1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555
|
#############################################################################
##
#W ctounit1.tbl GAP table library Thomas Breuer
##
## This file contains the ordinary character tables of groups related to
## the unitary group $U_4(3)$ of the ATLAS.
##
#H ctbllib history
#H ---------------
#H $Log: ctounit1.tbl,v $
#H Revision 4.47 2012/04/23 16:16:16 gap
#H next step of consolidation:
#H
#H - removed a few unnecessary duplicate tables,
#H and changed some related fusions, names of maxes, table constructions
#H - make sure that duplicate tables arise only via `ConstructPermuted'
#H constructions
#H - added some relative names
#H - added fusions A11.2 -> A12.2, L2(11).2 -> A12.2, D8x2F4(2)'.2 -> B,
#H L2(41) -> M, (A5xA12):2 -> A17,
#H - added maxes of A12.2, L6(2), 2.M22.2
#H - added table of QD16.2,
#H - fixed the syntax of two `ALN' calls
#H TB
#H
#H Revision 4.46 2012/03/28 13:14:00 gap
#H added table of 6_1.U4(3).2_2'
#H TB
#H
#H Revision 4.45 2012/03/12 17:01:48 gap
#H omit the fourth argument of `ConstructV4G'
#H TB
#H
#H Revision 4.44 2012/03/02 08:19:35 gap
#H - added the tables of 2.U4(3).(2^2)_{133},
#H - encode some tables of 2.U4(3).(2^2)_{122} via `ConstructIsoclinic',
#H TB
#H
#H Revision 4.43 2012/01/30 08:32:04 gap
#H removed #H entries from the headers
#H TB
#H
#H Revision 4.42 2011/09/28 14:17:09 gap
#H - removed revision entry and SET_TABLEFILENAME call,
#H - added fusion Isoclinic(2.U4(3).2_1) -> 3^6:2U4(3).2_1
#H TB
#H
#H Revision 4.41 2010/12/01 17:52:14 gap
#H - tomfusion of "U4(3).2_1" needs the permutation (3,4)
#H - fusion U4(3).2_3' -> U4(3).(2^2)_{133} is relative to the fusion
#H U4(3).2_3 -> U4(3).(2^2)_{133} (w.r.t. the automorphism induced by
#H U4(3).D8)
#H - added tables of "(3^2x2).U4(3)" and "(3^2x4).U4(3)"
#H (Eamonn had asked for them)
#H
#H TB
#H
#H Revision 4.40 2010/11/15 16:32:26 gap
#H replaced some fusions to U4(3).2_3 by fusions to U4(3).2_3',
#H added comments
#H TB
#H
#H Revision 4.39 2010/09/15 08:11:28 gap
#H added the fusion 6_2.U4(3).2_3' -> U4(3).2_3',
#H adjusted the mapping between the maxes and the corresponding information
#H in the table of marks of U4(3) and U4(3).(2^2)_{133}
#H TB
#H
#H Revision 4.38 2010/05/05 13:20:09 gap
#H - added many class fusions,
#H - changed several class fusions according to consistency conditions,
#H after systematic checks of consistency
#H - with Brauer tables w.r.t. the restriction of characters,
#H - of subgroup fusions with the corresponding subgroup fusions between
#H proper factors where the factor fusions are stored,
#H - of subgroup fusions from maximal subgroups with subgroup fusions of
#H extensions inside automorphic extensions
#H
#H TB
#H
#H Revision 4.37 2010/01/19 17:05:35 gap
#H added several tables of maximal subgroups of central extensions of
#H simple groups (many of them were contributed by S. Dany)
#H TB
#H
#H Revision 4.36 2009/04/22 12:39:08 gap
#H added missing maxes of He.2, ON.2, HN.2, Fi24, and B
#H TB
#H
#H Revision 4.35 2006/06/07 07:54:27 gap
#H unified ConstructMixed and ConstructMGA (for better programmatic access)
#H TB
#H
#H Revision 4.34 2005/09/14 08:31:28 gap
#H changed fusion 2.U4(3).2_2 -> O7(3) such that the fusion is compatible
#H with 12_1.U4(3).2_2 -> 6.O7(3)
#H TB
#H
#H Revision 4.33 2005/08/10 14:39:55 gap
#H corrected InfoText values of GV4 constructed tables
#H TB
#H
#H Revision 4.32 2004/11/24 15:20:20 gap
#H added missing maxes of U4(3) --Max had asked for them--
#H and their class fusions,
#H fixed construction entry for "(2xA6).2^2",
#H fixed fusion "2.U4(3).2_2' -> U4(3).2_2"
#H TB
#H
#H Revision 4.31 2004/08/31 12:33:34 gap
#H added tables of 4.L2(25).2_3,
#H L2(49).2^2,
#H L2(81).2^2,
#H L2(81).(2x4),
#H 3.L3(4).3.2_2,
#H L3(9).2^2,
#H L4(4).2^2,
#H 2x2^3:L3(2)x2,
#H (2xA6).2^2,
#H 2xL2(11).2,
#H S3xTh,
#H 41:40,
#H 7^(1+4):(3x2.S7),
#H 7xL2(8),
#H (7xL2(8)).3,
#H O7(3)N3A,
#H O8+(3).2_1',
#H O8+(3).2_1'',
#H O8+(3).2_2',
#H O8+(3).(2^2)_{122},
#H S4(9),
#H S4(9).2_i,
#H 2.U4(3).2_2',
#H 2.U4(3).(2^2)_{133},
#H 2.U4(3).D8,
#H 3.U6(2).S3,
#H added fusions 3.A6.2_i -> 3.A6.2^2,
#H L2(49).2_i -> L2(49).2^2,
#H L3(9).2_i -> L3(9).2^2,
#H L4(4).2_i -> L4(4).2^2,
#H G2(3) -> O7(3),
#H L2(17) -> S8(2),
#H 2.L3(4).2_2 -> 2.M22.2
#H 3.L3(4).2_2 -> 3.L3(4).3.2_2
#H 3.L3(4).3 -> 3.L3(4).3.2_2
#H 2^5:S6 -> 2.M22.2
#H O8+(3) -> O8+(3).2_1',
#H O8+(3) -> O8+(3).2_1'',
#H O8+(3) -> O8+(3).2_2',
#H O8+(3) -> O8+(3).(2^2)_{122},
#H O8+(3).2_1 -> O8+(3).(2^2)_{122},
#H O8+(3).2_2 -> O8+(3).(2^2)_{122},
#H 2.U4(3) -> 2.U4(3).2_2',
#H 2.U4(3).2_1 -> 2.U4(3).(2^2)_{133},
#H 2.U4(3).2_2 -> O7(3),
#H 2.U4(3).2_2' -> U4(3).2_2,
#H 2.U4(3).2_3 -> 2.U4(3).(2^2)_{133},
#H 2.U4(3).2_3' -> 2.U4(3).(2^2)_{133},
#H 2.U4(3).4 -> 2.U4(3).D8,
#H 3.U6(2).2 -> 3.U6(2).S3,
#H 3.U6(2).3 -> 3.U6(2).S3,
#H replaced table of psl(3,4):d12 by L3(4).D12,
#H changed table of O8+(3).S4 to a construction table,
#H changed encoding of the table of 12.A6.2_3,
#H added maxes of Sz(8), Sz(8).3,
#H TB
#H
#H Revision 4.30 2004/03/30 08:55:58 gap
#H (name change also in a factor fusion)
#H TB
#H
#H Revision 4.29 2004/03/30 08:05:55 gap
#H unified tables `u4q3:2^2' and `U4(3).(2^2)_{133}'
#H TB
#H
#H Revision 4.28 2004/01/20 10:26:13 gap
#H added several names of the forms `<name>C<class>', `<name>N<class>'
#H TB
#H
#H Revision 4.27 2003/10/06 07:18:17 gap
#H added fusion 2.U4(3).(2^2)_{122} -> 2^2.U4(3).(2^2)_{122}
#H TB
#H
#H Revision 4.26 2003/07/28 15:31:22 gap
#H added some fusions concerning maxes of 6.U6(2)
#H TB
#H
#H Revision 4.25 2003/06/10 16:19:16 gap
#H store in several fusions between character tables to which subgroup number
#H in the table of marks of the supergroup the subgroup belongs
#H (in order to make the commutative diagrams testable)
#H TB
#H
#H Revision 4.24 2003/05/15 17:38:27 gap
#H next step towards the closer connection to the library of tables of marks:
#H added fusions tbl -> tom, adjusted fusions between character tables
#H in order to make the diagrams commute, adjusted orderings of maxes
#H TB
#H
#H Revision 4.23 2003/01/14 17:28:50 gap
#H changed `InfoText' values (for a better programmatic access)
#H and replaced `ConstructDirectProduct' by `ConstructPermuted' where
#H there is only one factor (again better programmatic handling)
#H TB
#H
#H Revision 4.22 2002/10/22 12:44:15 gap
#H added 215 factor fusions for cases <tbl> -> <tbl> / O_{<p>}(<tbl>)
#H (they make it possible to construct <p>-modular Brauer tables
#H for tables of the type [p^n].<fact> where the <p>-modular Brauer table
#H of <fact> is in the library)
#H TB
#H
#H Revision 4.21 2002/10/14 15:20:18 gap
#H added two fusion texts
#H TB
#H
#H Revision 4.20 2002/09/23 15:07:22 gap
#H changed comment of the fusion U4(3).2_2 -> Fi22
#H TB
#H
#H Revision 4.19 2002/09/18 15:22:02 gap
#H changed the `text' components of many fusions,
#H in order to use them as a status information (for evaluation)
#H TB
#H
#H Revision 4.18 2002/08/21 13:53:52 gap
#H removed names of the form `c1m<n>', `c2m<n>', `c3m<n>'
#H TB
#H
#H Revision 4.17 2002/07/12 06:45:57 gap
#H further tidying up: removed `irredinfo' stuff, rearranged constructions
#H TB
#H
#H Revision 4.16 2002/07/08 16:06:57 gap
#H changed `construction' component from function (call) to list of function
#H name and arguments
#H TB
#H
#H Revision 4.15 2001/05/04 16:50:33 gap
#H first revision for ctbllib
#H
#H
#H tbl history (GAP 4)
#H -------------------
#H (Rev. 4.15 of ctbllib coincides with Rev. 4.14 of tbl in GAP 4)
#H
#H RCS file: /gap/CVS/GAP/4.0/tbl/ctounit1.tbl,v
#H Working file: ctounit1.tbl
#H head: 4.14
#H branch:
#H locks: strict
#H access list:
#H symbolic names:
#H GAP4R2: 4.12.0.6
#H GAP4R2PRE2: 4.12.0.4
#H GAP4R2PRE1: 4.12.0.2
#H GAP4R1: 4.6.0.2
#H keyword substitution: kv
#H total revisions: 16; selected revisions: 16
#H description:
#H ----------------------------
#H revision 4.14
#H date: 2000/10/09 17:21:50; author: gap; state: Exp; lines: +45 -44
#H added tables of 3_1.U4(3).2_2' and F3+M9
#H
#H TB
#H ----------------------------
#H revision 4.13
#H date: 2000/05/13 12:15:28; author: gap; state: Exp; lines: +434 -2
#H added some maxes of 6.Suz: [1,2,4,6,9,10,11,14,16]
#H
#H TB
#H ----------------------------
#H revision 4.12
#H date: 1999/10/21 14:15:49; author: gap; state: Exp; lines: +21 -3
#H added many `tomidentifer' and `tomfusion' values, which yields a better
#H interface between `tom' and `tbl';
#H
#H added maxes of McL.2,
#H
#H unified tables `J2.2M4', `2^(2+4):(3x3):2^2', `2^(2+4):(S3xS3)'.
#H
#H TB
#H ----------------------------
#H revision 4.11
#H date: 1999/09/17 14:11:52; author: gap; state: Exp; lines: +127 -69
#H added maxes of 3.Suz.2
#H
#H TB
#H ----------------------------
#H revision 4.10
#H date: 1999/09/14 13:30:12; author: gap; state: Exp; lines: +2 -3
#H added maxes of 3.Suz
#H
#H TB
#H ----------------------------
#H revision 4.9
#H date: 1999/08/31 13:16:16; author: gap; state: Exp; lines: +45 -2
#H added missing tables and fusions of maximal subgroups of Suz.2
#H
#H TB
#H ----------------------------
#H revision 4.8
#H date: 1999/08/23 10:26:59; author: gap; state: Exp; lines: +6 -2
#H unified tables of U3(5).S3 and U3(5).3.2
#H (one CAS table, o ne ATLAS conformal table)
#H
#H TB
#H ----------------------------
#H revision 4.7
#H date: 1999/08/18 13:59:08; author: gap; state: Exp; lines: +73 -2
#H added table of U4(3).(2^2)_{133}, and related fusions
#H
#H TB
#H ----------------------------
#H revision 4.6
#H date: 1999/06/15 13:49:34; author: gap; state: Exp; lines: +22 -2
#H added table of 2.SuzM2 (request of a student)
#H
#H TB
#H ----------------------------
#H revision 4.5
#H date: 1999/05/31 13:28:30; author: gap; state: Exp; lines: +225 -9
#H added table of 2.U4(3).(2^2)_{122}
#H
#H TB
#H ----------------------------
#H revision 4.4
#H date: 1999/05/03 15:35:18; author: gap; state: Exp; lines: +55 -11
#H added tables of 2.U4(3).2_3' and 6_2.U4(3).2_3'
#H (requested by a student in Aachen)
#H
#H TB
#H ----------------------------
#H revision 4.3
#H date: 1997/11/25 15:46:01; author: gap; state: Exp; lines: +12 -9
#H first attempt to link the library of character tables and the
#H library of tables of marks
#H TB
#H ----------------------------
#H revision 4.2
#H date: 1997/08/05 15:03:59; author: gap; state: Exp; lines: +5 -5
#H removed unnecessary (and ugly) `return' statements in the calls of
#H `ConstructPermuted' and `ConstructSubdirect'
#H ----------------------------
#H revision 4.1
#H date: 1997/07/17 15:48:15; author: fceller; state: Exp; lines: +2 -2
#H for version 4
#H ----------------------------
#H revision 1.2
#H date: 1997/04/04 12:20:32; author: sam; state: Exp; lines: +7 -23
#H added 'ConstructPermuted', 'ConstructSubdirect',
#H changed table constructions involving 'CharTable', 'RecFields'
#H 'Sort...' up to now
#H ----------------------------
#H revision 1.1
#H date: 1996/10/21 16:02:03; author: sam; state: Exp;
#H first proposal of the table library
#H ==========================================================================
##
MOT("12_1.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,39191040,39191040,39191040,39191040,39191040,39191040,39191040,
39191040,39191040,39191040,39191040,6912,6912,6912,6912,6912,6912,69984,69984,
69984,69984,69984,69984,69984,69984,69984,69984,69984,69984,11664,11664,11664,
11664,11664,11664,11664,11664,11664,11664,11664,11664,3888,3888,3888,3888,324,
324,324,324,1152,1152,1152,1152,1152,1152,1152,1152,1152,1152,1152,1152,48,48,
48,60,60,60,60,60,60,60,60,60,60,60,60,864,864,864,864,864,864,864,864,864,
864,864,864,216,216,216,216,216,216,216,216,216,216,216,216,84,84,84,84,84,84,
84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,96,96,96,96,96,96,96,96,
96,96,96,96,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,
324,324,324,324,324,324,324,324,108,108,108,108,108,108,108,108,144,144,144,
144,144,144,144,144,144,144,144,144],
[,[1,3,5,7,9,11,1,3,5,7,9,11,1,3,5,7,9,11,19,21,23,25,27,29,19,21,23,25,27,29,
31,33,35,37,39,41,31,33,35,37,39,41,43,45,43,45,47,49,47,49,13,15,17,13,15,17,
13,15,17,13,15,17,16,18,14,66,68,70,72,74,76,66,68,70,72,74,76,19,21,23,25,27,
29,19,21,23,25,27,29,31,33,35,37,39,41,43,45,43,45,43,45,102,104,106,108,110,
112,102,104,106,108,110,112,114,116,118,120,122,124,114,116,118,120,122,124,
60,62,52,54,56,58,60,62,52,54,56,58,150,152,154,156,158,160,150,152,154,156,
158,160,138,140,142,144,146,148,138,140,142,144,146,148,166,168,166,168,162,
164,162,164,78,80,82,84,86,88,78,80,82,84,86,88],[1,4,7,10,1,4,7,10,1,4,7,10,
13,16,13,16,13,16,1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,
10,1,4,7,10,51,54,57,60,51,54,57,60,51,54,57,60,63,63,63,66,69,72,75,66,69,72,
75,66,69,72,75,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,
16,13,16,114,117,120,123,114,117,120,123,114,117,120,123,102,105,108,111,102,
105,108,111,102,105,108,111,129,132,135,126,129,132,135,126,129,132,135,126,
27,30,21,24,27,30,21,24,27,30,21,24,23,26,29,20,23,26,29,20,23,26,29,20,19,22,
25,28,19,22,25,28,51,54,57,60,51,54,57,60,51,54,57,60],,[1,6,11,4,9,2,7,12,5,
10,3,8,13,18,17,16,15,14,19,24,29,22,27,20,25,30,23,28,21,26,31,36,41,34,39,
32,37,42,35,40,33,38,43,44,45,46,47,48,49,50,51,56,61,54,59,52,57,62,55,60,53,
58,63,65,64,1,6,11,4,9,2,7,12,5,10,3,8,78,83,88,81,86,79,84,89,82,87,80,85,90,
95,94,93,92,91,96,101,100,99,98,97,114,119,124,117,122,115,120,125,118,123,
116,121,102,107,112,105,110,103,108,113,106,111,104,109,126,131,136,129,134,
127,132,137,130,135,128,133,150,155,160,153,158,151,156,161,154,159,152,157,
138,143,148,141,146,139,144,149,142,147,140,145,166,167,168,169,162,163,164,
165,170,175,180,173,178,171,176,181,174,179,172,177],,[1,8,3,10,5,12,7,2,9,4,
11,6,13,14,15,16,17,18,19,26,21,28,23,30,25,20,27,22,29,24,31,38,33,40,35,42,
37,32,39,34,41,36,43,46,45,44,47,50,49,48,51,58,53,60,55,62,57,52,59,54,61,56,
63,64,65,66,73,68,75,70,77,72,67,74,69,76,71,78,85,80,87,82,89,84,79,86,81,88,
83,90,91,92,93,94,95,96,97,98,99,100,101,1,8,3,10,5,12,7,2,9,4,11,6,1,8,3,10,
5,12,7,2,9,4,11,6,129,136,131,126,133,128,135,130,137,132,127,134,138,145,140,
147,142,149,144,139,146,141,148,143,150,157,152,159,154,161,156,151,158,153,
160,155,162,165,164,163,166,169,168,167,170,177,172,179,174,181,176,171,178,
173,180,175]],
0,
[(162,166)(163,167)(164,168)(165,169),(102,114)(103,115)(104,116)(105,117)
(106,118)(107,119)(108,120)(109,121)(110,122)(111,123)(112,124)(113,125),
( 2, 6)( 3, 11)( 5, 9)( 8, 12)( 14, 18)( 15, 17)( 20, 24)( 21, 29)
( 23, 27)( 26, 30)( 32, 36)( 33, 41)( 35, 39)( 38, 42)( 52, 56)( 53, 61)
( 55, 59)( 58, 62)( 64, 65)( 67, 71)( 68, 76)( 70, 74)( 73, 77)( 79, 83)
( 80, 88)( 82, 86)( 85, 89)( 91, 95)( 92, 94)( 97,101)( 98,100)(103,107)
(104,112)(106,110)(109,113)(115,119)(116,124)(118,122)(121,125)(127,131)
(128,136)(130,134)(133,137)(138,150)(139,155)(140,160)(141,153)(142,158)
(143,151)(144,156)(145,161)(146,154)(147,159)(148,152)(149,157)(162,166)
(163,167)(164,168)(165,169)(171,175)(172,180)(174,178)(177,181),( 2, 8)
( 4, 10)( 6, 12)( 20, 26)( 22, 28)( 24, 30)( 32, 38)( 34, 40)( 36, 42)
( 44, 46)( 48, 50)( 52, 58)( 54, 60)( 56, 62)( 67, 73)( 69, 75)( 71, 77)
( 79, 85)( 81, 87)( 83, 89)(103,109)(105,111)(107,113)(115,121)(117,123)
(119,125)(126,129)(127,136)(128,131)(130,133)(132,135)(134,137)(139,145)
(141,147)(143,149)(151,157)(153,159)(155,161)(163,165)(167,169)(171,177)
(173,179)(175,181),( 2, 6)( 3, 11)( 5, 9)( 8, 12)( 14, 18)( 15, 17)
( 20, 24)( 21, 29)( 23, 27)( 26, 30)( 32, 36)( 33, 41)( 35, 39)( 38, 42)
( 52, 56)( 53, 61)( 55, 59)( 58, 62)( 64, 65)( 67, 71)( 68, 76)( 70, 74)
( 73, 77)( 79, 83)( 80, 88)( 82, 86)( 85, 89)( 91, 95)( 92, 94)( 97,101)
( 98,100)(103,107)(104,112)(106,110)(109,113)(115,119)(116,124)(118,122)
(121,125)(127,131)(128,136)(130,134)(133,137)(138,150)(139,155)(140,160)
(141,153)(142,158)(143,151)(144,156)(145,161)(146,154)(147,159)(148,152)
(149,157)(171,175)(172,180)(174,178)(177,181)],
["ConstructProj",[["U4(3)",[]],["2.U4(3)",[]],["3_1.U4(3)",[-1,-1,-1,-1,-1,-1,
-1,-1,-13,-13,-1,-1,-1,-1,-1,-1]],["4.U4(3)",[-1,-1,-1,7,7,7,7,-1,-1,-1,-1,-1,
15,15,-1,-1]],,["6_1.U4(3)",[-1,-1,-1,-1,-1,-13,-13,-1,-1,-1,-1,-7,-7,-1,
-1]],,,,,,["12_1.U4(3)",[[-7,7,-1],[-7,7,-1],[-7,7,-1],[-7,7,-1],[-7,7,-1],[
-7,7,-1],[-55,-377,-433],[-55,-377,-433],[-7,7,-1],[-7,7,-1],[-7,7,-1],[-7,7,
-1]]]]]);
ALF("12_1.U4(3)","U4(3)",[1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,
3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,
7,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,11,11,
11,11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,14,14,
14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,16,16,
16,16,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,18,18,
18,18,19,19,19,19,20,20,20,20,20,20,20,20,20,20,20,20]);
ALF("12_1.U4(3)","2.U4(3)",[1,2,1,2,1,2,1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,5,
6,5,6,5,6,5,6,7,8,7,8,7,8,7,8,7,8,7,8,9,10,9,10,11,12,11,12,13,14,13,14,
13,14,13,14,13,14,13,14,15,15,15,16,17,16,17,16,17,16,17,16,17,16,17,18,
19,18,19,18,19,18,19,18,19,18,19,20,21,20,21,20,21,22,23,22,23,22,23,24,
25,24,25,24,25,24,25,24,25,24,25,26,27,26,27,26,27,26,27,26,27,26,27,28,
29,28,29,28,29,28,29,28,29,28,29,30,31,30,31,30,31,30,31,30,31,30,31,32,
33,32,33,32,33,32,33,32,33,32,33,34,35,34,35,36,37,36,37,38,39,38,39,38,
39,38,39,38,39,38,39]);
ALF("12_1.U4(3)","4.U4(3)",[1,2,3,4,1,2,3,4,1,2,3,4,5,6,5,6,5,6,7,8,9,10,
7,8,9,10,7,8,9,10,11,12,13,14,11,12,13,14,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,23,24,25,26,23,24,25,26,27,27,27,28,29,30,31,28,29,30,
31,28,29,30,31,32,33,34,35,32,33,34,35,32,33,34,35,36,37,36,37,36,37,38,
39,38,39,38,39,40,41,42,43,40,41,42,43,40,41,42,43,44,45,46,47,44,45,46,
47,44,45,46,47,48,49,50,51,48,49,50,51,48,49,50,51,52,53,54,55,52,53,54,
55,52,53,54,55,56,57,58,59,56,57,58,59,56,57,58,59,60,61,62,63,64,65,66,
67,68,69,70,71,68,69,70,71,68,69,70,71]);
ALF("12_1.U4(3)","3_1.U4(3)",[1,2,3,1,2,3,1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,
8,9,7,8,9,7,8,9,10,11,12,10,11,12,10,11,12,10,11,12,13,13,13,13,14,14,14,
14,15,16,17,15,16,17,15,16,17,15,16,17,18,19,20,21,22,23,21,22,23,21,22,
23,21,22,23,24,25,26,24,25,26,24,25,26,24,25,26,27,28,29,27,28,29,30,31,
32,30,31,32,33,34,35,33,34,35,33,34,35,33,34,35,36,37,38,36,37,38,36,37,
38,36,37,38,39,40,41,39,40,41,39,40,41,39,40,41,42,43,44,42,43,44,42,43,
44,42,43,44,45,46,47,45,46,47,45,46,47,45,46,47,48,48,48,48,49,49,49,49,
50,51,52,50,51,52,50,51,52,50,51,52]);
ALF("12_1.U4(3)","6_1.U4(3)",[1,2,3,4,5,6,1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,13,14,15,16,17,18,19,20,21,22,23,24,19,20,21,22,23,24,25,
26,25,26,27,28,27,28,29,30,31,32,33,34,29,30,31,32,33,34,35,36,37,38,39,
40,41,42,43,38,39,40,41,42,43,44,45,46,47,48,49,44,45,46,47,48,49,50,51,
52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,62,63,64,65,66,67,68,69,
70,71,72,73,68,69,70,71,72,73,74,75,76,77,78,79,74,75,76,77,78,79,80,81,
82,83,84,85,80,81,82,83,84,85,86,87,88,89,90,91,86,87,88,89,90,91,92,93,
92,93,94,95,94,95,96,97,98,99,100,101,96,97,98,99,100,101]);
ALF("12_1.U4(3)","12_1.U4(3).2_1",[1,2,3,4,5,2,6,7,5,8,3,7,9,10,11,12,11,
10,13,14,15,16,17,14,18,19,17,20,15,19,21,22,23,24,25,22,26,27,25,28,23,
27,29,30,31,32,33,34,35,36,37,38,39,40,41,38,42,43,41,44,39,43,45,46,46,
47,48,49,50,51,48,52,53,51,54,49,53,55,56,57,58,59,56,60,61,59,62,57,61,
63,64,65,66,65,64,67,68,69,70,69,68,71,72,73,74,75,72,76,77,75,78,73,77,
79,80,81,82,83,80,84,85,83,86,81,85,87,88,89,90,91,88,92,93,91,94,89,93,
95,96,97,98,99,100,101,102,103,104,105,106,95,100,105,98,103,96,101,106,
99,104,97,102,107,108,109,110,107,108,109,110,111,112,113,114,115,112,116,
117,115,118,113,117],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("12_1.U4(3)","12_1.U4(3).2_2",[1,2,3,4,5,6,7,2,8,4,9,6,10,11,12,13,14,
15,16,17,18,19,20,21,22,17,23,19,24,21,25,26,27,28,29,30,31,26,32,28,33,
30,34,35,36,35,37,38,39,38,40,41,42,43,44,45,46,41,47,43,48,45,49,50,51,
52,53,54,55,56,57,58,53,59,55,60,57,61,62,63,64,65,66,67,62,68,64,69,66,
70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,
82,89,84,91,86,93,88,83,90,85,92,87,94,95,96,94,97,96,98,97,99,98,95,99,
100,101,102,103,104,105,106,101,107,103,108,105,109,110,111,112,113,114,
115,110,116,112,117,114,118,119,120,121,118,121,120,119,122,123,124,125,
126,127,128,123,129,125,130,127],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("12_1.U4(3)","12_1.U4(3).2_2'",[1,2,3,4,5,6,7,6,5,4,3,2,8,9,10,11,10,
9,12,13,14,15,16,17,18,17,16,15,14,13,19,20,21,22,23,24,25,24,23,22,21,20,
26,27,28,27,29,30,31,30,32,33,34,35,36,37,38,37,36,35,34,33,39,40,40,41,
42,43,44,45,46,47,46,45,44,43,42,48,49,50,51,52,53,54,53,52,51,50,49,55,
56,57,58,57,56,59,60,61,62,61,60,63,64,65,66,67,68,69,70,71,72,73,74,63,
74,73,72,71,70,69,68,67,66,65,64,75,76,76,75,77,78,79,80,80,79,78,77,81,
82,83,84,85,86,87,88,89,90,91,92,81,92,91,90,89,88,87,86,85,84,83,82,93,
94,95,94,96,97,98,97,99,100,101,102,103,104,105,104,103,102,101,100]);
MOT("12_1.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r."
],
[78382080,39191040,39191040,78382080,39191040,78382080,39191040,78382080,
13824,6912,6912,13824,139968,69984,69984,139968,69984,139968,69984,139968,
23328,11664,11664,23328,11664,23328,11664,23328,7776,7776,7776,7776,648,648,
648,648,2304,1152,1152,2304,1152,2304,1152,2304,96,48,120,60,60,120,60,120,60,
120,1728,864,864,1728,864,1728,864,1728,432,216,216,432,432,216,216,432,168,
84,84,168,84,168,84,168,168,84,84,168,84,168,84,168,192,96,96,192,96,192,96,
192,324,324,324,324,324,324,324,324,324,324,324,324,108,108,108,108,288,144,
144,288,144,288,144,288,48384,48384,48384,48384,2880,2880,4608,4608,4608,4608,
128,864,864,864,864,72,72,72,72,72,72,72,72,64,64,64,64,40,40,40,40,576,576,
576,576,576,576,576,576,144,144,144,144,144,144,144,144,56,56,56,56,56,56,56,
56],
[,[1,3,5,6,5,1,3,6,1,3,5,6,13,15,17,18,17,13,15,18,21,23,25,26,25,21,23,26,29,
31,29,31,33,35,33,35,9,11,11,9,11,9,11,9,12,10,47,49,51,52,51,47,49,52,13,15,
17,18,17,13,15,18,21,23,25,26,29,31,29,31,71,73,75,76,75,71,73,76,79,81,83,84,
83,79,81,84,44,43,38,40,38,44,43,40,95,105,103,101,99,97,95,105,103,101,99,97,
107,109,107,109,55,57,59,60,59,55,57,60,1,6,1,6,8,4,9,9,9,9,9,13,18,13,18,28,
24,30,32,33,35,33,35,40,44,40,44,54,50,54,50,55,60,55,60,60,55,60,55,63,63,63,
63,67,67,67,67,71,76,71,76,79,84,79,84],[1,4,6,8,1,6,8,4,9,12,9,12,1,4,6,8,1,
6,8,4,1,4,6,8,1,6,8,4,1,4,6,8,1,4,6,8,37,40,42,44,37,42,44,40,45,45,47,50,52,
54,47,52,54,50,9,12,9,12,9,9,12,12,9,12,9,12,9,12,9,12,79,82,84,86,79,84,86,
82,71,74,76,78,71,76,78,74,90,92,94,87,90,94,87,92,17,19,15,14,17,19,15,14,17,
19,15,14,13,16,18,20,37,40,42,44,37,42,44,40,119,122,121,120,124,123,128,127,
126,125,129,119,122,121,120,124,123,124,123,119,122,121,120,145,144,143,142,
149,148,147,146,128,127,126,125,128,127,126,125,128,127,126,125,128,127,126,
125,170,173,172,171,166,169,168,167],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,
43,44,45,46,1,2,3,4,5,6,7,8,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,
79,80,81,82,83,84,85,86,71,72,73,74,75,76,77,78,87,88,89,90,91,92,93,94,95,96,
97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,
117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,
136,137,138,139,140,141,142,143,144,145,123,124,123,124,150,151,152,153,154,
155,156,157,158,159,160,161,162,163,164,165,170,171,172,173,166,167,168,
169],,[1,7,3,8,5,6,2,4,9,10,11,12,13,19,15,20,17,18,14,16,21,27,23,28,25,26,
22,24,29,32,31,30,33,36,35,34,37,43,39,44,41,42,38,40,45,46,47,53,49,54,51,52,
48,50,55,61,57,62,59,60,56,58,63,64,65,66,67,68,69,70,1,7,3,8,5,6,2,4,1,7,3,8,
5,6,2,4,90,89,88,87,93,94,91,92,95,102,97,104,99,106,101,96,103,98,105,100,
107,110,109,108,111,117,113,118,115,116,112,114,119,122,121,120,124,123,128,
127,126,125,129,130,133,132,131,135,134,137,136,138,141,140,139,145,144,143,
142,147,146,149,148,157,156,155,154,153,152,151,150,161,160,159,158,165,164,
163,162,119,122,121,120,119,122,121,120]],
0,
[(146,148)(147,149),( 71, 79)( 72, 80)( 73, 81)( 74, 82)( 75, 83)( 76, 84)
( 77, 85)( 78, 86)(166,170)(167,171)(168,172)(169,173),( 2, 7)( 4, 8)
( 14, 19)( 16, 20)( 22, 27)( 24, 28)( 30, 32)( 34, 36)( 38, 43)( 40, 44)
( 48, 53)( 50, 54)( 56, 61)( 58, 62)( 72, 77)( 74, 78)( 80, 85)( 82, 86)
( 87, 90)( 88, 89)( 91, 93)( 92, 94)( 96,102)( 98,104)(100,106)(108,110)
(112,117)(114,118)(120,122)(123,124)(125,128)(126,127)(131,133)(134,135)
(136,137)(139,141)(142,145)(143,144)(146,147)(148,149)(150,157)(151,156)
(152,155)(153,154)(158,161)(159,160)(162,165)(163,164)(167,169)(171,173),
( 2, 7)( 4, 8)( 14, 19)( 16, 20)( 22, 27)( 24, 28)( 30, 32)( 34, 36)
( 38, 43)( 40, 44)( 48, 53)( 50, 54)( 56, 61)( 58, 62)( 72, 77)( 74, 78)
( 80, 85)( 82, 86)( 87, 90)( 88, 89)( 91, 93)( 92, 94)( 96,102)( 98,104)
(100,106)(108,110)(112,117)(114,118)(120,122)(123,124)(125,128)(126,127)
(131,133)(134,135)(136,137)(139,141)(142,145)(143,144)(146,149)(147,148)
(150,157)(151,156)(152,155)(153,154)(158,161)(159,160)(162,165)(163,164)
(167,169)(171,173),(119,121)(120,122)(125,127)(126,128)(130,132)(131,133)
(138,140)(139,141)(142,144)(143,145)(150,152)(151,153)(154,156)(155,157)
(158,160)(159,161)(162,164)(163,165)(166,168)(167,169)(170,172)(171,173)],
["ConstructMGA","12_1.U4(3)","4.U4(3).2_1",
[ [ 72, 73 ], [ 74, 75 ], [ 76, 77 ], [ 78, 79 ], [ 80, 81 ],
[ 82, 83 ], [ 84, 85 ], [ 86, 87 ], [ 88, 89 ], [ 90, 91 ],
[ 92, 93 ], [ 94, 95 ], [ 96, 97 ], [ 98, 99 ], [ 100, 101 ],
[ 102, 103 ], [ 104, 105 ], [ 106, 107 ], [ 108, 109 ], [ 110, 111 ],
[ 112, 113 ], [ 114, 115 ], [ 116, 117 ], [ 118, 119 ], [ 120, 121 ],
[ 122, 123 ], [ 124, 125 ], [ 126, 127 ], [ 128, 129 ], [ 130, 131 ],
[ 132, 133 ], [ 134, 135 ], [ 136, 137 ], [ 138, 139 ], [ 140, 141 ],
[ 142, 143 ], [ 144, 145 ], [ 146, 147 ], [ 148, 149 ], [ 150, 151 ],
[ 152, 153 ], [ 154, 155 ], [ 156, 157 ], [ 158, 159 ], [ 160, 161 ],
[ 162, 163 ], [ 164, 165 ], [ 166, 167 ], [ 168, 169 ], [ 170, 171 ],
[ 172, 173 ], [ 174, 175 ], [ 176, 177 ], [ 178, 179 ], [ 180, 181 ] ]
, ()]);
ALF("12_1.U4(3).2_1","U4(3).2_1",[1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,8,8,9,9,9,9,9,9,9,9,10,10,
10,10,10,10,10,10,11,11,11,11,12,12,12,12,13,13,13,13,13,13,13,13,14,14,
14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,
16,16,17,17,17,17,18,18,18,18,18,18,18,18,19,19,19,19,20,20,21,21,21,21,
22,23,23,23,23,24,24,25,25,26,26,26,26,27,27,27,27,28,28,28,28,29,29,29,
29,30,30,30,30,31,31,31,31,32,32,32,32,33,33,33,33,34,34,34,34]);
ALF("12_1.U4(3).2_1","2.U4(3).2_1",[1,2,1,2,1,1,2,2,3,4,3,4,5,6,5,6,5,5,6,
6,7,8,7,8,7,7,8,8,9,10,9,10,11,12,11,12,13,14,13,14,13,13,14,14,15,15,16,
17,16,17,16,16,17,17,18,19,18,19,18,18,19,19,20,21,20,21,22,23,22,23,24,
25,24,25,24,24,25,25,26,27,26,27,26,26,27,27,28,29,28,29,28,28,29,29,30,
31,30,31,30,31,30,31,30,31,30,31,32,33,32,33,34,35,34,35,34,34,35,35,36,
37,36,37,38,39,40,41,40,41,42,43,44,43,44,45,46,47,48,49,50,49,50,51,52,
51,52,53,54,53,54,55,56,55,56,57,58,57,58,59,60,59,60,61,62,61,62,63,64,
63,64,65,66,65,66]);
ALF("12_1.U4(3).2_1","4.U4(3).2_1",[1,2,3,4,1,3,4,2,5,6,5,6,7,8,9,10,7,9,
10,8,11,12,13,14,11,13,14,12,15,16,17,18,19,20,21,22,23,24,25,26,23,25,26,
24,27,27,28,29,30,31,28,30,31,29,32,33,34,35,32,34,35,33,36,37,36,37,38,
39,38,39,40,41,42,43,40,42,43,41,44,45,46,47,44,46,47,45,48,49,50,51,48,
50,51,49,52,53,54,55,52,53,54,55,52,53,54,55,56,57,58,59,60,61,62,63,60,
62,63,61,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,
85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,
107,108,109,110,111,112,113,114,115,116,117,118]);
ALF("12_1.U4(3).2_1","3_1.U4(3).2_1",[1,2,2,1,2,1,2,1,3,4,4,3,5,6,6,5,6,5,
6,5,7,8,8,7,8,7,8,7,9,9,9,9,10,10,10,10,11,12,12,11,12,11,12,11,13,14,15,
16,16,15,16,15,16,15,17,18,18,17,18,17,18,17,19,20,20,19,21,22,22,21,23,
24,24,23,24,23,24,23,25,26,26,25,26,25,26,25,27,28,28,27,28,27,28,27,29,
30,31,29,30,31,29,30,31,29,30,31,32,32,32,32,33,34,34,33,34,33,34,33,35,
35,35,35,36,36,37,37,37,37,38,39,39,39,39,40,40,41,41,42,42,42,42,43,43,
43,43,44,44,44,44,45,45,45,45,46,46,46,46,47,47,47,47,48,48,48,48,49,49,
49,49,50,50,50,50]);
ALF("12_1.U4(3).2_1","6_1.U4(3).2_1",[1,2,3,4,3,1,2,4,5,6,7,8,9,10,11,12,
11,9,10,12,13,14,15,16,15,13,14,16,17,18,17,18,19,20,19,20,21,22,23,24,23,
21,22,24,25,26,27,28,29,30,29,27,28,30,31,32,33,34,33,31,32,34,35,36,37,
38,39,40,41,42,43,44,45,46,45,43,44,46,47,48,49,50,49,47,48,50,51,52,53,
54,53,51,52,54,55,56,57,58,59,60,55,56,57,58,59,60,61,62,61,62,63,64,65,
66,65,63,64,66,67,68,67,68,69,70,71,72,71,72,73,74,75,74,75,76,77,78,79,
80,81,80,81,82,83,82,83,84,85,84,85,86,87,86,87,88,89,88,89,90,91,90,91,
92,93,92,93,94,95,94,95,96,97,96,97]);
MOT("12_1.U4(3).2_2",
[
"origin: ATLAS of finite groups, tests: 1.o.r."
],
[78382080,39191040,78382080,39191040,78382080,39191040,78382080,78382080,
78382080,13824,13824,13824,13824,13824,13824,139968,69984,139968,69984,139968,
69984,139968,139968,139968,23328,11664,23328,11664,23328,11664,23328,23328,
23328,7776,3888,7776,648,324,648,2304,1152,2304,1152,2304,1152,2304,2304,2304,
96,96,96,120,60,120,60,120,60,120,120,120,1728,864,1728,864,1728,864,1728,
1728,1728,432,432,432,432,432,432,432,432,432,432,432,432,84,84,84,84,84,84,
84,84,84,84,84,84,96,96,96,96,96,96,648,324,648,324,648,324,648,648,648,648,
324,648,324,648,324,648,648,648,108,108,108,108,288,144,288,144,288,144,288,
288,288,311040,311040,311040,311040,311040,311040,3456,3456,3456,576,576,576,
576,576,576,576,576,576,7776,7776,7776,7776,7776,7776,7776,7776,7776,7776,
7776,7776,1296,1296,1296,1296,1296,1296,648,648,648,648,648,648,144,144,36,36,
48,48,48,60,60,60,60,60,60,144,144,144,144,144,144,72,72,72,72,72,72,108,108,
108,108,108,108,108,108,108,108,108,108],
[,[1,3,5,7,8,9,1,5,8,1,3,5,7,8,9,16,18,20,22,23,24,16,20,23,25,27,29,31,32,33,
25,29,32,34,36,34,37,39,37,10,12,14,10,12,14,10,14,12,13,15,11,52,54,56,58,59,
60,52,56,59,16,18,20,22,23,24,16,20,23,25,27,29,31,32,33,34,36,34,36,34,36,82,
84,86,88,90,92,82,84,86,88,90,92,43,45,41,45,43,41,109,111,113,115,116,117,
109,113,116,100,102,104,106,107,108,100,104,107,118,120,118,120,61,63,65,67,
68,69,61,65,68,7,3,9,7,3,9,1,8,5,10,12,14,13,15,11,13,15,11,22,18,24,22,18,24,
22,18,24,22,18,24,36,36,36,36,36,36,31,27,33,31,27,33,34,34,37,37,40,47,44,58,
54,60,58,54,60,67,63,69,67,63,69,73,75,71,73,75,71,115,111,117,115,111,117,
106,102,108,106,102,108],[1,4,7,4,1,4,7,1,7,10,13,10,13,10,13,1,4,7,4,1,4,7,1,
7,1,4,7,4,1,4,7,1,7,1,4,7,1,4,7,40,43,46,43,40,43,46,40,46,49,49,49,52,55,58,
55,52,55,58,52,58,10,13,10,13,10,13,10,10,10,10,13,10,13,10,13,10,13,10,13,10,
13,82,91,88,85,82,91,88,85,82,91,88,85,94,98,98,94,98,94,23,21,18,21,23,21,18,
23,18,20,17,24,17,20,17,24,20,24,16,19,22,19,40,43,46,43,40,43,46,40,46,131,
134,131,134,131,134,137,137,137,140,140,140,143,146,143,146,143,146,131,134,
131,134,131,134,131,134,131,134,131,134,131,134,131,134,131,134,131,134,131,
134,131,134,137,137,137,137,177,177,177,180,183,180,183,180,183,140,140,140,
140,140,140,143,146,143,146,143,146,151,154,151,154,151,154,159,156,159,156,
159,156],,[1,6,9,4,8,2,7,5,3,10,15,14,13,12,11,16,21,24,19,23,17,22,20,18,25,
30,33,28,32,26,31,29,27,34,35,36,37,38,39,40,45,48,43,47,41,46,44,42,49,51,50,
1,6,9,4,8,2,7,5,3,61,66,69,64,68,62,67,65,63,70,75,74,73,72,71,76,81,80,79,78,
77,82,93,92,91,90,89,88,87,86,85,84,83,94,96,95,99,98,97,109,114,117,112,116,
110,115,113,111,100,105,108,103,107,101,106,104,102,118,121,120,119,122,127,
130,125,129,123,128,126,124,131,136,135,134,133,132,137,139,138,140,142,141,
143,148,147,146,145,144,155,160,159,158,157,156,149,154,153,152,151,150,161,
166,165,164,163,162,167,172,171,170,169,168,173,174,175,176,177,179,178,131,
136,135,134,133,132,189,188,187,186,191,190,192,197,196,195,194,193,204,209,
208,207,206,205,198,203,202,201,200,199],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,
67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,1,2,3,4,5,6,7,2,8,4,9,6,94,95,96,
97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,
117,118,121,120,119,122,123,124,125,126,127,128,129,130,131,132,133,134,135,
136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,
155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,
174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,
193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209]],
0,
[(175,176),(119,121),(83,89)(85,91)(87,93),( 83, 89)( 85, 91)( 87, 93)
(119,121),( 2, 6)( 3, 9)( 5, 8)( 11, 15)( 12, 14)( 17, 21)( 18, 24)
( 20, 23)( 26, 30)( 27, 33)( 29, 32)( 41, 45)( 42, 48)( 44, 47)( 50, 51)
( 53, 57)( 54, 60)( 56, 59)( 62, 66)( 63, 69)( 65, 68)( 71, 75)( 72, 74)
( 77, 81)( 78, 80)( 83, 87)( 84, 92)( 86, 90)( 89, 93)( 95, 96)( 97, 99)
(100,109)(101,114)(102,117)(103,112)(104,116)(105,110)(106,115)(107,113)
(108,111)(119,121)(123,127)(124,130)(126,129)(132,136)(133,135)(138,139)
(141,142)(144,148)(145,147)(149,155)(150,160)(151,159)(152,158)(153,157)
(154,156)(162,166)(163,165)(168,172)(169,171)(178,179)(181,185)(182,184)
(186,189)(187,188)(190,191)(193,197)(194,196)(198,204)(199,209)(200,208)
(201,207)(202,206)(203,205),( 2, 6)( 3, 9)( 5, 8)( 11, 15)( 12, 14)
( 17, 21)( 18, 24)( 20, 23)( 26, 30)( 27, 33)( 29, 32)( 41, 45)( 42, 48)
( 44, 47)( 50, 51)( 53, 57)( 54, 60)( 56, 59)( 62, 66)( 63, 69)( 65, 68)
( 71, 75)( 72, 74)( 77, 81)( 78, 80)( 83, 87)( 84, 92)( 86, 90)( 89, 93)
( 95, 96)( 97, 99)(100,109)(101,114)(102,117)(103,112)(104,116)(105,110)
(106,115)(107,113)(108,111)(123,127)(124,130)(126,129)(132,136)(133,135)
(138,139)(141,142)(144,148)(145,147)(149,155)(150,160)(151,159)(152,158)
(153,157)(154,156)(162,166)(163,165)(168,172)(169,171)(178,179)(181,185)
(182,184)(186,189)(187,188)(190,191)(193,197)(194,196)(198,204)(199,209)
(200,208)(201,207)(202,206)(203,205),(131,134)(132,135)(133,136)(143,146)
(144,147)(145,148)(149,152)(150,153)(151,154)(155,158)(156,159)(157,160)
(161,164)(162,165)(163,166)(167,170)(168,171)(169,172)(173,174)(180,183)
(181,184)(182,185)(186,189)(187,190)(188,191)(192,195)(193,196)(194,197)
(198,201)(199,202)(200,203)(204,207)(205,208)(206,209)],
["ConstructMGA","12_1.U4(3)","6_1.U4(3).2_2",
[ [ 40, 41 ], [ 42, 43 ], [ 44, 45 ], [ 46, 47 ], [ 48, 49 ],
[ 50, 53 ], [ 51, 52 ], [ 54, 55 ], [ 56, 57 ], [ 58, 59 ],
[ 60, 61 ], [ 62, 63 ], [ 64, 67 ], [ 65, 66 ], [ 68, 69 ],
[ 70, 71 ], [ 134, 136 ], [ 135, 137 ], [ 138, 140 ], [ 139, 141 ],
[ 142, 144 ], [ 143, 145 ], [ 146, 148 ], [ 147, 149 ], [ 150, 152 ],
[ 151, 153 ], [ 154, 156 ], [ 155, 157 ], [ 158, 164 ], [ 159, 165 ],
[ 160, 162 ], [ 161, 163 ], [ 166, 168 ], [ 167, 169 ], [ 170, 172 ],
[ 171, 173 ], [ 174, 176 ], [ 175, 177 ], [ 178, 180 ], [ 179, 181 ] ]
, ( 64, 80, 96,112,128,144,160,176, 70, 86,102,118,134,150,166,182, 76,
92,108,124,140,156,172, 66, 82, 98,114,130,146,162,178, 72, 88,104,
120,136,152,168,184, 78, 94,110,126,142,158,174, 68, 84,100,116,132,
148,164,180, 74, 90,106,122,138,154,170)( 65, 81, 97,113,129,145,161,
177, 71, 87,103,119,135,151,167,183, 77, 93,109,125,141,157,173, 67,
83, 99,115,131,147,163,179, 73, 89,105,121,137,153,169,185, 79, 95,
111,127,143,159,175, 69, 85,101,117,133,149,165,181, 75, 91,107,123,
139,155,171)]);
ALF("12_1.U4(3).2_2","U4(3).2_2",[1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,
3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,7,7,7,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,
9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,13,
13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,15,15,15,15,15,15,15,
15,15,16,16,16,16,16,16,16,16,16,17,17,17,17,18,18,18,18,18,18,18,18,18,
19,19,19,19,19,19,20,20,20,21,21,21,22,22,22,22,22,22,23,23,23,23,23,23,
24,24,24,24,24,24,25,25,25,25,25,25,26,26,26,26,26,26,27,27,28,28,29,29,
29,30,30,30,30,30,30,31,31,31,31,31,31,32,32,32,32,32,32,33,33,33,33,33,
33,34,34,34,34,34,34]);
ALF("12_1.U4(3).2_2","2.U4(3).2_2",[1,2,1,2,1,2,1,1,1,3,4,3,4,3,4,5,6,5,6,
5,6,5,5,5,7,8,7,8,7,8,7,7,7,9,10,9,11,12,11,13,14,13,14,13,14,13,13,13,15,
15,15,16,17,16,17,16,17,16,16,16,18,19,18,19,18,19,18,18,18,20,21,20,21,
20,21,22,23,22,23,22,23,24,25,24,25,24,25,24,25,24,25,24,25,26,26,26,26,
26,26,27,28,27,28,27,28,27,27,27,29,30,29,30,29,30,29,29,29,31,32,31,32,
33,34,33,34,33,34,33,33,33,35,36,35,36,35,36,37,37,37,38,38,38,39,40,39,
40,39,40,41,42,41,42,41,42,43,44,43,44,43,44,45,46,45,46,45,46,47,48,47,
48,47,48,49,50,51,52,53,53,53,54,55,54,55,54,55,56,57,56,57,56,57,58,59,
58,59,58,59,60,61,60,61,60,61,62,63,62,63,62,63]);
ALF("12_1.U4(3).2_2","4.U4(3).2_2",[1,2,3,2,1,2,3,1,3,4,5,4,5,4,5,6,7,8,7,
6,7,8,6,8,9,10,11,10,9,10,11,9,11,12,13,14,15,16,17,18,19,20,19,18,19,20,
18,20,21,21,21,22,23,24,23,22,23,24,22,24,25,26,27,26,25,26,27,25,27,28,
29,28,29,28,29,30,31,30,31,30,31,32,33,34,35,32,33,34,35,32,33,34,35,36,
37,37,36,37,36,38,39,40,39,38,39,40,38,40,41,42,43,42,41,42,43,41,43,44,
45,46,47,48,49,50,49,48,49,50,48,50,51,52,51,52,51,52,53,53,53,54,54,54,
55,56,55,56,55,56,57,58,57,58,57,58,59,60,59,60,59,60,61,62,61,62,61,62,
63,64,63,64,63,64,65,66,67,68,69,69,69,70,71,70,71,70,71,72,73,72,73,72,
73,74,75,74,75,74,75,76,77,76,77,76,77,78,79,78,79,78,79]);
ALF("12_1.U4(3).2_2","3_1.U4(3).2_2",[1,2,3,1,2,3,1,3,2,4,5,6,4,5,6,7,8,9,
7,8,9,7,9,8,10,11,12,10,11,12,10,12,11,13,13,13,14,14,14,15,16,17,15,16,
17,15,17,16,18,19,20,21,22,23,21,22,23,21,23,22,24,25,26,24,25,26,24,26,
25,27,28,29,27,28,29,30,31,32,30,31,32,33,34,35,33,34,35,33,34,35,33,34,
35,36,37,38,37,36,38,39,40,41,39,40,41,39,41,40,42,43,44,42,43,44,42,44,
43,45,45,45,45,46,47,48,46,47,48,46,48,47,49,50,51,49,50,51,52,53,54,55,
56,57,58,59,60,58,59,60,61,62,63,61,62,63,64,65,66,64,65,66,67,68,69,67,
68,69,70,71,72,70,71,72,73,73,74,74,75,76,77,78,79,80,78,79,80,81,82,83,
81,82,83,84,85,86,84,85,86,87,88,89,87,88,89,90,91,92,90,91,92]);
ALF("12_1.U4(3).2_2","6_1.U4(3).2_2",[1,2,3,4,5,6,1,3,5,7,8,9,10,11,12,13,
14,15,16,17,18,13,15,17,19,20,21,22,23,24,19,21,23,25,26,25,27,28,27,29,
30,31,32,33,34,29,31,33,35,36,37,38,39,40,41,42,43,38,40,42,44,45,46,47,
48,49,44,46,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,62,
63,64,65,66,67,68,69,70,69,68,70,71,72,73,74,75,76,71,73,75,77,78,79,80,
81,82,77,79,81,83,84,83,84,85,86,87,88,89,90,85,87,89,91,92,93,94,95,96,
97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,
116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,
134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,
152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169]);
ALF("12_1.U4(3).2_2","6.O7(3)",[1,8,6,7,5,9,4,3,2,13,11,15,10,14,12,16,56,
17,55,16,57,17,16,17,18,59,23,58,22,60,21,20,19,24,61,25,30,78,31,37,44,
42,43,41,45,40,39,38,46,47,48,49,118,54,117,53,119,52,51,50,70,63,69,62,
70,64,69,70,69,74,72,76,71,75,73,77,67,77,66,77,68,87,153,92,152,91,157,
90,156,89,155,88,154,96,97,101,100,99,98,106,169,105,168,104,167,103,102,
107,104,164,103,166,102,165,107,106,105,108,170,109,171,122,131,123,130,
122,132,123,122,123,7,11,9,10,8,12,13,14,15,43,44,45,34,47,36,46,35,48,57,
64,56,63,55,62,56,62,55,64,57,63,61,67,61,66,61,68,58,72,60,71,59,73,65,
77,83,84,93,94,95,117,115,119,114,118,116,131,130,130,132,132,131,127,138,
129,137,128,139,165,174,164,173,166,172,169,172,168,174,167,173],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
MOT("12_1.U4(3).2_2'",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"constructed using `PossibleCharacterTablesOfTypeMGA'"
],
[78382080,39191040,39191040,39191040,39191040,39191040,78382080,13824,6912,
6912,13824,139968,69984,69984,69984,69984,69984,139968,23328,11664,11664,11664
,11664,11664,23328,7776,3888,7776,648,324,648,2304,1152,1152,1152,1152,1152,
2304,96,48,120,60,60,60,60,60,120,1728,864,864,864,864,864,1728,432,216,216,
432,432,216,216,432,84,84,84,84,84,84,84,84,84,84,84,84,96,96,96,96,96,96,324,
324,324,324,324,324,324,324,324,324,324,324,216,108,216,216,108,216,288,144,
144,144,144,144,288,103680,103680,1152,192,192,192,2592,2592,2592,2592,432,432
,216,216,144,144,36,36,16,20,20,48,48,24,24,36,36,36,36],
[,[1,3,5,7,5,3,1,1,3,5,7,12,14,16,18,16,14,12,19,21,23,25,23,21,19,26,28,26,29
,31,29,8,10,10,8,10,10,8,11,9,41,43,45,47,45,43,41,12,14,16,18,16,14,12,19,21,
23,25,26,28,26,28,63,65,67,69,71,73,63,65,67,69,71,73,35,33,37,37,35,33,81,91,
89,87,85,83,81,91,89,87,85,83,96,98,96,93,95,93,48,50,52,54,52,50,48,7,7,1,8,
11,11,18,18,18,18,25,25,28,28,19,19,29,29,32,47,47,54,54,62,62,98,98,95,95],[1
,4,7,4,1,4,7,8,11,8,11,1,4,7,4,1,4,7,1,4,7,4,1,4,7,1,4,7,1,4,7,32,35,38,35,32,
35,38,39,39,41,44,47,44,41,44,47,8,11,8,11,8,11,8,8,11,8,11,8,11,8,11,63,72,69
,66,63,72,69,66,63,72,69,66,75,79,75,79,79,75,16,13,14,17,16,13,14,17,16,13,14
,17,12,15,18,12,15,18,32,35,38,35,32,35,38,106,107,108,109,110,111,106,107,106
,107,106,107,106,107,108,108,108,108,124,125,126,109,109,110,111,112,113,114,
115],,[1,6,3,4,5,2,7,8,9,10,11,12,17,14,15,16,13,18,19,24,21,22,23,20,25,26,27
,28,29,30,31,32,37,34,35,36,33,38,39,40,1,6,3,4,5,2,7,48,53,50,51,52,49,54,55,
56,57,58,59,60,61,62,63,70,65,72,67,74,69,64,71,66,73,68,75,78,80,76,79,77,81,
88,83,90,85,92,87,82,89,84,91,86,96,97,98,93,94,95,99,104,101,102,103,100,105,
106,107,108,109,110,111,114,115,112,113,116,117,118,119,120,121,122,123,124,
106,107,128,127,129,130,133,134,131,132],,[1,6,3,4,5,2,7,8,9,10,11,12,17,14,15
,16,13,18,19,24,21,22,23,20,25,26,27,28,29,30,31,32,37,34,35,36,33,38,39,40,41
,46,43,44,45,42,47,48,53,50,51,52,49,54,55,56,57,58,59,60,61,62,1,6,3,4,5,2,7,
2,5,4,3,6,75,78,80,76,79,77,81,88,83,90,85,92,87,82,89,84,91,86,93,94,95,96,97
,98,99,104,101,102,103,100,105,106,107,108,109,110,111,112,113,114,115,116,117
,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134]],
0,
[(122,123),(64,74)(65,73)(66,72)(67,71)(68,70),(93,96)(94,97)(95,98)(106,107)(
110,111)(112,115)(113,114)(116,117)(118,119)(120,121)(125,126)(129,130)(131,
134)(132,133),(93,96)(94,97)(95,98)(112,114)(113,115)(127,128)(131,133)(132,
134),(2,6)(13,17)(20,24)(33,37)(42,46)(49,53)(64,68)(65,73)(67,71)(70,74)(76,
78)(77,80)(82,88)(84,90)(86,92)(93,96)(94,97)(95,98)(100,104)(106,107)(110,111
)(112,115)(113,114)(116,117)(118,119)(120,121)(125,126)(129,130)(131,134)(132,
133)],
["ConstructMGA","12_1.U4(3)","2.U4(3).2_2'",[[40,41],[42,43],[44,45],[46,49],[
47,48],[50,51],[52,53],[54,55],[56,57],[58,59],[60,61],[62,63],[64,67],[65,66]
,[68,69],[70,71],[72,73],[74,75],[76,77],[78,79],[80,81],[82,83],[84,85],[86,
87],[88,91],[89,90],[92,93],[94,95],[96,97],[98,99],[100,101],[102,103],[104,
105],[106,107],[108,109],[110,111],[112,113],[114,117],[115,116],[118,119],[
120,121],[122,123],[124,125],[126,129],[127,128],[130,131],[132,133],[134,137]
,[135,136],[138,141],[139,140],[142,145],[143,144],[146,149],[147,148],[150,
153],[151,152],[154,157],[155,156],[158,165],[159,164],[160,163],[161,162],[
166,169],[167,168],[170,173],[171,172],[174,177],[175,176],[178,181],[179,180]
],()]);
ALF("12_1.U4(3).2_2'","U4(3).2_2'",[1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,
4,4,4,4,4,4,5,5,5,6,6,6,7,7,7,7,7,7,7,8,8,9,9,9,9,9,9,9,10,10,10,10,10,10,
10,11,11,11,11,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,
14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,17,17,17,18,18,18,
18,18,18,18,19,19,20,21,22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,30,
30,31,31,32,32,33,33,34,34]);
ALF("12_1.U4(3).2_2'","2.U4(3).2_2'",[1,2,1,2,1,2,1,3,4,3,4,5,6,5,6,5,6,5,
7,8,7,8,7,8,7,9,10,9,11,12,11,13,14,13,14,13,14,13,15,15,16,17,16,17,16,
17,16,18,19,18,19,18,19,18,20,21,20,21,22,23,22,23,24,25,24,25,24,25,24,
25,24,25,24,25,26,26,26,26,26,26,27,28,27,28,27,28,27,28,27,28,27,28,29,
30,29,31,32,31,33,34,33,34,33,34,33,35,36,37,38,39,40,41,42,43,44,45,46,
47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63]);
ALF("12_1.U4(3).2_2'","4.U4(3).2_2",[1,2,3,2,1,2,3,4,5,4,5,6,7,8,7,6,7,8,
12,13,14,13,12,13,14,9,10,11,15,16,17,18,19,20,19,18,19,20,21,21,22,23,24,
23,22,23,24,25,26,27,26,25,26,27,30,31,30,31,28,29,28,29,32,33,34,35,32,
33,34,35,32,33,34,35,36,37,36,37,37,36,44,45,46,47,44,45,46,47,44,45,46,
47,38,39,40,41,42,43,48,49,50,49,48,49,50,51,52,53,54,55,56,57,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79]);
ALF("12_1.U4(3).2_2'","3_1.U4(3).2_2'",[1,2,2,1,2,2,1,3,4,4,3,5,6,6,5,6,6,
5,7,8,8,7,8,8,7,9,9,9,10,10,10,11,12,12,11,12,12,11,13,14,15,16,16,15,16,
16,15,17,18,18,17,18,18,17,19,20,20,19,21,22,22,21,23,24,25,23,24,25,23,
24,25,23,24,25,26,27,27,27,26,27,28,29,30,28,29,30,28,29,30,28,29,30,31,
31,31,32,32,32,33,34,34,33,34,34,33,35,35,36,37,38,38,39,39,40,40,41,41,
42,42,43,43,44,44,45,46,46,47,47,48,48,49,49,50,50]);
ALF("12_1.U4(3).2_2'","6_1.U4(3).2_2'",[1,2,3,4,3,2,1,5,6,7,8,9,10,11,12,
11,10,9,13,14,15,16,15,14,13,17,18,17,19,20,19,21,22,23,24,23,22,21,25,26,
27,28,29,30,29,28,27,31,32,33,34,33,32,31,35,36,37,38,39,40,41,42,43,44,
45,46,47,48,43,44,45,46,47,48,49,50,51,51,49,50,52,53,54,55,56,57,52,53,
54,55,56,57,58,59,58,60,61,60,62,63,64,65,64,63,62,66,67,68,69,70,71,72,
73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94]);
MOT("12_2.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3]\n",
"3rd power map determined only up to matrix automorphisms\n",
"(138,142)(139,143)(140,144)(141,145), (130,134)(131,135)(132,136)(133,137)"
],
[39191040,39191040,39191040,39191040,39191040,39191040,39191040,39191040,
39191040,39191040,39191040,39191040,6912,6912,6912,6912,6912,6912,69984,69984,
69984,69984,69984,69984,69984,69984,69984,69984,69984,69984,3888,3888,3888,
3888,3888,3888,3888,3888,324,324,324,324,1152,1152,1152,1152,1152,1152,1152,
1152,1152,1152,1152,1152,48,48,48,60,60,60,60,60,60,60,60,60,60,60,60,864,864,
864,864,864,864,864,864,864,864,864,864,216,216,216,216,216,216,216,216,216,
216,216,216,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,
84,84,96,96,96,96,96,96,96,96,96,96,96,96,108,108,108,108,108,108,108,108,108,
108,108,108,108,108,108,108,144,144,144,144,144,144,144,144,144,144,144,144],
[,[1,3,5,7,9,11,1,3,5,7,9,11,1,3,5,7,9,11,19,21,23,25,27,29,19,21,23,25,27,29,
31,33,31,33,35,37,35,37,39,41,39,41,13,15,17,13,15,17,13,15,17,13,15,17,16,18,
14,58,60,62,64,66,68,58,60,62,64,66,68,19,21,23,25,27,29,19,21,23,25,27,29,31,
33,31,33,31,33,35,37,35,37,35,37,94,96,98,100,102,104,94,96,98,100,102,104,
106,108,110,112,114,116,106,108,110,112,114,116,52,54,44,46,48,50,52,54,44,46,
48,50,134,136,134,136,130,132,130,132,142,144,142,144,138,140,138,140,70,72,
74,76,78,80,70,72,74,76,78,80],[1,4,7,10,1,4,7,10,1,4,7,10,13,16,13,16,13,16,
1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,10,1,4,7,10,43,46,49,52,43,46,49,52,
43,46,49,52,55,55,55,58,61,64,67,58,61,64,67,58,61,64,67,13,16,13,16,13,16,13,
16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,106,109,112,115,106,109,
112,115,106,109,112,115,94,97,100,103,94,97,100,103,94,97,100,103,121,124,127,
118,121,124,127,118,121,124,127,118,27,30,21,24,23,26,29,20,27,30,21,24,23,26,
29,20,43,46,49,52,43,46,49,52,43,46,49,52],,[1,6,11,4,9,2,7,12,5,10,3,8,13,18,
17,16,15,14,19,24,29,22,27,20,25,30,23,28,21,26,31,32,33,34,35,36,37,38,39,40,
41,42,43,48,53,46,51,44,49,54,47,52,45,50,55,57,56,1,6,11,4,9,2,7,12,5,10,3,8,
70,75,80,73,78,71,76,81,74,79,72,77,82,87,86,85,84,83,88,93,92,91,90,89,106,
111,116,109,114,107,112,117,110,115,108,113,94,99,104,97,102,95,100,105,98,
103,96,101,118,123,128,121,126,119,124,129,122,127,120,125,134,135,136,137,
130,131,132,133,142,143,144,145,138,139,140,141,146,151,156,149,154,147,152,
157,150,155,148,153],,[1,8,3,10,5,12,7,2,9,4,11,6,13,14,15,16,17,18,19,26,21,
28,23,30,25,20,27,22,29,24,31,34,33,32,35,38,37,36,39,42,41,40,43,50,45,52,47,
54,49,44,51,46,53,48,55,56,57,58,65,60,67,62,69,64,59,66,61,68,63,70,77,72,79,
74,81,76,71,78,73,80,75,82,83,84,85,86,87,88,89,90,91,92,93,1,8,3,10,5,12,7,2,
9,4,11,6,1,8,3,10,5,12,7,2,9,4,11,6,121,128,123,118,125,120,127,122,129,124,
119,126,130,133,132,131,134,137,136,135,138,141,140,139,142,145,144,143,146,
153,148,155,150,157,152,147,154,149,156,151]],
0,
[( 94,106)( 95,107)( 96,108)( 97,109)( 98,110)( 99,111)(100,112)(101,113)
(102,114)(103,115)(104,116)(105,117),( 2, 6)( 3, 11)( 5, 9)( 8, 12)
( 14, 18)( 15, 17)( 20, 24)( 21, 29)( 23, 27)( 26, 30)( 44, 48)( 45, 53)
( 47, 51)( 50, 54)( 56, 57)( 59, 63)( 60, 68)( 62, 66)( 65, 69)( 71, 75)
( 72, 80)( 74, 78)( 77, 81)( 83, 87)( 84, 86)( 89, 93)( 90, 92)( 95, 99)
( 96,104)( 98,102)(101,105)(107,111)(108,116)(110,114)(113,117)(119,123)
(120,128)(122,126)(125,129)(130,134)(131,135)(132,136)(133,137)(138,142)
(139,143)(140,144)(141,145)(147,151)(148,156)(150,154)(153,157),( 2, 8)
( 4, 10)( 6, 12)( 20, 26)( 22, 28)( 24, 30)( 32, 34)( 36, 38)( 40, 42)
( 44, 50)( 46, 52)( 48, 54)( 59, 65)( 61, 67)( 63, 69)( 71, 77)( 73, 79)
( 75, 81)( 95,101)( 97,103)( 99,105)(107,113)(109,115)(111,117)(118,121)
(119,128)(120,123)(122,125)(124,127)(126,129)(131,133)(135,137)(139,141)
(143,145)(147,153)(149,155)(151,157),( 31, 35)( 32, 36)( 33, 37)( 34, 38)
( 82, 88)( 83, 89)( 84, 90)( 85, 91)( 86, 92)( 87, 93)(130,138)(131,139)
(132,140)(133,141)(134,142)(135,143)(136,144)(137,145)],
["ConstructProj",[["U4(3)",[]],["2.U4(3)",[]],["3_2.U4(3)",[-1,-13,-13,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1]],["4.U4(3)",[-1,-1,-1,7,7,7,7,-1,-1,-1,-1,-1,15,15,
-1,-1]],,["6_2.U4(3)",[-1,-1,-1,-7,-7,-13,-13,-1,-1,-1,-1,
-1]],,,,,,["12_2.U4(3)",[[-7,7,-1],[-7,7,-1],[-55,-377,-433],[-55,-377,-433],[
-7,7,-1],[-7,7,-1],[-7,7,-1],[-7,7,-1],[-7,7,-1]]]]]);
ALF("12_2.U4(3)","U4(3)",[1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,
3,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,9,9,9,9,
9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,
12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,
14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,17,17,17,
17,18,18,18,18,19,19,19,19,20,20,20,20,20,20,20,20,20,20,20,20]);
ALF("12_2.U4(3)","2.U4(3)",[1,2,1,2,1,2,1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,5,
6,5,6,5,6,5,6,7,8,7,8,9,10,9,10,11,12,11,12,13,14,13,14,13,14,13,14,13,14,
13,14,15,15,15,16,17,16,17,16,17,16,17,16,17,16,17,18,19,18,19,18,19,18,
19,18,19,18,19,20,21,20,21,20,21,22,23,22,23,22,23,24,25,24,25,24,25,24,
25,24,25,24,25,26,27,26,27,26,27,26,27,26,27,26,27,28,29,28,29,28,29,28,
29,28,29,28,29,30,31,30,31,32,33,32,33,34,35,34,35,36,37,36,37,38,39,38,
39,38,39,38,39,38,39,38,39]);
ALF("12_2.U4(3)","4.U4(3)",[1,2,3,4,1,2,3,4,1,2,3,4,5,6,5,6,5,6,7,8,9,10,
7,8,9,10,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,23,24,
25,26,23,24,25,26,27,27,27,28,29,30,31,28,29,30,31,28,29,30,31,32,33,34,
35,32,33,34,35,32,33,34,35,36,37,36,37,36,37,38,39,38,39,38,39,40,41,42,
43,40,41,42,43,40,41,42,43,44,45,46,47,44,45,46,47,44,45,46,47,48,49,50,
51,48,49,50,51,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,
67,68,69,70,71,68,69,70,71,68,69,70,71]);
ALF("12_2.U4(3)","3_2.U4(3)",[1,2,3,1,2,3,1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,
8,9,7,8,9,7,8,9,10,10,10,10,11,11,11,11,12,12,12,12,13,14,15,13,14,15,13,
14,15,13,14,15,16,17,18,19,20,21,19,20,21,19,20,21,19,20,21,22,23,24,22,
23,24,22,23,24,22,23,24,25,26,27,25,26,27,28,29,30,28,29,30,31,32,33,31,
32,33,31,32,33,31,32,33,34,35,36,34,35,36,34,35,36,34,35,36,37,38,39,37,
38,39,37,38,39,37,38,39,40,40,40,40,41,41,41,41,42,42,42,42,43,43,43,43,
44,45,46,44,45,46,44,45,46,44,45,46]);
ALF("12_2.U4(3)","6_2.U4(3)",[1,2,3,4,5,6,1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,13,14,15,16,17,18,19,20,19,20,21,22,21,22,23,24,23,24,25,
26,27,28,29,30,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,34,35,36,37,
38,39,40,41,42,43,44,45,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,
56,57,58,59,60,61,62,63,58,59,60,61,62,63,64,65,66,67,68,69,64,65,66,67,
68,69,70,71,72,73,74,75,70,71,72,73,74,75,76,77,76,77,78,79,78,79,80,81,
80,81,82,83,82,83,84,85,86,87,88,89,84,85,86,87,88,89]);
ALF("12_2.U4(3)","12_2.U4(3).2_1",[1,2,3,4,5,2,6,7,5,8,3,7,9,10,11,12,11,
10,13,14,15,16,17,14,18,19,17,20,15,19,21,22,23,24,25,26,27,28,29,30,31,
32,33,34,35,36,37,34,38,39,37,40,35,39,41,42,42,43,44,45,46,47,44,48,49,
47,50,45,49,51,52,53,54,55,52,56,57,55,58,53,57,59,60,61,62,61,60,63,64,
65,66,65,64,67,68,69,70,71,68,72,73,71,74,69,73,75,76,77,78,79,76,80,81,
79,82,77,81,83,84,85,86,87,84,88,89,87,90,85,89,91,92,93,94,91,92,93,94,
95,96,97,98,95,96,97,98,99,100,101,102,103,100,104,105,103,106,101,105],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("12_2.U4(3)","12_2.U4(3).2_3",[1,2,3,4,5,6,7,2,8,4,9,6,10,11,12,13,14,
15,16,17,18,19,20,21,22,17,23,19,24,21,25,26,27,28,25,28,27,26,29,30,31,
30,32,33,34,35,36,37,38,33,39,35,40,37,41,42,43,44,45,46,47,48,49,50,45,
51,47,52,49,53,54,55,56,57,58,59,54,60,56,61,58,62,63,64,65,66,67,62,63,
64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,68,75,70,77,72,79,74,69,
76,71,78,73,80,81,82,80,83,82,84,83,85,84,81,85,86,87,88,89,90,91,92,93,
86,89,88,87,90,93,92,91,94,95,96,97,98,99,100,95,101,97,102,99],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("12_2.U4(3)","12_2.U4(3).2_3'",[1,2,3,4,5,6,7,6,5,4,3,2,8,9,10,11,10,
9,12,13,14,15,16,17,18,17,16,15,14,13,19,20,21,22,19,22,21,20,23,24,25,24,
26,27,28,29,30,31,32,31,30,29,28,27,33,34,34,35,36,37,38,39,40,41,40,39,
38,37,36,42,43,44,45,46,47,48,47,46,45,44,43,49,50,51,52,53,54,49,54,53,
52,51,50,55,56,57,58,59,60,61,62,63,64,65,66,55,66,65,64,63,62,61,60,59,
58,57,56,67,68,68,67,69,70,71,72,72,71,70,69,73,74,75,76,77,78,79,80,77,
80,79,78,73,76,75,74,81,82,83,84,85,86,87,86,85,84,83,82]);
MOT("12_2.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r."
