[
(204,207)(205,208)(206,209)(210,213)(211,214)(212,215)(216,219)(217,220)
(218,221)
,
(168,186)(169,187)(170,188)(171,189)(172,190)(173,191)(174,192)(175,193)
(176,194)(177,195)(178,196)(179,197)(180,198)(181,199)(182,200)(183,201)
(184,202)(185,203)
,
(  7, 18)(  8, 13)(  9, 14)( 10, 15)( 11, 16)( 12, 17)( 25, 36)( 26, 31)
( 27, 32)( 28, 33)( 29, 34)( 30, 35)( 43, 54)( 44, 49)( 45, 50)( 46, 51)
( 47, 52)( 48, 53)( 55, 63)( 56, 64)( 57, 65)( 58, 66)( 59, 61)( 60, 62)
( 75, 86)( 76, 81)( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 90, 95)( 91, 93)
( 92, 94)(102,113)(103,108)(104,109)(105,110)(106,111)(107,112)(120,131)
(121,126)(122,127)(123,128)(124,129)(125,130)(132,150)(133,151)(134,152)
(135,153)(136,154)(137,155)(138,167)(139,162)(140,163)(141,164)(142,165)
(143,166)(144,157)(145,158)(146,159)(147,160)(148,161)(149,156)(174,185)
(175,180)(176,181)(177,182)(178,183)(179,184)(192,203)(193,198)(194,199)
(195,200)(196,201)(197,202)(210,221)(211,216)(212,217)(213,218)(214,219)
(215,220)(222,240)(223,241)(224,242)(225,243)(226,244)(227,245)(228,238)
(229,239)(230,234)(231,235)(232,236)(233,237)(252,263)(253,258)(254,259)
(255,260)(256,261)(257,262)
,
(  2,  6)(  3,  5)(  7, 11)(  8, 10)( 13, 15)( 16, 18)( 20, 24)( 21, 23)
( 25, 29)( 26, 28)( 31, 33)( 34, 36)( 38, 42)( 39, 41)( 43, 47)( 44, 46)
( 49, 51)( 52, 54)( 55, 63)( 56, 62)( 57, 61)( 58, 66)( 59, 65)( 60, 64)
( 70, 74)( 71, 73)( 75, 79)( 76, 78)( 81, 83)( 84, 86)( 88, 89)( 90, 91)
( 93, 95)( 97,101)( 98,100)(102,106)(103,105)(108,110)(111,113)(115,119)
(116,118)(120,124)(121,123)(126,128)(129,131)(132,150)(133,155)(134,154)
(135,153)(136,152)(137,151)(138,160)(139,159)(140,158)(141,157)(142,156)
(143,161)(144,164)(145,163)(146,162)(147,167)(148,166)(149,165)(169,173)
(170,172)(174,178)(175,177)(180,182)(183,185)(187,191)(188,190)(192,196)
(193,195)(198,200)(201,203)(205,209)(206,208)(210,214)(211,213)(216,218)
(219,221)(222,238)(223,237)(224,236)(225,235)(226,234)(227,239)(228,240)
(229,245)(230,244)(231,243)(232,242)(233,241)(247,251)(248,250)(252,256)
(253,255)(258,260)(261,263)
,
(  2,  9)(  3, 17)(  5, 12)(  6, 14)(  8, 15)( 11, 18)( 20, 27)( 21, 35)
( 23, 30)( 24, 32)( 26, 33)( 29, 36)( 38, 45)( 39, 53)( 41, 48)( 42, 50)
( 44, 51)( 47, 54)( 56, 60)( 57, 59)( 70, 77)( 71, 85)( 73, 80)( 74, 82)
( 76, 83)( 79, 86)( 88, 92)( 89, 94)( 91, 95)( 97,104)( 98,112)(100,107)
(101,109)(103,110)(106,113)(115,122)(116,130)(118,125)(119,127)(121,128)
(124,131)(133,140)(134,148)(136,143)(137,145)(139,146)(142,149)(151,158)
(152,166)(154,161)(155,163)(157,164)(160,167)(169,176)(170,184)(172,179)
(173,181)(175,182)(178,185)(187,194)(188,202)(190,197)(191,199)(193,200)
(196,203)(205,212)(206,220)(208,215)(209,217)(211,218)(214,221)(222,228)
(223,233)(224,232)(225,231)(226,230)(227,229)(247,254)(248,262)(250,257)
(251,259)(253,260)(256,263)
]);
ALF("(3^2x2).U4(3)","3_2.U4(3)",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,
4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,
10,10,10,10,11,11,11,11,11,11,12,12,13,13,13,13,13,13,14,14,14,14,14,14,
15,15,15,15,15,15,16,16,16,17,17,17,18,18,18,19,19,19,19,19,19,20,20,20,
20,20,20,21,21,21,21,21,21,22,22,22,22,22,22,23,23,23,23,23,23,24,24,24,
24,24,24,25,25,25,25,25,25,26,26,26,26,26,26,27,27,27,27,27,27,28,28,28,
28,28,28,29,29,29,29,29,29,30,30,30,30,30,30,31,31,31,31,31,31,32,32,32,
32,32,32,33,33,33,33,33,33,34,34,34,34,34,34,35,35,35,35,35,35,36,36,36,
36,36,36,37,37,37,37,37,37,38,38,38,38,38,38,39,39,39,39,39,39,40,40,40,
40,40,40,41,41,41,41,41,41,42,42,42,42,42,42,43,43,43,43,43,43,44,44,44,
44,44,44,45,45,45,45,45,45,46,46,46,46,46,46]);
ALF("(3^2x2).U4(3)","6_1.U4(3)",[1,2,3,4,5,6,6,1,2,3,4,5,5,6,1,2,3,4,7,8,
9,10,11,12,12,7,8,9,10,11,11,12,7,8,9,10,13,14,15,16,17,18,18,13,14,15,16,
17,17,18,13,14,15,16,25,26,25,26,25,26,23,24,19,20,21,22,27,28,29,30,31,
32,33,34,34,29,30,31,32,33,33,34,29,30,31,32,35,36,37,37,35,36,36,37,35,
38,39,40,41,42,43,43,38,39,40,41,42,42,43,38,39,40,41,44,45,46,47,48,49,
49,44,45,46,47,48,48,49,44,45,46,47,56,57,58,59,60,61,61,56,57,58,59,60,
60,61,56,57,58,59,50,51,52,53,54,55,55,50,51,52,53,54,54,55,50,51,52,53,
62,63,64,65,66,67,67,62,63,64,65,66,66,67,62,63,64,65,68,69,70,71,72,73,
73,68,69,70,71,72,72,73,68,69,70,71,74,75,76,77,78,79,79,74,75,76,77,78,
78,79,74,75,76,77,94,95,94,95,94,95,92,93,92,93,92,93,88,89,90,91,86,87,
80,81,82,83,84,85,96,97,98,99,100,101,101,96,97,98,99,100,100,101,96,97,
98,99]);
ALF("(3^2x2).U4(3)","6_2.U4(3)",[1,4,1,4,1,4,2,5,2,5,2,5,3,6,3,6,3,6,7,10,
7,10,7,10,8,11,8,11,8,11,9,12,9,12,9,12,13,16,13,16,13,16,14,17,14,17,14,
17,15,18,15,18,15,18,19,20,19,20,19,20,21,22,21,22,21,22,23,24,25,28,25,
28,25,28,26,29,26,29,26,29,27,30,27,30,27,30,31,31,31,32,32,32,33,33,33,
34,37,34,37,34,37,35,38,35,38,35,38,36,39,36,39,36,39,40,43,40,43,40,43,
41,44,41,44,41,44,42,45,42,45,42,45,46,49,46,49,46,49,47,50,47,50,47,50,
48,51,48,51,48,51,52,55,52,55,52,55,53,56,53,56,53,56,54,57,54,57,54,57,
58,61,58,61,58,61,59,62,59,62,59,62,60,63,60,63,60,63,64,67,64,67,64,67,
65,68,65,68,65,68,66,69,66,69,66,69,70,73,70,73,70,73,71,74,71,74,71,74,
72,75,72,75,72,75,76,77,76,77,76,77,78,79,78,79,78,79,80,81,80,81,80,81,
82,83,82,83,82,83,84,87,84,87,84,87,85,88,85,88,85,88,86,89,86,89,86,89]);
ALF("(3^2x2).U4(3)","3^2.U4(3)",[1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,8,9,10,
11,12,10,11,12,13,14,15,13,14,15,16,17,18,16,17,18,19,20,21,19,20,21,22,
23,24,22,23,24,25,26,27,25,26,27,28,29,30,28,29,30,31,32,33,31,32,33,34,
34,35,36,37,35,36,37,38,39,40,38,39,40,41,42,43,41,42,43,44,45,46,47,48,
49,50,51,52,53,54,55,53,54,55,56,57,58,56,57,58,59,60,61,59,60,61,62,63,
64,62,63,64,65,66,67,65,66,67,68,69,70,68,69,70,71,72,73,71,72,73,74,75,
76,74,75,76,77,78,79,77,78,79,80,81,82,80,81,82,83,84,85,83,84,85,86,87,
88,86,87,88,89,90,91,89,90,91,92,93,94,92,93,94,95,96,97,95,96,97,98,99,
100,98,99,100,101,102,103,101,102,103,104,105,106,104,105,106,107,108,109,
107,108,109,110,111,112,110,111,112,113,114,115,113,114,115,116,117,118,
116,117,118,119,120,121,119,120,121,122,123,124,122,123,124,125,126,127,
125,126,127,128,129,130,128,129,130,131,132,133,131,132,133,134,135,136,
134,135,136]);

MOT("(3^2x4).U4(3)",
[
"constructed using `CharacterTableOfCommonCentralExtension'"
],
[117573120,117573120,117573120,117573120,117573120,117573120,117573120,
117573120,117573120,117573120,117573120,117573120,117573120,117573120,
117573120,117573120,117573120,117573120,117573120,117573120,117573120,
117573120,117573120,117573120,117573120,117573120,117573120,117573120,
117573120,117573120,117573120,117573120,117573120,117573120,117573120,
117573120,20736,20736,20736,20736,20736,20736,20736,20736,20736,20736,20736,
20736,20736,20736,20736,20736,20736,20736,209952,209952,209952,209952,209952,
209952,209952,209952,209952,209952,209952,209952,209952,209952,209952,209952,
209952,209952,209952,209952,209952,209952,209952,209952,209952,209952,209952,
209952,209952,209952,209952,209952,209952,209952,209952,209952,11664,11664,
11664,11664,11664,11664,11664,11664,11664,11664,11664,11664,11664,11664,11664,
11664,11664,11664,11664,11664,11664,11664,11664,11664,324,324,324,324,3456,
3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,
3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,
3456,3456,3456,3456,3456,144,144,144,144,144,144,144,144,144,180,180,180,180,
180,180,180,180,180,180,180,180,180,180,180,180,180,180,180,180,180,180,180,
180,180,180,180,180,180,180,180,180,180,180,180,180,2592,2592,2592,2592,2592,
2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,
2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,
2592,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,
648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,252,
252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,
252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,
252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,
252,252,252,252,252,252,252,252,252,252,252,252,252,252,288,288,288,288,288,
288,288,288,288,288,288,288,288,288,288,288,288,288,288,288,288,288,288,288,
288,288,288,288,288,288,288,288,288,288,288,288,324,324,324,324,324,324,324,
324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,
324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,
324,324,324,432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,
432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,
432],
[,[1,3,5,7,9,11,1,3,5,7,9,11,25,27,29,31,33,35,25,27,29,31,33,35,22,24,14,16,
18,20,22,24,14,16,18,20,1,3,5,7,9,11,25,27,29,31,33,35,22,24,14,16,18,20,55,57
,59,61,63,65,55,57,59,61,63,65,79,81,83,85,87,89,79,81,83,85,87,89,76,78,68,70
,72,74,76,78,68,70,72,74,91,93,95,97,99,101,91,93,95,97,99,101,107,109,111,113
,103,105,107,109,111,113,103,105,115,117,115,117,37,39,41,37,39,41,37,39,41,37
,39,41,49,51,53,49,51,53,49,51,53,49,51,53,46,48,44,46,48,44,46,48,44,46,48,44
,40,42,38,52,54,50,43,45,47,164,166,168,170,172,174,164,166,168,170,172,174,
188,190,192,194,196,198,188,190,192,194,196,198,185,187,177,179,181,183,185,
187,177,179,181,183,55,57,59,61,63,65,55,57,59,61,63,65,79,81,83,85,87,89,79,
81,83,85,87,89,76,78,68,70,72,74,76,78,68,70,72,74,91,93,95,97,99,101,97,99,
101,91,93,95,91,93,95,97,99,101,111,113,103,105,107,109,109,111,113,103,105,
107,107,109,111,113,103,105,272,274,276,278,280,282,272,274,276,278,280,282,
296,298,300,302,304,306,296,298,300,302,304,306,293,295,285,287,289,291,293,
295,285,287,289,291,308,310,312,314,316,318,308,310,312,314,316,318,332,334,
336,338,340,342,332,334,336,338,340,342,329,331,321,323,325,327,329,331,321,
323,325,327,122,124,126,128,130,120,122,124,126,128,130,120,146,148,150,152,
154,144,146,148,150,152,154,144,131,133,135,137,139,141,131,133,135,137,139,
141,392,394,396,398,400,402,392,394,396,398,400,402,380,382,384,386,388,390,
380,382,384,386,388,390,420,422,424,426,416,418,420,422,424,426,416,418,408,
410,412,414,404,406,408,410,412,414,404,406,200,202,204,206,208,210,200,202,
204,206,208,210,224,226,228,230,232,234,224,226,228,230,232,234,221,223,213,
215,217,219,221,223,213,215,217,219],[1,4,7,10,1,4,7,10,1,4,7,10,10,1,4,7,10,1
,4,7,10,1,4,7,7,10,1,4,7,10,1,4,7,10,1,4,37,40,37,40,37,40,40,37,40,37,40,37,
37,40,37,40,37,40,1,4,7,10,1,4,7,10,1,4,7,10,10,1,4,7,10,1,4,7,10,1,4,7,7,10,1
,4,7,10,1,4,7,10,1,4,1,10,7,4,1,10,7,4,1,10,7,4,1,10,7,4,1,10,7,4,1,10,7,4,1,
10,7,4,119,122,125,128,119,122,125,128,119,122,125,128,128,119,122,125,128,119
,122,125,128,119,122,125,125,128,119,122,125,128,119,122,125,128,119,122,155,
155,155,155,155,155,155,155,155,164,167,170,173,164,167,170,173,164,167,170,
173,173,164,167,170,173,164,167,170,173,164,167,170,170,173,164,167,170,173,
164,167,170,173,164,167,37,40,37,40,37,40,37,40,37,40,37,40,40,37,40,37,40,37,
40,37,40,37,40,37,37,40,37,40,37,40,37,40,37,40,37,40,37,40,37,40,37,40,40,37,
40,37,40,37,37,40,37,40,37,40,37,40,37,40,37,40,40,37,40,37,40,37,37,40,37,40,
37,40,308,311,314,317,308,311,314,317,308,311,314,317,317,308,311,314,317,308,
311,314,317,308,311,314,314,317,308,311,314,317,308,311,314,317,308,311,272,
275,278,281,272,275,278,281,272,275,278,281,281,272,275,278,281,272,275,278,
281,272,275,278,278,281,272,275,278,281,272,275,278,281,272,275,353,344,347,
350,353,344,347,350,353,344,347,350,350,353,344,347,350,353,344,347,350,353,
344,347,347,350,353,344,347,350,353,344,347,350,353,344,81,90,87,84,81,90,87,
84,81,90,87,84,68,77,74,71,68,77,74,71,68,77,74,71,85,82,79,88,85,82,79,88,85,
82,79,88,76,73,70,67,76,73,70,67,76,73,70,67,119,122,125,128,119,122,125,128,
119,122,125,128,128,119,122,125,128,119,122,125,128,119,122,125,125,128,119,
122,125,128,119,122,125,128,119,122],,[1,6,11,4,9,2,7,12,5,10,3,8,34,27,32,25,
30,35,28,33,26,31,36,29,16,21,14,19,24,17,22,15,20,13,18,23,37,42,41,40,39,38,
52,51,50,49,54,53,46,45,44,43,48,47,55,60,65,58,63,56,61,66,59,64,57,62,88,81,
86,79,84,89,82,87,80,85,90,83,70,75,68,73,78,71,76,69,74,67,72,77,91,96,101,94
,99,92,97,102,95,100,93,98,107,112,105,110,103,108,113,106,111,104,109,114,115
,116,117,118,119,124,129,122,127,120,125,130,123,128,121,126,152,145,150,143,
148,153,146,151,144,149,154,147,134,139,132,137,142,135,140,133,138,131,136,
141,155,157,156,161,163,162,158,160,159,1,6,11,4,9,2,7,12,5,10,3,8,34,27,32,25
,30,35,28,33,26,31,36,29,16,21,14,19,24,17,22,15,20,13,18,23,200,205,210,203,
208,201,206,211,204,209,202,207,233,226,231,224,229,234,227,232,225,230,235,
228,215,220,213,218,223,216,221,214,219,212,217,222,236,241,240,239,238,237,
251,250,249,248,253,252,245,244,243,242,247,246,254,259,258,257,256,255,269,
268,267,266,271,270,263,262,261,260,265,264,308,313,318,311,316,309,314,319,
312,317,310,315,341,334,339,332,337,342,335,340,333,338,343,336,323,328,321,
326,331,324,329,322,327,320,325,330,272,277,282,275,280,273,278,283,276,281,
274,279,305,298,303,296,301,306,299,304,297,302,307,300,287,292,285,290,295,
288,293,286,291,284,289,294,344,349,354,347,352,345,350,355,348,353,346,351,
377,370,375,368,373,378,371,376,369,374,379,372,359,364,357,362,367,360,365,
358,363,356,361,366,392,397,402,395,400,393,398,403,396,401,394,399,380,385,
390,383,388,381,386,391,384,389,382,387,420,425,418,423,416,421,426,419,424,
417,422,427,408,413,406,411,404,409,414,407,412,405,410,415,428,433,438,431,
436,429,434,439,432,437,430,435,461,454,459,452,457,462,455,460,453,458,463,
456,443,448,441,446,451,444,449,442,447,440,445,450],,[1,8,3,10,5,12,7,2,9,4,
11,6,19,14,21,16,23,18,13,20,15,22,17,24,25,32,27,34,29,36,31,26,33,28,35,30,
37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,62,57,64,59,66,61,56,
63,58,65,60,73,68,75,70,77,72,67,74,69,76,71,78,79,86,81,88,83,90,85,80,87,82,
89,84,91,98,93,100,95,102,97,92,99,94,101,96,103,110,105,112,107,114,109,104,
111,106,113,108,115,118,117,116,119,126,121,128,123,130,125,120,127,122,129,
124,137,132,139,134,141,136,131,138,133,140,135,142,143,150,145,152,147,154,
149,144,151,146,153,148,155,156,157,158,159,160,161,162,163,164,171,166,173,
168,175,170,165,172,167,174,169,182,177,184,179,186,181,176,183,178,185,180,
187,188,195,190,197,192,199,194,189,196,191,198,193,200,207,202,209,204,211,
206,201,208,203,210,205,218,213,220,215,222,217,212,219,214,221,216,223,224,
231,226,233,228,235,230,225,232,227,234,229,236,237,238,239,240,241,242,243,
244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,
263,264,265,266,267,268,269,270,271,1,8,3,10,5,12,7,2,9,4,11,6,19,14,21,16,23,
18,13,20,15,22,17,24,25,32,27,34,29,36,31,26,33,28,35,30,1,8,3,10,5,12,7,2,9,4
,11,6,19,14,21,16,23,18,13,20,15,22,17,24,25,32,27,34,29,36,31,26,33,28,35,30,
353,348,355,350,345,352,347,354,349,344,351,346,359,366,361,356,363,358,365,
360,367,362,357,364,377,372,379,374,369,376,371,378,373,368,375,370,380,387,
382,389,384,391,386,381,388,383,390,385,392,399,394,401,396,403,398,393,400,
395,402,397,404,411,406,413,408,415,410,405,412,407,414,409,416,423,418,425,
420,427,422,417,424,419,426,421,428,435,430,437,432,439,434,429,436,431,438,
433,446,441,448,443,450,445,440,447,442,449,444,451,452,459,454,461,456,463,
458,453,460,455,462,457]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[21,21,
21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,
21,21,21,21,21,21,21,21,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2],[35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,
35,35,35,35,35,35,35,35,35,35,35,35,35,35,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,-1,-1,-1,-1,-1,-1,
-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[35,35,35,35,35,35,35,35,35,35,
35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,8,8,8,8,8,8,
8,8,8,8,8,8,-1,-1,-1,-1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0],[90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,
90,90,90,90,90,90,90,90,90,90,90,90,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,0,0,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1],[140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,
140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,12,12,
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,5,5,5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[189,189,189,189,189,189,189,189,189,
189,189,189,189,189,189,189,189,189,189,189,189,189,189,189,189,189,189,189,
189,189,189,189,189,189,189,189,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,
27,27,27,27,27,27,27,27,27,27,27,27,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
,5,5,5,5,5,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]
,[210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,
210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,
21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,3,3,3,3,3,3,3,3,3,3,3
,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
,5,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1],[280,280,280,280,280,280,280,280,280,280,280,280,
280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,
280,280,280,280,280,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[9,2]],[280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,
280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,
280,280,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,1,1,1,1,1,1,1,1,1,1,1,1,10,10,10,10,10,10,10,10,10,10,10,10,1,1
,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
2*E(3)-E(3)^2,2*E(3)-E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[11,2]],[315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,
315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,
315,315,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,-9,-9,-9,-9,-9,
-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,
-9,-9,-9,-9,-9,18,18,18,18,18,18,18,18,18,18,18,18,-9,-9,-9,-9,-9,-9,-9,-9,-9,
-9,-9,-9,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[315,315,315,
315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,
315,315,315,315,315,315,315,315,315,315,315,315,315,315,11,11,11,11,11,11,11,
11,11,11,11,11,11,11,11,11,11,11,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,
-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,
-9,-9,-9,-9,-9,-9,-9,18,18,18,18,18,18,18,18,18,18,18,18,0,0,0,0,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[420,420,420,420,420,420,420,420,420,420,420
,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,
420,420,420,420,420,420,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,-39,-39,-39,-39,
-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,
-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,-3,-3,-3,-3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[560,560,560,560,
560,560,560,560,560,560,560,560,560,560,560,560,560,560,560,560,560,560,560,
560,560,560,560,560,560,560,560,560,560,560,560,560,-16,-16,-16,-16,-16,-16,
-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-34,-34,-34,-34,-34,-34,-34,
-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,
-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[640,640,640,640,640,
640,640,640,640,640,640,640,640,640,640,640,640,640,640,640,640,640,640,640,
640,640,640,640,640,640,640,640,640,640,640,640,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,
-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,
-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[17,3]],[729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,
729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,
729,729,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3
,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[896,896,896,896,896,896,896,896,896,896,
896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,
896,896,896,896,896,896,896,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,32,32,32,32
,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32
,32,32,32,32,32,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4
,-4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[20,-20,20,-20,20,
-20,20,-20,20,-20,20,-20,-20,20,-20,20,-20,20,-20,20,-20,20,-20,20,20,-20,20,
-20,20,-20,20,-20,20,-20,20,-20,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4,
-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,-7,7,-7,7,-7,7,-7,
7,-7,7,-7,7,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2
,-2,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4
,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,
2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1
,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,
1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1],[56,-56,56,-56,56,-56,56,-56,
56,-56,56,-56,-56,56,-56,56,-56,56,-56,56,-56,56,-56,56,56,-56,56,-56,56,-56,
56,-56,56,-56,56,-56,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,2,-2,2,-2,2,
-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,
11,-11,11,-11,11,-11,11,-11,11,-11,11,-11,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2
,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,
2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,
-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,
-2,2,-2,2,-2,2,-2,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[56,
-56,56,-56,56,-56,56,-56,56,-56,56,-56,-56,56,-56,56,-56,56,-56,56,-56,56,-56,
56,56,-56,56,-56,56,-56,56,-56,56,-56,56,-56,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,
8,-8,8,-8,8,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2
,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,11,-11,11,-11,11,-11,11,
-11,11,-11,11,-11,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,
1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,-2,2,-2,2,
-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,
2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1
,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,
-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0],[70,-70,70,-70,70,-70,70,-70,70,-70,70,-70,-70,70,-70,70,-70
,70,-70,70,-70,70,-70,70,70,-70,70,-70,70,-70,70,-70,70,-70,70,-70,-2,2,-2,2,
-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,16,-16,16,-16,16,-16,16,-16,16,-16,16,-16,
-16,16,-16,16,-16,16,-16,16,-16,16,-16,16,16,-16,16,-16,16,-16,16,-16,16,-16,
16,-16,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,-2,2,-2,2,2
,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2
,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,-4,4,-4,4,
-4,4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,2,-2,
2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,
-2,2,-2],[70,-70,70,-70,70,-70,70,-70,70,-70,70,-70,-70,70,-70,70,-70,70,-70,
70,-70,70,-70,70,70,-70,70,-70,70,-70,70,-70,70,-70,70,-70,-2,2,-2,2,-2,2,2,-2
,2,-2,2,-2,-2,2,-2,2,-2,2,-11,11,-11,11,-11,11,-11,11,-11,11,-11,11,11,-11,11,
-11,11,-11,11,-11,11,-11,11,-11,-11,11,-11,11,-11,11,-11,11,-11,11,-11,11,7,-7
,7,-7,7,-7,7,-7,7,-7,7,-7,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,
-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1
,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2
,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,
2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,
-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,
-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,
E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,1,-1,1
,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1
,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1],
[GALOIS,[25,2]],[70,-70,70,-70,70,-70,70,-70,70,-70,70,-70,-70,70,-70,70,-70,
70,-70,70,-70,70,-70,70,70,-70,70,-70,70,-70,70,-70,70,-70,70,-70,-2,2,-2,2,-2
,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-11,11,-11,11,-11,11,-11,11,-11,11,-11,11,11,
-11,11,-11,11,-11,11,-11,11,-11,11,-11,-11,11,-11,11,-11,11,-11,11,-11,11,-11,
11,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,-2,2,-2,2,2,-2,
2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,
-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1
,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,
2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,
-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,
-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,
E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,1],
[GALOIS,[27,2]],[120,-120,120,-120,120,-120,120,-120,120,-120,120,-120,-120,
120,-120,120,-120,120,-120,120,-120,120,-120,120,120,-120,120,-120,120,-120,
120,-120,120,-120,120,-120,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,12,-12
,12,-12,12,-12,12,-12,12,-12,12,-12,-12,12,-12,12,-12,12,-12,12,-12,12,-12,12,
12,-12,12,-12,12,-12,12,-12,12,-12,12,-12,-6,6,-6,6,-6,6,-6,6,-6,6,-6,6,-6,6,
-6,6,-6,6,-6,6,-6,6,-6,6,3,-3,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,-4,4,-4
,4,-4,4,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,-2,2,-2,2,-2,2,2,-2,2,-2,
2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0],[210,-210,210,-210,210,-210,210,-210,210,-210,210,-210,
-210,210,-210,210,-210,210,-210,210,-210,210,-210,210,210,-210,210,-210,210,
-210,210,-210,210,-210,210,-210,10,-10,10,-10,10,-10,-10,10,-10,10,-10,10,10,
-10,10,-10,10,-10,21,-21,21,-21,21,-21,21,-21,21,-21,21,-21,-21,21,-21,21,-21,
21,-21,21,-21,21,-21,21,21,-21,21,-21,21,-21,21,-21,21,-21,21,-21,3,-3,3,-3,3,
-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,2,-2,2,-2,2,-2,2,-2,
2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1
,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1
,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),
2*E(4),-2*E(4),2*E(4),-2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),
-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),
2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,
1,-1,1,-1,1],
[GALOIS,[30,3]],[504,-504,504,-504,504,-504,504,-504,504,-504,504,-504,-504,
504,-504,504,-504,504,-504,504,-504,504,-504,504,504,-504,504,-504,504,-504,
504,-504,504,-504,504,-504,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,18,-18
,18,-18,18,-18,18,-18,18,-18,18,-18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,
18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,
18,-18,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-2,2,-2,
2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,
-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,
1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0],[504,-504,504,-504,504,-504,504,-504,504,-504,504,-504,-504,504,
-504,504,-504,504,-504,504,-504,504,-504,504,504,-504,504,-504,504,-504,504,
-504,504,-504,504,-504,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,18,-18,18,
-18,18,-18,18,-18,18,-18,18,-18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,18,
-18,18,-18,18,-18,18,-18,18,-18,18,-18,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,18,-18,18
,-18,18,-18,18,-18,18,-18,18,-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-2,2,-2,2,-2,
2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,1
,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2
,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],[540,-540,540,-540,540,-540,540,-540,540,-540,540,-540,-540,540,-540,540
,-540,540,-540,540,-540,540,-540,540,540,-540,540,-540,540,-540,540,-540,540,
-540,540,-540,12,-12,12,-12,12,-12,-12,12,-12,12,-12,12,12,-12,12,-12,12,-12,
-27,27,-27,27,-27,27,-27,27,-27,27,-27,27,27,-27,27,-27,27,-27,27,-27,27,-27,
27,-27,-27,27,-27,27,-27,27,-27,27,-27,27,-27,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,-4,4,
-4,4,-4,4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,-3,3,-3,3,-3,3,-3,3,
-3,3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1
,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1
,-1,1,-1,1,-1,1,-1,1,-1,1,-1],[560,-560,560,-560,560,-560,560,-560,560,-560,
560,-560,-560,560,-560,560,-560,560,-560,560,-560,560,-560,560,560,-560,560,
-560,560,-560,560,-560,560,-560,560,-560,-16,16,-16,16,-16,16,16,-16,16,-16,16
,-16,-16,16,-16,16,-16,16,-34,34,-34,34,-34,34,-34,34,-34,34,-34,34,34,-34,34,
-34,34,-34,34,-34,34,-34,34,-34,-34,34,-34,34,-34,34,-34,34,-34,34,-34,34,2,-2
,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2
,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2
,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2
,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[630,-630,630,-630,630,-630,630,-630,630,
-630,630,-630,-630,630,-630,630,-630,630,-630,630,-630,630,-630,630,630,-630,
630,-630,630,-630,630,-630,630,-630,630,-630,14,-14,14,-14,14,-14,-14,14,-14,
14,-14,14,14,-14,14,-14,14,-14,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,18,
-18,18,-18,18,-18,18,-18,18,-18,18,-18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,
18,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,0,0,0,0,-6,6,-6
,6,-6,6,-6,6,-6,6,-6,6,6,-6,6,-6,6,-6,6,-6,6,-6,6,-6,-6,6,-6,6,-6,6,-6,6,-6,6,
-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2
,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1
,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[640,-640,640,-640,640,-640,640,-640,640,
-640,640,-640,-640,640,-640,640,-640,640,-640,640,-640,640,-640,640,640,-640,
640,-640,640,-640,640,-640,640,-640,640,-640,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,
-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,1,
-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4
,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4
,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4
,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[37,3]],[896,-896,896,-896,896,-896,896,-896,896,-896,896,-896,-896,
896,-896,896,-896,896,-896,896,-896,896,-896,896,896,-896,896,-896,896,-896,
896,-896,896,-896,896,-896,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,-32,32,-32,
32,-32,32,-32,32,-32,32,-32,-32,32,-32,32,-32,32,-32,32,-32,32,-32,32,32,-32,
32,-32,32,-32,32,-32,32,-32,32,-32,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,
4,-4,4,-4,4,-4,4,-4,4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1
,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1
,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[20,-20*E(4),-20,
20*E(4),20,-20*E(4),-20,20*E(4),20,-20*E(4),-20,20*E(4),20*E(4),20,-20*E(4),
-20,20*E(4),20,-20*E(4),-20,20*E(4),20,-20*E(4),-20,-20,20*E(4),20,-20*E(4),
-20,20*E(4),20,-20*E(4),-20,20*E(4),20,-20*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-7,7*E(4),7,-7*E(4),-7,7*E(4),7,-7*E(4),-7,7*E(4),7,-7*E(4),-7*E(4),-7,
7*E(4),7,-7*E(4),-7,7*E(4),7,-7*E(4),-7,7*E(4),7,7,-7*E(4),-7,7*E(4),7,-7*E(4)
,-7,7*E(4),7,-7*E(4),-7,7*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,
2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),
2,2*E(4),-2,-2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,
2*E(4),2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,-2,2*E(4),2
,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(4),3,
-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(4),-3,3*E(4),3,-3*E(4),-3
,3*E(4),3,-3*E(4),-3,3*E(4),3,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,
-3*E(4),-3,3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(4),-1,E(4),1,
-E(4),-1,E(4),1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,
E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(4),-1,E(4),1,-E(4),-1,
E(4),1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),-1-E(4)
,-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),
1-E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),
-1-E(4),-1+E(4),1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),
-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4)
,1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,
-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),
-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(4),-1,E(4),1,-E(4),-1,E(4),
1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4)],
[GALOIS,[40,3]],[120,-120*E(4),-120,120*E(4),120,-120*E(4),-120,120*E(4),120,
-120*E(4),-120,120*E(4),120*E(4),120,-120*E(4),-120,120*E(4),120,-120*E(4),
-120,120*E(4),120,-120*E(4),-120,-120,120*E(4),120,-120*E(4),-120,120*E(4),120
,-120*E(4),-120,120*E(4),120,-120*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,
-12*E(4),-12,12*E(4),12,-12*E(4),-12,12*E(4),12,-12*E(4),-12,12*E(4),12*E(4),
12,-12*E(4),-12,12*E(4),12,-12*E(4),-12,12*E(4),12,-12*E(4),-12,-12,12*E(4),12
,-12*E(4),-12,12*E(4),12,-12*E(4),-12,12*E(4),12,-12*E(4),-6,-6*E(4),6,6*E(4),
-6,-6*E(4),6,6*E(4),-6,-6*E(4),6,6*E(4),-6,-6*E(4),6,6*E(4),-6,-6*E(4),6,
6*E(4),-6,-6*E(4),6,6*E(4),3,3*E(4),-3,-3*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),
-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4
,-4*E(4),-4,-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),1,-E(4),-1,
E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),1,-E(4),-1,
E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,
-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(4)
,2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2*E(4),-2,2*E(4),2,-2*E(4)
,-2,2*E(4),2,-2*E(4),-2,2*E(4),2,2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,
-2*E(4),-2,2*E(4)],
[GALOIS,[42,3]],[140,-140*E(4),-140,140*E(4),140,-140*E(4),-140,140*E(4),140,
-140*E(4),-140,140*E(4),140*E(4),140,-140*E(4),-140,140*E(4),140,-140*E(4),
-140,140*E(4),140,-140*E(4),-140,-140,140*E(4),140,-140*E(4),-140,140*E(4),140
,-140*E(4),-140,140*E(4),140,-140*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,
-5*E(4),-5,5*E(4),5,-5*E(4),-5,5*E(4),5,-5*E(4),-5,5*E(4),5*E(4),5,-5*E(4),-5,
5*E(4),5,-5*E(4),-5,5*E(4),5,-5*E(4),-5,-5,5*E(4),5,-5*E(4),-5,5*E(4),5,
-5*E(4),-5,5*E(4),5,-5*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4)
,4,4*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,4*E(4),5,5*E(4)
,-5,-5*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),
-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,2,-2*E(4),-2,
2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(4),3,-3*E(4)
,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4)
,3,-3*E(4),-3,3*E(4),3,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,
3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+E(4),
1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),
-1+E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),
1+E(4),1-E(4),-1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),
1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),
1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,
-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),1
,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),1,-E(4),-1
,E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4)],
[GALOIS,[44,3]],[224,-224*E(4),-224,224*E(4),224,-224*E(4),-224,224*E(4),224,
-224*E(4),-224,224*E(4),224*E(4),224,-224*E(4),-224,224*E(4),224,-224*E(4),
-224,224*E(4),224,-224*E(4),-224,-224,224*E(4),224,-224*E(4),-224,224*E(4),224
,-224*E(4),-224,224*E(4),224,-224*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,
-8*E(4),-8,8*E(4),8,-8*E(4),-8,8*E(4),8,-8*E(4),-8,8*E(4),8*E(4),8,-8*E(4),-8,
8*E(4),8,-8*E(4),-8,8*E(4),8,-8*E(4),-8,-8,8*E(4),8,-8*E(4),-8,8*E(4),8,
-8*E(4),-8,8*E(4),8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),
-8,-8*E(4),-10,-10*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),-10,-10*E(4),10,
10*E(4),-1,-E(4),1,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,
-E(4),-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),
-1,E(4),1,-E(4),-1,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-2*E(3)+E(3)^2,-2*E(12)^7+E(12)^11,2*E(3)-E(3)^2,2*E(12)^7-E(12)^11,
-2*E(3)+E(3)^2,-2*E(12)^7+E(12)^11,2*E(3)-E(3)^2,2*E(12)^7-E(12)^11,
-2*E(3)+E(3)^2,-2*E(12)^7+E(12)^11,2*E(3)-E(3)^2,2*E(12)^7-E(12)^11,
E(3)-2*E(3)^2,E(12)^7-2*E(12)^11,-E(3)+2*E(3)^2,-E(12)^7+2*E(12)^11,
E(3)-2*E(3)^2,E(12)^7-2*E(12)^11,-E(3)+2*E(3)^2,-E(12)^7+2*E(12)^11,
E(3)-2*E(3)^2,E(12)^7-2*E(12)^11,-E(3)+2*E(3)^2,-E(12)^7+2*E(12)^11,-1,-E(4),1
,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4)
,1,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],
[GALOIS,[46,7]],
[GALOIS,[46,5]],
[GALOIS,[46,11]],[224,-224*E(4),-224,224*E(4),224,-224*E(4),-224,224*E(4),224
,-224*E(4),-224,224*E(4),224*E(4),224,-224*E(4),-224,224*E(4),224,-224*E(4),
-224,224*E(4),224,-224*E(4),-224,-224,224*E(4),224,-224*E(4),-224,224*E(4),224
,-224*E(4),-224,224*E(4),224,-224*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,
-8*E(4),-8,8*E(4),8,-8*E(4),-8,8*E(4),8,-8*E(4),-8,8*E(4),8*E(4),8,-8*E(4),-8,
8*E(4),8,-8*E(4),-8,8*E(4),8,-8*E(4),-8,-8,8*E(4),8,-8*E(4),-8,8*E(4),8,
-8*E(4),-8,8*E(4),8,-8*E(4),-10,-10*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),
-10,-10*E(4),10,10*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),-8,
-8*E(4),-1,-E(4),1,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,
-E(4),-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),
-1,E(4),1,-E(4),-1,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),
-1,-E(4),1,E(4),-2*E(3)+E(3)^2,-2*E(12)^7+E(12)^11,2*E(3)-E(3)^2,
2*E(12)^7-E(12)^11,-2*E(3)+E(3)^2,-2*E(12)^7+E(12)^11,2*E(3)-E(3)^2,
2*E(12)^7-E(12)^11,-2*E(3)+E(3)^2,-2*E(12)^7+E(12)^11,2*E(3)-E(3)^2,
2*E(12)^7-E(12)^11,E(3)-2*E(3)^2,E(12)^7-2*E(12)^11,-E(3)+2*E(3)^2,
-E(12)^7+2*E(12)^11,E(3)-2*E(3)^2,E(12)^7-2*E(12)^11,-E(3)+2*E(3)^2,
-E(12)^7+2*E(12)^11,E(3)-2*E(3)^2,E(12)^7-2*E(12)^11,-E(3)+2*E(3)^2,
-E(12)^7+2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0],
[GALOIS,[50,7]],
[GALOIS,[50,5]],
[GALOIS,[50,11]],[280,-280*E(4),-280,280*E(4),280,-280*E(4),-280,280*E(4),280
,-280*E(4),-280,280*E(4),280*E(4),280,-280*E(4),-280,280*E(4),280,-280*E(4),
-280,280*E(4),280,-280*E(4),-280,-280,280*E(4),280,-280*E(4),-280,280*E(4),280
,-280*E(4),-280,280*E(4),280,-280*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,37,
-37*E(4),-37,37*E(4),37,-37*E(4),-37,37*E(4),37,-37*E(4),-37,37*E(4),37*E(4),
37,-37*E(4),-37,37*E(4),37,-37*E(4),-37,37*E(4),37,-37*E(4),-37,-37,37*E(4),37
,-37*E(4),-37,37*E(4),37,-37*E(4),-37,37*E(4),37,-37*E(4),10,10*E(4),-10,
-10*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),-10,
-10*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),-10,-10*E(4),1,E(4),-1,-E(4),4,
-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(4),4,-4*E(4),-4,
4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,-4,4*E(4),4,-4*E(4),-4,4*E(4),4,
-4*E(4),-4,4*E(4),4,-4*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,
-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3
,3*E(4),3,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(4),-1,-E(4),1,E(4),-1,-E(4),
1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,
-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),
-1,-E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),
1,-E(4),-1,E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4)],
[GALOIS,[54,3]],[280,-280*E(4),-280,280*E(4),280,-280*E(4),-280,280*E(4),280,
-280*E(4),-280,280*E(4),280*E(4),280,-280*E(4),-280,280*E(4),280,-280*E(4),
-280,280*E(4),280,-280*E(4),-280,-280,280*E(4),280,-280*E(4),-280,280*E(4),280
,-280*E(4),-280,280*E(4),280,-280*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-17
,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17*E(4),
-17,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17,17*E(4),17,17,-17*E(4),-17
,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17,17*E(4),10,10*E(4),-10,
-10*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),-10,-10*E(4),-8,-8*E(4),8,8*E(4),
-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),1,E(4),-1,-E(4),4,-4*E(4),-4,4*E(4),4,
-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,
4*E(4),4,-4*E(4),-4,-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,
-4*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,
3*E(4),3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,-3,3*E(4),3
,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,
2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),1,E(4),-1,
-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),
-1,-E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),
1,-E(4),-1,E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4)],
[GALOIS,[56,3]],[280,-280*E(4),-280,280*E(4),280,-280*E(4),-280,280*E(4),280,
-280*E(4),-280,280*E(4),280*E(4),280,-280*E(4),-280,280*E(4),280,-280*E(4),
-280,280*E(4),280,-280*E(4),-280,-280,280*E(4),280,-280*E(4),-280,280*E(4),280
,-280*E(4),-280,280*E(4),280,-280*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-17
,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17*E(4),
-17,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17,17*E(4),17,17,-17*E(4),-17
,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17,17*E(4),-8,-8*E(4),8,8*E(4),
-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),-10
,-10*E(4),10,10*E(4),-10,-10*E(4),1,E(4),-1,-E(4),4,-4*E(4),-4,4*E(4),4,
-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,
4*E(4),4,-4*E(4),-4,-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,
-4*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,
3*E(4),3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,-3,3*E(4),3
,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,
E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2
,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4)
,2,2*E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4)
,1,-E(4),-1,E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4)],
[GALOIS,[58,3]],[420,-420*E(4),-420,420*E(4),420,-420*E(4),-420,420*E(4),420,
-420*E(4),-420,420*E(4),420*E(4),420,-420*E(4),-420,420*E(4),420,-420*E(4),
-420,420*E(4),420,-420*E(4),-420,-420,420*E(4),420,-420*E(4),-420,420*E(4),420
,-420*E(4),-420,420*E(4),420,-420*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-39
,39*E(4),39,-39*E(4),-39,39*E(4),39,-39*E(4),-39,39*E(4),39,-39*E(4),-39*E(4),
-39,39*E(4),39,-39*E(4),-39,39*E(4),39,-39*E(4),-39,39*E(4),39,39,-39*E(4),-39
,39*E(4),39,-39*E(4),-39,39*E(4),39,-39*E(4),-39,39*E(4),6,6*E(4),-6,-6*E(4),6
,6*E(4),-6,-6*E(4),6,6*E(4),-6,-6*E(4),6,6*E(4),-6,-6*E(4),6,6*E(4),-6,-6*E(4)
,6,6*E(4),-6,-6*E(4),-3,-3*E(4),3,3*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,
2*E(4),2,-2*E(4),-2,2*E(4),2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,
-2*E(4),-2,-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(4),-3,
3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,3,-3*E(4),-3,3*E(4),3,-3*E(4)
,-3,3*E(4),3,-3*E(4),-3,3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),
1+E(4),1-E(4),-1-E(4),-1+E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),
1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),
-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(4),-1,E(4),1,-E(4),-1,E(4),
1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4)],
[GALOIS,[60,3]],[540,-540*E(4),-540,540*E(4),540,-540*E(4),-540,540*E(4),540,
-540*E(4),-540,540*E(4),540*E(4),540,-540*E(4),-540,540*E(4),540,-540*E(4),
-540,540*E(4),540,-540*E(4),-540,-540,540*E(4),540,-540*E(4),-540,540*E(4),540
,-540*E(4),-540,540*E(4),540,-540*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27
,27*E(4),27,-27*E(4),-27,27*E(4),27,-27*E(4),-27,27*E(4),27,-27*E(4),-27*E(4),
-27,27*E(4),27,-27*E(4),-27,27*E(4),27,-27*E(4),-27,27*E(4),27,27,-27*E(4),-27
,27*E(4),27,-27*E(4),-27,27*E(4),27,-27*E(4),-27,27*E(4),0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,
2*E(4),2,-2*E(4),-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,2
,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,
3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(4),-3,3*E(4),3,
-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,
3*E(4),3,-3*E(4),-3,3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,
-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,
E(4),1,-E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,
E(4),1,-E(4),-1,E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,
-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),
-1+E(4),1+E(4),1-E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),
1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),
1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(4)
,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),
1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4)],
[GALOIS,[62,3]],[640,-640*E(4),-640,640*E(4),640,-640*E(4),-640,640*E(4),640,
-640*E(4),-640,640*E(4),640*E(4),640,-640*E(4),-640,640*E(4),640,-640*E(4),
-640,640*E(4),640,-640*E(4),-640,-640,640*E(4),640,-640*E(4),-640,640*E(4),640
,-640*E(4),-640,640*E(4),640,-640*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,
8*E(4),8,-8*E(4),-8,8*E(4),8,-8*E(4),-8,8*E(4),8,-8*E(4),-8*E(4),-8,8*E(4),8,
-8*E(4),-8,8*E(4),8,-8*E(4),-8,8*E(4),8,8,-8*E(4),-8,8*E(4),8,-8*E(4),-8,
8*E(4),8,-8*E(4),-8,8*E(4),-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),-8,-8*E(4),
8,8*E(4),-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),1,E(4),-1
,-E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,
E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,
-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,
-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,
E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,
-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,
-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,
E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,
-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,
E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,
E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,
E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,
E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,
-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,
-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,
E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,
-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,
-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,
E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,
-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,
E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,
E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(4),-1,
-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),
-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,
E(4),-1,-E(4),1,E(4),-1,-E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[64,11]],
[GALOIS,[64,5]],
[GALOIS,[64,3]],[840,-840*E(4),-840,840*E(4),840,-840*E(4),-840,840*E(4),840,
-840*E(4),-840,840*E(4),840*E(4),840,-840*E(4),-840,840*E(4),840,-840*E(4),
-840,840*E(4),840,-840*E(4),-840,-840,840*E(4),840,-840*E(4),-840,840*E(4),840
,-840*E(4),-840,840*E(4),840,-840*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3*E(4),3,-3*E(4),-3,
3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,
-3*E(4),-3,3*E(4),3,-3*E(4),12,12*E(4),-12,-12*E(4),12,12*E(4),-12,-12*E(4),12
,12*E(4),-12,-12*E(4),12,12*E(4),-12,-12*E(4),12,12*E(4),-12,-12*E(4),12,
12*E(4),-12,-12*E(4),3,3*E(4),-3,-3*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,
-4*E(4),-4,4*E(4),4,-4*E(4),-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4
,4*E(4),4,4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3*E(4),3,
-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,-3,3*E(4),3,-3*E(4),-3,
3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4)
,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),-1,
E(4),1,-E(4),-1,E(4)],
[GALOIS,[68,3]],[896,-896*E(4),-896,896*E(4),896,-896*E(4),-896,896*E(4),896,
-896*E(4),-896,896*E(4),896*E(4),896,-896*E(4),-896,896*E(4),896,-896*E(4),
-896,896*E(4),896,-896*E(4),-896,-896,896*E(4),896,-896*E(4),-896,896*E(4),896
,-896*E(4),-896,896*E(4),896,-896*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,
-32*E(4),-32,32*E(4),32,-32*E(4),-32,32*E(4),32,-32*E(4),-32,32*E(4),32*E(4),
32,-32*E(4),-32,32*E(4),32,-32*E(4),-32,32*E(4),32,-32*E(4),-32,-32,32*E(4),32
,-32*E(4),-32,32*E(4),32,-32*E(4),-32,32*E(4),32,-32*E(4),-4,-4*E(4),4,4*E(4),
-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,
4*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,4*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(4),-1,E(4),1,
-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,
-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,
E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),
1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[70,3]],[36,36,36,36,36,36,36,36,36,36,36,36,36*E(3),36*E(3),36*E(3),
36*E(3),36*E(3),36*E(3),36*E(3),36*E(3),36*E(3),36*E(3),36*E(3),36*E(3),
36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,
36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,4,4,4,4,4,4,4*E(3),4*E(3),
4*E(3),4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,
4*E(3)^2,9,9,9,9,9,9,9,9,9,9,9,9,9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),
9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,
9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,4,4,4,4,
4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),
4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2
,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1
,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,1,
1,1,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,1,1,1,1,1,1,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3)
,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,1,1,1,1,1,1,1,1,1,E(3),E(3),
E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,
1,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2],
[GALOIS,[72,2]],[45,45,45,45,45,45,45,45,45,45,45,45,45*E(3),45*E(3),45*E(3),
45*E(3),45*E(3),45*E(3),45*E(3),45*E(3),45*E(3),45*E(3),45*E(3),45*E(3),
45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,
45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,-3,-3,-3,-3,-3,-3,-3*E(3),
-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9*E(3),
-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),
-9*E(3),-9*E(3),-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,
-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,E(3),E(3),E(3),
E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4
,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,
1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2
,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2]
,
[GALOIS,[74,2]],
[GALOIS,[74,10]],
[GALOIS,[74,5]],[126,126,126,126,126,126,126,126,126,126,126,126,126*E(3),
126*E(3),126*E(3),126*E(3),126*E(3),126*E(3),126*E(3),126*E(3),126*E(3),
126*E(3),126*E(3),126*E(3),126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,
126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,
126*E(3)^2,14,14,14,14,14,14,14*E(3),14*E(3),14*E(3),14*E(3),14*E(3),14*E(3),
14*E(3)^2,14*E(3)^2,14*E(3)^2,14*E(3)^2,14*E(3)^2,14*E(3)^2,-9,-9,-9,-9,-9,-9,
-9,-9,-9,-9,-9,-9,-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),
-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,
-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,
-9*E(3)^2,-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
2,2,2,2,2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,2*E(3),
2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,1,1,1,1,1,1,1,1,1,1,1,1,E(3),E(3),
E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)
,2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,2,2,2,
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[78,2]],[189,189,189,189,189,189,189,189,189,189,189,189,189*E(3),