],
[78382080,39191040,39191040,78382080,39191040,78382080,39191040,78382080,
13824,6912,6912,13824,139968,69984,69984,139968,69984,139968,69984,139968,
7776,7776,7776,7776,7776,7776,7776,7776,648,648,648,648,2304,1152,1152,2304,
1152,2304,1152,2304,96,48,120,60,60,120,60,120,60,120,1728,864,864,1728,864,
1728,864,1728,432,216,216,432,432,216,216,432,168,84,84,168,84,168,84,168,168,
84,84,168,84,168,84,168,192,96,96,192,96,192,96,192,108,108,108,108,108,108,
108,108,288,144,144,288,144,288,144,288,48384,48384,48384,48384,2880,2880,
4608,4608,4608,4608,128,864,864,864,864,72,72,72,72,72,72,72,72,64,64,64,64,
40,40,40,40,576,576,576,576,576,576,576,576,144,144,144,144,144,144,144,144,
56,56,56,56,56,56,56,56],
[,[1,3,5,6,5,1,3,6,1,3,5,6,13,15,17,18,17,13,15,18,21,23,21,23,25,27,25,27,29,
31,29,31,9,11,11,9,11,9,11,9,12,10,43,45,47,48,47,43,45,48,13,15,17,18,17,13,
15,18,21,23,21,23,25,27,25,27,67,69,71,72,71,67,69,72,75,77,79,80,79,75,77,80,
40,39,34,36,34,40,39,36,91,93,91,93,95,97,95,97,51,53,55,56,55,51,53,56,1,6,1,
6,8,4,9,9,9,9,9,13,18,13,18,22,24,26,28,29,31,29,31,36,40,36,40,50,46,50,46,
51,56,51,56,56,51,56,51,59,59,59,59,63,63,63,63,67,72,67,72,75,80,75,80],[1,4,
6,8,1,6,8,4,9,12,9,12,1,4,6,8,1,6,8,4,1,4,6,8,1,4,6,8,1,4,6,8,33,36,38,40,33,
38,40,36,41,41,43,46,48,50,43,48,50,46,9,12,9,12,9,9,12,12,9,12,9,12,9,12,9,
12,75,78,80,82,75,80,82,78,67,70,72,74,67,72,74,70,86,88,90,83,86,90,83,88,17,
19,15,14,17,19,15,14,33,36,38,40,33,38,40,36,107,110,109,108,112,111,116,115,
114,113,117,107,110,109,108,112,111,112,111,107,110,109,108,133,132,131,130,
137,136,135,134,116,115,114,113,116,115,114,113,116,115,114,113,116,115,114,
113,158,161,160,159,154,157,156,155],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,
1,2,3,4,5,6,7,8,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,75,76,77,78,
79,80,81,82,67,68,69,70,71,72,73,74,83,84,85,86,87,88,89,90,91,92,93,94,95,96,
97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,
117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,111,112,
111,112,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,158,
159,160,161,154,155,156,157],,[1,7,3,8,5,6,2,4,9,10,11,12,13,19,15,20,17,18,
14,16,21,24,23,22,25,28,27,26,29,32,31,30,33,39,35,40,37,38,34,36,41,42,43,49,
45,50,47,48,44,46,51,57,53,58,55,56,52,54,59,60,61,62,63,64,65,66,1,7,3,8,5,6,
2,4,1,7,3,8,5,6,2,4,86,85,84,83,89,90,87,88,91,94,93,92,95,98,97,96,99,105,
101,106,103,104,100,102,107,110,109,108,112,111,116,115,114,113,117,118,121,
120,119,123,122,125,124,126,129,128,127,133,132,131,130,135,134,137,136,145,
144,143,142,141,140,139,138,149,148,147,146,153,152,151,150,107,110,109,108,
107,110,109,108]],
0,
[(134,136)(135,137),( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)( 72, 80)
( 73, 81)( 74, 82)(154,158)(155,159)(156,160)(157,161),( 2, 7)( 4, 8)
( 14, 19)( 16, 20)( 22, 24)( 26, 28)( 30, 32)( 34, 39)( 36, 40)( 44, 49)
( 46, 50)( 52, 57)( 54, 58)( 68, 73)( 70, 74)( 76, 81)( 78, 82)( 83, 86)
( 84, 85)( 87, 89)( 88, 90)( 92, 94)( 96, 98)(100,105)(102,106)(108,110)
(111,112)(113,116)(114,115)(119,121)(122,123)(124,125)(127,129)(130,133)
(131,132)(134,135)(136,137)(138,145)(139,144)(140,143)(141,142)(146,149)
(147,148)(150,153)(151,152)(155,157)(159,161),( 2, 7)( 4, 8)( 14, 19)
( 16, 20)( 22, 24)( 26, 28)( 30, 32)( 34, 39)( 36, 40)( 44, 49)( 46, 50)
( 52, 57)( 54, 58)( 68, 73)( 70, 74)( 76, 81)( 78, 82)( 83, 86)( 84, 85)
( 87, 89)( 88, 90)( 92, 94)( 96, 98)(100,105)(102,106)(108,110)(111,112)
(113,116)(114,115)(119,121)(122,123)(124,125)(127,129)(130,133)(131,132)
(134,137)(135,136)(138,145)(139,144)(140,143)(141,142)(146,149)(147,148)
(150,153)(151,152)(155,157)(159,161),(107,109)(108,110)(113,115)(114,116)
(118,120)(119,121)(126,128)(127,129)(130,132)(131,133)(138,140)(139,141)
(142,144)(143,145)(146,148)(147,149)(150,152)(151,153)(154,156)(155,157)
(158,160)(159,161),( 21, 25)( 22, 26)( 23, 27)( 24, 28)( 59, 63)( 60, 64)
( 61, 65)( 62, 66)( 91, 95)( 92, 96)( 93, 97)( 94, 98)(122,124)(123,125)
(146,150)(147,151)(148,152)(149,153)],
["ConstructMGA","12_2.U4(3)","4.U4(3).2_1",
[ [ 72, 73 ], [ 74, 75 ], [ 76, 77 ], [ 78, 79 ], [ 80, 81 ],
[ 82, 83 ], [ 84, 85 ], [ 86, 87 ], [ 88, 89 ], [ 90, 91 ],
[ 92, 93 ], [ 94, 95 ], [ 96, 97 ], [ 98, 99 ], [ 100, 101 ],
[ 102, 103 ], [ 104, 105 ], [ 106, 107 ], [ 108, 109 ], [ 110, 111 ],
[ 112, 113 ], [ 114, 115 ], [ 116, 117 ], [ 118, 119 ], [ 120, 121 ],
[ 122, 123 ], [ 124, 125 ], [ 126, 127 ], [ 128, 129 ], [ 130, 131 ],
[ 132, 133 ], [ 134, 135 ], [ 136, 137 ], [ 138, 139 ], [ 140, 141 ],
[ 142, 143 ], [ 144, 145 ], [ 146, 147 ], [ 148, 149 ], [ 150, 151 ],
[ 152, 153 ], [ 154, 155 ], [ 156, 157 ] ], ()]);
ALF("12_2.U4(3).2_1","U4(3).2_1",[1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,
4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,8,8,9,9,9,9,9,9,9,9,10,10,10,10,
10,10,10,10,11,11,11,11,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,
14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,17,17,17,17,18,18,18,18,
18,18,18,18,19,19,19,19,20,20,21,21,21,21,22,23,23,23,23,24,24,25,25,26,
26,26,26,27,27,27,27,28,28,28,28,29,29,29,29,30,30,30,30,31,31,31,31,32,
32,32,32,33,33,33,33,34,34,34,34]);
ALF("12_2.U4(3).2_1","2.U4(3).2_1",[1,2,1,2,1,1,2,2,3,4,3,4,5,6,5,6,5,5,6,
6,7,8,7,8,9,10,9,10,11,12,11,12,13,14,13,14,13,13,14,14,15,15,16,17,16,17,
16,16,17,17,18,19,18,19,18,18,19,19,20,21,20,21,22,23,22,23,24,25,24,25,
24,24,25,25,26,27,26,27,26,26,27,27,28,29,28,29,28,28,29,29,30,31,30,31,
32,33,32,33,34,35,34,35,34,34,35,35,36,37,36,37,38,39,40,41,40,41,42,43,
44,43,44,45,46,47,48,49,50,49,50,51,52,51,52,53,54,53,54,55,56,55,56,57,
58,57,58,59,60,59,60,61,62,61,62,63,64,63,64,65,66,65,66]);
ALF("12_2.U4(3).2_1","4.U4(3).2_1",[1,2,3,4,1,3,4,2,5,6,5,6,7,8,9,10,7,9,
10,8,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,23,25,26,24,27,27,28,
29,30,31,28,30,31,29,32,33,34,35,32,34,35,33,36,37,36,37,38,39,38,39,40,
41,42,43,40,42,43,41,44,45,46,47,44,46,47,45,48,49,50,51,48,50,51,49,52,
53,54,55,56,57,58,59,60,61,62,63,60,62,63,61,64,65,66,67,68,69,70,71,72,
73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,
97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,
116,117,118]);
ALF("12_2.U4(3).2_1","3_2.U4(3).2_1",[1,2,2,1,2,1,2,1,3,4,4,3,5,6,6,5,6,5,
6,5,7,7,7,7,8,8,8,8,9,9,9,9,10,11,11,10,11,10,11,10,12,13,14,15,15,14,15,
14,15,14,16,17,17,16,17,16,17,16,18,19,19,18,20,21,21,20,22,23,23,22,23,
22,23,22,24,25,25,24,25,24,25,24,26,27,27,26,27,26,27,26,28,28,28,28,29,
29,29,29,30,31,31,30,31,30,31,30,32,32,32,32,33,33,34,34,34,34,35,36,36,
36,36,37,37,38,38,39,39,39,39,40,40,40,40,41,41,41,41,42,42,42,42,43,43,
43,43,44,44,44,44,45,45,45,45,46,46,46,46,47,47,47,47]);
ALF("12_2.U4(3).2_1","6_2.U4(3).2_1",[1,2,3,4,3,1,2,4,5,6,7,8,9,10,11,12,
11,9,10,12,13,14,13,14,15,16,15,16,17,18,17,18,19,20,21,22,21,19,20,22,23,
24,25,26,27,28,27,25,26,28,29,30,31,32,31,29,30,32,33,34,35,36,37,38,39,
40,41,42,43,44,43,41,42,44,45,46,47,48,47,45,46,48,49,50,51,52,51,49,50,
52,53,54,53,54,55,56,55,56,57,58,59,60,59,57,58,60,61,62,61,62,63,64,65,
66,65,66,67,68,69,68,69,70,71,72,73,74,75,74,75,76,77,76,77,78,79,78,79,
80,81,80,81,82,83,82,83,84,85,84,85,86,87,86,87,88,89,88,89,90,91,90,91]);
MOT("12_2.U4(3).2_3",
[
"origin: ATLAS of finite groups, tests: 1.o.r.,\n",
"3rd power map determined only up to matrix automorphism\n",
"(86,90)(88,92)(87,91)(89,93)"
],
[78382080,39191040,78382080,39191040,78382080,39191040,78382080,78382080,
78382080,13824,13824,13824,13824,13824,13824,139968,69984,139968,69984,139968,
69984,139968,139968,139968,3888,3888,3888,3888,648,324,648,2304,1152,2304,
1152,2304,1152,2304,2304,2304,96,96,96,120,60,120,60,120,60,120,120,120,1728,
864,1728,864,1728,864,1728,1728,1728,216,216,216,216,216,216,84,84,84,84,84,
84,84,84,84,84,84,84,96,96,96,96,96,96,108,108,108,108,108,108,108,108,288,
144,288,144,288,144,288,288,288,4320,4320,4320,288,288,288,36,36,576,576,576,
576,576,576,96,96,96,48,48,48,48,48,48,60,60,60,60,60,60,72,72,72,72,72,72,
144,144,144,144,144,144,144,144,144,144,144,144],
[,[1,3,5,7,8,9,1,5,8,1,3,5,7,8,9,16,18,20,22,23,24,16,20,23,25,27,25,27,29,31,
29,10,12,14,10,12,14,10,14,12,13,15,11,44,46,48,50,51,52,44,48,51,16,18,20,22,
23,24,16,20,23,25,27,25,27,25,27,68,70,72,74,76,78,68,70,72,74,76,78,35,37,33,
37,35,33,90,92,90,92,86,88,86,88,53,55,57,59,60,61,53,57,60,1,8,5,10,12,14,29,
29,38,34,40,38,34,40,32,39,36,41,43,42,41,43,42,44,51,48,44,51,48,59,55,61,59,
55,61,100,96,102,100,96,102,100,96,102,100,96,102],[1,4,7,4,1,4,7,1,7,10,13,
10,13,10,13,1,4,7,4,1,4,7,1,7,1,4,7,4,1,4,7,32,35,38,35,32,35,38,32,38,41,41,
41,44,47,50,47,44,47,50,44,50,10,13,10,13,10,13,10,10,10,10,13,10,13,10,13,68,
77,74,71,68,77,74,71,68,77,74,71,80,84,84,80,84,80,23,21,18,21,20,17,24,17,32,
35,38,35,32,35,38,32,38,103,103,103,106,106,106,103,103,114,111,114,111,114,
111,117,117,117,123,120,123,120,123,120,129,126,129,126,129,126,106,106,106,
106,106,106,114,111,114,111,114,111,114,111,114,111,114,111],,[1,6,9,4,8,2,7,
5,3,10,15,14,13,12,11,16,21,24,19,23,17,22,20,18,25,26,27,28,29,30,31,32,37,
40,35,39,33,38,36,34,41,43,42,1,6,9,4,8,2,7,5,3,53,58,61,56,60,54,59,57,55,62,
67,66,65,64,63,68,79,78,77,76,75,74,73,72,71,70,69,80,82,81,85,84,83,90,91,92,
93,86,87,88,89,94,99,102,97,101,95,100,98,96,103,105,104,106,108,107,109,110,
114,113,112,111,116,115,117,119,118,123,122,121,120,125,124,103,105,104,103,
105,104,135,134,133,132,137,136,141,140,139,138,143,142,147,146,145,144,149,
148],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,28,
27,26,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,1,2,3,4,5,6,7,2,8,4,9,6,80,81,82,
83,84,85,86,89,88,87,90,93,92,91,94,95,96,97,98,99,100,101,102,103,104,105,
106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,
125,129,130,131,126,127,128,132,133,134,135,136,137,138,139,140,141,142,143,
144,145,146,147,148,149]],
0,
[(126,129)(127,130)(128,131),(109,110),(69,75)(71,77)(73,79),(26,28)(87,89)
(91,93),(26,28)(69,75)(71,77)(73,79)(87,89)(91,93),( 26, 28)( 69, 75)( 71, 77)
( 73, 79)( 87, 89)( 91, 93)(111,114)(112,115)(113,116)(120,123)(121,124)
(122,125)(138,147)(139,148)(140,149)(141,144)(142,145)(143,146),( 2, 6)
( 3, 9)( 5, 8)( 11, 15)( 12, 14)( 17, 21)( 18, 24)( 20, 23)( 33, 37)
( 34, 40)( 36, 39)( 42, 43)( 45, 49)( 46, 52)( 48, 51)( 54, 58)( 55, 61)
( 57, 60)( 63, 67)( 64, 66)( 69, 73)( 70, 78)( 72, 76)( 75, 79)( 81, 82)
( 83, 85)( 86, 90)( 87, 91)( 88, 92)( 89, 93)( 95, 99)( 96,102)( 98,101)
(104,105)(107,108)(112,116)(113,115)(118,119)(121,125)(122,124)(127,131)
(128,130)(132,135)(133,134)(136,137)(138,144)(139,149)(140,148)(141,147)
(142,146)(143,145),(111,114)(112,115)(113,116)(120,123)(121,124)(122,125)
(138,147)(139,148)(140,149)(141,144)(142,145)(143,146),(111,114)(112,115)
(113,116)(120,123)(121,124)(122,125)(132,135)(133,136)(134,137)(138,141)
(139,142)(140,143)(144,147)(145,148)(146,149)],
["ConstructMGA","12_2.U4(3)","6_2.U4(3).2_3",
[ [ 40, 41 ], [ 42, 43 ], [ 44, 45 ], [ 46, 51 ], [ 47, 50 ],
[ 48, 53 ], [ 49, 52 ], [ 54, 55 ], [ 56, 59 ], [ 57, 58 ],
[ 60, 61 ], [ 62, 63 ], [ 64, 67 ], [ 65, 66 ], [ 68, 69 ],
[ 70, 71 ], [ 122, 124 ], [ 123, 125 ], [ 126, 128 ], [ 127, 129 ],
[ 130, 136 ], [ 131, 137 ], [ 132, 134 ], [ 133, 135 ], [ 138, 140 ],
[ 139, 141 ], [ 142, 144 ], [ 143, 145 ], [ 146, 148 ], [ 147, 149 ],
[ 150, 152 ], [ 151, 153 ], [ 154, 156 ], [ 155, 157 ] ],
( 46, 62, 78, 94,110,126, 56, 72, 88,104,120, 50, 66, 82, 98,114,130, 60,
76, 92,108,124, 54, 70, 86,102,118, 48, 64, 80, 96,112,128, 58, 74, 90,
106,122, 52, 68, 84,100,116)( 47, 63, 79, 95,111,127, 57, 73, 89,105,
121, 51, 67, 83, 99,115,131, 61, 77, 93,109,125, 55, 71, 87,103,119,
49, 65, 81, 97,113,129, 59, 75, 91,107,123, 53, 69, 85,101,117)]);
ALF("12_2.U4(3).2_3","U4(3).2_3",[1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,
3,3,3,3,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,
9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,
12,12,13,13,13,13,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,17,17,
17,18,18,19,19,19,19,19,19,20,20,20,21,21,21,21,21,21,22,22,22,22,22,22,
23,23,23,23,23,23,24,24,24,24,24,24,25,25,25,25,25,25]);
ALF("12_2.U4(3).2_3","2.U4(3).2_3",[1,2,1,2,1,2,1,1,1,3,4,3,4,3,4,5,6,5,6,
5,6,5,5,5,7,8,7,8,9,10,9,11,12,11,12,11,12,11,11,11,13,13,13,14,15,14,15,
14,15,14,14,14,16,17,16,17,16,17,16,16,16,18,19,18,19,18,19,20,21,20,21,
20,21,20,21,20,21,20,21,22,22,22,22,22,22,23,24,23,24,25,26,25,26,27,28,
27,28,27,28,27,27,27,29,29,29,30,30,30,31,32,33,34,33,34,33,34,35,35,35,
36,37,36,37,36,37,38,39,38,39,38,39,40,41,40,41,40,41,42,43,42,43,42,43,
44,45,44,45,44,45]);
ALF("12_2.U4(3).2_3","4.U4(3).2_3",[1,2,3,2,1,2,3,1,3,4,5,4,5,4,5,6,7,8,7,
6,7,8,6,8,9,10,11,12,13,14,15,16,17,18,17,16,17,18,16,18,19,19,19,20,21,
22,21,20,21,22,20,22,23,24,25,24,23,24,25,23,25,26,27,26,27,26,27,28,29,
30,31,28,29,30,31,28,29,30,31,32,33,33,32,33,32,34,35,36,37,38,39,40,41,
42,43,44,43,42,43,44,42,44,45,45,45,46,46,46,47,48,49,50,49,50,49,50,51,
51,51,52,53,52,53,52,53,54,55,54,55,54,55,56,57,56,57,56,57,58,59,58,59,
58,59,60,61,60,61,60,61]);
ALF("12_2.U4(3).2_3","3_2.U4(3).2_3",[1,2,3,1,2,3,1,3,2,4,5,6,4,5,6,7,8,9,
7,8,9,7,9,8,10,10,10,10,11,11,11,12,13,14,12,13,14,12,14,13,15,16,17,18,
19,20,18,19,20,18,20,19,21,22,23,21,22,23,21,23,22,24,25,26,24,25,26,27,
28,29,27,28,29,27,28,29,27,28,29,30,31,32,31,30,32,33,33,33,33,34,34,34,
34,35,36,37,35,36,37,35,37,36,38,39,40,41,42,43,44,44,45,46,47,45,46,47,
48,49,50,51,52,53,51,52,53,54,55,56,54,55,56,57,58,59,57,58,59,60,61,62,
60,61,62,63,64,65,63,64,65]);
ALF("12_2.U4(3).2_3","6_2.U4(3).2_3",[1,2,3,4,5,6,1,3,5,7,8,9,10,11,12,13,
14,15,16,17,18,13,15,17,19,20,19,20,21,22,21,23,24,25,26,27,28,23,25,27,
29,30,31,32,33,34,35,36,37,32,34,36,38,39,40,41,42,43,38,40,42,44,45,46,
47,48,49,50,51,52,53,54,55,50,51,52,53,54,55,56,57,58,57,56,58,59,60,59,
60,61,62,61,62,63,64,65,66,67,68,63,65,67,69,70,71,72,73,74,75,76,77,78,
79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,
102,103,104,105,106,107,108,109,110,111,112,113,114,115]);
MOT("12_2.U4(3).2_3'",
[
"origin: ATLAS of finite groups, tests: 1.o.r.,\n",
"constructed using `PossibleCharacterTablesOfTypeMGA',\n",
"3rd power map determined only up to matrix automorphism\n",
"(20,22)(74,76)(78,80)"
],
[78382080,39191040,39191040,39191040,39191040,39191040,78382080,13824,6912,
6912,13824,139968,69984,69984,69984,69984,69984,139968,3888,3888,3888,3888,648
,324,648,2304,1152,1152,1152,1152,1152,2304,96,48,120,60,60,60,60,60,120,1728,
864,864,864,864,864,1728,216,216,216,216,216,216,84,84,84,84,84,84,84,84,84,84
,84,84,96,96,96,96,96,96,108,108,108,108,108,108,108,108,288,144,144,144,144,
144,288,1440,96,36,36,192,192,32,16,16,20,20,24,24,48,48,48,48],
[,[1,3,5,7,5,3,1,1,3,5,7,12,14,16,18,16,14,12,19,21,19,21,23,25,23,8,10,10,8,
10,10,8,11,9,35,37,39,41,39,37,35,12,14,16,18,16,14,12,19,21,19,21,19,21,55,57
,59,61,63,65,55,57,59,61,63,65,29,27,31,31,29,27,77,79,77,79,73,75,73,75,42,44
,46,48,46,44,42,1,8,23,23,32,32,26,33,33,35,35,48,48,87,87,87,87],[1,4,7,4,1,4
,7,8,11,8,11,1,4,7,4,1,4,7,1,4,7,4,1,4,7,26,29,32,29,26,29,32,33,33,35,38,41,
38,35,38,41,8,11,8,11,8,11,8,8,11,8,11,8,11,55,64,61,58,55,64,61,58,55,64,61,
58,67,71,67,71,71,67,16,13,14,17,16,17,14,13,26,29,32,29,26,29,32,88,89,88,88,
93,92,94,96,95,98,97,89,89,93,92,93,92],,[1,6,3,4,5,2,7,8,9,10,11,12,17,14,15,
16,13,18,19,20,21,22,23,24,25,26,31,28,29,30,27,32,33,34,1,6,3,4,5,2,7,42,47,
44,45,46,43,48,49,54,53,52,51,50,55,62,57,64,59,66,61,56,63,58,65,60,67,70,72,
68,71,69,77,78,79,80,73,74,75,76,81,86,83,84,85,82,87,88,89,90,91,93,92,94,96,
95,88,88,100,99,102,101,104,103],,[1,6,3,4,5,2,7,8,9,10,11,12,17,14,15,16,13,
18,19,22,21,20,23,24,25,26,31,28,29,30,27,32,33,34,35,40,37,38,39,36,41,42,47,
44,45,46,43,48,49,50,51,52,53,54,1,6,3,4,5,2,7,2,5,4,3,6,67,70,72,68,71,69,73,
76,75,74,77,80,79,78,81,86,83,84,85,82,87,88,89,90,91,92,93,94,95,96,98,97,99,
100,101,102,103,104]],
0,
[(97,98),(90,91),(56,66)(57,65)(58,64)(59,63)(60,62),(50,54)(51,53),(20,22)(73
,77)(74,80)(75,79)(76,78),(92,93)(95,96)(101,104)(102,103),(99,100)(101,103)(
102,104),(2,6)(13,17)(27,31)(36,40)(43,47)(56,60)(57,65)(59,63)(62,66)(68,70)(
69,72)(73,77)(74,78)(75,79)(76,80)(82,86)(92,93)(95,96)(101,104)(102,103)],
["ConstructMGA","12_2.U4(3)","2.U4(3).2_3'",[[40,41],[42,43],[44,45],[46,53],[
47,52],[48,51],[49,50],[54,55],[56,59],[57,58],[60,61],[62,63],[64,67],[65,66]
,[68,69],[70,71],[72,73],[74,77],[75,76],[78,79],[80,81],[82,83],[84,87],[85,
86],[88,89],[90,91],[92,93],[94,95],[96,97],[98,99],[100,103],[101,102],[104,
107],[105,106],[108,111],[109,110],[112,113],[114,115],[116,117],[118,119],[
120,121],[122,125],[123,124],[126,129],[127,128],[130,137],[131,136],[132,135]
,[133,134],[138,141],[139,140],[142,145],[143,144],[146,149],[147,148],[150,
153],[151,152],[154,157],[155,156]],()]);
ALF("12_2.U4(3).2_3'","U4(3).2_3'",[1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,
4,4,4,5,5,5,6,6,6,6,6,6,6,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,9,10,10,10,10,10,
10,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13,13,14,
14,14,14,15,15,15,15,15,15,15,16,17,18,18,19,19,20,21,21,22,22,23,23,24,
24,25,25]);
ALF("12_2.U4(3).2_3'","2.U4(3).2_3'",[1,2,1,2,1,2,1,3,4,3,4,5,6,5,6,5,6,5,
7,8,7,8,9,10,9,11,12,11,12,11,12,11,13,13,14,15,14,15,14,15,14,16,17,16,
17,16,17,16,18,19,18,19,18,19,20,21,20,21,20,21,20,21,20,21,20,21,22,22,
22,22,22,22,23,24,23,24,25,26,25,26,27,28,27,28,27,28,27,29,30,31,32,33,
34,35,36,37,38,39,40,41,42,43,44,45]);
ALF("12_2.U4(3).2_3'","4.U4(3).2_3",[1,2,3,2,1,2,3,4,5,4,5,6,7,8,7,6,7,8,
9,10,11,12,13,14,15,16,17,18,17,16,17,18,19,19,20,21,22,21,20,21,22,23,24,
25,24,23,24,25,26,27,26,27,26,27,28,29,30,31,28,29,30,31,28,29,30,31,32,
33,32,33,33,32,34,35,36,37,38,39,40,41,42,43,44,43,42,43,44,45,46,47,48,
49,50,51,52,53,54,55,56,57,58,59,60,61]);
ALF("12_2.U4(3).2_3'","3_2.U4(3).2_3'",[1,2,2,1,2,2,1,3,4,4,3,5,6,6,5,6,6,
5,7,7,7,7,8,8,8,9,10,10,9,10,10,9,11,12,13,14,14,13,14,14,13,15,16,16,15,
16,16,15,17,18,19,17,18,19,20,21,22,20,21,22,20,21,22,20,21,22,23,24,24,
24,23,24,25,25,25,25,26,26,26,26,27,28,28,27,28,28,27,29,30,31,31,32,32,
33,34,34,35,35,36,36,37,37,38,38]);
ALF("12_2.U4(3).2_3'","6_2.U4(3).2_3'",[1,2,3,4,3,2,1,5,6,7,8,9,10,11,12,
11,10,9,13,14,13,14,15,16,15,17,18,19,20,19,18,17,21,22,23,24,25,26,25,24,
23,27,28,29,30,29,28,27,31,32,33,34,35,36,37,38,39,40,41,42,37,38,39,40,
41,42,43,44,45,45,43,44,46,47,46,47,48,49,48,49,50,51,52,53,52,51,50,54,
55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70]);
MOT("2.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[6531840,6531840,2304,2304,11664,11664,1944,1944,1944,1944,162,162,192,192,16,
10,10,144,144,72,72,72,72,14,14,14,14,16,16,54,54,54,54,54,54,54,54,24,24],
[,[1,1,1,1,5,5,7,7,9,9,11,11,3,3,4,16,16,5,5,7,7,9,9,24,24,26,26,14,14,32,32,
30,30,36,36,34,34,18,18],[1,2,3,4,1,2,1,2,1,2,1,2,13,14,15,16,17,3,4,3,4,3,4,
26,27,24,25,29,28,5,6,5,6,5,6,5,6,13,14],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,1,2,18,19,20,21,22,23,26,27,24,25,28,29,32,33,30,31,36,37,34,35,38,39],,[1,
2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,1,2,1,2,29,28,30,31,
32,33,34,35,36,37,38,39]],
0,
[(30,32)(31,33)(34,36)(35,37),(28,29),(24,26)(25,27),(34,36)(35,37),( 7, 9)
( 8,10)(20,22)(21,23)(30,34)(31,35)(32,36)(33,37)],
["ConstructProj",[["U4(3)",[]],["2.U4(3)",[]]]]);
ALF("2.U4(3)","U4(3)",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,10,10,11,11,12,
12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,20,20]);
ALF("2.U4(3)","2.U4(3).2_1",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,25,26,27,28,29,30,31,30,31,32,33,32,33,34,35],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("2.U4(3)","2.U4(3).2_2",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,31,32,31,32,33,34],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("2.U4(3)","2.U4(3).2_2'",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,24,25,26,26,27,28,27,28,29,30,31,32,33,34],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("2.U4(3)","2.U4(3).2_3",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,13,14,15,16,
17,18,19,18,19,20,21,20,21,22,22,23,24,25,26,23,24,25,26,27,28],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("2.U4(3)","2.U4(3).2_3'",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,13,14,15,16,
17,18,19,18,19,20,21,20,21,22,22,23,24,25,26,25,26,23,24,27,28],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]); # exactly this map is required for constructing 6_2.U4(3).2_3'
ALF("2.U4(3)","Isoclinic(2.U4(3).2_1)",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,30,31,32,33,32,33,34,
35],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables"
]);
ALF("2.U4(3)","Isoclinic(2.U4(3).2_2)",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,31,32,31,32,33,
34]);
ALF("2.U4(3)","Isoclinic(2.U4(3).2_2')",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,27,28,29,30,31,32,33,
34]);
ALF("2.U4(3)","Isoclinic(2.U4(3).2_3)",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,13,
14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,25,26,23,24,25,26,27,28]);
ALF("2.U4(3)","Isoclinic(2.U4(3).2_3')",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,
13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,25,26,25,26,23,24,27,
28]);
ALF("2.U4(3)","2.U4(3).4",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,13,14,15,16,17,
18,19,18,19,20,21,22,23,24,25,26,27,26,27,26,27,26,27,28,29],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
MOT("2.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[13063680,13063680,4608,4608,23328,23328,3888,3888,3888,3888,324,324,384,384,
32,20,20,288,288,144,144,144,144,28,28,28,28,32,32,54,54,54,54,48,48,24192,
24192,2880,2880,2304,2304,128,432,432,72,72,72,72,36,36,32,32,20,20,288,288,
288,288,72,72,72,72,28,28,28,28],
[,[1,1,1,1,5,5,7,7,9,9,11,11,3,3,4,16,16,5,5,7,7,9,9,24,24,26,26,14,14,30,30,
32,32,18,18,1,1,2,2,3,3,3,5,5,8,8,10,10,11,11,14,14,17,17,18,18,18,18,20,20,
22,22,24,24,26,26],[1,2,3,4,1,2,1,2,1,2,1,2,13,14,15,16,17,3,4,3,4,3,4,26,27,
24,25,29,28,5,6,5,6,13,14,36,37,39,38,41,40,42,36,37,39,38,39,38,36,37,52,51,
54,53,41,40,41,40,41,40,41,40,65,66,63,64],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,1,2,18,19,20,21,22,23,26,27,24,25,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44,45,46,47,48,49,50,51,52,38,39,55,56,57,58,59,60,61,62,65,66,63,
64],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,1,2,1,2,29,
28,30,31,32,33,34,35,36,37,39,38,41,40,42,43,44,46,45,48,47,49,50,52,51,54,53,
58,57,56,55,60,59,62,61,36,37,36,37]],
0,
[(28,29)(38,39)(40,41)(45,46)(47,48)(51,52)(53,54)(55,58)(56,57)(59,60)
(61,62),(28,29)(36,37)(43,44)(49,50)(55,57)(56,58)(63,64)(65,66),(24,26)
(25,27)(63,65)(64,66),(36,37)(38,39)(40,41)(43,44)(45,46)(47,48)(49,50)(51,52)
(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66),( 7, 9)( 8,10)(20,22)(21,23)
(30,32)(31,33)(45,47)(46,48)(59,61)(60,62)],
["ConstructProj",[["U4(3).2_1",[]],["2.U4(3).2_1",[]]]]);
ALF("2.U4(3).2_1","U4(3).2_1",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,10,10,11,
11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,20,20,21,21,22,23,23,
24,24,25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34]);
ALF("2.U4(3).2_1","2.U4(3).4",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,13,14,15,16,
17,18,19,18,19,20,21,22,23,24,25,26,27,26,27,28,29,30,31,32,33,34,35,36,
37,38,39,40,39,40,41,42,43,44,45,46,47,48,49,50,51,52,51,52,53,54,55,56],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("2.U4(3).2_1","2.U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,31,32,33,34,35,
35,36,36,37,38,39,40,40,41,41,42,43,44,44,45,45,46,47,47,46,48,48,49,49,
50,51,50,51],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("2.U4(3).2_1","2.U4(3).(2^2)_{12*2}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,31,32,33,33,
34,35,36,37,38,39,39,40,41,42,43,44,44,45,46,47,48,49,50,49,50,51,52,53,
54,55,56,56,55]);
ALF("2.U4(3).2_1","2.U4(3).(2^2)_{12*2*}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,31,32,33,34,
35,35,36,36,37,38,39,40,40,41,41,42,43,44,44,45,45,46,47,47,46,48,48,49,
49,50,51,50,51]);
ALF("2.U4(3).2_1","2.U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,
13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,23,24,25,26,27,28,29,
29,30,30,31,32,33,34,35,35,34,36,37,38,38,39,39,40,41,41,40,42,43,43,42,
44,45,44,45]);
ALF("2.U4(3).2_1","2.U4(3).(2^2)_{13*3}",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,
13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,23,24,25,26,27,27,28,
29,30,31,32,33,33,34,35,34,35,36,36,37,38,39,40,41,42,41,42,43,44,43,44,
45,46,46,45]);
ALF("2.U4(3).2_1","2.U4(3).(2^2)_{13*3*}",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,
13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,23,24,25,26,27,28,29,
29,30,30,31,32,33,34,35,35,34,36,37,38,38,39,39,40,41,41,40,42,43,43,42,
44,45,44,45]);
MOT("Isoclinic(2.U4(3).2_1)",
0,
0,
0,
0,
[(28,29)(36,37)(43,44)(49,50)(55,57)(56,58)(63,64)(65,66),
(24,26)(25,27)(63,65)(64,66),
( 7, 9)( 8,10)(20,22)(21,23)(30,32)(31,33)(45,47)(46,48)(59,61)(60,62),
(28,29)(38,39)(40,41)(45,46)(47,48)(51,52)(53,54)(55,58)(56,57)(59,60)(61,62)
],
["ConstructIsoclinic",[["2.U4(3).2_1"]]]);
ALF("Isoclinic(2.U4(3).2_1)","2.U4(3).(2^2)_{1*22}",[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,31,
32,33,33,34,35,36,37,38,39,39,40,41,42,43,44,44,45,46,47,48,49,50,49,50,
51,52,53,54,55,56,56,55]);
ALF("Isoclinic(2.U4(3).2_1)","2.U4(3).(2^2)_{1*2*2}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,
31,32,33,34,35,35,36,36,37,38,39,40,40,41,41,42,43,44,44,45,45,46,47,47,
46,48,48,49,49,50,51,50,51]);
ALF("Isoclinic(2.U4(3).2_1)","2.U4(3).(2^2)_{1*2*2*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,24,25,26,26,27,28,29,30,
31,32,33,33,34,35,36,37,38,39,39,40,41,42,43,44,44,45,46,47,48,49,50,49,
50,51,52,53,54,55,56,56,55]);
ALF("Isoclinic(2.U4(3).2_1)","2.U4(3).(2^2)_{1*33}",[1,2,3,4,5,6,7,8,7,8,
9,10,11,12,13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,23,24,25,26,
27,27,28,29,30,31,32,33,33,34,35,34,35,36,36,37,38,39,40,41,42,41,42,43,
44,43,44,45,46,46,45]);
ALF("Isoclinic(2.U4(3).2_1)","2.U4(3).(2^2)_{1*3*3}",[1,2,3,4,5,6,7,8,7,8,
9,10,11,12,13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,23,24,25,26,
27,28,29,29,30,30,31,32,33,34,35,35,34,36,37,38,38,39,39,40,41,41,40,42,
43,43,42,44,45,44,45]);
ALF("Isoclinic(2.U4(3).2_1)","2.U4(3).(2^2)_{1*3*3*}",[1,2,3,4,5,6,7,8,7,
8,9,10,11,12,13,14,15,16,17,18,19,18,19,20,21,20,21,22,22,23,24,23,24,25,
26,27,27,28,29,30,31,32,33,33,34,35,34,35,36,36,37,38,39,40,41,42,41,42,
43,44,43,44,45,46,46,45]);
ALF("Isoclinic(2.U4(3).2_1)","3^6:2U4(3).2_1",[1,5,6,9,13,17,18,23,24,29,
30,33,34,37,38,42,47,48,51,53,56,59,62,65,66,67,68,69,70,71,74,75,78,79,
82,83,84,85,89,93,97,98,101,102,103,107,110,114,117,118,119,122,123,128,
129,131,132,134,135,138,139,142,143,144,145,146],[
"fusion map is unique up to table automorphisms"
]);
ALN("Isoclinic(2.U4(3).2_1)",["2.U4(3).2_1*"]);
MOT("2.U4(3).2_2",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[13063680,13063680,4608,4608,23328,23328,3888,3888,3888,3888,324,324,384,384,
32,20,20,288,288,144,144,144,144,14,14,16,108,108,108,108,54,54,48,48,103680,
103680,1152,192,192,192,2592,2592,2592,2592,432,432,216,216,144,144,36,36,16,
20,20,48,48,24,24,36,36,36,36],
[,[1,1,1,1,5,5,7,7,9,9,11,11,3,3,4,16,16,5,5,7,7,9,9,24,24,14,29,29,27,27,31,
31,18,18,1,1,1,3,4,4,5,5,5,5,9,9,7,7,9,9,11,11,13,16,16,18,18,21,21,29,29,27,
27],[1,2,3,4,1,2,1,2,1,2,1,2,13,14,15,16,17,3,4,3,4,3,4,24,25,26,5,6,5,6,5,6,
13,14,35,36,37,38,39,40,35,36,35,36,35,36,35,36,37,37,37,37,53,54,55,38,38,39,
40,41,42,43,44],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,18,19,20,21,22,23,
24,25,26,29,30,27,28,31,32,33,34,35,36,37,38,39,40,43,44,41,42,45,46,47,48,49,
50,51,52,53,35,36,57,56,58,59,62,63,60,61],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,1,2,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63]],
0,
[(51,52),(27,29)(28,30)(41,43)(42,44)(56,57)(60,62)(61,63),(35,36)(39,40)
(41,42)(43,44)(45,46)(47,48)(49,50)(54,55)(56,57)(58,59)(60,61)(62,63)],
["ConstructProj",[["U4(3).2_2",[]],["2.U4(3).2_2",[]]]]);
ALF("2.U4(3).2_2","U4(3).2_2",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,10,10,11,
11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,19,20,21,22,22,23,23,24,24,
25,25,26,26,27,27,28,28,29,30,30,31,31,32,32,33,33,34,34]);
ALF("2.U4(3).2_2","2.U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28,29,30,31,32,52,52,53,54,
55,55,56,57,57,56,58,58,59,59,60,60,61,62,63,64,64,65,66,67,67,68,69,69,
68],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("2.U4(3).2_2","2.U4(3).(2^2)_{1*22}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28,29,30,31,32,57,58,59,
60,61,62,63,64,63,64,65,66,67,68,69,70,71,71,72,73,74,75,75,76,77,78,79,
78,79]);
ALF("2.U4(3).2_2","O7(3)",[1,2,4,3,5,17,6,18,7,19,10,27,13,14,15,16,41,23,
20,25,24,26,22,33,52,35,36,55,36,54,37,56,43,46,2,3,4,14,12,15,17,20,17,
20,19,22,18,24,21,26,30,31,34,41,40,46,46,45,49,54,57,55,57]);
ALF("2.U4(3).2_2","2.U6(2)",[1,2,6,5,10,11,8,9,12,13,12,13,18,18,22,23,24,
32,31,34,33,38,37,41,42,46,48,49,50,51,52,53,68,68,3,4,7,18,20,21,25,26,
27,28,35,36,29,30,40,39,40,39,46,54,55,68,68,70,71,74,75,76,77],[
"fusion map is unique up to table automorphisms"
]);
ALN("2.U4(3).2_2",["O7(3)C2A","O7(3)N2A"]);
MOT("Isoclinic(2.U4(3).2_2)",
0,
0,
0,
0,
[(51,52),
(35,36)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(54,55)(56,57)(58,59)(60,61)
(62,63)
,(27,29)(28,30)(41,43)(42,44)(56,57)(60,62)(61,63)],
["ConstructIsoclinic",[["2.U4(3).2_2"]]]);
ALF("Isoclinic(2.U4(3).2_2)","2.U4(3).(2^2)_{12*2}",[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28,29,30,31,32,
58,57,59,60,62,61,64,63,64,63,66,65,68,67,70,69,71,71,72,74,73,75,75,77,
76,79,78,79,78]);
ALF("Isoclinic(2.U4(3).2_2)","2.U4(3).(2^2)_{1*2*2}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28,29,30,31,
32,52,52,53,54,55,55,56,57,57,56,58,58,59,59,60,60,62,61,63,64,64,65,66,
67,67,68,69,69,68]);
ALF("Isoclinic(2.U4(3).2_2)","2.U4(3).(2^2)_{12*2*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28,29,30,31,
32,52,52,53,54,55,55,56,57,57,56,58,58,59,59,60,60,61,62,63,64,64,65,66,
67,67,68,69,69,68]);
ALF("Isoclinic(2.U4(3).2_2)","2.U4(3).(2^2)_{1*2*2*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28,29,30,31,
32,57,58,59,60,61,62,63,64,63,64,65,66,67,68,69,70,71,71,72,73,74,75,75,
76,77,78,79,78,79]);
ALN("Isoclinic(2.U4(3).2_2)",["2.U4(3).2_2*"]);
MOT("2.U4(3).2_2'",
0,
0,
0,
0,
0,
["ConstructPermuted",["2.U4(3).2_2"],(7,9)(8,10)(20,22)(21,23)(27,29,31)
(28,30,32),(5,7)(6,8)(17,18,19,20,21)(22,24)(23,25)(37,39)(38,40)(43,44,
45,46,47)(51,53)(52,54)]);
ALF("2.U4(3).2_2'","U4(3).2_2'",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,10,10,
11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,19,20,21,22,22,23,23,24,
24,25,25,26,26,27,27,28,28,29,30,30,31,31,32,32,33,33,34,34]);
ALF("2.U4(3).2_2'","2.U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,29,30,31,32,70,70,71,
72,73,73,74,75,75,74,76,76,77,77,78,78,80,79,81,82,82,83,84,85,85,86,87,
87,86]);
ALF("2.U4(3).2_2'","2.U4(3).(2^2)_{12*2}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,29,30,31,32,80,81,82,
83,84,85,86,87,86,87,88,89,90,91,92,93,94,94,95,96,97,98,98,99,100,101,
102,101,102]);
ALF("2.U4(3).2_2'","2.U4(3).(2^2)_{1*22}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,29,30,31,32,80,81,82,
83,84,85,86,87,86,87,88,89,90,91,92,93,94,94,95,96,97,98,98,99,100,101,
102,101,102]);
ALF("2.U4(3).2_2'","2.U4(3).(2^2)_{1*2*2}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,29,30,31,32,70,70,71,
72,73,73,74,75,75,74,76,76,77,77,78,78,79,80,81,82,82,83,84,85,85,86,87,
87,86]);
MOT("Isoclinic(2.U4(3).2_2')",
0,
0,
0,
0,
0,
["ConstructPermuted",["Isoclinic(2.U4(3).2_2)"],(7,9)(8,10)(20,22)(21,23)(27,
29,31)(28,30,32),(5,7)(6,8)(17,18,19,20,21)(22,24)(23,25)(37,39)(38,40)(43,44,
45,46,47)(51,53)(52,54)]);
ALF("Isoclinic(2.U4(3).2_2')","2.U4(3).(2^2)_{12*2*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,29,30,31,
32,70,70,71,72,73,73,74,75,75,74,76,76,77,77,78,78,80,79,81,82,82,83,84,
85,85,86,87,87,86]);
ALF("Isoclinic(2.U4(3).2_2')","2.U4(3).(2^2)_{1*2*2*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,29,30,31,
32,80,81,82,83,84,85,86,87,86,87,88,89,90,91,92,93,94,94,95,96,97,98,98,
99,100,101,102,101,102]);
ALN("Isoclinic(2.U4(3).2_2')",["2.U4(3).2_2'*"]);
MOT("2.U4(3).2_3",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[13063680,13063680,4608,4608,23328,23328,1944,1944,324,324,384,384,32,20,20,
288,288,72,72,14,14,16,54,54,54,54,48,48,1440,96,36,36,192,192,32,16,16,20,20,
24,24,48,48,48,48],
[,[1,1,1,1,5,5,7,7,9,9,3,3,4,14,14,5,5,7,7,20,20,12,25,25,23,23,16,16,1,3,9,9,
11,11,11,13,13,14,14,16,16,27,27,27,27],[1,2,3,4,1,2,1,2,1,2,11,12,13,14,15,3,
4,3,4,20,21,22,5,6,5,6,11,12,29,30,29,29,34,33,35,37,36,39,38,30,30,34,33,34,
33],,[1,2,3,4,5,6,7,8,9,10,11,12,13,1,2,16,17,18,19,20,21,22,25,26,23,24,27,
28,29,30,31,32,34,33,35,37,36,29,29,41,40,43,42,45,44],,[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,1,2,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,
37,39,38,40,41,42,43,44,45]],
0,
[(40,41)(42,44)(43,45),(38,39),(33,34)(36,37)(42,45)(43,44),(31,32),(23,25)
(24,26)(40,41)(42,44)(43,45),(23,25)(24,26)],
["ConstructProj",[["U4(3).2_3",[]],["2.U4(3).2_3",[]]]]);
ALF("2.U4(3).2_3","U4(3).2_3",[1,1,2,2,3,3,4,4,5,5,6,6,7,8,8,9,9,10,10,11,
11,12,13,13,14,14,15,15,16,17,18,18,19,19,20,21,21,22,22,23,23,24,24,25,
25]);
ALF("2.U4(3).2_3","2.U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,23,24,25,26,46,47,48,49,50,50,51,52,52,53,
53,54,55,56,57,57,56]);
ALF("2.U4(3).2_3","2.U4(3).(2^2)_{1*33}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,47,48,49,49,50,51,52,53,54,
55,56,57,57,58,59,58,59]);
MOT("Isoclinic(2.U4(3).2_3)",
0,
0,
0,
0,
[(40,41)(42,44)(43,45),(38,39),(33,34)(36,37)(40,41)(42,43)(44,45),(31,32),
(23,25)(24,26)],
["ConstructIsoclinic",[["2.U4(3).2_3"]]]);
ALF("Isoclinic(2.U4(3).2_3)","2.U4(3).(2^2)_{13*3}",[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,47,48,49,49,50,51,
52,53,54,56,55,57,57,58,59,58,59]);
ALF("Isoclinic(2.U4(3).2_3)","2.U4(3).(2^2)_{1*3*3}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,46,47,48,49,50,
50,51,52,52,53,53,54,55,56,57,57,56]);
ALF("Isoclinic(2.U4(3).2_3)","2.U4(3).(2^2)_{13*3*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,46,47,48,49,50,
50,51,52,52,53,53,54,55,56,57,57,56]);
ALF("Isoclinic(2.U4(3).2_3)","2.U4(3).(2^2)_{1*3*3*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,47,48,49,49,50,
51,52,53,54,55,56,57,57,58,59,58,59]);
ALN("Isoclinic(2.U4(3).2_3)",["2.U4(3).2_3*"]);
MOT("2.U4(3).2_3'",
0,
0,
0,
0,
0,
["ConstructPermuted",["2.U4(3).2_3"],(),()]);
ALF("2.U4(3).2_3'","U4(3).2_3'",[1,1,2,2,3,3,4,4,5,5,6,6,7,8,8,9,9,10,10,
11,11,12,13,13,14,14,15,15,16,17,18,18,19,19,20,21,21,22,22,23,23,24,24,
25,25]);
ALF("2.U4(3).2_3'","2.U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,58,59,60,61,62,62,63,64,64,
65,65,66,67,68,69,69,68]);
ALF("2.U4(3).2_3'","2.U4(3).(2^2)_{1*33}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,60,61,62,62,63,64,65,66,67,
68,69,70,70,71,72,71,72]);
ALF("2.U4(3).2_3'","2.U4(3).(2^2)_{13*3}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,60,61,62,62,64,63,65,67,66,
68,69,70,70,72,71,72,71]);
ALF("2.U4(3).2_3'","2.U4(3).(2^2)_{1*3*3}",[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,58,59,60,61,62,62,63,64,64,
65,65,66,67,68,69,69,68]);
MOT("Isoclinic(2.U4(3).2_3')",
0,
0,
0,
0,
0,
["ConstructPermuted",["Isoclinic(2.U4(3).2_3)"],(),()]);
ALF("Isoclinic(2.U4(3).2_3')","2.U4(3).(2^2)_{13*3*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,58,59,60,61,62,
62,63,64,64,65,65,66,67,68,69,69,68]);
ALF("Isoclinic(2.U4(3).2_3')","2.U4(3).(2^2)_{1*3*3*}",[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,60,61,62,62,63,
64,65,66,67,68,69,70,70,71,72,71,72]);
ALN("Isoclinic(2.U4(3).2_3')",["2.U4(3).2_3'*"]);
MOT("2.U4(3).4",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[26127360,26127360,9216,9216,46656,46656,3888,3888,648,648,768,768,64,40,40,
576,576,144,144,56,56,56,56,64,64,54,54,96,96,48384,48384,5760,5760,4608,4608,
256,864,864,72,72,72,72,64,64,40,40,576,576,576,576,72,72,56,56,56,56,48384,
48384,48384,48384,768,768,768,768,80,80,384,384,384,384,128,128,128,128,864,
864,864,864,96,96,96,96,72,72,72,72,40,40,40,40,48,48,48,48,56,56,56,56,56,56,
56,56],
[,[1,1,1,1,5,5,7,7,9,9,3,3,4,14,14,5,5,7,7,20,20,22,22,12,12,26,26,16,16,1,1,
2,2,3,3,3,5,5,8,8,9,9,12,12,15,15,16,16,16,16,18,18,20,20,22,22,30,30,30,30,
30,30,30,30,32,33,34,34,35,35,35,35,34,34,37,37,37,37,37,37,37,37,41,41,41,41,
45,45,46,46,47,47,50,50,53,53,53,53,55,55,55,55],[1,2,3,4,1,2,1,2,1,2,11,12,
13,14,15,3,4,3,4,22,23,20,21,25,24,5,6,11,12,30,31,33,32,35,34,36,30,31,33,32,
30,31,44,43,46,45,35,34,35,34,35,34,55,56,53,54,59,60,57,58,63,64,61,62,66,65,
69,70,67,68,73,74,71,72,59,60,57,58,63,64,61,62,59,60,57,58,89,90,87,88,69,70,
67,68,101,102,99,100,97,98,95,96],,[1,2,3,4,5,6,7,8,9,10,11,12,13,1,2,16,17,
18,19,22,23,20,21,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,
44,32,33,47,48,49,50,51,52,55,56,53,54,57,58,59,60,61,62,63,64,65,66,67,68,69,
70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,65,65,66,66,91,92,93,94,99,
100,101,102,95,96,97,98],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,1,
2,1,2,25,24,26,27,28,29,30,31,33,32,35,34,36,37,38,40,39,41,42,44,43,46,45,50,
49,48,47,52,51,30,31,30,31,59,60,57,58,63,64,61,62,66,65,69,70,67,68,73,74,71,
72,77,78,75,76,81,82,79,80,85,86,83,84,90,89,88,87,93,94,91,92,59,60,57,58,59,
60,57,58]],
0,
[(87,88)(89,90),( 57, 58)( 59, 60)( 61, 62)( 63, 64)( 67, 68)( 69, 70)
( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)( 81, 82)( 83, 84)( 85, 86)
( 91, 92)( 93, 94)( 95, 96)( 97, 98)( 99,100)(101,102),( 24, 25)( 32, 33)
( 34, 35)( 39, 40)( 43, 44)( 45, 46)( 47, 50)( 48, 49)( 51, 52)( 57, 59)
( 58, 60)( 61, 63)( 62, 64)( 65, 66)( 67, 69)( 68, 70)( 71, 73)( 72, 74)
( 75, 77)( 76, 78)( 79, 81)( 80, 82)( 83, 85)( 84, 86)( 87, 89)( 88, 90)
( 91, 93)( 92, 94)( 95, 97)( 96, 98)( 99,101)(100,102),( 24, 25)( 32, 33)
( 34, 35)( 39, 40)( 43, 44)( 45, 46)( 47, 50)( 48, 49)( 51, 52)( 57, 59)
( 58, 60)( 61, 63)( 62, 64)( 65, 66)( 67, 69)( 68, 70)( 71, 73)( 72, 74)
( 75, 77)( 76, 78)( 79, 81)( 80, 82)( 83, 85)( 84, 86)( 87, 90)( 88, 89)
( 91, 93)( 92, 94)( 95, 97)( 96, 98)( 99,101)(100,102),( 20, 22)( 21, 23)
( 53, 55)( 54, 56)( 95, 99)( 96,100)( 97,101)( 98,102)],
["ConstructProj",[["U4(3).4",[]],["2.U4(3).4",[]]]]);
ALF("2.U4(3).4","U4(3).4",[1,1,2,2,3,3,4,4,5,5,6,6,7,8,8,9,9,10,10,11,11,
12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,20,20,21,21,22,22,23,23,24,
24,25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,35,36,36,37,
37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,45,46,46,47,47,48,48,49,
49,50,50,51,51,52,52,53,53]);
ALF("2.U4(3).4","2.U4(3).D8",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,20,21,22,22,23,24,25,26,27,28,29,29,30,30,31,32,33,34,34,35,
36,37,37,38,38,39,40,40,39,41,41,42,43,42,43,44,45,44,45,46,47,46,47,48,
48,49,50,49,50,51,52,51,52,53,54,53,54,55,56,55,56,57,58,57,58,59,60,59,
60,61,62,61,62,63,64,65,66,65,66,63,64]);
MOT("2.U4(3).(2^2)_{122}",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[26127360,26127360,9216,9216,46656,46656,7776,7776,7776,7776,648,648,768,768,
64,40,40,576,576,288,288,288,288,28,28,32,108,108,108,108,96,96,48384,48384,
2880,2304,256,864,864,72,72,72,72,32,20,288,288,72,72,28,28,103680,2304,384,
192,2592,2592,432,216,144,72,72,32,20,96,96,24,36,36,103680,2304,384,192,2592,
2592,432,216,144,72,72,32,20,96,96,24,36,36],
[,[1,1,1,1,5,5,7,7,9,9,11,11,3,3,4,16,16,5,5,7,7,9,9,24,24,14,27,27,29,29,18,
18,1,1,2,3,3,5,5,8,10,11,11,14,17,18,18,20,22,24,24,1,1,3,4,5,5,9,7,9,11,11,
13,16,18,18,21,27,27,1,1,3,4,5,5,7,9,7,11,11,13,16,18,18,23,29,29],[1,2,3,4,1,
2,1,2,1,2,1,2,13,14,15,16,17,3,4,3,4,3,4,24,25,26,5,6,5,6,13,14,33,34,35,36,
37,33,34,35,35,33,34,44,45,36,36,36,36,50,51,52,53,54,55,52,52,52,52,53,53,53,
63,64,54,54,55,56,57,70,71,72,73,70,70,70,70,71,71,71,81,82,72,72,73,74,75],,[
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,18,19,20,21,22,23,24,25,26,27,28,29,
30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,35,46,47,48,49,50,51,52,53,54,55,
57,56,58,59,60,61,62,63,52,66,65,67,69,68,70,71,72,73,75,74,76,77,78,79,80,81,
70,84,83,85,87,86],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,1,2,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
49,33,34,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,
75,76,77,78,79,80,81,82,83,84,85,86,87]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[TENSOR,[2,3]],[21,21,5,5,-6,-6,3,3,3,3,3,3,1,1,1,1,1,2,2,-1,-1,-1,-1,0,0,-1,
0,0,0,0,-2,-2,-7,-7,1,5,-3,2,2,1,1,-1,-1,-1,1,2,2,-1,-1,0,0,9,1,-3,1,0,0,-3,3,
1,1,1,-1,-1,0,0,1,0,0,9,1,-3,1,0,0,-3,3,1,1,1,-1,-1,0,0,1,0,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[35,35,3,3,8,8,8,8,-1,-1,-1,-1,3,3,-1,0,0,0,0,0,0,3,3,0,0,-1,2,
2,-1,-1,0,0,7,7,-5,-1,-1,-2,-2,-2,1,1,1,-1,0,2,2,2,-1,0,0,15,-1,-1,3,6,6,3,0,
-1,-1,-1,-1,0,2,2,0,0,0,-5,-5,3,-1,4,4,-2,1,-2,1,1,-1,0,0,0,-1,1,1],
[TENSOR,[9,2]],
[TENSOR,[9,3]],
[TENSOR,[9,4]],[35,35,3,3,8,8,-1,-1,8,8,-1,-1,3,3,-1,0,0,0,0,3,3,0,0,0,0,-1,