189*E(3),189*E(3),189*E(3),189*E(3),189*E(3),189*E(3),189*E(3),189*E(3),
189*E(3),189*E(3),189*E(3),189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,
189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,
189*E(3)^2,-3,-3,-3,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,27,27,27,27,27,27,
27,27,27,27,27,27,27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),
27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3)^2,27*E(3)^2,27*E(3)^2,
27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,
27*E(3)^2,27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,
5,5,5,5,5,5,5,5,5,5,5,5*E(3),5*E(3),5*E(3),5*E(3),5*E(3),5*E(3),5*E(3),5*E(3),
5*E(3),5*E(3),5*E(3),5*E(3),5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,
5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,1,1,1,E(3),E(3)
,E(3),E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,3,3,3,3,3,3,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,
E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[80,2]],[315,315,315,315,315,315,315,315,315,315,315,315,315*E(3),
315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),
315*E(3),315*E(3),315*E(3),315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,11,11,11,11,11,11,11*E(3),11*E(3),11*E(3),11*E(3),11*E(3),11*E(3),
11*E(3)^2,11*E(3)^2,11*E(3)^2,11*E(3)^2,11*E(3)^2,11*E(3)^2,18,18,18,18,18,18,
18,18,18,18,18,18,18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1
,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2],
[GALOIS,[82,2]],[315,315,315,315,315,315,315,315,315,315,315,315,315*E(3),
315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),
315*E(3),315*E(3),315*E(3),315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,-5,-5,-5,-5,-5,-5,-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),
-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,18,18,18,18,18,18,
18,18,18,18,18,18,18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
3,3,3,3,3,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,-1,-1,-1,-E(3),
-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2*E(3),
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,4,4,4,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),
4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)
,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[84,2]],[315,315,315,315,315,315,315,315,315,315,315,315,315*E(3),
315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),
315*E(3),315*E(3),315*E(3),315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,-5,-5,-5,-5,-5,-5,-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),
-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,18,18,18,18,18,18,
18,18,18,18,18,18,18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
3,3,3,3,3,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,-1,-1,-1,-E(3),
-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2*E(3),
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,4,4,4,4,4,4,4*E(3)
,4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,
4*E(3)^2,4*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[86,2]],[630,630,630,630,630,630,630,630,630,630,630,630,630*E(3),
630*E(3),630*E(3),630*E(3),630*E(3),630*E(3),630*E(3),630*E(3),630*E(3),
630*E(3),630*E(3),630*E(3),630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,
630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,
630*E(3)^2,6,6,6,6,6,6,6*E(3),6*E(3),6*E(3),6*E(3),6*E(3),6*E(3),6*E(3)^2,
6*E(3)^2,6*E(3)^2,6*E(3)^2,6*E(3)^2,6*E(3)^2,-45,-45,-45,-45,-45,-45,-45,-45,
-45,-45,-45,-45,-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3)
,-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3)^2,-45*E(3)^2,-45*E(3)^2
,-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,
-45*E(3)^2,-45*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2,2,2,2,2,2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,-2,-2,
-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),
3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2
,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3)
,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2],
[GALOIS,[88,2]],[720,720,720,720,720,720,720,720,720,720,720,720,720*E(3),
720*E(3),720*E(3),720*E(3),720*E(3),720*E(3),720*E(3),720*E(3),720*E(3),
720*E(3),720*E(3),720*E(3),720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,
720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,
720*E(3)^2,16,16,16,16,16,16,16*E(3),16*E(3),16*E(3),16*E(3),16*E(3),16*E(3),
16*E(3)^2,16*E(3)^2,16*E(3)^2,16*E(3)^2,16*E(3)^2,16*E(3)^2,18,18,18,18,18,18,
18,18,18,18,18,18,18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[90,2]],[729,729,729,729,729,729,729,729,729,729,729,729,729*E(3),
729*E(3),729*E(3),729*E(3),729*E(3),729*E(3),729*E(3),729*E(3),729*E(3),
729*E(3),729*E(3),729*E(3),729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,
729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,
729*E(3)^2,9,9,9,9,9,9,9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3)^2,
9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),
-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,
E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,
1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1
,1,1,1,1,1,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),
E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],
[GALOIS,[92,2]],[756,756,756,756,756,756,756,756,756,756,756,756,756*E(3),
756*E(3),756*E(3),756*E(3),756*E(3),756*E(3),756*E(3),756*E(3),756*E(3),
756*E(3),756*E(3),756*E(3),756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,
756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,
756*E(3)^2,-12,-12,-12,-12,-12,-12,-12*E(3),-12*E(3),-12*E(3),-12*E(3),
-12*E(3),-12*E(3),-12*E(3)^2,-12*E(3)^2,-12*E(3)^2,-12*E(3)^2,-12*E(3)^2,
-12*E(3)^2,27,27,27,27,27,27,27,27,27,27,27,27,27*E(3),27*E(3),27*E(3),27*E(3)
,27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3)^2,
27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,
27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4*E(3),-4*E(3),-4*E(3),
-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),
-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,
-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,0,0,0,0,0,0,0,0,0,1,1,1,1,1,
1,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,3,3,3,3,3,3,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[94,2]],[945,945,945,945,945,945,945,945,945,945,945,945,945*E(3),
945*E(3),945*E(3),945*E(3),945*E(3),945*E(3),945*E(3),945*E(3),945*E(3),
945*E(3),945*E(3),945*E(3),945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,
945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,
945*E(3)^2,-15,-15,-15,-15,-15,-15,-15*E(3),-15*E(3),-15*E(3),-15*E(3),
-15*E(3),-15*E(3),-15*E(3)^2,-15*E(3)^2,-15*E(3)^2,-15*E(3)^2,-15*E(3)^2,
-15*E(3)^2,-27,-27,-27,-27,-27,-27,-27,-27,-27,-27,-27,-27,-27*E(3),-27*E(3),
-27*E(3),-27*E(3),-27*E(3),-27*E(3),-27*E(3),-27*E(3),-27*E(3),-27*E(3),
-27*E(3),-27*E(3),-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,
-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1
,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,
E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3*E(3),
-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),
-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,E(3),E(3),
E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,
1,1,1,1,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),
E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2],
[GALOIS,[96,2]],[90,-90,90,-90,90,-90,90,-90,90,-90,90,-90,-90*E(3),90*E(3),
-90*E(3),90*E(3),-90*E(3),90*E(3),-90*E(3),90*E(3),-90*E(3),90*E(3),-90*E(3),
90*E(3),90*E(3)^2,-90*E(3)^2,90*E(3)^2,-90*E(3)^2,90*E(3)^2,-90*E(3)^2,
90*E(3)^2,-90*E(3)^2,90*E(3)^2,-90*E(3)^2,90*E(3)^2,-90*E(3)^2,2,-2,2,-2,2,-2,
-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,18*E(3)
,-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),
18*E(3),-18*E(3),-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,
18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-6,6,-6,6,-6,6,-6,6,-6,6,
-6,-6*E(3),6*E(3),-6*E(3),6*E(3),-6*E(3),6*E(3),-6*E(3),6*E(3),-6*E(3),6*E(3),
-6*E(3),6*E(3),6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,
6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2
,2,-2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2,
-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2
,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),
E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),
E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[98,2]],[126,-126,126,-126,126,-126,126,-126,126,-126,126,-126,
-126*E(3),126*E(3),-126*E(3),126*E(3),-126*E(3),126*E(3),-126*E(3),126*E(3),
-126*E(3),126*E(3),-126*E(3),126*E(3),126*E(3)^2,-126*E(3)^2,126*E(3)^2,
-126*E(3)^2,126*E(3)^2,-126*E(3)^2,126*E(3)^2,-126*E(3)^2,126*E(3)^2,
-126*E(3)^2,126*E(3)^2,-126*E(3)^2,-10,10,-10,10,-10,10,10*E(3),-10*E(3),
10*E(3),-10*E(3),10*E(3),-10*E(3),-10*E(3)^2,10*E(3)^2,-10*E(3)^2,10*E(3)^2,
-10*E(3)^2,10*E(3)^2,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,9*E(3),-9*E(3),9*E(3),
-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),-9*E(3)^2,
9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,
9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),
E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2
,E(3)^2,-E(3)^2,E(3)^2,-4,4,-4,4,-4,4,4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),
-4*E(3),-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,2,-2,2,-2,2,
-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[100,2]],[126,-126,126,-126,126,-126,126,-126,126,-126,126,-126,
-126*E(3),126*E(3),-126*E(3),126*E(3),-126*E(3),126*E(3),-126*E(3),126*E(3),
-126*E(3),126*E(3),-126*E(3),126*E(3),126*E(3)^2,-126*E(3)^2,126*E(3)^2,
-126*E(3)^2,126*E(3)^2,-126*E(3)^2,126*E(3)^2,-126*E(3)^2,126*E(3)^2,
-126*E(3)^2,126*E(3)^2,-126*E(3)^2,-10,10,-10,10,-10,10,10*E(3),-10*E(3),
10*E(3),-10*E(3),10*E(3),-10*E(3),-10*E(3)^2,10*E(3)^2,-10*E(3)^2,10*E(3)^2,
-10*E(3)^2,10*E(3)^2,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,9*E(3),-9*E(3),9*E(3),
-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),-9*E(3)^2,
9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,
9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),
E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2
,E(3)^2,-E(3)^2,E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,-4,4,-4,4,-4,4
,4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),-4*E(3)^2,4*E(3)^2,-4*E(3)^2,
4*E(3)^2,-4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[102,2]],[126,-126,126,-126,126,-126,126,-126,126,-126,126,-126,
-126*E(3),126*E(3),-126*E(3),126*E(3),-126*E(3),126*E(3),-126*E(3),126*E(3),
-126*E(3),126*E(3),-126*E(3),126*E(3),126*E(3)^2,-126*E(3)^2,126*E(3)^2,
-126*E(3)^2,126*E(3)^2,-126*E(3)^2,126*E(3)^2,-126*E(3)^2,126*E(3)^2,
-126*E(3)^2,126*E(3)^2,-126*E(3)^2,6,-6,6,-6,6,-6,-6*E(3),6*E(3),-6*E(3),
6*E(3),-6*E(3),6*E(3),6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2
,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),
9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),-9*E(3)^2,9*E(3)^2,-9*E(3)^2,
9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,
9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,
2,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,
0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),
E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2
,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,-3*E(3),
3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),
3*E(3),3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,
-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),
2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),-2*E(12)^7,2*E(12)^7,-2*E(12)^7,
2*E(12)^7,-2*E(12)^7,2*E(12)^7,-2*E(12)^7,2*E(12)^7,-2*E(12)^7,2*E(12)^7,
-2*E(12)^7,2*E(12)^7,2*E(12)^11,-2*E(12)^11,2*E(12)^11,-2*E(12)^11,2*E(12)^11,
-2*E(12)^11,2*E(12)^11,-2*E(12)^11,2*E(12)^11,-2*E(12)^11,2*E(12)^11,
-2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),
E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2
,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2],
[GALOIS,[104,5]],
[GALOIS,[104,7]],
[GALOIS,[104,11]],[270,-270,270,-270,270,-270,270,-270,270,-270,270,-270,
-270*E(3),270*E(3),-270*E(3),270*E(3),-270*E(3),270*E(3),-270*E(3),270*E(3),
-270*E(3),270*E(3),-270*E(3),270*E(3),270*E(3)^2,-270*E(3)^2,270*E(3)^2,
-270*E(3)^2,270*E(3)^2,-270*E(3)^2,270*E(3)^2,-270*E(3)^2,270*E(3)^2,
-270*E(3)^2,270*E(3)^2,-270*E(3)^2,6,-6,6,-6,6,-6,-6*E(3),6*E(3),-6*E(3),
6*E(3),-6*E(3),6*E(3),6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2
,27,-27,27,-27,27,-27,27,-27,27,-27,27,-27,-27*E(3),27*E(3),-27*E(3),27*E(3),
-27*E(3),27*E(3),-27*E(3),27*E(3),-27*E(3),27*E(3),-27*E(3),27*E(3),27*E(3)^2,
-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,
27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,-3*E(3)
,3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),
3*E(3),3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,
-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(7)-E(7)^2-E(7)^4,
E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,
E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,
E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
-E(21)-E(21)^4-E(21)^16,E(21)+E(21)^4+E(21)^16,-E(21)-E(21)^4-E(21)^16,
E(21)+E(21)^4+E(21)^16,-E(21)-E(21)^4-E(21)^16,E(21)+E(21)^4+E(21)^16,
-E(21)-E(21)^4-E(21)^16,E(21)+E(21)^4+E(21)^16,-E(21)-E(21)^4-E(21)^16,
E(21)+E(21)^4+E(21)^16,-E(21)-E(21)^4-E(21)^16,-E(21)^2-E(21)^8-E(21)^11,
E(21)^2+E(21)^8+E(21)^11,-E(21)^2-E(21)^8-E(21)^11,E(21)^2+E(21)^8+E(21)^11,
-E(21)^2-E(21)^8-E(21)^11,E(21)^2+E(21)^8+E(21)^11,-E(21)^2-E(21)^8-E(21)^11,
E(21)^2+E(21)^8+E(21)^11,-E(21)^2-E(21)^8-E(21)^11,E(21)^2+E(21)^8+E(21)^11,
-E(21)^2-E(21)^8-E(21)^11,E(21)^2+E(21)^8+E(21)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),
-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[108,2]],
[GALOIS,[108,10]],
[GALOIS,[108,5]],[504,-504,504,-504,504,-504,504,-504,504,-504,504,-504,
-504*E(3),504*E(3),-504*E(3),504*E(3),-504*E(3),504*E(3),-504*E(3),504*E(3),
-504*E(3),504*E(3),-504*E(3),504*E(3),504*E(3)^2,-504*E(3)^2,504*E(3)^2,
-504*E(3)^2,504*E(3)^2,-504*E(3)^2,504*E(3)^2,-504*E(3)^2,504*E(3)^2,
-504*E(3)^2,504*E(3)^2,-504*E(3)^2,-8,8,-8,8,-8,8,8*E(3),-8*E(3),8*E(3),
-8*E(3),8*E(3),-8*E(3),-8*E(3)^2,8*E(3)^2,-8*E(3)^2,8*E(3)^2,-8*E(3)^2,
8*E(3)^2,-36,36,-36,36,-36,36,-36,36,-36,36,-36,36,36*E(3),-36*E(3),36*E(3),
-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),
-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,
36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,4,
-4,4,-4,4,-4,4,-4,4,-4,4,-4,-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),
-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),4*E(3)^2,-4*E(3)^2,4*E(3)^2,
-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,
-4*E(3)^2,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2,2,-2,2,-2,2,2*E(3)
,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0],
[GALOIS,[112,2]],[540,-540,540,-540,540,-540,540,-540,540,-540,540,-540,
-540*E(3),540*E(3),-540*E(3),540*E(3),-540*E(3),540*E(3),-540*E(3),540*E(3),
-540*E(3),540*E(3),-540*E(3),540*E(3),540*E(3)^2,-540*E(3)^2,540*E(3)^2,
-540*E(3)^2,540*E(3)^2,-540*E(3)^2,540*E(3)^2,-540*E(3)^2,540*E(3)^2,
-540*E(3)^2,540*E(3)^2,-540*E(3)^2,12,-12,12,-12,12,-12,-12*E(3),12*E(3),
-12*E(3),12*E(3),-12*E(3),12*E(3),12*E(3)^2,-12*E(3)^2,12*E(3)^2,-12*E(3)^2,
12*E(3)^2,-12*E(3)^2,-27,27,-27,27,-27,27,-27,27,-27,27,-27,27,27*E(3),
-27*E(3),27*E(3),-27*E(3),27*E(3),-27*E(3),27*E(3),-27*E(3),27*E(3),-27*E(3),
27*E(3),-27*E(3),-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,
27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,4,-4,4,-4,4,
-4,-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),
-4*E(3),4*E(3),4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,
4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,-3,3
,-3,3,-3,3,-3,3,-3,3,3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),
-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,
-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),
-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1
,-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3)
,-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2
,-E(3)^2,E(3)^2,-E(3)^2],
[GALOIS,[114,2]],[630,-630,630,-630,630,-630,630,-630,630,-630,630,-630,
-630*E(3),630*E(3),-630*E(3),630*E(3),-630*E(3),630*E(3),-630*E(3),630*E(3),
-630*E(3),630*E(3),-630*E(3),630*E(3),630*E(3)^2,-630*E(3)^2,630*E(3)^2,
-630*E(3)^2,630*E(3)^2,-630*E(3)^2,630*E(3)^2,-630*E(3)^2,630*E(3)^2,
-630*E(3)^2,630*E(3)^2,-630*E(3)^2,-18,18,-18,18,-18,18,18*E(3),-18*E(3),
18*E(3),-18*E(3),18*E(3),-18*E(3),-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,
-18*E(3)^2,18*E(3)^2,36,-36,36,-36,36,-36,36,-36,36,-36,36,-36,-36*E(3),
36*E(3),-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),36*E(3),
-36*E(3),36*E(3),36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,
-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2
,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3)
,-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2
,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2
,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2],
[GALOIS,[116,2]],[720,-720,720,-720,720,-720,720,-720,720,-720,720,-720,
-720*E(3),720*E(3),-720*E(3),720*E(3),-720*E(3),720*E(3),-720*E(3),720*E(3),
-720*E(3),720*E(3),-720*E(3),720*E(3),720*E(3)^2,-720*E(3)^2,720*E(3)^2,
-720*E(3)^2,720*E(3)^2,-720*E(3)^2,720*E(3)^2,-720*E(3)^2,720*E(3)^2,
-720*E(3)^2,720*E(3)^2,-720*E(3)^2,16,-16,16,-16,16,-16,-16*E(3),16*E(3),
-16*E(3),16*E(3),-16*E(3),16*E(3),16*E(3)^2,-16*E(3)^2,16*E(3)^2,-16*E(3)^2,
16*E(3)^2,-16*E(3)^2,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,-18*E(3),
18*E(3),-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),18*E(3),
-18*E(3),18*E(3),18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,
-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,2,-2,2,
-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),
-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2,2,-2,2,-2
,2,2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),
-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[118,2]],[1260,-1260,1260,-1260,1260,-1260,1260,-1260,1260,-1260,1260
,-1260,-1260*E(3),1260*E(3),-1260*E(3),1260*E(3),-1260*E(3),1260*E(3),
-1260*E(3),1260*E(3),-1260*E(3),1260*E(3),-1260*E(3),1260*E(3),1260*E(3)^2,
-1260*E(3)^2,1260*E(3)^2,-1260*E(3)^2,1260*E(3)^2,-1260*E(3)^2,1260*E(3)^2,
-1260*E(3)^2,1260*E(3)^2,-1260*E(3)^2,1260*E(3)^2,-1260*E(3)^2,-4,4,-4,4,-4,4,
4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),-4*E(3)^2,4*E(3)^2,-4*E(3)^2,
4*E(3)^2,-4*E(3)^2,4*E(3)^2,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,9*E(3),-9*E(3),
9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),
-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,
-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,4*E(3),-4*E(3),4*E(3),-4*E(3),
4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),-4*E(3)^2,4*E(3)^2
,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,
-4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,2,-2,2,-2,2
,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),
-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),
-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[120,2]],[36,-36*E(4),-36,36*E(4),36,-36*E(4),-36,36*E(4),36,-36*E(4)
,-36,36*E(4),36*E(12)^7,36*E(3),-36*E(12)^7,-36*E(3),36*E(12)^7,36*E(3),
-36*E(12)^7,-36*E(3),36*E(12)^7,36*E(3),-36*E(12)^7,-36*E(3),-36*E(3)^2,
36*E(12)^11,36*E(3)^2,-36*E(12)^11,-36*E(3)^2,36*E(12)^11,36*E(3)^2,
-36*E(12)^11,-36*E(3)^2,36*E(12)^11,36*E(3)^2,-36*E(12)^11,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,9,-9*E(4),-9,9*E(4),9,-9*E(4),-9,9*E(4),9,-9*E(4),-9,9*E(4),
9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),
9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),-9*E(3)^2,9*E(12)^11,9*E(3)^2,-9*E(12)^11,
-9*E(3)^2,9*E(12)^11,9*E(3)^2,-9*E(12)^11,-9*E(3)^2,9*E(12)^11,9*E(3)^2,
-9*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(4),
-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2*E(12)^7,2*E(3),-2*E(12)^7,
-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,
-2*E(3),-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,
2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,0,0,0,0,0,0,0,0
,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,-E(3)
,E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11,
E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),
-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),
-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,
3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,
3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,
-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11
,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),
-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2
,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,
E(3)^2,-E(12)^11,1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),
1+E(4),1-E(4),-1-E(4),-1+E(4),-E(12)^4+E(12)^7,E(12)^4+E(12)^7,E(12)^4-E(12)^7
,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,E(12)^4+E(12)^7,E(12)^4-E(12)^7,
-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,E(12)^4+E(12)^7,E(12)^4-E(12)^7,
-E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-E(12)^8+E(12)^11,E(12)^8+E(12)^11,
E(12)^8-E(12)^11,-E(12)^8-E(12)^11,-E(12)^8+E(12)^11,E(12)^8+E(12)^11,
E(12)^8-E(12)^11,-E(12)^8-E(12)^11,-E(12)^8+E(12)^11,E(12)^8+E(12)^11,
E(12)^8-E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,
-E(4),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),
E(12)^7,E(3),E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,
E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11],
[GALOIS,[122,5]],
[GALOIS,[122,7]],
[GALOIS,[122,11]],[216,-216*E(4),-216,216*E(4),216,-216*E(4),-216,216*E(4),
216,-216*E(4),-216,216*E(4),216*E(12)^7,216*E(3),-216*E(12)^7,-216*E(3),
216*E(12)^7,216*E(3),-216*E(12)^7,-216*E(3),216*E(12)^7,216*E(3),-216*E(12)^7,
-216*E(3),-216*E(3)^2,216*E(12)^11,216*E(3)^2,-216*E(12)^11,-216*E(3)^2,
216*E(12)^11,216*E(3)^2,-216*E(12)^11,-216*E(3)^2,216*E(12)^11,216*E(3)^2,
-216*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27,27*E(4),27,-27*E(4),-27,
27*E(4),27,-27*E(4),-27,27*E(4),27,-27*E(4),-27*E(12)^7,-27*E(3),27*E(12)^7,
27*E(3),-27*E(12)^7,-27*E(3),27*E(12)^7,27*E(3),-27*E(12)^7,-27*E(3),
27*E(12)^7,27*E(3),27*E(3)^2,-27*E(12)^11,-27*E(3)^2,27*E(12)^11,27*E(3)^2,
-27*E(12)^11,-27*E(3)^2,27*E(12)^11,27*E(3)^2,-27*E(12)^11,-27*E(3)^2,
27*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(4),
-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(12)^7,4*E(3),-4*E(12)^7,
-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,
-4*E(3),-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,
4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,0,0,0,0,0,0,0,0
,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,-E(3)
,E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11,
E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),
-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),
-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,
3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,
3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(12)^7,-E(3),E(12)^7,
E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),E(3)^2,-E(12)^11,
-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,
E(12)^11,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(12)^7,-E(3),
E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),E(3)^2,
-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,
-E(3)^2,E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),
E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,
-E(3),-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,
-E(3)^2,E(12)^11,E(3)^2,-E(12)^11],
[GALOIS,[126,5]],
[GALOIS,[126,7]],
[GALOIS,[126,11]],[360,-360*E(4),-360,360*E(4),360,-360*E(4),-360,360*E(4),
360,-360*E(4),-360,360*E(4),360*E(12)^7,360*E(3),-360*E(12)^7,-360*E(3),
360*E(12)^7,360*E(3),-360*E(12)^7,-360*E(3),360*E(12)^7,360*E(3),-360*E(12)^7,
-360*E(3),-360*E(3)^2,360*E(12)^11,360*E(3)^2,-360*E(12)^11,-360*E(3)^2,
360*E(12)^11,360*E(3)^2,-360*E(12)^11,-360*E(3)^2,360*E(12)^11,360*E(3)^2,
-360*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9*E(4),-9,9*E(4),9,
-9*E(4),-9,9*E(4),9,-9*E(4),-9,9*E(4),9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),
9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),
-9*E(3)^2,9*E(12)^11,9*E(3)^2,-9*E(12)^11,-9*E(3)^2,9*E(12)^11,9*E(3)^2,
-9*E(12)^11,-9*E(3)^2,9*E(12)^11,9*E(3)^2,-9*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,
4*E(4),4,-4*E(4),-4*E(12)^7,-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,-4*E(3),
4*E(12)^7,4*E(3),-4*E(12)^7,-4*E(3),4*E(12)^7,4*E(3),4*E(3)^2,-4*E(12)^11,
-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,4*E(3)^2,
-4*E(12)^11,-4*E(3)^2,4*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,
-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,
-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),3*E(3)^2,
-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,
3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,
E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,
E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,
-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,E(84)^13+E(84)^61+E(84)^73,
E(21)^10+E(21)^13+E(21)^19,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^10-E(21)^13-E(21)^19,E(84)^13+E(84)^61+E(84)^73,
E(21)^10+E(21)^13+E(21)^19,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^10-E(21)^13-E(21)^19,E(84)^13+E(84)^61+E(84)^73,
E(21)^10+E(21)^13+E(21)^19,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^10-E(21)^13-E(21)^19,-E(21)^5-E(21)^17-E(21)^20,
E(84)^5+E(84)^17+E(84)^41,E(21)^5+E(21)^17+E(21)^20,-E(84)^5-E(84)^17-E(84)^41
,-E(21)^5-E(21)^17-E(21)^20,E(84)^5+E(84)^17+E(84)^41,
E(21)^5+E(21)^17+E(21)^20,-E(84)^5-E(84)^17-E(84)^41,
-E(21)^5-E(21)^17-E(21)^20,E(84)^5+E(84)^17+E(84)^41,E(21)^5+E(21)^17+E(21)^20
,-E(84)^5-E(84)^17-E(84)^41,E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,
-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,
-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,
E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,
E(28)^3+E(28)^19+E(28)^27,E(84)+E(84)^25+E(84)^37,E(21)+E(21)^4+E(21)^16,
-E(84)-E(84)^25-E(84)^37,-E(21)-E(21)^4-E(21)^16,E(84)+E(84)^25+E(84)^37,
E(21)+E(21)^4+E(21)^16,-E(84)-E(84)^25-E(84)^37,-E(21)-E(21)^4-E(21)^16,
E(84)+E(84)^25+E(84)^37,E(21)+E(21)^4+E(21)^16,-E(84)-E(84)^25-E(84)^37,
-E(21)-E(21)^4-E(21)^16,-E(21)^2-E(21)^8-E(21)^11,E(84)^29+E(84)^53+E(84)^65,
E(21)^2+E(21)^8+E(21)^11,-E(84)^29-E(84)^53-E(84)^65,-E(21)^2-E(21)^8-E(21)^11
,E(84)^29+E(84)^53+E(84)^65,E(21)^2+E(21)^8+E(21)^11,
-E(84)^29-E(84)^53-E(84)^65,-E(21)^2-E(21)^8-E(21)^11,
E(84)^29+E(84)^53+E(84)^65,E(21)^2+E(21)^8+E(21)^11,
-E(84)^29-E(84)^53-E(84)^65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,
E(4),1,-E(4),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,
-E(3),E(12)^7,E(3),E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,
E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11],
[GALOIS,[130,29]],
[GALOIS,[130,43]],
[GALOIS,[130,11]],
[GALOIS,[130,13]],
[GALOIS,[130,5]],
[GALOIS,[130,19]],
[GALOIS,[130,47]],[504,-504*E(4),-504,504*E(4),504,-504*E(4),-504,504*E(4),
504,-504*E(4),-504,504*E(4),504*E(12)^7,504*E(3),-504*E(12)^7,-504*E(3),
504*E(12)^7,504*E(3),-504*E(12)^7,-504*E(3),504*E(12)^7,504*E(3),-504*E(12)^7,
-504*E(3),-504*E(3)^2,504*E(12)^11,504*E(3)^2,-504*E(12)^11,-504*E(3)^2,
504*E(12)^11,504*E(3)^2,-504*E(12)^11,-504*E(3)^2,504*E(12)^11,504*E(3)^2,
-504*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-36,36*E(4),36,-36*E(4),-36,
36*E(4),36,-36*E(4),-36,36*E(4),36,-36*E(4),-36*E(12)^7,-36*E(3),36*E(12)^7,
36*E(3),-36*E(12)^7,-36*E(3),36*E(12)^7,36*E(3),-36*E(12)^7,-36*E(3),
36*E(12)^7,36*E(3),36*E(3)^2,-36*E(12)^11,-36*E(3)^2,36*E(12)^11,36*E(3)^2,
-36*E(12)^11,-36*E(3)^2,36*E(12)^11,36*E(3)^2,-36*E(12)^11,-36*E(3)^2,
36*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(4),
-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(12)^7,4*E(3),-4*E(12)^7,
-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,
-4*E(3),-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,
4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,0,0,0,0,0,0,0,0
,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(12)^7,-E(3),E(12)^7,E(3)
,-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),E(3)^2,-E(12)^11,
-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,
E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,
2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2*E(12)^7,-2*E(3),
2*E(12)^7,2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,-2*E(3),
2*E(12)^7,2*E(3),2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,2*E(3)^2,
-2*E(12)^11,-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11],
[GALOIS,[138,5]],
[GALOIS,[138,7]],
[GALOIS,[138,11]],[504,-504*E(4),-504,504*E(4),504,-504*E(4),-504,504*E(4),
504,-504*E(4),-504,504*E(4),504*E(12)^7,504*E(3),-504*E(12)^7,-504*E(3),
504*E(12)^7,504*E(3),-504*E(12)^7,-504*E(3),504*E(12)^7,504*E(3),-504*E(12)^7,
-504*E(3),-504*E(3)^2,504*E(12)^11,504*E(3)^2,-504*E(12)^11,-504*E(3)^2,
504*E(12)^11,504*E(3)^2,-504*E(12)^11,-504*E(3)^2,504*E(12)^11,504*E(3)^2,
-504*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,-45*E(4),-45,45*E(4),45,
-45*E(4),-45,45*E(4),45,-45*E(4),-45,45*E(4),45*E(12)^7,45*E(3),-45*E(12)^7,
-45*E(3),45*E(12)^7,45*E(3),-45*E(12)^7,-45*E(3),45*E(12)^7,45*E(3),
-45*E(12)^7,-45*E(3),-45*E(3)^2,45*E(12)^11,45*E(3)^2,-45*E(12)^11,-45*E(3)^2,
45*E(12)^11,45*E(3)^2,-45*E(12)^11,-45*E(3)^2,45*E(12)^11,45*E(3)^2,
-45*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(4)
,-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(12)^7,4*E(3),-4*E(12)^7
,-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,
-4*E(3),-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,
4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,0,0,0,0,0,0,0,0
,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(12)^7,-E(3),E(12)^7,E(3)
,-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),E(3)^2,-E(12)^11,
-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,
E(12)^11,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),
-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),
-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,
3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,
3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,
-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11
,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11],
[GALOIS,[142,5]],
[GALOIS,[142,7]],
[GALOIS,[142,11]],[540,-540*E(4),-540,540*E(4),540,-540*E(4),-540,540*E(4),
540,-540*E(4),-540,540*E(4),540*E(12)^7,540*E(3),-540*E(12)^7,-540*E(3),
540*E(12)^7,540*E(3),-540*E(12)^7,-540*E(3),540*E(12)^7,540*E(3),-540*E(12)^7,
-540*E(3),-540*E(3)^2,540*E(12)^11,540*E(3)^2,-540*E(12)^11,-540*E(3)^2,
540*E(12)^11,540*E(3)^2,-540*E(12)^11,-540*E(3)^2,540*E(12)^11,540*E(3)^2,
-540*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27,27*E(4),27,-27*E(4),-27,
27*E(4),27,-27*E(4),-27,27*E(4),27,-27*E(4),-27*E(12)^7,-27*E(3),27*E(12)^7,
27*E(3),-27*E(12)^7,-27*E(3),27*E(12)^7,27*E(3),-27*E(12)^7,-27*E(3),
27*E(12)^7,27*E(3),27*E(3)^2,-27*E(12)^11,-27*E(3)^2,27*E(12)^11,27*E(3)^2,
-27*E(12)^11,-27*E(3)^2,27*E(12)^11,27*E(3)^2,-27*E(12)^11,-27*E(3)^2,
27*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(4),
2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2*E(12)^7,-2*E(3),2*E(12)^7
,2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,
2*E(3),2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,
-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,
3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(12)^7,-3*E(3),
3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),
3*E(12)^7,3*E(3),3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,
-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(4),
-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,
E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,
1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,-E(3),
E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11,
E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),
-1+E(4),1+E(4),1-E(4),E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1
,E(4),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),
-E(12)^7,-E(3),-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11],
[GALOIS,[146,5]],
[GALOIS,[146,7]],
[GALOIS,[146,11]],[756,-756*E(4),-756,756*E(4),756,-756*E(4),-756,756*E(4),
756,-756*E(4),-756,756*E(4),756*E(12)^7,756*E(3),-756*E(12)^7,-756*E(3),
756*E(12)^7,756*E(3),-756*E(12)^7,-756*E(3),756*E(12)^7,756*E(3),-756*E(12)^7,
-756*E(3),-756*E(3)^2,756*E(12)^11,756*E(3)^2,-756*E(12)^11,-756*E(3)^2,
756*E(12)^11,756*E(3)^2,-756*E(12)^11,-756*E(3)^2,756*E(12)^11,756*E(3)^2,
-756*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,-27*E(4),-27,27*E(4),27,
-27*E(4),-27,27*E(4),27,-27*E(4),-27,27*E(4),27*E(12)^7,27*E(3),-27*E(12)^7,
-27*E(3),27*E(12)^7,27*E(3),-27*E(12)^7,-27*E(3),27*E(12)^7,27*E(3),
-27*E(12)^7,-27*E(3),-27*E(3)^2,27*E(12)^11,27*E(3)^2,-27*E(12)^11,-27*E(3)^2,
27*E(12)^11,27*E(3)^2,-27*E(12)^11,-27*E(3)^2,27*E(12)^11,27*E(3)^2,
-27*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(4)
,-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2*E(12)^7,2*E(3),-2*E(12)^7
,-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,
-2*E(3),-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,
2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,0,0,0,0,0,0,0,0
,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,-E(3)
,E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11,
E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),
3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),
3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,
-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,
-3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),
1+E(4),1-E(4),E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,
-E(4),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),
E(12)^7,E(3),E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,
E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11],
[GALOIS,[150,5]],
[GALOIS,[150,7]],
[GALOIS,[150,11]],[1260,-1260*E(4),-1260,1260*E(4),1260,-1260*E(4),-1260,
1260*E(4),1260,-1260*E(4),-1260,1260*E(4),1260*E(12)^7,1260*E(3),-1260*E(12)^7
,-1260*E(3),1260*E(12)^7,1260*E(3),-1260*E(12)^7,-1260*E(3),1260*E(12)^7,
1260*E(3),-1260*E(12)^7,-1260*E(3),-1260*E(3)^2,1260*E(12)^11,1260*E(3)^2,
-1260*E(12)^11,-1260*E(3)^2,1260*E(12)^11,1260*E(3)^2,-1260*E(12)^11,
-1260*E(3)^2,1260*E(12)^11,1260*E(3)^2,-1260*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-9,9*E(4),9,-9*E(4),-9,9*E(4),9,-9*E(4),-9,9*E(4),9,-9*E(4),
-9*E(12)^7,-9*E(3),9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),9*E(12)^7,9*E(3),
-9*E(12)^7,-9*E(3),9*E(12)^7,9*E(3),9*E(3)^2,-9*E(12)^11,-9*E(3)^2,9*E(12)^11,
9*E(3)^2,-9*E(12)^11,-9*E(3)^2,9*E(12)^11,9*E(3)^2,-9*E(12)^11,-9*E(3)^2,
9*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(4),2
,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2*E(12)^7,-2*E(3),2*E(12)^7,
2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,2*E(3)
,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,
2*E(12)^11,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(4),-3,
3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3*E(12)^7,3*E(3),-3*E(12)^7,
-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,
-3*E(3),-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,
3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+E(4),1-E(4),-1-E(4),-1+E(4),
1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(4),
-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,
E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11]
,
[GALOIS,[154,5]],
[GALOIS,[154,7]],
[GALOIS,[154,11]],[15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,6,
6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3)
,6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),
6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)
,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[158,2]],[21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,
21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3)
,5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),
5*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),
6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2],
[GALOIS,[160,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,
9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[162,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),
-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,5*E(3),5*E(3)^2,5
,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,
5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3)
,5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[164,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,
9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,-12,-12*E(3),-12*E(3)^2,
-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),
12*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2],
[GALOIS,[166,2]],[210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,
210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,
210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,
210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,
210*E(3),210*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2
,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[168,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),
-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4*E(3),4*E(3)^2,4,
4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)
,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],
[GALOIS,[170,2]],[336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),
16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,-6,
-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,
-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),
6*E(3)^2,6,6*E(3),6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],
[GALOIS,[172,2]],[360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,
8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,-18,-18*E(3),-18*E(3)^2,
-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)
,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[174,2]],
[GALOIS,[174,10]],
[GALOIS,[174,5]],[384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,24*E(3),24*E(3)^2,
24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),
24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,
24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),
24*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,12,
12*E(3),12*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[178,2]],[420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,
4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,33,33*E(3),33*E(3)^2,33,
33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),
33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,
33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),
33*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,
-6*E(3),-6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[180,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,
6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3)
,9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[182,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,
9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
,
[GALOIS,[184,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,
27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,
-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),
-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,
-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,0,0,0,0,0,0,0,0,0,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[186,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,
-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,
-15*E(3),-15*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[188,2]],[15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,
6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)
,6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,0,0,0,0,0,0,
0,0,0,0,0,0,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2
,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2
,2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[190,2]],[21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,21,21*E(3),21*E(3)^2,21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,5,5*E(3),5*E(3)^2,5,
5*E(3),5*E(3)^2,5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3),5*E(3)^2,5,5*E(3),
5*E(3)^2,5,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3
,0,0,0,0,0,0,0,0,0,0,0,0,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6
,6*E(3),6*E(3)^2,6,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),
E(3)^2,1,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3)
,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[192,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105*E(3)^2,105,105*E(3),105*E(3)^2
,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3),
105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,105,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,
9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,0,
0,0,0,0,0,0,0,0,0,0,0,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),
E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[194,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105*E(3)^2,105,105*E(3),105*E(3)^2
,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3),
105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,105,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7*E(3)^2,-7,-7*E(3),
-7*E(3)^2,-7,-7*E(3),-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3)
,15*E(3)^2,15,0,0,0,0,0,0,0,0,0,0,0,0,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,5,5*E(3),5*E(3)^2,5,5*E(3),
5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5*E(3)^2,5,5*E(3),5*E(3)^2,5,
5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5
,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2
,2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1],
[GALOIS,[196,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105*E(3)^2,105,105*E(3),105*E(3)^2
,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3),
105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,105,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,
9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12*E(3)^2
,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,
-12,-12*E(3),-12*E(3)^2,-12,0,0,0,0,0,0,0,0,0,0,0,0,12*E(3),12*E(3)^2,12,
12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,12,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)
,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2],
[GALOIS,[198,2]],[210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,
210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210*E(3)^2,210,210*E(3),210*E(3)^2
,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3),
210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),
210*E(3)^2,210,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,
2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3
,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,15*E(3),15*E(3)^2
,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,0,0,0,0,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),
-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[200,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3)^2,315,315*E(3),315*E(3)^2
,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),
315*E(3)^2,315,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5*E(3)^2,-5,-5*E(3),
-5*E(3)^2,-5,-5*E(3),-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-36,-36*E(3),
-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),
-36*E(3)^2,-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,
-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,0,0,0,0,0,0,0,0,0,0,0,0,
9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,0,0,0,
0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,
4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2
,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[202,2]],[336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336*E(3)^2,336,336*E(3),336*E(3)^2
,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3),
336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),
336*E(3)^2,336,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16*E(3)^2,16,16*E(3),
16*E(3)^2,16,16*E(3),16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,-6,-6*E(3),
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,
-6*E(3),-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3)
,-6*E(3)^2,-6,0,0,0,0,0,0,0,0,0,0,0,0,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,
6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[204,2]],[360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360*E(3)^2,360,360*E(3),360*E(3)^2
,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3),
360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),
360*E(3)^2,360,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8*E(3)^2,8,8*E(3),8*E(3)^2,
8,8*E(3),8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18*E(3)^2
,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,
-18,-18*E(3),-18*E(3)^2,-18,0,0,0,0,0,0,0,0,0,0,0,0,-9*E(3),-9*E(3)^2,-9,
-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2
,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)
,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20
,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[206,2]],
[GALOIS,[206,10]],
[GALOIS,[206,5]],[384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384*E(3)^2,384,384*E(3),384*E(3)^2
,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3),
384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),
384*E(3)^2,384,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,24*E(3),24*E(3)^2,24,
24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24*E(3)^2,24,
24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)
,24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,0
,0,0,0,0,0,0,0,0,0,0,0,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),
12*E(3)^2,12,12*E(3),12*E(3)^2,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[210,2]],[420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420*E(3)^2,420,420*E(3),420*E(3)^2
,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3),
420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),
420*E(3)^2,420,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3)^2,
4,4*E(3),4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,33,33*E(3),33*E(3)^2,33,33*E(3),
33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33*E(3)^2,33,33*E(3),
33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3),
33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,0,
0,0,0,0,0,0,0,0,0,0,0,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,0,0,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,
4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)
,4*E(3)^2,4,4*E(3),4*E(3)^2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,-2,-2*E(3),-2*E(3)^2,
-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[212,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630*E(3)^2,630,630*E(3),630*E(3)^2
,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3),
630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),
630*E(3)^2,630,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6*E(3)^2,6,6*E(3),6*E(3)^2,
6,6*E(3),6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,9,
9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9
,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,0,0,0,0,0,0,0,0,0,0,0,0,-9*E(3),-9*E(3)^2
,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,0,0,0,0,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2
,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,-2,-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2
,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1],
[GALOIS,[214,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729*E(3)^2,729,729*E(3),729*E(3)^2
,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3),
729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),
729*E(3)^2,729,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,
9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,1,E(3),E(3)^2,E(3)^2,1,
E(3),E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)
,-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[216,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756*E(3)^2,756,756*E(3),756*E(3)^2
,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3),
756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),
756*E(3)^2,756,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,
-12,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3)^2,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,
-4*E(3),-4*E(3)^2,-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,
-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3)
,-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3
,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1],
[GALOIS,[218,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945*E(3)^2,945,945*E(3),945*E(3)^2
,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3),
945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),
945*E(3)^2,945,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15*E(3)^2,-15,
-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,
-15,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,
-27,-27*E(3),-27*E(3)^2,-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),
-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,
1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,
E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2
,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1],
[GALOIS,[220,2]],[36,36*E(3),36*E(3)^2,36,36*E(3),36*E(3)^2,36,36*E(3),
36*E(3)^2,36,36*E(3),36*E(3)^2,36*E(3),36*E(3)^2,36,36*E(3),36*E(3)^2,36,
36*E(3),36*E(3)^2,36,36*E(3),36*E(3)^2,36,36*E(3)^2,36,36*E(3),36*E(3)^2,36,
36*E(3),36*E(3)^2,36,36*E(3),36*E(3)^2,36,36*E(3),4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),4*E(3)^2,4,
4*E(3),9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2
,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2
,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2