-1,-1,2,2,0,0,7,7,-5,-1,-1,-2,-2,1,-2,1,1,-1,0,2,2,-1,2,0,0,-5,-5,3,-1,4,4,-2,
1,-2,1,1,-1,0,0,0,-1,1,1,15,-1,-1,3,6,6,3,0,-1,-1,-1,-1,0,2,2,0,0,0],
[TENSOR,[13,2]],
[TENSOR,[13,3]],
[TENSOR,[13,4]],[90,90,10,10,9,9,9,9,9,9,0,0,-2,-2,2,0,0,1,1,1,1,1,1,-1,-1,0,
0,0,0,0,1,1,6,6,10,10,2,-3,-3,1,1,0,0,0,0,1,1,1,1,-1,-1,30,6,2,2,3,3,3,3,3,0,
0,0,0,-1,-1,-1,0,0,30,6,2,2,3,3,3,3,3,0,0,0,0,-1,-1,-1,0,0],
[TENSOR,[17,2]],
[TENSOR,[17,3]],
[TENSOR,[17,4]],[140,140,12,12,5,5,-4,-4,-4,-4,5,5,4,4,0,0,0,-3,-3,0,0,0,0,0,
0,0,-1,-1,-1,-1,1,1,28,28,0,4,4,1,1,0,0,1,1,0,0,1,1,-2,-2,0,0,20,4,4,0,-7,-7,
2,2,-2,1,1,0,0,1,1,0,-1,-1,20,4,4,0,-7,-7,2,2,-2,1,1,0,0,1,1,0,-1,-1],
[TENSOR,[21,2]],
[TENSOR,[21,3]],
[TENSOR,[21,4]],[189,189,-3,-3,27,27,0,0,0,0,0,0,5,5,1,-1,-1,3,3,0,0,0,0,0,0,
1,0,0,0,0,-1,-1,21,21,9,-3,-3,3,3,0,0,0,0,1,-1,3,3,0,0,0,0,9,9,1,-3,9,9,0,0,0,
0,0,1,-1,1,1,0,0,0,9,9,1,-3,9,9,0,0,0,0,0,1,-1,1,1,0,0,0],
[TENSOR,[25,2]],
[TENSOR,[25,3]],
[TENSOR,[25,4]],[210,210,2,2,21,21,3,3,3,3,3,3,-2,-2,-2,0,0,5,5,-1,-1,-1,-1,0,
0,0,0,0,0,0,1,1,14,14,-10,10,2,5,5,-1,-1,-1,-1,0,0,1,1,1,1,0,0,30,-10,2,-2,3,
3,3,3,-1,-1,-1,0,0,-1,-1,1,0,0,30,-10,2,-2,3,3,3,3,-1,-1,-1,0,0,-1,-1,1,0,0],
[TENSOR,[29,2]],
[TENSOR,[29,3]],
[TENSOR,[29,4]],[560,560,-16,-16,20,20,20,20,2,2,2,2,0,0,0,0,0,-4,-4,-4,-4,2,
2,0,0,0,-1,-1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,-16,0,0,8,8,2,
-4,2,2,2,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[33,2]],[560,560,-16,-16,20,20,2,2,20,20,2,2,0,0,0,0,0,-4,-4,2,2,-4,
-4,0,0,0,2,2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-80,16,0,0,-8,-8,-2,4,-2,-2,-2,0,0,0,0,0,1,1],
[TENSOR,[35,2]],[315,315,11,11,-9,-9,18,18,-9,-9,0,0,-1,-1,-1,0,0,-1,-1,2,2,
-1,-1,0,0,1,0,0,0,0,-1,-1,-21,-21,-5,7,-1,-3,-3,-2,1,0,0,1,0,1,1,-2,1,0,0,75,
3,-1,3,3,3,-3,0,-3,0,0,1,0,-1,-1,0,0,0,15,-9,-5,-1,-3,-3,0,3,0,0,0,1,0,1,1,-1,
0,0],
[TENSOR,[37,2]],
[TENSOR,[37,3]],
[TENSOR,[37,4]],[315,315,11,11,-9,-9,-9,-9,18,18,0,0,-1,-1,-1,0,0,-1,-1,-1,-1,
2,2,0,0,1,0,0,0,0,-1,-1,-21,-21,-5,7,-1,-3,-3,1,-2,0,0,1,0,1,1,1,-2,0,0,15,-9,
-5,-1,-3,-3,0,3,0,0,0,1,0,1,1,-1,0,0,75,3,-1,3,3,3,-3,0,-3,0,0,1,0,-1,-1,0,0,
0],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[420,420,4,4,-39,-39,6,6,6,6,-3,-3,4,4,0,0,0,1,1,-2,-2,-2,-2,
0,0,0,0,0,0,0,1,1,28,28,0,12,-4,1,1,0,0,1,1,0,0,-3,-3,0,0,0,0,60,-4,4,0,-3,-3,
-6,0,2,-1,-1,0,0,1,1,0,0,0,60,-4,4,0,-3,-3,-6,0,2,-1,-1,0,0,1,1,0,0,0],
[TENSOR,[45,2]],
[TENSOR,[45,3]],
[TENSOR,[45,4]],[1120,1120,-32,-32,-68,-68,4,4,4,4,4,4,0,0,0,0,0,4,4,4,4,4,4,
0,0,0,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1280,1280,0,0,-16,-16,
-16,-16,-16,-16,2,2,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,2,2,2,2,0,0,-64,-64,0,0,0,8,
8,0,0,2,2,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[50,3]],[729,729,9,9,0,0,0,0,0,0,0,0,-3,-3,1,-1,-1,0,0,0,0,0,0,1,1,-1,
0,0,0,0,0,0,-27,-27,9,9,1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,1,81,9,-3,-3,0,0,0,0,0,
0,0,-1,1,0,0,0,0,0,81,9,-3,-3,0,0,0,0,0,0,0,-1,1,0,0,0,0,0],
[TENSOR,[52,2]],
[TENSOR,[52,3]],
[TENSOR,[52,4]],[896,896,0,0,32,32,-4,-4,-4,-4,-4,-4,0,0,0,1,1,0,0,0,0,0,0,0,
0,0,-1,-1,-1,-1,0,0,0,0,16,0,0,0,0,-2,-2,0,0,0,1,0,0,0,0,0,0,64,0,0,0,-8,-8,4,
-2,0,0,0,0,-1,0,0,0,1,1,64,0,0,0,-8,-8,4,-2,0,0,0,0,-1,0,0,0,1,1],
[TENSOR,[56,2]],
[TENSOR,[56,3]],
[TENSOR,[56,4]],[20,-20,4,-4,-7,7,2,-2,2,-2,2,-2,4,-4,0,0,0,1,-1,-2,2,-2,2,-1,
1,0,-1,1,-1,1,1,-1,-8,8,0,0,0,1,-1,0,0,-2,2,0,0,-3,3,0,0,-1,1,0,0,0,0,
3*E(3)-3*E(3)^2,-3*E(3)+3*E(3)^2,0,0,0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,
-E(3)+E(3)^2,E(3)-E(3)^2,0,0,0,0,3*E(3)-3*E(3)^2,-3*E(3)+3*E(3)^2,0,0,0,0,0,0,
0,E(3)-E(3)^2,-E(3)+E(3)^2,0,-E(3)+E(3)^2,E(3)-E(3)^2],
[TENSOR,[60,2]],
[TENSOR,[60,3]],
[TENSOR,[60,4]],[112,-112,-16,16,4,-4,22,-22,4,-4,4,-4,0,0,0,2,-2,-4,4,2,-2,
-4,4,0,0,0,4,-4,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[112,-112,-16,16,4,
-4,4,-4,22,-22,4,-4,0,0,0,2,-2,-4,4,-4,4,2,-2,0,0,0,-2,2,4,-4,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],[140,-140,-4,4,32,-32,14,-14,14,-14,-4,4,4,-4,0,0,0,8,-8,
2,-2,2,-2,0,0,0,2,-2,2,-2,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[140,-140,-4,
4,-22,22,14,-14,-4,4,-4,4,4,-4,0,0,0,2,-2,2,-2,-4,4,0,0,0,-1,1,2,-2,-2,2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6*E(3)-6*E(3)^2,-6*E(3)+6*E(3)^2,0,
0,0,0,0,0,0,2*E(3)-2*E(3)^2,-2*E(3)+2*E(3)^2,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[67,2]],[140,-140,-4,4,-22,22,-4,4,14,-14,-4,4,4,-4,0,0,0,2,-2,-4,4,2,
-2,0,0,0,2,-2,-1,1,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6*E(3)+6*E(3)^2,6*E(3)-6*E(3)^2,0,0,0,0,0,0,0,
-2*E(3)+2*E(3)^2,2*E(3)-2*E(3)^2,0,-E(3)+E(3)^2,E(3)-E(3)^2],
[TENSOR,[69,2]],[120,-120,-8,8,12,-12,-6,6,-6,6,3,-3,0,0,0,0,0,4,-4,-2,2,-2,2,
1,-1,0,0,0,0,0,0,0,8,-8,0,0,0,8,-8,0,0,-1,1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,
0,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,0],
[TENSOR,[71,2]],
[TENSOR,[71,4]],
[TENSOR,[71,3]],[420,-420,20,-20,42,-42,6,-6,6,-6,6,-6,4,-4,0,0,0,2,-2,2,-2,2,
-2,0,0,0,0,0,0,0,-2,2,56,-56,0,0,0,2,-2,0,0,2,-2,0,0,-6,6,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[75,3]],[1008,-1008,-16,16,36,-36,36,-36,-18,18,0,0,0,0,0,-2,2,-4,4,
-4,4,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1008,-1008,-16,
16,36,-36,-18,18,36,-36,0,0,0,0,0,-2,2,-4,4,2,-2,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0],[540,-540,12,-12,-27,27,0,0,0,0,0,0,4,-4,0,0,0,-3,
3,0,0,0,0,1,-1,0,0,0,0,0,1,-1,-48,48,0,0,0,-3,3,0,0,0,0,0,0,-3,3,0,0,1,-1,0,0,
0,0,-9*E(3)+9*E(3)^2,9*E(3)-9*E(3)^2,0,0,0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,
0,0,0,0,0,0,-9*E(3)+9*E(3)^2,9*E(3)-9*E(3)^2,0,0,0,0,0,0,0,E(3)-E(3)^2,
-E(3)+E(3)^2,0,0,0],
[TENSOR,[79,2]],
[TENSOR,[79,4]],
[TENSOR,[79,3]],[1120,-1120,-32,32,-68,68,4,-4,4,-4,4,-4,0,0,0,0,0,4,-4,4,-4,
4,-4,0,0,0,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1260,-1260,28,-28,
-36,36,18,-18,18,-18,0,0,-12,12,0,0,0,4,-4,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0],[1280,-1280,0,0,-16,16,-16,16,-16,16,2,-2,0,0,0,0,
0,0,0,0,0,0,0,-1,1,0,2,-2,2,-2,0,0,-64,64,0,0,0,8,-8,0,0,2,-2,0,0,0,0,0,0,-1,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[85,3]],[1792,-1792,0,0,64,-64,-8,8,-8,8,-8,8,0,0,0,2,-2,0,0,0,0,0,0,
0,0,0,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],
[(61,62)(79,80),(56,57)(65,66)(68,69)(74,75)(83,84)(86,87),(33,34)(38,39)
(42,43)(46,47)(50,51)(74,75)(79,80)(83,84)(86,87),( 7, 9)( 8,10)(20,22)(21,23)
(27,29)(28,30)(40,41)(48,49)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)
(59,77)(60,78)(61,79)(62,80)(63,81)(64,82)(65,83)(66,84)(67,85)(68,86)
(69,87)]);
ALF("2.U4(3).(2^2)_{122}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,7,
7,8,9,9,10,10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,20,21,22,22,
23,24,25,25,26,27,28,28,29,30,31,31,32,33,34,35,36,36,37,38,39,40,40,41,
42,43,43,44,45,45,46,47,48,49,50,50,51,52,53,54,54,55,56,57,57,58,59,59]);
ALF("2.U4(3).(2^2)_{122}","O8+(3)",[1,2,5,2,6,27,7,31,10,34,17,43,19,23,
20,24,72,30,27,37,31,40,34,55,97,57,58,106,61,109,75,84,3,4,20,19,23,28,
29,89,92,44,45,57,112,77,76,78,81,98,99,2,5,23,20,27,27,34,31,40,52,53,56,
72,84,84,89,106,106,2,5,23,20,27,27,31,34,37,51,50,56,72,84,84,92,109,109],[
"fusion map is unique up to table automorphisms"
]);
ALF("2.U4(3).(2^2)_{122}","2^2.U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,92,92,
93,94,95,96,96,97,98,99,99,100,101,102,102,103,104,105,105,74,75,76,77,78,
79,80,81,82,83,84,85,86,87,88,89,90,91,134,135,136,137,138,138,139,140,
141,142,142,143,144,145,145,146,147,147]);
ALF("2.U4(3).(2^2)_{122}","2.U4(3).D8",[1,2,3,4,5,6,7,8,7,8,9,10,11,12,13,
14,15,16,17,18,19,18,19,20,21,22,23,24,23,24,25,26,27,28,29,30,31,32,33,
34,34,35,36,37,38,39,40,41,41,42,43,67,68,69,70,71,72,73,74,75,76,77,78,
79,80,81,82,83,84,67,68,69,70,71,72,73,74,75,77,76,78,79,80,81,82,83,84]);
ALN("2.U4(3).(2^2)_{122}",["O8+(3)C2A","O8+(3)N2A"]);
MOT("2.U4(3).(2^2)_{1*22}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
[26127360,26127360,9216,9216,46656,46656,7776,7776,7776,7776,648,648,768,768,
64,40,40,576,576,288,288,288,288,28,28,32,108,108,108,108,96,96,24192,5760,
5760,4608,4608,256,432,144,144,144,144,36,64,64,40,40,288,288,144,144,144,144,
28,28,207360,207360,2304,384,384,384,2592,2592,864,864,432,432,288,288,36,32,
40,40,48,48,48,36,36,207360,207360,2304,384,384,384,2592,2592,864,864,432,432,
288,288,36,32,40,40,48,48,48,36,36],
[,[1,1,1,1,5,5,7,7,9,9,11,11,3,3,4,16,16,5,5,7,7,9,9,24,24,14,27,27,29,29,18,
18,2,1,1,4,4,4,6,7,7,9,9,12,13,13,16,16,19,19,21,21,23,23,25,25,1,1,1,3,4,4,5,
5,9,9,7,7,9,9,11,13,16,16,18,21,21,27,27,1,1,1,3,4,4,5,5,7,7,9,9,7,7,11,13,16,
16,18,23,23,29,29],[1,2,3,4,1,2,1,2,1,2,1,2,13,14,15,16,17,3,4,3,4,3,4,24,25,
26,5,6,5,6,13,14,33,34,35,36,37,38,33,34,35,34,35,33,45,46,47,48,36,37,36,37,
36,37,55,56,57,58,59,60,61,62,57,58,57,58,57,58,59,59,59,72,73,74,60,61,62,63,
64,80,81,82,83,84,85,80,81,80,81,80,81,82,82,82,95,96,97,83,84,85,86,87],,[1,2
,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,18,19,20,21,22,23,24,25,26,27,28,29,30,31
,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,34,35,49,50,51,52,53,54,56,55,57
,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,57,58,75,76,77,78,79,80,81,82,83
,84,85,86,87,88,89,90,91,92,93,94,95,80,81,98,99,100,101,102],,[1,2,3,4,5,6,7,
8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,1,2,26,27,28,29,30,31,32,33,34,
35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,33,33,57,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,
87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1],
[TENSOR,[2,3]],[21,21,5,5,-6,-6,3,3,3,3,3,3,1,1,1,1,1,2,2,-1,-1,-1,-1,0,0,-1,
0,0,0,0,-2,-2,-7,1,1,5,5,-3,2,1,1,1,1,-1,-1,-1,1,1,2,2,-1,-1,-1,-1,0,0,9,9,1,
-3,1,1,0,0,-3,-3,3,3,1,1,1,-1,-1,-1,0,1,1,0,0,9,9,1,-3,1,1,0,0,-3,-3,3,3,1,1,1
,-1,-1,-1,0,1,1,0,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[35,35,3,3,8,8,8,8,-1,-1,-1,-1,3,3,-1,0,0,0,0,0,0,3,3,0,0,-1,2
,2,-1,-1,0,0,7,-5,-5,-1,-1,-1,-2,-2,-2,1,1,1,-1,-1,0,0,2,2,2,2,-1,-1,0,0,15,15
,-1,-1,3,3,6,6,3,3,0,0,-1,-1,-1,-1,0,0,2,0,0,0,0,-5,-5,-5,3,-1,-1,4,4,-2,-2,1,
1,-2,-2,1,-1,0,0,0,-1,-1,1,1],
[TENSOR,[9,2]],
[TENSOR,[9,3]],
[TENSOR,[9,4]],[35,35,3,3,8,8,-1,-1,8,8,-1,-1,3,3,-1,0,0,0,0,3,3,0,0,0,0,-1,
-1,-1,2,2,0,0,7,-5,-5,-1,-1,-1,-2,1,1,-2,-2,1,-1,-1,0,0,2,2,-1,-1,2,2,0,0,-5,
-5,-5,3,-1,-1,4,4,-2,-2,1,1,-2,-2,1,-1,0,0,0,-1,-1,1,1,15,15,-1,-1,3,3,6,6,3,3
,0,0,-1,-1,-1,-1,0,0,2,0,0,0,0],
[TENSOR,[13,2]],
[TENSOR,[13,3]],
[TENSOR,[13,4]],[90,90,10,10,9,9,9,9,9,9,0,0,-2,-2,2,0,0,1,1,1,1,1,1,-1,-1,0,
0,0,0,0,1,1,6,10,10,10,10,2,-3,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,-1,-1,30,30,6,2,2
,2,3,3,3,3,3,3,3,3,0,0,0,0,-1,-1,-1,0,0,30,30,6,2,2,2,3,3,3,3,3,3,3,3,0,0,0,0,
-1,-1,-1,0,0],
[TENSOR,[17,2]],
[TENSOR,[17,3]],
[TENSOR,[17,4]],[140,140,12,12,5,5,-4,-4,-4,-4,5,5,4,4,0,0,0,-3,-3,0,0,0,0,0,
0,0,-1,-1,-1,-1,1,1,28,0,0,4,4,4,1,0,0,0,0,1,0,0,0,0,1,1,-2,-2,-2,-2,0,0,20,20
,4,4,0,0,-7,-7,2,2,2,2,-2,-2,1,0,0,0,1,0,0,-1,-1,20,20,4,4,0,0,-7,-7,2,2,2,2,
-2,-2,1,0,0,0,1,0,0,-1,-1],
[TENSOR,[21,2]],
[TENSOR,[21,3]],
[TENSOR,[21,4]],[189,189,-3,-3,27,27,0,0,0,0,0,0,5,5,1,-1,-1,3,3,0,0,0,0,0,0,
1,0,0,0,0,-1,-1,21,9,9,-3,-3,-3,3,0,0,0,0,0,1,1,-1,-1,3,3,0,0,0,0,0,0,9,9,9,1,
-3,-3,9,9,0,0,0,0,0,0,0,1,-1,-1,1,0,0,0,0,9,9,9,1,-3,-3,9,9,0,0,0,0,0,0,0,1,-1
,-1,1,0,0,0,0],
[TENSOR,[25,2]],
[TENSOR,[25,3]],
[TENSOR,[25,4]],[210,210,2,2,21,21,3,3,3,3,3,3,-2,-2,-2,0,0,5,5,-1,-1,-1,-1,0
,0,0,0,0,0,0,1,1,14,-10,-10,10,10,2,5,-1,-1,-1,-1,-1,0,0,0,0,1,1,1,1,1,1,0,0,
30,30,-10,2,-2,-2,3,3,3,3,3,3,-1,-1,-1,0,0,0,-1,1,1,0,0,30,30,-10,2,-2,-2,3,3,
3,3,3,3,-1,-1,-1,0,0,0,-1,1,1,0,0],
[TENSOR,[29,2]],
[TENSOR,[29,3]],
[TENSOR,[29,4]],[560,560,-16,-16,20,20,20,20,2,2,2,2,0,0,0,0,0,-4,-4,-4,-4,2,
2,0,0,0,-1,-1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,80,
-16,0,0,0,8,8,2,2,-4,-4,2,2,2,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0],
[TENSOR,[33,2]],[560,560,-16,-16,20,20,2,2,20,20,2,2,0,0,0,0,0,-4,-4,2,2,-4,
-4,0,0,0,2,2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,80,-16,0,0,0,8,8,2,2,-4,-4,2,2,2,0,0
,0,0,0,0,-1,-1],
[TENSOR,[35,2]],[315,315,11,11,-9,-9,18,18,-9,-9,0,0,-1,-1,-1,0,0,-1,-1,2,2,
-1,-1,0,0,1,0,0,0,0,-1,-1,-21,-5,-5,7,7,-1,-3,-2,-2,1,1,0,1,1,0,0,1,1,-2,-2,1,
1,0,0,75,75,3,-1,3,3,3,3,-3,-3,0,0,-3,-3,0,1,0,0,-1,0,0,0,0,15,15,-9,-5,-1,-1,
-3,-3,0,0,3,3,0,0,0,1,0,0,1,-1,-1,0,0],
[TENSOR,[37,2]],
[TENSOR,[37,3]],
[TENSOR,[37,4]],[315,315,11,11,-9,-9,-9,-9,18,18,0,0,-1,-1,-1,0,0,-1,-1,-1,-1
,2,2,0,0,1,0,0,0,0,-1,-1,-21,-5,-5,7,7,-1,-3,1,1,-2,-2,0,1,1,0,0,1,1,1,1,-2,-2
,0,0,15,15,-9,-5,-1,-1,-3,-3,0,0,3,3,0,0,0,1,0,0,1,-1,-1,0,0,75,75,3,-1,3,3,3,
3,-3,-3,0,0,-3,-3,0,1,0,0,-1,0,0,0,0],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[420,420,4,4,-39,-39,6,6,6,6,-3,-3,4,4,0,0,0,1,1,-2,-2,-2,-2,
0,0,0,0,0,0,0,1,1,28,0,0,12,12,-4,1,0,0,0,0,1,0,0,0,0,-3,-3,0,0,0,0,0,0,60,60,
-4,4,0,0,-3,-3,-6,-6,0,0,2,2,-1,0,0,0,1,0,0,0,0,60,60,-4,4,0,0,-3,-3,-6,-6,0,0
,2,2,-1,0,0,0,1,0,0,0,0],
[TENSOR,[45,2]],
[TENSOR,[45,3]],
[TENSOR,[45,4]],[1120,1120,-32,-32,-68,-68,4,4,4,4,4,4,0,0,0,0,0,4,4,4,4,4,4,
0,0,0,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],[1280,1280,0,0,-16,-16,-16,-16,-16,-16,2,2,0,0,0,0,0,0,0,0,0,0,0,-1,-1,
0,2,2,2,2,0,0,-64,0,0,0,0,0,8,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],
[TENSOR,[50,3]],[729,729,9,9,0,0,0,0,0,0,0,0,-3,-3,1,-1,-1,0,0,0,0,0,0,1,1,-1
,0,0,0,0,0,0,-27,9,9,9,9,1,0,0,0,0,0,0,-1,-1,-1,-1,0,0,0,0,0,0,1,1,81,81,9,-3,
-3,-3,0,0,0,0,0,0,0,0,0,-1,1,1,0,0,0,0,0,81,81,9,-3,-3,-3,0,0,0,0,0,0,0,0,0,-1
,1,1,0,0,0,0,0],
[TENSOR,[52,2]],
[TENSOR,[52,3]],
[TENSOR,[52,4]],[896,896,0,0,32,32,-4,-4,-4,-4,-4,-4,0,0,0,1,1,0,0,0,0,0,0,0,
0,0,-1,-1,-1,-1,0,0,0,16,16,0,0,0,0,-2,-2,-2,-2,0,0,0,1,1,0,0,0,0,0,0,0,0,64,
64,0,0,0,0,-8,-8,4,4,-2,-2,0,0,0,0,-1,-1,0,0,0,1,1,64,64,0,0,0,0,-8,-8,4,4,-2,
-2,0,0,0,0,-1,-1,0,0,0,1,1],
[TENSOR,[56,2]],
[TENSOR,[56,3]],
[TENSOR,[56,4]],[40,-40,8,-8,-14,14,4,-4,4,-4,4,-4,8,-8,0,0,0,2,-2,-4,4,-4,4,
-2,2,0,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],[56,-56,-8,8,2,-2,11,-11,2,-2,2,-2,0,0,0,1,-1,-2,2,1,-1,-2,2,0,0,0,2,-2
,-1,1,0,0,0,-4,4,8,-8,0,0,-1,1,2,-2,0,0,0,1,-1,2,-2,-1,1,2,-2,0,0,24,-24,0,0,4
,-4,6,-6,0,0,3,-3,0,0,0,0,-1,1,0,1,-1,0,0,16,-16,0,0,0,0,-2,2,1,-1,4,-4,3,-3,0
,0,1,-1,0,0,0,1,-1],
[TENSOR,[61,2]],
[TENSOR,[61,3]],
[TENSOR,[61,4]],[56,-56,-8,8,2,-2,2,-2,11,-11,2,-2,0,0,0,1,-1,-2,2,-2,2,1,-1,
0,0,0,-1,1,2,-2,0,0,0,-4,4,8,-8,0,0,2,-2,-1,1,0,0,0,1,-1,2,-2,2,-2,-1,1,0,0,16
,-16,0,0,0,0,-2,2,1,-1,4,-4,3,-3,0,0,1,-1,0,0,0,1,-1,24,-24,0,0,4,-4,6,-6,0,0,
3,-3,0,0,0,0,-1,1,0,1,-1,0,0],
[TENSOR,[65,2]],
[TENSOR,[65,3]],
[TENSOR,[65,4]],[70,-70,-2,2,16,-16,7,-7,7,-7,-2,2,2,-2,0,0,0,4,-4,1,-1,1,-1,
0,0,0,1,-1,1,-1,2,-2,0,-10,10,4,-4,0,0,-1,1,-1,1,0,2,-2,0,0,-2,2,1,-1,1,-1,0,0
,20,-20,0,0,2,-2,2,-2,5,-5,-1,1,3,-3,0,0,0,0,0,-1,1,-1,1,20,-20,0,0,2,-2,2,-2,
5,-5,-1,1,3,-3,0,0,0,0,0,-1,1,-1,1],
[TENSOR,[69,2]],
[TENSOR,[69,3]],
[TENSOR,[69,4]],[140,-140,-4,4,-22,22,14,-14,-4,4,-4,4,4,-4,0,0,0,2,-2,2,-2,
-4,4,0,0,0,-1,1,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,40,
-40,0,0,4,-4,4,-4,-8,8,-2,2,0,0,0,0,0,0,0,-2,2,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],
[TENSOR,[73,2]],[140,-140,-4,4,-22,22,-4,4,14,-14,-4,4,4,-4,0,0,0,2,-2,-4,4,2
,-2,0,0,0,2,-2,-1,1,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,40,-40,0,0,4,-4,4,-4,-8,8,-2,2,0,0,0,
0,0,0,0,-2,2,1,-1],
[TENSOR,[75,2]],[240,-240,-16,16,24,-24,-12,12,-12,12,6,-6,0,0,0,0,0,8,-8,-4,
4,-4,4,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0],[420,-420,20,-20,42,-42,6,-6,6,-6,6,-6,4,-4,0,0,0,2,-2,2,-2,2,-2,0,
0,0,0,0,0,0,-2,2,0,-20,20,-8,8,0,0,-2,2,-2,2,0,0,0,0,0,4,-4,-2,2,-2,2,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0],
[TENSOR,[78,3]],[504,-504,-8,8,18,-18,18,-18,-9,9,0,0,0,0,0,-1,1,-2,2,-2,2,1,
-1,0,0,0,0,0,0,0,0,0,0,4,-4,8,-8,0,0,-2,2,1,-1,0,0,0,-1,1,2,-2,2,-2,-1,1,0,0,
96,-96,0,0,0,0,6,-6,3,-3,0,0,-3,3,0,0,1,-1,0,0,0,0,0,24,-24,0,0,-4,4,6,-6,0,0,
3,-3,0,0,0,0,-1,1,0,-1,1,0,0],
[TENSOR,[80,2]],
[TENSOR,[80,3]],
[TENSOR,[80,4]],[504,-504,-8,8,18,-18,-9,9,18,-18,0,0,0,0,0,-1,1,-2,2,1,-1,-2
,2,0,0,0,0,0,0,0,0,0,0,4,-4,8,-8,0,0,1,-1,-2,2,0,0,0,-1,1,2,-2,-1,1,2,-2,0,0,
24,-24,0,0,-4,4,6,-6,0,0,3,-3,0,0,0,0,-1,1,0,-1,1,0,0,96,-96,0,0,0,0,6,-6,3,-3
,0,0,-3,3,0,0,1,-1,0,0,0,0,0],
[TENSOR,[84,2]],
[TENSOR,[84,3]],
[TENSOR,[84,4]],[1080,-1080,24,-24,-54,54,0,0,0,0,0,0,8,-8,0,0,0,-6,6,0,0,0,0
,2,-2,0,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],[560,-560,-16,16,-34,34,2,-2,2,-2,2,-2,0,0,0,0,0,2,-2,2,-2,2,-2,0,0,0,-1
,1,-1,1,0,0,0,0,0,16,-16,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,2,0,0,80,-80,0,0,0
,0,-10,10,-4,4,2,-2,0,0,0,0,0,0,0,0,0,-1,1,80,-80,0,0,0,0,-10,10,-4,4,2,-2,0,0
,0,0,0,0,0,0,0,-1,1],
[TENSOR,[89,2]],
[TENSOR,[89,3]],
[TENSOR,[89,4]],[630,-630,14,-14,-18,18,9,-9,9,-9,0,0,-6,6,0,0,0,2,-2,-1,1,-1
,1,0,0,0,0,0,0,0,0,0,0,-10,10,4,-4,0,0,-1,1,-1,1,0,-2,2,0,0,-2,2,1,-1,1,-1,0,0
,60,-60,0,0,-2,2,6,-6,-3,3,-3,3,3,-3,0,0,0,0,0,1,-1,0,0,60,-60,0,0,-2,2,6,-6,
-3,3,-3,3,3,-3,0,0,0,0,0,1,-1,0,0],
[TENSOR,[93,2]],
[TENSOR,[93,3]],
[TENSOR,[93,4]],[1280,-1280,0,0,-16,16,-16,16,-16,16,2,-2,0,0,0,0,0,0,0,0,0,0
,0,-1,1,0,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,
E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[97,3]],[896,-896,0,0,32,-32,-4,4,-4,4,-4,4,0,0,0,1,-1,0,0,0,0,0,0,0,
0,0,-1,1,-1,1,0,0,0,-16,16,0,0,0,0,2,-2,2,-2,0,0,0,-1,1,0,0,0,0,0,0,0,0,64,-64
,0,0,0,0,-8,8,4,-4,-2,2,0,0,0,0,-1,1,0,0,0,1,-1,64,-64,0,0,0,0,-8,8,4,-4,-2,2,
0,0,0,0,-1,1,0,0,0,1,-1],
[TENSOR,[99,2]],
[TENSOR,[99,3]],
[TENSOR,[99,4]]],
[(55,56),
( 34, 35)( 36, 37)( 40, 41)( 42, 43)( 45, 46)( 47, 48)( 49, 50)( 51, 52)
( 53, 54)( 80, 81)( 84, 85)( 86, 87)( 88, 89)( 90, 91)( 92, 93)( 96, 97)
( 99,100)(101,102)
,
( 34, 35)( 36, 37)( 40, 41)( 42, 43)( 45, 46)( 47, 48)( 49, 50)( 51, 52)
( 53, 54)( 57, 58)( 61, 62)( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 73, 74)
( 76, 77)( 78, 79)
,
( 7, 9)( 8, 10)( 20, 22)( 21, 23)( 27, 29)( 28, 30)( 40, 42)( 41, 43)
( 51, 53)( 52, 54)( 57, 80)( 58, 81)( 59, 82)( 60, 83)( 61, 84)( 62, 85)
( 63, 86)( 64, 87)( 65, 88)( 66, 89)( 67, 90)( 68, 91)( 69, 92)( 70, 93)
( 71, 94)( 72, 95)( 73, 96)( 74, 97)( 75, 98)( 76, 99)( 77,100)( 78,101)
( 79,102)
]);
ALF("2.U4(3).(2^2)_{1*22}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,7,
7,8,9,9,10,10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,19,19,20,20,21,22,
23,23,24,24,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,34,35,35,36,
36,37,37,38,38,39,39,40,41,42,42,43,44,44,45,45,46,46,47,48,49,49,50,50,
51,51,52,52,53,53,54,55,56,56,57,58,58,59,59]);
ALF("2.U4(3).(2^2)_{1*22}","O7(3).2",[1,2,4,3,5,16,6,17,7,18,9,26,12,13,
14,15,37,22,19,24,23,25,21,30,47,32,33,49,34,50,39,42,57,54,55,58,56,59,
80,66,67,69,68,87,74,73,77,75,82,78,84,81,83,79,95,96,2,3,4,13,11,14,16,
19,18,21,17,23,20,25,28,31,37,36,42,41,44,49,51,54,53,55,60,59,58,65,61,
66,62,69,63,67,64,71,74,77,76,86,85,83,90,89]);
MOT("2.U4(3).(2^2)_{12*2}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(55,56),
(34,35)(36,37)(40,41)(42,43)(45,46)(47,48)(49,50)(51,52)(53,54)(57,58)(61,62)
(63,64)(65,66)(67,68)(69,70)(73,74)(76,77)(78,79)
,
( 57, 58)( 61, 62)( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 73, 74)( 76, 77)
( 78, 79)( 80, 81)( 84, 85)( 86, 87)( 88, 89)( 90, 91)( 92, 93)( 96, 97)
( 99,100)(101,102)
],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{1*22}"]],[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,80,81,82,83,84,85,
86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102],(57,58)(61,62)(63,64)
(65,66)(67,68)(69,70)(73,74)(76,77)(78,79),(61,64)(62,63)(65,68)(66,67)(69,72)
(70,71)(73,74)(78,79)(80,83)(81,82)(84,87)(85,86)(89,92)(90,91)(93,96)(94,95)
(97,98)(99,102)(100,101)]);
ALF("2.U4(3).(2^2)_{12*2}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,7,
7,8,9,9,10,10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,19,19,20,20,21,22,
23,23,24,24,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,34,35,35,36,
36,37,37,38,38,39,39,40,41,42,42,43,44,44,45,45,46,46,47,48,49,49,50,50,
51,51,52,52,53,53,54,55,56,56,57,58,58,59,59]);
MOT("2.U4(3).(2^2)_{1*2*2}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(61,62)(79,80),(56,57)(65,66)(68,69)(74,75)(83,84)(86,87),
(33,34)(38,39)(42,43)(46,47)(50,51)(56,57)(61,62)(65,66)(68,69)],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{122}"]],[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85,86,87],(61,62),(35,36)(69,70)(71,72)(79,80)]);
ALF("2.U4(3).(2^2)_{1*2*2}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,7,8,9,9,10,10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,20,21,22,
22,23,24,25,25,26,27,28,28,29,30,31,31,32,33,34,35,36,36,37,38,39,40,40,
41,42,43,43,44,45,45,46,47,48,49,50,50,51,52,53,54,54,55,56,57,57,58,59,
59]);
MOT("2.U4(3).(2^2)_{12*2*}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(61,62)(79,80),(56,57)(65,66)(68,69)(74,75)(83,84)(86,87),
(33,34)(38,39)(42,43)(46,47)(50,51)(74,75)(79,80)(83,84)(86,87),
( 7, 9)( 8,10)(20,22)(21,23)(27,29)(28,30)(40,41)(48,49)(52,70)(53,71)(54,72)
(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,79)(62,80)(63,81)(64,82)(65,83)
(66,84)(67,85)(68,86)(69,87)
],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{122}"]],[1..51]]);
ALF("2.U4(3).(2^2)_{12*2*}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,7,8,9,9,10,10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,20,21,22,
22,23,24,25,25,26,27,28,28,29,30,31,31,32,33,34,35,36,36,37,38,39,40,40,
41,42,43,43,44,45,45,46,47,48,49,50,50,51,52,53,54,54,55,56,57,57,58,59,
59]);
MOT("2.U4(3).(2^2)_{1*2*2*}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(55,56),
( 34, 35)( 36, 37)( 40, 41)( 42, 43)( 45, 46)( 47, 48)( 49, 50)( 51, 52)
( 53, 54)( 80, 81)( 84, 85)( 86, 87)( 88, 89)( 90, 91)( 92, 93)( 96, 97)
( 99,100)(101,102)
,
( 34, 35)( 36, 37)( 40, 41)( 42, 43)( 45, 46)( 47, 48)( 49, 50)( 51, 52)
( 53, 54)( 57, 58)( 61, 62)( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 73, 74)
( 76, 77)( 78, 79)
,
( 7, 9)( 8, 10)( 20, 22)( 21, 23)( 27, 29)( 28, 30)( 40, 42)( 41, 43)
( 51, 53)( 52, 54)( 57, 80)( 58, 81)( 59, 82)( 60, 83)( 61, 84)( 62, 85)
( 63, 86)( 64, 87)( 65, 88)( 66, 89)( 67, 90)( 68, 91)( 69, 92)( 70, 93)
( 71, 94)( 72, 95)( 73, 96)( 74, 97)( 75, 98)( 76, 99)( 77,100)( 78,101)
( 79,102)
],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{1*22}"]],[1..56]]);
ALF("2.U4(3).(2^2)_{1*2*2*}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,7,8,9,9,10,10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,19,19,20,20,21,
22,23,23,24,24,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,34,35,35,
36,36,37,37,38,38,39,39,40,41,42,42,43,44,44,45,45,46,46,47,48,49,49,50,
50,51,51,52,52,53,53,54,55,56,56,57,58,58,59,59]);
MOT("2.U4(3).(2^2)_{133}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
[26127360,26127360,9216,9216,46656,46656,3888,3888,648,648,768,768,64,40,40,
576,576,144,144,28,28,32,54,54,96,96,48384,48384,2880,2304,256,864,864,72,72,
72,72,32,20,288,288,72,72,28,28,2880,192,72,72,192,64,16,20,48,48,48,48,2880,
192,72,72,192,64,16,20,48,48,48,48],
[,[1,1,1,1,5,5,7,7,9,9,3,3,4,14,14,5,5,7,7,20,20,12,23,23,16,16,1,1,2,3,3,5,5,
8,8,9,9,12,15,16,16,18,18,20,20,1,3,9,9,11,11,13,14,16,16,25,25,1,3,9,9,11,11,
13,14,16,16,25,25],[1,2,3,4,1,2,1,2,1,2,11,12,13,14,15,3,4,3,4,20,21,22,5,6,11
,12,27,28,29,30,31,27,28,29,29,27,28,38,39,30,30,30,30,44,45,46,47,46,46,50,51
,52,53,47,47,50,50,58,59,58,58,62,63,64,65,59,59,62,62],,[1,2,3,4,5,6,7,8,9,10
,11,12,13,1,2,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,
37,38,29,40,41,42,43,44,45,46,47,48,49,50,51,52,46,55,54,57,56,58,59,60,61,62,
63,64,58,67,66,69,68],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,1,2,22
,23,24,25,26,27,28,29,30,31,32,33,35,34,36,37,38,39,40,41,43,42,27,28,46,47,48
,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1],
[TENSOR,[2,3]],[21,21,5,5,-6,-6,3,3,3,3,1,1,1,1,1,2,2,-1,-1,0,0,-1,0,0,-2,-2,
-7,-7,1,5,-3,2,2,1,1,-1,-1,-1,1,2,2,-1,-1,0,0,1,-3,1,1,3,-1,-1,1,0,0,0,0,1,-3,
1,1,3,-1,-1,1,0,0,0,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[70,70,6,6,16,16,7,7,-2,-2,6,6,-2,0,0,0,0,3,3,0,0,-2,1,1,0,0,
14,14,-10,-2,-2,-4,-4,-1,-1,2,2,-2,0,4,4,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0],
[TENSOR,[9,3]],[90,90,10,10,9,9,9,9,0,0,-2,-2,2,0,0,1,1,1,1,-1,-1,0,0,0,1,1,6
,6,10,10,2,-3,-3,1,1,0,0,0,0,1,1,1,1,-1,-1,0,4,0,0,2,-2,0,0,1,1,-1,-1,0,4,0,0,
2,-2,0,0,1,1,-1,-1],
[TENSOR,[11,2]],
[TENSOR,[11,3]],
[TENSOR,[11,4]],[140,140,12,12,5,5,-4,-4,5,5,4,4,0,0,0,-3,-3,0,0,0,0,0,-1,-1,
1,1,28,28,0,4,4,1,1,0,0,1,1,0,0,1,1,-2,-2,0,0,10,2,1,1,2,2,0,0,-1,-1,-1,-1,10,
2,1,1,2,2,0,0,-1,-1,-1,-1],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[189,189,-3,-3,27,27,0,0,0,0,5,5,1,-1,-1,3,3,0,0,0,0,1,0,0,-1
,-1,21,21,9,-3,-3,3,3,0,0,0,0,1,-1,3,3,0,0,0,0,9,1,0,0,1,1,-1,-1,1,1,1,1,9,1,0
,0,1,1,-1,-1,1,1,1,1],
[TENSOR,[19,2]],
[TENSOR,[19,3]],
[TENSOR,[19,4]],[210,210,2,2,21,21,3,3,3,3,-2,-2,-2,0,0,5,5,-1,-1,0,0,0,0,0,1
,1,14,14,-10,10,2,5,5,-1,-1,-1,-1,0,0,1,1,1,1,0,0,-10,2,-1,-1,4,0,0,0,-1,-1,1,
1,-10,2,-1,-1,4,0,0,0,-1,-1,1,1],
[TENSOR,[23,2]],
[TENSOR,[23,3]],
[TENSOR,[23,4]],[1120,1120,-32,-32,40,40,22,22,4,4,0,0,0,0,0,-8,-8,-2,-2,0,0,
0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[630,630,22,22,-18,-18,9,9,0,0,-2,-2,-2,0,0,-2,-2,1,1,0,0,2
,0,0,-2,-2,-42,-42,-10,14,-2,-6,-6,-1,-1,0,0,2,0,2,2,-1,-1,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[28,3]],[420,420,4,4,-39,-39,6,6,-3,-3,4,4,0,0,0,1,1,-2,-2,0,0,0,0,0,
1,1,28,28,0,12,-4,1,1,0,0,1,1,0,0,-3,-3,0,0,0,0,-10,-2,-1,-1,2,2,0,0,1,1,-1,-1
,-10,-2,-1,-1,2,2,0,0,1,1,-1,-1],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[1120,1120,-32,-32,-68,-68,4,4,4,4,0,0,0,0,0,4,4,4,4,0,0,0,-2
,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0],[1280,1280,0,0,-16,-16,-16,-16,2,2,0,0,0,0,0,0,0,0,0,-1,-1,0,
2,2,0,0,-64,-64,0,0,0,8,8,0,0,2,2,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[35,3]],[729,729,9,9,0,0,0,0,0,0,-3,-3,1,-1,-1,0,0,0,0,1,1,-1,0,0,0,0
,-27,-27,9,9,1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,1,9,-3,0,0,3,-1,1,-1,0,0,0,0,9,-3,0
,0,3,-1,1,-1,0,0,0,0],
[TENSOR,[37,2]],
[TENSOR,[37,3]],
[TENSOR,[37,4]],[896,896,0,0,32,32,-4,-4,-4,-4,0,0,0,1,1,0,0,0,0,0,0,0,-1,-1,
0,0,0,0,16,0,0,0,0,-2,-2,0,0,0,1,0,0,0,0,0,0,16,0,-2,-2,0,0,0,1,0,0,0,0,16,0,
-2,-2,0,0,0,1,0,0,0,0],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[20,-20,4,-4,-7,7,2,-2,2,-2,4,-4,0,0,0,1,-1,-2,2,-1,1,0,-1,1,
1,-1,-8,8,0,0,0,1,-1,0,0,-2,2,0,0,-3,3,0,0,-1,1,0,0,0,0,0,0,0,0,E(3)-E(3)^2,
-E(3)+E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2
,E(3)-E(3)^2,-E(3)+E(3)^2],
[TENSOR,[45,2]],
[TENSOR,[45,3]],
[TENSOR,[45,4]],[112,-112,-16,16,4,-4,13,-13,4,-4,0,0,0,2,-2,-4,4,-1,1,0,0,0,
1,-1,0,0,0,0,0,0,0,0,0,3*E(4),-3*E(4),0,0,0,0,0,0,3*E(4),-3*E(4),0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[49,3]],[140,-140,-4,4,32,-32,14,-14,-4,4,4,-4,0,0,0,8,-8,2,-2,0,0,0,
2,-2,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[280,-280,-8,8,-44,44,10,-10,-8,8,8,-8,0,0,0,4,-4,-2,2,0,0,
0,1,-1,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],[120,-120,-8,8,12,-12,-6,6,3,-3,0,0,0,0,0,4,-4,-2,2,1,-1,
0,0,0,0,0,8,-8,0,0,0,8,-8,0,0,-1,1,0,0,0,0,0,0,1,-1,0,0,3,-3,0,0,0,0,0,0,0,0,0
,0,3,-3,0,0,0,0,0,0,0,0],
[TENSOR,[53,2]],
[TENSOR,[53,3]],
[TENSOR,[53,4]],[420,-420,20,-20,42,-42,6,-6,6,-6,4,-4,0,0,0,2,-2,2,-2,0,0,0,
0,0,-2,2,56,-56,0,0,0,2,-2,0,0,2,-2,0,0,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[57,3]],[1008,-1008,-16,16,36,-36,9,-9,0,0,0,0,0,-2,2,-4,4,-1,1,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,3*E(4),-3*E(4),0,0,0,0,0,0,-3*E(4),3*E(4),0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[59,3]],[540,-540,12,-12,-27,27,0,0,0,0,4,-4,0,0,0,-3,3,0,0,1,-1,0,0,
0,1,-1,-48,48,0,0,0,-3,3,0,0,0,0,0,0,-3,3,0,0,1,-1,0,0,0,0,0,0,0,0,E(3)-E(3)^2
,-E(3)+E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,E(3)-E(3)^2,
-E(3)+E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2],
[TENSOR,[61,2]],
[TENSOR,[61,3]],
[TENSOR,[61,4]],[1120,-1120,-32,32,-68,68,4,-4,4,-4,0,0,0,0,0,4,-4,4,-4,0,0,0
,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[1260,-1260,28,-28,-36,36,18,-18,0,0,-12,12,0,0,0,4,-4,-2,2
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0],[1280,-1280,0,0,-16,16,-16,16,2,-2,0,0,0,0,0,0,0,0,0,
-1,1,0,2,-2,0,0,-64,64,0,0,0,8,-8,0,0,2,-2,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[67,3]],[1792,-1792,0,0,64,-64,-8,8,-8,8,0,0,0,2,-2,0,0,0,0,0,0,0,-2,
2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0]],
[(48,49)(60,61),(34,35)(42,43),(54,55)(56,57)(66,67)(68,69),
(46,58)(47,59)(48,60)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)
(57,69),(27,28)(32,33)(36,37)(40,41)(44,45)(60,61)(66,67)(68,69)]);
ALF("2.U4(3).(2^2)_{133}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,7,
8,8,9,9,10,10,11,11,12,13,13,14,14,15,15,16,17,18,19,19,20,20,21,21,22,23,
24,24,25,25,26,26,27,28,29,29,30,31,32,33,34,34,35,35,36,37,38,38,39,40,
41,42,43,43,44,44]);
ALF("2.U4(3).(2^2)_{133}","2.U4(3).D8",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,34,35,36,37,
38,39,40,41,41,42,43,85,86,87,88,89,90,91,92,93,94,95,96,85,86,87,88,89,
90,91,92,93,94,95,96]);
MOT("2.U4(3).(2^2)_{1*33}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
[26127360,26127360,9216,9216,46656,46656,3888,3888,648,648,768,768,64,40,40,
576,576,144,144,28,28,32,54,54,96,96,24192,5760,5760,4608,4608,256,432,72,72,
36,64,64,40,40,288,288,72,72,28,28,2880,192,36,384,384,64,32,32,40,40,24,48,48
,2880,192,36,384,384,64,32,32,40,40,24,48,48],
[,[1,1,1,1,5,5,7,7,9,9,3,3,4,14,14,5,5,7,7,20,20,12,23,23,16,16,2,1,1,4,4,4,6,
7,7,10,11,11,14,14,17,17,19,19,21,21,1,3,9,11,11,11,13,13,14,14,16,25,25,1,3,9
,11,11,11,13,13,14,14,16,25,25],[1,2,3,4,1,2,1,2,1,2,11,12,13,14,15,3,4,3,4,20
,21,22,5,6,11,12,27,28,29,30,31,32,27,28,29,27,37,38,39,40,30,31,30,31,45,46,
47,48,47,51,50,52,54,53,56,55,48,51,50,60,61,60,64,63,65,67,66,69,68,61,64,63]
,,[1,2,3,4,5,6,7,8,9,10,11,12,13,1,2,16,17,18,19,20,21,22,23,24,25,26,27,28,29
,30,31,32,33,34,35,36,37,38,28,29,41,42,43,44,46,45,47,48,49,51,50,52,54,53,47
,47,57,59,58,60,61,62,64,63,65,67,66,60,60,70,72,71],,[1,2,3,4,5,6,7,8,9,10,11
,12,13,14,15,16,17,18,19,1,2,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,
38,39,40,41,42,43,44,27,27,47,48,49,50,51,52,53,54,56,55,57,58,59,60,61,62,63,
64,65,66,67,69,68,70,71,72]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[TENSOR,[2,3]],[21,21,5,5,-6,-6,3,3,3,3,1,1,1,1,1,2,2,-1,-1,0,0,-1,0,0,-2,-2,
-7,1,1,5,5,-3,2,1,1,-1,-1,-1,1,1,2,2,-1,-1,0,0,1,-3,1,3,3,-1,-1,-1,1,1,0,0,0,1
,-3,1,3,3,-1,-1,-1,1,1,0,0,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[70,70,6,6,16,16,7,7,-2,-2,6,6,-2,0,0,0,0,3,3,0,0,-2,1,1,0,0,
14,-10,-10,-2,-2,-2,-4,-1,-1,2,-2,-2,0,0,4,4,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[9,3]],[90,90,10,10,9,9,9,9,0,0,-2,-2,2,0,0,1,1,1,1,-1,-1,0,0,0,1,1,6
,10,10,10,10,2,-3,1,1,0,0,0,0,0,1,1,1,1,-1,-1,0,4,0,2,2,-2,0,0,0,0,1,-1,-1,0,4
,0,2,2,-2,0,0,0,0,1,-1,-1],
[TENSOR,[11,2]],
[TENSOR,[11,3]],
[TENSOR,[11,4]],[140,140,12,12,5,5,-4,-4,5,5,4,4,0,0,0,-3,-3,0,0,0,0,0,-1,-1,
1,1,28,0,0,4,4,4,1,0,0,1,0,0,0,0,1,1,-2,-2,0,0,10,2,1,2,2,2,0,0,0,0,-1,-1,-1,
10,2,1,2,2,2,0,0,0,0,-1,-1,-1],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[189,189,-3,-3,27,27,0,0,0,0,5,5,1,-1,-1,3,3,0,0,0,0,1,0,0,-1
,-1,21,9,9,-3,-3,-3,3,0,0,0,1,1,-1,-1,3,3,0,0,0,0,9,1,0,1,1,1,-1,-1,-1,-1,1,1,
1,9,1,0,1,1,1,-1,-1,-1,-1,1,1,1],
[TENSOR,[19,2]],
[TENSOR,[19,3]],
[TENSOR,[19,4]],[210,210,2,2,21,21,3,3,3,3,-2,-2,-2,0,0,5,5,-1,-1,0,0,0,0,0,1
,1,14,-10,-10,10,10,2,5,-1,-1,-1,0,0,0,0,1,1,1,1,0,0,-10,2,-1,4,4,0,0,0,0,0,-1
,1,1,-10,2,-1,4,4,0,0,0,0,0,-1,1,1],
[TENSOR,[23,2]],
[TENSOR,[23,3]],
[TENSOR,[23,4]],[1120,1120,-32,-32,40,40,22,22,4,4,0,0,0,0,0,-8,-8,-2,-2,0,0,
0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],[630,630,22,22,-18,-18,9,9,0,0,-2,-2,-2,0,0,-2,-2,1,1
,0,0,2,0,0,-2,-2,-42,-10,-10,14,14,-2,-6,-1,-1,0,2,2,0,0,2,2,-1,-1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[28,3]],[420,420,4,4,-39,-39,6,6,-3,-3,4,4,0,0,0,1,1,-2,-2,0,0,0,0,0,
1,1,28,0,0,12,12,-4,1,0,0,1,0,0,0,0,-3,-3,0,0,0,0,-10,-2,-1,2,2,2,0,0,0,0,1,-1
,-1,-10,-2,-1,2,2,2,0,0,0,0,1,-1,-1],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[1120,1120,-32,-32,-68,-68,4,4,4,4,0,0,0,0,0,4,4,4,4,0,0,0,-2
,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],[1280,1280,0,0,-16,-16,-16,-16,2,2,0,0,0,0,0,0,0,0,0,-1
,-1,0,2,2,0,0,-64,0,0,0,0,0,8,0,0,2,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[35,3]],[729,729,9,9,0,0,0,0,0,0,-3,-3,1,-1,-1,0,0,0,0,1,1,-1,0,0,0,0
,-27,9,9,9,9,1,0,0,0,0,-1,-1,-1,-1,0,0,0,0,1,1,9,-3,0,3,3,-1,1,1,-1,-1,0,0,0,9
,-3,0,3,3,-1,1,1,-1,-1,0,0,0],
[TENSOR,[37,2]],
[TENSOR,[37,3]],
[TENSOR,[37,4]],[896,896,0,0,32,32,-4,-4,-4,-4,0,0,0,1,1,0,0,0,0,0,0,0,-1,-1,
0,0,0,16,16,0,0,0,0,-2,-2,0,0,0,1,1,0,0,0,0,0,0,16,0,-2,0,0,0,0,0,1,1,0,0,0,16
,0,-2,0,0,0,0,0,1,1,0,0,0],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[40,-40,8,-8,-14,14,4,-4,4,-4,8,-8,0,0,0,2,-2,-4,4,-2,2,0,-2,
2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0],[112,-112,-16,16,4,-4,13,-13,4,-4,0,0,0,2,-2,-4,4,-1,1,0
,0,0,1,-1,0,0,0,-8,8,16,-16,0,0,1,-1,0,0,0,2,-2,4,-4,1,-1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[46,3]],[70,-70,-2,2,16,-16,7,-7,-2,2,2,-2,0,0,0,4,-4,1,-1,0,0,0,1,-1
,2,-2,0,-10,10,4,-4,0,0,-1,1,0,2,-2,0,0,-2,2,1,-1,0,0,0,0,0,2*E(8)-2*E(8)^3,
-2*E(8)+2*E(8)^3,0,E(8)-E(8)^3,-E(8)+E(8)^3,0,0,0,-E(8)+E(8)^3,E(8)-E(8)^3,0,0
,0,2*E(8)-2*E(8)^3,-2*E(8)+2*E(8)^3,0,E(8)-E(8)^3,-E(8)+E(8)^3,0,0,0,
-E(8)+E(8)^3,E(8)-E(8)^3],
[TENSOR,[48,2]],
[TENSOR,[48,3]],
[TENSOR,[48,4]],[280,-280,-8,8,-44,44,10,-10,-8,8,8,-8,0,0,0,4,-4,-2,2,0,0,0,
1,-1,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],[240,-240,-16,16,24,-24,-12,12,6,-6,0,0,0,0,0,8,-8,-4
,4,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[420,-420,20,-20,42,-42,6,-6,6,-6,4,-4,0,0,0,
2,-2,2,-2,0,0,0,0,0,-2,2,0,-20,20,-8,8,0,0,-2,2,0,0,0,0,0,4,-4,-2,2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[54,3]],[1008,-1008,-16,16,36,-36,9,-9,0,0,0,0,0,-2,2,-4,4,-1,1,0,0,0
,0,0,0,0,0,8,-8,16,-16,0,0,-1,1,0,0,0,-2,2,4,-4,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[56,3]],[1080,-1080,24,-24,-54,54,0,0,0,0,8,-8,0,0,0,-6,6,0,0,2,-2,0,
0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0],[560,-560,-16,16,-34,34,2,-2,2,-2,0,0,0,0,0,2,-2,2,-2,
0,0,0,-1,1,0,0,0,0,0,16,-16,0,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,0,
4*E(8)-4*E(8)^3,-4*E(8)+4*E(8)^3,0,0,0,0,0,0,E(8)-E(8)^3,-E(8)+E(8)^3,0,0,0,
4*E(8)-4*E(8)^3,-4*E(8)+4*E(8)^3,0,0,0,0,0,0,E(8)-E(8)^3,-E(8)+E(8)^3],
[TENSOR,[59,2]],
[TENSOR,[59,3]],
[TENSOR,[59,4]],[630,-630,14,-14,-18,18,9,-9,0,0,-6,6,0,0,0,2,-2,-1,1,0,0,0,0
,0,0,0,0,-10,10,4,-4,0,0,-1,1,0,-2,2,0,0,-2,2,1,-1,0,0,0,0,0,2*E(8)-2*E(8)^3,
-2*E(8)+2*E(8)^3,0,-E(8)+E(8)^3,E(8)-E(8)^3,0,0,0,-E(8)+E(8)^3,E(8)-E(8)^3,0,0
,0,2*E(8)-2*E(8)^3,-2*E(8)+2*E(8)^3,0,-E(8)+E(8)^3,E(8)-E(8)^3,0,0,0,
-E(8)+E(8)^3,E(8)-E(8)^3],
[TENSOR,[63,2]],
[TENSOR,[63,3]],
[TENSOR,[63,4]],[1280,-1280,0,0,-16,16,-16,16,2,-2,0,0,0,0,0,0,0,0,0,-1,1,0,2
,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,
E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[67,3]],[896,-896,0,0,32,-32,-4,4,-4,4,0,0,0,1,-1,0,0,0,0,0,0,0,-1,1,
0,0,0,-16,16,0,0,0,0,2,-2,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(5)-E(5)^2-E(5)^3+E(5)^4,-E(5)+E(5)^2+E(5)^3-E(5)^4,0,0,0,0,0,0,0,0,0,0,0,
E(5)-E(5)^2-E(5)^3+E(5)^4,-E(5)+E(5)^2+E(5)^3-E(5)^4,0,0,0],
[TENSOR,[69,2]],
[TENSOR,[69,3]],
[TENSOR,[69,4]]],
[(55,56)(68,69),(45,46),(50,51)(53,54)(58,59)(63,64)(66,67)(71,72),
(47,60)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)
(58,71)(59,72)
,(28,29)(30,31)(34,35)(37,38)(39,40)(41,42)(43,44)(63,64)(66,67)(68,69)(71,72)
]);
ALF("2.U4(3).(2^2)_{1*33}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,7,
8,8,9,9,10,10,11,11,12,13,13,14,14,15,16,16,17,17,18,19,20,20,21,22,22,23,
23,24,24,25,25,26,26,27,28,29,30,30,31,32,32,33,33,34,35,35,36,37,38,39,
39,40,41,41,42,42,43,44,44]);
MOT("2.U4(3).(2^2)_{13*3}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(55,56)(68,69),(45,46),(50,51)(53,54)(58,59)(63,64)(66,67)(71,72),
(28,29)(30,31)(34,35)(37,38)(39,40)(41,42)(43,44)(55,56)(63,64)(66,67)(71,72)]
,
["ConstructIsoclinic",[["2.U4(3).(2^2)_{1*33}"]],[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,25,26,60,61,62,63,64,65,66,67,68,69,70,71,
72]]);
ALF("2.U4(3).(2^2)_{13*3}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,7,
8,8,9,9,10,10,11,11,12,13,13,14,14,15,16,16,17,17,18,19,20,20,21,22,22,23,
23,24,24,25,25,26,26,27,28,29,30,30,31,32,32,33,33,34,35,35,36,37,38,39,
39,40,41,41,42,42,43,44,44]);
MOT("2.U4(3).(2^2)_{1*3*3}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(48,49)(60,61),(34,35)(42,43),(54,55)(56,57)(66,67)(68,69),
(27,28)(32,33)(36,37)(40,41)(44,45)(48,49)(54,55)(56,57)],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{133}"]],[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,25,26,58,59,60,61,62,63,64,65,66,67,68,
69]]);
ALF("2.U4(3).(2^2)_{1*3*3}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,8,8,9,9,10,10,11,11,12,13,13,14,14,15,15,16,17,18,19,19,20,20,21,21,22,
23,24,24,25,25,26,26,27,28,29,29,30,31,32,33,34,34,35,35,36,37,38,38,39,
40,41,42,43,43,44,44]);
MOT("2.U4(3).(2^2)_{13*3*}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(48,49)(60,61),(34,35)(42,43),(54,55)(56,57)(66,67)(68,69),
(46,58)(47,59)(48,60)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)
(57,69)
,(27,28)(32,33)(36,37)(40,41)(44,45)(60,61)(66,67)(68,69)],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{133}"]],[1..45]]);
ALF("2.U4(3).(2^2)_{13*3*}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,8,8,9,9,10,10,11,11,12,13,13,14,14,15,15,16,17,18,19,19,20,20,21,21,22,
23,24,24,25,25,26,26,27,28,29,29,30,31,32,33,34,34,35,35,36,37,38,38,39,
40,41,42,43,43,44,44]);
MOT("2.U4(3).(2^2)_{1*3*3*}",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
0,
0,
0,
[(55,56)(68,69),(45,46),(50,51)(53,54)(58,59)(63,64)(66,67)(71,72),
(47,60)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)
(58,71)(59,72)
,(28,29)(30,31)(34,35)(37,38)(39,40)(41,42)(43,44)(63,64)(66,67)(68,69)(71,72)
],
["ConstructIsoclinic",[["2.U4(3).(2^2)_{1*33}"]],[1..46]]);
ALF("2.U4(3).(2^2)_{1*3*3*}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,8,8,9,9,10,10,11,11,12,13,13,14,14,15,16,16,17,17,18,19,20,20,21,22,22,
23,23,24,24,25,25,26,26,27,28,29,30,30,31,32,32,33,33,34,35,35,36,37,38,
39,39,40,41,41,42,42,43,44,44]);
MOT("2.U4(3).D8",
[
"constructed using `PossibleCharacterTablesOfTypeGV4'"
],
[52254720,52254720,18432,18432,93312,93312,7776,7776,1296,1296,1536,1536,128,
80,80,1152,1152,288,288,56,56,64,108,108,192,192,96768,96768,5760,4608,512,
1728,1728,72,144,144,64,40,576,576,72,56,56,48384,48384,768,768,80,384,384,128
,128,864,864,96,96,72,72,40,40,48,48,56,56,56,56,103680,2304,384,192,2592,2592
,432,216,144,72,72,32,20,96,96,24,36,36,2880,192,72,72,192,64,16,20,48,48,48,
48],
[,[1,1,1,1,5,5,7,7,9,9,3,3,4,14,14,5,5,7,7,20,20,12,23,23,16,16,1,1,2,3,3,5,5,
8,9,9,12,15,16,16,18,20,20,27,27,27,27,29,30,30,30,30,32,32,32,32,35,35,38,38,
39,39,42,42,42,42,1,1,3,4,5,5,7,7,7,9,9,11,14,16,16,19,23,23,1,3,9,9,11,11,13,
14,16,16,25,25],[1,2,3,4,1,2,1,2,1,2,11,12,13,14,15,3,4,3,4,20,21,22,5,6,11,12
,27,28,29,30,31,27,28,29,27,28,37,38,30,30,30,42,43,44,45,46,47,48,49,50,51,52
,44,45,46,47,44,45,59,60,49,50,63,64,65,66,67,68,69,70,67,67,67,67,68,68,68,78
,79,69,69,70,71,72,85,86,85,85,89,90,91,92,86,86,89,89],,[1,2,3,4,5,6,7,8,9,10
,11,12,13,1,2,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,
37,29,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,48,48,61,62,
65,66,63,64,67,68,69,70,72,71,73,74,75,76,77,78,67,81,80,82,84,83,85,86,87,88,
89,90,91,85,94,93,96,95],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,1,2
,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,27,28,44,45,46,47
,48,49,50,51,52,53,54,55,56,57,58,60,59,61,62,44,45,44,45,67,68,69,70,71,72,73
,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1],
[TENSOR,[2,3]],[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[21,21,
5,5,-6,-6,3,3,3,3,1,1,1,1,1,2,2,-1,-1,0,0,-1,0,0,-2,-2,-7,-7,1,5,-3,2,2,1,-1,
-1,-1,1,2,2,-1,0,0,7,7,-1,-1,-1,-3,-3,1,1,-2,-2,2,2,1,1,-1,-1,0,0,0,0,0,0,9,1,
-3,1,0,0,-3,3,1,1,1,-1,-1,0,0,1,0,0,1,-3,1,1,3,-1,-1,1,0,0,0,0],
[TENSOR,[6,2]],
[TENSOR,[6,3]],
[TENSOR,[6,4]],[42,42,10,10,-12,-12,6,6,6,6,2,2,2,2,2,4,4,-2,-2,0,0,-2,0,0,-4
,-4,14,14,-2,-10,6,-4,-4,-2,2,2,2,-2,-4,-4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[70,70,6,6,16,16,7,7,-2,-2,6,6,-2,0,0,0,0,3,3,0,0,-2,1,1,0,0,14,14,-10,-2,-2,
-4,-4,-1,2,2,-2,0,4,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,
-6,2,2,10,10,1,1,-3,0,0,-2,0,2,2,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[11,2]],[70,70,6,6,16,16,7,7,-2,-2,6,6,-2,0,0,0,0,3,3,0,0,-2,1,1,0,0,
-14,-14,10,2,2,4,4,1,-2,-2,2,0,-4,-4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,20,4,-4,4,2,2,5,-1,1,-2,-2,0,0,2,2,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0
],
[TENSOR,[13,2]],[90,90,10,10,9,9,9,9,0,0,-2,-2,2,0,0,1,1,1,1,-1,-1,0,0,0,1,1,
6,6,10,10,2,-3,-3,1,0,0,0,0,1,1,1,-1,-1,6,6,-2,-2,0,4,4,0,0,-3,-3,1,1,0,0,0,0,