,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3)],
[GALOIS,[222,2]],[45,45*E(3),45*E(3)^2,45,45*E(3),45*E(3)^2,45,45*E(3),
45*E(3)^2,45,45*E(3),45*E(3)^2,45*E(3),45*E(3)^2,45,45*E(3),45*E(3)^2,45,
45*E(3),45*E(3)^2,45,45*E(3),45*E(3)^2,45,45*E(3)^2,45,45*E(3),45*E(3)^2,45,
45*E(3),45*E(3)^2,45,45*E(3),45*E(3)^2,45,45*E(3),-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,
-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,
-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9
,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1
,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)
],
[GALOIS,[224,2]],
[GALOIS,[224,10]],
[GALOIS,[224,5]],[126,126*E(3),126*E(3)^2,126,126*E(3),126*E(3)^2,126,
126*E(3),126*E(3)^2,126,126*E(3),126*E(3)^2,126*E(3),126*E(3)^2,126,126*E(3),
126*E(3)^2,126,126*E(3),126*E(3)^2,126,126*E(3),126*E(3)^2,126,126*E(3)^2,126,
126*E(3),126*E(3)^2,126,126*E(3),126*E(3)^2,126,126*E(3),126*E(3)^2,126,
126*E(3),14,14*E(3),14*E(3)^2,14,14*E(3),14*E(3)^2,14*E(3),14*E(3)^2,14,
14*E(3),14*E(3)^2,14,14*E(3)^2,14,14*E(3),14*E(3)^2,14,14*E(3),-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,
-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2
,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2
,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2
,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2
,2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[228,2]],[189,189*E(3),189*E(3)^2,189,189*E(3),189*E(3)^2,189,
189*E(3),189*E(3)^2,189,189*E(3),189*E(3)^2,189*E(3),189*E(3)^2,189,189*E(3),
189*E(3)^2,189,189*E(3),189*E(3)^2,189,189*E(3),189*E(3)^2,189,189*E(3)^2,189,
189*E(3),189*E(3)^2,189,189*E(3),189*E(3)^2,189,189*E(3),189*E(3)^2,189,
189*E(3),-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,
27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5
,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5*E(3),
5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3)^2,5,
5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),1,E(3),E(3)^2,
E(3),E(3)^2,1,E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)
,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[230,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3),315*E(3)^2,315,315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),11,11*E(3),11*E(3)^2,11,11*E(3),11*E(3)^2,11*E(3),11*E(3)^2,11,
11*E(3),11*E(3)^2,11,11*E(3)^2,11,11*E(3),11*E(3)^2,11,11*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,
18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-1,-E(3),-E(3)^2,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2
,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3)],
[GALOIS,[232,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3),315*E(3)^2,315,315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5*E(3),-5*E(3)^2,-5,
-5*E(3),-5*E(3)^2,-5,-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,
18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3
,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),-1,-E(3),-E(3)^2,
-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2
,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[234,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3),315*E(3)^2,315,315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5*E(3),-5*E(3)^2,-5,
-5*E(3),-5*E(3)^2,-5,-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,
18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3
,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),-1,-E(3),-E(3)^2,
-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2
,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),4*E(3)^2,4,
4*E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)
,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[236,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630*E(3),630*E(3)^2,630,630*E(3),
630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2
,6,6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),
-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45*E(3),-45*E(3)^2
,-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45,
-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),
-45*E(3)^2,-45,-45*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),-2,
-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3)],
[GALOIS,[238,2]],[720,720*E(3),720*E(3)^2,720,720*E(3),720*E(3)^2,720,
720*E(3),720*E(3)^2,720,720*E(3),720*E(3)^2,720*E(3),720*E(3)^2,720,720*E(3),
720*E(3)^2,720,720*E(3),720*E(3)^2,720,720*E(3),720*E(3)^2,720,720*E(3)^2,720,
720*E(3),720*E(3)^2,720,720*E(3),720*E(3)^2,720,720*E(3),720*E(3)^2,720,
720*E(3),16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16*E(3),16*E(3)^2,16,
16*E(3),16*E(3)^2,16,16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,
18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)
,-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)
,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0],
[GALOIS,[240,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729*E(3),729*E(3)^2,729,729*E(3),
729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2
,9,9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,
-3,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3
,-3*E(3),-3*E(3)^2,-3,-3*E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[242,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756*E(3),756*E(3)^2,756,756*E(3),
756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12*E(3),-12*E(3)^2,
-12,-12*E(3),-12*E(3)^2,-12,-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),27
,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,
27*E(3),27*E(3)^2,27,27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,
27*E(3),27*E(3)^2,27,27*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,
-4*E(3),-4*E(3)^2,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,
-4,-4*E(3),-4*E(3)^2,-4,-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4
,-4*E(3),-4*E(3)^2,-4,-4*E(3),0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2
,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[244,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945*E(3),945*E(3)^2,945,945*E(3),
945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15*E(3),-15*E(3)^2,
-15,-15*E(3),-15*E(3)^2,-15,-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),
-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),
-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,
E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,
-3,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3
,-3*E(3),-3*E(3)^2,-3,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3)
,E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)],
[GALOIS,[246,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),-840*E(3),840,-840*E(3)^2,
840*E(3),-840,840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,
840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8*E(3),8,
-8*E(3)^2,8*E(3),-8,8*E(3)^2,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),-8,12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,
-12*E(3),-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,
12*E(3),-12,12*E(3)^2,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,
-12*E(3),12,-12*E(3)^2,12*E(3),-12,0,0,0,0,0,0,0,0,0,0,0,0,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,
4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),
4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0],
[GALOIS,[248,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),-840,
840*E(3)^2,-840*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8,8*E(3)^2,
-8*E(3),8,-8*E(3)^2,8*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,
-12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),
12,-12*E(3)^2,12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2
,4*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2
,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],
[GALOIS,[250,2]],[84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,-84*E(3),84,-84*E(3)^2,
84*E(3),-84,84*E(3)^2,-84*E(3),-84*E(3),84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,
-84*E(3),84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,84*E(3)^2,-84*E(3),84,-84*E(3)^2,
84*E(3),-84,84*E(3)^2,-84*E(3),84,-84*E(3)^2,84*E(3),-84,4,-4*E(3)^2,4*E(3),-4
,4*E(3)^2,-4*E(3),-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2
,-15*E(3),15,-15*E(3)^2,15*E(3),15*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,
15*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,-15*E(3)^2,15*E(3),-15,15*E(3)^2,
-15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,-15*E(3),15,0,0,0,0,0,0,0,0,0,0,0
,0,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),
-6,0,0,0,0,4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,
4*E(3)^2,-4*E(3),-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2
,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),
-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1],
[GALOIS,[252,2]],[384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),384,
-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),-384*E(3),384,-384*E(3)^2,
384*E(3),-384,384*E(3)^2,-384*E(3),384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,
384*E(3)^2,-384*E(3),384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),384,
-384*E(3)^2,384*E(3),-384,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,-24*E(3)^2,
24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),
-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),
-24,24*E(3)^2,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),
24,-24*E(3)^2,24*E(3),-24,0,0,0,0,0,0,0,0,0,0,0,0,12*E(3)^2,-12*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),
-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[254,2]],[84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,-84*E(3),84,-84*E(3)^2,
84*E(3),-84,84*E(3)^2,-84*E(3),-84,84*E(3)^2,-84*E(3),84,-84*E(3)^2,84*E(3),
-84,84*E(3)^2,-84*E(3),84,-84*E(3)^2,84*E(3),84,-84*E(3)^2,84*E(3),-84,
84*E(3)^2,-84*E(3),84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,-84*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,15*E(3),-15,
15*E(3)^2,-15*E(3),15,-15*E(3)^2,15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,
-15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,-15*E(3),-15,15*E(3)^2,-15*E(3),
15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,15*E(3),6,-6*E(3)^2
,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3)
,-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
-4*E(3),4,-4*E(3)^2,4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2
,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3)],
[GALOIS,[256,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),-126*E(3),126,-126*E(3)^2,
126*E(3),-126,126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,
126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),10*E(3)
,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,-10*E(3)^2,10*E(3),-10,10*E(3)^2,
-10*E(3),10,18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3)
,-18,18*E(3)^2,-18*E(3),-18*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),
18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),
-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,0,0,0,0,0,0,0,0,0,0,0,0,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2],
[GALOIS,[258,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630*E(3),630,-630*E(3)^2,
630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,
630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),18*E(3)
,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,-18*E(3)^2,18*E(3),-18,18*E(3)^2,
-18*E(3),18,9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
9*E(3)^2,-9*E(3),-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,
9*E(3),-9,9*E(3)^2,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),-9,0,0,0,0,0,0,0,0,0,0,0,0,-9*E(3)^2,9*E(3),-9,9*E(3)^2,
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,0,0,0,0,2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),
3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),
3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1],
[GALOIS,[260,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630*E(3),630,-630*E(3)^2,
630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,
630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,9,
-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
0,0,0,0,0,0,0,0,0,0,0,0,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,
9*E(3),-9,9*E(3)^2,-9*E(3),9,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(4),2*E(12)^11,
-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,
-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,
2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1],
[GALOIS,[262,5]],
[GALOIS,[262,7]],
[GALOIS,[262,11]],[420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),420,
-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),-420*E(3),420,-420*E(3)^2,
420*E(3),-420,420*E(3)^2,-420*E(3),420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,
420*E(3)^2,-420*E(3),420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),420,
-420*E(3)^2,420*E(3),-420,-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),12*E(3)
,-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,-12*E(3)^2,12*E(3),-12,12*E(3)^2,
-12*E(3),12,-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,21*E(3),-21,21*E(3)^2,
-21*E(3),21,-21*E(3)^2,21*E(3),21*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,
21*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,-21*E(3)^2,21*E(3),-21,21*E(3)^2,
-21*E(3),21,-21*E(3)^2,21*E(3),-21,21*E(3)^2,-21*E(3),21,0,0,0,0,0,0,0,0,0,0,0
,0,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,
-12*E(3)^2,12*E(3),-12,0,0,0,0,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,
4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3),3,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1],
[GALOIS,[266,2]],[210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),210,
-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),-210*E(3),210,-210*E(3)^2,
210*E(3),-210,210*E(3)^2,-210*E(3),210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,
210*E(3)^2,-210*E(3),210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),210,
-210*E(3)^2,210*E(3),-210,-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6*E(3),-6,
6*E(3)^2,-6*E(3),6,-6*E(3)^2,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-24,
24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,
24*E(3),24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,
-24*E(3),24,-24*E(3)^2,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2
,24*E(3),-24,24*E(3)^2,-24*E(3),24,0,0,0,0,0,0,0,0,0,0,0,0,-3*E(3)^2,3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,0,0,0,0,6,-6*E(3)^2
,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3),6,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),
-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0],
[GALOIS,[268,2]],[336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),336,
-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),-336*E(3),336,-336*E(3)^2,
336*E(3),-336,336*E(3)^2,-336*E(3),336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,
336*E(3)^2,-336*E(3),336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),336,
-336*E(3)^2,336*E(3),-336,16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),
-16*E(3),16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,16*E(3)^2,-16*E(3),16,-16*E(3)^2,
16*E(3),-16,-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6
,6*E(3)^2,-6*E(3),6,0,0,0,0,0,0,0,0,0,0,0,0,6*E(3)^2,-6*E(3),6,-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[270,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),-840*E(3),840,-840*E(3)^2,
840*E(3),-840,840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,
840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8*E(3),8,
-8*E(3)^2,8*E(3),-8,8*E(3)^2,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),-8,-42,
42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2,
42*E(3),42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),-42,42*E(3)^2,
-42*E(3),42,-42*E(3)^2,-42*E(3)^2,42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2
,42*E(3),-42,42*E(3)^2,-42*E(3),42,0,0,0,0,0,0,0,0,0,0,0,0,-3*E(3)^2,3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[272,2]],[120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),120,
-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),-120*E(3),120,-120*E(3)^2,
120*E(3),-120,120*E(3)^2,-120*E(3),120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,
120*E(3)^2,-120*E(3),120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),120,
-120*E(3)^2,120*E(3),-120,-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),8*E(3),-8,
8*E(3)^2,-8*E(3),8,-8*E(3)^2,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),8,-6,
6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),
6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
0,0,0,0,0,0,0,0,0,0,0,0,15*E(3)^2,-15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2
,-15*E(3),15,-15*E(3)^2,15*E(3),-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,2*E(3)^2,-2*E(3)
,2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2
,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[274,2]],[270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,
-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),-270*E(3),270,-270*E(3)^2,
270*E(3),-270,270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,
270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,
-270*E(3)^2,270*E(3),-270,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3),6,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,
-27*E(3),-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,
27*E(3),-27,27*E(3)^2,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,
-27*E(3),27,-27*E(3)^2,27*E(3),-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,
-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(7)^3-E(7)^5-E(7)^6,
E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,
-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,
E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,
-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1],
[GALOIS,[276,2]],
[GALOIS,[276,10]],
[GALOIS,[276,5]],[6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),
-6,6*E(3)^2,-6*E(3),-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2
,6*E(3),-6,6*E(3)^2,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),-6,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-3,3*E(3)^2,-3*E(3)
,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3*E(3),-3,3*E(3)^2,
-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,-3*E(3)^2,3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,0,0,0,0,0,0,0,0,0,0
,0,0,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,
3*E(3),-3,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1],
[GALOIS,[280,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,
126*E(3)^2,-126*E(3),-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),10,
-10*E(3)^2,10*E(3),-10,10*E(3)^2,-10*E(3),-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2
,10*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),
-18,18*E(3)^2,-18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,
18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,
-18*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),9,-9*E(3)^2,9*E(3),-9,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2
,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3)],
[GALOIS,[282,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,
630*E(3)^2,-630*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),18,
-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2
,18*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2
,-9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
9*E(3)^2,-9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3)],
[GALOIS,[284,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,
630*E(3)^2,-630*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3)
,-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),9,-9*E(3)^2,9*E(3)
,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),-9,9*E(3)^2,
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9,-9*E(3)^2,
9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),-9,9*E(3)^2,
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3)
,2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3)
,2,-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,
2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,
2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,
2*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3)],
[GALOIS,[286,5]],
[GALOIS,[286,7]],
[GALOIS,[286,11]],[420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),420,
-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),-420,420*E(3)^2,-420*E(3),420,
-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),420,-420*E(3)^2,420*E(3),420,
-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),420,-420*E(3)^2,420*E(3),-420,
420*E(3)^2,-420*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2
,12*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,21*E(3),-21,21*E(3)^2,-21*E(3),
21,-21*E(3)^2,21*E(3),21,-21*E(3)^2,21*E(3),-21,21*E(3)^2,-21*E(3),21,
-21*E(3)^2,21*E(3),-21,21*E(3)^2,-21*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2
,21*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,21*E(3),12,-12*E(3)^2,12*E(3),
-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
-4*E(3),4,-4*E(3)^2,4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
-4*E(3),4,-4*E(3)^2,4*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),
3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),
-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),
3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2
,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3)],
[GALOIS,[290,2]],[210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),210,
-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),-210,210*E(3)^2,-210*E(3),210,
-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),210,-210*E(3)^2,210*E(3),210,
-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),210,-210*E(3)^2,210*E(3),-210,
210*E(3)^2,-210*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3)
,-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-24,24*E(3)^2,
-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),24
,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2
,-24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),
24,-24*E(3)^2,24*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,
-3*E(3),3,-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-6*E(3)^2,6*E(3),
-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,-6*E(3)
,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),
-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[292,2]],[336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),336,
-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),-336,336*E(3)^2,-336*E(3),336,
-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),336,-336*E(3)^2,336*E(3),336,
-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),336,-336*E(3)^2,336*E(3),-336,
336*E(3)^2,-336*E(3),16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),-16,
16*E(3)^2,-16*E(3),16,-16*E(3)^2,16*E(3),16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,
-16*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,
6*E(3)^2,-6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,
6*E(3)^2,-6*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0],
[GALOIS,[294,2]],[120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),120,
-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),-120,120*E(3)^2,-120*E(3),120,
-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),120,-120*E(3)^2,120*E(3),120,
-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),120,-120*E(3)^2,120*E(3),-120,
120*E(3)^2,-120*E(3),-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),8,-8*E(3)^2,8*E(3)
,-8,8*E(3)^2,-8*E(3),-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),15,
-15*E(3)^2,15*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,
-15*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0],
[GALOIS,[296,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),-840,
840*E(3)^2,-840*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8,8*E(3)^2,
-8*E(3),8,-8*E(3)^2,8*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-42,
42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2,
42*E(3),42,-42*E(3)^2,42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),-42
,42*E(3)^2,-42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),-42,42*E(3)^2
,-42*E(3),42,-42*E(3)^2,42*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[298,2]],[6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),
-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3)
,6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),
-6,6*E(3)^2,-6*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-3,3*E(3)^2,-3*E(3)
,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),
-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3)
,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),
-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3)],
[GALOIS,[300,2]],[384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),384,
-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),-384,384*E(3)^2,-384*E(3),384,
-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),384,-384*E(3)^2,384*E(3),384,