1,1,-1,-1,-1,-1,30,6,2,2,3,3,3,3,3,0,0,0,0,-1,-1,-1,0,0,0,4,0,0,2,-2,0,0,1,1,
-1,-1],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[180,180,20,20,18,18,18,18,0,0,-4,-4,4,0,0,2,2,2,2,-2,-2,0,0,
0,2,2,-12,-12,-20,-20,-4,6,6,-2,0,0,0,0,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0],[140,140,12,12,5,5,-4,-4,5,5,4,4,0,0,0,-3,-3,0,0,0,0,0,-1,-1,1,1,28,28,0,4
,4,1,1,0,1,1,0,0,1,1,-2,0,0,14,14,-2,-2,0,2,2,2,2,5,5,1,1,-1,-1,0,0,-1,-1,0,0,
0,0,20,4,4,0,-7,-7,2,2,-2,1,1,0,0,1,1,0,-1,-1,10,2,1,1,2,2,0,0,-1,-1,-1,-1],
[TENSOR,[20,2]],
[TENSOR,[20,3]],
[TENSOR,[20,4]],[280,280,24,24,10,10,-8,-8,10,10,8,8,0,0,0,-6,-6,0,0,0,0,0,-2
,-2,2,2,-56,-56,0,-8,-8,-2,-2,0,-2,-2,0,0,-2,-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],[189,189,-3,-3,27,27,0,0,0,0,5,5,1,-1,-1,3,3,0,0,0,0,1,0,0,-1,-1,21,21,9,
-3,-3,3,3,0,0,0,1,-1,3,3,0,0,0,21,21,5,5,-1,1,1,1,1,3,3,-1,-1,0,0,-1,-1,1,1,0,
0,0,0,9,9,1,-3,9,9,0,0,0,0,0,1,-1,1,1,0,0,0,9,1,0,0,1,1,-1,-1,1,1,1,1],
[TENSOR,[25,2]],
[TENSOR,[25,3]],
[TENSOR,[25,4]],[378,378,-6,-6,54,54,0,0,0,0,10,10,2,-2,-2,6,6,0,0,0,0,2,0,0,
-2,-2,-42,-42,-18,6,6,-6,-6,0,0,0,-2,2,-6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
],[210,210,2,2,21,21,3,3,3,3,-2,-2,-2,0,0,5,5,-1,-1,0,0,0,0,0,1,1,14,14,-10,10
,2,5,5,-1,-1,-1,0,0,1,1,1,0,0,28,28,4,4,0,2,2,-2,-2,1,1,1,1,1,1,0,0,-1,-1,0,0,
0,0,30,-10,2,-2,3,3,3,3,-1,-1,-1,0,0,-1,-1,1,0,0,-10,2,-1,-1,4,0,0,0,-1,-1,1,1
],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[420,420,4,4,42,42,6,6,6,6,-4,-4,-4,0,0,10,10,-2,-2,0,0,0,0,0
,2,2,-28,-28,20,-20,-4,-10,-10,2,2,2,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],[1120,1120,-32,-32,40,40,22,22,4,4,0,0,0,0,0,-8,-8,-2,-2,0,0,0,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
80,-16,0,0,8,8,2,-4,2,2,2,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[35,2]],[630,630,22,22,-18,-18,9,9,0,0,-2,-2,-2,0,0,-2,-2,1,1,0,0,2,0
,0,-2,-2,-42,-42,-10,14,-2,-6,-6,-1,0,0,2,0,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,90,-6,-6,2,0,0,-3,3,-3,0,0,2,0,0,0,-1,0,0,0,0,0,0,0,0,0
,0,0,0,0,0],
[TENSOR,[37,2]],[630,630,22,22,-18,-18,9,9,0,0,-2,-2,-2,0,0,-2,-2,1,1,0,0,2,0
,0,-2,-2,42,42,10,-14,2,6,6,1,0,0,-2,0,-2,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,60,12,4,4,6,6,-3,-3,-3,0,0,0,0,-2,-2,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0],
[TENSOR,[39,2]],[420,420,4,4,-39,-39,6,6,-3,-3,4,4,0,0,0,1,1,-2,-2,0,0,0,0,0,
1,1,28,28,0,12,-4,1,1,0,1,1,0,0,-3,-3,0,0,0,14,14,-2,-2,0,-2,-2,-2,-2,5,5,1,1,
-1,-1,0,0,1,1,0,0,0,0,60,-4,4,0,-3,-3,-6,0,2,-1,-1,0,0,1,1,0,0,0,-10,-2,-1,-1,
2,2,0,0,1,1,-1,-1],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[840,840,8,8,-78,-78,12,12,-6,-6,8,8,0,0,0,2,2,-4,-4,0,0,0,0,
0,2,2,-56,-56,0,-24,8,-2,-2,0,-2,-2,0,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
,[1120,1120,-32,-32,-68,-68,4,4,4,4,0,0,0,0,0,4,4,4,4,0,0,0,-2,-2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,56,56,-8,-8,0,0,0,0,0,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[46,3]],[1280,1280,0,0,-16,-16,-16,-16,2,2,0,0,0,0,0,0,0,0,0,-1,-1,0,
2,2,0,0,-64,-64,0,0,0,8,8,0,2,2,0,0,0,0,0,-1,-1,64,64,0,0,0,0,0,0,0,-8,-8,0,0,
-2,-2,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],
[TENSOR,[48,3]],[1280,1280,0,0,-16,-16,-16,-16,2,2,0,0,0,0,0,0,0,0,0,-1,-1,0,
2,2,0,0,64,64,0,0,0,-8,-8,0,-2,-2,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,
E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,
-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,
-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[50,3]],[729,729,9,9,0,0,0,0,0,0,-3,-3,1,-1,-1,0,0,0,0,1,1,-1,0,0,0,0
,-27,-27,9,9,1,0,0,0,0,0,-1,-1,0,0,0,1,1,27,27,3,3,1,-3,-3,1,1,0,0,0,0,0,0,1,1
,0,0,-1,-1,-1,-1,81,9,-3,-3,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,9,-3,0,0,3,-1,1,-1,0,
0,0,0],
[TENSOR,[52,2]],
[TENSOR,[52,3]],
[TENSOR,[52,4]],[1458,1458,18,18,0,0,0,0,0,0,-6,-6,2,-2,-2,0,0,0,0,2,2,-2,0,0
,0,0,54,54,-18,-18,-2,0,0,0,0,0,2,2,0,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[
896,896,0,0,32,32,-4,-4,-4,-4,0,0,0,1,1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,16,0,0,0,0
,-2,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,64,0,0,0
,-8,-8,4,-2,0,0,0,0,-1,0,0,0,1,1,16,0,-2,-2,0,0,0,1,0,0,0,0],
[TENSOR,[57,2]],
[TENSOR,[57,3]],
[TENSOR,[57,4]],[1792,1792,0,0,64,64,-8,-8,-8,-8,0,0,0,2,2,0,0,0,0,0,0,0,-2,
-2,0,0,0,0,-32,0,0,0,0,4,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[20,
-20,4,-4,-7,7,2,-2,2,-2,4,-4,0,0,0,1,-1,-2,2,-1,1,0,-1,1,1,-1,-8,8,0,0,0,1,-1,
0,-2,2,0,0,-3,3,0,-1,1,-6,6,2,-2,0,2,-2,-2,2,3,-3,-1,1,0,0,0,0,-1,1,1,-1,1,-1,
0,0,0,0,3*E(3)-3*E(3)^2,-3*E(3)+3*E(3)^2,0,0,0,0,0,0,0,E(3)-E(3)^2,
-E(3)+E(3)^2,0,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,
E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2],
[TENSOR,[62,2]],
[TENSOR,[62,3]],
[TENSOR,[62,4]],[40,-40,8,-8,-14,14,4,-4,4,-4,8,-8,0,0,0,2,-2,-4,4,-2,2,0,-2,
2,2,-2,16,-16,0,0,0,-2,2,0,4,-4,0,0,6,-6,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[
224,-224,-32,32,8,-8,26,-26,8,-8,0,0,0,4,-4,-8,8,-2,2,0,0,0,2,-2,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[140,-140,-4,4,32,-32,14
,-14,-4,4,4,-4,0,0,0,8,-8,2,-2,0,0,0,2,-2,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,14,-14,6,-6,0,2,-2,-2,2,-4,4,0,0,2,-2,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[68,3]],[280,-280,-8,8,-44,44,10,-10,-8,8,8,-8,0,0,0,4,-4,-2,2,0,0,0,
1,-1,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,6*E(3)-6*E(3)^2,-6*E(3)+6*E(3)^2,0,0,0,0,0,0,0,
2*E(3)-2*E(3)^2,-2*E(3)+2*E(3)^2,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0],
[TENSOR,[70,2]],[120,-120,-8,8,12,-12,-6,6,3,-3,0,0,0,0,0,4,-4,-2,2,1,-1,0,0,
0,0,0,8,-8,0,0,0,8,-8,0,-1,1,0,0,0,0,0,1,-1,20,-20,4,-4,0,0,0,0,0,2,-2,-2,2,-1
,1,0,0,0,0,-1,1,-1,1,0,0,0,0,0,0,0,0,0,3,-3,0,0,0,0,0,0,0,0,0,3,-3,0,0,0,0,0,0
,0,0],
[TENSOR,[72,2]],
[TENSOR,[72,3]],
[TENSOR,[72,4]],[240,-240,-16,16,24,-24,-12,12,6,-6,0,0,0,0,0,8,-8,-4,4,2,-2,
0,0,0,0,0,-16,16,0,0,0,-16,16,0,2,-2,0,0,0,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],[420,-420,20,-20,42,-42,6,-6,6,-6,4,-4,0,0,0,2,-2,2,-2,0,0,0,0,0,-2,2,56,
-56,0,0,0,2,-2,0,2,-2,0,0,-6,6,0,0,0,42,-42,2,-2,0,6,-6,2,-2,6,-6,2,-2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[77,3]],[420,-420,20,-20,42,-42,6,-6,6,-6,4,-4,0,0,0,2,-2,2,-2,0,0,0,
0,0,-2,2,-56,56,0,0,0,-2,2,0,-2,2,0,0,6,-6,0,0,0,14,-14,6,-6,0,-2,2,2,-2,-4,4,
0,0,2,-2,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0],
[TENSOR,[79,3]],[2016,-2016,-32,32,72,-72,18,-18,0,0,0,0,0,-4,4,-8,8,-2,2,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[540
,-540,12,-12,-27,27,0,0,0,0,4,-4,0,0,0,-3,3,0,0,1,-1,0,0,0,1,-1,-48,48,0,0,0,
-3,3,0,0,0,0,0,-3,3,0,1,-1,6,-6,-2,2,0,2,-2,-2,2,-3,3,1,-1,0,0,0,0,-1,1,-1,1,
-1,1,0,0,0,0,-9*E(3)+9*E(3)^2,9*E(3)-9*E(3)^2,0,0,0,0,0,0,0,E(3)-E(3)^2,
-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,-E(3)+E(3)^2,
E(3)-E(3)^2],
[TENSOR,[82,2]],
[TENSOR,[82,3]],
[TENSOR,[82,4]],[1080,-1080,24,-24,-54,54,0,0,0,0,8,-8,0,0,0,-6,6,0,0,2,-2,0,
0,0,2,-2,96,-96,0,0,0,6,-6,0,0,0,0,0,6,-6,0,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1120,-1120,-32,32,-68,68,4,-4,4,-4,0,0,0,0,0,4,-4,4,-4,0,0,0,-2,2,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,56,-56,-8,8,0,0,0,0,0,2,-2,-2,2,2,-2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[87,3]],[1260,-1260,28,-28,-36,36,18,-18,0,0,-12,12,0,0,0,4,-4,-2,2,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,42,-42,2,-2,0,-6,6,-2,2,6,-6,2,
-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],
[TENSOR,[89,3]],[1280,-1280,0,0,-16,16,-16,16,2,-2,0,0,0,0,0,0,0,0,0,-1,1,0,2
,-2,0,0,-64,64,0,0,0,8,-8,0,2,-2,0,0,0,0,0,-1,1,64,-64,0,0,0,0,0,0,0,-8,8,0,0,
-2,2,0,0,0,0,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],
[TENSOR,[91,3]],[1280,-1280,0,0,-16,16,-16,16,2,-2,0,0,0,0,0,0,0,0,0,-1,1,0,2
,-2,0,0,64,-64,0,0,0,-8,8,0,-2,2,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,
-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,
-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,
E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[93,3]],[1792,-1792,0,0,64,-64,-8,8,-8,8,0,0,0,2,-2,0,0,0,0,0,0,0,-2,
2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(40)^7+E(40)^13-E(40)^21-E(40)^23-E(40)^29+E(40)^31+E(40)^37+E(40)^39,
E(40)^7-E(40)^13+E(40)^21+E(40)^23+E(40)^29-E(40)^31-E(40)^37-E(40)^39,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[95,3]]],
[(76,77)(87,88),(63,65)(64,66),(59,60),(71,72)(80,81)(83,84)(93,94)(95,96),
(44,45)(46,47)(49,50)(51,52)(53,54)(55,56)(57,58)(61,62)(63,64)(65,66)(87,88)
(93,94)(95,96)]);
MOT("O8+(3)M16",
[
"16th maximal subgroup of O8+(3),\n",
"differs from O8+(3)M15 only by fusion map"
],
0,
0,
0,
0,
["ConstructPermuted",["2.U4(3).(2^2)_{122}"]]);
ALF("O8+(3)M16","O8+(3)",[1,3,5,3,6,28,8,32,11,35,17,44,19,23,21,25,73,30,
28,38,32,41,35,55,98,57,59,107,62,110,76,84,2,4,21,19,23,27,29,90,93,43,
45,57,113,77,75,79,82,97,99,3,5,23,21,28,28,35,32,41,51,53,56,73,84,84,90,
107,107,3,5,23,21,28,28,32,35,38,52,50,56,73,84,84,93,110,110],[
"fusion map is unique up to table automorphisms,\n",
"equal to the map from O8+(3)M15, mapped under an outer autom."
]);
ALF("O8+(3)M16","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,10,
10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,20,21,22,22,23,24,25,
25,26,27,28,28,29,30,31,31,32,33,34,35,36,36,37,38,39,40,40,41,42,43,43,
44,45,45,46,47,48,49,50,50,51,52,53,54,54,55,56,57,57,58,59,59]);
MOT("O8+(3)M17",
[
"17th maximal subgroup of O8+(3),\n",
"differs from O8+(3)M15 only by fusion map"
],
0,
0,
0,
0,
["ConstructPermuted",["2.U4(3).(2^2)_{122}"]]);
ALF("O8+(3)M17","O8+(3)",[1,4,5,4,6,29,9,33,12,36,17,45,19,23,22,26,74,30,
29,39,33,42,36,55,99,57,60,108,63,111,77,84,2,3,22,19,23,27,28,91,94,43,
44,57,114,76,75,80,83,97,98,4,5,23,22,29,29,36,33,42,51,52,56,74,84,84,91,
108,108,4,5,23,22,29,29,33,36,39,53,50,56,74,84,84,94,111,111],[
"fusion map is unique up to table automorphisms,\n",
"equal to the map from O8+(3)M15, mapped under an outer autom."
]);
ALF("O8+(3)M17","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,10,
10,11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,19,20,21,22,22,23,24,25,
25,26,27,28,28,29,30,31,31,32,33,34,35,36,36,37,38,39,40,40,41,42,43,43,
44,45,45,46,47,48,49,50,50,51,52,53,54,54,55,56,57,57,58,59,59]);
MOT("3^2.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[29393280,29393280,29393280,29393280,29393280,29393280,29393280,29393280,
29393280,10368,10368,10368,10368,10368,10368,10368,10368,10368,52488,52488,
52488,52488,52488,52488,52488,52488,52488,2916,2916,2916,2916,2916,2916,81,864
,864,864,864,864,864,864,864,864,144,144,144,144,144,144,144,144,144,45,45,45,
45,45,45,45,45,45,648,648,648,648,648,648,648,648,648,324,324,324,324,324,324,
324,324,324,324,324,324,324,324,324,324,324,324,63,63,63,63,63,63,63,63,63,63,
63,63,63,63,63,63,63,63,72,72,72,72,72,72,72,72,72,81,81,81,81,81,81,81,81,81,
81,81,81,108,108,108,108,108,108,108,108,108],
[,[1,3,2,7,9,8,4,6,5,1,3,2,7,9,8,4,6,5,19,21,20,25,27,26,22,24,23,28,30,29,32,
31,33,34,10,12,11,16,18,17,13,15,14,10,12,11,16,18,17,13,15,14,53,55,54,59,61,
60,56,58,57,19,21,20,25,27,26,22,24,23,28,30,29,28,30,29,28,30,29,33,32,31,31,
33,32,32,31,33,89,91,90,95,97,96,92,94,93,98,100,99,104,106,105,101,103,102,35
,37,36,41,43,42,38,40,39,119,121,120,116,118,117,126,125,127,123,122,124,62,64
,63,68,70,69,65,67,66],[1,1,1,1,1,1,1,1,1,10,10,10,10,10,10,10,10,10,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,35,35,35,35,35,35,35,35,35,44,44,44,44,44,44,44,44,44,
53,53,53,53,53,53,53,53,53,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,98,98,98,98,98,98,98,98,98,89,89,89,89,89,89,89,
89,89,107,107,107,107,107,107,107,107,107,27,27,27,23,23,23,25,25,25,22,22,22,
35,35,35,35,35,35,35,35,35],,[1,3,2,7,9,8,4,6,5,10,12,11,16,18,17,13,15,14,19,
21,20,25,27,26,22,24,23,28,30,29,32,31,33,34,35,37,36,41,43,42,38,40,39,44,46,
45,50,52,51,47,49,48,1,3,2,7,9,8,4,6,5,62,64,63,68,70,69,65,67,66,71,73,72,77,
79,78,74,76,75,80,82,81,86,88,87,83,85,84,98,100,99,104,106,105,101,103,102,89
,91,90,95,97,96,92,94,93,107,109,108,113,115,114,110,112,111,119,121,120,116,
118,117,126,125,127,123,122,124,128,130,129,134,136,135,131,133,132],,[1,2,3,4
,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,
32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,
58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,
84,85,86,87,88,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,107,108,109,110,111,112,113
,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,
133,134,135,136]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[21,21,21,21,21,21,21,21,21,5,5,5,5,5
,5,5,5,5,-6,-6,-6,-6,-6,-6,-6,-6,-6,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,
-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2],[35,35,35,35,35,35,
35,35,35,3,3,3,3,3,3,3,3,3,8,8,8,8,8,8,8,8,8,8,8,8,-1,-1,-1,-1,3,3,3,3,3,3,3,3
,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,
-1,-1,-1,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0],[35,35,35,35,35,35,
35,35,35,3,3,3,3,3,3,3,3,3,8,8,8,8,8,8,8,8,8,-1,-1,-1,8,8,8,-1,3,3,3,3,3,3,3,3
,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,
3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0],[90,90,90,90,90,90,
90,90,90,10,10,10,10,10,10,10,10,10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,-2,-2,-2,
-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1],[140,140,
140,140,140,140,140,140,140,12,12,12,12,12,12,12,12,12,5,5,5,5,5,5,5,5,5,-4,-4
,-4,-4,-4,-4,5,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,
-3,-3,-3,-3,-3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,
1,1,1],[189,189,189,189,189,189,189,189,189,-3,-3,-3,-3,-3,-3,-3,-3,-3,27,27,
27,27,27,27,27,27,27,0,0,0,0,0,0,0,5,5,5,5,5,5,5,5,5,1,1,1,1,1,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,
-1,-1,-1,-1,-1,-1,-1,-1],[210,210,210,210,210,210,210,210,210,2,2,2,2,2,2,2,2,
2,21,21,21,21,21,21,21,21,21,3,3,3,3,3,3,3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,5,5,5,5,5,5,5,5,5,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1],[280,280,280,280,280,280,280
,280,280,-8,-8,-8,-8,-8,-8,-8,-8,-8,10,10,10,10,10,10,10,10,10,10,10,10,1,1,1,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0],
[GALOIS,[9,2]],[280,280,280,280,280,280,280,280,280,-8,-8,-8,-8,-8,-8,-8,-8,
-8,10,10,10,10,10,10,10,10,10,1,1,1,10,10,10,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,1,1,1,1,1,1,1,1,1,-2,-2,-2,
-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,
1,1,1,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0],
[GALOIS,[11,2]],[315,315,315,315,315,315,315,315,315,11,11,11,11,11,11,11,11,
11,-9,-9,-9,-9,-9,-9,-9,-9,-9,18,18,18,-9,-9,-9,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,
2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1
,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1],[315,315,
315,315,315,315,315,315,315,11,11,11,11,11,11,11,11,11,-9,-9,-9,-9,-9,-9,-9,-9
,-9,-9,-9,-9,18,18,18,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,
2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,
0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1],[420,420,420,420,420,420,420,420,420,4
,4,4,4,4,4,4,4,4,-39,-39,-39,-39,-39,-39,-39,-39,-39,6,6,6,6,6,6,-3,4,4,4,4,4,
4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1],[560,560,560,560,560
,560,560,560,560,-16,-16,-16,-16,-16,-16,-16,-16,-16,-34,-34,-34,-34,-34,-34,
-34,-34,-34,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,
0,0,0,0],[640,640,640,640,640,640,640,640,640,0,0,0,0,0,0,0,0,0,-8,-8,-8,-8,-8
,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0
,0],
[GALOIS,[17,3]],[729,729,729,729,729,729,729,729,729,9,9,9,9,9,9,9,9,9,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,1,1,1,1,1,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],[896,896,896,896,896,896,896,896,896,0,0,0,0,0,0,0,0,
0,32,32,32,32,32,32,32,32,32,-4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0],[36,36,36,36*E(3),36*E(3),36*E(3),36*E(3)^2,
36*E(3)^2,36*E(3)^2,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,9,9,
9,9*E(3),9*E(3),9*E(3),9*E(3)^2,9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,4,4,4,4*E(3),
4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,1,1,1,E(3),E(3),
E(3),E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,-2,-2,-2,
-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3)
,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,
E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2],
[GALOIS,[21,2]],[45,45,45,45*E(3),45*E(3),45*E(3),45*E(3)^2,45*E(3)^2,
45*E(3)^2,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-9,-9
,-9,-9*E(3),-9*E(3),-9*E(3),-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,0,0,0,0,0,0,0,1,1,1,
E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,
0,0,0,0,0,0,0,0,0,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20
,E(21)^5+E(21)^17+E(21)^20,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(21)^2+E(21)^8+E(21)^11,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2],
[GALOIS,[23,2]],
[GALOIS,[23,10]],
[GALOIS,[23,5]],[126,126,126,126*E(3),126*E(3),126*E(3),126*E(3)^2,126*E(3)^2
,126*E(3)^2,14,14,14,14*E(3),14*E(3),14*E(3),14*E(3)^2,14*E(3)^2,14*E(3)^2,-9,
-9,-9,-9*E(3),-9*E(3),-9*E(3),-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,0,0,0,0,0,0,0,2,2,
2,2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,2*E(3),2*E(3),2*E(3),
2*E(3)^2,2*E(3)^2,2*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,
-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3)^2,
2*E(3)^2,2*E(3)^2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,
-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[27,2]],[189,189,189,189*E(3),189*E(3),189*E(3),189*E(3)^2,189*E(3)^2
,189*E(3)^2,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,27,
27,27,27*E(3),27*E(3),27*E(3),27*E(3)^2,27*E(3)^2,27*E(3)^2,0,0,0,0,0,0,0,5,5,
5,5*E(3),5*E(3),5*E(3),5*E(3)^2,5*E(3)^2,5*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,
E(3)^2,E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,3,3,3,3*E(3),
3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,0
,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[29,2]],[315,315,315,315*E(3),315*E(3),315*E(3),315*E(3)^2,315*E(3)^2
,315*E(3)^2,11,11,11,11*E(3),11*E(3),11*E(3),11*E(3)^2,11*E(3)^2,11*E(3)^2,18,
18,18,18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,-1,
-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3)^2,
2*E(3)^2,2*E(3)^2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,
2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,
2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2],
[GALOIS,[31,2]],[315,315,315,315*E(3),315*E(3),315*E(3),315*E(3)^2,315*E(3)^2
,315*E(3)^2,-5,-5,-5,-5*E(3),-5*E(3),-5*E(3),-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,18,
18,18,18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,3,3,
3,3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,
-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[33,2]],[315,315,315,315*E(3),315*E(3),315*E(3),315*E(3)^2,315*E(3)^2
,315*E(3)^2,-5,-5,-5,-5*E(3),-5*E(3),-5*E(3),-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,18,
18,18,18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,3,3,
3,3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,
4*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,
-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[35,2]],[630,630,630,630*E(3),630*E(3),630*E(3),630*E(3)^2,630*E(3)^2
,630*E(3)^2,6,6,6,6*E(3),6*E(3),6*E(3),6*E(3)^2,6*E(3)^2,6*E(3)^2,-45,-45,-45,
-45*E(3),-45*E(3),-45*E(3),-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,0,0,0,0,0,0,0,2,2,
2,2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3),
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,3,3,3,3*E(3),3*E(3),
3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1
,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[37,2]],[720,720,720,720*E(3),720*E(3),720*E(3),720*E(3)^2,720*E(3)^2
,720*E(3)^2,16,16,16,16*E(3),16*E(3),16*E(3),16*E(3)^2,16*E(3)^2,16*E(3)^2,18,
18,18,18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2*E(3),-2*E(3),
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-1,-1,
-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[39,2]],[729,729,729,729*E(3),729*E(3),729*E(3),729*E(3)^2,729*E(3)^2
,729*E(3)^2,9,9,9,9*E(3),9*E(3),9*E(3),9*E(3)^2,9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3)
,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,
E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[41,2]],[756,756,756,756*E(3),756*E(3),756*E(3),756*E(3)^2,756*E(3)^2
,756*E(3)^2,-12,-12,-12,-12*E(3),-12*E(3),-12*E(3),-12*E(3)^2,-12*E(3)^2,
-12*E(3)^2,27,27,27,27*E(3),27*E(3),27*E(3),27*E(3)^2,27*E(3)^2,27*E(3)^2,0,0,
0,0,0,0,0,-4,-4,-4,-4*E(3),-4*E(3),-4*E(3),-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,0,0,0
,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,3,3,3,3*E(3),3*E(3),
3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1
,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[43,2]],[945,945,945,945*E(3),945*E(3),945*E(3),945*E(3)^2,945*E(3)^2
,945*E(3)^2,-15,-15,-15,-15*E(3),-15*E(3),-15*E(3),-15*E(3)^2,-15*E(3)^2,
-15*E(3)^2,-27,-27,-27,-27*E(3),-27*E(3),-27*E(3),-27*E(3)^2,-27*E(3)^2,
-27*E(3)^2,0,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),
E(3),E(3),E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3*E(3),-3*E(3),
-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,0,0,
0,0,0,0,0,0,0,0,0,0,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2],
[GALOIS,[45,2]],[15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,6,6*E(3),6*E(3)^2
,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[47,2]],[21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,6,6*E(3),6*E(3)^2,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,0,0,0,0,0
,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[49,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3)
,105*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2
,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[51,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3)
,105*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,3,3*E(3),3*E(3)^2,
0,0,0,0,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,
0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[53,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3)
,105*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,-12,-12*E(3)
,-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,12,12*E(3),
12*E(3)^2,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2],
[GALOIS,[55,2]],[210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3)
,210*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,15,15*E(3),15*E(3)^2,0,0,0,0,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[57,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)
,315*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-36
,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,9,9*E(3),
9*E(3)^2,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[59,2]],[336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3)
,336*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,-6,
-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,6,6*E(3),6*E(3)^2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)
,E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[61,2]],[360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3)
,360*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,-18,-18*E(3)
,-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-9,-9*E(3),
-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2
,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[63,2]],
[GALOIS,[63,10]],
[GALOIS,[63,5]],[384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3)
,384*E(3)^2,0,0,0,0,0,0,0,0,0,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,
24*E(3),24*E(3)^2,12,12*E(3),12*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[67,2]],[420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3)
,420*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,33,33*E(3),
33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,-6,-6*E(3),-6*E(3)^2,0,0,0
,0,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[69,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3)
,630*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,-9,-9*E(3),-9*E(3)^2,0,0,0,0,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,
-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,
3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)
,-E(3)^2],
[GALOIS,[71,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3)
,729*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[73,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3)
,756*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),
-12*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,0,0,
0,0,0,0,0,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,0,0,0
,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[75,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3)
,945*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),
-15*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),
-27*E(3)^2,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,0,0
,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[77,2]],[15,15*E(3),15*E(3)^2,15*E(3)^2,15,15*E(3),15*E(3),15*E(3)^2,
15,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,6,6*E(3),6*E(3)^2,
6*E(3)^2,6,6*E(3),6*E(3),6*E(3)^2,6,0,0,0,3*E(3),3*E(3)^2,3,0,3,3*E(3),
3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3)
,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)
,2*E(3)^2,2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),
E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3)
,E(3),E(3)^2,1,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0],
[GALOIS,[79,2]],[21,21*E(3),21*E(3)^2,21*E(3)^2,21,21*E(3),21*E(3),21*E(3)^2,
21,5,5*E(3),5*E(3)^2,5*E(3)^2,5,5*E(3),5*E(3),5*E(3)^2,5,3,3*E(3),3*E(3)^2,
3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,0,0,0,6*E(3),6*E(3)^2,6,0,1,E(3),E(3)^2,
E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2,2*E(3),
2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1],
[GALOIS,[81,2]],[105,105*E(3),105*E(3)^2,105*E(3)^2,105,105*E(3),105*E(3),
105*E(3)^2,105,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3),9*E(3)^2,9,15,
15*E(3),15*E(3)^2,15*E(3)^2,15,15*E(3),15*E(3),15*E(3)^2,15,0,0,0,3*E(3),
3*E(3)^2,3,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,
E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),
3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)
,3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),
E(3),E(3)^2,1,0,0,0,0,0,0,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),
E(3)^2,1],
[GALOIS,[83,2]],[105,105*E(3),105*E(3)^2,105*E(3)^2,105,105*E(3),105*E(3),
105*E(3)^2,105,-7,-7*E(3),-7*E(3)^2,-7*E(3)^2,-7,-7*E(3),-7*E(3),-7*E(3)^2,-7,
15,15*E(3),15*E(3)^2,15*E(3)^2,15,15*E(3),15*E(3),15*E(3)^2,15,0,0,0,3*E(3),
3*E(3)^2,3,0,5,5*E(3),5*E(3)^2,5*E(3)^2,5,5*E(3),5*E(3),5*E(3)^2,5,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3)^2,
-1,-E(3),-E(3),-E(3)^2,-1,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,
2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1],
[GALOIS,[85,2]],[105,105*E(3),105*E(3)^2,105*E(3)^2,105,105*E(3),105*E(3),
105*E(3)^2,105,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3),9*E(3)^2,9,-12,
-12*E(3),-12*E(3)^2,-12*E(3)^2,-12,-12*E(3),-12*E(3),-12*E(3)^2,-12,0,0,0,
12*E(3),12*E(3)^2,12,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),E(3)^2
,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,
E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2],
[GALOIS,[87,2]],[210,210*E(3),210*E(3)^2,210*E(3)^2,210,210*E(3),210*E(3),
210*E(3)^2,210,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,3,3*E(3),
3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,0,0,0,15*E(3),15*E(3)^2,15,0,-2,
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,-1,-E(3)
,-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3)
,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1],
[GALOIS,[89,2]],[315,315*E(3),315*E(3)^2,315*E(3)^2,315,315*E(3),315*E(3),
315*E(3)^2,315,-5,-5*E(3),-5*E(3)^2,-5*E(3)^2,-5,-5*E(3),-5*E(3),-5*E(3)^2,-5,
-36,-36*E(3),-36*E(3)^2,-36*E(3)^2,-36,-36*E(3),-36*E(3),-36*E(3)^2,-36,0,0,0,
9*E(3),9*E(3)^2,9,0,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,4,4*E(3),
4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3),4*E(3)^2,4,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2
,-2*E(3),-2*E(3),-2*E(3)^2,-2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,
-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[91,2]],[336,336*E(3),336*E(3)^2,336*E(3)^2,336,336*E(3),336*E(3),
336*E(3)^2,336,16,16*E(3),16*E(3)^2,16*E(3)^2,16,16*E(3),16*E(3),16*E(3)^2,16,
-6,-6*E(3),-6*E(3)^2,-6*E(3)^2,-6,-6*E(3),-6*E(3),-6*E(3)^2,-6,0,0,0,6*E(3),
6*E(3)^2,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),
E(3),E(3)^2,1,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,
-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0],
[GALOIS,[93,2]],[360,360*E(3),360*E(3)^2,360*E(3)^2,360,360*E(3),360*E(3),
360*E(3)^2,360,8,8*E(3),8*E(3)^2,8*E(3)^2,8,8*E(3),8*E(3),8*E(3)^2,8,-18,
-18*E(3),-18*E(3)^2,-18*E(3)^2,-18,-18*E(3),-18*E(3),-18*E(3)^2,-18,0,0,0,
-9*E(3),-9*E(3)^2,-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2
,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2,2*E(3),2*E(3)^2,
2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[95,2]],
[GALOIS,[95,10]],
[GALOIS,[95,5]],[384,384*E(3),384*E(3)^2,384*E(3)^2,384,384*E(3),384*E(3),
384*E(3)^2,384,0,0,0,0,0,0,0,0,0,24,24*E(3),24*E(3)^2,24*E(3)^2,24,24*E(3),
24*E(3),24*E(3)^2,24,0,0,0,12*E(3),12*E(3)^2,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0],
[GALOIS,[99,2]],[420,420*E(3),420*E(3)^2,420*E(3)^2,420,420*E(3),420*E(3),
420*E(3)^2,420,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3),4*E(3)^2,4,33,
33*E(3),33*E(3)^2,33*E(3)^2,33,33*E(3),33*E(3),33*E(3)^2,33,0,0,0,-6*E(3),
-6*E(3)^2,-6,0,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3),4*E(3)^2,4,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,-2,
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,1,E(3),E(3)^2,E(3)^2,1
,E(3),E(3),E(3)^2,1],
[GALOIS,[101,2]],[630,630*E(3),630*E(3)^2,630*E(3)^2,630,630*E(3),630*E(3),
630*E(3)^2,630,6,6*E(3),6*E(3)^2,6*E(3)^2,6,6*E(3),6*E(3),6*E(3)^2,6,9,9*E(3),
9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3),9*E(3)^2,9,0,0,0,-9*E(3),-9*E(3)^2,-9,0,2,
2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,-3,-3*E(3),
-3*E(3)^2,-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,0,0,0,0,0,0,0,0,0,3,3*E(3)
,3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3)^2,-1,
-E(3),-E(3),-E(3)^2,-1],
[GALOIS,[103,2]],[729,729*E(3),729*E(3)^2,729*E(3)^2,729,729*E(3),729*E(3),
729*E(3)^2,729,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3),9*E(3)^2,9,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3*E(3)^2,-3,-3*E(3),-3*E(3),
-3*E(3)^2,-3,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,-1,-E(3),-E(3)^2,
-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,
E(3),E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[105,2]],[756,756*E(3),756*E(3)^2,756*E(3)^2,756,756*E(3),756*E(3),
756*E(3)^2,756,-12,-12*E(3),-12*E(3)^2,-12*E(3)^2,-12,-12*E(3),-12*E(3),
-12*E(3)^2,-12,27,27*E(3),27*E(3)^2,27*E(3)^2,27,27*E(3),27*E(3),27*E(3)^2,27,
0,0,0,0,0,0,0,-4,-4*E(3),-4*E(3)^2,-4*E(3)^2,-4,-4*E(3),-4*E(3),-4*E(3)^2,-4,0
,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,3,3*E(3),3*E(3)^2,
3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1],
[GALOIS,[107,2]],[945,945*E(3),945*E(3)^2,945*E(3)^2,945,945*E(3),945*E(3),
945*E(3)^2,945,-15,-15*E(3),-15*E(3)^2,-15*E(3)^2,-15,-15*E(3),-15*E(3),
-15*E(3)^2,-15,-27,-27*E(3),-27*E(3)^2,-27*E(3)^2,-27,-27*E(3),-27*E(3),
-27*E(3)^2,-27,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,
-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,
0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1],
[GALOIS,[109,2]],[36,36*E(3),36*E(3)^2,36*E(3),36*E(3)^2,36,36*E(3)^2,36,
36*E(3),4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),9,9*E(3),
9*E(3)^2,9*E(3),9*E(3)^2,9,9*E(3)^2,9,9*E(3),0,0,0,0,0,0,0,4,4*E(3),4*E(3)^2,
4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3),
E(3)^2,1,E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),-2,-2*E(3),
-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,
-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1
,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3)],
[GALOIS,[111,2]],[45,45*E(3),45*E(3)^2,45*E(3),45*E(3)^2,45,45*E(3)^2,45,
45*E(3),-3,-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-9,
-9*E(3),-9*E(3)^2,-9*E(3),-9*E(3)^2,-9,-9*E(3)^2,-9,-9*E(3),0,0,0,0,0,0,0,1,
E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,
E(3),0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,-1,-E(3),
-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3)],
[GALOIS,[113,2]],
[GALOIS,[113,10]],
[GALOIS,[113,5]],[126,126*E(3),126*E(3)^2,126*E(3),126*E(3)^2,126,126*E(3)^2,
126,126*E(3),14,14*E(3),14*E(3)^2,14*E(3),14*E(3)^2,14,14*E(3)^2,14,14*E(3),-9
,-9*E(3),-9*E(3)^2,-9*E(3),-9*E(3)^2,-9,-9*E(3)^2,-9,-9*E(3),0,0,0,0,0,0,0,2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2*E(3),
2*E(3)^2,2,2*E(3)^2,2,2*E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),-1,
-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),2,2*E(3),2*E(3)^2,2*E(3),
2*E(3)^2,2,2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,
2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3)],
[GALOIS,[117,2]],[189,189*E(3),189*E(3)^2,189*E(3),189*E(3)^2,189,189*E(3)^2,
189,189*E(3),-3,-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),27
,27*E(3),27*E(3)^2,27*E(3),27*E(3)^2,27,27*E(3)^2,27,27*E(3),0,0,0,0,0,0,0,5,
5*E(3),5*E(3)^2,5*E(3),5*E(3)^2,5,5*E(3)^2,5,5*E(3),1,E(3),E(3)^2,E(3),E(3)^2,
1,E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),3,3*E(3),
3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,
E(3),0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,
-E(3)],
[GALOIS,[119,2]],[315,315*E(3),315*E(3)^2,315*E(3),315*E(3)^2,315,315*E(3)^2,
315,315*E(3),11,11*E(3),11*E(3)^2,11*E(3),11*E(3)^2,11,11*E(3)^2,11,11*E(3),18
,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,-1,
-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2
,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,
2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3)],
[GALOIS,[121,2]],[315,315*E(3),315*E(3)^2,315*E(3),315*E(3)^2,315,315*E(3)^2,
315,315*E(3),-5,-5*E(3),-5*E(3)^2,-5*E(3),-5*E(3)^2,-5,-5*E(3)^2,-5,-5*E(3),18
,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,3,
3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),-1,-E(3),-E(3)^2,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,
-2*E(3)^2,-2,-2*E(3),4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,
-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[123,2]],[315,315*E(3),315*E(3)^2,315*E(3),315*E(3)^2,315,315*E(3)^2,
315,315*E(3),-5,-5*E(3),-5*E(3)^2,-5*E(3),-5*E(3)^2,-5,-5*E(3)^2,-5,-5*E(3),18
,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,3,
3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),-1,-E(3),-E(3)^2,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3)^2
,4,4*E(3),-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,
-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[125,2]],[630,630*E(3),630*E(3)^2,630*E(3),630*E(3)^2,630,630*E(3)^2,
630,630*E(3),6,6*E(3),6*E(3)^2,6*E(3),6*E(3)^2,6,6*E(3)^2,6,6*E(3),-45,
-45*E(3),-45*E(3)^2,-45*E(3),-45*E(3)^2,-45,-45*E(3)^2,-45,-45*E(3),0,0,0,0,0,
0,0,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),-2,-2*E(3),-2*E(3)^2
,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2
,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3)],
[GALOIS,[127,2]],[720,720*E(3),720*E(3)^2,720*E(3),720*E(3)^2,720,720*E(3)^2,
720,720*E(3),16,16*E(3),16*E(3)^2,16*E(3),16*E(3)^2,16,16*E(3)^2,16,16*E(3),18
,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,
-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,
-2*E(3)^2,-2,-2*E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-1,
-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[129,2]],[729,729*E(3),729*E(3)^2,729*E(3),729*E(3)^2,729,729*E(3)^2,
729,729*E(3),9,9*E(3),9*E(3)^2,9*E(3),9*E(3)^2,9,9*E(3)^2,9,9*E(3),0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,
-3*E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,
E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[131,2]],[756,756*E(3),756*E(3)^2,756*E(3),756*E(3)^2,756,756*E(3)^2,
756,756*E(3),-12,-12*E(3),-12*E(3)^2,-12*E(3),-12*E(3)^2,-12,-12*E(3)^2,-12,
-12*E(3),27,27*E(3),27*E(3)^2,27*E(3),27*E(3)^2,27,27*E(3)^2,27,27*E(3),0,0,0,
0,0,0,0,-4,-4*E(3),-4*E(3)^2,-4*E(3),-4*E(3)^2,-4,-4*E(3)^2,-4,-4*E(3),0,0,0,0
,0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),3,3*E(3),3*E(3)^2,3*E(3),
3*E(3)^2,3,3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),
-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3)],
[GALOIS,[133,2]],[945,945*E(3),945*E(3)^2,945*E(3),945*E(3)^2,945,945*E(3)^2,
945,945*E(3),-15,-15*E(3),-15*E(3)^2,-15*E(3),-15*E(3)^2,-15,-15*E(3)^2,-15,
-15*E(3),-27,-27*E(3),-27*E(3)^2,-27*E(3),-27*E(3)^2,-27,-27*E(3)^2,-27,
-27*E(3),0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),1,E(3),E(3)^2
,E(3),E(3)^2,1,E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3*E(3),
-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),0,0,0,0,
0,0,0,0,0,0,0,0,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3)],
[GALOIS,[135,2]]],
[
( 89, 98)( 90, 99)( 91,100)( 92,101)( 93,102)( 94,103)( 95,104)( 96,105)
( 97,106)
,
( 4, 9)( 5, 7)( 6, 8)( 13, 18)( 14, 16)( 15, 17)( 22, 27)( 23, 25)
( 24, 26)( 28, 33)( 29, 31)( 30, 32)( 38, 43)( 39, 41)( 40, 42)( 47, 52)
( 48, 50)( 49, 51)( 56, 61)( 57, 59)( 58, 60)( 65, 70)( 66, 68)( 67, 69)
( 71, 80)( 72, 81)( 73, 82)( 74, 88)( 75, 86)( 76, 87)( 77, 84)( 78, 85)
( 79, 83)( 92, 97)( 93, 95)( 94, 96)(101,106)(102,104)(103,105)(110,115)
(111,113)(112,114)(116,125)(117,126)(118,127)(119,123)(120,124)(121,122)
(131,136)(132,134)(133,135)
,
( 2, 3)( 4, 5)( 7, 9)( 11, 12)( 13, 14)( 16, 18)( 20, 21)( 22, 23)
( 25, 27)( 28, 33)( 29, 32)( 30, 31)( 36, 37)( 38, 39)( 41, 43)( 45, 46)
( 47, 48)( 50, 52)( 54, 55)( 56, 57)( 59, 61)( 63, 64)( 65, 66)( 68, 70)
( 71, 80)( 72, 82)( 73, 81)( 74, 84)( 75, 83)( 76, 85)( 77, 88)( 78, 87)
( 79, 86)( 90, 91)( 92, 93)( 95, 97)( 99,100)(101,102)(104,106)(108,109)
(110,111)(113,115)(116,123)(117,122)(118,124)(119,125)(120,127)(121,126)
(129,130)(131,132)(134,136)
,
( 2, 6)( 3, 8)( 5, 9)( 11, 15)( 12, 17)( 14, 18)( 20, 24)( 21, 26)
( 23, 27)( 29, 30)( 36, 40)( 37, 42)( 39, 43)( 45, 49)( 46, 51)( 48, 52)
( 54, 58)( 55, 60)( 57, 61)( 63, 67)( 64, 69)( 66, 70)( 72, 76)( 73, 78)
( 75, 79)( 81, 85)( 82, 87)( 84, 88)( 90, 94)( 91, 96)( 93, 97)( 99,103)
(100,105)(102,106)(108,112)(109,114)(111,115)(116,119)(117,121)(118,120)
(129,133)(130,135)(132,136)
]);
ALF("3^2.U4(3)","3_1.U4(3)",[1,2,3,1,2,3,1,2,3,4,5,6,4,5,6,4,5,6,7,8,9,7,
8,9,7,8,9,10,11,12,13,13,13,14,15,16,17,15,16,17,15,16,17,18,19,20,18,19,
20,18,19,20,21,22,23,21,22,23,21,22,23,24,25,26,24,25,26,24,25,26,27,28,
29,27,28,29,27,28,29,30,31,32,30,31,32,30,31,32,33,34,35,33,34,35,33,34,
35,36,37,38,36,37,38,36,37,38,39,40,41,39,40,41,39,40,41,42,43,44,45,46,
47,48,48,48,49,49,49,50,51,52,50,51,52,50,51,52]);
ALF("3^2.U4(3)","3_2.U4(3)",[1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,
8,8,9,9,9,10,10,10,11,11,11,12,13,13,13,14,14,14,15,15,15,16,16,16,17,17,
17,18,18,18,19,19,19,20,20,20,21,21,21,22,22,22,23,23,23,24,24,24,25,25,
25,26,26,26,27,27,27,28,28,28,29,29,29,30,30,30,31,31,31,32,32,32,33,33,
33,34,34,34,35,35,35,36,36,36,37,37,37,38,38,38,39,39,39,40,40,40,41,41,
41,42,42,42,43,43,43,44,44,44,45,45,45,46,46,46]);
ALF("3^2.U4(3)","U4(3)",[1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,
3,3,3,4,4,4,5,5,5,6,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,
10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,
12,12,12,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,15,15,15,
15,15,15,15,15,15,16,16,16,17,17,17,18,18,18,19,19,19,20,20,20,20,20,20,
20,20,20]);
ALF("3^2.U4(3)","3^2.U4(3).2_3'",[1,2,3,5,6,4,6,4,5,7,8,9,11,12,10,12,10,
11,13,14,15,17,18,16,18,16,17,19,20,21,20,21,19,22,23,24,25,27,28,26,28,
26,27,29,30,31,33,34,32,34,32,33,35,36,37,39,40,38,40,38,39,41,42,43,45,
46,44,46,44,45,47,48,49,50,51,52,53,54,55,47,48,49,55,53,54,51,52,50,56,
57,58,60,61,59,64,62,63,56,57,58,63,64,62,61,59,60,65,66,67,69,70,68,70,
68,69,74,75,76,71,72,73,73,71,72,74,75,76,77,78,79,81,82,80,82,80,81],[
"fusion map is unique up to table autom."
]);
ALF("3^2.U4(3)","3^2.U4(3).(2^2)_{133}",[1,2,2,4,4,3,4,3,4,5,6,6,8,8,7,8,
7,8,9,10,10,12,12,11,12,11,12,13,14,14,14,14,13,15,16,17,17,19,19,18,19,
18,19,20,21,21,23,23,22,23,22,23,24,25,25,27,27,26,27,26,27,28,29,29,31,
31,30,31,30,31,32,33,33,34,35,36,34,36,35,32,33,33,35,34,36,35,36,34,37,
38,38,40,41,39,40,39,41,37,38,38,41,40,39,41,39,40,42,43,43,45,45,44,45,
44,45,46,48,47,46,47,48,48,46,47,46,48,47,49,50,50,52,52,51,52,51,52],[
"fusion map is unique up to table autom."
]);
ALF("3^2.U4(3)","3^2.U4(3).D8",[1,3,3,2,2,3,2,3,2,6,5,5,4,4,5,4,5,4,9,7,7,
8,8,7,8,7,8,11,10,10,10,10,11,12,15,13,13,14,14,13,14,13,14,17,18,18,16,
16,18,16,18,16,21,20,20,19,19,20,19,20,19,24,22,22,23,23,22,23,22,23,28,
25,25,26,27,25,26,25,27,28,25,25,27,26,25,27,25,26,31,29,29,30,30,29,30,
29,30,31,29,29,30,30,29,30,29,30,34,32,32,33,33,32,33,32,33,36,35,37,36,
37,35,35,36,37,36,35,37,40,39,39,38,38,39,38,39,38],[
"fusion map is unique"
]);
MOT("3^2.U4(3).2_3'",
[
"2nd maximal subgroup of 3.Suz,\n",
"table constructed with GAP from the tables of 3.Suz and SuzM2,\n",
"tests: 1.o.r., pow[2,3,5,7]"
],
[58786560,58786560,58786560,29393280,29393280,29393280,20736,20736,20736,
10368,10368,10368,104976,104976,104976,52488,52488,52488,2916,2916,2916,162,
1728,1728,1728,864,864,864,288,288,288,144,144,144,90,90,90,45,45,45,1296,
1296,1296,648,648,648,324,324,324,324,324,324,324,324,324,63,63,63,63,63,63,
63,63,63,144,144,144,72,72,72,81,81,81,81,81,81,216,216,216,108,108,108,4320,
4320,4320,288,288,288,18,288,288,288,96,96,96,24,24,24,30,30,30,36,36,36,72,
72,72,72,72,72],
[,[1,3,2,4,6,5,1,3,2,4,6,5,13,15,14,16,18,17,19,21,20,22,7,9,8,10,12,11,7,9,8,
10,12,11,35,37,36,38,40,39,13,15,14,16,18,17,19,21,20,19,21,20,19,21,20,56,58,
57,62,64,63,59,61,60,23,25,24,26,28,27,74,76,75,71,73,72,41,43,42,44,46,45,1,
3,2,7,9,8,22,23,25,24,23,25,24,29,31,30,35,37,36,41,43,42,77,79,78,77,79,78],[
1,1,1,1,1,1,7,7,7,7,7,7,1,1,1,1,1,1,1,1,1,1,23,23,23,23,23,23,29,29,29,29,29,
29,35,35,35,35,35,35,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,56,56,56,56,56,56,56,56,56,
65,65,65,65,65,65,18,18,18,17,17,17,23,23,23,23,23,23,83,83,83,86,86,86,83,90,
90,90,93,93,93,96,96,96,99,99,99,86,86,86,90,90,90,90,90,90],,[1,3,2,4,6,5,7,
9,8,10,12,11,13,15,14,16,18,17,19,21,20,22,23,25,24,26,28,27,29,31,30,32,34,
33,1,3,2,4,6,5,41,43,42,44,46,45,47,49,48,53,55,54,50,52,51,56,58,57,59,61,60,
62,64,63,65,67,66,68,70,69,74,76,75,71,73,72,77,79,78,80,82,81,83,85,84,86,88,
87,89,90,92,91,93,95,94,96,98,97,83,85,84,102,104,103,105,107,106,108,110,
109],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
53,54,55,1,2,3,4,5,6,4,5,6,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,
82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,
106,107,108,109,110]],
0,
[(59,62)(60,63)(61,64),(105,108)(106,109)(107,110),( 2, 3)( 5, 6)( 8, 9)
( 11, 12)( 14, 15)( 17, 18)( 20, 21)( 24, 25)( 27, 28)( 30, 31)( 33, 34)
( 36, 37)( 39, 40)( 42, 43)( 45, 46)( 48, 49)( 50, 53)( 51, 55)( 52, 54)
( 57, 58)( 60, 61)( 63, 64)( 66, 67)( 69, 70)( 71, 74)( 72, 76)( 73, 75)
( 78, 79)( 81, 82)( 84, 85)( 87, 88)( 91, 92)( 94, 95)( 97, 98)(100,101)
(103,104)(106,107)(109,110)],
["ConstructProj",[["3_2.U4(3).2_3'",[]],,["3^2.U4(3).2_3'",[-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]]]]);
ALF("3^2.U4(3).2_3'","3_2.U4(3).2_3'",[1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,
6,7,7,7,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14,14,14,15,15,15,16,
16,16,17,17,17,18,18,18,19,19,19,20,20,20,21,21,21,22,22,22,23,23,23,24,
24,24,25,25,25,26,26,26,27,27,27,28,28,28,29,29,29,30,30,30,31,32,32,32,
33,33,33,34,34,34,35,35,35,36,36,36,37,37,37,38,38,38]);
ALF("3^2.U4(3).2_3'","3.Suz",[1,2,3,10,11,12,4,5,6,35,36,37,10,11,12,13,
14,15,13,14,15,16,17,18,19,75,76,77,23,24,25,81,82,83,32,33,34,99,100,101,
35,36,37,44,45,46,44,45,46,38,39,40,41,42,43,48,49,50,111,112,113,114,115,
116,51,52,53,117,118,119,60,61,62,63,64,65,75,76,77,78,79,80,7,8,9,23,24,
25,47,51,52,53,51,52,53,57,58,59,69,70,71,81,82,83,117,118,119,117,118,
119],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
#ALF("3^2.U4(3).2_3'","3^2.U4(3).(2^2)_{133}",[1,3,3,2,4,4,5,7,7,6,8,8,9,
#11,11,10,12,12,13,14,14,15,16,18,18,17,19,19,20,22,22,21,23,23,24,26,26,
#25,27,27,28,30,30,29,31,31,32,36,36,34,35,33,34,33,35,37,39,39,38,40,41,
#38,41,40,42,44,44,43,45,45,46,47,48,46,48,47,49,51,51,50,52,52,71,72,72,
#73,74,74,75,76,77,77,78,79,79,80,81,81,82,83,83,84,85,85,86,87,88,86,88,
#87],[
#"fusion map is unique up to table autom.,\n",
#"representative compatible with factors"
#]);
#T ConstructMGA is too restrictive!!
ALF("3^2.U4(3).2_3'","3^2.U4(3).(2^2)_{133}",[1,2,2,3,4,4,5,6,6,7,8,8,9,
10,10,11,12,12,13,14,14,15,16,17,17,18,19,19,20,21,21,22,23,23,24,25,25,
26,27,27,28,29,29,30,31,31,32,33,33,34,35,36,34,36,35,37,38,38,39,40,41,
39,41,40,42,43,43,44,45,45,46,47,48,46,48,47,49,50,50,51,52,52,53,54,54,
55,56,56,57,58,59,59,60,61,61,62,63,63,64,65,65,66,67,67,68,69,70,68,70,
69],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("3^2.U4(3).2_3'","U4(3).2_3'",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,
4,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,
10,10,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13,14,14,14,15,
15,15,15,15,15,16,16,16,17,17,17,18,19,19,19,20,20,20,21,21,21,22,22,22,
23,23,23,24,24,24,25,25,25]);
ARC("3^2.U4(3).2_3'","projectives",["(3^2x2).U4(3).2_3'",[[12,-12*E(3),
12*E(3)^2,6,-6*E(3),6*E(3)^2,-4,4*E(3),-4*E(3)^2,-2,2*E(3),-2*E(3)^2,-6,6*E(3)
,-6*E(3)^2,-3,3*E(3),-3*E(3)^2,3,-3*E(3),3*E(3)^2,0,4,-4*E(3),4*E(3)^2,2,
-2*E(3),2*E(3)^2,0,0,0,0,0,0,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,2,-2*E(3),
2*E(3)^2,1,-E(3),E(3)^2,-1,E(3),-E(3)^2,E(3)+3*E(3)^2,3*E(3)+2*E(3)^2,
2*E(3)-E(3)^2,-3*E(3)-E(3)^2,-E(3)+2*E(3)^2,2*E(3)+3*E(3)^2,-2,2*E(3),
-2*E(3)^2,-1,E(3),-E(3)^2,1,-E(3),E(3)^2,0,0,0,0,0,0,-E(3)+E(3)^2,
E(3)+2*E(3)^2,2*E(3)+E(3)^2,E(3)-E(3)^2,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,-2,
2*E(3),-2*E(3)^2,-1,E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0],
[GALOIS,[1,2]],[20,-20,20,-20,20,-20,4,-4,4,-4,4,-4,-7,7,-7,7,-7,7,2,-2,2,2,4
,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,-2,2,-2,-1
,1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2,E(3)-E(3)^2,
-E(3)+E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2],[70,-70,70,-70
,70,-70,-2,2,-2,2,-2,2,16,-16,16,-16,16,-16,7,-7,7,-2,2,-2,2,-2,2,-2,0,0,0,0,0
,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,1,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,-1,1,1,-1,1,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,-2*E(8)+2*E(8)^3,
2*E(8)-2*E(8)^3,-2*E(8)+2*E(8)^3,0,0,0,-E(8)+E(8)^3,E(8)-E(8)^3,-E(8)+E(8)^3,0
,0,0,0,0,0,E(8)-E(8)^3,-E(8)+E(8)^3,E(8)-E(8)^3,E(8)-E(8)^3,-E(8)+E(8)^3,
E(8)-E(8)^3],[90,-90*E(3),90*E(3)^2,-90,90*E(3),-90*E(3)^2,2,-2*E(3),2*E(3)^2,
-2,2*E(3),-2*E(3)^2,-18,18*E(3),-18*E(3)^2,18,-18*E(3),18*E(3)^2,0,0,0,0,6,
-6*E(3),6*E(3)^2,-6,6*E(3),-6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3),
2*E(3)^2,-2,2*E(3),-2*E(3)^2,2,-2*E(3),2*E(3)^2,-2*E(3),2*E(3)^2,-2,2*E(3)^2,
-2,2*E(3),-1,E(3),-E(3)^2,1,-E(3),E(3)^2,-1,E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(8)+2*E(8)^3,2*E(24)^11-2*E(24)^17,
2*E(24)-2*E(24)^19,0,0,0,-E(8)+E(8)^3,E(24)^11-E(24)^17,E(24)-E(24)^19,0,0,0,0
,0,0,E(8)-E(8)^3,-E(24)^11+E(24)^17,-E(24)+E(24)^19,E(8)-E(8)^3,
-E(24)^11+E(24)^17,-E(24)+E(24)^19],
[GALOIS,[5,17]],[112,-112,112,-112,112,-112,-16,16,-16,16,-16,16,4,-4,4,-4,4,
-4,13,-13,13,4,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-4,4,-4,4,-4,4,-1,1,-1,1
,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[120,-120,120,-120,120,-120,
-8,8,-8,8,-8,8,12,-12,12,-12,12,-12,-6,6,-6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,4,-4,4,-4,4,-4,-2,2,-2,2,-2,2,-2,2,-2,1,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
,[140,-140,140,-140,140,-140,-4,4,-4,4,-4,4,-22,22,-22,22,-22,22,5,-5,5,-4,4,
-4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-1,1,-1,1,-1,1,-1,1,-1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,
E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[9,2]],[168,-168*E(3),168*E(3)^2,84,-84*E(3),84*E(3)^2,8,-8*E(3),
8*E(3)^2,4,-4*E(3),4*E(3)^2,-30,30*E(3),-30*E(3)^2,-15,15*E(3),-15*E(3)^2,6,
-6*E(3),6*E(3)^2,0,8,-8*E(3),8*E(3)^2,4,-4*E(3),4*E(3)^2,0,0,0,0,0,0,-2,2*E(3)
,-2*E(3)^2,-1,E(3),-E(3)^2,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,-4,4*E(3),
-4*E(3)^2,-2*E(3),2*E(3)^2,-2,2*E(3)^2,-2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-2*E(3)-E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,
-E(3)+E(3)^2,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[11,2]],[180,-180,180,90,-90,90,4,-4,4,2,-2,2,-36,36,-36,-18,18,-18,0
,0,0,0,12,-12,12,6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,2,-2,2,4,-4,4,2,-2,2,-2
,2,-2,-2,2,-2,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[240,-240*E(3),240*E(3)^2,120,
-120*E(3),120*E(3)^2,-16,16*E(3),-16*E(3)^2,-8,8*E(3),-8*E(3)^2,-12,12*E(3),
-12*E(3)^2,-6,6*E(3),-6*E(3)^2,15,-15*E(3),15*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,-4,4*E(3),-4*E(3)^2,-2,2*E(3),-2*E(3)^2,-1,E(3),-E(3)^2,
E(3)+3*E(3)^2,3*E(3)+2*E(3)^2,2*E(3)-E(3)^2,-3*E(3)-E(3)^2,-E(3)+2*E(3)^2,
2*E(3)+3*E(3)^2,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,-1,E(3),-E(3)^2,0,0,0,0,0,0,
E(3)+2*E(3)^2,2*E(3)+E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)-E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],
[GALOIS,[14,2]],[252,-252*E(3),252*E(3)^2,126,-126*E(3),126*E(3)^2,-20,
20*E(3),-20*E(3)^2,-10,10*E(3),-10*E(3)^2,36,-36*E(3),36*E(3)^2,18,-18*E(3),
18*E(3)^2,9,-9*E(3),9*E(3)^2,0,4,-4*E(3),4*E(3)^2,2,-2*E(3),2*E(3)^2,0,0,0,0,0
,0,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,4,-4*E(3),4*E(3)^2,2,-2*E(3),2*E(3)^2,1,
-E(3),E(3)^2,-E(3)-3*E(3)^2,-3*E(3)-2*E(3)^2,-2*E(3)+E(3)^2,3*E(3)+E(3)^2,
E(3)-2*E(3)^2,-2*E(3)-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,
-4*E(3),4*E(3)^2,2,-2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0],
[GALOIS,[16,2]],[252,-252*E(3),252*E(3)^2,-252,252*E(3),-252*E(3)^2,12,
-12*E(3),12*E(3)^2,-12,12*E(3),-12*E(3)^2,-18,18*E(3),-18*E(3)^2,18,-18*E(3),
18*E(3)^2,0,0,0,0,-4,4*E(3),-4*E(3)^2,4,-4*E(3),4*E(3)^2,0,0,0,0,0,0,2,-2*E(3)
,2*E(3)^2,-2,2*E(3),-2*E(3)^2,6,-6*E(3),6*E(3)^2,-6,6*E(3),-6*E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3),2*E(3)^2,-2,
2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[18,2]],[252,-252*E(3),252*E(3)^2,-252,252*E(3),-252*E(3)^2,-20,
20*E(3),-20*E(3)^2,20,-20*E(3),20*E(3)^2,-18,18*E(3),-18*E(3)^2,18,-18*E(3),
18*E(3)^2,0,0,0,0,4,-4*E(3),4*E(3)^2,-4,4*E(3),-4*E(3)^2,0,0,0,0,0,0,2,-2*E(3)
,2*E(3)^2,-2,2*E(3),-2*E(3)^2,-2,2*E(3),-2*E(3)^2,2,-2*E(3),2*E(3)^2,-2,2*E(3)
,-2*E(3)^2,2*E(3),-2*E(3)^2,2,-2*E(3)^2,2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-2,2*E(3),-2*E(3)^2,2,-2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[20,2]],[252,-252,252,126,-126,126,12,-12,12,6,-6,6,-18,18,-18,-9,9,
-9,0,0,0,0,-4,4,-4,-2,2,-2,0,0,0,0,0,0,2,-2,2,1,-1,1,6,-6,6,3,-3,3,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(12)^7+2*E(12)^11,2*E(12)^7-2*E(12)^11,
-2*E(12)^7+2*E(12)^11,0,0,0,0,0,0,2,-2,2,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[22,5]],[252,-252,252,126,-126,126,-20,20,-20,-10,10,-10,-18,18,-18,
-9,9,-9,0,0,0,0,4,-4,4,2,-2,2,0,0,0,0,0,0,2,-2,2,1,-1,1,-2,2,-2,-1,1,-1,-2,2,
-2,4*E(3)-2*E(3)^2,-4*E(3)+2*E(3)^2,4*E(3)-2*E(3)^2,2*E(3)-4*E(3)^2,
-2*E(3)+4*E(3)^2,2*E(3)-4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,
2,-2,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[24,2]],[420,-420,420,-420,420,-420,20,-20,20,-20,20,-20,42,-42,42,
-42,42,-42,6,-6,6,6,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2
,2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,2,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[420,-420*E(3),
420*E(3)^2,210,-210*E(3),210*E(3)^2,-12,12*E(3),-12*E(3)^2,-6,6*E(3),-6*E(3)^2
,-48,48*E(3),-48*E(3)^2,-24,24*E(3),-24*E(3)^2,-3,3*E(3),-3*E(3)^2,0,12,
-12*E(3),12*E(3)^2,6,-6*E(3),6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
-3*E(3),3*E(3)^2,-3,3*E(3),-3*E(3)^2,3,-3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,E(3)-E(3)^2,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,
2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],
[GALOIS,[27,2]],[504,-504*E(3),504*E(3)^2,-504,504*E(3),-504*E(3)^2,-8,8*E(3)
,-8*E(3)^2,8,-8*E(3),8*E(3)^2,-36,36*E(3),-36*E(3)^2,36,-36*E(3),36*E(3)^2,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3),-E(3)^2,1,-E(3),E(3)^2,4,-4*E(3),4*E(3)^2
,-4,4*E(3),-4*E(3)^2,-2,2*E(3),-2*E(3)^2,2*E(3),-2*E(3)^2,2,-2*E(3)^2,2,
-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-E(5)+E(5)^2+E(5)^3-E(5)^4,E(15)^2+E(15)^8-E(15)^11-E(15)^14,
E(15)+E(15)^4-E(15)^7-E(15)^13,0,0,0,0,0,0,0,0,0],
[GALOIS,[29,2]],[540,-540*E(3),540*E(3)^2,-540,540*E(3),-540*E(3)^2,12,
-12*E(3),12*E(3)^2,-12,12*E(3),-12*E(3)^2,54,-54*E(3),54*E(3)^2,-54,54*E(3),
-54*E(3)^2,0,0,0,0,4,-4*E(3),4*E(3)^2,-4,4*E(3),-4*E(3)^2,0,0,0,0,0,0,0,0,0,0,
0,0,6,-6*E(3),6*E(3)^2,-6,6*E(3),-6*E(3)^2,0,0,0,0,0,0,0,0,0,1,-E(3),E(3)^2,-1
,E(3),-E(3)^2,1,-E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3),-2*E(3)^2,2,
-2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[31,2]],[540,-540,540,-540,540,-540,12,-12,12,-12,12,-12,-27,27,-27,
27,-27,27,0,0,0,0,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,-3,3,-3,3,0,0,0,
0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2,
E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2],[
540,-540*E(3)^2,540*E(3),-540,540*E(3)^2,-540*E(3),12,-12*E(3)^2,12*E(3),-12,
12*E(3)^2,-12*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),0,0,0,0,4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,
-3*E(3),3,-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2],
[GALOIS,[34,2]],[540,-540,540,270,-270,270,12,-12,12,6,-6,6,54,-54,54,27,-27,
27,0,0,0,0,4,-4,4,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,6,-6,6,3,-3,3,0,0,0,0,0,0,0,0
,0,1,-1,1,E(21)^2+E(21)^8+E(21)^10+E(21)^11+E(21)^13+E(21)^19,
-E(21)^2-E(21)^8-E(21)^10-E(21)^11-E(21)^13-E(21)^19,
E(21)^2+E(21)^8+E(21)^10+E(21)^11+E(21)^13+E(21)^19,
-E(21)-E(21)^4-E(21)^5-E(21)^16-E(21)^17-E(21)^20,
E(21)+E(21)^4+E(21)^5+E(21)^16+E(21)^17+E(21)^20,
-E(21)-E(21)^4-E(21)^5-E(21)^16-E(21)^17-E(21)^20,0,0,0,0,0,0,0,0,0,0,0,0,-2,2
,-2,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[540,
-540*E(3)^2,540*E(3),270,-270*E(3)^2,270*E(3),12,-12*E(3)^2,12*E(3),6,
-6*E(3)^2,6*E(3),54,-54*E(3)^2,54*E(3),27,-27*E(3)^2,27*E(3),0,0,0,0,4,
-4*E(3)^2,4*E(3),2,-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,6,-6*E(3)^2,6*E(3)
,3,-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),
E(21)+E(21)^4+E(21)^5+E(21)^16+E(21)^17+E(21)^20,
E(21)+E(21)^2+E(21)^4+E(21)^8-E(21)^10+E(21)^11-E(21)^13+E(21)^16-E(21)^19,
E(21)^2-E(21)^5+E(21)^8-E(21)^10+E(21)^11-E(21)^13-E(21)^17-E(21)^19-E(21)^20,
-E(21)^2-E(21)^8-E(21)^10-E(21)^11-E(21)^13-E(21)^19,
E(21)+E(21)^4-E(21)^5-E(21)^10-E(21)^13+E(21)^16-E(21)^17-E(21)^19-E(21)^20,
E(21)+E(21)^2+E(21)^4-E(21)^5+E(21)^8+E(21)^11+E(21)^16-E(21)^17-E(21)^20,0,0,
0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),-1,E(3)^2,-E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[36,2]],
[GALOIS,[37,2]],
[GALOIS,[37,5]],
[GALOIS,[37,10]],[560,-560,560,-560,560,-560,-16,16,-16,16,-16,16,-34,34,-34,
34,-34,34,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,
-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,1,-1,0,0,0,0,0,0,0,0,0
,0,0,0,0,4*E(8)-4*E(8)^3,-4*E(8)+4*E(8)^3,4*E(8)-4*E(8)^3,0,0,0,0,0,0,0,0,0,0,
0,0,E(8)-E(8)^3,-E(8)+E(8)^3,E(8)-E(8)^3,E(8)-E(8)^3,-E(8)+E(8)^3,E(8)-E(8)^3]
,[630,-630,630,-630,630,-630,14,-14,14,-14,14,-14,-18,18,-18,18,-18,18,9,-9,9,
0,-6,6,-6,6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-1,1,-1,1,-1,1,-1,1,-1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-2*E(8)+2*E(8)^3,2*E(8)-2*E(8)^3,-2*E(8)+2*E(8)^3,0,0,0,E(8)-E(8)^3,
-E(8)+E(8)^3,E(8)-E(8)^3,0,0,0,0,0,0,E(8)-E(8)^3,-E(8)+E(8)^3,E(8)-E(8)^3,
E(8)-E(8)^3,-E(8)+E(8)^3,E(8)-E(8)^3],[630,-630*E(3)^2,630*E(3),-630,
630*E(3)^2,-630*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),36,
-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),0,0,0,0,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,
0,0,0,0,0,-2*E(8)+2*E(8)^3,-2*E(24)+2*E(24)^19,-2*E(24)^11+2*E(24)^17,0,0,0,
E(8)-E(8)^3,E(24)-E(24)^19,E(24)^11-E(24)^17,0,0,0,0,0,0,E(8)-E(8)^3,
E(24)-E(24)^19,E(24)^11-E(24)^17,E(8)-E(8)^3,E(24)-E(24)^19,E(24)^11-E(24)^17]
,
[GALOIS,[44,17]],[672,-672*E(3),672*E(3)^2,336,-336*E(3),336*E(3)^2,32,
-32*E(3),32*E(3)^2,16,-16*E(3),16*E(3)^2,-12,12*E(3),-12*E(3)^2,-6,6*E(3),
-6*E(3)^2,6,-6*E(3),6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3),2*E(3)^2,1,
-E(3),E(3)^2,-4,4*E(3),-4*E(3)^2,-2,2*E(3),-2*E(3)^2,-4,4*E(3),-4*E(3)^2,
-2*E(3),2*E(3)^2,-2,2*E(3)^2,-2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(3)-E(3)^2,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,
2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],
[GALOIS,[46,2]],[720,-720*E(3),720*E(3)^2,-720,720*E(3),-720*E(3)^2,16,
-16*E(3),16*E(3)^2,-16,16*E(3),-16*E(3)^2,18,-18*E(3),18*E(3)^2,-18,18*E(3),
-18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3),-2*E(3)^2,2,
-2*E(3),2*E(3)^2,-2,2*E(3),-2*E(3)^2,2*E(3),-2*E(3)^2,2,-2*E(3)^2,2,-2*E(3),-1
,E(3),-E(3)^2,1,-E(3),E(3)^2,-1,E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,4*E(8)-4*E(8)^3,-4*E(24)^11+4*E(24)^17,-4*E(24)+4*E(24)^19,0,
0,0,0,0,0,0,0,0,0,0,0,E(8)-E(8)^3,-E(24)^11+E(24)^17,-E(24)+E(24)^19,
E(8)-E(8)^3,-E(24)^11+E(24)^17,-E(24)+E(24)^19],
[GALOIS,[48,17]],[768,-768*E(3),768*E(3)^2,384,-384*E(3),384*E(3)^2,0,0,0,0,0
,0,48,-48*E(3),48*E(3)^2,24,-24*E(3),24*E(3)^2,12,-12*E(3),12*E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,0,-2,2*E(3),-2*E(3)^2,-1,E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-2,2*E(3),-2*E(3)^2,-1,E(3),-E(3)^2,1,-E(3),E(3)^2,0,0,0,0,0,0,
2*E(3)+E(3)^2,E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)+2*E(3)^2,2*E(3)+E(3)^2,
E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],
[GALOIS,[50,2]],[840,-840*E(3),840*E(3)^2,420,-420*E(3),420*E(3)^2,-24,
24*E(3),-24*E(3)^2,-12,12*E(3),-12*E(3)^2,-42,42*E(3),-42*E(3)^2,-21,21*E(3),
-21*E(3)^2,12,-12*E(3),12*E(3)^2,0,-8,8*E(3),-8*E(3)^2,-4,4*E(3),-4*E(3)^2,0,0
,0,0,0,0,0,0,0,0,0,0,6,-6*E(3),6*E(3)^2,3,-3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,-2,2*E(3),-2*E(3)^2,-1,E(3),-E(3)^2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[52,2]],[896,-896,896,-896,896,-896,0,0,0,0,0,0,32,-32,32,-32,32,-32,
-4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,E(5)-E(5)^2-E(5)^3+E(5)^4,-E(5)+E(5)^2+E(5)^3-E(5)^4,
E(5)-E(5)^2-E(5)^3+E(5)^4,0,0,0,0,0,0,0,0,0],[1008,-1008,1008,504,-504,504,-16
,16,-16,-8,8,-8,-72,72,-72,-36,36,-36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,
-1,1,-1,8,-8,8,4,-4,4,-4,4,-4,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1008,-1008,1008,-1008,1008,-1008,-16,16,-16,16,-16,16,36,-36,36,-36,36,-36,9,
-9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,2,-4,4,-4,4,-4,4,-1,1,-1,1,-1,1,-1
,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1080,-1080,1080,540,-540,540,24,-24,24
,12,-12,12,-54,54,-54,-27,27,-27,0,0,0,0,8,-8,8,4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0
,-6,6,-6,-3,3,-3,0,0,0,0,0,0,0,0,0,2,-2,2,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0
,0,2,-2,2,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[
1260,-1260,1260,630,-630,630,-36,36,-36,-18,18,-18,72,-72,72,36,-36,36,0,0,0,0
,4,-4,4,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0],[1260,-1260*E(3),1260*E(3)^2,-1260,1260*E(3),
-1260*E(3)^2,-4,4*E(3),-4*E(3)^2,4,-4*E(3),4*E(3)^2,-9,9*E(3),-9*E(3)^2,9,
-9*E(3),9*E(3)^2,0,0,0,0,-4,4*E(3),-4*E(3)^2,4,-4*E(3),4*E(3)^2,0,0,0,0,0,0,0,
0,0,0,0,0,-1,E(3),-E(3)^2,1,-E(3),E(3)^2,2,-2*E(3),2*E(3)^2,-2*E(3),2*E(3)^2,
-2,2*E(3)^2,-2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3),
-E(3)^2,1,-E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)-E(3)^2,
-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,
-E(3)+E(3)^2,E(3)+2*E(3)^2,2*E(3)+E(3)^2],
[GALOIS,[59,2]],[1260,-1260*E(3),1260*E(3)^2,630,-630*E(3),630*E(3)^2,-36,
36*E(3),-36*E(3)^2,-18,18*E(3),-18*E(3)^2,18,-18*E(3),18*E(3)^2,9,-9*E(3),
9*E(3)^2,-9,9*E(3),-9*E(3)^2,0,4,-4*E(3),4*E(3)^2,2,-2*E(3),2*E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,-6,6*E(3),-6*E(3)^2,-3,3*E(3),-3*E(3)^2,-3,3*E(3),-3*E(3)^2,3,
-3*E(3),3*E(3)^2,-3,3*E(3),-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-2,2*E(3),-2*E(3)^2,-1,E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0],
[GALOIS,[61,2]],[1260,-1260*E(3),1260*E(3)^2,630,-630*E(3),630*E(3)^2,-4,
4*E(3),-4*E(3)^2,-2,2*E(3),-2*E(3)^2,18,-18*E(3),18*E(3)^2,9,-9*E(3),9*E(3)^2,
-9,9*E(3),-9*E(3)^2,0,-4,4*E(3),-4*E(3)^2,-2,2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,
0,0,0,0,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,-1,E(3),-E(3)^2,E(3)+3*E(3)^2,
3*E(3)+2*E(3)^2,2*E(3)-E(3)^2,-3*E(3)-E(3)^2,-E(3)+2*E(3)^2,2*E(3)+3*E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0,2*E(12)^7-2*E(12)^11,-2*E(12)^7-4*E(12)^11,
-4*E(12)^7-2*E(12)^11,0,0,0,0,0,0,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[63,7]],
[GALOIS,[63,5]],
[GALOIS,[63,11]],[1280,-1280,1280,-1280,1280,-1280,0,0,0,0,0,0,-16,16,-16,16,
-16,16,-16,16,-16,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0,2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1440,-1440,1440,720,-720,720,
32,-32,32,16,-16,16,36,-36,36,18,-18,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-4,4,-4,-2,2,-2,-4,4,-4,-2,2,-2,2,-2,2,-2,2,-2,-1,1,-1,1,-1,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],[1680,-1680*E(3),1680*E(3)^2,840,-840*E(3),840*E(3)^2,16,-16*E(3),
16*E(3)^2,8,-8*E(3),8*E(3)^2,24,-24*E(3),24*E(3)^2,12,-12*E(3),12*E(3)^2,6,
-6*E(3),6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,8*E(3),-8*E(3)^2,-4,
4*E(3),-4*E(3)^2,4,-4*E(3),4*E(3)^2,2*E(3),-2*E(3)^2,2,-2*E(3)^2,2,-2*E(3),0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[69,2]],[1680,-1680*E(3),1680*E(3)^2,840,-840*E(3),840*E(3)^2,16,
-16*E(3),16*E(3)^2,8,-8*E(3),8*E(3)^2,-84,84*E(3),-84*E(3)^2,-42,42*E(3),
-42*E(3)^2,-3,3*E(3),-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(3)
,4*E(3)^2,2,-2*E(3),2*E(3)^2,1,-E(3),E(3)^2,-E(3)-3*E(3)^2,-3*E(3)-2*E(3)^2,
-2*E(3)+E(3)^2,3*E(3)+E(3)^2,E(3)-2*E(3)^2,-2*E(3)-3*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,E(3)+2*E(3)^2,2*E(3)+E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)-E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],
[GALOIS,[71,2]],[2520,-2520,2520,1260,-1260,1260,-8,8,-8,-4,4,-4,-18,18,-18,
-9,9,-9,0,0,0,0,-8,8,-8,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-1,1,-1,4,-4,4
,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-1,1,-1,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],]);
ALN("3^2.U4(3).2_3'",["3.SuzN3C"]);
MOT("3^2.U4(3).(2^2)_{133}",
[
"3rd maximal subgroup of 3.Suz.2"
],
[117573120,58786560,58786560,29393280,41472,20736,20736,10368,209952,104976,
104976,52488,5832,2916,324,3456,1728,1728,864,576,288,288,144,180,90,90,45,
2592,1296,1296,648,648,324,324,324,324,126,63,63,63,63,288,144,144,72,81,81,
81,432,216,216,108,8640,4320,576,288,36,576,288,192,96,48,24,60,30,72,36,72,
72,72,8640,4320,576,288,36,576,288,192,96,48,24,60,30,72,36,72,72,72,24192,
2880,2304,256,432,36,36,32,20,144,36,14],
[,[1,2,3,4,1,2,3,4,9,10,11,12,13,14,15,5,6,7,8,5,6,7,8,24,25,26,27,9,10,11,12,
13,14,13,14,14,37,38,39,40,41,16,17,18,19,46,47,48,28,29,30,31,1,2,5,6,15,16,
17,16,17,20,21,24,25,28,29,49,50,50,1,3,5,7,15,16,18,16,18,20,22,24,26,28,30,
49,51,51,1,1,5,5,9,13,15,16,24,28,32,37],[1,1,1,1,5,5,5,5,1,1,1,1,1,1,1,16,16,
16,16,20,20,20,20,24,24,24,24,5,5,5,5,5,5,5,5,5,37,37,37,37,37,42,42,42,42,12,
12,12,16,16,16,16,53,53,55,55,53,58,58,60,60,62,62,64,64,55,55,58,58,58,71,71,
73,73,71,76,76,78,78,80,80,82,82,73,73,76,76,76,89,90,91,92,89,90,89,96,97,91,
91,100],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,1,2,3,4,
28,29,30,31,32,33,34,35,36,37,38,39,41,40,42,43,44,45,46,47,48,49,50,51,52,53,
54,55,56,57,58,59,60,61,62,63,53,54,66,67,68,70,69,71,72,73,74,75,76,77,78,79,
80,81,71,72,84,85,86,88,87,89,90,91,92,93,94,95,96,90,98,99,100],,[1,2,3,4,5,
6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,
33,34,35,36,1,2,3,4,4,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,
86,87,88,89,90,91,92,93,94,95,96,97,98,99,89]],
0,
[(40,41),(87,88),(69,70),( 2, 3)( 6, 7)(10,11)(17,18)(21,22)(25,26)(29,30)(33,
36)(38,39)(43,44)(50,51)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,
78)(61,79)(62,80)(63,81)(64,82)(65,83)(66,84)(67,85)(68,86)(69,87)(70,88)],
["ConstructMGA","3^2.U4(3).2_3'","3_2.U4(3).(2^2)_{133}",
[ [ 39, 41 ], [ 40, 42 ], [ 43, 44 ], [ 45, 47 ], [ 46, 48 ],
[ 49, 51 ], [ 50, 52 ], [ 53, 55 ], [ 54, 56 ], [ 57, 59 ], [ 58, 60 ],
[ 61, 62 ], [ 63, 65 ], [ 64, 66 ], [ 67, 69 ], [ 68, 70 ], [ 71, 73 ],
[ 72, 74 ], [ 75, 77 ], [ 76, 78 ], [ 79, 80 ], [ 81, 82 ], [ 83, 84 ],
[ 85, 86 ], [ 87, 88 ], [ 89, 90 ], [ 91, 92 ], [ 93, 94 ], [ 95, 98 ],
[ 96, 97 ], [ 99, 100 ], [ 101, 102 ], [ 103, 104 ], [ 105, 106 ],
[ 107, 108 ], [ 109, 110 ] ], ()]);
ALF("3^2.U4(3).(2^2)_{133}","3_2.U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,4,5,5,6,6,
7,7,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,18,19,19,
20,20,20,21,21,22,22,23,23,23,24,24,25,25,56,56,57,57,58,59,59,60,60,61,
61,62,62,63,63,64,64,64,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,49,50,51,52,53,54,55]);
ALF("3^2.U4(3).(2^2)_{133}","3.Suz.2",[1,2,7,8,3,4,24,25,7,8,9,10,9,10,11,
12,13,49,50,16,17,53,54,22,23,64,65,24,25,29,30,29,30,26,27,28,32,33,71,
72,73,34,35,74,75,40,41,42,49,50,51,52,5,6,16,17,31,34,35,34,35,38,39,45,
46,53,54,74,75,75,76,80,78,92,82,84,98,85,99,88,102,89,104,92,93,98,100,
100,76,77,78,78,80,81,82,87,91,92,93,95],[
"fusion map is unique up to table automorphisms"
]);
ALF("3^2.U4(3).(2^2)_{133}","U4(3).(2^2)_{133}",[1,1,1,1,2,2,2,2,3,3,3,3,
4,4,5,6,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,10,11,11,11,11,11,12,12,
12,12,13,13,13,14,14,14,14,36,36,37,37,38,39,39,40,40,41,41,42,42,43,43,
44,44,44,27,27,28,28,29,30,30,31,31,32,32,33,33,34,34,35,35,35,15,16,17,
18,19,20,21,22,23,24,25,26]);
MOT("3^2.U4(3).D8",
[
"origin: ATLAS of finite groups,\n",
"table was constructed by Dixon's algorithm,\n",
"tests: 1.o.r., pow[2,3,5,7]"
],
[235146240,58786560,58786560,20736,20736,82944,104976,104976,419904,5832,
11664,648,1728,1728,6912,288,1152,288,90,90,360,1296,1296,5184,324,648,648,
1296,63,63,252,144,144,576,162,162,162,216,216,864,48384,5760,4608,512,864,72,
72,64,40,288,72,28,24192,384,80,192,64,432,48,36,20,24,28,28,155520,311040,
3456,6912,576,1152,576,288,3888,3888,3888,648,1296,324,648,144,36,48,96,30,60,
144,72,36,72,54,54,54,4320,8640,576,288,36,288,576,96,192,24,48,30,60,72,36,
72,72,72],
[,[1,2,3,2,3,1,7,8,9,10,11,12,5,4,6,4,6,5,19,20,21,7,8,9,10,11,10,11,29,30,31,
13,14,15,35,36,37,23,22,24,1,1,6,6,9,11,12,15,21,24,28,31,41,41,42,43,43,45,
45,47,49,50,52,52,2,1,2,1,4,6,6,4,8,9,8,11,11,10,11,11,12,14,15,19,21,24,23,
27,28,36,35,37,3,1,6,5,12,13,15,13,15,18,17,20,21,24,22,39,39,40],[1,1,1,6,6,
6,1,1,1,1,1,1,15,15,15,17,17,17,21,21,21,6,6,6,6,6,6,6,31,31,31,34,34,34,8,8,
8,15,15,15,41,42,43,44,41,42,41,48,49,43,43,52,53,54,55,56,57,53,54,53,61,56,
63,64,66,66,68,68,70,70,71,71,66,66,66,66,66,66,66,68,68,83,83,85,85,70,70,71,
71,73,73,73,94,94,95,95,94,99,99,101,101,103,103,105,105,95,95,99,99,99],,[1,
2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,2,3,1,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,42,50,51,52,53,54,55,56,
57,58,59,60,55,62,64,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,
83,65,66,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,93,94,106,
107,109,108,110],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,24,25,26,27,28,3,2,1,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,
50,51,41,53,54,55,56,57,58,59,60,61,62,53,53,65,66,67,68,69,70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,
101,102,103,104,105,106,107,108,109,110]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
[TENSOR,[2,3]],[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0],[21,21,21,5,5,5,-6,-6,-6,3,3,3,1,1,1,1,1,1,1,1,1,2,2,2,-1,-1,
-1,-1,0,0,0,-1,-1,-1,0,0,0,-2,-2,-2,-7,1,5,-3,2,1,-1,-1,1,2,-1,0,7,-1,-1,-3,1,
-2,2,1,-1,0,0,0,9,9,1,1,-3,-3,1,1,0,0,0,-3,-3,3,3,1,1,-1,-1,-1,-1,0,0,1,1,0,0,
0,1,1,-3,-3,1,3,3,-1,-1,-1,-1,1,1,0,0,0,0,0],
[TENSOR,[6,2]],
[TENSOR,[6,3]],
[TENSOR,[6,4]],[42,42,42,10,10,10,-12,-12,-12,6,6,6,2,2,2,2,2,2,2,2,2,4,4,4,
-2,-2,-2,-2,0,0,0,-2,-2,-2,0,0,0,-4,-4,-4,14,-2,-10,6,-4,-2,2,2,-2,-4,2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[70,70,70,6,6,6,16,16,16,7,7,-2,6,6,6,-2,
-2,-2,0,0,0,0,0,0,3,3,3,3,0,0,0,-2,-2,-2,1,1,1,0,0,0,14,-10,-2,-2,-4,-1,2,-2,
0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,10,10,-6,-6,2,2,2,2,10,10,10,1,1,1,1,-3,0,-2,
-2,0,0,2,2,-1,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[70,70,70,6,6,6,
16,16,16,7,7,-2,6,6,6,-2,-2,-2,0,0,0,0,0,0,3,3,3,3,0,0,0,-2,-2,-2,1,1,1,0,0,0,
-14,10,2,2,4,1,-2,2,0,-4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,20,20,4,4,-4,-4,4,4,2,2,
2,5,5,-1,-1,1,-2,0,0,0,0,2,2,1,1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],
[TENSOR,[11,3]],
[TENSOR,[12,3]],[90,90,90,10,10,10,9,9,9,9,9,0,-2,-2,-2,2,2,2,0,0,0,1,1,1,1,1,
1,1,-1,-1,-1,0,0,0,0,0,0,1,1,1,6,10,10,2,-3,1,0,0,0,1,1,-1,6,-2,0,4,0,-3,1,0,
0,1,-1,-1,30,30,6,6,2,2,2,2,3,3,3,3,3,3,3,3,0,0,0,0,0,-1,-1,-1,-1,0,0,0,0,0,4,
4,0,2,2,-2,-2,0,0,0,0,1,1,-1,-1,-1],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[180,180,180,20,20,20,18,18,18,18,18,0,-4,-4,-4,4,4,4,0,0,0,2,
2,2,2,2,2,2,-2,-2,-2,0,0,0,0,0,0,2,2,2,-12,-20,-20,-4,6,-2,0,0,0,-2,-2,2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[140,140,140,12,12,12,5,5,5,-4,-4,5,4,4,4,
0,0,0,0,0,0,-3,-3,-3,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,1,28,0,4,4,1,0,1,0,0,1,
-2,0,14,-2,0,2,2,5,1,-1,0,-1,0,0,20,20,4,4,4,4,0,0,-7,-7,-7,2,2,2,2,-2,1,0,0,
0,0,1,1,0,0,-1,-1,-1,10,10,2,2,1,2,2,2,2,0,0,0,0,-1,-1,-1,-1,-1],
[TENSOR,[20,2]],
[TENSOR,[20,3]],
[TENSOR,[20,4]],[280,280,280,24,24,24,10,10,10,-8,-8,10,8,8,8,0,0,0,0,0,0,-6,
-6,-6,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-56,0,-8,-8,-2,0,-2,0,0,-2,4,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[189,189,189,-3,-3,-3,27,27,27,0,0,0,5,5,5,1,
1,1,-1,-1,-1,3,3,3,0,0,0,0,0,0,0,1,1,1,0,0,0,-1,-1,-1,21,9,-3,-3,3,0,0,1,-1,3,
0,0,21,5,-1,1,1,3,-1,0,-1,1,0,0,9,9,9,9,1,1,-3,-3,9,9,9,0,0,0,0,0,0,1,1,-1,-1,
1,1,0,0,0,0,0,9,9,1,1,0,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1],
[TENSOR,[25,2]],
[TENSOR,[25,3]],
[TENSOR,[25,4]],[378,378,378,-6,-6,-6,54,54,54,0,0,0,10,10,10,2,2,2,-2,-2,-2,
6,6,6,0,0,0,0,0,0,0,2,2,2,0,0,0,-2,-2,-2,-42,-18,6,6,-6,0,0,-2,2,-6,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[210,210,210,2,2,2,21,21,21,3,3,3,-2,-2,-2,
-2,-2,-2,0,0,0,5,5,5,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,1,1,1,14,-10,10,2,5,-1,-1,
0,0,1,1,0,28,4,0,2,-2,1,1,1,0,-1,0,0,30,30,-10,-10,2,2,-2,-2,3,3,3,3,3,3,3,-1,
-1,0,0,0,0,-1,-1,1,1,0,0,0,-10,-10,2,2,-1,4,4,0,0,0,0,0,0,-1,-1,1,1,1],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[420,420,420,4,4,4,42,42,42,6,6,6,-4,-4,-4,-4,-4,-4,0,0,0,10,
10,10,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,2,2,2,-28,20,-20,-4,-10,2,2,0,0,-2,-2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1120,1120,1120,-32,-32,-32,40,40,40,22,
22,4,0,0,0,0,0,0,0,0,0,-8,-8,-8,-2,-2,-2,-2,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,80,-16,-16,0,0,0,0,8,8,8,2,2,-4,-4,2,
2,0,0,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[35,3]],[630,630,630,22,22,22,-18,-18,-18,9,9,0,-2,-2,-2,-2,-2,-2,0,0,
0,-2,-2,-2,1,1,1,1,0,0,0,2,2,2,0,0,0,-2,-2,-2,-42,-10,14,-2,-6,-1,0,2,0,2,-1,
0,0,0,0,0,0,0,0,0,0,0,0,0,90,90,-6,-6,-6,-6,2,2,0,0,0,-3,-3,3,3,-3,0,2,2,0,0,
0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[630,630,630,22,22,22,
-18,-18,-18,9,9,0,-2,-2,-2,-2,-2,-2,0,0,0,-2,-2,-2,1,1,1,1,0,0,0,2,2,2,0,0,0,
-2,-2,-2,42,10,-14,2,6,1,0,-2,0,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,60,60,12,12,4,
4,4,4,6,6,6,-3,-3,-3,-3,-3,0,0,0,0,0,-2,-2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0],
[TENSOR,[37,3]],
[TENSOR,[38,3]],[420,420,420,4,4,4,-39,-39,-39,6,6,-3,4,4,4,0,0,0,0,0,0,1,1,1,
-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,1,1,1,28,0,12,-4,1,0,1,0,0,-3,0,0,14,-2,0,-2,-2,
5,1,-1,0,1,0,0,60,60,-4,-4,4,4,0,0,-3,-3,-3,-6,-6,0,0,2,-1,0,0,0,0,1,1,0,0,0,
0,0,-10,-10,-2,-2,-1,2,2,2,2,0,0,0,0,1,1,-1,-1,-1],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[840,840,840,8,8,8,-78,-78,-78,12,12,-6,8,8,8,0,0,0,0,0,0,2,2,
2,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,2,2,2,-56,0,-24,8,-2,0,-2,0,0,6,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1120,1120,1120,-32,-32,-32,-68,-68,-68,4,4,4,0,
0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,56,-8,0,0,0,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[46,2]],[1280,1280,1280,0,0,0,-16,-16,-16,-16,-16,2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-1,-1,-1,0,0,0,2,2,2,0,0,0,-64,0,0,0,8,0,2,0,0,0,0,-1,64,0,0,0,
0,-8,0,-2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1280,1280,1280,0,0,0,-16,-16,-16,-16,-16,2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,0,0,2,2,2,0,0,0,64,0,0,0,-8,0,-2,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23
+E(28)^27,-E(28)^3+E(28)^11+E(28)^15-E(28)^19+E(28)^23-E(28)^27,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],
[TENSOR,[48,2]],
[TENSOR,[49,2]],[729,729,729,9,9,9,0,0,0,0,0,0,-3,-3,-3,1,1,1,-1,-1,-1,0,0,0,
0,0,0,0,1,1,1,-1,-1,-1,0,0,0,0,0,0,-27,9,9,1,0,0,0,-1,-1,0,0,1,27,3,1,-3,1,0,
0,0,1,0,-1,-1,81,81,9,9,-3,-3,-3,-3,0,0,0,0,0,0,0,0,0,-1,-1,1,1,0,0,0,0,0,0,0,
9,9,-3,-3,0,3,3,-1,-1,1,1,-1,-1,0,0,0,0,0],
[TENSOR,[52,2]],
[TENSOR,[52,3]],
[TENSOR,[52,4]],[1458,1458,1458,18,18,18,0,0,0,0,0,0,-6,-6,-6,2,2,2,-2,-2,-2,
0,0,0,0,0,0,0,2,2,2,-2,-2,-2,0,0,0,0,0,0,54,-18,-18,-2,0,0,0,2,2,0,0,-2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[896,896,896,0,0,0,32,32,32,-4,-4,-4,0,0,0,0,
0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,16,0,0,0,-2,0,0,1,0,0,0,
0,0,4,0,0,0,0,0,-1,0,0,0,64,64,0,0,0,0,0,0,-8,-8,-8,4,4,-2,-2,0,0,0,0,-1,-1,0,
0,0,0,1,1,1,16,16,0,0,-2,0,0,0,0,0,0,1,1,0,0,0,0,0],
[TENSOR,[57,2]],
[TENSOR,[57,3]],
[TENSOR,[57,4]],[1792,1792,1792,0,0,0,64,64,64,-8,-8,-8,0,0,0,0,0,0,2,2,2,0,0,
0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,-32,0,0,0,4,0,0,-2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],[60,15,-30,-1,2,-4,-12,6,24,-3,6,0,-6,3,12,-1,-4,2,0,
0,0,-4,2,8,-1,-4,5,2,-2,1,4,-2,1,4,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-5,10,3,-6,-1,2,2,-1,-8,4,4,-2,4,1,-2,0,0,1,-2,0,0,-4,2,-1,
2,1,1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[62,3]],[84,21,-42,5,-10,20,-6,3,12,-6,12,0,-2,1,4,1,4,-2,1,-2,4,2,-1,
-4,-4,2,2,8,0,0,0,2,-1,-4,0,-3,3,1,-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,11,-22,3,-6,-1,2,-6,3,5,2,-7,2,-4,2,-4,0,0,1,-2,1,-2,2,-1,0,0,-1,2,
-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[64,3]],[420,105,-210,9,-18,36,-30,15,60,-3,6,0,-2,1,4,1,4,-2,0,0,0,
-6,3,12,-3,6,-3,6,0,0,0,-2,1,4,0,3,-3,1,-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-25,50,-9,18,-1,2,2,-1,5,2,-7,-4,8,-1,2,0,0,-1,2,0,0,2,-1,-1,
2,-1,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[66,3]],[420,105,-210,-7,14,-28,-30,15,60,-3,6,0,-10,5,20,1,4,-2,0,0,
0,2,-1,-4,-1,-4,5,2,0,0,0,2,-1,-4,0,3,-3,-1,2,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,5,-10,-3,6,1,-2,-2,1,-19,14,5,2,-4,-1,2,0,0,-1,2,0,0,-2,1,
1,-2,-1,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[68,3]],[420,105,-210,9,-18,36,24,-12,-48,-12,24,0,-2,1,4,1,4,-2,0,0,
0,0,0,0,0,0,0,0,0,0,0,-2,1,4,-3,0,3,-2,4,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,35,-70,3,-6,3,-6,-6,3,2,8,-10,-4,8,2,-4,0,0,-1,2,0,0,0,0,0,0,2,
-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[70,3]],[840,210,-420,2,-4,8,-6,3,12,-15,30,0,4,-2,-8,-2,-8,4,0,0,0,2,
-1,-4,-1,-4,5,2,0,0,0,0,0,0,-3,3,0,1,-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-50,100,6,-12,2,-4,4,-2,1,-14,13,-2,4,1,-2,0,0,0,0,0,0,2,-1,1,-2,
1,1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[72,3]],[1260,315,-630,-5,10,-20,72,-36,-144,-9,18,0,-6,3,12,-1,-4,2,
0,0,0,-8,4,16,1,4,-5,-2,0,0,0,2,-1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,45,-90,-3,6,-3,6,-2,1,0,0,0,-6,12,-3,6,0,0,1,-2,0,0,0,0,1,
-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[74,3]],[1344,336,-672,16,-32,64,12,-6,-24,-6,12,0,0,0,0,0,0,0,1,-2,4,
4,-2,-8,4,-2,-2,-8,0,0,0,0,0,0,3,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,64,-128,0,0,0,0,0,0,-2,-8,10,-2,4,4,-8,0,0,0,0,-1,2,0,0,0,0,-2,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[76,3]],[1536,384,-768,0,0,0,-48,24,96,-12,24,0,0,0,0,0,0,0,-1,2,-4,0,
0,0,0,0,0,0,2,-1,-4,0,0,0,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,64,-128,0,0,0,0,0,0,16,-8,-8,4,-8,-2,4,0,0,0,0,-1,2,0,0,0,0,1,1,-2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[78,3]],[1680,420,-840,4,-8,16,-66,33,132,6,-12,0,-8,4,16,0,0,0,0,0,0,
-2,1,4,4,-2,-2,-8,0,0,0,0,0,0,-3,0,3,1,-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-20,40,12,-24,4,-8,0,0,13,-2,-11,-2,4,-2,4,0,0,0,0,0,0,-2,1,0,0,
-2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[80,3]],[2520,630,-1260,6,-12,24,-18,9,36,9,-18,0,-4,2,8,-2,-8,4,0,0,
0,6,-3,-12,-3,6,-3,6,0,0,0,0,0,0,0,0,0,-1,2,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,30,-60,6,-12,2,-4,-4,2,-15,-6,21,0,0,-3,6,0,0,0,0,0,0,2,-1,
-1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[82,3]],[2880,720,-1440,16,-32,64,72,-36,-144,18,-36,0,0,0,0,0,0,0,0,
0,0,-8,4,16,-2,-8,10,4,2,-1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[2916,729,-1458,9,-18,36,0,0,0,0,0,0,6,-3,
-12,1,4,-2,-1,2,-4,0,0,0,0,0,0,0,-2,1,4,2,-1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-81,162,-9,18,3,-6,-6,3,0,0,0,0,0,0,0,0,0,1,-2,
-1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[85,3]],[3024,756,-1512,-12,24,-48,-54,27,108,0,0,0,8,-4,-16,0,0,0,1,
-2,4,-6,3,12,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-36,72,12,-24,-4,8,0,0,-9,18,-9,0,0,0,0,0,0,0,0,-1,2,2,-1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[87,3]],[3780,945,-1890,-15,30,-60,54,-27,-108,0,0,0,-2,1,4,1,4,-2,0,
0,0,6,-3,-12,0,0,0,0,0,0,0,-2,1,4,0,0,0,1,-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-45,90,3,-6,-5,10,-6,3,9,-18,9,0,0,0,0,0,0,-1,2,0,0,-2,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[89,3]],[144,-72,36,-8,4,16,9,-18,36,0,0,0,4,-8,16,0,0,0,-2,1,4,1,-2,
4,-2,4,4,-8,1,-2,4,0,0,0,0,0,0,-2,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-12,4,-2,0,
2,-4,2,-4,0,0,1,-2,-2,1,-1,-1,2],
[TENSOR,[91,2]],[360,-180,90,12,-6,-24,-18,36,-72,0,0,0,2,-4,8,-4,8,2,0,0,0,6,
-12,24,0,0,0,0,-1,2,-4,-2,4,-8,0,0,0,-4,2,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0],[504,-252,126,-28,14,56,-9,18,-36,0,0,0,2,-4,8,
-4,8,2,-2,1,4,-1,2,-4,2,-4,-4,8,0,0,0,0,0,0,0,0,0,2,-1,-4,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,6,-12,-4,2,0,4,-8,0,0,0,0,1,-2,2,-1,1,1,-2],
[TENSOR,[94,2]],[756,-378,189,6,-3,-12,27,-54,108,0,0,0,5,-10,20,-2,4,1,2,-1,
-4,3,-6,12,0,0,0,0,0,0,0,1,-2,4,0,0,0,2,-1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,18,
2,-1,0,-1,2,-1,2,1,-2,1,-2,2,-1,-1,-1,2],
[TENSOR,[96,2]],[1260,-630,315,-22,11,44,18,-36,72,0,0,0,-1,2,-4,2,-4,-1,0,0,
0,2,-4,8,2,-4,-4,8,0,0,0,1,-2,4,0,0,0,-4,2,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-15,
30,6,-3,0,3,-6,-1,2,-1,2,0,0,0,0,0,0,0],
[TENSOR,[98,2]],[2520,-1260,630,20,-10,-40,36,-72,144,0,0,0,6,-12,24,4,-8,-2,
0,0,0,-4,8,-16,2,-4,-4,8,0,0,0,-2,4,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[2520,-1260,630,-12,6,24,-45,90,-180,0,0,
0,2,-4,8,4,-8,-2,0,0,0,3,-6,12,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,-4,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-8,4,0,2,-4,-2,4,0,0,0,0,-2,1,-1,-1,2],
[TENSOR,[101,2]],[2880,-1440,720,-32,16,64,18,-36,72,0,0,0,0,0,0,0,0,0,0,0,0,
-2,4,-8,-2,4,4,-8,-1,2,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-3*E(8)+3*E(8)^3,3*E(8)-3*E(8)^3,0],
[TENSOR,[103,2]],[2916,-1458,729,-18,9,36,0,0,0,0,0,0,-3,6,-12,-2,4,1,2,-1,-4,
0,0,0,0,0,0,0,1,-2,4,-1,2,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,18,-6,
3,0,-3,6,1,-2,-1,2,1,-2,0,0,0,0,0],
[TENSOR,[105,2]],[3024,-1512,756,24,-12,-48,27,-54,108,0,0,0,-4,8,-16,0,0,0,
-2,1,4,3,-6,12,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-6,12,-4,2,0,2,-4,2,-4,0,0,-1,2,2,-1,-1,-1,2],
[TENSOR,[107,2]],[3780,-1890,945,30,-15,-60,-27,54,-108,0,0,0,1,-2,4,-2,4,1,0,
0,0,-3,6,-12,0,0,0,0,0,0,0,1,-2,4,0,0,0,-2,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-15,
30,-2,1,0,1,-2,1,-2,1,-2,0,0,-2,1,1,1,-2],
[TENSOR,[109,2]]],
[(108,109),(63,64)]);
ALF("3^2.U4(3).D8","Co1",[1,6,5,22,18,2,6,7,5,7,6,8,45,49,9,54,12,47,64,
62,16,22,23,18,23,20,21,22,74,75,27,80,82,29,35,36,37,48,49,45,3,4,12,12,
19,24,25,30,43,47,54,59,13,13,14,34,34,50,50,56,72,83,88,88,20,2,24,4,51,
10,11,53,23,18,21,22,20,23,22,24,26,84,30,92,41,46,55,52,53,69,68,70,19,3,
12,47,25,80,29,80,29,83,34,90,40,47,54,82,82,80],[
"fusion map is unique"
]);
ALF("3^2.U4(3).D8","U4(3).D8",[1,1,1,2,2,2,3,3,3,4,4,5,6,6,6,7,7,7,8,8,8,
9,9,9,10,10,10,10,11,11,11,12,12,12,13,13,13,14,14,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,39,40,40,41,41,
42,42,43,43,43,44,44,45,45,46,47,48,48,49,49,50,50,51,51,52,52,52,53,53,
54,54,55,56,56,57,57,58,58,59,59,60,60,61,61,61]);
MOT("3_1.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[9797760,9797760,9797760,3456,3456,3456,17496,17496,17496,2916,2916,2916,972,
81,288,288,288,48,48,48,15,15,15,216,216,216,108,108,108,108,108,108,21,21,21,
21,21,21,24,24,24,81,81,81,81,81,81,27,27,36,36,36],