-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),384,-384*E(3)^2,384*E(3),-384,
384*E(3)^2,-384*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,-24*E(3)^2,24*E(3)
,-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),-24,
24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,
24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24
,24*E(3)^2,-24*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2
,12*E(3),-12,12*E(3)^2,-12*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),
1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],
[GALOIS,[302,2]],[270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,
-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),-270,270*E(3)^2,-270*E(3),270,
-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),270,
-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),-270,
270*E(3)^2,-270*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,
-27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),
27,-27*E(3)^2,27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3)
,2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3)],
[GALOIS,[304,2]],
[GALOIS,[304,10]],
[GALOIS,[304,5]],[270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,
-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),-270*E(3)^2,270*E(3),-270,
270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,
270*E(3),-270,270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,
-270*E(3),270,-270*E(3)^2,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,
-27*E(3),-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,
27*E(3)^2,-27*E(3),27,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27
,27*E(3)^2,-27*E(3),27,-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(7)^3-E(7)^5-E(7)^6,
E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,
-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,
E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,
-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[308,2]],
[GALOIS,[308,10]],
[GALOIS,[308,5]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),-126*E(3)^2,126*E(3),-126,
126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
126*E(3),-126,126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,
-126*E(3),126,-126*E(3)^2,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),
10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),-10,-10*E(3),10,-10*E(3)^2,10*E(3),
-10,10*E(3)^2,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),-9,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2
,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-4,4*E(3)^2,-4*E(3),
4,-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,-4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[312,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),-126*E(3)^2,126*E(3),-126,
126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
126*E(3),-126,126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,
-126*E(3),126,-126*E(3)^2,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),
10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),-10,-10*E(3),10,-10*E(3)^2,10*E(3),
-10,10*E(3)^2,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),-9,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2
,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,2,-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[314,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630*E(3)^2,630*E(3),-630,
630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,
-630*E(3),630,-630*E(3)^2,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),
18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,-18*E(3),18,-18*E(3)^2,18*E(3),
-18,18*E(3)^2,36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),36,-36*E(3)^2,
36*E(3),-36,36*E(3)^2,-36*E(3),-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),36,
-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),36,36*E(3),-36,36*E(3)^2,-36*E(3),36
,-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),36,-36*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2],
[GALOIS,[316,2]],[90,-90*E(3)^2,90*E(3),-90,90*E(3)^2,-90*E(3),90,-90*E(3)^2,
90*E(3),-90,90*E(3)^2,-90*E(3),-90*E(3)^2,90*E(3),-90,90*E(3)^2,-90*E(3),90,
-90*E(3)^2,90*E(3),-90,90*E(3)^2,-90*E(3),90,90*E(3),-90,90*E(3)^2,-90*E(3),90
,-90*E(3)^2,90*E(3),-90,90*E(3)^2,-90*E(3),90,-90*E(3)^2,2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2
,-18*E(3),18,-18*E(3)^2,18*E(3),18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,
18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,-18*E(3),18,-18*E(3)^2,18*E(3),
-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2,-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[318,2]],[720,-720*E(3)^2,720*E(3),-720,720*E(3)^2,-720*E(3),720,
-720*E(3)^2,720*E(3),-720,720*E(3)^2,-720*E(3),-720*E(3)^2,720*E(3),-720,
720*E(3)^2,-720*E(3),720,-720*E(3)^2,720*E(3),-720,720*E(3)^2,-720*E(3),720,
720*E(3),-720,720*E(3)^2,-720*E(3),720,-720*E(3)^2,720*E(3),-720,720*E(3)^2,
-720*E(3),720,-720*E(3)^2,16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),
-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),16,16*E(3),-16,16*E(3)^2,-16*E(3),16
,-16*E(3)^2,18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3)
,-18,18*E(3)^2,-18*E(3),-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),18,
-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),18,18*E(3),-18,18*E(3)^2,-18*E(3),18
,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[320,2]],[504,-504*E(3)^2,504*E(3),-504,504*E(3)^2,-504*E(3),504,
-504*E(3)^2,504*E(3),-504,504*E(3)^2,-504*E(3),-504*E(3)^2,504*E(3),-504,
504*E(3)^2,-504*E(3),504,-504*E(3)^2,504*E(3),-504,504*E(3)^2,-504*E(3),504,
504*E(3),-504,504*E(3)^2,-504*E(3),504,-504*E(3)^2,504*E(3),-504,504*E(3)^2,
-504*E(3),504,-504*E(3)^2,-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),8*E(3)^2,
-8*E(3),8,-8*E(3)^2,8*E(3),-8,-8*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-36,
36*E(3)^2,-36*E(3),36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),36,-36*E(3)^2,
36*E(3),36*E(3)^2,-36*E(3),36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),36,
-36*E(3)^2,36*E(3),-36,-36*E(3),36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),
36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,4*E(3),-4,
4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[322,2]],[1260,-1260*E(3)^2,1260*E(3),-1260,1260*E(3)^2,-1260*E(3),
1260,-1260*E(3)^2,1260*E(3),-1260,1260*E(3)^2,-1260*E(3),-1260*E(3)^2,
1260*E(3),-1260,1260*E(3)^2,-1260*E(3),1260,-1260*E(3)^2,1260*E(3),-1260,
1260*E(3)^2,-1260*E(3),1260,1260*E(3),-1260,1260*E(3)^2,-1260*E(3),1260,
-1260*E(3)^2,1260*E(3),-1260,1260*E(3)^2,-1260*E(3),1260,-1260*E(3)^2,-4,
4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,
-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),
-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2
,4*E(3),-4,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3)
,1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[324,2]],[540,-540*E(3)^2,540*E(3),-540,540*E(3)^2,-540*E(3),540,
-540*E(3)^2,540*E(3),-540,540*E(3)^2,-540*E(3),-540*E(3)^2,540*E(3),-540,
540*E(3)^2,-540*E(3),540,-540*E(3)^2,540*E(3),-540,540*E(3)^2,-540*E(3),540,
540*E(3),-540,540*E(3)^2,-540*E(3),540,-540*E(3)^2,540*E(3),-540,540*E(3)^2,
-540*E(3),540,-540*E(3)^2,12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,12*E(3),-12,12*E(3)^2,-12*E(3),12
,-12*E(3)^2,-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,
-27*E(3),27,-27*E(3)^2,27*E(3),27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,
27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,-27*E(3),27,-27*E(3)^2,27*E(3),
-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,-3*E(3),3,-3*E(3)^2
,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2],
[GALOIS,[326,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),-126*E(3)^2,126*E(3),-126,
126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
126*E(3),-126,126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,
-126*E(3),126,-126*E(3)^2,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,-9,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,0,0,0,0,0,0,0,0,0,1
,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,
2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,
2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,
-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,-2*E(4),-2*E(12)^7,2*E(4),-2*E(12)^11,
2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,-2*E(4),
2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2],
[GALOIS,[328,5]],
[GALOIS,[328,7]],
[GALOIS,[328,11]],[120,-120*E(12)^7,-120*E(3)^2,120*E(4),120*E(3),
-120*E(12)^11,-120,120*E(12)^7,120*E(3)^2,-120*E(4),-120*E(3),120*E(12)^11,
120*E(12)^11,120,-120*E(12)^7,-120*E(3)^2,120*E(4),120*E(3),-120*E(12)^11,-120
,120*E(12)^7,120*E(3)^2,-120*E(4),-120*E(3),-120*E(3),120*E(12)^11,120,
-120*E(12)^7,-120*E(3)^2,120*E(4),120*E(3),-120*E(12)^11,-120,120*E(12)^7,
120*E(3)^2,-120*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21,-21*E(12)^7,
-21*E(3)^2,21*E(4),21*E(3),-21*E(12)^11,-21,21*E(12)^7,21*E(3)^2,-21*E(4),
-21*E(3),21*E(12)^11,21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,21*E(4),21*E(3),
-21*E(12)^11,-21,21*E(12)^7,21*E(3)^2,-21*E(4),-21*E(3),-21*E(3),21*E(12)^11,
21,-21*E(12)^7,-21*E(3)^2,21*E(4),21*E(3),-21*E(12)^11,-21,21*E(12)^7,
21*E(3)^2,-21*E(4),0,0,0,0,0,0,0,0,0,0,0,0,6*E(3),6*E(12)^11,-6,-6*E(12)^7,
6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),0,0,0,0,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),
-4*E(3),4*E(12)^11,4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11
,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),-4*E(3),4*E(12)^11,4,-4*E(12)^7,
-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4)
,3*E(3),-3*E(12)^11,-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,
-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2
,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,
-E(4),-E(3),E(12)^11,E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
E(12)^7,E(3)^2,-E(4),-E(3),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,-E(4)],
[GALOIS,[332,5]],
[GALOIS,[332,7]],
[GALOIS,[332,11]],[120,-120*E(12)^7,-120*E(3)^2,120*E(4),120*E(3),
-120*E(12)^11,-120,120*E(12)^7,120*E(3)^2,-120*E(4),-120*E(3),120*E(12)^11,
120*E(4),120*E(3),-120*E(12)^11,-120,120*E(12)^7,120*E(3)^2,-120*E(4),
-120*E(3),120*E(12)^11,120,-120*E(12)^7,-120*E(3)^2,-120,120*E(12)^7,
120*E(3)^2,-120*E(4),-120*E(3),120*E(12)^11,120,-120*E(12)^7,-120*E(3)^2,
120*E(4),120*E(3),-120*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21,
-21*E(12)^7,-21*E(3)^2,21*E(4),21*E(3),-21*E(12)^11,-21,21*E(12)^7,21*E(3)^2,
-21*E(4),-21*E(3),21*E(12)^11,21*E(4),21*E(3),-21*E(12)^11,-21,21*E(12)^7,
21*E(3)^2,-21*E(4),-21*E(3),21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,-21,
21*E(12)^7,21*E(3)^2,-21*E(4),-21*E(3),21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,
21*E(4),21*E(3),-21*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),6*E(3),6*E(12)^11,
-6,-6*E(12)^7,6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,
-4*E(4),-4*E(3),4*E(12)^11,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,
-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,-4,4*E(12)^7,4*E(3)^2,
-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7
,-E(3)^2,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3)
,E(12)^11,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11
,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,
2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,
-E(4),-E(3),E(12)^11,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11],
[GALOIS,[336,5]],
[GALOIS,[336,7]],
[GALOIS,[336,11]],[840,-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),
-840*E(12)^11,-840,840*E(12)^7,840*E(3)^2,-840*E(4),-840*E(3),840*E(12)^11,
840*E(12)^11,840,-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),-840*E(12)^11,-840
,840*E(12)^7,840*E(3)^2,-840*E(4),-840*E(3),-840*E(3),840*E(12)^11,840,
-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),-840*E(12)^11,-840,840*E(12)^7,
840*E(3)^2,-840*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-15,15*E(12)^7,
15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,15,-15*E(12)^7,-15*E(3)^2,15*E(4),
15*E(3),-15*E(12)^11,-15*E(12)^11,-15,15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),
15*E(12)^11,15,-15*E(12)^7,-15*E(3)^2,15*E(4),15*E(3),15*E(3),-15*E(12)^11,-15
,15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,15,-15*E(12)^7,-15*E(3)^2,
15*E(4),0,0,0,0,0,0,0,0,0,0,0,0,-12*E(3),-12*E(12)^11,12,12*E(12)^7,-12*E(3)^2
,-12*E(4),12*E(3),12*E(12)^11,-12,-12*E(12)^7,12*E(3)^2,12*E(4),0,0,0,0,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),
4*E(3),-4*E(12)^11,-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),
4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),4*E(3),-4*E(12)^11,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),
-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4)],
[GALOIS,[340,5]],
[GALOIS,[340,7]],
[GALOIS,[340,11]],[840,-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),
-840*E(12)^11,-840,840*E(12)^7,840*E(3)^2,-840*E(4),-840*E(3),840*E(12)^11,
840*E(4),840*E(3),-840*E(12)^11,-840,840*E(12)^7,840*E(3)^2,-840*E(4),
-840*E(3),840*E(12)^11,840,-840*E(12)^7,-840*E(3)^2,-840,840*E(12)^7,
840*E(3)^2,-840*E(4),-840*E(3),840*E(12)^11,840,-840*E(12)^7,-840*E(3)^2,
840*E(4),840*E(3),-840*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-15,
15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,15,-15*E(12)^7,-15*E(3)^2,
15*E(4),15*E(3),-15*E(12)^11,-15*E(4),-15*E(3),15*E(12)^11,15,-15*E(12)^7,
-15*E(3)^2,15*E(4),15*E(3),-15*E(12)^11,-15,15*E(12)^7,15*E(3)^2,15,
-15*E(12)^7,-15*E(3)^2,15*E(4),15*E(3),-15*E(12)^11,-15,15*E(12)^7,15*E(3)^2,
-15*E(4),-15*E(3),15*E(12)^11,-12,-12*E(12)^7,12*E(3)^2,12*E(4),-12*E(3),
-12*E(12)^11,12,12*E(12)^7,-12*E(3)^2,-12*E(4),12*E(3),12*E(12)^11,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4*E(4),-4*E(3),4*E(12)^11,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),
-4*E(3),4*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,
3*E(3)^2,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,
3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,
-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2
,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2
,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11],
[GALOIS,[344,5]],
[GALOIS,[344,7]],
[GALOIS,[344,11]],[504,-504*E(12)^7,-504*E(3)^2,504*E(4),504*E(3),
-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,
504*E(12)^11,504,-504*E(12)^7,-504*E(3)^2,504*E(4),504*E(3),-504*E(12)^11,-504
,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),-504*E(3),504*E(12)^11,504,
-504*E(12)^7,-504*E(3)^2,504*E(4),504*E(3),-504*E(12)^11,-504,504*E(12)^7,
504*E(3)^2,-504*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,9*E(12)^7,9*E(3)^2
,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),9*E(3),-9*E(12)^11,
-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,
-9*E(3)^2,9*E(4),9*E(3),9*E(3),-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,-9*E(4),
-9*E(3),9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),0,0,0,0,0,0,0,0,0,0,0,0,
-18*E(3),-18*E(12)^11,18,18*E(12)^7,-18*E(3)^2,-18*E(4),18*E(3),18*E(12)^11,
-18,-18*E(12)^7,18*E(3)^2,18*E(4),0,0,0,0,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3)
,-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4*E(12)^11,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),
-4*E(3),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4
,4*E(12)^7,4*E(3)^2,-4*E(4),0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,
-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),3,-3*E(12)^7,-3*E(3)^2,
3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,
3*E(3)^2,-3*E(4),-3*E(3),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),
3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4)],
[GALOIS,[348,5]],
[GALOIS,[348,7]],
[GALOIS,[348,11]],[216,-216*E(12)^7,-216*E(3)^2,216*E(4),216*E(3),
-216*E(12)^11,-216,216*E(12)^7,216*E(3)^2,-216*E(4),-216*E(3),216*E(12)^11,
216*E(12)^11,216,-216*E(12)^7,-216*E(3)^2,216*E(4),216*E(3),-216*E(12)^11,-216
,216*E(12)^7,216*E(3)^2,-216*E(4),-216*E(3),-216*E(3),216*E(12)^11,216,
-216*E(12)^7,-216*E(3)^2,216*E(4),216*E(3),-216*E(12)^11,-216,216*E(12)^7,
216*E(3)^2,-216*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27,27*E(12)^7,
27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),
27*E(3),-27*E(12)^11,-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),
27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),27*E(3),-27*E(12)^11,-27
,27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,
27*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(12)^7,
-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),
4*E(12)^11,4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,
4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),0,0,0,0,0,0,0,0,0,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4)
,3*E(3),-3*E(12)^11,-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),
-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
E(12)^7,E(3)^2,-E(4)],
[GALOIS,[352,5]],
[GALOIS,[352,7]],
[GALOIS,[352,11]],[504,-504*E(12)^7,-504*E(3)^2,504*E(4),504*E(3),
-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,
504*E(4),504*E(3),-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),
-504*E(3),504*E(12)^11,504,-504*E(12)^7,-504*E(3)^2,-504,504*E(12)^7,
504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,504,-504*E(12)^7,-504*E(3)^2,
504*E(4),504*E(3),-504*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,
9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),
9*E(3),-9*E(12)^11,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),
9*E(3),-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,9,-9*E(12)^7,-9*E(3)^2,9*E(4),9*E(3),
-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,-18,-18*E(12)^7,
18*E(3)^2,18*E(4),-18*E(3),-18*E(12)^11,18,18*E(12)^7,-18*E(3)^2,-18*E(4),
18*E(3),18*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(12)^7,-4*E(3)^2,
4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,
4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,
-4*E(12)^7,-4*E(3)^2,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,0,0,0,0,0,0,0,0,0,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3)
,E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),
-3*E(3),3*E(12)^11,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),
-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,-3,3*E(12)^7,3*E(3)^2,-3*E(4),
-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,-1,E(12)^7
,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11],
[GALOIS,[356,5]],
[GALOIS,[356,7]],
[GALOIS,[356,11]],[216,-216*E(12)^7,-216*E(3)^2,216*E(4),216*E(3),
-216*E(12)^11,-216,216*E(12)^7,216*E(3)^2,-216*E(4),-216*E(3),216*E(12)^11,
216*E(4),216*E(3),-216*E(12)^11,-216,216*E(12)^7,216*E(3)^2,-216*E(4),
-216*E(3),216*E(12)^11,216,-216*E(12)^7,-216*E(3)^2,-216,216*E(12)^7,
216*E(3)^2,-216*E(4),-216*E(3),216*E(12)^11,216,-216*E(12)^7,-216*E(3)^2,
216*E(4),216*E(3),-216*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27,
27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,
27*E(4),27*E(3),-27*E(12)^11,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,
-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,27,
-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,
-27*E(4),-27*E(3),27*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2
,-4*E(4),-4*E(3),4*E(12)^11,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,
-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,-4,4*E(12)^7,4*E(3)^2,
-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,0,
0,0,0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4)
,-E(3),E(12)^11,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(4),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),
-3*E(3),3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),
E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),
E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11],
[GALOIS,[360,5]],
[GALOIS,[360,7]],
[GALOIS,[360,11]],[216,-216*E(12)^7,-216*E(3)^2,216*E(4),216*E(3),
-216*E(12)^11,-216,216*E(12)^7,216*E(3)^2,-216*E(4),-216*E(3),216*E(12)^11,
216*E(12)^7,216*E(3)^2,-216*E(4),-216*E(3),216*E(12)^11,216,-216*E(12)^7,
-216*E(3)^2,216*E(4),216*E(3),-216*E(12)^11,-216,-216*E(3)^2,216*E(4),216*E(3)
,-216*E(12)^11,-216,216*E(12)^7,216*E(3)^2,-216*E(4),-216*E(3),216*E(12)^11,
216,-216*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27,27*E(12)^7,27*E(3)^2,
-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),
-27*E(12)^11,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,
27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,27*E(3)^2,-27*E(4),
-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,
-27,27*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),
-4*E(3),4*E(12)^11,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,
-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,0,0,0,0,0,0,0,0,0,1
,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4)
,3*E(3),-3*E(12)^11,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,E(3)^2,
-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,-1,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),
E(3),-E(12)^11,-1,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7],
[GALOIS,[364,5]],
[GALOIS,[364,7]],
[GALOIS,[364,11]],[84,-84*E(12)^7,-84*E(3)^2,84*E(4),84*E(3),-84*E(12)^11,-84
,84*E(12)^7,84*E(3)^2,-84*E(4),-84*E(3),84*E(12)^11,84*E(4),84*E(3),
-84*E(12)^11,-84,84*E(12)^7,84*E(3)^2,-84*E(4),-84*E(3),84*E(12)^11,84,
-84*E(12)^7,-84*E(3)^2,-84,84*E(12)^7,84*E(3)^2,-84*E(4),-84*E(3),84*E(12)^11,
84,-84*E(12)^7,-84*E(3)^2,84*E(4),84*E(3),-84*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,-15,15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,15,
-15*E(12)^7,-15*E(3)^2,15*E(4),15*E(3),-15*E(12)^11,-15*E(4),-15*E(3),
15*E(12)^11,15,-15*E(12)^7,-15*E(3)^2,15*E(4),15*E(3),-15*E(12)^11,-15,
15*E(12)^7,15*E(3)^2,15,-15*E(12)^7,-15*E(3)^2,15*E(4),15*E(3),-15*E(12)^11,
-15,15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,6,6*E(12)^7,-6*E(3)^2,
-6*E(4),6*E(3),6*E(12)^11,-6,-6*E(12)^7,6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11
,-2,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2*E(4),2*E(3),-2*E(12)^11,-2
,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),
2*E(3),-2*E(12)^11,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,
3*E(3)^2,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,
3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,
E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7
,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(4),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11],
[GALOIS,[368,5]],
[GALOIS,[368,7]],
[GALOIS,[368,11]],[420,-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),
-420*E(12)^11,-420,420*E(12)^7,420*E(3)^2,-420*E(4),-420*E(3),420*E(12)^11,
420*E(12)^11,420,-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),-420*E(12)^11,-420
,420*E(12)^7,420*E(3)^2,-420*E(4),-420*E(3),-420*E(3),420*E(12)^11,420,
-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),-420*E(12)^11,-420,420*E(12)^7,
420*E(3)^2,-420*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,33,-33*E(12)^7,
-33*E(3)^2,33*E(4),33*E(3),-33*E(12)^11,-33,33*E(12)^7,33*E(3)^2,-33*E(4),
-33*E(3),33*E(12)^11,33*E(12)^11,33,-33*E(12)^7,-33*E(3)^2,33*E(4),33*E(3),
-33*E(12)^11,-33,33*E(12)^7,33*E(3)^2,-33*E(4),-33*E(3),-33*E(3),33*E(12)^11,
33,-33*E(12)^7,-33*E(3)^2,33*E(4),33*E(3),-33*E(12)^11,-33,33*E(12)^7,
33*E(3)^2,-33*E(4),0,0,0,0,0,0,0,0,0,0,0,0,-6*E(3),-6*E(12)^11,6,6*E(12)^7,
-6*E(3)^2,-6*E(4),6*E(3),6*E(12)^11,-6,-6*E(12)^7,6*E(3)^2,6*E(4),0,0,0,0,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),
-2*E(3),2*E(12)^11,2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11
,-2,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),-2*E(3),2*E(12)^11,2,-2*E(12)^7,
-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4)
,3*E(3),-3*E(12)^11,-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,
E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,
E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,
-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4)],
[GALOIS,[372,5]],
[GALOIS,[372,7]],
[GALOIS,[372,11]],[420,-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),
-420*E(12)^11,-420,420*E(12)^7,420*E(3)^2,-420*E(4),-420*E(3),420*E(12)^11,
420*E(4),420*E(3),-420*E(12)^11,-420,420*E(12)^7,420*E(3)^2,-420*E(4),
-420*E(3),420*E(12)^11,420,-420*E(12)^7,-420*E(3)^2,-420,420*E(12)^7,
420*E(3)^2,-420*E(4),-420*E(3),420*E(12)^11,420,-420*E(12)^7,-420*E(3)^2,
420*E(4),420*E(3),-420*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-21,
21*E(12)^7,21*E(3)^2,-21*E(4),-21*E(3),21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,
21*E(4),21*E(3),-21*E(12)^11,-21*E(4),-21*E(3),21*E(12)^11,21,-21*E(12)^7,
-21*E(3)^2,21*E(4),21*E(3),-21*E(12)^11,-21,21*E(12)^7,21*E(3)^2,21,
-21*E(12)^7,-21*E(3)^2,21*E(4),21*E(3),-21*E(12)^11,-21,21*E(12)^7,21*E(3)^2,
-21*E(4),-21*E(3),21*E(12)^11,12,12*E(12)^7,-12*E(3)^2,-12*E(4),12*E(3),
12*E(12)^11,-12,-12*E(12)^7,12*E(3)^2,12*E(4),-12*E(3),-12*E(12)^11,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2*E(4),2*E(3),-2*E(12)^11,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),