[,[1,3,2,1,3,2,7,9,8,10,12,11,13,14,4,6,5,4,6,5,21,23,22,7,9,8,10,12,11,13,13,
13,33,35,34,36,38,37,15,17,16,45,47,46,42,44,43,49,48,24,26,25],[1,1,1,4,4,4,
1,1,1,1,1,1,1,1,15,15,15,18,18,18,21,21,21,4,4,4,4,4,4,4,4,4,36,36,36,33,33,
33,39,39,39,9,9,9,8,8,8,7,7,15,15,15],,[1,3,2,4,6,5,7,9,8,10,12,11,13,14,15,
17,16,18,20,19,1,3,2,24,26,25,27,29,28,30,32,31,36,38,37,33,35,34,39,41,40,45,
47,46,42,44,43,49,48,50,52,51],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,25,26,27,28,29,30,31,32,1,2,3,1,2,3,39,40,41,42,43,44,45,46,
47,48,49,50,51,52]],
0,
[(48,49),(33,36)(34,37)(35,38),( 2, 3)( 5, 6)( 8, 9)(11,12)(16,17)(19,20)
(22,23)(25,26)(28,29)(31,32)(34,35)(37,38)(40,41)(42,45)(43,47)(44,46)(48,49)
(51,52),( 2, 3)( 5, 6)( 8, 9)(11,12)(16,17)(19,20)(22,23)(25,26)(28,29)(31,32)
(34,35)(37,38)(40,41)(42,45)(43,47)(44,46)(51,52)],
["ConstructProj",[["U4(3)",[]],,["3_1.U4(3)",[-1,-1,-1,-1,-1,-1,-1,-1,-13,-13,
-1,-1,-1,-1,-1,-1]]]]);
ALF("3_1.U4(3)","U4(3)",[1,1,1,2,2,2,3,3,3,4,4,4,5,6,7,7,7,8,8,8,9,9,9,10,
10,10,11,11,11,12,12,12,13,13,13,14,14,14,15,15,15,16,16,16,17,17,17,18,
19,20,20,20]);
ALF("3_1.U4(3)","3_1.U4(3).2_1",[1,2,2,3,4,4,5,6,6,7,8,8,9,10,11,12,12,13,
14,14,15,16,16,17,18,18,19,20,20,21,22,22,23,24,24,25,26,26,27,28,28,29,
30,31,29,31,30,32,32,33,34,34],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("3_1.U4(3)","3_1.U4(3).2_2",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,33,34,35,36,37,
38,39,40,41,42,43,44,45,45,46,47,48],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("3_1.U4(3)","3_1.U4(3).2_2'",[1,2,2,3,4,4,5,6,6,7,8,8,9,10,11,12,12,
13,14,14,15,16,16,17,18,18,19,20,20,21,22,22,23,24,25,23,25,24,26,27,27,
28,29,30,28,30,29,31,32,33,34,34],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
MOT("3_1.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[19595520,9797760,6912,3456,34992,17496,5832,2916,1944,162,576,288,96,48,30,
15,432,216,216,108,216,108,42,21,42,21,48,24,81,81,81,27,72,36,12096,1440,
1152,128,216,36,36,18,16,10,144,144,36,36,14,14],
[,[1,2,1,2,5,6,7,8,9,10,3,4,3,4,15,16,5,6,7,8,9,9,23,24,25,26,11,12,29,30,31,
32,17,18,1,1,3,3,5,7,9,10,11,15,17,17,19,21,23,25],[1,1,3,3,1,1,1,1,1,1,11,11,
13,13,15,15,3,3,3,3,3,3,25,25,23,23,27,27,6,6,6,5,11,11,35,36,37,38,35,36,36,
35,43,44,37,37,37,37,50,49],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,1,2,17,18,19,
20,21,22,25,26,23,24,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,36,45,
46,47,48,50,49],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,
2,1,2,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,45,47,48,35,
35]],
0,
[(45,46),(23,25)(24,26)(49,50)],
["ConstructMGA","3_1.U4(3)","U4(3).2_1",
[ [ 21, 22 ], [ 23, 24 ], [ 25, 26 ], [ 27, 28 ], [ 29, 30 ],
[ 31, 32 ], [ 33, 34 ], [ 35, 36 ], [ 37, 38 ], [ 39, 40 ],
[ 41, 42 ], [ 43, 44 ], [ 45, 46 ], [ 47, 48 ], [ 49, 50 ],
[ 51, 52 ] ], ()]);
ALF("3_1.U4(3).2_1","U4(3).2_1",[1,1,2,2,3,3,4,4,5,6,7,7,8,8,9,9,10,10,11,
11,12,12,13,13,14,14,15,15,16,16,16,17,18,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34]);
ALF("3_1.U4(3).2_1","3_1.U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,23,24,25,26,27,28,29,30,31,32,61,62,
63,64,65,66,67,68,69,70,71,71,72,73,74,74],[
"fusion map is unique"
]);
MOT("3_1.U4(3).2_2",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[19595520,19595520,19595520,6912,6912,6912,34992,34992,34992,5832,5832,5832,
1944,162,576,576,576,96,96,96,30,30,30,432,432,432,216,216,216,216,216,216,21,
21,21,48,48,48,162,162,162,162,162,162,27,72,72,72,155520,155520,155520,3456,
3456,3456,576,576,576,288,288,288,3888,3888,3888,3888,3888,3888,648,648,648,
324,324,324,72,18,48,48,48,30,30,30,72,72,72,36,36,36,54,54,54,54,54,54],
[,[1,3,2,1,3,2,7,9,8,10,12,11,13,14,4,6,5,4,6,5,21,23,22,7,9,8,10,12,11,13,13,
13,33,35,34,15,17,16,42,44,43,39,41,40,45,24,26,25,1,3,2,1,3,2,4,6,5,4,6,5,7,
9,8,7,9,8,13,13,13,10,12,11,13,14,15,17,16,21,23,22,24,26,25,27,29,28,42,44,
43,39,41,40],[1,1,1,4,4,4,1,1,1,1,1,1,1,1,15,15,15,18,18,18,21,21,21,4,4,4,4,
4,4,4,4,4,33,33,33,36,36,36,9,9,9,8,8,8,7,15,15,15,49,49,49,52,52,52,55,55,55,
58,58,58,49,49,49,49,49,49,49,49,49,49,49,49,52,52,75,75,75,78,78,78,55,55,55,
58,58,58,63,63,63,65,65,65],,[1,3,2,4,6,5,7,9,8,10,12,11,13,14,15,17,16,18,20,
19,1,3,2,24,26,25,27,29,28,30,32,31,33,35,34,36,38,37,42,44,43,39,41,40,45,46,
48,47,49,51,50,52,54,53,55,57,56,58,60,59,64,66,65,61,63,62,67,69,68,70,72,71,
73,74,75,77,76,49,51,50,81,83,82,84,86,85,90,92,91,87,89,88],,[1,2,3,4,5,6,7,
8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,1,2,
3,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,
87,88,89,90,91,92]],
0,
[( 2, 3)( 5, 6)( 8, 9)(11,12)(16,17)(19,20)(22,23)(25,26)(28,29)(31,32)(34,35)
(37,38)(39,42)(40,44)(41,43)(47,48)(50,51)(53,54)(56,57)(59,60)(61,64)(62,66)
(63,65)(68,69)(71,72)(76,77)(79,80)(82,83)(85,86)(87,90)(88,92)(89,91)],
["ConstructProj",[["U4(3).2_2",[]],,["3_1.U4(3).2_2",[-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1]]]]);
ALF("3_1.U4(3).2_2","U4(3).2_2",[1,1,1,2,2,2,3,3,3,4,4,4,5,6,7,7,7,8,8,8,
9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14,14,14,15,15,15,16,16,16,17,
18,18,18,19,19,19,20,20,20,21,21,21,22,22,22,23,23,23,24,24,24,25,25,25,
26,26,26,27,28,29,29,29,30,30,30,31,31,31,32,32,32,33,33,33,34,34,34]);
ALF("3_1.U4(3).2_2","3.U6(2)",[1,3,2,7,9,8,16,18,17,13,15,14,19,19,26,28,
27,38,40,39,41,43,42,53,55,54,56,58,57,62,64,63,66,68,67,72,74,73,82,81,
83,86,85,84,87,112,114,113,4,6,5,10,12,11,26,28,27,35,37,36,44,46,45,47,
49,48,59,61,60,50,52,51,65,65,72,74,73,88,90,89,112,114,113,121,123,122,
128,127,129,132,131,130],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("3_1.U4(3).2_2","3_1.U4(3).(2^2)_{122}",[1,2,2,3,4,4,5,6,6,7,8,8,9,10,
11,12,12,13,14,14,15,16,16,17,18,18,19,20,20,21,22,22,23,24,24,25,26,26,
27,28,29,27,29,28,30,31,32,32,33,34,34,35,36,36,37,38,38,39,40,40,41,42,
43,41,43,42,44,45,45,46,47,47,48,49,50,51,51,52,53,53,54,55,55,56,57,57,
58,59,60,58,60,59],[
"fusion map is unique"
]);
MOT("3_1.U4(3).2_2'",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]\n"
],
[19595520,9797760,6912,3456,34992,17496,5832,2916,1944,162,576,288,96,48,30,15
,432,216,216,108,216,108,21,21,21,48,24,81,81,81,54,54,72,36,51840,1152,192,96
,1296,1296,216,108,72,18,16,10,24,12,18,18],
[,[1,2,1,2,5,6,7,8,9,10,3,4,3,4,15,16,5,6,7,8,9,9,23,25,24,11,12,28,29,30,32,
31,17,18,1,1,3,3,5,5,7,9,7,10,11,15,17,21,32,31],[1,1,3,3,1,1,1,1,1,1,11,11,13
,13,15,15,3,3,3,3,3,3,23,23,23,26,26,6,6,6,5,5,11,11,35,36,37,38,35,35,35,35,
36,36,45,46,37,38,39,40],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,1,2,17,18,19,20,21
,22,23,24,25,26,27,28,29,30,32,31,33,34,35,36,37,38,40,39,41,42,43,44,45,35,47
,48,50,49],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,2,26
,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50]],
0,
[(24,25),(31,32)(39,40)(49,50)],
["ConstructMGA","3_1.U4(3)","U4(3).2_2'",
[ [ 21, 22 ], [ 23, 24 ], [ 25, 26 ], [ 27, 28 ], [ 29, 30 ], [ 31, 32 ],
[ 33, 34 ], [ 35, 36 ], [ 37, 40 ], [ 38, 39 ], [ 41, 42 ], [ 43, 44 ],
[ 45, 46 ], [ 47, 48 ], [ 49, 50 ], [ 51, 52 ] ], ()]);
ALF("3_1.U4(3).2_2'","U4(3).2_2'",[1,1,2,2,3,3,4,4,5,6,7,7,8,8,9,9,10,10,
11,11,12,12,13,13,13,14,14,15,15,15,16,17,18,18,19,20,21,22,23,24,25,26,
27,28,29,30,31,32,33,34]);
ALF("3_1.U4(3).2_2'","3_1.U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,24,25,26,27,28,29,30,30,31,32,75,76,
77,78,79,79,80,81,82,83,84,85,86,87,88,88],[
"fusion map is unique"
]);
MOT("3_1.U4(3).(2^2)_{122}",
[
"constructed using `PossibleCharacterTablesOfTypeMGA'"
],
[39191040,19595520,13824,6912,69984,34992,11664,5832,3888,324,1152,576,192,96,
60,30,864,432,432,216,432,216,42,21,96,48,162,162,162,54,144,72,311040,155520,
6912,3456,1152,576,576,288,3888,3888,3888,1296,648,648,324,144,36,96,48,60,30,
144,72,72,36,54,54,54,24192,2880,2304,256,432,72,72,36,32,20,144,72,72,14,
103680,2304,384,192,1296,432,216,144,36,32,20,48,24,18],
[,[1,2,1,2,5,6,7,8,9,10,3,4,3,4,15,16,5,6,7,8,9,9,23,24,11,12,27,28,29,30,17,
18,1,2,1,2,3,4,3,4,5,6,6,9,9,7,8,9,10,11,12,15,16,17,18,19,20,27,28,29,1,1,3,3
,5,7,9,10,11,15,17,19,21,23,1,1,3,3,5,7,9,7,10,11,15,17,21,30],[1,1,3,3,1,1,1,
1,1,1,11,11,13,13,15,15,3,3,3,3,3,3,23,23,25,25,6,6,6,5,11,11,33,33,35,35,37,
37,39,39,33,33,33,33,33,33,33,35,35,50,50,52,52,37,37,39,39,43,43,43,61,62,63,
64,61,62,62,61,69,70,63,63,63,74,75,76,77,78,75,75,75,76,76,84,85,77,78,79],,[
1,2,3,4,5,6,7,8,9,10,11,12,13,14,1,2,17,18,19,20,21,22,23,24,25,26,27,28,29,30
,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,33,34,54,55,56
,57,58,59,60,61,62,63,64,65,66,67,68,69,62,71,72,73,74,75,76,77,78,79,80,81,82
,83,84,75,86,87,88],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
,1,2,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,61,
75,76,77,78,79,80,81,82,83,84,85,86,87,88]],
0,
[],
["ConstructMGA","3_1.U4(3).2_2","U4(3).(2^2)_{122}",[[35,37],[36,38],[39,41],[
40,42],[43,45],[44,46],[47,49],[48,50],[51,53],[52,54],[55,57],[56,58],[59,61]
,[60,62],[63,65],[64,66],[67,68],[69,71],[70,72],[73,75],[74,76],[77,79],[78,
80],[81,83],[82,84],[85,87],[86,88],[89,91],[90,92]],()]);
ALF("3_1.U4(3).(2^2)_{122}","U4(3).(2^2)_{122}",[1,1,2,2,3,3,4,4,5,6,7,7,
8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,15,16,17,17,32,32,33,33,34,34,
35,35,36,36,36,37,37,38,38,39,40,41,41,42,42,43,43,44,44,45,45,45,18, 19,
20,21,22,23,24,25,26,27,28,29,30,31,46,47,48,49,50,51,52,53,54,55,56, 57,
58,59]);
MOT("3_2.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]\n",
"3rd power map determined only up to matrix automorphisms (40,41), (42,43)"
],
[9797760,9797760,9797760,3456,3456,3456,17496,17496,17496,972,972,81,288,288,
288,48,48,48,15,15,15,216,216,216,108,108,108,108,108,108,21,21,21,21,21,21,
24,24,24,27,27,27,27,36,36,36],
[,[1,3,2,1,3,2,7,9,8,10,11,12,4,6,5,4,6,5,19,21,20,7,9,8,10,10,10,11,11,11,31,
33,32,34,36,35,13,15,14,41,40,43,42,22,24,23],[1,1,1,4,4,4,1,1,1,1,1,1,13,13,
13,16,16,16,19,19,19,4,4,4,4,4,4,4,4,4,34,34,34,31,31,31,37,37,37,9,8,9,8,13,
13,13],,[1,3,2,4,6,5,7,9,8,10,11,12,13,15,14,16,18,17,1,3,2,22,24,23,25,27,26,
28,30,29,34,36,35,31,33,32,37,39,38,41,40,43,42,44,46,45],,[1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,1,2,3,1,2,3,37,
38,39,40,41,42,43,44,45,46]],
0,
[(31,34)(32,35)(33,36),( 2, 3)( 5, 6)( 8, 9)(14,15)(17,18)(20,21)(23,24)
(26,27)(29,30)(32,33)(35,36)(38,39)(40,41)(42,43)(45,46),(10,11)(25,28)(26,29)
(27,30)(40,42)(41,43)],
["ConstructProj",[["U4(3)",[]],,["3_2.U4(3)",[-1,-13,-13,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1]]]]);
ALF("3_2.U4(3)","U4(3)",[1,1,1,2,2,2,3,3,3,4,5,6,7,7,7,8,8,8,9,9,9,10,10,
10,11,11,11,12,12,12,13,13,13,14,14,14,15,15,15,16,17,18,19,20,20,20]);
ALF("3_2.U4(3)","3_2.U4(3).2_1",[1,2,2,3,4,4,5,6,6,7,8,9,10,11,11,12,13,
13,14,15,15,16,17,17,18,19,19,20,21,21,22,23,23,24,25,25,26,27,27,28,28,
29,29,30,31,31],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("3_2.U4(3)","3_2.U4(3).2_3",[1,2,3,4,5,6,7,8,9,10,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,24,25,26,27,28,29,27,28,29,30,31,32,33,
34,33,34,35,36,37],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("3_2.U4(3)","3_2.U4(3).2_3'",[1,2,2,3,4,4,5,6,6,7,7,8,9,10,10,11,12,
12,13,14,14,15,16,16,17,18,19,17,19,18,20,21,22,20,22,21,23,24,24,25,26,
26,25,27,28,28],[
"fusion map determined up to table aut. by compatibility\n",
"with factors"
]);
ALF("3_2.U4(3)","3.McL",[1,3,2,4,6,5,7,9,8,10,10,10,11,13,12,11,13,12,17,
19,18,20,22,21,23,25,24,23,25,24,26,28,27,29,31,30,32,34,33,35,36,35,36,
46,48,47],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
MOT("3_2.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[19595520,9797760,6912,3456,34992,17496,1944,1944,162,576,288,96,48,30,15,432,
216,216,108,216,108,42,21,42,21,48,24,27,27,72,36,12096,1440,1152,128,216,36,
36,18,16,10,144,144,36,36,14,14],
[,[1,2,1,2,5,6,7,8,9,3,4,3,4,14,15,5,6,7,7,8,8,22,23,24,25,10,11,28,29,16,17,
1,1,3,3,5,7,8,9,10,14,16,16,18,20,22,24],[1,1,3,3,1,1,1,1,1,10,10,12,12,14,14,
3,3,3,3,3,3,24,24,22,22,26,26,6,6,10,10,32,33,34,35,32,33,33,32,40,41,34,34,
34,34,47,46],,[1,2,3,4,5,6,7,8,9,10,11,12,13,1,2,16,17,18,19,20,21,24,25,22,
23,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,33,42,43,44,45,47,46],,[1,2,3,
4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,1,2,1,2,26,27,28,29,30,31,32,
33,34,35,36,37,38,39,40,41,43,42,44,45,32,32]],
0,
[(42,43),(22,24)(23,25)(46,47),( 7, 8)(18,20)(19,21)(28,29)(37,38)(44,45)],
["ConstructMGA","3_2.U4(3)","U4(3).2_1",
[ [ 21, 22 ], [ 23, 24 ], [ 25, 26 ], [ 27, 28 ], [ 29, 30 ],
[ 31, 32 ], [ 33, 34 ], [ 35, 36 ], [ 37, 38 ], [ 39, 40 ],
[ 41, 42 ], [ 43, 44 ], [ 45, 46 ] ], ()]);
ALF("3_2.U4(3).2_1","U4(3).2_1",[1,1,2,2,3,3,4,5,6,7,7,8,8,9,9,10,10,11,
11,12,12,13,13,14,14,15,15,16,17,18,18,19,20,21,22,23,24,25,26,27,28,29,
30,31,32,33,34]);
ALF("3_2.U4(3).2_1","3_2.U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,7,8,9,10,11,12,
13,14,15,16,17,18,17,18,19,20,19,20,21,22,23,23,24,25,44,45,46,47,48,49,
49,50,51,52,53,53,54,54,55,55]);
MOT("3_2.U4(3).2_3",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,5,7]\n",
"3rd power map determined only up to table automorphism (33,34)"
],
[19595520,19595520,19595520,6912,6912,6912,34992,34992,34992,972,162,576,576,
576,96,96,96,30,30,30,432,432,432,108,108,108,21,21,21,48,48,48,27,27,72,72,
72,4320,4320,4320,288,288,288,18,288,288,288,96,96,96,24,24,24,30,30,30,36,36,
36,72,72,72,72,72,72],
[,[1,3,2,1,3,2,7,9,8,10,11,4,6,5,4,6,5,18,20,19,7,9,8,10,10,10,27,29,28,12,14,
13,34,33,21,23,22,1,3,2,4,6,5,11,12,14,13,12,14,13,15,17,16,18,20,19,21,23,22,
35,37,36,35,37,36],[1,1,1,4,4,4,1,1,1,1,1,12,12,12,15,15,15,18,18,18,4,4,4,4,
4,4,27,27,27,30,30,30,9,8,12,12,12,38,38,38,41,41,41,38,45,45,45,48,48,48,51,
51,51,54,54,54,41,41,41,45,45,45,45,45,45],,[1,3,2,4,6,5,7,9,8,10,11,12,14,13,
15,17,16,1,3,2,21,23,22,24,26,25,27,29,28,30,32,31,34,33,35,37,36,38,40,39,41,
43,42,44,45,47,46,48,50,49,51,53,52,38,40,39,57,59,58,60,62,61,63,65,64],,[1,
2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,1,2,3,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,
57,58,59,60,61,62,63,64,65]],
0,
[(60,63)(61,64)(62,65),( 2, 3)( 5, 6)( 8, 9)(13,14)(16,17)(19,20)(22,23)
(25,26)(28,29)(31,32)(33,34)(36,37)(39,40)(42,43)(46,47)(49,50)(52,53)(55,56)
(58,59)(60,63)(61,65)(62,64),( 2, 3)( 5, 6)( 8, 9)(13,14)(16,17)(19,20)(22,23)
(25,26)(28,29)(31,32)(33,34)(36,37)(39,40)(42,43)(46,47)(49,50)(52,53)(55,56)
(58,59)(61,62)(64,65)],
["ConstructProj",[["U4(3).2_3",[]],,["3_2.U4(3).2_3",[-1,-1,-1,-1,-1,-1,-1,17,
-1,-1,-1]]]]);
ALF("3_2.U4(3).2_3","U4(3).2_3",[1,1,1,2,2,2,3,3,3,4,5,6,6,6,7,7,7,8,8,8,
9,9,9,10,10,10,11,11,11,12,12,12,13,14,15,15,15,16,16,16,17,17,17,18,19,
19,19,20,20,20,21,21,21,22,22,22,23,23,23,24,24,24,25,25,25]);
ALF("3_2.U4(3).2_3","3_2.U4(3).(2^2)_{133}",[1,2,2,3,4,4,5,6,6,7,8,9,10,
10,11,12,12,13,14,14,15,16,16,17,18,18,19,20,20,21,22,22,23,23,24,25,25,
26,27,27,28,29,29,30,31,32,32,33,34,34,35,36,36,37,38,38,39,40,40,41,42,
43,41,43,42],[
"fusion map is unique up to table autom.,\n",
"unique map that is compatible with Brauer tables"
]);
MOT("3_2.U4(3).2_3'",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[19595520,9797760,6912,3456,34992,17496,972,162,576,288,96,48,30,15,432,216,
108,108,108,21,21,21,48,24,27,27,72,36,1440,96,18,96,32,8,10,12,24,24],
[,[1,2,1,2,5,6,7,8,3,4,3,4,13,14,5,6,7,7,7,20,22,21,9,10,26,25,15,16,1,3,8,9,
9,11,13,15,27,27],[1,1,3,3,1,1,1,1,9,9,11,11,13,13,3,3,3,3,3,20,20,20,23,23,6,
6,9,9,29,30,29,32,33,34,35,30,32,32],,[1,2,3,4,5,6,7,8,9,10,11,12,1,2,15,16,
17,19,18,20,21,22,23,24,26,25,27,28,29,30,31,32,33,34,29,36,37,38],,[1,2,3,4,
5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,1,2,2,23,24,25,26,27,28,29,30,31,32,
33,34,35,36,37,38]],
0,
[(37,38),(21,22),(18,19),(25,26)],
["ConstructMGA","3_2.U4(3)","U4(3).2_3'",
[ [ 21, 22 ], [ 23, 26 ], [ 24, 25 ], [ 27, 28 ], [ 29, 30 ],
[ 31, 32 ], [ 33, 36 ], [ 34, 35 ], [ 37, 38 ], [ 39, 40 ],
[ 41, 42 ], [ 43, 44 ], [ 45, 46 ] ], ()]);
ARC("3_2.U4(3).2_3'","projectives",["3^2.U4(3).2_3'",[[36,36,4,4,9,9,0,0,4,4,
0,0,1,1,1,1,-2,-2*E(3),-2*E(3)^2,1,1,1,0,0,0,0,1,1,-6,2,0,-2,-2,0,-1,-1,1,1],[
90,90,-6,-6,-18,-18,0,0,2,2,2,2,0,0,6,6,0,0,0,-1,-1,-1,-2,-2,0,0,2,2,0,0,0,0,
0,0,0,0,0,0],[126,126,14,14,-9,-9,0,0,2,2,2,2,1,1,-1,-1,2,2*E(3),2*E(3)^2,0,0,
0,0,0,0,0,-1,-1,6,2,0,4,0,0,1,-1,1,1],[189,189,-3,-3,27,27,0,0,5,5,1,1,-1,-1,
3,3,0,0,0,0,0,0,1,1,0,0,-1,-1,9,1,0,1,1,-1,-1,1,1,1],[315,315,11,11,18,18,0,0,
-1,-1,-1,-1,0,0,2,2,2,2*E(3),2*E(3)^2,0,0,0,1,1,0,0,2,2,-15,-3,0,3,-1,-1,0,0,
0,0],[630,630,6,6,-45,-45,0,0,2,2,-2,-2,0,0,3,3,0,0,0,0,0,0,0,0,0,0,-1,-1,0,4,
0,2,-2,0,0,1,-1,-1],[630,630,-10,-10,36,36,0,0,6,6,-2,-2,0,0,-4,-4,2,2*E(3),
2*E(3)^2,0,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[720,720,16,16,18,18,0,0,0,
0,0,0,0,0,-2,-2,-2,-2*E(3),-2*E(3)^2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(24)+E(24)^11-E(24)^17-E(24)^19,-E(24)-E(24)^11+E(24)^17+E(24)^19],[729,729,
9,9,0,0,0,0,-3,-3,1,1,-1,-1,0,0,0,0,0,1,1,1,-1,-1,0,0,0,0,-9,3,0,-3,1,-1,1,0,
0,0],[756,756,-12,-12,27,27,0,0,-4,-4,0,0,1,1,3,3,0,0,0,0,0,0,0,0,0,0,-1,-1,6,
-2,0,-2,-2,0,1,1,1,1],[945,945,-15,-15,-27,-27,0,0,1,1,1,1,0,0,-3,-3,0,0,0,0,
0,0,1,1,0,0,1,1,15,-1,0,-1,-1,-1,0,-1,-1,-1],[30,-15,-2,1,12,-6,3,0,6,-3,-2,1,
0,0,4,-2,1,E(3)+3*E(3)^2,3*E(3)+E(3)^2,2,-1,-1,2,-1,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0],[42,-21,10,-5,6,-3,6,0,2,-1,2,-1,2,-1,
-2,1,4,-2*E(3),-2*E(3)^2,0,0,0,-2,1,E(3)+2*E(3)^2,2*E(3)+E(3)^2,2,-1,0,0,0,0,
0,0,0,0,0,0],[210,-105,18,-9,30,-15,3,0,2,-1,2,-1,0,0,6,-3,3,3,3,0,0,0,2,-1,
-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,2,-1,0,0,0,0,0,0,0,0,0,0],[210,-105,-14,7,30,
-15,3,0,10,-5,2,-1,0,0,-2,1,1,E(3)+3*E(3)^2,3*E(3)+E(3)^2,0,0,0,-2,1,
-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,-2,1,0,0,0,0,0,0,0,0,0,0],[210,-105,18,-9,-24,
12,12,0,2,-1,2,-1,0,0,0,0,0,0,0,0,0,0,2,-1,-E(3)+E(3)^2,E(3)-E(3)^2,-4,2,0,0,
0,0,0,0,0,0,0,0],[420,-210,4,-2,6,-3,15,0,-4,2,-4,2,0,0,-2,1,1,E(3)+3*E(3)^2,
3*E(3)+E(3)^2,0,0,0,0,0,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,2,-1,0,0,0,0,0,0,0,0,0,
0],[630,-315,-10,5,-72,36,9,0,6,-3,-2,1,0,0,8,-4,-1,-E(3)-3*E(3)^2,
-3*E(3)-E(3)^2,0,0,0,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[672,-336,32,-16,-12,6,
6,0,0,0,0,0,2,-1,-4,2,-4,2*E(3),2*E(3)^2,0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0],[720,-360,16,-8,-36,18,-9,0,0,0,0,0,0,0,4,-2,1,
E(3)+3*E(3)^2,3*E(3)+E(3)^2,-1,E(21)+E(21)^4+E(21)^5+E(21)^16+E(21)^17
+E(21)^20,E(21)^2+E(21)^8+E(21)^10+E(21)^11+E(21)^13+E(21)^19,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],
[GALOIS,[20,10]],[768,-384,0,0,48,-24,12,0,0,0,0,0,-2,1,0,0,0,0,0,-2,1,1,0,0,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0],[840,-420,8,-4,66,-33,-6,
0,8,-4,0,0,0,0,2,-1,-4,2*E(3),2*E(3)^2,0,0,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,2,
-1,0,0,0,0,0,0,0,0,0,0],[1260,-630,12,-6,18,-9,-9,0,4,-2,-4,2,0,0,-6,3,3,3,3,
0,0,0,0,0,0,0,-2,1,0,0,0,0,0,0,0,0,0,0],[1458,-729,18,-9,0,0,0,0,-6,3,2,-1,-2,
1,0,0,0,0,0,2,-1,-1,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1512,-756,-24,12,54,
-27,0,0,-8,4,0,0,2,-1,6,-3,0,0,0,0,0,0,0,0,0,0,-2,1,0,0,0,0,0,0,0,0,0,0],[
1890,-945,-30,15,-54,27,0,0,2,-1,2,-1,0,0,-6,3,0,0,0,0,0,0,2,-1,0,0,2,-1,0,0,
0,0,0,0,0,0,0,0]],]);
ARC("3_2.U4(3).2_3'","CAS",[rec(name:="3.u4(3):2",
permclasses:=( 5,11, 7,13,24,10, 6,12, 8,14,25,15,17,19,21,27,22,28,23, 9)
(16,18,20,26),
permchars:=( 2,11, 5,21,25,10,15,22,19,18, 7, 3,12,16,24,20, 8,14,23, 9, 4)
( 6,13)(27,36,33,37,34,31,29)(28,38,35,32,30),
text:="test:= 1. o.r., sym 2 decompose correctly")]);
ALF("3_2.U4(3).2_3'","U4(3).2_3'",[1,1,2,2,3,3,4,5,6,6,7,7,8,8,9,9,10,10,
10,11,11,11,12,12,13,14,15,15,16,17,18,19,20,21,22,23,24,25]);
ALF("3_2.U4(3).2_3'","3_2.U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,18,19,20,20,21,22,23,23,24,25,56,57,58,59,60,61,62,63,
64,64],[
"fusion map is unique"
]);
ALF("3_2.U4(3).2_3'","3.McL.2",[1,2,3,4,5,6,7,7,8,9,8,9,12,13,14,15,16,17,
17,18,19,20,21,22,23,23,30,31,41,42,43,44,45,45,46,47,53,54],[
"fusion map is unique up to table automorphisms"
]);
ALF("3_2.U4(3).2_3'","Suz",[1,4,2,13,4,5,5,6,7,27,9,29,12,37,13,16,16,14,
15,18,41,42,19,43,22,23,27,28,3,9,17,19,19,21,25,29,43,43],[
"fusion map is unique up to table automorphisms"
]);
ALN("3_2.U4(3).2_3'",["3.u4(3):2","SuzN3A"]);
MOT("3_2.U4(3).(2^2)_{133}",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,19595520,13824,6912,69984,34992,1944,324,1152,576,192,96,60,30,864,
432,216,108,42,21,96,48,27,144,72,8640,4320,576,288,36,576,288,192,96,48,24,
60,30,72,36,72,72,72,24192,2880,2304,256,432,36,36,32,20,144,36,14,2880,192,
36,192,64,16,20,24,24],
[,[1,2,1,2,5,6,7,8,3,4,3,4,13,14,5,6,7,7,19,20,9,10,23,15,16,1,2,3,4,8,9,10,9,
10,11,12,13,14,15,16,24,25,25,1,1,3,3,5,7,8,9,13,15,17,19,1,3,8,9,9,11,13,15,
24],[1,1,3,3,1,1,1,1,9,9,11,11,13,13,3,3,3,3,19,19,21,21,6,9,9,26,26,28,28,26,
31,31,33,33,35,35,37,37,28,28,31,31,31,44,45,46,47,44,45,44,51,52,46,46,55,56,
57,56,59,60,61,62,57,59],,[1,2,3,4,5,6,7,8,9,10,11,12,1,2,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,26,27,39,40,41,43,42,44,45,46,
47,48,49,50,51,45,53,54,55,56,57,58,59,60,61,56,63,64],,[1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,1,2,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,
37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,44,56,57,58,59,60,61,62,
63,64]],
0,
[(42,43)],
["ConstructMGA","3_2.U4(3).2_3","U4(3).(2^2)_{133}",
[[26,28],[27,29],[30,31],[32,34],[33,35],[36,38],[37,39],[40,42],[41,43],[44,
45],[46,48],[47,49],[50,52],[51,53],[54,56],[55,57],[58,60],[59,61],[62,64],
[63,65]],()]);
ALF("3_2.U4(3).(2^2)_{133}","U4(3).(2^2)_{133}",[1,1,2,2,3,3,4,5,6,6,7,7,
8,8,9,9,10,10,11,11,12,12,13,14,14,27,27,28,28,29,30,30,31,31,32,32,33,33,
34,34,35,35,35,15,16,17,18,19,20,21,22,23,24,25,26,36,37,38,39,40,41,42,
43,44]);
ALF("3_2.U4(3).(2^2)_{133}","Suz.2",[1,4,2,13,4,5,5,6,7,25,9,27,12,33,13,
15,15,14,17,36,18,37,21,25,26,38,42,40,54,44,46,60,47,61,50,64,51,66,54,
55,60,62,62,38,39,40,40,42,43,44,49,53,54,55,57,3,9,16,18,18,20,23,27,37],[
"fusion map is unique"
]);
ALN("3_2.U4(3).(2^2)_{133}",["Suz.2N3A"]);
MOT("4.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"constructions: SU(4,3)"
],
[13063680,13063680,13063680,13063680,2304,2304,23328,23328,23328,23328,3888,
3888,3888,3888,3888,3888,3888,3888,324,324,324,324,384,384,384,384,16,20,20,
20,20,288,288,288,288,72,72,72,72,28,28,28,28,28,28,28,28,32,32,32,32,108,108,
108,108,108,108,108,108,108,108,108,108,108,108,108,108,48,48,48,48],
[,[1,3,1,3,1,3,7,9,7,9,11,13,11,13,15,17,15,17,19,21,19,21,5,5,5,5,6,28,30,28,
30,7,9,7,9,11,13,15,17,40,42,40,42,44,46,44,46,24,26,24,26,56,58,56,58,52,54,
52,54,64,66,64,66,60,62,60,62,32,34,32,34],[1,4,3,2,5,6,1,4,3,2,1,4,3,2,1,4,3,
2,1,4,3,2,23,26,25,24,27,28,31,30,29,5,6,5,6,5,6,5,6,44,47,46,45,40,43,42,41,
51,50,49,48,7,10,9,8,7,10,9,8,7,10,9,8,7,10,9,8,23,26,25,24],,[1,2,3,4,5,6,7,
8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,1,2,3,4,32,33,34,35,
36,37,38,39,44,45,46,47,40,41,42,43,48,49,50,51,56,57,58,59,52,53,54,55,64,65,
66,67,60,61,62,63,68,69,70,71],,[1,4,3,2,5,6,7,10,9,8,11,14,13,12,15,18,17,16,
19,22,21,20,23,26,25,24,27,28,31,30,29,32,35,34,33,36,37,38,39,1,4,3,2,1,4,3,
2,51,50,49,48,52,55,54,53,56,59,58,57,60,63,62,61,64,67,66,65,68,71,70,69]],
0,
[(52,56)(53,57)(54,58)(55,59)(60,64)(61,65)(62,66)(63,67),(40,44)(41,45)
(42,46)(43,47),( 2, 4)( 8,10)(12,14)(16,18)(20,22)(24,26)(29,31)(33,35)(41,43)
(45,47)(48,51)(49,50)(53,55)(57,59)(61,63)(65,67)(69,71),(60,64)(61,65)(62,66)
(63,67),(11,15)(12,16)(13,17)(14,18)(36,38)(37,39)(52,60)(53,61)(54,62)(55,63)
(56,64)(57,65)(58,66)(59,67)],
["ConstructProj",[["U4(3)",[]],["2.U4(3)",[]],,["4.U4(3)",[-1,-1,-1,7,7,7,7,
-1,-1,-1,-1,-1,15,15,-1,-1]]]]);
ALF("4.U4(3)","U4(3)",[1,1,1,1,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,
7,8,9,9,9,9,10,10,10,10,11,11,12,12,13,13,13,13,14,14,14,14,15,15,15,15,
16,16,16,16,17,17,17,17,18,18,18,18,19,19,19,19,20,20,20,20]);
ALF("4.U4(3)","2.U4(3)",[1,2,1,2,3,4,5,6,5,6,7,8,7,8,9,10,9,10,11,12,11,
12,13,14,13,14,15,16,17,16,17,18,19,18,19,20,21,22,23,24,25,24,25,26,27,
26,27,28,29,28,29,30,31,30,31,32,33,32,33,34,35,34,35,36,37,36,37,38,39,
38,39]);
ALF("4.U4(3)","4.U4(3).2_1",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,
43,44,45,46,47,48,49,50,51,52,53,54,55,52,53,54,55,56,57,58,59,56,57,58,
59,60,61,62,63],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("4.U4(3)","4.U4(3).2_2",[1,2,3,2,4,5,6,7,8,7,9,10,11,10,12,13,14,13,
15,16,17,16,18,19,20,19,21,22,23,24,23,25,26,27,26,28,29,30,31,32,33,34,
35,32,35,34,33,36,37,37,36,38,39,40,39,41,42,43,42,44,45,46,47,44,47,46,
45,48,49,50,49],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("4.U4(3)","4.U4(3).2_3",[1,2,3,2,4,5,6,7,8,7,9,10,11,12,9,12,11,10,13,
14,15,14,16,17,18,17,19,20,21,22,21,23,24,25,24,26,27,26,27,28,29,30,31,
28,31,30,29,32,33,33,32,34,35,36,37,38,39,40,41,34,37,36,35,38,41,40,39,
42,43,44,43],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("4.U4(3)","4.U4(3).4",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,32,33,34,35,36,
37,38,39,40,41,42,43,44,45,46,47,48,49,46,47,48,49,46,47,48,49,46,47,48,
49,50,51,52,53],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
MOT("4.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[26127360,26127360,26127360,26127360,4608,4608,46656,46656,46656,46656,7776,
7776,7776,7776,7776,7776,7776,7776,648,648,648,648,768,768,768,768,32,40,40,
40,40,576,576,576,576,144,144,144,144,56,56,56,56,56,56,56,56,64,64,64,64,108,
108,108,108,108,108,108,108,96,96,96,96,48384,48384,48384,48384,2880,2880,
4608,4608,4608,4608,128,864,864,864,864,72,72,72,72,72,72,72,72,64,64,64,64,
40,40,40,40,576,576,576,576,576,576,576,576,144,144,144,144,144,144,144,144,
56,56,56,56,56,56,56,56],
[,[1,3,1,3,1,3,7,9,7,9,11,13,11,13,15,17,15,17,19,21,19,21,5,5,5,5,6,28,30,28,
30,7,9,7,9,11,13,15,17,40,42,40,42,44,46,44,46,24,26,24,26,52,54,52,54,56,58,
56,58,32,34,32,34,1,3,1,3,2,4,5,5,5,5,5,7,9,7,9,12,14,16,18,19,21,19,21,26,24,
26,24,29,31,29,31,32,34,32,34,34,32,34,32,36,36,36,36,38,38,38,38,40,42,40,42,
44,46,44,46],[1,4,3,2,5,6,1,4,3,2,1,4,3,2,1,4,3,2,1,4,3,2,23,26,25,24,27,28,
31,30,29,5,6,5,6,5,6,5,6,44,47,46,45,40,43,42,41,51,50,49,48,7,10,9,8,7,10,9,
8,23,26,25,24,64,67,66,65,69,68,73,72,71,70,74,64,67,66,65,69,68,69,68,64,67,
66,65,90,89,88,87,94,93,92,91,73,72,71,70,73,72,71,70,73,72,71,70,73,72,71,70,
115,118,117,116,111,114,113,112],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,26,27,1,2,3,4,32,33,34,35,36,37,38,39,44,45,46,47,40,
41,42,43,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,
71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,68,69,68,69,95,96,
97,98,99,100,101,102,103,104,105,106,107,108,109,110,115,116,117,118,111,112,
113,114],,[1,4,3,2,5,6,7,10,9,8,11,14,13,12,15,18,17,16,19,22,21,20,23,26,25,
24,27,28,31,30,29,32,35,34,33,36,37,38,39,1,4,3,2,1,4,3,2,51,50,49,48,52,55,
54,53,56,59,58,57,60,63,62,61,64,67,66,65,69,68,73,72,71,70,74,75,78,77,76,80,
79,82,81,83,86,85,84,90,89,88,87,92,91,94,93,102,101,100,99,98,97,96,95,106,
105,104,103,110,109,108,107,64,67,66,65,64,67,66,65]],
0,
[(91,93)(92,94),( 40, 44)( 41, 45)( 42, 46)( 43, 47)(111,115)(112,116)
(113,117)(114,118),( 2, 4)( 8, 10)( 12, 14)( 16, 18)( 20, 22)( 24, 26)
( 29, 31)( 33, 35)( 41, 43)( 45, 47)( 48, 51)( 49, 50)( 53, 55)( 57, 59)
( 61, 63)( 65, 67)( 68, 69)( 70, 73)( 71, 72)( 76, 78)( 79, 80)( 81, 82)
( 84, 86)( 87, 90)( 88, 89)( 91, 92)( 93, 94)( 95,102)( 96,101)( 97,100)
( 98, 99)(103,106)(104,105)(107,110)(108,109)(112,114)(116,118),( 2, 4)
( 8, 10)( 12, 14)( 16, 18)( 20, 22)( 24, 26)( 29, 31)( 33, 35)( 41, 43)
( 45, 47)( 48, 51)( 49, 50)( 53, 55)( 57, 59)( 61, 63)( 65, 67)( 68, 69)
( 70, 73)( 71, 72)( 76, 78)( 79, 80)( 81, 82)( 84, 86)( 87, 90)( 88, 89)
( 91, 94)( 92, 93)( 95,102)( 96,101)( 97,100)( 98, 99)(103,106)(104,105)
(107,110)(108,109)(112,114)(116,118),( 11, 15)( 12, 16)( 13, 17)( 14, 18)
( 36, 38)( 37, 39)( 52, 56)( 53, 57)( 54, 58)( 55, 59)( 79, 81)( 80, 82)
(103,107)(104,108)(105,109)(106,110),( 2, 4)( 8, 10)( 12, 14)( 16, 18)
( 20, 22)( 24, 26)( 29, 31)( 33, 35)( 41, 43)( 45, 47)( 48, 51)( 49, 50)
( 53, 55)( 57, 59)( 61, 63)( 64, 66)( 68, 69)( 70, 71)( 72, 73)( 75, 77)
( 79, 80)( 81, 82)( 83, 85)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95,100)
( 96, 99)( 97,102)( 98,101)(103,104)(105,106)(107,108)(109,110)(111,113)
(115,117)],
["ConstructProj",[["U4(3).2_1",[]],["2.U4(3).2_1",[]],,["4.U4(3).2_1",[-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,15,15,-1,31]]]]);
ALF("4.U4(3).2_1","U4(3).2_1",[1,1,1,1,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,
6,7,7,7,7,8,9,9,9,9,10,10,10,10,11,11,12,12,13,13,13,13,14,14,14,14,15,15,
15,15,16,16,16,16,17,17,17,17,18,18,18,18,19,19,19,19,20,20,21,21,21,21,
22,23,23,23,23,24,24,25,25,26,26,26,26,27,27,27,27,28,28,28,28,29,29,29,
29,30,30,30,30,31,31,31,31,32,32,32,32,33,33,33,33,34,34,34,34]);
ALF("4.U4(3).2_1","2.U4(3).2_1",[1,2,1,2,3,4,5,6,5,6,7,8,7,8,9,10,9,10,11,
12,11,12,13,14,13,14,15,16,17,16,17,18,19,18,19,20,21,22,23,24,25,24,25,
26,27,26,27,28,29,28,29,30,31,30,31,32,33,32,33,34,35,34,35,36,37,36,37,
38,39,40,41,40,41,42,43,44,43,44,45,46,47,48,49,50,49,50,51,52,51,52,53,
54,53,54,55,56,55,56,57,58,57,58,59,60,59,60,61,62,61,62,63,64,63,64,65,
66,65,66]);
ALF("4.U4(3).2_1","4.U4(3).4",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,32,33,34,35,
36,37,38,39,40,41,42,43,44,45,46,47,48,49,46,47,48,49,50,51,52,53,54,55,
56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,69,70,71,72,73,74,75,76,77,
78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,91,92,93,94,95,96,97,
98,99,100,101,102],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
MOT("4.U4(3).2_2",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[26127360,13063680,26127360,4608,4608,46656,23328,46656,7776,3888,7776,7776,
3888,7776,648,324,648,768,384,768,32,40,20,40,576,288,576,144,144,144,144,28,
28,28,28,32,32,216,108,216,216,108,216,108,108,108,108,96,48,96,103680,103680,
1152,192,192,192,2592,2592,2592,2592,432,432,216,216,144,144,36,36,16,20,20,
48,48,24,24,36,36,36,36],
[,[1,3,1,1,3,6,8,6,9,11,9,12,14,12,15,17,15,4,4,4,5,22,24,22,6,8,6,9,11,12,14,
32,34,32,34,19,19,41,43,41,38,40,38,44,46,44,46,25,27,25,3,3,1,4,5,5,8,8,8,8,
14,14,11,11,12,12,15,15,18,24,24,27,27,29,29,43,43,40,40],[1,2,3,4,5,1,2,3,1,
2,3,1,2,3,1,2,3,18,19,20,21,22,23,24,4,5,4,4,5,4,5,32,33,34,35,36,37,6,7,8,6,
7,8,6,7,8,7,18,19,20,51,52,53,54,55,56,51,52,51,52,51,52,51,52,53,53,53,53,69,
70,71,54,54,55,56,57,58,59,60],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,1,2,3,25,26,27,28,29,30,31,32,35,34,33,36,37,41,42,43,38,39,40,44,47,
46,45,48,49,50,51,52,53,54,55,56,59,60,57,58,61,62,63,64,65,66,67,68,69,51,52,
73,72,74,75,78,79,76,77],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30,31,1,2,3,2,36,37,38,39,40,41,42,43,44,47,46,45,
48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,
74,75,76,77,78,79]],
0,
[(67,68),(45,47),(38,41)(39,42)(40,43)(45,47)(57,59)(58,60)(72,73)(76,78)
(77,79),(33,35),(33,35)(45,47),(38,41)(39,42)(40,43)(57,59)(58,60)(72,73)
(76,78)(77,79),(51,52)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(70,71)(72,73)
(74,75)(76,77)(78,79)],
["ConstructMGA","4.U4(3)","2.U4(3).2_2",
[ [ 40, 41 ], [ 42, 43 ], [ 44, 45 ], [ 46, 47 ], [ 48, 49 ],
[ 50, 53 ], [ 51, 52 ], [ 54, 55 ], [ 56, 57 ], [ 58, 59 ],
[ 60, 61 ], [ 62, 63 ], [ 64, 67 ], [ 65, 66 ], [ 68, 69 ],
[ 70, 71 ] ], ()]);
ALF("4.U4(3).2_2","U4(3).2_2",[1,1,1,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,
9,9,9,10,10,10,11,11,12,12,13,13,13,13,14,14,15,15,15,16,16,16,17,17,17,
17,18,18,18,19,19,20,21,22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,30,
30,31,31,32,32,33,33,34,34]);
ALF("4.U4(3).2_2","2.U4(3).2_2",[1,2,1,3,4,5,6,5,7,8,7,9,10,9,11,12,11,13,
14,13,15,16,17,16,18,19,18,20,21,22,23,24,25,24,25,26,26,27,28,27,29,30,
29,31,32,31,32,33,34,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63]);
ALF("4.U4(3).2_2","2.O7(3)",[1,3,2,5,4,6,27,7,8,28,9,10,29,11,16,38,17,21,
23,22,24,25,61,26,34,30,33,36,35,37,32,47,79,48,78,50,51,52,83,53,52,82,
53,54,84,55,85,64,68,65,3,4,5,23,20,24,27,30,27,30,29,32,28,35,31,37,43,
44,49,61,60,68,68,67,73,82,86,83,86],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
MOT("4.U4(3).2_3",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[26127360,13063680,26127360,4608,4608,46656,23328,46656,3888,3888,3888,3888,
648,324,648,768,384,768,32,40,20,40,576,288,576,72,72,28,28,28,28,32,32,108,
108,108,108,108,108,108,108,96,48,96,1440,96,36,36,192,192,32,16,16,20,20,24,
24,48,48,48,48],
[,[1,3,1,1,3,6,8,6,9,11,9,11,13,15,13,4,4,4,5,20,22,20,6,8,6,9,11,28,30,28,30,
17,17,38,40,38,40,34,36,34,36,23,25,23,1,4,13,13,18,18,16,19,19,20,20,25,25,
44,44,44,44],[1,2,3,4,5,1,2,3,1,2,3,2,1,2,3,16,17,18,19,20,21,22,4,5,4,4,5,28,
29,30,31,32,33,6,7,8,7,6,7,8,7,16,17,18,45,46,45,45,50,49,51,53,52,55,54,46,
46,50,49,50,49],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,1,2,3,23,24,
25,26,27,28,31,30,29,32,33,38,39,40,41,34,35,36,37,42,43,44,45,46,47,48,50,49,
51,53,52,45,45,57,56,59,58,61,60],,[1,2,3,4,5,6,7,8,9,12,11,10,13,14,15,16,17,
18,19,20,21,22,23,24,25,26,27,1,2,3,2,32,33,34,37,36,35,38,41,40,39,42,43,44,
45,46,47,48,49,50,51,52,53,55,54,56,57,58,59,60,61]],
0,
[(56,57)(58,60)(59,61),(54,55),(49,50)(52,53)(58,61)(59,60),(47,48),(34,38)
(35,39)(36,40)(37,41)(56,57)(58,60)(59,61),(29,31),(10,12)(29,31)(35,37)
(39,41),(10,12)(29,31)(35,37)(39,41)(49,50)(52,53)(58,61)(59,60),(34,38)
(35,39)(36,40)(37,41),(10,12)(35,37)(39,41)],
["ConstructMGA","4.U4(3)","2.U4(3).2_3",
[ [ 40, 41 ], [ 42, 43 ], [ 44, 45 ], [ 46, 51 ], [ 47, 50 ],
[ 48, 53 ], [ 49, 52 ], [ 54, 55 ], [ 56, 59 ], [ 57, 58 ],
[ 60, 61 ], [ 62, 63 ], [ 64, 67 ], [ 65, 66 ], [ 68, 69 ],
[ 70, 71 ] ], ()]);
ALF("4.U4(3).2_3","U4(3).2_3",[1,1,1,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,8,8,
8,9,9,9,10,10,11,11,11,11,12,12,13,13,13,13,14,14,14,14,15,15,15,16,17,18,
18,19,19,20,21,21,22,22,23,23,24,24,25,25]);
ALF("4.U4(3).2_3","2.U4(3).2_3",[1,2,1,3,4,5,6,5,7,8,7,8,9,10,9,11,12,11,
13,14,15,14,16,17,16,18,19,20,21,20,21,22,22,23,24,23,24,25,26,25,26,27,
28,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45]);
MOT("4.U4(3).4",
[
"origin: ATLAS of finite groups, test: 1.o.r., pow[2,3,5,7],\n",
"constructions: GU(4,3)"
],
[52254720,52254720,52254720,52254720,9216,9216,93312,93312,93312,93312,7776,
7776,7776,7776,1296,1296,1296,1296,1536,1536,1536,1536,64,80,80,80,80,1152,
1152,1152,1152,144,144,112,112,112,112,112,112,112,112,128,128,128,128,108,
108,108,108,192,192,192,192,96768,96768,96768,96768,5760,5760,9216,9216,9216,
9216,256,1728,1728,1728,1728,72,72,144,144,144,144,128,128,128,128,80,80,80,
80,1152,1152,1152,1152,1152,1152,1152,1152,144,144,144,144,112,112,112,112,
112,112,112,112,96768,96768,96768,96768,96768,96768,96768,96768,1536,1536,
1536,1536,1536,1536,1536,1536,80,80,768,768,768,768,768,768,768,768,128,128,
128,128,1728,1728,1728,1728,1728,1728,1728,1728,192,192,192,192,192,192,192,
192,144,144,144,144,144,144,144,144,80,80,80,80,80,80,80,80,96,96,96,96,96,96,
96,96,112,112,112,112,112,112,112,112,112,112,112,112,112,112,112,112],
[,[1,3,1,3,1,3,7,9,7,9,11,13,11,13,15,17,15,17,5,5,5,5,6,24,26,24,26,7,9,7,9,
11,13,34,36,34,36,38,40,38,40,20,22,20,22,46,48,46,48,28,30,28,30,1,3,1,3,2,4,
5,5,5,5,5,7,9,7,9,12,14,15,17,15,17,22,20,22,20,25,27,25,27,28,30,28,30,30,28,
30,28,32,32,32,32,34,36,34,36,38,40,38,40,54,56,54,56,54,56,54,56,54,56,54,56,
54,56,54,56,58,59,60,62,60,62,63,61,63,61,63,61,60,62,65,67,65,67,65,67,65,67,
65,67,65,67,65,67,65,67,71,73,71,73,71,73,71,73,81,79,81,79,80,82,80,82,83,85,
83,85,90,88,90,88,95,97,95,97,95,97,95,97,99,101,99,101,99,101,99,101],[1,4,3,
2,5,6,1,4,3,2,1,4,3,2,1,4,3,2,19,22,21,20,23,24,27,26,25,5,6,5,6,5,6,38,41,40,
39,34,37,36,35,45,44,43,42,7,10,9,8,19,22,21,20,54,57,56,55,59,58,63,62,61,60,
64,54,57,56,55,59,58,54,57,56,55,78,77,76,75,82,81,80,79,63,62,61,60,63,62,61,
60,63,62,61,60,99,102,101,100,95,98,97,96,107,108,109,110,103,104,105,106,115,
116,117,118,111,112,113,114,120,119,125,126,127,128,121,122,123,124,131,132,
129,130,107,108,109,110,103,104,105,106,115,116,117,118,111,112,113,114,107,
108,109,110,103,104,105,106,163,164,161,162,159,160,157,158,125,126,127,128,
121,122,123,124,185,186,187,188,181,182,183,184,177,178,179,180,173,174,175,
176],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,1,2,3,4,28,
29,30,31,32,33,38,39,40,41,34,35,36,37,42,43,44,45,46,47,48,49,50,51,52,53,54,
55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,58,59,
58,59,83,84,85,86,87,88,89,90,91,92,93,94,99,100,101,102,95,96,97,98,103,104,
105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,
124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,
143,144,145,146,147,148,149,150,151,152,153,154,155,156,119,119,119,119,120,
120,120,120,165,166,167,168,169,170,171,172,181,182,183,184,185,186,187,188,
173,174,175,176,177,178,179,180],,[1,4,3,2,5,6,7,10,9,8,11,14,13,12,15,18,17,
16,19,22,21,20,23,24,27,26,25,28,31,30,29,32,33,1,4,3,2,1,4,3,2,45,44,43,42,
46,49,48,47,50,53,52,51,54,57,56,55,59,58,63,62,61,60,64,65,68,67,66,70,69,71,
74,73,72,78,77,76,75,80,79,82,81,90,89,88,87,86,85,84,83,94,93,92,91,54,57,56,
55,54,57,56,55,107,108,109,110,103,104,105,106,115,116,117,118,111,112,113,
114,120,119,125,126,127,128,121,122,123,124,131,132,129,130,137,138,139,140,
133,134,135,136,145,146,147,148,141,142,143,144,153,154,155,156,149,150,151,
152,164,161,162,163,160,157,158,159,169,170,171,172,165,166,167,168,107,108,
109,110,103,104,105,106,107,108,109,110,103,104,105,106]],
0,
[(157,159)(158,160)(161,163)(162,164),( 79, 81)( 80, 82)(157,158,159,160)
(161,162,163,164),( 34, 38)( 35, 39)( 36, 40)( 37, 41)( 95, 99)( 96,100)
( 97,101)( 98,102)(173,181)(174,182)(175,183)(176,184)(177,185)(178,186)
(179,187)(180,188),( 2, 4)( 8, 10)( 12, 14)( 16, 18)( 20, 22)( 25, 27)
( 29, 31)( 35, 37)( 39, 41)( 42, 45)( 43, 44)( 47, 49)( 51, 53)( 55, 57)
( 58, 59)( 60, 63)( 61, 62)( 66, 68)( 69, 70)( 72, 74)( 75, 78)( 76, 77)
( 79, 82)( 80, 81)( 83, 90)( 84, 89)( 85, 88)( 86, 87)( 91, 94)( 92, 93)
( 96, 98)(100,102)(103,107)(104,108)(105,109)(106,110)(111,115)(112,116)
(113,117)(114,118)(119,120)(121,125)(122,126)(123,127)(124,128)(129,131)
(130,132)(133,137)(134,138)(135,139)(136,140)(141,145)(142,146)(143,147)
(144,148)(149,153)(150,154)(151,155)(152,156)(157,161)(158,162)(159,163)
(160,164)(165,169)(166,170)(167,171)(168,172)(173,177)(174,178)(175,179)
(176,180)(181,185)(182,186)(183,187)(184,188),(103,105)(104,106)(107,109)
(108,110)(111,113)(112,114)(115,117)(116,118)(121,123)(122,124)(125,127)
(126,128)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)(145,147)
(146,148)(149,151)(150,152)(153,155)(154,156)(165,167)(166,168)(169,171)
(170,172)(173,175)(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)
(186,188),( 54, 56)( 55, 57)( 60, 62)( 61, 63)( 65, 67)( 66, 68)( 71, 73)
( 72, 74)( 75, 77)( 76, 78)( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)
( 92, 94)( 95, 97)( 96, 98)( 99,101)(100,102)(103,104,105,106)(107,108,109,110
)(111,112,113,114)(115,116,117,118)(121,122,123,124)(125,126,127,128)
(129,130)(131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)
(145,146,147,148)(149,150,151,152)(153,154,155,156)(165,166,167,168)
(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)
(185,186,187,188)],
["ConstructProj",[["U4(3).4",[]],["2.U4(3).4",[]],,["4.U4(3).4",[-1,-1,-1,-1,
-1,-1,-1,-1,15,15,-1,31]]]]);
ALF("4.U4(3).4","2.U4(3).4",[1,2,1,2,3,4,5,6,5,6,7,8,7,8,9,10,9,10,11,12,
11,12,13,14,15,14,15,16,17,16,17,18,19,20,21,20,21,22,23,22,23,24,25,24,
25,26,27,26,27,28,29,28,29,30,31,30,31,32,33,34,35,34,35,36,37,38,37,38,
39,40,41,42,41,42,43,44,43,44,45,46,45,46,47,48,47,48,49,50,49,50,51,52,
51,52,53,54,53,54,55,56,55,56,57,58,57,58,59,60,59,60,61,62,61,62,63,64,
63,64,65,66,67,68,67,68,69,70,69,70,71,72,73,74,75,76,75,76,77,78,77,78,
79,80,79,80,81,82,81,82,83,84,83,84,85,86,85,86,87,88,87,88,89,90,89,90,
91,92,91,92,93,94,93,94,95,96,95,96,97,98,97,98,99,100,99,100,101,102,101,
102]);
ALF("4.U4(3).4","U4(3).4",[1,1,1,1,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,
8,8,8,8,9,9,9,9,10,10,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,15,
15,15,15,16,16,16,16,17,17,18,18,18,18,19,20,20,20,20,21,21,22,22,22,22,
23,23,23,23,24,24,24,24,25,25,25,25,26,26,26,26,27,27,27,27,28,28,28,28,
29,29,29,29,30,30,30,30,31,31,31,31,32,32,32,32,33,33,33,33,34,35,36,36,
36,36,37,37,37,37,38,38,39,39,40,40,40,40,41,41,41,41,42,42,42,42,43,43,
43,43,44,44,44,44,45,45,45,45,46,46,46,46,47,47,47,47,48,48,48,48,49,49,
49,49,50,50,50,50,51,51,51,51,52,52,52,52,53,53,53,53]);
ALF("4.U4(3).4","U5(3)",[1,8,2,9,3,15,4,47,20,46,5,52,23,53,6,57,24,58,12,
17,18,16,42,19,85,45,86,22,64,21,63,25,71,28,107,80,106,29,105,81,108,35,
41,40,34,43,115,84,116,54,66,69,65,2,13,3,14,32,33,10,16,17,11,18,20,55,
22,56,100,99,24,72,26,73,39,40,41,38,117,119,120,118,50,65,61,48,49,62,66,
51,60,74,75,59,80,112,78,109,81,110,79,111,8,11,13,12,9,10,14,12,15,17,14,
18,15,16,13,18,82,83,31,38,37,35,30,39,36,34,36,41,37,40,47,51,55,54,46,
50,56,54,63,61,56,69,64,62,55,69,57,68,72,70,58,67,73,70,144,143,146,139,
142,140,141,145,89,96,94,91,90,95,93,92,107,101,112,113,106,104,109,113,
105,103,110,114,108,102,111,114],[
"fusion map is unique up to table aut."
]);
ALN("4.U4(3).4",["U5(3)M2"]);
MOT("6_1.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[19595520,19595520,19595520,19595520,19595520,19595520,6912,6912,6912,6912,
6912,6912,34992,34992,34992,34992,34992,34992,5832,5832,5832,5832,5832,5832,
1944,1944,162,162,576,576,576,576,576,576,48,48,48,30,30,30,30,30,30,432,432,
432,432,432,432,216,216,216,216,216,216,216,216,216,216,216,216,42,42,42,42,
42,42,42,42,42,42,42,42,48,48,48,48,48,48,162,162,162,162,162,162,162,162,162,
162,162,162,54,54,54,54,72,72,72,72,72,72],
[,[1,3,5,1,3,5,1,3,5,1,3,5,13,15,17,13,15,17,19,21,23,19,21,23,25,25,27,27,7,
9,11,7,9,11,10,12,8,38,40,42,38,40,42,13,15,17,13,15,17,19,21,23,19,21,23,25,
25,25,25,25,25,62,64,66,62,64,66,68,70,72,68,70,72,32,34,30,32,34,30,86,88,90,
86,88,90,80,82,84,80,82,84,94,94,92,92,44,46,48,44,46,48],[1,4,1,4,1,4,7,10,7,
10,7,10,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,29,32,29,32,29,32,35,35,35,38,41,38,
41,38,41,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,68,71,68,71,68,71,62,65,
62,65,62,65,77,74,77,74,77,74,15,18,15,18,15,18,17,14,17,14,17,14,13,16,13,16,
29,32,29,32,29,32],,[1,6,5,4,3,2,7,12,11,10,9,8,13,18,17,16,15,14,19,24,23,22,
21,20,25,26,27,28,29,34,33,32,31,30,35,37,36,1,6,5,4,3,2,44,49,48,47,46,45,50,
55,54,53,52,51,56,61,60,59,58,57,68,73,72,71,70,69,62,67,66,65,64,63,74,79,78,
77,76,75,86,91,90,89,88,87,80,85,84,83,82,81,94,95,92,93,96,101,100,99,98,
97],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,
54,55,56,57,58,59,60,61,1,2,3,4,5,6,1,2,3,4,5,6,77,78,79,74,75,76,80,81,82,83,
84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101]],
0,
[(92,94)(93,95),(74,77)(75,78)(76,79),(62,68)(63,69)(64,70)(65,71)(66,72)
(67,73),( 2, 6)( 3, 5)( 8, 12)( 9, 11)( 14, 18)( 15, 17)( 20, 24)
( 21, 23)( 30, 34)( 31, 33)( 36, 37)( 39, 43)( 40, 42)( 45, 49)( 46, 48)
( 51, 55)( 52, 54)( 57, 61)( 58, 60)( 63, 67)( 64, 66)( 69, 73)( 70, 72)
( 75, 79)( 76, 78)( 80, 86)( 81, 91)( 82, 90)( 83, 89)( 84, 88)( 85, 87)
( 92, 94)( 93, 95)( 97,101)( 98,100),( 2, 6)( 3, 5)( 8, 12)( 9, 11)
( 14, 18)( 15, 17)( 20, 24)( 21, 23)( 30, 34)( 31, 33)( 36, 37)( 39, 43)
( 40, 42)( 45, 49)( 46, 48)( 51, 55)( 52, 54)( 57, 61)( 58, 60)( 63, 67)
( 64, 66)( 69, 73)( 70, 72)( 75, 79)( 76, 78)( 80, 86)( 81, 91)( 82, 90)
( 83, 89)( 84, 88)( 85, 87)( 97,101)( 98,100)],
["ConstructProj",[["U4(3)",[]],["2.U4(3)",[]],["3_1.U4(3)",[-1,-1,-1,-1,-1,-1,
-1,-1,-13,-13,-1,-1,-1,-1,-1,-1]],,,["6_1.U4(3)",[-1,-1,-1,-1,-1,-13,-13,-1,
-1,-1,-1,-7,-7,-1,-1]]]]);
ALF("6_1.U4(3)","U4(3)",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,
5,5,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,11,
12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,14,14,14,15,15,15,15,15,15,
16,16,16,16,16,16,17,17,17,17,17,17,18,18,19,19,20,20,20,20,20,20]);
ALF("6_1.U4(3)","2.U4(3)",[1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,5,6,7,8,7,8,7,
8,9,10,11,12,13,14,13,14,13,14,15,15,15,16,17,16,17,16,17,18,19,18,19,18,
19,20,21,20,21,20,21,22,23,22,23,22,23,24,25,24,25,24,25,26,27,26,27,26,
27,28,29,28,29,28,29,30,31,30,31,30,31,32,33,32,33,32,33,34,35,36,37,38,
39,38,39,38,39]);
ALF("6_1.U4(3)","3_1.U4(3)",[1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,8,9,10,11,12,
10,11,12,13,13,14,14,15,16,17,15,16,17,18,19,20,21,22,23,21,22,23,24,25,
26,24,25,26,27,28,29,27,28,29,30,31,32,30,31,32,33,34,35,33,34,35,36,37,
38,36,37,38,39,40,41,39,40,41,42,43,44,42,43,44,45,46,47,45,46,47,48,48,
49,49,50,51,52,50,51,52]);
ALF("6_1.U4(3)","6_1.U4(3).2_1",[1,2,3,4,3,2,5,6,7,8,7,6,9,10,11,12,11,10,
13,14,15,16,15,14,17,18,19,20,21,22,23,24,23,22,25,26,26,27,28,29,30,29,
28,31,32,33,34,33,32,35,36,37,38,37,36,39,40,41,42,41,40,43,44,45,46,45,
44,47,48,49,50,49,48,51,52,53,54,53,52,55,56,57,58,59,60,55,60,59,58,57,
56,61,62,61,62,63,64,65,66,65,64],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("6_1.U4(3)","6_1.U4(3).2_2",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,
65,66,67,62,63,64,65,66,67,68,69,70,68,69,70,71,72,73,74,75,76,77,78,79,
80,81,82,83,84,83,84,85,86,87,88,89,90],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("6_1.U4(3)","6_1.U4(3).2_2'",[1,2,3,4,3,2,5,6,7,8,7,6,9,10,11,12,11,
10,13,14,15,16,15,14,17,18,19,20,21,22,23,24,23,22,25,26,26,27,28,29,30,
29,28,31,32,33,34,33,32,35,36,37,38,37,36,39,40,41,42,41,40,43,44,45,46,
47,48,43,48,47,46,45,44,49,50,50,49,51,51,52,53,54,55,56,57,52,57,56,55,
54,53,58,59,60,61,62,63,64,65,64,63]);
MOT("6_1.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,19595520,19595520,39191040,13824,6912,6912,13824,69984,34992,34992,
69984,11664,5832,5832,11664,3888,3888,324,324,1152,576,576,1152,96,48,60,30,
30,60,864,432,432,864,432,216,216,432,432,216,216,432,84,42,42,84,84,42,42,84,
96,48,48,96,162,162,162,162,162,162,54,54,144,72,72,144,24192,24192,2880,2880,
2304,2304,128,432,432,72,72,72,72,36,36,32,32,20,20,288,288,288,288,72,72,72,
72,28,28,28,28],
[,[1,3,3,1,1,3,3,1,9,11,11,9,13,15,15,13,17,17,19,19,5,7,7,5,8,6,27,29,29,27,
9,11,11,9,13,15,15,13,17,17,17,17,43,45,45,43,47,49,49,47,24,22,22,24,55,59,
57,55,59,57,61,61,31,33,33,31,1,1,4,4,5,5,5,9,9,16,16,18,18,19,19,24,24,30,30,
31,31,31,31,35,35,39,39,43,43,47,47],[1,4,1,4,5,8,5,8,1,4,1,4,1,4,1,4,1,4,1,4,
21,24,21,24,25,25,27,30,27,30,5,8,5,8,5,8,5,8,5,8,5,8,47,50,47,50,43,46,43,46,
54,51,54,51,11,10,11,10,11,10,9,12,21,24,21,24,67,68,70,69,72,71,73,67,68,70,
69,70,69,67,68,83,82,85,84,72,71,72,71,72,71,72,71,96,97,94,95],,[1,2,3,4,5,6,
7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,1,2,3,4,31,32,33,34,
35,36,37,38,39,40,41,42,47,48,49,50,43,44,45,46,51,52,53,54,55,56,57,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,69,70,86,
87,88,89,90,91,92,93,96,97,94,95],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,1,
2,3,4,1,2,3,4,54,53,52,51,55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,69,72,
71,73,74,75,77,76,79,78,80,81,83,82,85,84,89,88,87,86,91,90,93,92,67,68,67,
68]],
0,
[(51,54)(52,53)(69,70)(71,72)(76,77)(78,79)(82,83)(84,85)(86,89)(87,88)(90,91)
(92,93),(43,47)(44,48)(45,49)(46,50)(94,96)(95,97),(67,68)(69,70)(71,72)
(74,75)(76,77)(78,79)(80,81)(82,83)(84,85)(86,87)(88,89)(90,91)(92,93)(94,95)
(96,97)],
["ConstructMGA","6_1.U4(3)","2.U4(3).2_1",
[ [ 40, 41 ], [ 42, 43 ], [ 44, 45 ], [ 46, 47 ], [ 48, 49 ],
[ 50, 51 ], [ 52, 53 ], [ 54, 55 ], [ 56, 57 ], [ 58, 59 ],
[ 60, 61 ], [ 62, 63 ], [ 64, 65 ], [ 66, 67 ], [ 68, 69 ],
[ 70, 71 ], [ 72, 73 ], [ 74, 75 ], [ 76, 77 ], [ 78, 79 ],
[ 80, 81 ], [ 82, 83 ], [ 84, 85 ], [ 86, 87 ], [ 88, 89 ],
[ 90, 91 ], [ 92, 93 ], [ 94, 95 ], [ 96, 97 ], [ 98, 99 ],
[ 100, 101 ] ], ()]);
ALF("6_1.U4(3).2_1","U4(3).2_1",[1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,6,6,
7,7,7,7,8,8,9,9,9,9,10,10,10,10,11,11,11,11,12,12,12,12,13,13,13,13,14,14,
14,14,15,15,15,15,16,16,16,16,16,16,17,17,18,18,18,18,19,19,20,20,21,21,
22,23,23,24,24,25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,
34]);
ALF("6_1.U4(3).2_1","2.U4(3).2_1",[1,2,1,2,3,4,3,4,5,6,5,6,7,8,7,8,9,10,
11,12,13,14,13,14,15,15,16,17,16,17,18,19,18,19,20,21,20,21,22,23,22,23,
24,25,24,25,26,27,26,27,28,29,28,29,30,31,30,31,30,31,32,33,34,35,34,35,
36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
60,61,62,63,64,65,66]);
ALF("6_1.U4(3).2_1","3_1.U4(3).2_1",[1,2,2,1,3,4,4,3,5,6,6,5,7,8,8,7,9,9,
10,10,11,12,12,11,13,14,15,16,16,15,17,18,18,17,19,20,20,19,21,22,22,21,
23,24,24,23,25,26,26,25,27,28,28,27,29,30,31,29,30,31,32,32,33,34,34,33,
35,35,36,36,37,37,38,39,39,40,40,41,41,42,42,43,43,44,44,45,45,46,46,47,
47,48,48,49,49,50,50]);
MOT("6_1.U4(3).2_2",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,39191040,39191040,39191040,39191040,39191040,13824,13824,13824,
13824,13824,13824,69984,69984,69984,69984,69984,69984,11664,11664,11664,11664,
11664,11664,3888,3888,324,324,1152,1152,1152,1152,1152,1152,96,96,96,60,60,60,
60,60,60,864,864,864,864,864,864,432,432,432,432,432,432,432,432,432,432,432,
432,42,42,42,42,42,42,48,48,48,324,324,324,324,324,324,324,324,324,324,324,
324,54,54,144,144,144,144,144,144,311040,311040,311040,311040,311040,311040,
3456,3456,3456,576,576,576,576,576,576,576,576,576,7776,7776,7776,7776,7776,
7776,7776,7776,7776,7776,7776,7776,1296,1296,1296,1296,1296,1296,648,648,648,
648,648,648,144,144,36,36,48,48,48,60,60,60,60,60,60,144,144,144,144,144,144,
72,72,72,72,72,72,108,108,108,108,108,108,108,108,108,108,108,108],
[,[1,3,5,1,3,5,1,3,5,1,3,5,13,15,17,13,15,17,19,21,23,19,21,23,25,25,27,27,7,
9,11,7,9,11,10,12,8,38,40,42,38,40,42,13,15,17,13,15,17,19,21,23,19,21,23,25,
25,25,25,25,25,62,64,66,62,64,66,32,34,30,77,79,81,77,79,81,71,73,75,71,73,75,
83,83,44,46,48,44,46,48,1,3,5,1,3,5,1,3,5,7,9,11,10,12,8,10,12,8,13,15,17,13,
15,17,13,15,17,13,15,17,25,25,25,25,25,25,19,21,23,19,21,23,25,25,27,27,29,31,
33,38,40,42,38,40,42,44,46,48,44,46,48,53,55,51,53,55,51,77,79,81,77,79,81,71,
73,75,71,73,75],[1,4,1,4,1,4,7,10,7,10,7,10,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,
29,32,29,32,29,32,35,35,35,38,41,38,41,38,41,7,10,7,10,7,10,7,10,7,10,7,10,7,
10,7,10,7,10,62,65,62,65,62,65,68,68,68,15,18,15,18,15,18,17,14,17,14,17,14,
13,16,29,32,29,32,29,32,91,94,91,94,91,94,97,97,97,100,100,100,103,106,103,
106,103,106,91,94,91,94,91,94,91,94,91,94,91,94,91,94,91,94,91,94,91,94,91,94,
91,94,97,97,97,97,137,137,137,140,143,140,143,140,143,100,100,100,100,100,100,
103,106,103,106,103,106,111,114,111,114,111,114,119,116,119,116,119,116],,[1,
6,5,4,3,2,7,12,11,10,9,8,13,18,17,16,15,14,19,24,23,22,21,20,25,26,27,28,29,
34,33,32,31,30,35,37,36,1,6,5,4,3,2,44,49,48,47,46,45,50,55,54,53,52,51,56,61,
60,59,58,57,62,67,66,65,64,63,68,70,69,77,82,81,80,79,78,71,76,75,74,73,72,83,
84,85,90,89,88,87,86,91,96,95,94,93,92,97,99,98,100,102,101,103,108,107,106,
105,104,115,120,119,118,117,116,109,114,113,112,111,110,121,126,125,124,123,
122,127,132,131,130,129,128,133,134,135,136,137,139,138,91,96,95,94,93,92,149,
148,147,146,151,150,152,157,156,155,154,153,164,169,168,167,166,165,158,163,
162,161,160,159],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
49,50,51,52,53,54,55,56,57,58,59,60,61,1,2,3,4,5,6,68,69,70,71,72,73,74,75,76,
77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,
102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,
121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,
140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,
159,160,161,162,163,164,165,166,167,168,169]],
0,
[(135,136),( 2, 6)( 3, 5)( 8, 12)( 9, 11)( 14, 18)( 15, 17)( 20, 24)
( 21, 23)( 30, 34)( 31, 33)( 36, 37)( 39, 43)( 40, 42)( 45, 49)( 46, 48)
( 51, 55)( 52, 54)( 57, 61)( 58, 60)( 63, 67)( 64, 66)( 69, 70)( 71, 77)
( 72, 82)( 73, 81)( 74, 80)( 75, 79)( 76, 78)( 86, 90)( 87, 89)( 92, 96)
( 93, 95)( 98, 99)(101,102)(104,108)(105,107)(109,115)(110,120)(111,119)
(112,118)(113,117)(114,116)(122,126)(123,125)(128,132)(129,131)(138,139)
(141,145)(142,144)(146,149)(147,148)(150,151)(153,157)(154,156)(158,164)
(159,169)(160,168)(161,167)(162,166)(163,165),( 91, 94)( 92, 95)( 93, 96)
(103,106)(104,107)(105,108)(109,112)(110,113)(111,114)(115,118)(116,119)
(117,120)(121,124)(122,125)(123,126)(127,130)(128,131)(129,132)(133,134)
(140,143)(141,144)(142,145)(146,149)(147,150)(148,151)(152,155)(153,156)
(154,157)(158,161)(159,162)(160,163)(164,167)(165,168)(166,169)],
["ConstructProj",[["U4(3).2_2",[]],["2.U4(3).2_2",[]],["3_1.U4(3).2_2",[-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]],,,["6_1.U4(3).2_2",[-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1]]]]);
ALF("6_1.U4(3).2_2","U4(3).2_2",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,
4,4,4,4,5,5,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,
11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,15,15,15,15,15,15,
16,16,16,16,16,16,17,17,18,18,18,18,18,18,19,19,19,19,19,19,20,20,20,21,
21,21,22,22,22,22,22,22,23,23,23,23,23,23,24,24,24,24,24,24,25,25,25,25,
25,25,26,26,26,26,26,26,27,27,28,28,29,29,29,30,30,30,30,30,30,31,31,31,
31,31,31,32,32,32,32,32,32,33,33,33,33,33,33,34,34,34,34,34,34]);
ALF("6_1.U4(3).2_2","2.U4(3).2_2",[1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,5,6,7,
8,7,8,7,8,9,10,11,12,13,14,13,14,13,14,15,15,15,16,17,16,17,16,17,18,19,
18,19,18,19,20,21,20,21,20,21,22,23,22,23,22,23,24,25,24,25,24,25,26,26,
26,27,28,27,28,27,28,29,30,29,30,29,30,31,32,33,34,33,34,33,34,35,36,35,
36,35,36,37,37,37,38,38,38,39,40,39,40,39,40,41,42,41,42,41,42,43,44,43,
44,43,44,45,46,45,46,45,46,47,48,47,48,47,48,49,50,51,52,53,53,53,54,55,
54,55,54,55,56,57,56,57,56,57,58,59,58,59,58,59,60,61,60,61,60,61,62,63,
62,63,62,63]);
ALF("6_1.U4(3).2_2","3_1.U4(3).2_2",[1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,8,9,
10,11,12,10,11,12,13,13,14,14,15,16,17,15,16,17,18,19,20,21,22,23,21,22,
23,24,25,26,24,25,26,27,28,29,27,28,29,30,31,32,30,31,32,33,34,35,33,34,
35,36,37,38,39,40,41,39,40,41,42,43,44,42,43,44,45,45,46,47,48,46,47,48,
49,50,51,49,50,51,52,53,54,55,56,57,58,59,60,58,59,60,61,62,63,61,62,63,
64,65,66,64,65,66,67,68,69,67,68,69,70,71,72,70,71,72,73,73,74,74,75,76,
77,78,79,80,78,79,80,81,82,83,81,82,83,84,85,86,84,85,86,87,88,89,87,88,
89,90,91,92,90,91,92]);
ALF("6_1.U4(3).2_2","3.U6(2)M5",[1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,8,9,10,
11,12,10,11,12,13,13,14,14,15,16,17,15,16,17,18,19,20,21,22,23,21,22,23,
24,25,26,24,25,26,27,28,29,27,28,29,30,31,32,30,31,32,33,34,35,33,34,35,
36,37,38,39,40,41,39,40,41,42,43,44,42,43,44,45,45,46,47,48,46,47,48,49,
50,51,49,50,51,52,53,54,55,56,57,58,59,60,58,59,60,61,62,63,61,62,63,64,
65,66,64,65,66,67,68,69,67,68,69,70,71,72,70,71,72,73,73,74,74,75,76,77,
78,79,80,78,79,80,81,82,83,81,82,83,84,85,86,84,85,86,87,88,89,87,88,89,
90,91,92,90,91,92]);
ALF("6_1.U4(3).2_2","6.U6(2)",[1,6,5,4,3,2,16,15,14,13,18,17,28,33,32,31,
30,29,22,27,26,25,24,23,34,35,34,35,48,50,49,48,50,49,60,62,61,63,68,67,
66,65,64,90,89,88,87,92,91,96,95,94,93,98,97,108,107,106,105,110,109,113,
118,117,116,115,114,128,130,129,138,137,136,135,134,139,142,141,140,145,
144,143,146,147,190,192,191,190,192,191,7,12,11,10,9,8,19,21,20,48,50,49,
54,59,58,57,56,55,69,74,73,72,71,70,75,80,79,78,77,76,99,104,103,102,101,
100,81,86,85,84,83,82,112,111,112,111,128,130,129,148,153,152,151,150,149,
190,192,191,190,192,191,196,201,200,199,198,197,212,211,210,209,208,213,
216,215,214,219,218,217],[
"fusion map is unique up to table autom.,\n",
"representative compatible with relevant factors"
]);
ALF("6_1.U4(3).2_2","3.O7(3)",[1,5,3,4,2,6,10,8,12,7,11,9,13,38,13,37,13,
39,14,41,16,40,15,42,17,43,20,59,25,29,27,28,26,30,31,32,33,34,84,36,83,
35,85,51,45,51,44,51,46,55,53,57,52,56,54,58,49,58,48,58,50,65,109,67,108,
66,110,71,72,73,75,119,74,118,76,117,76,114,75,116,74,115,77,120,87,95,87,
94,87,96,4,8,6,7,5,9,10,11,12,28,29,30,22,32,24,31,23,33,39,46,38,45,37,
44,38,44,37,46,39,45,43,49,43,48,43,50,40,53,42,52,41,54,47,58,62,63,68,
69,70,83,81,85,80,84,82,95,94,94,96,96,95,91,100,93,99,92,101,115,123,114,
122,116,121,119,121,118,123,117,122],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
MOT("6_1.U4(3).2_2'",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,19595520,19595520,39191040,13824,6912,6912,13824,69984,34992,34992,
69984,11664,5832,5832,11664,3888,3888,324,324,1152,576,576,1152,96,48,60,30,30
,60,864,432,432,864,432,216,216,432,432,216,216,432,42,42,42,42,42,42,48,48,48
,162,162,162,162,162,162,108,108,108,108,144,72,72,144,103680,103680,1152,192,
192,192,2592,2592,2592,2592,432,432,216,216,144,144,36,36,16,20,20,48,48,24,24
,36,36,36,36],
[,[1,3,3,1,1,3,3,1,9,11,11,9,13,15,15,13,17,17,19,19,5,7,7,5,8,6,27,29,29,27,9
,11,11,9,13,15,15,13,17,17,17,17,43,45,47,43,45,47,24,22,22,52,56,54,52,56,54,
60,60,58,58,31,33,33,31,1,1,1,5,8,8,9,9,9,9,13,13,17,17,13,13,19,19,21,27,27,
31,31,42,42,60,60,58,58],[1,4,1,4,5,8,5,8,1,4,1,4,1,4,1,4,1,4,1,4,21,24,21,24,
25,25,27,30,27,30,5,8,5,8,5,8,5,8,5,8,5,8,43,46,43,46,43,46,49,49,49,11,10,11,
10,11,10,9,12,9,12,21,24,21,24,66,67,68,69,70,71,66,67,66,67,66,67,66,67,68,68
,68,68,84,85,86,69,69,70,71,72,73,74,75],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
,16,17,18,19,20,21,22,23,24,25,26,1,2,3,4,31,32,33,34,35,36,37,38,39,40,41,42,
43,44,45,46,47,48,49,51,50,52,53,54,55,56,57,60,61,58,59,62,63,64,65,66,67,68,
69,70,71,74,75,72,73,76,77,78,79,80,81,82,83,84,66,67,88,87,89,90,93,94,91,92]
,,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36,37,38,39,40,41,42,1,2,3,4,3,2,49,51,50,52,53,54,55,56,
57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,
83,84,85,86,87,88,89,90,91,92,93,94]],
0,
[(82,83),(50,51),
(58,60)(59,61)(66,67)(70,71)(72,75)(73,74)(76,77)(78,79)(80,81)(85,86)(89,90)
(91,94)(92,93)
,(58,60)(59,61)(72,74)(73,75)(87,88)(91,93)(92,94),
(44,48)(45,47)(58,60)(59,61)(66,67)(70,71)(72,75)(73,74)(76,77)(78,79)(80,81)
(85,86)(89,90)(91,94)(92,93)
],
["ConstructMGA","6_1.U4(3)","2.U4(3).2_2'",[[40,41],[42,43],[44,45],[46,47],[
48,49],[50,51],[52,53],[54,55],[56,59],[57,58],[60,61],[62,63],[64,65],[66,67]
,[68,69],[70,71],[72,73],[74,75],[76,77],[78,79],[80,81],[82,85],[83,84],[86,
87],[88,89],[90,91],[92,93],[94,97],[95,96],[98,99],[100,101]],()]);
ALF("6_1.U4(3).2_2'","U4(3).2_2'",[1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,6,
6,7,7,7,7,8,8,9,9,9,9,10,10,10,10,11,11,11,11,12,12,12,12,13,13,13,13,13,
13,14,14,14,15,15,15,15,15,15,16,16,17,17,18,18,18,18,19,19,20,21,22,22,
23,23,24,24,25,25,26,26,27,27,28,28,29,30,30,31,31,32,32,33,33,34,34]);
ALF("6_1.U4(3).2_2'","2.U4(3).2_2'",[1,2,1,2,3,4,3,4,5,6,5,6,7,8,7,8,9,10,
11,12,13,14,13,14,15,15,16,17,16,17,18,19,18,19,20,21,20,21,22,23,22,23,
24,25,24,25,24,25,26,26,26,27,28,27,28,27,28,29,30,31,32,33,34,33,34,35,
36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
60,61,62,63]);
ALF("6_1.U4(3).2_2'","3_1.U4(3).2_2'",[1,2,2,1,3,4,4,3,5,6,6,5,7,8,8,7,9,
9,10,10,11,12,12,11,13,14,15,16,16,15,17,18,18,17,19,20,20,19,21,22,22,21,
23,24,25,23,24,25,26,27,27,28,29,30,28,29,30,31,31,32,32,33,34,34,33,35,
35,36,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,46,46,47,47,48,48,
49,49,50,50]);
MOT("6_2.U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]\n",
"3rd power map determined only up to matrix automorphisms (80,82)(81,83)\n",
"and (76,78)(77,79)"
],
[19595520,19595520,19595520,19595520,19595520,19595520,6912,6912,6912,6912,
6912,6912,34992,34992,34992,34992,34992,34992,1944,1944,1944,1944,162,162,576,
576,576,576,576,576,48,48,48,30,30,30,30,30,30,432,432,432,432,432,432,216,
216,216,216,216,216,216,216,216,216,216,216,42,42,42,42,42,42,42,42,42,42,42,
42,48,48,48,48,48,48,54,54,54,54,54,54,54,54,72,72,72,72,72,72],
[,[1,3,5,1,3,5,1,3,5,1,3,5,13,15,17,13,15,17,19,19,21,21,23,23,7,9,11,7,9,11,
10,12,8,34,36,38,34,36,38,13,15,17,13,15,17,19,19,19,19,19,19,21,21,21,21,21,
21,58,60,62,58,60,62,64,66,68,64,66,68,28,30,26,28,30,26,78,78,76,76,82,82,80,
80,40,42,44,40,42,44],[1,4,1,4,1,4,7,10,7,10,7,10,1,4,1,4,1,4,1,4,1,4,1,4,25,
28,25,28,25,28,31,31,31,34,37,34,37,34,37,7,10,7,10,7,10,7,10,7,10,7,10,7,10,
7,10,7,10,64,67,64,67,64,67,58,61,58,61,58,61,73,70,73,70,73,70,15,18,17,14,
15,18,17,14,25,28,25,28,25,28],,[1,6,5,4,3,2,7,12,11,10,9,8,13,18,17,16,15,14,
19,20,21,22,23,24,25,30,29,28,27,26,31,33,32,1,6,5,4,3,2,40,45,44,43,42,41,46,
51,50,49,48,47,52,57,56,55,54,53,64,69,68,67,66,65,58,63,62,61,60,59,70,75,74,
73,72,71,78,79,76,77,82,83,80,81,84,89,88,87,86,85],,[1,2,3,4,5,6,7,8,9,10,11,
12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,
38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,1,2,3,4,5,6,1,2,3,
4,5,6,73,74,75,70,71,72,76,77,78,79,80,81,82,83,84,85,86,87,88,89]],
0,
[(70,73)(71,74)(72,75),(58,64)(59,65)(60,66)(61,67)(62,68)(63,69),( 2, 6)
( 3, 5)( 8,12)( 9,11)(14,18)(15,17)(26,30)(27,29)(32,33)(35,39)(36,38)(41,45)
(42,44)(47,51)(48,50)(53,57)(54,56)(59,63)(60,62)(65,69)(66,68)(71,75)(72,74)
(76,78)(77,79)(80,82)(81,83)(85,89)(86,88),(19,21)(20,22)(46,52)(47,53)(48,54)
(49,55)(50,56)(51,57)(76,80)(77,81)(78,82)(79,83)],
["ConstructProj",[["U4(3)",[]],["2.U4(3)",[]],["3_2.U4(3)",[-1,-13,-13,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1]],,,["6_2.U4(3)",[-1,-1,-1,-7,-7,-13,-13,-1,-1,-1,-1,
-1]]]]);
ALF("6_2.U4(3)","U4(3)",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,6,6,
7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,11,12,12,
12,12,12,12,13,13,13,13,13,13,14,14,14,14,14,14,15,15,15,15,15,15,16,16,
17,17,18,18,19,19,20,20,20,20,20,20]);
ALF("6_2.U4(3)","2.U4(3)",[1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,5,6,7,8,9,10,
11,12,13,14,13,14,13,14,15,15,15,16,17,16,17,16,17,18,19,18,19,18,19,20,
21,20,21,20,21,22,23,22,23,22,23,24,25,24,25,24,25,26,27,26,27,26,27,28,
29,28,29,28,29,30,31,32,33,34,35,36,37,38,39,38,39,38,39]);
ALF("6_2.U4(3)","3_2.U4(3)",[1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,8,9,10,10,11,
11,12,12,13,14,15,13,14,15,16,17,18,19,20,21,19,20,21,22,23,24,22,23,24,
25,26,27,25,26,27,28,29,30,28,29,30,31,32,33,31,32,33,34,35,36,34,35,36,
37,38,39,37,38,39,40,40,41,41,42,42,43,43,44,45,46,44,45,46]);
ALF("6_2.U4(3)","6_2.U4(3).2_1",[1,2,3,4,3,2,5,6,7,8,7,6,9,10,11,12,11,10,
13,14,15,16,17,18,19,20,21,22,21,20,23,24,24,25,26,27,28,27,26,29,30,31,
32,31,30,33,34,35,36,35,34,37,38,39,40,39,38,41,42,43,44,43,42,45,46,47,
48,47,46,49,50,51,52,51,50,53,54,53,54,55,56,55,56,57,58,59,60,59,58],[
"fusion map is unique up to table autom.,\n",
"compatible with Brauer tables and factors"
]);
ALF("6_2.U4(3)","6_2.U4(3).2_3",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,
39,40,41,42,43,44,45,46,47,48,49,44,45,46,47,48,49,50,51,52,53,54,55,50,
51,52,53,54,55,56,57,58,56,57,58,59,60,61,62,59,60,61,62,63,64,65,66,67,
68],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("6_2.U4(3)","6_2.U4(3).2_3'",[1,2,3,4,3,2,5,6,7,8,7,6,9,10,11,12,11,10,
13,14,13,14,15,16,17,18,19,20,19,18,21,22,22,23,24,25,26,25,24,27,28,29,30,
29,28,31,32,33,34,35,36,31,36,35,34,33,32,37,38,39,40,41,42,37,42,41,40,39,
38,43,44,44,43,45,45,46,47,48,49,48,49,46,47,50,51,52,53,52,51],[
"fusion map determined up to table aut. by compatibility\n",
"with factors"
]);
MOT("6_2.U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,19595520,19595520,39191040,13824,6912,6912,13824,69984,34992,34992,
69984,3888,3888,3888,3888,324,324,1152,576,576,1152,96,48,60,30,30,60,864,432,
432,864,432,216,216,432,432,216,216,432,84,42,42,84,84,42,42,84,96,48,48,96,
54,54,54,54,144,72,72,144,24192,24192,2880,2880,2304,2304,128,432,432,72,72,
72,72,36,36,32,32,20,20,288,288,288,288,72,72,72,72,28,28,28,28],
[,[1,3,3,1,1,3,3,1,9,11,11,9,13,13,15,15,17,17,5,7,7,5,8,6,25,27,27,25,9,11,
11,9,13,13,13,13,15,15,15,15,41,43,43,41,45,47,47,45,22,20,20,22,53,53,55,55,
29,31,31,29,1,1,4,4,5,5,5,9,9,14,14,16,16,17,17,22,22,28,28,29,29,29,29,33,33,
37,37,41,41,45,45],[1,4,1,4,5,8,5,8,1,4,1,4,1,4,1,4,1,4,19,22,19,22,23,23,25,
28,25,28,5,8,5,8,5,8,5,8,5,8,5,8,45,48,45,48,41,44,41,44,52,49,52,49,11,10,11,
10,19,22,19,22,61,62,64,63,66,65,67,61,62,64,63,64,63,61,62,77,76,79,78,66,65,
66,65,66,65,66,65,90,91,88,89],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,1,2,3,4,29,30,31,32,33,34,35,36,37,38,39,40,45,46,47,48,41,
42,43,44,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,
72,73,74,75,76,77,63,64,80,81,82,83,84,85,86,87,90,91,88,89],,[1,2,3,4,5,6,7,
8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,
34,35,36,37,38,39,40,1,2,3,4,1,2,3,4,52,51,50,49,53,54,55,56,57,58,59,60,61,
62,64,63,66,65,67,68,69,71,70,73,72,74,75,77,76,79,78,83,82,81,80,85,84,87,86,
61,62,61,62]],
0,
[(49,52)(50,51)(63,64)(65,66)(70,71)(72,73)(76,77)(78,79)(80,83)(81,82)(84,85)
(86,87),(41,45)(42,46)(43,47)(44,48)(88,90)(89,91),(61,62)(63,64)(65,66)
(68,69)(70,71)(72,73)(74,75)(76,77)(78,79)(80,81)(82,83)(84,85)(86,87)(88,89)
(90,91),(13,15)(14,16)(33,37)(34,38)(35,39)(36,40)(53,55)(54,56)(70,72)(71,73)
(84,86)(85,87)],
["ConstructMGA","6_2.U4(3)","2.U4(3).2_1",
[ [ 40, 41 ], [ 42, 43 ], [ 44, 45 ], [ 46, 47 ], [ 48, 49 ],
[ 50, 51 ], [ 52, 53 ], [ 54, 55 ], [ 56, 57 ], [ 58, 59 ],
[ 60, 61 ], [ 62, 63 ], [ 64, 65 ], [ 66, 67 ], [ 68, 69 ],
[ 70, 71 ], [ 72, 73 ], [ 74, 75 ], [ 76, 77 ], [ 78, 79 ],
[ 80, 81 ], [ 82, 83 ], [ 84, 85 ], [ 86, 87 ], [ 88, 89 ] ], ()]);
ALF("6_2.U4(3).2_1","U4(3).2_1",[1,1,1,1,2,2,2,2,3,3,3,3,4,4,5,5,6,6,7,7,
7,7,8,8,9,9,9,9,10,10,10,10,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,
14,15,15,15,15,16,16,17,17,18,18,18,18,19,19,20,20,21,21,22,23,23,24,24,
25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34]);
ALF("6_2.U4(3).2_1","2.U4(3).2_1",[1,2,1,2,3,4,3,4,5,6,5,6,7,8,9,10,11,12,
13,14,13,14,15,15,16,17,16,17,18,19,18,19,20,21,20,21,22,23,22,23,24,25,
24,25,26,27,26,27,28,29,28,29,30,31,32,33,34,35,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,
66]);
ALF("6_2.U4(3).2_1","3_2.U4(3).2_1",[1,2,2,1,3,4,4,3,5,6,6,5,7,7,8,8,9,9,
10,11,11,10,12,13,14,15,15,14,16,17,17,16,18,19,19,18,20,21,21,20,22,23,
23,22,24,25,25,24,26,27,27,26,28,28,29,29,30,31,31,30,32,32,33,33,34,34,
35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,45,46,46,47,
47]);
MOT("6_2.U4(3).2_3",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]\n",
"3rd power map determined only up to table automorphism (59,61)(60,62)"
],
[39191040,39191040,39191040,39191040,39191040,39191040,13824,13824,13824,
13824,13824,13824,69984,69984,69984,69984,69984,69984,1944,1944,324,324,1152,
1152,1152,1152,1152,1152,96,96,96,60,60,60,60,60,60,864,864,864,864,864,864,
216,216,216,216,216,216,42,42,42,42,42,42,48,48,48,54,54,54,54,144,144,144,
144,144,144,4320,4320,4320,288,288,288,36,36,576,576,576,576,576,576,96,96,96,
48,48,48,48,48,48,60,60,60,60,60,60,72,72,72,72,72,72,144,144,144,144,144,144,
144,144,144,144,144,144],
[,[1,3,5,1,3,5,1,3,5,1,3,5,13,15,17,13,15,17,19,19,21,21,7,9,11,7,9,11,10,12,
8,32,34,36,32,34,36,13,15,17,13,15,17,19,19,19,19,19,19,50,52,54,50,52,54,26,
28,24,61,61,59,59,38,40,42,38,40,42,1,3,5,7,9,11,21,21,23,25,27,23,25,27,23,
25,27,29,31,30,29,31,30,32,34,36,32,34,36,38,40,42,38,40,42,63,65,67,63,65,67,
63,65,67,63,65,67],[1,4,1,4,1,4,7,10,7,10,7,10,1,4,1,4,1,4,1,4,1,4,23,26,23,
26,23,26,29,29,29,32,35,32,35,32,35,7,10,7,10,7,10,7,10,7,10,7,10,50,53,50,53,
50,53,56,56,56,15,18,17,14,23,26,23,26,23,26,69,69,69,72,72,72,69,69,80,77,80,
77,80,77,83,83,83,89,86,89,86,89,86,95,92,95,92,95,92,72,72,72,72,72,72,80,77,
80,77,80,77,80,77,80,77,80,77],,[1,6,5,4,3,2,7,12,11,10,9,8,13,18,17,16,15,14,
19,20,21,22,23,28,27,26,25,24,29,31,30,1,6,5,4,3,2,38,43,42,41,40,39,44,49,48,
47,46,45,50,55,54,53,52,51,56,58,57,61,62,59,60,63,68,67,66,65,64,69,71,70,72,
74,73,75,76,80,79,78,77,82,81,83,85,84,89,88,87,86,91,90,69,71,70,69,71,70,
101,100,99,98,103,102,107,106,105,104,109,108,113,112,111,110,115,114],,[1,2,
3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,1,2,3,4,5,6,56,57,58,
59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,
85,86,87,88,89,90,91,95,96,97,92,93,94,98,99,100,101,102,103,104,105,106,107,
108,109,110,111,112,113,114,115]],
0,
[(92,95)(93,96)(94,97),( 77, 80)( 78, 81)( 79, 82)( 86, 89)( 87, 90)( 88, 91)
(104,113)(105,114)(106,115)(107,110)(108,111)(109,112),(75,76),( 2, 6)
( 3, 5)( 8, 12)( 9, 11)( 14, 18)( 15, 17)( 24, 28)( 25, 27)( 30, 31)
( 33, 37)( 34, 36)( 39, 43)( 40, 42)( 45, 49)( 46, 48)( 51, 55)( 52, 54)
( 57, 58)( 59, 61)( 60, 62)( 64, 68)( 65, 67)( 70, 71)( 73, 74)( 78, 82)
( 79, 81)( 84, 85)( 87, 91)( 88, 90)( 93, 97)( 94, 96)( 98,101)( 99,100)
(102,103)(104,110)(105,115)(106,114)(107,113)(108,112)(109,111),( 77, 80)
( 78, 81)( 79, 82)( 86, 89)( 87, 90)( 88, 91)( 98,101)( 99,102)(100,103)
(104,107)(105,108)(106,109)(110,113)(111,114)(112,115)],
["ConstructProj",[["U4(3).2_3",[]],["2.U4(3).2_3",[]],["3_2.U4(3).2_3",[-1,-1,
-1,-1,-1,-1,-1,17,-1,-1,-1]],,,["6_2.U4(3).2_3",[17,-1,-1,-1,11,-1,17,17,
-1]]]]);
ALF("6_2.U4(3).2_3","U4(3).2_3",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,
5,5,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,
11,11,11,12,12,12,13,13,14,14,15,15,15,15,15,15,16,16,16,17,17,17,18,18,
19,19,19,19,19,19,20,20,20,21,21,21,21,21,21,22,22,22,22,22,22,23,23,23,
23,23,23,24,24,24,24,24,24,25,25,25,25,25,25]);
ALF("6_2.U4(3).2_3","2.U4(3).2_3",[1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,5,6,7,
8,9,10,11,12,11,12,11,12,13,13,13,14,15,14,15,14,15,16,17,16,17,16,17,18,
19,18,19,18,19,20,21,20,21,20,21,22,22,22,23,24,25,26,27,28,27,28,27,28,
29,29,29,30,30,30,31,32,33,34,33,34,33,34,35,35,35,36,37,36,37,36,37,38,
39,38,39,38,39,40,41,40,41,40,41,42,43,42,43,42,43,44,45,44,45,44,45]);
ALF("6_2.U4(3).2_3","3_2.U4(3).2_3",[1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,8,9,
10,10,11,11,12,13,14,12,13,14,15,16,17,18,19,20,18,19,20,21,22,23,21,22,
23,24,25,26,24,25,26,27,28,29,27,28,29,30,31,32,33,33,34,34,35,36,37,35,
36,37,38,39,40,41,42,43,44,44,45,46,47,45,46,47,48,49,50,51,52,53,51,52,
53,54,55,56,54,55,56,57,58,59,57,58,59,60,61,62,60,61,62,63,64,65,63,64,
65]);
MOT("6_2.U4(3).2_3'",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[39191040,19595520,19595520,39191040,13824,6912,6912,13824,69984,34992,34992,
69984,1944,1944,324,324,1152,576,576,1152,96,48,60,30,30,60,864,432,432,864,
216,216,216,216,216,216,42,42,42,42,42,42,48,48,48,54,54,54,54,144,72,72,144,
1440,96,36,36,192,192,32,16,16,20,20,24,24,48,48,48,48],
[,[1,3,3,1,1,3,3,1,9,11,11,9,13,13,15,15,5,7,7,5,8,6,23,25,25,23,9,11,11,9,
13,13,13,13,13,13,37,39,41,37,39,41,20,18,18,48,48,46,46,27,29,29,27,1,5,15,
15,17,17,17,21,21,23,23,27,27,50,50,50,50],[1,4,1,4,5,8,5,8,1,4,1,4,1,4,1,4,
17,20,17,20,21,21,23,26,23,26,5,8,5,8,5,8,5,8,5,8,37,40,37,40,37,40,43,43,43,
11,10,11,10,17,20,17,20,54,55,54,54,59,58,60,62,61,64,63,55,55,59,58,59,58],,
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,27,28,29,
30,31,36,35,34,33,32,37,38,39,40,41,42,43,45,44,48,49,46,47,50,51,52,53,54,
55,56,57,59,58,60,62,61,54,54,66,65,68,67,70,69],,[1,2,3,4,5,6,7,8,9,10,11,
12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,1,
2,3,4,3,2,43,45,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,63,
65,66,67,68,69,70]],
0,
[(65,66)(67,69)(68,70),(63,64),(58,59)(61,62)(67,70)(68,69),(56,57),(44,45),
(38,42)(39,41),(32,36)(33,35),(46,48)(47,49)],
["ConstructMGA","6_2.U4(3)","2.U4(3).2_3'",
[ [ 40, 41 ], [ 42, 45 ], [ 43, 44 ], [ 46, 47 ], [ 48, 49 ],
[ 50, 51 ], [ 52, 55 ], [ 53, 54 ], [ 56, 57 ], [ 58, 59 ],
[ 60, 61 ], [ 62, 63 ], [ 64, 65 ], [ 66, 67 ], [ 68, 71 ],
[ 69, 70 ], [ 72, 75 ], [ 73, 74 ], [ 76, 79 ], [ 77, 78 ],
[ 80, 81 ], [ 82, 83 ], [ 84, 85 ], [ 86, 87 ], [ 88, 89 ] ], ()]);
ALF("6_2.U4(3).2_3'","U4(3).2_3'",[1,1,1,1,2,2,2,2,3,3,3,3,4,4,5,5,6,6,6,
6,7,7,8,8,8,8,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,13,13,
14,14,15,15,15,15,16,17,18,18,19,19,20,21,21,22,22,23,23,24,24,25,25]);
ALF("6_2.U4(3).2_3'","2.U4(3).2_3'",[1,2,1,2,3,4,3,4,5,6,5,6,7,8,9,10,11,12,
11,12,13,13,14,15,14,15,16,17,16,17,18,19,18,19,18,19,20,21,20,21,20,21,22,
22,22,23,24,25,26,27,28,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,
44,45]);
ALF("6_2.U4(3).2_3'","3_2.U4(3).2_3'",[1,2,2,1,3,4,4,3,5,6,6,5,7,7,8,8,9,
10,10,9,11,12,13,14,14,13,15,16,16,15,17,18,19,17,18,19,20,21,22,20,21,22,
23,24,24,25,25,26,26,27,28,28,27,29,30,31,31,32,32,33,34,34,35,35,36,36,
37,37,38,38]);
MOT("Isoclinic(6_2.U4(3).2_3')",
[
"2nd maximal subgroup of 2.Suz,\n",
"isoclinic group of the 6_2.U4(3).2_3' given in the ATLAS"
],
0,
0,
0,
[(65,66)(67,69)(68,70),(63,64),(58,59)(61,62)(67,70)(68,69),(56,57),(44,45),
(38,42)(39,41),(32,36)(33,35),(46,48)(47,49)],
["ConstructIsoclinic",[["6_2.U4(3).2_3'"]]]);
ALF("Isoclinic(6_2.U4(3).2_3')","2.Suz",[1,7,6,2,3,22,21,4,6,9,8,7,8,9,10,
11,13,45,46,12,15,49,19,64,63,20,21,28,27,22,27,24,25,28,23,26,30,72,73,
31,71,74,32,75,76,36,37,38,39,46,47,48,45,5,15,29,29,32,32,32,35,35,42,42,
49,49,75,76,76,75],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
ALF("Isoclinic(6_2.U4(3).2_3')","3_2.U4(3).2_3'",[1,2,2,1,3,4,4,3,5,6,6,5,
7,7,8,8,9,10,10,9,11,12,13,14,14,13,15,16,16,15,17,18,19,17,18,19,20,21,
22,20,21,22,23,24,24,25,25,26,26,27,28,28,27,29,30,31,31,32,32,33,34,34,
35,35,36,36,37,37,38,38]);
ALN("Isoclinic(6_2.U4(3).2_3')",["6_2.U4(3).2_3'*","2.SuzN3A"]);
MOT("U4(3)",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[3265920,1152,5832,972,972,81,96,16,5,72,36,36,7,7,8,27,27,27,27,12],
[,[1,1,3,4,5,6,2,2,9,3,4,5,13,14,7,17,16,19,18,10],[1,2,1,1,1,1,7,8,9,2,2,2,
14,13,15,3,3,3,3,7],,[1,2,3,4,5,6,7,8,1,10,11,12,14,13,15,17,16,19,18,20],,[1,
2,3,4,5,6,7,8,9,10,11,12,1,1,15,16,17,18,19,20]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[21,5,-6,3,3,3,1,1,1,2,-1,-1,0,0,
-1,0,0,0,0,-2],[35,3,8,8,-1,-1,3,-1,0,0,0,3,0,0,-1,2,2,-1,-1,0],[35,3,8,-1,8,
-1,3,-1,0,0,3,0,0,0,-1,-1,-1,2,2,0],[90,10,9,9,9,0,-2,2,0,1,1,1,-1,-1,0,0,0,0,
0,1],[140,12,5,-4,-4,5,4,0,0,-3,0,0,0,0,0,-1,-1,-1,-1,1],[189,-3,27,0,0,0,5,1,
-1,3,0,0,0,0,1,0,0,0,0,-1],[210,2,21,3,3,3,-2,-2,0,5,-1,-1,0,0,0,0,0,0,0,1],[
280,-8,10,10,1,1,0,0,0,-2,-2,1,0,0,0,2*E(3)-E(3)^2,-E(3)+2*E(3)^2,1,1,0],
[GALOIS,[9,2]],[280,-8,10,1,10,1,0,0,0,-2,1,-2,0,0,0,1,1,2*E(3)-E(3)^2,
-E(3)+2*E(3)^2,0],
[GALOIS,[11,2]],[315,11,-9,18,-9,0,-1,-1,0,-1,2,-1,0,0,1,0,0,0,0,-1],[315,11,
-9,-9,18,0,-1,-1,0,-1,-1,2,0,0,1,0,0,0,0,-1],[420,4,-39,6,6,-3,4,0,0,1,-2,-2,
0,0,0,0,0,0,0,1],[560,-16,-34,2,2,2,0,0,0,2,2,2,0,0,0,-1,-1,-1,-1,0],[640,0,
-8,-8,-8,1,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,1,1,1,0],
[GALOIS,[17,3]],[729,9,0,0,0,0,-3,1,-1,0,0,0,1,1,-1,0,0,0,0,0],[896,0,32,-4,
-4,-4,0,0,1,0,0,0,0,0,0,-1,-1,-1,-1,0]],
[(16,17)(18,19),(13,14),(18,19),( 4, 5)(11,12)(16,18)(17,19)]);
ARC("U4(3)","CAS",[rec(name:="u4q3",
permchars:=( 9,12,10,11),
permclasses:=(16,18,17,19),
text:=[
"names:u4q3; psu4[3]\n",
"2a3(3) (lie-not.)\n",
"order: 2^7.3^6.5.7 = 3,265,920\n",
"number of classes: 20\n",
"source:wright, donald\n",
"the irreducible characters of the simple group\n",
"of m. suzuki of order 448,345,497,600\n",
"j.algebra 29\n",
"(1974),303-323\n",
"test: 1. o.r., sym 2 decompose correctly\n",
"comments: - \n",
""])]);
ARC("U4(3)","projectives",["2.U4(3)",[[20,4,-7,2,2,2,4,0,0,1,-2,-2,-1,-1,0,-1,
-1,-1,-1,1],[56,-8,2,11,2,2,0,0,1,-2,1,-2,0,0,0,2,2,-1,-1,0],[56,-8,2,2,11,2,
0,0,1,-2,-2,1,0,0,0,-1,-1,2,2,0],[70,-2,16,7,7,-2,2,0,0,4,1,1,0,0,0,1,1,1,1,
2],[70,-2,-11,7,-2,-2,2,0,0,1,1,-2,0,0,0,2*E(3)-E(3)^2,-E(3)+2*E(3)^2,1,1,-1],
[GALOIS,[5,2]],[70,-2,-11,-2,7,-2,2,0,0,1,-2,1,0,0,0,1,1,2*E(3)-E(3)^2,
-E(3)+2*E(3)^2,-1],
[GALOIS,[7,2]],[120,-8,12,-6,-6,3,0,0,0,4,-2,-2,1,1,0,0,0,0,0,0],[210,10,21,3,
3,3,2,0,0,1,1,1,0,0,2*E(4),0,0,0,0,-1],
[GALOIS,[10,3]],[504,-8,18,18,-9,0,0,0,-1,-2,-2,1,0,0,0,0,0,0,0,0],[504,-8,18,
-9,18,0,0,0,-1,-2,1,-2,0,0,0,0,0,0,0,0],[540,12,-27,0,0,0,4,0,0,-3,0,0,1,1,0,
0,0,0,0,1],[560,-16,-34,2,2,2,0,0,0,2,2,2,0,0,0,-1,-1,-1,-1,0],[630,14,-18,9,
9,0,-6,0,0,2,-1,-1,0,0,0,0,0,0,0,0],[640,0,-8,-8,-8,1,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,1,1,1,0],
[GALOIS,[17,3]],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,0,-1,-1,-1,-1,
0]],"4.U4(3)",[[20,0,-7,2,2,2,2,0,0,-3,0,0,-1,-1,-1-E(4),-1,-1,-1,-1,-1],[120,
0,12,-6,-6,3,4,0,0,0,0,0,1,1,0,0,0,0,0,-2],[140,0,5,-4,-4,5,-2,0,0,-3,0,0,0,0,
1+E(4),-1,-1,-1,-1,1],[224,0,8,8,-10,-1,0,0,-1,0,0,0,0,0,0,-2*E(3)+E(3)^2,
E(3)-2*E(3)^2,-1,-1,0],
[GALOIS,[4,2]],[224,0,8,-10,8,-1,0,0,-1,0,0,0,0,0,0,-1,-1,-2*E(3)+E(3)^2,
E(3)-2*E(3)^2,0],
[GALOIS,[6,2]],[280,0,37,10,10,1,4,0,0,-3,0,0,0,0,0,1,1,1,1,1],[280,0,-17,10,
-8,1,4,0,0,3,0,0,0,0,0,-2,-2,1,1,1],[280,0,-17,-8,10,1,4,0,0,3,0,0,0,0,0,1,1,
-2,-2,1],[420,0,-39,6,6,-3,2,0,0,-3,0,0,0,0,1+E(4),0,0,0,0,-1],[540,0,-27,0,0,
0,-2,0,0,-3,0,0,1,1,-1-E(4),0,0,0,0,1],[640,0,-8,-8,-8,1,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,1,1,1,0],
[GALOIS,[13,3]],[840,0,3,12,12,3,-4,0,0,3,0,0,0,0,0,0,0,0,0,-1],[896,0,32,-4,
-4,-4,0,0,1,0,0,0,0,0,0,-1,-1,-1,-1,0]],"3_1.U4(3)",[[15,-1,6,3,0,0,3,-1,0,2,
-1,2,1,1,1,E(3)+2*E(3)^2,2*E(3)+E(3)^2,0,0,0],[21,5,3,6,0,0,1,1,1,-1,2,2,0,0,
-1,2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,1],[105,9,15,3,0,0,1,1,0,3,3,0,0,0,1,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,1],[105,-7,15,3,0,0,5,1,0,-1,-1,2,0,0,-1,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,-1],[105,9,-12,12,0,0,1,1,0,0,0,0,0,0,1,
E(3)-E(3)^2,-E(3)+E(3)^2,0,0,-2],[210,2,3,15,0,0,-2,-2,0,-1,-1,2,0,0,0,
-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,0,0,1],[315,-5,-36,9,0,0,3,-1,0,4,1,-2,0,0,-1,0,
0,0,0,0],[336,16,-6,6,0,0,0,0,1,-2,-2,-2,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,
0],[360,8,-18,-9,0,0,0,0,0,2,-1,2,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,0,
0,0,0,0],
[GALOIS,[9,3]],[384,0,24,12,0,0,0,0,-1,0,0,0,-1,-1,0,E(3)+2*E(3)^2,
2*E(3)+E(3)^2,0,0,0],[420,4,33,-6,0,0,4,0,0,1,-2,-2,0,0,0,E(3)-E(3)^2,
-E(3)+E(3)^2,0,0,1],[630,6,9,-9,0,0,2,-2,0,-3,3,0,0,0,0,0,0,0,0,-1],[729,9,0,
0,0,0,-3,1,-1,0,0,0,1,1,-1,0,0,0,0,0],[756,-12,27,0,0,0,-4,0,1,3,0,0,0,0,0,0,
0,0,0,-1],[945,-15,-27,0,0,0,1,1,0,-3,0,0,0,0,1,0,0,0,0,1]],"3_2.U4(3)",[[36,
4,9,0,0,0,4,0,1,1,-2,-2,1,1,0,0,0,0,0,1],[45,-3,-9,0,0,0,1,1,0,3,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,-1,0,0,0,0,1],
[GALOIS,[2,3]],[126,14,-9,0,0,0,2,2,1,-1,2,2,0,0,0,0,0,0,0,-1],[189,-3,27,0,0,
0,5,1,-1,3,0,0,0,0,1,0,0,0,0,-1],[315,11,18,0,0,0,-1,-1,0,2,2,2,0,0,1,0,0,0,0,
2],[315,-5,18,0,0,0,3,-1,0,-2,-2,4,0,0,-1,0,0,0,0,0],[315,-5,18,0,0,0,3,-1,0,
-2,4,-2,0,0,-1,0,0,0,0,0],[630,6,-45,0,0,0,2,-2,0,3,0,0,0,0,0,0,0,0,0,-1],[
720,16,18,0,0,0,0,0,0,-2,-2,-2,-1,-1,0,0,0,0,0,0],[729,9,0,0,0,0,-3,1,-1,0,0,
0,1,1,-1,0,0,0,0,0],[756,-12,27,0,0,0,-4,0,1,3,0,0,0,0,0,0,0,0,0,-1],[945,-15,
-27,0,0,0,1,1,0,-3,0,0,0,0,1,0,0,0,0,1]],"6_1.U4(3)",[[6,-2,-3,3,0,0,2,0,1,1,
1,-2,-1,-1,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,0,-1],[84,4,-15,6,0,0,4,0,-1,1,-2,-2,
0,0,0,-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,0,0,1],[120,-8,-6,15,0,0,0,0,0,-2,1,-2,1,
1,0,2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0],[126,-10,18,9,0,0,2,0,1,2,-1,2,0,0,0,0,
0,0,0,2],[210,-6,-24,-3,0,0,6,0,0,0,3,0,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,
0],[270,6,27,0,0,0,2,0,0,3,0,0,-E(7)-E(7)^2-E(7)^4,-E(7)^3-E(7)^5-E(7)^6,0,0,
0,0,0,-1],
[GALOIS,[6,3]],[336,16,-6,6,0,0,0,0,1,-2,-2,-2,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,
0,0,0],[384,0,24,12,0,0,0,0,-1,0,0,0,-1,-1,0,E(3)+2*E(3)^2,2*E(3)+E(3)^2,0,0,
0],[420,-12,-21,12,0,0,-4,0,0,3,0,0,0,0,0,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,
-1],[630,-18,9,-9,0,0,2,0,0,-3,-3,0,0,0,0,0,0,0,0,-1],[630,-2,9,-9,0,0,-2,0,0,
1,1,-2,0,0,2*E(4),0,0,0,0,1],
[GALOIS,[12,3]],[840,8,12,6,0,0,0,0,0,-4,2,2,0,0,0,-E(3)-2*E(3)^2,
-2*E(3)-E(3)^2,0,0,0],[840,8,-42,-3,0,0,0,0,0,2,-1,2,0,0,0,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,0,0,0]],"6_2.U4(3)",[[90,2,-18,0,0,0,6,0,0,2,2,2,-1,-1,0,0,0,0,
0,0],[126,-10,-9,0,0,0,2,0,1,-1,-4,2,0,0,0,0,0,0,0,-1],[126,-10,-9,0,0,0,2,0,
1,-1,2,-4,0,0,0,0,0,0,0,-1],[126,6,-9,0,0,0,-2,0,1,3,0,0,0,0,2*E(4),0,0,0,0,
1],
[GALOIS,[4,3]],[270,6,27,0,0,0,2,0,0,3,0,0,-E(7)-E(7)^2-E(7)^4,
-E(7)^3-E(7)^5-E(7)^6,0,0,0,0,0,-1],
[GALOIS,[6,3]],[504,-8,-36,0,0,0,0,0,-1,4,-2,-2,0,0,0,0,0,0,0,0],[540,12,-27,
0,0,0,4,0,0,-3,0,0,1,1,0,0,0,0,0,1],[630,-18,36,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,
0,2],[720,16,18,0,0,0,0,0,0,-2,-2,-2,-1,-1,0,0,0,0,0,0],[1260,-4,-9,0,0,0,-4,
0,0,-1,2,2,0,0,0,0,0,0,0,-1]],"12_1.U4(3)",[[84,0,-15,6,0,0,2,0,-1,-3,0,0,0,0,
-1-E(4),-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,0,0,-1],[120,0,21,6,0,0,4,0,0,-3,0,0,1,
1,0,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,1],[216,0,-27,0,0,0,4,0,1,-3,0,0,-1,-1,0,0,0,
0,0,1],[384,0,24,12,0,0,0,0,-1,0,0,0,-1,-1,0,E(3)+2*E(3)^2,2*E(3)+E(3)^2,0,0,
0],[420,0,-21,12,0,0,2,0,0,3,0,0,0,0,1+E(4),-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,
-1],[420,0,33,-6,0,0,2,0,0,-3,0,0,0,0,1+E(4),E(3)-E(3)^2,-E(3)+E(3)^2,0,0,
-1],[480,0,-24,6,0,0,0,0,0,0,0,0,-E(7)-E(7)^2-E(7)^4,-E(7)^3-E(7)^5-E(7)^6,0,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0],
[GALOIS,[7,10]],[504,0,-9,-18,0,0,4,0,-1,3,0,0,0,0,0,0,0,0,0,1],[756,0,27,0,0,
0,2,0,1,3,0,0,0,0,-1-E(4),0,0,0,0,-1],[840,0,-15,-12,0,0,-4,0,0,-3,0,0,0,0,0,
-E(3)+E(3)^2,E(3)-E(3)^2,0,0,-1],[840,0,12,6,0,0,-4,0,0,0,0,0,0,0,0,
-E(3)-2*E(3)^2,-2*E(3)-E(3)^2,0,0,2]],"12_2.U4(3)",[[36,0,9,0,0,0,2,0,1,-3,0,
0,1,1,1+E(4),0,0,0,0,-1],[216,0,-27,0,0,0,4,0,1,-3,0,0,-1,-1,0,0,0,0,0,1],[
360,0,9,0,0,0,-4,0,0,-3,0,0,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,
-1],
[GALOIS,[3,3]],[504,0,-36,0,0,0,4,0,-1,0,0,0,0,0,0,0,0,0,0,-2],[504,0,45,0,0,
0,4,0,-1,-3,0,0,0,0,0,0,0,0,0,1],[540,0,-27,0,0,0,-2,0,0,-3,0,0,1,1,-1-E(4),0,
0,0,0,1],[756,0,27,0,0,0,2,0,1,3,0,0,0,0,-1-E(4),0,0,0,0,-1],[1260,0,-9,0,0,0,
-2,0,0,3,0,0,0,0,1+E(4),0,0,0,0,1]],]);
ARC("U4(3)","isSimple",true);
ARC("U4(3)","extInfo",["(3^2x4)","D8"]);
ARC("U4(3)","tomfusion",rec(name:="U4(3)",map:=[1,2,3,5,6,4,10,11,12,13,
14,15,19,19,28,38,38,39,39,52],text:=[
"fusion map is unique up to table autom."
],perm:=(8,9)));
ALF("U4(3)","U4(3).2_1",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,16,17,17,
18]);
ALF("U4(3)","U4(3).2_2",[1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,15,16,17,17,
18]);
ALF("U4(3)","U4(3).2_2'",[1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,15,15,16,17,
18]);
ALF("U4(3)","U4(3).2_3",[1,2,3,4,4,5,6,7,8,9,10,10,11,11,12,13,14,13,14,
15]);
ALF("U4(3)","U4(3).2_3'",[1,2,3,4,4,5,6,7,8,9,10,10,11,11,12,13,14,14,13,
15]);
ALF("U4(3)","U4(3).4",[1,2,3,4,4,5,6,7,8,9,10,10,11,12,13,14,14,14,14,15]);
ALF("U4(3)","Co3",[1,2,4,5,5,5,8,8,10,11,13,13,16,16,19,21,21,21,21,27],[
"fusion map is unique, equal to that on the CAS table"
]);
ALF("U4(3)","Fi22",[1,3,6,5,7,7,9,13,14,17,18,23,26,26,28,31,31,32,32,38],[
"fusion is unique up to table automorphisms,\n",
"the representative is equal to the fusion map on the CAS table"
]);
ALF("U4(3)","McL",[1,2,3,4,4,4,5,5,7,8,9,9,10,11,12,13,14,13,14,18],[
"fusion map is unique up to table automorphisms,\n",
"compatible with 3_2.U4(3) -> 3.McL"
]);
ARC("U4(3)","maxes",["3^4:A6","U4(2)","U4(3)M3","L3(4)","L3(4)",
"3^(1+4)_+.2S4","U3(3)","2^4:a6","U4(3)M9","A7","A7","U4(3)M12","U4(3)M12",
"2(A4xA4).2^2","A6.2_3","A6.2_3"]);
ALN("U4(3)",["c3u1","f22u1","u4q3"]);
MOT("U4(3).(2^2)_{122}",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[13063680,4608,23328,3888,3888,324,384,64,20,288,144,144,14,32,54,54,48,24192,
2880,2304,256,432,72,72,36,32,20,144,72,72,14,103680,2304,384,192,1296,432,
216,144,36,32,20,48,24,18,103680,2304,384,192,1296,432,216,144,36,32,20,48,24,
18],
[,[1,1,3,4,5,6,2,2,9,3,4,5,13,7,15,16,10,1,1,2,2,3,4,5,6,7,9,10,11,12,13,1,1,
2,2,3,5,4,5,6,7,9,10,11,15,1,1,2,2,3,4,5,4,6,7,9,10,12,16],[1,2,1,1,1,1,7,8,9,
2,2,2,13,14,3,3,7,18,19,20,21,18,19,19,18,26,27,20,20,20,31,32,33,34,35,32,32,
32,33,33,41,42,34,35,36,46,47,48,49,46,46,46,47,47,55,56,48,49,50],,[1,2,3,4,
5,6,7,8,1,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,19,28,29,30,31,
32,33,34,35,36,37,38,39,40,41,32,43,44,45,46,47,48,49,50,51,52,53,54,55,46,57,
58,59],,[1,2,3,4,5,6,7,8,9,10,11,12,1,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,18,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
53,54,55,56,57,58,59]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[TENSOR,[2,3]],[21,5,-6,3,3,3,1,1,1,2,-1,-1,0,-1,0,0,-2,-7,1,5,-3,2,1,1,-1,-1,
1,2,-1,-1,0,9,1,-3,1,0,-3,3,1,1,-1,-1,0,1,0,9,1,-3,1,0,-3,3,1,1,-1,-1,0,1,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[35,3,8,8,-1,-1,3,-1,0,0,0,3,0,-1,2,-1,0,7,-5,-1,-1,-2,-2,1,1,
-1,0,2,2,-1,0,15,-1,-1,3,6,3,0,-1,-1,-1,0,2,0,0,-5,-5,3,-1,4,-2,1,-2,1,-1,0,0,
-1,1],
[TENSOR,[9,2]],
[TENSOR,[9,3]],
[TENSOR,[9,4]],[35,3,8,-1,8,-1,3,-1,0,0,3,0,0,-1,-1,2,0,7,-5,-1,-1,-2,1,-2,1,
-1,0,2,-1,2,0,-5,-5,3,-1,4,-2,1,-2,1,-1,0,0,-1,1,15,-1,-1,3,6,3,0,-1,-1,-1,0,
2,0,0],
[TENSOR,[13,2]],
[TENSOR,[13,3]],
[TENSOR,[13,4]],[90,10,9,9,9,0,-2,2,0,1,1,1,-1,0,0,0,1,6,10,10,2,-3,1,1,0,0,0,
1,1,1,-1,30,6,2,2,3,3,3,3,0,0,0,-1,-1,0,30,6,2,2,3,3,3,3,0,0,0,-1,-1,0],
[TENSOR,[17,2]],
[TENSOR,[17,3]],
[TENSOR,[17,4]],[140,12,5,-4,-4,5,4,0,0,-3,0,0,0,0,-1,-1,1,28,0,4,4,1,0,0,1,0,
0,1,-2,-2,0,20,4,4,0,-7,2,2,-2,1,0,0,1,0,-1,20,4,4,0,-7,2,2,-2,1,0,0,1,0,-1],
[TENSOR,[21,2]],
[TENSOR,[21,3]],
[TENSOR,[21,4]],[189,-3,27,0,0,0,5,1,-1,3,0,0,0,1,0,0,-1,21,9,-3,-3,3,0,0,0,1,
-1,3,0,0,0,9,9,1,-3,9,0,0,0,0,1,-1,1,0,0,9,9,1,-3,9,0,0,0,0,1,-1,1,0,0],
[TENSOR,[25,2]],
[TENSOR,[25,3]],
[TENSOR,[25,4]],[210,2,21,3,3,3,-2,-2,0,5,-1,-1,0,0,0,0,1,14,-10,10,2,5,-1,-1,
-1,0,0,1,1,1,0,30,-10,2,-2,3,3,3,-1,-1,0,0,-1,1,0,30,-10,2,-2,3,3,3,-1,-1,0,0,
-1,1,0],
[TENSOR,[29,2]],
[TENSOR,[29,3]],
[TENSOR,[29,4]],[560,-16,20,20,2,2,0,0,0,-4,-4,2,0,0,-1,2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,80,-16,0,0,8,2,-4,2,2,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[33,2]],[560,-16,20,2,20,2,0,0,0,-4,2,-4,0,0,2,-1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-80,16,0,0,-8,-2,4,-2,-2,0,0,0,0,1],
[TENSOR,[35,2]],[315,11,-9,18,-9,0,-1,-1,0,-1,2,-1,0,1,0,0,-1,-21,-5,7,-1,-3,
-2,1,0,1,0,1,-2,1,0,75,3,-1,3,3,-3,0,-3,0,1,0,-1,0,0,15,-9,-5,-1,-3,0,3,0,0,1,
0,1,-1,0],
[TENSOR,[37,2]],
[TENSOR,[37,3]],
[TENSOR,[37,4]],[315,11,-9,-9,18,0,-1,-1,0,-1,-1,2,0,1,0,0,-1,-21,-5,7,-1,-3,
1,-2,0,1,0,1,1,-2,0,15,-9,-5,-1,-3,0,3,0,0,1,0,1,-1,0,75,3,-1,3,3,-3,0,-3,0,1,
0,-1,0,0],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[420,4,-39,6,6,-3,4,0,0,1,-2,-2,0,0,0,0,1,28,0,12,-4,1,0,0,1,
0,0,-3,0,0,0,60,-4,4,0,-3,-6,0,2,-1,0,0,1,0,0,60,-4,4,0,-3,-6,0,2,-1,0,0,1,0,
0],
[TENSOR,[45,2]],
[TENSOR,[45,3]],
[TENSOR,[45,4]],[1120,-32,-68,4,4,4,0,0,0,4,4,4,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1280,0,
-16,-16,-16,2,0,0,0,0,0,0,-1,0,2,2,0,-64,0,0,0,8,0,0,2,0,0,0,0,0,-1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[50,3]],[729,9,0,0,0,0,-3,1,-1,0,0,0,1,-1,0,0,0,-27,9,9,1,0,0,0,0,-1,
-1,0,0,0,1,81,9,-3,-3,0,0,0,0,0,-1,1,0,0,0,81,9,-3,-3,0,0,0,0,0,-1,1,0,0,0],
[TENSOR,[52,2]],
[TENSOR,[52,3]],
[TENSOR,[52,4]],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,-1,-1,0,0,16,0,0,0,-2,-2,0,
0,1,0,0,0,0,64,0,0,0,-8,4,-2,0,0,0,-1,0,0,1,64,0,0,0,-8,4,-2,0,0,0,-1,0,0,1],
[TENSOR,[56,2]],
[TENSOR,[56,3]],
[TENSOR,[56,4]]],
[( 4, 5)(11,12)(15,16)(23,24)(29,30)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)
(38,52)(39,53)(40,54)(41,55)(42,56)(43,57)(44,58)(45,59)]);
ALF("U4(3).(2^2)_{122}","U4(3).D8",[1,2,3,4,4,5,6,7,8,9,10,10,11,12,13,13,
14,15,16,17,18,19,20,20,21,22,23,24,25,25,26,39,40,41,42,43,44,45,46,47,
48,49,50,51,52,39,40,41,42,43,44,45,46,47,48,49,50,51,52]);
ALF("U4(3).(2^2)_{122}","U6(2).2",[1,3,6,5,7,7,10,13,14,17,18,20,22,24,26,
27,33,38,39,40,41,44,45,47,46,50,53,55,54,57,59,2,4,10,12,15,19,16,21,21,
24,28,33,35,37,38,39,40,42,44,43,46,45,47,51,52,55,58,62],[
"fusion map is unique up to table aut."