2*E(3),-2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),
-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3*E(4),3*E(3),
-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,
1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,
-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2
,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3)
,E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11],
[GALOIS,[376,5]],
[GALOIS,[376,7]],
[GALOIS,[376,11]],[756,-756*E(12)^7,-756*E(3)^2,756*E(4),756*E(3),
-756*E(12)^11,-756,756*E(12)^7,756*E(3)^2,-756*E(4),-756*E(3),756*E(12)^11,
756*E(12)^7,756*E(3)^2,-756*E(4),-756*E(3),756*E(12)^11,756,-756*E(12)^7,
-756*E(3)^2,756*E(4),756*E(3),-756*E(12)^11,-756,-756*E(3)^2,756*E(4),756*E(3)
,-756*E(12)^11,-756,756*E(12)^7,756*E(3)^2,-756*E(4),-756*E(3),756*E(12)^11,
756,-756*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,-27*E(12)^7,-27*E(3)^2
,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),
27*E(12)^11,27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,
-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,-27*E(3)^2,27*E(4),27*E(3),
-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,
-27*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),
-2*E(3),2*E(12)^11,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,
-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,0,0,0,0,0,0,0,0,0,1
,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4)
,-3*E(3),3*E(12)^11,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7
,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3
,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-E(4),-E(12)^4+E(12)^7,
E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1
,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7]
,
[GALOIS,[380,5]],
[GALOIS,[380,7]],
[GALOIS,[380,11]],[756,-756*E(12)^7,-756*E(3)^2,756*E(4),756*E(3),
-756*E(12)^11,-756,756*E(12)^7,756*E(3)^2,-756*E(4),-756*E(3),756*E(12)^11,
756*E(12)^11,756,-756*E(12)^7,-756*E(3)^2,756*E(4),756*E(3),-756*E(12)^11,-756
,756*E(12)^7,756*E(3)^2,-756*E(4),-756*E(3),-756*E(3),756*E(12)^11,756,
-756*E(12)^7,-756*E(3)^2,756*E(4),756*E(3),-756*E(12)^11,-756,756*E(12)^7,
756*E(3)^2,-756*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,-27*E(12)^7,
-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,-27*E(4),
-27*E(3),27*E(12)^11,27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),
-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),-27*E(3),27*E(12)^11,
27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,
27*E(3)^2,-27*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),
-2*E(3),2*E(12)^11,2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11
,-2,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),-2*E(3),2*E(12)^11,2,-2*E(12)^7,
-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),0,0,0,0,0,0,
0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,
-E(4),-E(3),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,
3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),
3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-E(4),
-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,
1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,
-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^4+E(12)^7,E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4)],
[GALOIS,[384,5]],
[GALOIS,[384,7]],
[GALOIS,[384,11]],[84,-84*E(12)^7,-84*E(3)^2,84*E(4),84*E(3),-84*E(12)^11,-84
,84*E(12)^7,84*E(3)^2,-84*E(4),-84*E(3),84*E(12)^11,84*E(12)^11,84,-84*E(12)^7
,-84*E(3)^2,84*E(4),84*E(3),-84*E(12)^11,-84,84*E(12)^7,84*E(3)^2,-84*E(4),
-84*E(3),-84*E(3),84*E(12)^11,84,-84*E(12)^7,-84*E(3)^2,84*E(4),84*E(3),
-84*E(12)^11,-84,84*E(12)^7,84*E(3)^2,-84*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-15,15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,15,-15*E(12)^7,
-15*E(3)^2,15*E(4),15*E(3),-15*E(12)^11,-15*E(12)^11,-15,15*E(12)^7,15*E(3)^2,
-15*E(4),-15*E(3),15*E(12)^11,15,-15*E(12)^7,-15*E(3)^2,15*E(4),15*E(3),
15*E(3),-15*E(12)^11,-15,15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,15
,-15*E(12)^7,-15*E(3)^2,15*E(4),0,0,0,0,0,0,0,0,0,0,0,0,6*E(3),6*E(12)^11,-6,
-6*E(12)^7,6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),0
,0,0,0,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),
-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),-2*E(3),2*E(12)^11,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),0
,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),
3*E(3),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,
E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1+E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4)],
[GALOIS,[388,5]],
[GALOIS,[388,7]],
[GALOIS,[388,11]],[840,-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),
-840*E(12)^11,-840,840*E(12)^7,840*E(3)^2,-840*E(4),-840*E(3),840*E(12)^11,
840*E(12)^11,840,-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),-840*E(12)^11,-840
,840*E(12)^7,840*E(3)^2,-840*E(4),-840*E(3),-840*E(3),840*E(12)^11,840,
-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),-840*E(12)^11,-840,840*E(12)^7,
840*E(3)^2,-840*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,-12*E(12)^7,
-12*E(3)^2,12*E(4),12*E(3),-12*E(12)^11,-12,12*E(12)^7,12*E(3)^2,-12*E(4),
-12*E(3),12*E(12)^11,12*E(12)^11,12,-12*E(12)^7,-12*E(3)^2,12*E(4),12*E(3),
-12*E(12)^11,-12,12*E(12)^7,12*E(3)^2,-12*E(4),-12*E(3),-12*E(3),12*E(12)^11,
12,-12*E(12)^7,-12*E(3)^2,12*E(4),12*E(3),-12*E(12)^11,-12,12*E(12)^7,
12*E(3)^2,-12*E(4),0,0,0,0,0,0,0,0,0,0,0,0,6*E(3),6*E(12)^11,-6,-6*E(12)^7,
6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),0,0,0,0,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),
4*E(3),-4*E(12)^11,-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),
4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),4*E(3),-4*E(12)^11,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7
,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),
2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),-2*E(3),2*E(12)^11,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4)],
[GALOIS,[392,5]],
[GALOIS,[392,7]],
[GALOIS,[392,11]],[384,-384*E(12)^7,-384*E(3)^2,384*E(4),384*E(3),
-384*E(12)^11,-384,384*E(12)^7,384*E(3)^2,-384*E(4),-384*E(3),384*E(12)^11,
384*E(12)^11,384,-384*E(12)^7,-384*E(3)^2,384*E(4),384*E(3),-384*E(12)^11,-384
,384*E(12)^7,384*E(3)^2,-384*E(4),-384*E(3),-384*E(3),384*E(12)^11,384,
-384*E(12)^7,-384*E(3)^2,384*E(4),384*E(3),-384*E(12)^11,-384,384*E(12)^7,
384*E(3)^2,-384*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,-24*E(12)^7,
-24*E(3)^2,24*E(4),24*E(3),-24*E(12)^11,-24,24*E(12)^7,24*E(3)^2,-24*E(4),
-24*E(3),24*E(12)^11,24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,24*E(4),24*E(3),
-24*E(12)^11,-24,24*E(12)^7,24*E(3)^2,-24*E(4),-24*E(3),-24*E(3),24*E(12)^11,
24,-24*E(12)^7,-24*E(3)^2,24*E(4),24*E(3),-24*E(12)^11,-24,24*E(12)^7,
24*E(3)^2,-24*E(4),0,0,0,0,0,0,0,0,0,0,0,0,12*E(3),12*E(12)^11,-12,-12*E(12)^7
,12*E(3)^2,12*E(4),-12*E(3),-12*E(12)^11,12,12*E(12)^7,-12*E(3)^2,-12*E(4),0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2
,E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,
2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2
,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[396,5]],
[GALOIS,[396,7]],
[GALOIS,[396,11]],[420,-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),
-420*E(12)^11,-420,420*E(12)^7,420*E(3)^2,-420*E(4),-420*E(3),420*E(12)^11,
420*E(12)^11,420,-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),-420*E(12)^11,-420
,420*E(12)^7,420*E(3)^2,-420*E(4),-420*E(3),-420*E(3),420*E(12)^11,420,
-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),-420*E(12)^11,-420,420*E(12)^7,
420*E(3)^2,-420*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-21,21*E(12)^7,
21*E(3)^2,-21*E(4),-21*E(3),21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,21*E(4),
21*E(3),-21*E(12)^11,-21*E(12)^11,-21,21*E(12)^7,21*E(3)^2,-21*E(4),-21*E(3),
21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,21*E(4),21*E(3),21*E(3),-21*E(12)^11,-21
,21*E(12)^7,21*E(3)^2,-21*E(4),-21*E(3),21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,
21*E(4),0,0,0,0,0,0,0,0,0,0,0,0,12*E(3),12*E(12)^11,-12,-12*E(12)^7,12*E(3)^2,
12*E(4),-12*E(3),-12*E(12)^11,12,12*E(12)^7,-12*E(3)^2,-12*E(4),0,0,0,0,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),
-2*E(3),2*E(12)^11,2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11
,-2,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),-2*E(3),2*E(12)^11,2,-2*E(12)^7,
-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4)
,-3*E(3),3*E(12)^11,3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),
-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,
E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,
-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4)],
[GALOIS,[400,5]],
[GALOIS,[400,7]],
[GALOIS,[400,11]],[480,-480*E(12)^7,-480*E(3)^2,480*E(4),480*E(3),
-480*E(12)^11,-480,480*E(12)^7,480*E(3)^2,-480*E(4),-480*E(3),480*E(12)^11,
480*E(12)^11,480,-480*E(12)^7,-480*E(3)^2,480*E(4),480*E(3),-480*E(12)^11,-480
,480*E(12)^7,480*E(3)^2,-480*E(4),-480*E(3),-480*E(3),480*E(12)^11,480,
-480*E(12)^7,-480*E(3)^2,480*E(4),480*E(3),-480*E(12)^11,-480,480*E(12)^7,
480*E(3)^2,-480*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-24,24*E(12)^7,
24*E(3)^2,-24*E(4),-24*E(3),24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,24*E(4),
24*E(3),-24*E(12)^11,-24*E(12)^11,-24,24*E(12)^7,24*E(3)^2,-24*E(4),-24*E(3),
24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,24*E(4),24*E(3),24*E(3),-24*E(12)^11,-24
,24*E(12)^7,24*E(3)^2,-24*E(4),-24*E(3),24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,
24*E(4),0,0,0,0,0,0,0,0,0,0,0,0,6*E(3),6*E(12)^11,-6,-6*E(12)^7,6*E(3)^2,
6*E(4),-6*E(3),-6*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(7)-E(7)^2-E(7)^4
,E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20,
-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,
-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,E(84)^13+E(84)^61+E(84)^73,
E(21)^5+E(21)^17+E(21)^20,-E(28)^11-E(28)^15-E(28)^23,
-E(21)^10-E(21)^13-E(21)^19,E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,
-E(84)^13-E(84)^61-E(84)^73,-E(21)^5-E(21)^17-E(21)^20,
E(28)^11+E(28)^15+E(28)^23,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,
E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20,
-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,-E(7)^3-E(7)^5-E(7)^6,
E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,-E(28)^3-E(28)^19-E(28)^27,
-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,E(7)^3+E(7)^5+E(7)^6,
-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,
E(21)+E(21)^4+E(21)^16,-E(84)^29-E(84)^53-E(84)^65,-E(84)^29-E(84)^53-E(84)^65
,-E(7)^3-E(7)^5-E(7)^6,E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,
-E(28)^3-E(28)^19-E(28)^27,-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,
E(7)^3+E(7)^5+E(7)^6,-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,
E(28)^3+E(28)^19+E(28)^27,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
-E(84)^29-E(84)^53-E(84)^65,-E(7)^3-E(7)^5-E(7)^6,E(84)+E(84)^25+E(84)^37,
E(21)^2+E(21)^8+E(21)^11,-E(28)^3-E(28)^19-E(28)^27,-E(21)-E(21)^4-E(21)^16,
E(84)^29+E(84)^53+E(84)^65,E(7)^3+E(7)^5+E(7)^6,-E(84)-E(84)^25-E(84)^37,
-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11
,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,
-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,
2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2
,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[404,29]],
[GALOIS,[404,43]],
[GALOIS,[404,11]],
[GALOIS,[404,13]],
[GALOIS,[404,5]],
[GALOIS,[404,19]],
[GALOIS,[404,47]],[420,-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),
-420*E(12)^11,-420,420*E(12)^7,420*E(3)^2,-420*E(4),-420*E(3),420*E(12)^11,
420*E(4),420*E(3),-420*E(12)^11,-420,420*E(12)^7,420*E(3)^2,-420*E(4),
-420*E(3),420*E(12)^11,420,-420*E(12)^7,-420*E(3)^2,-420,420*E(12)^7,
420*E(3)^2,-420*E(4),-420*E(3),420*E(12)^11,420,-420*E(12)^7,-420*E(3)^2,
420*E(4),420*E(3),-420*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,33,
-33*E(12)^7,-33*E(3)^2,33*E(4),33*E(3),-33*E(12)^11,-33,33*E(12)^7,33*E(3)^2,
-33*E(4),-33*E(3),33*E(12)^11,33*E(4),33*E(3),-33*E(12)^11,-33,33*E(12)^7,
33*E(3)^2,-33*E(4),-33*E(3),33*E(12)^11,33,-33*E(12)^7,-33*E(3)^2,-33,
33*E(12)^7,33*E(3)^2,-33*E(4),-33*E(3),33*E(12)^11,33,-33*E(12)^7,-33*E(3)^2,
33*E(4),33*E(3),-33*E(12)^11,-6,-6*E(12)^7,6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11
,6,6*E(12)^7,-6*E(3)^2,-6*E(4),6*E(3),6*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),
-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,
E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11],
[GALOIS,[412,5]],
[GALOIS,[412,7]],
[GALOIS,[412,11]],[384,-384*E(12)^7,-384*E(3)^2,384*E(4),384*E(3),
-384*E(12)^11,-384,384*E(12)^7,384*E(3)^2,-384*E(4),-384*E(3),384*E(12)^11,
384*E(4),384*E(3),-384*E(12)^11,-384,384*E(12)^7,384*E(3)^2,-384*E(4),
-384*E(3),384*E(12)^11,384,-384*E(12)^7,-384*E(3)^2,-384,384*E(12)^7,
384*E(3)^2,-384*E(4),-384*E(3),384*E(12)^11,384,-384*E(12)^7,-384*E(3)^2,
384*E(4),384*E(3),-384*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,
-24*E(12)^7,-24*E(3)^2,24*E(4),24*E(3),-24*E(12)^11,-24,24*E(12)^7,24*E(3)^2,
-24*E(4),-24*E(3),24*E(12)^11,24*E(4),24*E(3),-24*E(12)^11,-24,24*E(12)^7,
24*E(3)^2,-24*E(4),-24*E(3),24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,-24,
24*E(12)^7,24*E(3)^2,-24*E(4),-24*E(3),24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,
24*E(4),24*E(3),-24*E(12)^11,12,12*E(12)^7,-12*E(3)^2,-12*E(4),12*E(3),
12*E(12)^11,-12,-12*E(12)^7,12*E(3)^2,12*E(4),-12*E(3),-12*E(12)^11,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[416,5]],
[GALOIS,[416,7]],
[GALOIS,[416,11]],[480,-480*E(12)^7,-480*E(3)^2,480*E(4),480*E(3),
-480*E(12)^11,-480,480*E(12)^7,480*E(3)^2,-480*E(4),-480*E(3),480*E(12)^11,
480*E(4),480*E(3),-480*E(12)^11,-480,480*E(12)^7,480*E(3)^2,-480*E(4),
-480*E(3),480*E(12)^11,480,-480*E(12)^7,-480*E(3)^2,-480,480*E(12)^7,
480*E(3)^2,-480*E(4),-480*E(3),480*E(12)^11,480,-480*E(12)^7,-480*E(3)^2,
480*E(4),480*E(3),-480*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-24,
24*E(12)^7,24*E(3)^2,-24*E(4),-24*E(3),24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,
24*E(4),24*E(3),-24*E(12)^11,-24*E(4),-24*E(3),24*E(12)^11,24,-24*E(12)^7,
-24*E(3)^2,24*E(4),24*E(3),-24*E(12)^11,-24,24*E(12)^7,24*E(3)^2,24,
-24*E(12)^7,-24*E(3)^2,24*E(4),24*E(3),-24*E(12)^11,-24,24*E(12)^7,24*E(3)^2,
-24*E(4),-24*E(3),24*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),6*E(3),6*E(12)^11,
-6,-6*E(12)^7,6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(7)-E(7)^2-E(7)^4,E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20,
-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,
-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,
E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
-E(84)^13-E(84)^61-E(84)^73,-E(21)^5-E(21)^17-E(21)^20,
E(28)^11+E(28)^15+E(28)^23,E(21)^10+E(21)^13+E(21)^19,
-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,E(84)^13+E(84)^61+E(84)^73,
E(21)^5+E(21)^17+E(21)^20,-E(28)^11-E(28)^15-E(28)^23,
-E(21)^10-E(21)^13-E(21)^19,E(84)^5+E(84)^17+E(84)^41,-E(7)^3-E(7)^5-E(7)^6,
E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,-E(28)^3-E(28)^19-E(28)^27,
-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,E(7)^3+E(7)^5+E(7)^6,
-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,
E(21)+E(21)^4+E(21)^16,-E(84)^29-E(84)^53-E(84)^65,-E(28)^3-E(28)^19-E(28)^27,
-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,E(7)^3+E(7)^5+E(7)^6,
-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,
E(21)+E(21)^4+E(21)^16,-E(84)^29-E(84)^53-E(84)^65,-E(7)^3-E(7)^5-E(7)^6,
E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,
E(21)+E(21)^4+E(21)^16,-E(84)^29-E(84)^53-E(84)^65,-E(7)^3-E(7)^5-E(7)^6,
E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,-E(28)^3-E(28)^19-E(28)^27,
-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,
E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,
-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[420,29]],
[GALOIS,[420,43]],
[GALOIS,[420,11]],
[GALOIS,[420,13]],
[GALOIS,[420,5]],
[GALOIS,[420,19]],
[GALOIS,[420,47]],[756,-756*E(12)^7,-756*E(3)^2,756*E(4),756*E(3),
-756*E(12)^11,-756,756*E(12)^7,756*E(3)^2,-756*E(4),-756*E(3),756*E(12)^11,
756*E(4),756*E(3),-756*E(12)^11,-756,756*E(12)^7,756*E(3)^2,-756*E(4),
-756*E(3),756*E(12)^11,756,-756*E(12)^7,-756*E(3)^2,-756,756*E(12)^7,
756*E(3)^2,-756*E(4),-756*E(3),756*E(12)^11,756,-756*E(12)^7,-756*E(3)^2,
756*E(4),756*E(3),-756*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,
-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,
-27*E(4),-27*E(3),27*E(12)^11,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,
27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,-27,
27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,
27*E(4),27*E(3),-27*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,0,
0,0,0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4)
,-E(3),E(12)^11,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3*E(4),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),
3*E(3),-3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11],
[GALOIS,[428,5]],
[GALOIS,[428,7]],
[GALOIS,[428,11]],[840,-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),
-840*E(12)^11,-840,840*E(12)^7,840*E(3)^2,-840*E(4),-840*E(3),840*E(12)^11,
840*E(4),840*E(3),-840*E(12)^11,-840,840*E(12)^7,840*E(3)^2,-840*E(4),
-840*E(3),840*E(12)^11,840,-840*E(12)^7,-840*E(3)^2,-840,840*E(12)^7,
840*E(3)^2,-840*E(4),-840*E(3),840*E(12)^11,840,-840*E(12)^7,-840*E(3)^2,
840*E(4),840*E(3),-840*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,
-12*E(12)^7,-12*E(3)^2,12*E(4),12*E(3),-12*E(12)^11,-12,12*E(12)^7,12*E(3)^2,
-12*E(4),-12*E(3),12*E(12)^11,12*E(4),12*E(3),-12*E(12)^11,-12,12*E(12)^7,
12*E(3)^2,-12*E(4),-12*E(3),12*E(12)^11,12,-12*E(12)^7,-12*E(3)^2,-12,
12*E(12)^7,12*E(3)^2,-12*E(4),-12*E(3),12*E(12)^11,12,-12*E(12)^7,-12*E(3)^2,
12*E(4),12*E(3),-12*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),6*E(3),6*E(12)^11,
-6,-6*E(12)^7,6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,
4*E(4),4*E(3),-4*E(12)^11,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,
4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,4,-4*E(12)^7,-4*E(3)^2,4*E(4),
4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2*E(4),2*E(3),-2*E(12)^11,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),
2*E(3),-2*E(12)^11],
[GALOIS,[432,5]],
[GALOIS,[432,7]],
[GALOIS,[432,11]],[504,-504*E(12)^7,-504*E(3)^2,504*E(4),504*E(3),
-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,
504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,504,-504*E(12)^7,
-504*E(3)^2,504*E(4),504*E(3),-504*E(12)^11,-504,-504*E(3)^2,504*E(4),504*E(3)
,-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,
504,-504*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-36,36*E(12)^7,36*E(3)^2,
-36*E(4),-36*E(3),36*E(12)^11,36,-36*E(12)^7,-36*E(3)^2,36*E(4),36*E(3),
-36*E(12)^11,-36*E(12)^7,-36*E(3)^2,36*E(4),36*E(3),-36*E(12)^11,-36,
36*E(12)^7,36*E(3)^2,-36*E(4),-36*E(3),36*E(12)^11,36,36*E(3)^2,-36*E(4),
-36*E(3),36*E(12)^11,36,-36*E(12)^7,-36*E(3)^2,36*E(4),36*E(3),-36*E(12)^11,
-36,36*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),
-4*E(3),4*E(12)^11,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,
-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,0,0,0,0,0,0,0,0,0,
-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(12)^7
,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),
-2*E(12)^11,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,
2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7],
[GALOIS,[436,5]],
[GALOIS,[436,7]],
[GALOIS,[436,11]],[540,-540*E(12)^7,-540*E(3)^2,540*E(4),540*E(3),
-540*E(12)^11,-540,540*E(12)^7,540*E(3)^2,-540*E(4),-540*E(3),540*E(12)^11,
540*E(12)^7,540*E(3)^2,-540*E(4),-540*E(3),540*E(12)^11,540,-540*E(12)^7,
-540*E(3)^2,540*E(4),540*E(3),-540*E(12)^11,-540,-540*E(3)^2,540*E(4),540*E(3)
,-540*E(12)^11,-540,540*E(12)^7,540*E(3)^2,-540*E(4),-540*E(3),540*E(12)^11,
540,-540*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27,27*E(12)^7,27*E(3)^2,
-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),
-27*E(12)^11,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,
27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,27*E(3)^2,-27*E(4),
-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,
-27,27*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),
2*E(3),-2*E(12)^11,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7
,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),
3*E(3),-3*E(12)^11,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7
,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),
E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,1,-E(12)^7,-E(3)^2
,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,E(12)^7,E(3)^2,
-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,-E(3)^2,E(4),
E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-1-E(4),
-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7],
[GALOIS,[440,5]],
[GALOIS,[440,7]],
[GALOIS,[440,11]],[36,-36*E(12)^7,-36*E(3)^2,36*E(4),36*E(3),-36*E(12)^11,-36
,36*E(12)^7,36*E(3)^2,-36*E(4),-36*E(3),36*E(12)^11,36*E(12)^7,36*E(3)^2,
-36*E(4),-36*E(3),36*E(12)^11,36,-36*E(12)^7,-36*E(3)^2,36*E(4),36*E(3),
-36*E(12)^11,-36,-36*E(3)^2,36*E(4),36*E(3),-36*E(12)^11,-36,36*E(12)^7,
36*E(3)^2,-36*E(4),-36*E(3),36*E(12)^11,36,-36*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,9,-9*E(12)^7,-9*E(3)^2,9*E(4),9*E(3),-9*E(12)^11,-9,9*E(12)^7,
9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),
9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),9*E(3),-9*E(12)^11,-9,-9*E(3)^2,
9*E(4),9*E(3),-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,
-9*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),
-2*E(3),2*E(12)^11,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,
-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,0,0,0,0,0,0,0,0,0,1
,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4)
,3*E(3),-3*E(12)^11,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,-E(3)^2,
E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,
1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-1,E(12)^7],
[GALOIS,[444,5]],
[GALOIS,[444,7]],
[GALOIS,[444,11]],[504,-504*E(12)^7,-504*E(3)^2,504*E(4),504*E(3),
-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,
504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,504,-504*E(12)^7,
-504*E(3)^2,504*E(4),504*E(3),-504*E(12)^11,-504,-504*E(3)^2,504*E(4),504*E(3)
,-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,
504,-504*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,-45*E(12)^7,-45*E(3)^2
,45*E(4),45*E(3),-45*E(12)^11,-45,45*E(12)^7,45*E(3)^2,-45*E(4),-45*E(3),
45*E(12)^11,45*E(12)^7,45*E(3)^2,-45*E(4),-45*E(3),45*E(12)^11,45,-45*E(12)^7,
-45*E(3)^2,45*E(4),45*E(3),-45*E(12)^11,-45,-45*E(3)^2,45*E(4),45*E(3),
-45*E(12)^11,-45,45*E(12)^7,45*E(3)^2,-45*E(4),-45*E(3),45*E(12)^11,45,
-45*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),
-4*E(3),4*E(12)^11,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,
-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,0,0,0,0,0,0,0,0,0,
-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4)
,3*E(3),-3*E(12)^11,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,-E(3)^2,
E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7],
[GALOIS,[448,5]],
[GALOIS,[448,7]],
[GALOIS,[448,11]],[1260,-1260*E(12)^7,-1260*E(3)^2,1260*E(4),1260*E(3),
-1260*E(12)^11,-1260,1260*E(12)^7,1260*E(3)^2,-1260*E(4),-1260*E(3),
1260*E(12)^11,1260*E(12)^7,1260*E(3)^2,-1260*E(4),-1260*E(3),1260*E(12)^11,
1260,-1260*E(12)^7,-1260*E(3)^2,1260*E(4),1260*E(3),-1260*E(12)^11,-1260,
-1260*E(3)^2,1260*E(4),1260*E(3),-1260*E(12)^11,-1260,1260*E(12)^7,1260*E(3)^2
,-1260*E(4),-1260*E(3),1260*E(12)^11,1260,-1260*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-9,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,
-9*E(3)^2,9*E(4),9*E(3),-9*E(12)^11,-9*E(12)^7,-9*E(3)^2,9*E(4),9*E(3),
-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,9*E(3)^2,
-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),9*E(3),-9*E(12)^11,-9
,9*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),
2*E(3),-2*E(12)^11,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7
,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),
-3*E(3),3*E(12)^11,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+E(4),E(12)^4-E(12)^7,
-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),
-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7]
,
[GALOIS,[452,5]],
[GALOIS,[452,7]],
[GALOIS,[452,11]],[360,-360*E(12)^7,-360*E(3)^2,360*E(4),360*E(3),
-360*E(12)^11,-360,360*E(12)^7,360*E(3)^2,-360*E(4),-360*E(3),360*E(12)^11,
360*E(12)^7,360*E(3)^2,-360*E(4),-360*E(3),360*E(12)^11,360,-360*E(12)^7,
-360*E(3)^2,360*E(4),360*E(3),-360*E(12)^11,-360,-360*E(3)^2,360*E(4),360*E(3)
,-360*E(12)^11,-360,360*E(12)^7,360*E(3)^2,-360*E(4),-360*E(3),360*E(12)^11,
360,-360*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9*E(12)^7,-9*E(3)^2,
9*E(4),9*E(3),-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,
9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),
9*E(3),-9*E(12)^11,-9,-9*E(3)^2,9*E(4),9*E(3),-9*E(12)^11,-9,9*E(12)^7,
9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4*E(12)^7,-4*E(3)^2,4*E(4),
4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,4*E(3)^2
,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,
-4,4*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(12)^7,-3*E(3)^2,3*E(4),
3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,3*E(3)^2
,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,
-3,3*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,
E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20,
-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20
,-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,
E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20,
-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
E(7)^3+E(7)^5+E(7)^6,-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,
E(28)^3+E(28)^19+E(28)^27,E(21)+E(21)^4+E(21)^16,-E(84)^29-E(84)^53-E(84)^65,
-E(7)^3-E(7)^5-E(7)^6,E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,
-E(28)^3-E(28)^19-E(28)^27,-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,
E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,-E(28)^3-E(28)^19-E(28)^27,
-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,E(7)^3+E(7)^5+E(7)^6,
-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,
E(21)+E(21)^4+E(21)^16,-E(84)^29-E(84)^53-E(84)^65,-E(7)^3-E(7)^5-E(7)^6,
-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,E(21)+E(21)^4+E(21)^16,
-E(84)^29-E(84)^53-E(84)^65,-E(7)^3-E(7)^5-E(7)^6,E(84)+E(84)^25+E(84)^37,
E(21)^2+E(21)^8+E(21)^11,-E(28)^3-E(28)^19-E(28)^27,-E(21)-E(21)^4-E(21)^16,
E(84)^29+E(84)^53+E(84)^65,E(7)^3+E(7)^5+E(7)^6,-E(84)-E(84)^25-E(84)^37,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-1,E(12)^7],
[GALOIS,[456,29]],
[GALOIS,[456,43]],
[GALOIS,[456,11]],
[GALOIS,[456,13]],
[GALOIS,[456,5]],
[GALOIS,[456,19]],
[GALOIS,[456,47]]],
[
(272,308)(273,309)(274,310)(275,311)(276,312)(277,313)(278,314)(279,315)
(280,316)(281,317)(282,318)(283,319)(284,320)(285,321)(286,322)(287,323)
(288,324)(289,325)(290,326)(291,327)(292,328)(293,329)(294,330)(295,331)
(296,332)(297,333)(298,334)(299,335)(300,336)(301,337)(302,338)(303,339)
(304,340)(305,341)(306,342)(307,343)
,
( 13, 30)( 14, 31)( 15, 32)( 16, 33)( 17, 34)( 18, 35)( 19, 36)( 20, 25)
( 21, 26)( 22, 27)( 23, 28)( 24, 29)( 43, 54)( 44, 49)( 45, 50)( 46, 51)
( 47, 52)( 48, 53)( 67, 84)( 68, 85)( 69, 86)( 70, 87)( 71, 88)( 72, 89)
( 73, 90)( 74, 79)( 75, 80)( 76, 81)( 77, 82)( 78, 83)( 91,111)( 92,112)
( 93,113)( 94,114)( 95,103)( 96,104)( 97,105)( 98,106)( 99,107)(100,108)
(101,109)(102,110)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)
(137,154)(138,143)(139,144)(140,145)(141,146)(142,147)(158,163)(159,161)
(160,162)(176,193)(177,194)(178,195)(179,196)(180,197)(181,198)(182,199)
(183,188)(184,189)(185,190)(186,191)(187,192)(212,229)(213,230)(214,231)
(215,232)(216,233)(217,234)(218,235)(219,224)(220,225)(221,226)(222,227)
(223,228)(236,254)(237,255)(238,256)(239,257)(240,258)(241,259)(242,271)
(243,266)(244,267)(245,268)(246,269)(247,270)(248,261)(249,262)(250,263)
(251,264)(252,265)(253,260)(284,301)(285,302)(286,303)(287,304)(288,305)
(289,306)(290,307)(291,296)(292,297)(293,298)(294,299)(295,300)(320,337)
(321,338)(322,339)(323,340)(324,341)(325,342)(326,343)(327,332)(328,333)
(329,334)(330,335)(331,336)(356,373)(357,374)(358,375)(359,376)(360,377)
(361,378)(362,379)(363,368)(364,369)(365,370)(366,371)(367,372)(380,416)
(381,417)(382,418)(383,419)(384,420)(385,421)(386,422)(387,423)(388,424)
(389,425)(390,426)(391,427)(392,408)(393,409)(394,410)(395,411)(396,412)
(397,413)(398,414)(399,415)(400,404)(401,405)(402,406)(403,407)(440,457)
(441,458)(442,459)(443,460)(444,461)(445,462)(446,463)(447,452)(448,453)
(449,454)(450,455)(451,456)
,
(  2,  6)(  3, 11)(  5,  9)(  8, 12)( 13, 17)( 14, 22)( 16, 20)( 19, 23)
( 25, 33)( 27, 31)( 28, 36)( 30, 34)( 38, 42)( 39, 41)( 43, 47)( 44, 46)
( 49, 51)( 52, 54)( 56, 60)( 57, 65)( 59, 63)( 62, 66)( 67, 71)( 68, 76)
( 70, 74)( 73, 77)( 79, 87)( 81, 85)( 82, 90)( 84, 88)( 91,111)( 92,104)
( 93,109)( 94,114)( 95,107)( 96,112)( 97,105)( 98,110)( 99,103)(100,108)
(101,113)(102,106)(120,124)(121,129)(123,127)(126,130)(131,135)(132,140)
(134,138)(137,141)(143,151)(145,149)(146,154)(148,152)(156,157)(158,159)
(161,163)(165,169)(166,174)(168,172)(171,175)(176,180)(177,185)(179,183)
(182,186)(188,196)(190,194)(191,199)(193,197)(201,205)(202,210)(204,208)
(207,211)(212,216)(213,221)(215,219)(218,222)(224,232)(226,230)(227,235)
(229,233)(236,254)(237,259)(238,258)(239,257)(240,256)(241,255)(242,264)
(243,263)(244,262)(245,261)(246,260)(247,265)(248,268)(249,267)(250,266)
(251,271)(252,270)(253,269)(273,277)(274,282)(276,280)(279,283)(284,288)
(285,293)(287,291)(290,294)(296,304)(298,302)(299,307)(301,305)(309,313)
(310,318)(312,316)(315,319)(320,324)(321,329)(323,327)(326,330)(332,340)
(334,338)(335,343)(337,341)(345,349)(346,354)(348,352)(351,355)(356,360)
(357,365)(359,363)(362,366)(368,376)(370,374)(371,379)(373,377)(380,408)
(381,413)(382,406)(383,411)(384,404)(385,409)(386,414)(387,407)(388,412)
(389,405)(390,410)(391,415)(392,416)(393,421)(394,426)(395,419)(396,424)
(397,417)(398,422)(399,427)(400,420)(401,425)(402,418)(403,423)(429,433)
(430,438)(432,436)(435,439)(440,444)(441,449)(443,447)(446,450)(452,460)
(454,458)(455,463)(457,461)
,
(  2,  8)(  4, 10)(  6, 12)( 13, 19)( 15, 21)( 17, 23)( 26, 32)( 28, 34)
( 30, 36)( 56, 62)( 58, 64)( 60, 66)( 67, 73)( 69, 75)( 71, 77)( 80, 86)
( 82, 88)( 84, 90)( 92, 98)( 94,100)( 96,102)(104,110)(106,112)(108,114)
(116,118)(120,126)(122,128)(124,130)(131,137)(133,139)(135,141)(144,150)
(146,152)(148,154)(165,171)(167,173)(169,175)(176,182)(178,184)(180,186)
(189,195)(191,197)(193,199)(201,207)(203,209)(205,211)(212,218)(214,220)
(216,222)(225,231)(227,233)(229,235)(273,279)(275,281)(277,283)(284,290)
(286,292)(288,294)(297,303)(299,305)(301,307)(309,315)(311,317)(313,319)
(320,326)(322,328)(324,330)(333,339)(335,341)(337,343)(344,353)(345,348)
(346,355)(347,350)(349,352)(351,354)(356,359)(357,366)(358,361)(360,363)
(362,365)(364,367)(368,377)(369,372)(370,379)(371,374)(373,376)(375,378)
(381,387)(383,389)(385,391)(393,399)(395,401)(397,403)(405,411)(407,413)
(409,415)(417,423)(419,425)(421,427)(429,435)(431,437)(433,439)(440,446)
(442,448)(444,450)(453,459)(455,461)(457,463)
,
(  2, 15)(  3, 29)(  5, 18)(  6, 32)(  8, 21)(  9, 35)( 11, 24)( 12, 26)
( 14, 27)( 17, 30)( 20, 33)( 23, 36)( 38, 45)( 39, 53)( 41, 48)( 42, 50)
( 44, 51)( 47, 54)( 56, 69)( 57, 83)( 59, 72)( 60, 86)( 62, 75)( 63, 89)
( 65, 78)( 66, 80)( 68, 81)( 71, 84)( 74, 87)( 77, 90)( 92, 96)( 93,101)
( 95, 99)( 98,102)(120,133)(121,147)(123,136)(124,150)(126,139)(127,153)
(129,142)(130,144)(132,145)(135,148)(138,151)(141,154)(156,160)(157,162)
(159,163)(165,178)(166,192)(168,181)(169,195)(171,184)(172,198)(174,187)
(175,189)(177,190)(180,193)(183,196)(186,199)(201,214)(202,228)(204,217)
(205,231)(207,220)(208,234)(210,223)(211,225)(213,226)(216,229)(219,232)
(222,235)(237,244)(238,252)(240,247)(241,249)(243,250)(246,253)(255,262)
(256,270)(258,265)(259,267)(261,268)(264,271)(273,286)(274,300)(276,289)
(277,303)(279,292)(280,306)(282,295)(283,297)(285,298)(288,301)(291,304)
(294,307)(309,322)(310,336)(312,325)(313,339)(315,328)(316,342)(318,331)
(319,333)(321,334)(324,337)(327,340)(330,343)(345,358)(346,372)(348,361)
(349,375)(351,364)(352,378)(354,367)(355,369)(357,370)(360,373)(363,376)
(366,379)(380,392)(381,397)(382,402)(383,395)(384,400)(385,393)(386,398)
(387,403)(388,396)(389,401)(390,394)(391,399)(429,442)(430,456)(432,445)
(433,459)(435,448)(436,462)(438,451)(439,453)(441,454)(444,457)(447,460)
(450,463)
]);
ALF("(3^2x4).U4(3)","6_2.U4(3)",[1,4,1,4,1,4,1,4,1,4,1,4,2,5,2,5,2,5,2,5,
2,5,2,5,3,6,3,6,3,6,3,6,3,6,3,6,7,10,7,10,7,10,8,11,8,11,8,11,9,12,9,12,9,
12,13,16,13,16,13,16,13,16,13,16,13,16,14,17,14,17,14,17,14,17,14,17,14,
17,15,18,15,18,15,18,15,18,15,18,15,18,19,20,19,20,19,20,19,20,19,20,19,
20,21,22,21,22,21,22,21,22,21,22,21,22,23,24,23,24,25,28,25,28,25,28,25,
28,25,28,25,28,26,29,26,29,26,29,26,29,26,29,26,29,27,30,27,30,27,30,27,
30,27,30,27,30,31,31,31,32,32,32,33,33,33,34,37,34,37,34,37,34,37,34,37,
34,37,35,38,35,38,35,38,35,38,35,38,35,38,36,39,36,39,36,39,36,39,36,39,
36,39,40,43,40,43,40,43,40,43,40,43,40,43,41,44,41,44,41,44,41,44,41,44,
41,44,42,45,42,45,42,45,42,45,42,45,42,45,46,49,46,49,46,49,47,50,47,50,
47,50,48,51,48,51,48,51,52,55,52,55,52,55,53,56,53,56,53,56,54,57,54,57,
54,57,58,61,58,61,58,61,58,61,58,61,58,61,59,62,59,62,59,62,59,62,59,62,
59,62,60,63,60,63,60,63,60,63,60,63,60,63,64,67,64,67,64,67,64,67,64,67,
64,67,65,68,65,68,65,68,65,68,65,68,65,68,66,69,66,69,66,69,66,69,66,69,
66,69,70,73,70,73,70,73,70,73,70,73,70,73,71,74,71,74,71,74,71,74,71,74,
71,74,72,75,72,75,72,75,72,75,72,75,72,75,76,77,76,77,76,77,76,77,76,77,
76,77,78,79,78,79,78,79,78,79,78,79,78,79,80,81,80,81,80,81,80,81,80,81,
80,81,82,83,82,83,82,83,82,83,82,83,82,83,84,87,84,87,84,87,84,87,84,87,
84,87,85,88,85,88,85,88,85,88,85,88,85,88,86,89,86,89,86,89,86,89,86,89,
86,89]);
ALF("(3^2x4).U4(3)","12_1.U4(3)",[1,2,3,4,5,6,7,8,9,10,11,12,12,1,2,3,4,5,
6,7,8,9,10,11,11,12,1,2,3,4,5,6,7,8,9,10,13,14,15,16,17,18,18,13,14,15,16,
17,17,18,13,14,15,16,19,20,21,22,23,24,25,26,27,28,29,30,30,19,20,21,22,
23,24,25,26,27,28,29,29,30,19,20,21,22,23,24,25,26,27,28,43,46,45,44,43,
46,45,44,43,46,45,44,35,42,37,32,39,34,41,36,31,38,33,40,47,50,49,48,51,
52,53,54,55,56,57,58,59,60,61,62,62,51,52,53,54,55,56,57,58,59,60,61,61,
62,51,52,53,54,55,56,57,58,59,60,63,64,65,65,63,64,64,65,63,66,67,68,69,
70,71,72,73,74,75,76,77,77,66,67,68,69,70,71,72,73,74,75,76,76,77,66,67,
68,69,70,71,72,73,74,75,78,79,80,81,82,83,84,85,86,87,88,89,89,78,79,80,
81,82,83,84,85,86,87,88,88,89,78,79,80,81,82,83,84,85,86,87,96,97,98,99,
100,101,101,96,97,98,99,100,100,101,96,97,98,99,90,91,92,93,94,95,95,90,
91,92,93,94,94,95,90,91,92,93,102,103,104,105,106,107,108,109,110,111,112,
113,113,102,103,104,105,106,107,108,109,110,111,112,112,113,102,103,104,
105,106,107,108,109,110,111,114,115,116,117,118,119,120,121,122,123,124,
125,125,114,115,116,117,118,119,120,121,122,123,124,124,125,114,115,116,
117,118,119,120,121,122,123,129,130,131,132,133,134,135,136,137,126,127,
128,128,129,130,131,132,133,134,135,136,137,126,127,127,128,129,130,131,
132,133,134,135,136,137,126,166,169,168,167,166,169,168,167,166,169,168,
167,162,165,164,163,162,165,164,163,162,165,164,163,158,153,160,155,150,
157,152,159,154,161,156,151,138,145,140,147,142,149,144,139,146,141,148,
143,170,171,172,173,174,175,176,177,178,179,180,181,181,170,171,172,173,
174,175,176,177,178,179,180,180,181,170,171,172,173,174,175,176,177,178,
179]);
ALF("(3^2x4).U4(3)","12_2.U4(3)",[1,4,7,10,1,4,7,10,1,4,7,10,2,5,8,11,2,5,
8,11,2,5,8,11,3,6,9,12,3,6,9,12,3,6,9,12,13,16,13,16,13,16,14,17,14,17,14,
17,15,18,15,18,15,18,19,22,25,28,19,22,25,28,19,22,25,28,20,23,26,29,20,
23,26,29,20,23,26,29,21,24,27,30,21,24,27,30,21,24,27,30,31,32,33,34,31,
32,33,34,31,32,33,34,35,36,37,38,35,36,37,38,35,36,37,38,39,40,41,42,43,
46,49,52,43,46,49,52,43,46,49,52,44,47,50,53,44,47,50,53,44,47,50,53,45,
48,51,54,45,48,51,54,45,48,51,54,55,55,55,56,56,56,57,57,57,58,61,64,67,
58,61,64,67,58,61,64,67,59,62,65,68,59,62,65,68,59,62,65,68,60,63,66,69,
60,63,66,69,60,63,66,69,70,73,76,79,70,73,76,79,70,73,76,79,71,74,77,80,
71,74,77,80,71,74,77,80,72,75,78,81,72,75,78,81,72,75,78,81,82,85,82,85,
82,85,83,86,83,86,83,86,84,87,84,87,84,87,88,91,88,91,88,91,89,92,89,92,
89,92,90,93,90,93,90,93,94,97,100,103,94,97,100,103,94,97,100,103,95,98,
101,104,95,98,101,104,95,98,101,104,96,99,102,105,96,99,102,105,96,99,102,
105,106,109,112,115,106,109,112,115,106,109,112,115,107,110,113,116,107,
110,113,116,107,110,113,116,108,111,114,117,108,111,114,117,108,111,114,
117,118,121,124,127,118,121,124,127,118,121,124,127,119,122,125,128,119,
122,125,128,119,122,125,128,120,123,126,129,120,123,126,129,120,123,126,
129,130,131,132,133,130,131,132,133,130,131,132,133,134,135,136,137,134,
135,136,137,134,135,136,137,138,139,140,141,138,139,140,141,138,139,140,
141,142,143,144,145,142,143,144,145,142,143,144,145,146,149,152,155,146,
149,152,155,146,149,152,155,147,150,153,156,147,150,153,156,147,150,153,
156,148,151,154,157,148,151,154,157,148,151,154,157]);
ALF("(3^2x4).U4(3)","(3^2x2).U4(3)",[1,2,3,4,5,6,1,2,3,4,5,6,7,8,9,10,11,
12,7,8,9,10,11,12,13,14,15,16,17,18,13,14,15,16,17,18,19,20,21,22,23,24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,37,38,39,40,41,42,
43,44,45,46,47,48,43,44,45,46,47,48,49,50,51,52,53,54,49,50,51,52,53,54,
55,56,57,58,59,60,55,56,57,58,59,60,61,62,63,64,65,66,61,62,63,64,65,66,
67,68,67,68,69,70,71,72,73,74,69,70,71,72,73,74,75,76,77,78,79,80,75,76,
77,78,79,80,81,82,83,84,85,86,81,82,83,84,85,86,87,88,89,90,91,92,93,94,
95,96,97,98,99,100,101,96,97,98,99,100,101,102,103,104,105,106,107,102,
103,104,105,106,107,108,109,110,111,112,113,108,109,110,111,112,113,114,
115,116,117,118,119,114,115,116,117,118,119,120,121,122,123,124,125,120,
121,122,123,124,125,126,127,128,129,130,131,126,127,128,129,130,131,132,
133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,
151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,
169,170,171,172,173,168,169,170,171,172,173,174,175,176,177,178,179,174,
175,176,177,178,179,180,181,182,183,184,185,180,181,182,183,184,185,186,
187,188,189,190,191,186,187,188,189,190,191,192,193,194,195,196,197,192,
193,194,195,196,197,198,199,200,201,202,203,198,199,200,201,202,203,204,
205,206,207,208,209,204,205,206,207,208,209,210,211,212,213,214,215,210,
211,212,213,214,215,216,217,218,219,220,221,216,217,218,219,220,221,222,
223,224,225,226,227,222,223,224,225,226,227,228,229,230,231,232,233,228,
229,230,231,232,233,234,235,236,237,238,239,234,235,236,237,238,239,240,
241,242,243,244,245,240,241,242,243,244,245,246,247,248,249,250,251,246,
247,248,249,250,251,252,253,254,255,256,257,252,253,254,255,256,257,258,
259,260,261,262,263,258,259,260,261,262,263]);

# In principle, the following table could be encoded as a projective table
# of 3_2.U4(3).2_3', w.r.t. the centre of order 6,
# but the ordering of the classes of 6_2.U4(3).2_3' does not fit into the
# required scheme;
# in essence, the reason for this is that `ConstructProj' does not access
# factor fusions between intermediate tables and therefore must make certain
# assumptions about the ordering of classes.
MOT("(3^2x2).U4(3).2_3'",
[
"origin: ATLAS of finite groups"
],
[117573120,117573120,117573120,117573120,117573120,117573120,58786560,58786560
,58786560,58786560,58786560,58786560,41472,41472,41472,41472,41472,41472,20736
,20736,20736,20736,20736,20736,209952,209952,209952,209952,209952,209952,
104976,104976,104976,104976,104976,104976,5832,5832,5832,5832,5832,5832,324,
324,3456,3456,3456,3456,3456,3456,1728,1728,1728,1728,1728,1728,288,288,288,
144,144,144,180,180,180,180,180,180,90,90,90,90,90,90,2592,2592,2592,2592,2592
,2592,1296,1296,1296,1296,1296,1296,648,648,648,648,648,648,648,648,648,648,
648,648,648,648,648,648,648,648,126,126,126,126,126,126,126,126,126,126,126,
126,126,126,126,126,126,126,144,144,144,144,144,144,144,144,144,162,162,162,
162,162,162,162,162,162,162,162,162,432,432,432,432,432,432,216,216,216,216,
216,216,4320,4320,4320,288,288,288,36,36,576,576,576,576,576,576,96,96,96,48,
48,48,48,48,48,60,60,60,60,60,60,72,72,72,72,72,72,144,144,144,144,144,144,144
,144,144,144,144,144],
[,[1,1,5,5,4,4,8,8,12,12,9,9,1,1,5,5,4,4,8,8,12,12,9,9,25,25,29,29,28,28,32,32
,36,36,33,33,37,37,41,41,40,40,43,43,13,13,17,17,16,16,20,20,24,24,21,21,14,18
,15,19,23,22,63,63,67,67,66,66,70,70,74,74,71,71,25,25,29,29,28,28,32,32,36,36
,33,33,37,37,41,41,40,40,37,37,41,41,40,40,37,37,41,41,40,40,105,105,109,109,
108,108,117,117,121,121,120,120,112,112,116,116,113,113,46,50,47,51,51,55,55,
54,54,138,138,142,142,141,141,132,132,136,136,135,135,75,75,79,79,78,78,82,82,
86,86,83,83,1,5,4,13,17,16,43,43,45,45,49,49,48,48,45,49,48,57,57,59,59,58,58,
63,63,67,67,66,66,75,75,79,79,78,78,144,144,148,148,147,147,144,144,148,148,
147,147],[1,2,2,1,1,2,2,1,1,2,2,1,13,14,14,13,13,14,14,13,13,14,14,13,1,2,2,1,
1,2,2,1,1,2,2,1,1,2,2,1,1,2,1,2,45,46,46,45,45,46,46,45,45,46,46,45,57,57,57,
57,57,57,63,64,64,63,63,64,64,63,63,64,64,63,13,14,14,13,13,14,14,13,13,14,14,
13,13,14,14,13,13,14,14,13,13,14,14,13,13,14,14,13,13,14,105,106,106,105,105,
106,106,105,105,106,106,105,105,106,106,105,105,106,123,123,123,123,123,123,
123,123,123,36,35,35,36,36,35,33,34,34,33,33,34,45,46,46,45,45,46,46,45,45,46,
46,45,156,156,156,159,159,159,156,156,165,164,164,165,165,164,170,170,170,174,
173,173,174,174,173,180,179,179,180,180,179,159,159,159,159,159,159,165,164,
164,165,165,164,165,164,164,165,165,164],,[1,2,6,5,4,3,7,8,12,11,10,9,13,14,18
,17,16,15,19,20,24,23,22,21,25,26,30,29,28,27,31,32,36,35,34,33,37,38,42,41,40
,39,43,44,45,46,50,49,48,47,51,52,56,55,54,53,57,59,58,60,62,61,1,2,6,5,4,3,7,
8,12,11,10,9,75,76,80,79,78,77,81,82,86,85,84,83,87,88,92,91,90,89,100,99,103,
104,101,102,94,93,97,98,95,96,105,106,110,109,108,107,111,112,116,115,114,113,
117,118,122,121,120,119,123,125,124,127,126,130,131,128,129,138,139,143,142,
141,140,132,133,137,136,135,134,144,145,149,148,147,146,150,151,155,154,153,
152,156,158,157,159,161,160,162,163,165,164,168,169,166,167,170,172,171,174,
173,177,178,175,176,156,156,158,158,157,157,186,185,189,190,187,188,192,191,
195,196,193,194,198,197,201,202,199,200],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41
,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67
,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93
,94,95,96,97,98,99,100,101,102,103,104,1,2,3,4,5,6,7,8,9,10,11,12,8,7,10,9,12,
11,123,124,125,127,126,129,128,131,130,132,133,134,135,136,137,138,139,140,141
,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,
161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,180,
179,182,181,184,183,185,186,187,188,189,190,191,192,193,194,195,196,197,198,
199,200,201,202]],
0,
[(111,118)(112,117)(113,120)(114,119)(115,122)(116,121),(126,127)(128,129)
(130,131),(162,163),(179,180)(181,182)(183,184),(185,186)(187,188)(189,190)
(191,197)(192,198)(193,199)(194,200)(195,201)(196,202),(164,165)(166,167)(168,
169)(173,174)(175,176)(177,178)(191,198)(192,197)(193,200)(194,199)(195,202)
(196,201),(  3,  6)(  4,  5)(  9, 12)( 10, 11)( 15, 18)( 16, 17)( 21, 24)( 22,
 23)( 27, 30)( 28, 29)( 33, 36)( 34, 35)( 39, 42)( 40, 41)( 47, 50)( 48, 49)
( 53, 56)( 54, 55)( 58, 59)( 61, 62)( 65, 68)( 66, 67)( 71, 74)( 72, 73)
( 77, 80)( 78, 79)( 83, 86)( 84, 85)( 89, 92)( 90, 91)( 93,100)( 94, 99)
( 95,103)( 96,104)( 97,101)( 98,102)(107,110)(108,109)(113,116)(114,115)
(119,122)(120,121)(124,125)(128,131)(129,130)(132,138)(133,139)(134,143)
(135,142)(136,141)(137,140)(146,149)(147,148)(152,155)(153,154)(157,158)
(160,161)(166,169)(167,168)(171,172)(175,178)(176,177)(181,184)(182,183)
(187,190)(188,189)(193,196)(194,195)(199,202)(200,201)],
["ConstructProj",[["3^2.U4(3).2_3'",[]],["(3^2x2).U4(3).2_3'",[]]]]);
ALF("(3^2x2).U4(3).2_3'","3^2.U4(3).2_3'",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,
8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,20,20,
21,21,22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,30,31,32,33,34,35,35,
36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,45,46,46,47,47,
48,48,49,49,50,50,51,51,52,52,53,53,54,54,55,55,56,56,57,57,58,58,59,59,
60,60,61,61,62,62,63,63,64,64,65,66,67,68,68,69,69,70,70,71,71,72,72,73,
73,74,74,75,75,76,76,77,77,78,78,79,79,80,80,81,81,82,82,83,84,85,86,87,
88,89,89,90,90,91,91,92,92,93,94,95,96,96,97,97,98,98,99,99,100,100,101,
101,102,102,103,103,104,104,105,105,106,106,107,107,108,108,109,109,110,
110]);
ALF("(3^2x2).U4(3).2_3'","6_2.U4(3).2_3'",[1,4,4,1,1,4,2,3,3,2,2,3,5,8,8,
5,5,8,6,7,7,6,6,7,9,12,12,9,9,12,10,11,11,10,10,11,13,14,14,13,13,14,15,
16,17,20,20,17,17,20,18,19,19,18,18,19,21,21,21,22,22,22,23,26,26,23,23,
26,24,25,25,24,24,25,27,30,30,27,27,30,28,29,29,28,28,29,31,34,34,31,31,
34,32,35,35,32,32,35,33,36,36,33,33,36,37,40,40,37,37,40,38,41,41,38,38,
41,39,42,42,39,39,42,43,43,43,44,45,45,44,44,45,46,47,47,46,46,47,48,49,
49,48,48,49,50,53,53,50,50,53,51,52,52,51,51,52,54,54,54,55,55,55,56,57,
58,59,59,58,58,59,60,60,60,61,62,62,61,61,62,63,64,64,63,63,64,65,66,66,
65,65,66,67,68,68,67,67,68,69,70,70,69,69,70]);
ALF("(3^2x2).U4(3).2_3'","3_2.U4(3).2_3'",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,
3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,9,9,9,9,9,9,10,
10,10,10,10,10,11,11,11,12,12,12,13,13,13,13,13,13,14,14,14,14,14,14,15,
15,15,15,15,15,16,16,16,16,16,16,17,17,17,17,17,17,18,18,18,18,18,18,19,
19,19,19,19,19,20,20,20,20,20,20,21,21,21,21,21,21,22,22,22,22,22,22,23,
23,23,24,24,24,24,24,24,25,25,25,25,25,25,26,26,26,26,26,26,27,27,27,27,
27,27,28,28,28,28,28,28,29,29,29,30,30,30,31,31,32,32,32,32,32,32,33,33,
33,34,34,34,34,34,34,35,35,35,35,35,35,36,36,36,36,36,36,37,37,37,37,37,
37,38,38,38,38,38,38]);
ALF("(3^2x2).U4(3).2_3'","2.U4(3).2_3",[1,2,2,1,1,2,2,1,1,2,2,1,3,4,4,3,3,
4,4,3,3,4,4,3,5,6,6,5,5,6,6,5,5,6,6,5,7,8,8,7,7,8,9,10,11,12,12,11,11,12,
12,11,11,12,12,11,13,13,13,13,13,13,14,15,15,14,14,15,15,14,14,15,15,14,
16,17,17,16,16,17,17,16,16,17,17,16,18,19,19,18,18,19,19,18,18,19,19,18,
18,19,19,18,18,19,20,21,21,20,20,21,21,20,20,21,21,20,20,21,21,20,20,21,
22,22,22,22,22,22,22,22,22,23,24,24,23,23,24,25,26,26,25,25,26,27,28,28,
27,27,28,28,27,27,28,28,27,29,29,29,30,30,30,31,32,33,34,34,33,33,34,35,
35,35,36,37,37,36,36,37,38,39,39,38,38,39,40,41,41,40,40,41,42,43,43,42,
42,43,44,45,45,44,44,45]);

MOT("Isoclinic((3^2x2).U4(3).2_3')",
[
"2nd maximal subgroup of 6.Suz,\n",
"isoclinic group of the (3^2x2).U4(3).2_3' given in the ATLAS"
],
0,
0,
0,
[(111,118)(112,117)(113,120)(114,119)(115,122)(116,121),(126,127)(128,129)
(130,131),(162,163),(179,180)(181,182)(183,184),(185,186)(187,188)(189,190)
(191,197)(192,198)(193,199)(194,200)(195,201)(196,202),(164,165)(166,167)(168,
169)(173,174)(175,176)(177,178)(191,198)(192,197)(193,200)(194,199)(195,202)
(196,201),(3,6)(4,5)(9,12)(10,11)(15,18)(16,17)(21,24)(22,23)(27,30)(28,29)
(33,36)(34,35)(39,42)(40,41)(47,50)(48,49)(53,56)(54,55)(58,59)(61,62)(65,68)
(66,67)(71,74)(72,73)(77,80)(78,79)(83,86)(84,85)(89,92)(90,91)(93,100)(94,99)
(95,103)(96,104)(97,101)(98,102)(107,110)(108,109)(113,116)(114,115)(119,122)
(120,121)(124,125)(128,131)(129,130)(132,138)(133,139)(134,143)(135,142)(136,
141)(137,140)(146,149)(147,148)(152,155)(153,154)(157,158)(160,161)(166,169)
(167,168)(171,172)(175,178)(176,177)(181,184)(182,183)(187,190)(188,189)(193,
196)(194,195)(199,202)(200,201)],
["ConstructIsoclinic",[["(3^2x2).U4(3).2_3'"]]]);
ALF("Isoclinic((3^2x2).U4(3).2_3')","3_2.U4(3).2_3'",[1,1,1,1,1,1,2,2,2,2,
2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,9,9,9,
9,9,9,10,10,10,10,10,10,11,11,11,12,12,12,13,13,13,13,13,13,14,14,14,14,
14,14,15,15,15,15,15,15,16,16,16,16,16,16,17,17,17,17,17,17,18,18,18,18,
18,18,19,19,19,19,19,19,20,20,20,20,20,20,21,21,21,21,21,21,22,22,22,22,
22,22,23,23,23,24,24,24,24,24,24,25,25,25,25,25,25,26,26,26,26,26,26,27,
27,27,27,27,27,28,28,28,28,28,28,29,29,29,30,30,30,31,31,32,32,32,32,32,
32,33,33,33,34,34,34,34,34,34,35,35,35,35,35,35,36,36,36,36,36,36,37,37,
37,37,37,37,38,38,38,38,38,38]);
ALF("Isoclinic((3^2x2).U4(3).2_3')","3^2.U4(3).2_3'",[1,1,2,2,3,3,4,4,5,5,
6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,
19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,30,31,32,33,
34,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,45,46,
46,47,47,48,48,49,49,50,50,51,51,52,52,53,53,54,54,55,55,56,56,57,57,58,
58,59,59,60,60,61,61,62,62,63,63,64,64,65,66,67,68,68,69,69,70,70,71,71,
72,72,73,73,74,74,75,75,76,76,77,77,78,78,79,79,80,80,81,81,82,82,83,84,
85,86,87,88,89,89,90,90,91,91,92,92,93,94,95,96,96,97,97,98,98,99,99,100,
100,101,101,102,102,103,103,104,104,105,105,106,106,107,107,108,108,109,
109,110,110]);
ALF("Isoclinic((3^2x2).U4(3).2_3')","Isoclinic(6_2.U4(3).2_3')",[1,4,4,1,
1,4,2,3,3,2,2,3,5,8,8,5,5,8,6,7,7,6,6,7,9,12,12,9,9,12,10,11,11,10,10,11,
13,14,14,13,13,14,15,16,17,20,20,17,17,20,18,19,19,18,18,19,21,21,21,22,
22,22,23,26,26,23,23,26,24,25,25,24,24,25,27,30,30,27,27,30,28,29,29,28,
28,29,31,34,34,31,31,34,32,35,35,32,32,35,33,36,36,33,33,36,37,40,40,37,
37,40,38,41,41,38,38,41,39,42,42,39,39,42,43,43,43,44,45,45,44,44,45,46,
47,47,46,46,47,48,49,49,48,48,49,50,53,53,50,50,53,51,52,52,51,51,52,54,
54,54,55,55,55,56,57,58,59,59,58,58,59,60,60,60,61,62,62,61,61,62,63,64,
64,63,63,64,65,66,66,65,65,66,67,68,68,67,67,68,69,70,70,69,69,70]);
ALF("Isoclinic((3^2x2).U4(3).2_3')","6.Suz",[1,4,2,5,3,6,19,16,20,17,21,
18,7,10,8,11,9,12,60,57,61,58,62,59,16,19,17,20,18,21,25,22,26,23,27,24,
22,25,23,26,24,27,28,29,33,30,34,31,35,32,127,130,128,131,129,132,39,40,
41,139,140,141,51,54,52,55,53,56,172,169,173,170,174,171,57,60,58,61,59,
62,78,75,79,76,80,77,75,78,76,79,77,80,66,63,67,64,68,65,69,72,70,73,71,
74,82,85,83,86,84,87,196,193,197,194,198,195,199,202,200,203,201,204,88,
89,90,205,208,206,209,207,210,100,103,101,104,102,105,106,109,107,110,108,
111,130,127,131,128,132,129,133,136,134,137,135,138,13,14,15,39,40,41,81,
81,88,88,89,89,90,90,88,89,90,97,97,98,98,99,99,118,118,119,119,120,120,
139,139,140,140,141,141,205,208,206,209,207,210,208,205,209,206,210,207],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);

LIBTABLE.LOADSTATUS.ctounit1:="userloaded";

#############################################################################
##
#E