]);
MOT("U4(3).(2^2)_{133}",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"computed from the tables of U4(3), U4(3).2_1, U4(3).2_3, U4(3).2_3'"
],
[13063680,4608,23328,1944,324,384,64,20,288,72,14,32,27,48,24192,2880,2304,
256,432,36,36,32,20,144,36,14,2880,192,36,192,64,16,20,24,24,2880,192,36,192,
64,16,20,24,24],
[,[1,1,3,4,5,2,2,8,3,4,11,6,13,9,1,1,2,2,3,4,5,6,8,9,10,11,1,2,5,6,6,7,8,9,14,
1,2,5,6,6,7,8,9,14],[1,2,1,1,1,6,7,8,2,2,11,12,3,6,15,16,17,18,15,16,15,22,23,
17,17,26,27,28,27,30,31,32,33,28,30,36,37,36,39,40,41,42,37,39],,[1,2,3,4,5,6,
7,1,9,10,11,12,13,14,15,16,17,18,19,20,21,22,16,24,25,26,27,28,29,30,31,32,27,
34,35,36,37,38,39,40,41,36,43,44],,[1,2,3,4,5,6,7,8,9,10,1,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,15,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,
44]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[TENSOR,[2,3]],[21,5,-6,3,3,1,1,1,2,-1,0,-1,0,-2,-7,1,5,-3,2,1,-1,-1,1,2,-1,0,
1,-3,1,3,-1,-1,1,0,0,1,-3,1,3,-1,-1,1,0,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[70,6,16,7,-2,6,-2,0,0,3,0,-2,1,0,14,-10,-2,-2,-4,-1,2,-2,0,4,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[9,3]],[90,10,9,9,0,-2,2,0,1,1,-1,0,0,1,6,10,10,2,-3,1,0,0,0,1,1,-1,0,
4,0,2,-2,0,0,1,-1,0,4,0,2,-2,0,0,1,-1],
[TENSOR,[11,2]],
[TENSOR,[11,3]],
[TENSOR,[11,4]],[140,12,5,-4,5,4,0,0,-3,0,0,0,-1,1,28,0,4,4,1,0,1,0,0,1,-2,0,
10,2,1,2,2,0,0,-1,-1,10,2,1,2,2,0,0,-1,-1],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[189,-3,27,0,0,5,1,-1,3,0,0,1,0,-1,21,9,-3,-3,3,0,0,1,-1,3,0,
0,9,1,0,1,1,-1,-1,1,1,9,1,0,1,1,-1,-1,1,1],
[TENSOR,[19,2]],
[TENSOR,[19,3]],
[TENSOR,[19,4]],[210,2,21,3,3,-2,-2,0,5,-1,0,0,0,1,14,-10,10,2,5,-1,-1,0,0,1,
1,0,-10,2,-1,4,0,0,0,-1,1,-10,2,-1,4,0,0,0,-1,1],
[TENSOR,[23,2]],
[TENSOR,[23,3]],
[TENSOR,[23,4]],[1120,-32,40,22,4,0,0,0,-8,-2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[630,22,-18,9,0,-2,-2,0,-2,1,0,2,0,-2,
-42,-10,14,-2,-6,-1,0,2,0,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[28,3]],[420,4,-39,6,-3,4,0,0,1,-2,0,0,0,1,28,0,12,-4,1,0,1,0,0,-3,0,
0,-10,-2,-1,2,2,0,0,1,-1,-10,-2,-1,2,2,0,0,1,-1],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[1120,-32,-68,4,4,0,0,0,4,4,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1280,0,-16,-16,2,0,0,0,0,0,-1,0,2,0,-64,
0,0,0,8,0,2,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[35,3]],[729,9,0,0,0,-3,1,-1,0,0,1,-1,0,0,-27,9,9,1,0,0,0,-1,-1,0,0,1,
9,-3,0,3,-1,1,-1,0,0,9,-3,0,3,-1,1,-1,0,0],
[TENSOR,[37,2]],
[TENSOR,[37,3]],
[TENSOR,[37,4]],[896,0,32,-4,-4,0,0,1,0,0,0,0,-1,0,0,16,0,0,0,-2,0,0,1,0,0,0,
16,0,-2,0,0,0,1,0,0,16,0,-2,0,0,0,1,0,0],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]]],
[(27,36)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)]);
ARC("U4(3).(2^2)_{133}","maxes",["U4(3).2_1","U4(3).2_3","U4(3).2_3'",
"3^4:(M10x2)","L3(4).2^2","U4(3).(2^2)_{133}M6","3^(1+4)+.2^(1+4)-.S3",
"2xU3(3).2","2(A4xA4).4.2^2","2xa6.2^2","U4(3).(2^2)_{133}M11",
"U4(3).(2^2)_{133}M12","(4^2x2)(2xS4)"]);
ARC("U4(3).(2^2)_{133}","tomfusion",rec(name:="U4(3).2^2_133",map:=[1,6,7,
9,8,14,15,25,30,31,43,88,115,124,2,5,10,13,26,32,29,89,120,123,125,156,3,
12,27,84,86,90,122,126,406,4,11,28,85,87,91,121,127,407],text:=[
"fusion map is unique up to table autom."
],perm:=(10,12,11)));
ARC("U4(3).(2^2)_{133}","CAS",[rec(name:="u4q3:2^2",
permclasses:=(),
permchars:=(2,3)(6,7)(12,13)(16,17)(20,21)(24,25)(31,32)(38,39)(42,43),
text:=[
"origin: CAS library,\n",
"maximal subgroup of Co3,\n",
"Source: Atlas [Atlas-table character X.16 extends to both types of u4q3:2\n",
"involved, but does not extend to u4q3:2^2 !!].\n",
"Test: 1.OR, JAMES, JAMES,n=3,\n",
"and restricted characters decompose properly.\n"])]);
ALF("U4(3).(2^2)_{133}","U4(3).D8",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,53,54,55,56,57,58,59,60,61,53,54,55,56,
57,58,59,60,61]);
ALF("U4(3).(2^2)_{133}","Co3",[1,2,4,5,5,8,8,10,11,13,16,19,21,27,2,3,7,8,
12,14,13,19,23,26,28,29,3,7,14,17,18,18,23,26,40,3,8,14,18,17,19,23,27,41],[
"fusion map is unique up to table automorphisms,\n",
"the representative is equal to the fusion map on the CAS table"
]);
MOT("U4(3).2_1",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"constructions: PSO(-1,6,3)"
],
[6531840,2304,11664,1944,1944,162,192,32,10,144,72,72,14,14,16,27,27,24,12096,
1440,1152,128,216,36,36,18,16,10,144,144,36,36,14,14],
[,[1,1,3,4,5,6,2,2,9,3,4,5,13,14,7,16,17,10,1,1,2,2,3,4,5,6,7,9,10,10,11,12,
13,14],[1,2,1,1,1,1,7,8,9,2,2,2,14,13,15,3,3,7,19,20,21,22,19,20,20,19,27,28,
21,21,21,21,34,33],,[1,2,3,4,5,6,7,8,1,10,11,12,14,13,15,16,17,18,19,20,21,22,
23,24,25,26,27,20,29,30,31,32,34,33],,[1,2,3,4,5,6,7,8,9,10,11,12,1,1,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,30,29,31,32,19,19]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1],[21,5,-6,3,3,3,1,1,1,2,-1,-1,0,0,-1,0,0,-2,-7,1,5,-3,2,1,1,-1,-1,1,2,2,-1,
-1,0,0],
[TENSOR,[3,2]],[35,3,8,8,-1,-1,3,-1,0,0,0,3,0,0,-1,2,-1,0,7,-5,-1,-1,-2,-2,1,
1,-1,0,2,2,2,-1,0,0],
[TENSOR,[5,2]],[35,3,8,-1,8,-1,3,-1,0,0,3,0,0,0,-1,-1,2,0,7,-5,-1,-1,-2,1,-2,
1,-1,0,2,2,-1,2,0,0],
[TENSOR,[7,2]],[90,10,9,9,9,0,-2,2,0,1,1,1,-1,-1,0,0,0,1,6,10,10,2,-3,1,1,0,0,
0,1,1,1,1,-1,-1],
[TENSOR,[9,2]],[140,12,5,-4,-4,5,4,0,0,-3,0,0,0,0,0,-1,-1,1,28,0,4,4,1,0,0,1,
0,0,1,1,-2,-2,0,0],
[TENSOR,[11,2]],[189,-3,27,0,0,0,5,1,-1,3,0,0,0,0,1,0,0,-1,21,9,-3,-3,3,0,0,0,
1,-1,3,3,0,0,0,0],
[TENSOR,[13,2]],[210,2,21,3,3,3,-2,-2,0,5,-1,-1,0,0,0,0,0,1,14,-10,10,2,5,-1,
-1,-1,0,0,1,1,1,1,0,0],
[TENSOR,[15,2]],[560,-16,20,20,2,2,0,0,0,-4,-4,2,0,0,0,-1,2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0],[560,-16,20,2,20,2,0,0,0,-4,2,-4,0,0,0,2,-1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[315,11,-9,18,-9,0,-1,-1,0,-1,2,-1,0,0,1,0,0,-1,-21,-5,7,
-1,-3,-2,1,0,1,0,1,1,-2,1,0,0],
[TENSOR,[19,2]],[315,11,-9,-9,18,0,-1,-1,0,-1,-1,2,0,0,1,0,0,-1,-21,-5,7,-1,
-3,1,-2,0,1,0,1,1,1,-2,0,0],
[TENSOR,[21,2]],[420,4,-39,6,6,-3,4,0,0,1,-2,-2,0,0,0,0,0,1,28,0,12,-4,1,0,0,
1,0,0,-3,-3,0,0,0,0],
[TENSOR,[23,2]],[560,-16,-34,2,2,2,0,0,0,2,2,2,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,
0,0,-6*E(4),6*E(4),0,0,0,0],
[TENSOR,[25,2]],[640,0,-8,-8,-8,1,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
E(7)^3+E(7)^5+E(7)^6,0,1,1,0,-32,0,0,0,4,0,0,1,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
E(7)^3+E(7)^5+E(7)^6],
[TENSOR,[27,2]],
[GALOIS,[27,3]],
[TENSOR,[29,2]],[729,9,0,0,0,0,-3,1,-1,0,0,0,1,1,-1,0,0,0,-27,9,9,1,0,0,0,0,
-1,-1,0,0,0,0,1,1],
[TENSOR,[31,2]],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,0,-1,-1,0,0,16,0,0,0,-2,-2,
0,0,1,0,0,0,0,0,0],
[TENSOR,[33,2]]],
[(29,30),(13,14)(33,34),( 4, 5)(11,12)(16,17)(24,25)(31,32)]);
ARC("U4(3).2_1","projectives",["2.U4(3).2_1",[[20,4,-7,2,2,2,4,0,0,1,-2,-2,-1,
-1,0,-1,-1,1,-8,0,0,0,1,0,0,-2,0,0,-3,3,0,0,-1,-1],[56,-8,2,11,2,2,0,0,1,-2,1,
-2,0,0,0,2,-1,0,0,4*E(4),-8*E(4),0,0,E(4),-2*E(4),0,0,-E(4),-2*E(4),-2*E(4),
E(4),-2*E(4),0,0],[56,-8,2,2,11,2,0,0,1,-2,-2,1,0,0,0,-1,2,0,0,4*E(4),-8*E(4),
0,0,-2*E(4),E(4),0,0,-E(4),-2*E(4),-2*E(4),-2*E(4),E(4),0,0],[70,-2,16,7,7,-2,
2,0,0,4,1,1,0,0,0,1,1,2,0,10*E(4),-4*E(4),0,0,E(4),E(4),0,-2*E(4),0,2*E(4),
2*E(4),-E(4),-E(4),0,0],[140,-4,-22,14,-4,-4,4,0,0,2,2,-4,0,0,0,-1,2,-2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0],[140,-4,-22,-4,14,-4,4,0,0,2,-4,2,0,0,0,2,-1,-2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[120,-8,12,-6,-6,3,0,0,0,4,-2,-2,1,1,0,0,0,0,8,
0,0,0,8,0,0,-1,0,0,0,0,0,0,1,1],[210,10,21,3,3,3,2,0,0,1,1,1,0,0,2*E(4),0,0,
-1,28,10*E(4),4*E(4),0,1,E(4),E(4),1,0,0,-3-2*E(4),3-2*E(4),E(4),E(4),0,0],
[GALOIS,[8,3]],[504,-8,18,18,-9,0,0,0,-1,-2,-2,1,0,0,0,0,0,0,0,-4*E(4),
-8*E(4),0,0,2*E(4),-E(4),0,0,E(4),-2*E(4),-2*E(4),-2*E(4),E(4),0,0],[504,-8,
18,-9,18,0,0,0,-1,-2,1,-2,0,0,0,0,0,0,0,-4*E(4),-8*E(4),0,0,-E(4),2*E(4),0,0,
E(4),-2*E(4),-2*E(4),E(4),-2*E(4),0,0],[540,12,-27,0,0,0,4,0,0,-3,0,0,1,1,0,0,
0,1,-48,0,0,0,-3,0,0,0,0,0,-3,3,0,0,1,1],[560,-16,-34,2,2,2,0,0,0,2,2,2,0,0,0,
-1,-1,0,0,0,-16*E(4),0,0,0,0,0,0,0,2*E(4),2*E(4),2*E(4),2*E(4),0,0],[630,14,
-18,9,9,0,-6,0,0,2,-1,-1,0,0,0,0,0,0,0,10*E(4),-4*E(4),0,0,E(4),E(4),0,2*E(4),
0,2*E(4),2*E(4),-E(4),-E(4),0,0],[640,0,-8,-8,-8,1,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,1,0,-32,0,0,0,4,0,0,1,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6],
[GALOIS,[15,3]],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,0,-1,-1,0,0,16*E(4),0,0,0,
-2*E(4),-2*E(4),0,0,E(4),0,0,0,0,0,0]],"4.U4(3).2_1",[[20,0,-7,2,2,2,2,0,0,-3,
0,0,-1,-1,-1-E(4),-1,-1,-1,-6,0,2+2*E(4),0,3,0,0,0,-1-E(4),0,-1+2*E(4),2-E(4),
-1-E(4),-1-E(4),1,1],[120,0,12,-6,-6,3,4,0,0,0,0,0,1,1,0,0,0,-2,20,0,
-4-4*E(4),0,2,0,0,-1,0,0,2+2*E(4),2+2*E(4),-1-E(4),-1-E(4),-1,-1],[140,0,5,-4,
-4,5,-2,0,0,-3,0,0,0,0,1+E(4),-1,-1,1,14,0,6+6*E(4),0,5,0,0,-1,1+E(4),0,-3,
-3*E(4),0,0,0,0],[448,0,16,16,-20,-2,0,0,-2,0,0,0,0,0,0,1,-2,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[448,0,16,-20,16,-2,0,0,-2,0,0,0,0,0,0,-2,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],[280,0,37,10,10,1,4,0,0,-3,0,0,0,0,0,1,1,1,28,0,4+4*E(4),
0,1,0,0,1,0,0,1+4*E(4),4+E(4),1+E(4),1+E(4),0,0],[280,0,-17,10,-8,1,4,0,0,3,0,
0,0,0,0,-2,1,1,28,0,4+4*E(4),0,1,0,0,1,0,0,1-2*E(4),-2+E(4),1+E(4),-2-2*E(4),
0,0],[280,0,-17,-8,10,1,4,0,0,3,0,0,0,0,0,1,-2,1,28,0,4+4*E(4),0,1,0,0,1,0,0,
1-2*E(4),-2+E(4),-2-2*E(4),1+E(4),0,0],[420,0,-39,6,6,-3,2,0,0,-3,0,0,0,0,
1+E(4),0,0,-1,-14,0,2+2*E(4),0,-5,0,0,1,1+E(4),0,-1+2*E(4),2-E(4),-1-E(4),
-1-E(4),0,0],[540,0,-27,0,0,0,-2,0,0,-3,0,0,1,1,-1-E(4),0,0,1,6,0,6+6*E(4),0,
-3,0,0,0,-1-E(4),0,-3,-3*E(4),0,0,-1,-1],[640,0,-8,-8,-8,1,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,1,0,-32,0,0,0,4,0,0,1,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6],
[GALOIS,[11,3]],[840,0,3,12,12,3,-4,0,0,3,0,0,0,0,0,0,0,-1,-28,0,12+12*E(4),0,
-1,0,0,-1,0,0,3,3*E(4),0,0,0,0],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,0,-1,-1,0,
0,0,0,0,0,0,0,0,0,E(40)^13-E(40)^21-E(40)^29+E(40)^37,0,0,0,0,0,0]],]);
ARC("U4(3).2_1","maxes",["U4(3)","3^4:(2xA6)","U4(2).2","U4(3).2_1M4",
"L3(4).2_2","L3(4).2_2","3^(1+4)+.4S4","2xU3(3)","2^4.s6","U4(3).2_1M10",
"4(A4xA4).4","A6.2^2","A6.2^2"]);
ARC("U4(3).2_1","tomfusion",rec(name:="U4(3).2_1",map:=[1,3,5,7,8,6,11,12,
20,32,34,33,37,37,68,79,78,91,2,4,9,10,30,36,35,31,67,80,88,88,90,89,112,
112],text:=[
"fusion map is unique up to table autom."
],perm:=(3,4)));
ALF("U4(3).2_1","U4(3).4",[1,2,3,4,4,5,6,7,8,9,10,10,11,12,13,14,14,15,16,
17,18,19,20,21,21,22,23,24,25,26,27,27,28,29]);
ALF("U4(3).2_1","U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,28,29,30,31,31]);
ALF("U4(3).2_1","U4(3).(2^2)_{133}",[1,2,3,4,4,5,6,7,8,9,10,10,11,11,12,
13,13,14,15,16,17,18,19,20,20,21,22,23,24,24,25,25,26,26]);
ALF("U4(3).2_1","U4(3).D8",[1,2,3,4,4,5,6,7,8,9,10,10,11,11,12,13,13,14,
15,16,17,18,19,20,20,21,22,23,24,24,25,25,26,26],[
"fusion map is unique"
]);
MOT("U4(3).2_2",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"constructions: PSU(4,3) extended by transpose-inverse"
],
[6531840,2304,11664,1944,1944,162,192,32,10,144,72,72,7,16,54,54,27,24,51840,
1152,192,96,1296,1296,216,108,72,18,16,10,24,12,18,18],
[,[1,1,3,4,5,6,2,2,9,3,4,5,13,7,16,15,17,10,1,1,2,2,3,3,5,4,5,6,7,9,10,11,16,
15],[1,2,1,1,1,1,7,8,9,2,2,2,13,14,3,3,3,7,19,20,21,22,19,19,19,19,20,20,29,
30,21,22,23,24],,[1,2,3,4,5,6,7,8,1,10,11,12,13,14,16,15,17,18,19,20,21,22,24,
23,25,26,27,28,29,19,31,32,34,33],,[1,2,3,4,5,6,7,8,9,10,11,12,1,14,15,16,17,
18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1],[21,5,-6,3,3,3,1,1,1,2,-1,-1,0,-1,0,0,0,-2,9,1,-3,1,0,0,-3,3,1,1,-1,-1,0,
1,0,0],
[TENSOR,[3,2]],[35,3,8,8,-1,-1,3,-1,0,0,0,3,0,-1,2,2,-1,0,15,-1,-1,3,6,6,3,0,
-1,-1,-1,0,2,0,0,0],
[TENSOR,[5,2]],[35,3,8,-1,8,-1,3,-1,0,0,3,0,0,-1,-1,-1,2,0,-5,-5,3,-1,4,4,-2,
1,-2,1,-1,0,0,-1,1,1],
[TENSOR,[7,2]],[90,10,9,9,9,0,-2,2,0,1,1,1,-1,0,0,0,0,1,30,6,2,2,3,3,3,3,3,0,
0,0,-1,-1,0,0],
[TENSOR,[9,2]],[140,12,5,-4,-4,5,4,0,0,-3,0,0,0,0,-1,-1,-1,1,20,4,4,0,-7,-7,2,
2,-2,1,0,0,1,0,-1,-1],
[TENSOR,[11,2]],[189,-3,27,0,0,0,5,1,-1,3,0,0,0,1,0,0,0,-1,9,9,1,-3,9,9,0,0,0,
0,1,-1,1,0,0,0],
[TENSOR,[13,2]],[210,2,21,3,3,3,-2,-2,0,5,-1,-1,0,0,0,0,0,1,30,-10,2,-2,3,3,3,
3,-1,-1,0,0,-1,1,0,0],
[TENSOR,[15,2]],[280,-8,10,10,1,1,0,0,0,-2,-2,1,0,0,2*E(3)-E(3)^2,
-E(3)+2*E(3)^2,1,0,40,-8,0,0,2*E(3)-10*E(3)^2,-10*E(3)+2*E(3)^2,1,-2,1,1,0,0,
0,0,E(3)^2,E(3)],
[TENSOR,[17,2]],
[GALOIS,[17,2]],
[TENSOR,[19,2]],[560,-16,20,2,20,2,0,0,0,-4,2,-4,0,0,2,2,-1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0],[315,11,-9,18,-9,0,-1,-1,0,-1,2,-1,0,1,0,0,0,-1,75,3,-1,3,3,
3,-3,0,-3,0,1,0,-1,0,0,0],
[TENSOR,[22,2]],[315,11,-9,-9,18,0,-1,-1,0,-1,-1,2,0,1,0,0,0,-1,15,-9,-5,-1,
-3,-3,0,3,0,0,1,0,1,-1,0,0],
[TENSOR,[24,2]],[420,4,-39,6,6,-3,4,0,0,1,-2,-2,0,0,0,0,0,1,60,-4,4,0,-3,-3,
-6,0,2,-1,0,0,1,0,0,0],
[TENSOR,[26,2]],[560,-16,-34,2,2,2,0,0,0,2,2,2,0,0,-1,-1,-1,0,0,0,0,0,
-6*E(3)+6*E(3)^2,6*E(3)-6*E(3)^2,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2],
[TENSOR,[28,2]],[1280,0,-16,-16,-16,2,0,0,0,0,0,0,-1,0,2,2,2,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[729,9,0,0,0,0,-3,1,-1,0,0,0,1,-1,0,0,0,0,81,9,-3,-3,0,0,0,
0,0,0,-1,1,0,0,0,0],
[TENSOR,[31,2]],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,-1,-1,-1,0,64,0,0,0,-8,-8,
4,-2,0,0,0,-1,0,0,1,1],
[TENSOR,[33,2]]],
[(15,16)(23,24)(33,34)]);
ARC("U4(3).2_2","CAS",[rec(name:="u4q3b",
permchars:=( 7, 8)(21,27,26,25,24,23,22)(28,29)(30,34,33,32,31),
permclasses:=(23,24)(33,34),
text:=[
"names:=u4q3b; u4q3.z2, psu4[3].z2\n",
" order: 2^8.3^6.5.7 = 6,531,840\n",
" number of classes: 34\n",
" source:todd, j.a.\n",
" the characters of a collineation group in\n",
" five dimensions\n",
" proc.roy.soc.london 200\n",
" (1949), 320-336\n",
" test: 1. o.r., sym 2 decompose correctly\n",
" comments:extension of psu4(3) with an\n",
" outer automorphism of order 2\n",
" blown up using cas-system\n",
""])]);
ARC("U4(3).2_2","projectives",["2.U4(3).2_2",[[20,4,-7,2,2,2,4,0,0,1,-2,-2,-1,
0,-1,-1,-1,1,0,0,0,0,3*E(3)-3*E(3)^2,-3*E(3)+3*E(3)^2,0,0,0,0,0,0,E(3)-E(3)^2,
0,-E(3)+E(3)^2,E(3)-E(3)^2],[56,-8,2,11,2,2,0,0,1,-2,1,-2,0,0,2,2,-1,0,24,0,0,
4,6,6,0,3,0,0,0,-1,0,1,0,0],[56,-8,2,2,11,2,0,0,1,-2,-2,1,0,0,-1,-1,2,0,16,0,
0,0,-2,-2,1,4,3,0,0,1,0,0,1,1],[70,-2,16,7,7,-2,2,0,0,4,1,1,0,0,1,1,1,2,20,0,
0,2,2,2,5,-1,3,0,0,0,0,-1,-1,-1],[70,-2,-11,7,-2,-2,2,0,0,1,1,-2,0,0,
2*E(3)-E(3)^2,-E(3)+2*E(3)^2,1,-1,20,0,0,2,E(3)-5*E(3)^2,-5*E(3)+E(3)^2,-4,-1,
0,0,0,0,E(3)-E(3)^2,-1,-E(3)^2,-E(3)],
[GALOIS,[5,2]],[140,-4,-22,-4,14,-4,4,0,0,2,-4,2,0,0,2,2,-1,-2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0],[120,-8,12,-6,-6,3,0,0,0,4,-2,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,3,0,0,0,0,0,0],[420,20,42,6,6,6,4,0,0,2,2,2,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0],[504,-8,18,18,-9,0,0,0,-1,-2,-2,1,0,0,0,0,0,0,96,0,0,0,6,6,3,
0,-3,0,0,1,0,0,0,0],[504,-8,18,-9,18,0,0,0,-1,-2,1,-2,0,0,0,0,0,0,24,0,0,-4,6,
6,0,3,0,0,0,-1,0,-1,0,0],[540,12,-27,0,0,0,4,0,0,-3,0,0,1,0,0,0,0,1,0,0,0,0,
9*E(3)-9*E(3)^2,-9*E(3)+9*E(3)^2,0,0,0,0,0,0,-E(3)+E(3)^2,0,0,0],[560,-16,-34,
2,2,2,0,0,0,2,2,2,0,0,-1,-1,-1,0,80,0,0,0,-10,-10,-4,2,0,0,0,0,0,0,-1,-1],[
630,14,-18,9,9,0,-6,0,0,2,-1,-1,0,0,0,0,0,0,60,0,0,-2,6,6,-3,-3,3,0,0,0,0,1,0,
0],[1280,0,-16,-16,-16,2,0,0,0,0,0,0,-1,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],[896,0,32,-4,-4,-4,0,0,1,0,0,0,0,0,-1,-1,-1,0,64,0,0,0,-8,-8,4,-2,0,0,0,
-1,0,0,1,1]],"3_1.U4(3).2_2",[[15,-1,6,3,0,0,3,-1,0,2,-1,2,1,1,E(3)+2*E(3)^2,
2*E(3)+E(3)^2,0,0,5,-3,1,1,-4*E(3),-4*E(3)^2,2,-1,0,0,-1,0,-2,1,-E(3),
-E(3)^2],[21,5,3,6,0,0,1,1,1,-1,2,2,0,-1,2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,1,11,3,
-1,3,-E(3)+3*E(3)^2,3*E(3)-E(3)^2,2,2,0,0,1,1,-1,0,-E(3)^2,-E(3)],[105,9,15,3,
0,0,1,1,0,3,3,0,0,1,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,1,25,9,1,1,E(3)-3*E(3)^2,
-3*E(3)+E(3)^2,4,1,0,0,1,0,1,1,E(3)^2,E(3)],[105,-7,15,3,0,0,5,1,0,-1,-1,2,0,
-1,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,-1,5,-3,1,1,11*E(3)+3*E(3)^2,
3*E(3)+11*E(3)^2,2,-1,0,0,-1,0,1,1,-E(3)^2,-E(3)],[105,9,-12,12,0,0,1,1,0,0,0,
0,0,1,E(3)-E(3)^2,-E(3)+E(3)^2,0,-2,35,3,3,3,2*E(3)+6*E(3)^2,6*E(3)+2*E(3)^2,
-4,2,0,0,-1,0,0,0,-1,-1],[210,2,3,15,0,0,-2,-2,0,-1,-1,2,0,0,-E(3)-2*E(3)^2,
-2*E(3)-E(3)^2,0,1,50,-6,-2,2,5*E(3)+9*E(3)^2,9*E(3)+5*E(3)^2,2,-1,0,0,0,0,1,
-1,-E(3),-E(3)^2],[315,-5,-36,9,0,0,3,-1,0,4,1,-2,0,-1,0,0,0,0,45,-3,-3,1,0,0,
-6,-3,0,0,1,0,0,1,0,0],[336,16,-6,6,0,0,0,0,1,-2,-2,-2,0,0,-E(3)+E(3)^2,
E(3)-E(3)^2,0,0,64,0,0,0,-2*E(3)-6*E(3)^2,-6*E(3)-2*E(3)^2,-2,4,0,0,0,-1,0,0,
1,1],[720,16,-36,-18,0,0,0,0,0,4,-2,4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],[384,0,24,12,0,0,0,0,-1,0,0,0,-1,0,E(3)+2*E(3)^2,2*E(3)+E(3)^2,0,0,64,
0,0,0,-8*E(3),-8*E(3)^2,4,-2,0,0,0,-1,0,0,E(3),E(3)^2],[420,4,33,-6,0,0,4,0,0,
1,-2,-2,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,0,1,20,-12,-4,0,5*E(3)-3*E(3)^2,
-3*E(3)+5*E(3)^2,2,2,0,0,0,0,-1,0,-1,-1],[630,6,9,-9,0,0,2,-2,0,-3,3,0,0,0,0,
0,0,-1,30,6,2,2,3*E(3)-9*E(3)^2,-9*E(3)+3*E(3)^2,0,-3,0,0,0,0,-1,-1,0,0],[729,
9,0,0,0,0,-3,1,-1,0,0,0,1,-1,0,0,0,0,81,9,-3,-3,0,0,0,0,0,0,-1,1,0,0,0,0],[
756,-12,27,0,0,0,-4,0,1,3,0,0,0,0,0,0,0,-1,36,-12,4,0,9,9,0,0,0,0,0,1,1,0,0,
0],[945,-15,-27,0,0,0,1,1,0,-3,0,0,0,1,0,0,0,1,45,-3,5,-3,-9,-9,0,0,0,0,1,0,
-1,0,0,0]],"6_1.U4(3).2_2",[[6,-2,-3,3,0,0,2,0,1,1,1,-2,-1,0,E(3)-E(3)^2,
-E(3)+E(3)^2,0,-1,4,0,0,2,E(3)+3*E(3)^2,3*E(3)+E(3)^2,-2,1,0,0,0,-1,
E(3)-E(3)^2,-1,1,1],[84,4,-15,6,0,0,4,0,-1,1,-2,-2,0,0,-E(3)-2*E(3)^2,
-2*E(3)-E(3)^2,0,1,16,0,0,0,7*E(3)+9*E(3)^2,9*E(3)+7*E(3)^2,-2,-2,0,0,0,1,
E(3)-E(3)^2,0,E(3),E(3)^2],[120,-8,-6,15,0,0,0,0,0,-2,1,-2,1,0,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,0,0,40,0,0,4,-2*E(3)+6*E(3)^2,6*E(3)-2*E(3)^2,-2,1,0,0,0,0,0,1,
E(3)^2,E(3)],[126,-10,18,9,0,0,2,0,1,2,-1,2,0,0,0,0,0,2,36,0,0,2,0,0,6,3,0,0,
0,1,0,-1,0,0],[210,-6,-24,-3,0,0,6,0,0,0,3,0,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,
20,0,0,2,-4*E(3)-12*E(3)^2,-12*E(3)-4*E(3)^2,-4,-1,0,0,0,0,0,-1,-1,-1],[540,
12,54,0,0,0,4,0,0,6,0,0,1,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[336,16,
-6,6,0,0,0,0,1,-2,-2,-2,0,0,-E(3)+E(3)^2,E(3)-E(3)^2,0,0,16,0,0,0,
-14*E(3)-6*E(3)^2,-6*E(3)-14*E(3)^2,-2,-2,0,0,0,1,0,0,1,1],[384,0,24,12,0,0,0,
0,-1,0,0,0,-1,0,E(3)+2*E(3)^2,2*E(3)+E(3)^2,0,0,64,0,0,0,-8*E(3),-8*E(3)^2,4,
-2,0,0,0,-1,0,0,E(3),E(3)^2],[420,-12,-21,12,0,0,-4,0,0,3,0,0,0,0,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,-1,80,0,0,0,5*E(3)+3*E(3)^2,3*E(3)+5*E(3)^2,
-4,2,0,0,0,0,-E(3)+E(3)^2,0,-E(3)^2,-E(3)],[630,-18,9,-9,0,0,2,0,0,-3,-3,0,0,
0,0,0,0,-1,60,0,0,-2,-3*E(3)-9*E(3)^2,-9*E(3)-3*E(3)^2,0,3,0,0,0,0,
E(3)-E(3)^2,1,0,0],[1260,-4,18,-18,0,0,-4,0,0,2,2,-4,0,0,0,0,0,2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],[840,8,12,6,0,0,0,0,0,-4,2,2,0,0,-E(3)-2*E(3)^2,
-2*E(3)-E(3)^2,0,0,80,0,0,0,8*E(3),8*E(3)^2,2,-4,0,0,0,0,0,0,-E(3),-E(3)^2],[
840,8,-42,-3,0,0,0,0,0,2,-1,2,0,0,2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,40,0,0,-4,
-2*E(3)+6*E(3)^2,6*E(3)-2*E(3)^2,-2,1,0,0,0,0,0,-1,E(3)^2,E(3)]],]);
ALF("U4(3).2_2","Fi22",[1,3,6,5,7,7,9,13,14,17,18,23,26,28,31,31,32,38,2,
4,9,10,16,16,19,15,24,22,27,34,38,41,56,55],[
"determined by the factorization through S3xU4(3).2_2,\n",
"with natural embedding into this group,\n",
"the fusion on the CAS table is wrong"
]);
ALF("U4(3).2_2","U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
15,16,17,32,33,34,35,36,36,37,38,39,40,41,42,43,44,45,45]);
ALF("U4(3).2_2","U4(3).D8",[1,2,3,4,4,5,6,7,8,9,10,10,11,12,13,13,13,14,
39,40,41,42,43,43,44,45,46,47,48,49,50,51,52,52],[
"fusion map is unique"
]);
ALF("U4(3).2_2","U6(2)",[1,3,6,5,7,7,10,14,15,19,20,22,24,26,29,30,31,40,
2,4,10,13,16,17,21,18,23,23,26,32,40,43,45,46],[
"fusion map is unique up to table automorphisms"
]);
ALN("U4(3).2_2",["f22u2","u4q3b"]);
MOT("U4(3).2_2'",
0,
0,
0,
0,
[(16,17)(23,24)(33,34)],
["ConstructPermuted",["U4(3).2_2"],
( 4, 5)(11,12)(15,16,17),( 5, 7)( 6, 8)(17,18,19,20,21)(22,24)(23,25)]);
ALF("U4(3).2_2'","U4(3).(2^2)_{122}",[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
16,17,46,47,48,49,50,50,51,52,53,54,55,56,57,58,59,59]);
MOT("U4(3).2_3",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7]"
],
[6531840,2304,11664,972,162,192,32,10,144,36,7,16,27,27,24,1440,96,18,96,32,8,
10,12,24,24],
[,[1,1,3,4,5,2,2,8,3,4,11,6,14,13,9,1,2,5,6,6,7,8,9,15,15],[1,2,1,1,1,6,7,8,2,
2,11,12,3,3,6,16,17,16,19,20,21,22,17,19,19],,[1,2,3,4,5,6,7,1,9,10,11,12,14,
13,15,16,17,18,19,20,21,16,23,24,25],,[1,2,3,4,5,6,7,8,9,10,1,12,13,14,15,16,
17,18,19,20,21,22,23,24,25]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[21,5,-6,3,3,1,1,1,2,-1,0,-1,0,0,-2,1,-3,
1,3,-1,-1,1,0,0,0],
[TENSOR,[3,2]],[70,6,16,7,-2,6,-2,0,0,3,0,-2,1,1,0,0,0,0,0,0,0,0,0,0,0],[90,
10,9,9,0,-2,2,0,1,1,-1,0,0,0,1,0,4,0,2,-2,0,0,1,-1,-1],
[TENSOR,[6,2]],[140,12,5,-4,5,4,0,0,-3,0,0,0,-1,-1,1,10,2,1,2,2,0,0,-1,-1,-1],
[TENSOR,[8,2]],[189,-3,27,0,0,5,1,-1,3,0,0,1,0,0,-1,9,1,0,1,1,-1,-1,1,1,1],
[TENSOR,[10,2]],[210,2,21,3,3,-2,-2,0,5,-1,0,0,0,0,1,-10,2,-1,4,0,0,0,-1,1,1],
[TENSOR,[12,2]],[560,-16,20,11,2,0,0,0,-4,-1,0,0,E(3)-2*E(3)^2,-2*E(3)+E(3)^2,
0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[14,2]],[630,22,-18,9,0,-2,-2,0,-2,1,0,2,0,0,-2,0,0,0,0,0,0,0,0,0,0],[
420,4,-39,6,-3,4,0,0,1,-2,0,0,0,0,1,-10,-2,-1,2,2,0,0,1,-1,-1],
[TENSOR,[17,2]],[560,-16,-34,2,2,0,0,0,2,2,0,0,-1,-1,0,0,0,0,0,0,0,0,0,
E(24)+E(24)^11-E(24)^17-E(24)^19,-E(24)-E(24)^11+E(24)^17+E(24)^19],
[TENSOR,[19,2]],[1280,0,-16,-16,2,0,0,0,0,0,-1,0,2,2,0,0,0,0,0,0,0,0,0,0,0],[
729,9,0,0,0,-3,1,-1,0,0,1,-1,0,0,0,9,-3,0,3,-1,1,-1,0,0,0],
[TENSOR,[22,2]],[896,0,32,-4,-4,0,0,1,0,0,0,0,-1,-1,0,16,0,-2,0,0,0,1,0,0,0],
[TENSOR,[24,2]]],
[(24,25),(13,14)(24,25),(13,14)]);
ARC("U4(3).2_3","projectives",["2.U4(3).2_3",[[20,4,-7,2,2,4,0,0,1,-2,-1,0,-1,
-1,1,0,0,0,0,0,0,0,E(3)-E(3)^2,E(3)-E(3)^2,-E(3)+E(3)^2],[112,-16,4,13,4,0,0,
2,-4,-1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0],[70,-2,16,7,-2,2,0,0,4,1,0,0,1,1,2,0,0,
0,2*E(8)-2*E(8)^3,0,E(8)-E(8)^3,0,0,-E(8)+E(8)^3,-E(8)+E(8)^3],[140,-4,-22,5,
-4,4,0,0,2,-1,0,0,E(3)-2*E(3)^2,-2*E(3)+E(3)^2,-2,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[4,2]],[120,-8,12,-6,3,0,0,0,4,-2,1,0,0,0,0,0,0,3,0,0,0,0,0,0,0],[420,
20,42,6,6,4,0,0,2,2,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0],[1008,-16,36,9,0,0,0,-2,
-4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[540,12,-27,0,0,4,0,0,-3,0,1,0,0,0,1,0,0,
0,0,0,0,0,E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2],[560,-16,-34,2,2,0,0,0,2,2,0,
0,-1,-1,0,0,0,0,4*E(8)-4*E(8)^3,0,0,0,0,E(8)-E(8)^3,E(8)-E(8)^3],[630,14,-18,
9,0,-6,0,0,2,-1,0,0,0,0,0,0,0,0,2*E(8)-2*E(8)^3,0,-E(8)+E(8)^3,0,0,
-E(8)+E(8)^3,-E(8)+E(8)^3],[1280,0,-16,-16,2,0,0,0,0,0,-1,0,2,2,0,0,0,0,0,0,0,
0,0,0,0],[896,0,32,-4,-4,0,0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,0,E(5)-E(5)^2-E(5)^3
+E(5)^4,0,0,0]],"3_2.U4(3).2_3",[[36,4,9,0,0,4,0,1,1,-2,1,0,0,0,1,6,-2,0,2,2,
0,1,1,-1,-1],[90,-6,-18,0,0,2,2,0,6,0,-1,-2,0,0,2,0,0,0,0,0,0,0,0,0,0],[126,
14,-9,0,0,2,2,1,-1,2,0,0,0,0,-1,6,2,0,4,0,0,1,-1,1,1],[189,-3,27,0,0,5,1,-1,3,
0,0,1,0,0,-1,9,1,0,1,1,-1,-1,1,1,1],[315,11,18,0,0,-1,-1,0,2,2,0,1,0,0,2,15,3,
0,-3,1,1,0,0,0,0],[630,-10,36,0,0,6,-2,0,-4,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,
0],[630,6,-45,0,0,2,-2,0,3,0,0,0,0,0,-1,0,4,0,2,-2,0,0,1,-1,-1],[720,16,18,0,
0,0,0,0,-2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,E(24)+E(24)^11-E(24)^17-E(24)^19,
-E(24)-E(24)^11+E(24)^17+E(24)^19],[729,9,0,0,0,-3,1,-1,0,0,1,-1,0,0,0,9,-3,0,
3,-1,1,-1,0,0,0],[756,-12,27,0,0,-4,0,1,3,0,0,0,0,0,-1,6,-2,0,-2,-2,0,1,1,1,
1],[945,-15,-27,0,0,1,1,0,-3,0,0,1,0,0,1,15,-1,0,-1,-1,-1,0,-1,-1,
-1]],"6_2.U4(3).2_3",[[90,2,-18,0,0,6,0,0,2,2,-1,0,0,0,0,0,0,0,
2*E(8)-2*E(8)^3,0,E(8)-E(8)^3,0,0,-E(8)+E(8)^3,-E(8)+E(8)^3],[252,-20,-18,0,0,
4,0,2,-2,-2,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0],[252,12,-18,0,0,-4,0,2,6,0,0,0,0,
0,2,0,0,0,0,0,0,0,0,0,0],[540,12,54,0,0,4,0,0,6,0,1,0,0,0,-2,0,0,0,0,0,0,0,0,
0,0],[504,-8,-36,0,0,0,0,-1,4,-2,0,0,0,0,0,0,0,0,0,0,0,E(5)-E(5)^2-E(5)^3
+E(5)^4,0,0,0],[540,12,-27,0,0,4,0,0,-3,0,1,0,0,0,1,0,0,0,0,0,0,0,
E(3)-E(3)^2,-E(3)+E(3)^2,E(3)-E(3)^2],[630,-18,36,0,0,2,0,0,0,0,0,0,0,0,2,0,0,
0,2*E(8)-2*E(8)^3,0,-E(8)+E(8)^3,0,0,-E(8)+E(8)^3,-E(8)+E(8)^3],[720,16,18,0,
0,0,0,0,-2,-2,-1,0,0,0,0,0,0,0,4*E(8)-4*E(8)^3,0,0,0,0,E(8)-E(8)^3,
E(8)-E(8)^3],[1260,-4,-9,0,0,-4,0,0,-1,2,0,0,0,0,-1,0,0,0,0,0,0,0,E(3)-E(3)^2,
E(3)-E(3)^2,-E(3)+E(3)^2]],]);
ARC("U4(3).2_3","maxes",["U4(3)","3^4:m10","L3(4).2_3","L3(4).2_1",
"3^(1+4):4S4","U3(3).2","2(A4xA4).4.2","M10x2","A6.2^2","U4(3).2_3M10",
"(4^2x2)S4"]);
ARC("U4(3).2_3","tomfusion",rec(name:="U4(3).2_3",map:=[1,2,4,6,5,10,12,13,18,
19,21,30,49,49,60,3,11,20,28,29,31,50,61,127,127],text:=[
"fusion map is unique"
]));
ALF("U4(3).2_3","U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,
27,28,29,30,31,32,33,34,35,35],[
"fusion map is unique up to table autom."
],"tom:1787");
ALF("U4(3).2_3","U4(3).D8",[1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,53,54,55,
56,57,58,59,60,61,61],[
"fusion map is unique"
]);
ALF("U4(3).2_3","McL.2",[1,2,3,4,4,5,5,7,8,9,10,11,12,12,16,20,21,22,23,24,24,
25,26,32,33],[
"fusion map is unique up to table automorphisms"
]);
MOT("U4(3).2_3'",
0,
0,
0,
0,
0,
["ConstructPermuted",["U4(3).2_3"],(),()]);
ALF("U4(3).2_3'","U4(3).(2^2)_{133}",[1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,
36,37,38,39,40,41,42,43,44,44],[
"fusion U4(3).2_3 -> U4(3).(2^2)_{133} mapped under U4(3).D8"
]);
MOT("U4(3).4",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"constructions: PGU(4,3)"
],
[13063680,4608,23328,1944,324,384,64,20,288,72,28,28,32,27,48,24192,2880,2304,
256,432,36,36,32,20,288,288,36,28,28,24192,24192,384,384,80,80,192,192,64,64,
432,432,48,48,36,36,20,20,24,24,28,28,28,28],
[,[1,1,3,4,5,2,2,8,3,4,11,12,6,14,9,1,1,2,2,3,4,5,6,8,9,9,10,11,12,16,16,16,
16,17,17,18,18,18,18,20,20,20,20,22,22,24,24,25,26,28,28,29,29],[1,2,1,1,1,6,
7,8,2,2,12,11,13,3,6,16,17,18,19,16,17,16,23,24,18,18,18,29,28,31,30,33,32,35,
34,37,36,39,38,31,30,33,32,31,30,47,46,37,36,53,52,51,50],,[1,2,3,4,5,6,7,1,9,
10,12,11,13,14,15,16,17,18,19,20,21,22,23,17,25,26,27,29,28,30,31,32,33,34,35,
36,37,38,39,40,41,42,43,44,45,34,35,48,49,52,53,50,51],,[1,2,3,4,5,6,7,8,9,10,
1,1,13,14,15,16,17,18,19,20,21,22,23,24,26,25,27,16,16,31,30,33,32,35,34,37,
36,39,38,41,40,43,42,45,44,47,46,49,48,31,30,31,30]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,E(4),-E(4),E(4),-E(4),E(4),-E(4),E(4),-E(4),E(4),
-E(4),E(4),-E(4),E(4),-E(4),E(4),-E(4),E(4),-E(4),E(4),-E(4),E(4),-E(4),E(4),
-E(4)],
[TENSOR,[2,2]],
[TENSOR,[2,3]],[21,5,-6,3,3,1,1,1,2,-1,0,0,-1,0,-2,-7,1,5,-3,2,1,-1,-1,1,2,2,
-1,0,0,7,7,-1,-1,-1,-1,-3,-3,1,1,-2,-2,2,2,1,1,-1,-1,0,0,0,0,0,0],
[TENSOR,[5,2]],
[TENSOR,[5,3]],
[TENSOR,[5,4]],[70,6,16,7,-2,6,-2,0,0,3,0,0,-2,1,0,14,-10,-2,-2,-4,-1,2,-2,0,
4,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[9,2]],[90,10,9,9,0,-2,2,0,1,1,-1,-1,0,0,1,6,10,10,2,-3,1,0,0,0,1,1,1,
-1,-1,6,6,-2,-2,0,0,4,4,0,0,-3,-3,1,1,0,0,0,0,1,1,-1,-1,-1,-1],
[TENSOR,[11,2]],
[TENSOR,[11,3]],
[TENSOR,[11,4]],[140,12,5,-4,5,4,0,0,-3,0,0,0,0,-1,1,28,0,4,4,1,0,1,0,0,1,1,
-2,0,0,14,14,-2,-2,0,0,2,2,2,2,5,5,1,1,-1,-1,0,0,-1,-1,0,0,0,0],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[189,-3,27,0,0,5,1,-1,3,0,0,0,1,0,-1,21,9,-3,-3,3,0,0,1,-1,3,
3,0,0,0,21,21,5,5,-1,-1,1,1,1,1,3,3,-1,-1,0,0,-1,-1,1,1,0,0,0,0],
[TENSOR,[19,2]],
[TENSOR,[19,3]],
[TENSOR,[19,4]],[210,2,21,3,3,-2,-2,0,5,-1,0,0,0,0,1,14,-10,10,2,5,-1,-1,0,0,
1,1,1,0,0,28,28,4,4,0,0,2,2,-2,-2,1,1,1,1,1,1,0,0,-1,-1,0,0,0,0],
[TENSOR,[23,2]],
[TENSOR,[23,3]],
[TENSOR,[23,4]],[1120,-32,40,22,4,0,0,0,-8,-2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[630,22,-18,9,0,-2,-2,
0,-2,1,0,0,2,0,-2,-42,-10,14,-2,-6,-1,0,2,0,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[28,2]],[420,4,-39,6,-3,4,0,0,1,-2,0,0,0,0,1,28,0,12,-4,1,0,1,0,0,-3,
-3,0,0,0,14,14,-2,-2,0,0,-2,-2,-2,-2,5,5,1,1,-1,-1,0,0,1,1,0,0,0,0],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[560,-16,-34,2,2,0,0,0,2,2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,
-6*E(4),6*E(4),0,0,0,28+28*E(4),28-28*E(4),-4-4*E(4),-4+4*E(4),0,0,0,0,0,0,
1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),0,0,0,0,0,0,0,0],
[TENSOR,[34,2]],
[TENSOR,[34,3]],
[TENSOR,[34,4]],[640,0,-8,-8,1,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
E(7)^3+E(7)^5+E(7)^6,0,1,0,-32,0,0,0,4,0,1,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
E(7)^3+E(7)^5+E(7)^6,32,32,0,0,0,0,0,0,0,0,-4,-4,0,0,-1,-1,0,0,0,0,
-E(7)-E(7)^2-E(7)^4,-E(7)-E(7)^2-E(7)^4,-E(7)^3-E(7)^5-E(7)^6,
-E(7)^3-E(7)^5-E(7)^6],
[TENSOR,[38,2]],
[TENSOR,[38,3]],
[TENSOR,[38,4]],
[GALOIS,[38,3]],
[TENSOR,[42,2]],
[TENSOR,[42,3]],
[TENSOR,[42,4]],[729,9,0,0,0,-3,1,-1,0,0,1,1,-1,0,0,-27,9,9,1,0,0,0,-1,-1,0,0,
0,1,1,27,27,3,3,1,1,-3,-3,1,1,0,0,0,0,0,0,1,1,0,0,-1,-1,-1,-1],
[TENSOR,[46,2]],
[TENSOR,[46,3]],
[TENSOR,[46,4]],[896,0,32,-4,-4,0,0,1,0,0,0,0,0,-1,0,0,16,0,0,0,-2,0,0,1,0,0,
0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0],
[TENSOR,[50,2]],
[TENSOR,[50,3]],
[TENSOR,[50,4]]],
[(25,26)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)(44,45)(46,47)(48,49)
(50,51)(52,53),(11,12)(28,29)(50,52)(51,53)]);
ARC("U4(3).4","projectives",["4.U4(3).4",[[20,0,-7,2,2,2,0,0,-3,0,-1,-1,
-1-E(4),-1,-1,-6,0,2+2*E(4),0,3,0,0,-1-E(4),0,-1+2*E(4),2-E(4),-1-E(4),1,1,
-7+E(4),-7-E(4),-3+E(4),-3-E(4),0,0,2,2,0,0,2+E(4),2-E(4),E(4),-E(4),-1+E(4),
-1-E(4),0,0,-1,-1,E(4),-E(4),E(4),-E(4)],[120,0,12,-6,3,4,0,0,0,0,1,1,0,0,-2,
20,0,-4-4*E(4),0,2,0,-1,0,0,2+2*E(4),2+2*E(4),-1-E(4),-1,-1,14+6*E(4),
14-6*E(4),-2-2*E(4),-2+2*E(4),0,0,0,0,0,0,5-3*E(4),5+3*E(4),1+E(4),1-E(4),-1,
-1,0,0,0,0,-E(4),E(4),-E(4),E(4)],[140,0,5,-4,5,-2,0,0,-3,0,0,0,1+E(4),-1,1,
14,0,6+6*E(4),0,5,0,-1,1+E(4),0,-3,-3*E(4),0,0,0,21-7*E(4),21+7*E(4),1+E(4),
1-E(4),0,0,2,2,0,0,3+2*E(4),3-2*E(4),1-2*E(4),1+2*E(4),-E(4),E(4),0,0,-1,-1,0,
0,0,0],[896,0,32,-4,-4,0,0,-4,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[280,0,37,10,1,4,0,0,-3,0,0,0,0,
1,1,28,0,4+4*E(4),0,1,0,1,0,0,1+4*E(4),4+E(4),1+E(4),0,0,28,28,-4,-4,0,0,4,4,
0,0,1,1,-1,-1,1,1,0,0,1,1,0,0,0,0],[560,0,-34,2,2,8,0,0,6,0,0,0,0,-1,2,56,0,
8+8*E(4),0,2,0,2,0,0,2-4*E(4),-4+2*E(4),-1-E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],[420,0,-39,6,-3,2,0,0,-3,0,0,0,1+E(4),0,-1,-14,0,
2+2*E(4),0,-5,0,1,1+E(4),0,-1+2*E(4),2-E(4),-1-E(4),0,0,-7+21*E(4),-7-21*E(4),
-3+5*E(4),-3-5*E(4),0,0,-2,-2,0,0,2+3*E(4),2-3*E(4),-E(4),E(4),-1,-1,0,0,1,1,
0,0,0,0],[540,0,-27,0,0,-2,0,0,-3,0,1,1,-1-E(4),0,1,6,0,6+6*E(4),0,-3,0,0,
-1-E(4),0,-3,-3*E(4),0,-1,-1,21-27*E(4),21+27*E(4),1-3*E(4),1+3*E(4),0,0,-2,
-2,0,0,3,3,1,1,0,0,0,0,1,1,E(4),-E(4),E(4),-E(4)],[640,0,-8,-8,1,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,0,-32,0,0,0,4,0,1,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,32,32,0,0,0,0,0,0,0,0,-4,-4,0,0,-1,-1,
0,0,0,0,-E(7)-E(7)^2-E(7)^4,-E(7)-E(7)^2-E(7)^4,-E(7)^3-E(7)^5-E(7)^6,
-E(7)^3-E(7)^5-E(7)^6],
[GALOIS,[9,3]],[840,0,3,12,3,-4,0,0,3,0,0,0,0,0,-1,-28,0,12+12*E(4),0,-1,0,-1,
0,0,3,3*E(4),0,0,0,28,28,-4,-4,0,0,-4,-4,0,0,1,1,-1,-1,1,1,0,0,-1,-1,0,0,0,
0],[896,0,32,-4,-4,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,E(40)^13-E(40)^21
-E(40)^29+E(40)^37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(80)^9-E(80)^37
-E(80)^41+E(80)^53,-E(80)^3+E(80)^31+E(80)^67-E(80)^79,0,0,0,0,0,
0]],"2.U4(3).4",[[20,4,-7,2,2,4,0,0,1,-2,-1,-1,0,-1,1,-8,0,0,0,1,0,-2,0,0,-3,
3,0,-1,-1,-6,-6,2,2,0,0,2,2,-2,-2,3,3,-1,-1,0,0,0,0,-1,-1,1,1,1,1],[112,-16,4,
13,4,0,0,2,-4,-1,0,0,0,1,0,0,8*E(4),-16*E(4),0,0,-E(4),0,0,-2*E(4),-4*E(4),
-4*E(4),-E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[70,-2,16,
7,-2,2,0,0,4,1,0,0,0,1,2,0,10*E(4),-4*E(4),0,0,E(4),0,-2*E(4),0,2*E(4),2*E(4),
-E(4),0,0,7+7*E(4),7-7*E(4),3+3*E(4),3-3*E(4),0,0,1+E(4),1-E(4),-1-E(4),
-1+E(4),-2-2*E(4),-2+2*E(4),0,0,1+E(4),1-E(4),0,0,1+E(4),1-E(4),0,0,0,0],[280,
-8,-44,10,-8,8,0,0,4,-2,0,0,0,1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[120,-8,12,-6,3,0,0,0,4,-2,1,1,0,0,0,8,0,0,
0,8,0,-1,0,0,0,0,0,1,1,20,20,4,4,0,0,0,0,0,0,2,2,-2,-2,-1,-1,0,0,0,0,-1,-1,-1,
-1],[210,10,21,3,3,2,0,0,1,1,0,0,2*E(4),0,-1,28,10*E(4),4*E(4),0,1,E(4),1,0,0,
-3-2*E(4),3-2*E(4),E(4),0,0,21-7*E(4),21+7*E(4),1-3*E(4),1+3*E(4),0,0,3+E(4),
3-E(4),1-E(4),1+E(4),3+2*E(4),3-2*E(4),1,1,-E(4),E(4),0,0,E(4),-E(4),0,0,0,0],
[GALOIS,[6,3]],[1008,-16,36,9,0,0,0,-2,-4,-1,0,0,0,0,0,0,-8*E(4),-16*E(4),0,0,
E(4),0,0,2*E(4),-4*E(4),-4*E(4),-E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0],[540,12,-27,0,0,4,0,0,-3,0,1,1,0,0,1,-48,0,0,0,-3,0,0,0,0,-3,3,0,
1,1,6,6,-2,-2,0,0,2,2,-2,-2,-3,-3,1,1,0,0,0,0,-1,-1,-1,-1,-1,-1],[560,-16,-34,
2,2,0,0,0,2,2,0,0,0,-1,0,0,0,-16*E(4),0,0,0,0,0,0,2*E(4),2*E(4),2*E(4),0,0,
28+28*E(4),28-28*E(4),-4-4*E(4),-4+4*E(4),0,0,0,0,0,0,1+E(4),1-E(4),-1-E(4),
-1+E(4),1+E(4),1-E(4),0,0,0,0,0,0,0,0],[630,14,-18,9,0,-6,0,0,2,-1,0,0,0,0,0,
0,10*E(4),-4*E(4),0,0,E(4),0,2*E(4),0,2*E(4),2*E(4),-E(4),0,0,21+21*E(4),
21-21*E(4),1+E(4),1-E(4),0,0,-3-3*E(4),-3+3*E(4),-1-E(4),-1+E(4),3+3*E(4),
3-3*E(4),1+E(4),1-E(4),0,0,0,0,0,0,0,0,0,0],[640,0,-8,-8,1,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,0,1,0,-32,0,0,0,4,0,1,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,32,32,0,0,0,0,0,0,0,0,-4,-4,0,0,-1,-1,
0,0,0,0,-E(7)-E(7)^2-E(7)^4,-E(7)-E(7)^2-E(7)^4,-E(7)^3-E(7)^5-E(7)^6,
-E(7)^3-E(7)^5-E(7)^6],
[GALOIS,[12,3]],[896,0,32,-4,-4,0,0,1,0,0,0,0,0,-1,0,0,16*E(4),0,0,0,-2*E(4),
0,0,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(40)^13-E(40)^21-E(40)^29
+E(40)^37,-E(40)^7-E(40)^23+E(40)^31+E(40)^39,0,0,0,0,0,0]],]);
ALF("U4(3).4","U4(3).D8",[1,2,3,4,5,6,7,8,9,10,11,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,24,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,
34,34,35,35,36,36,37,38,38,37],[
"fusion map is unique up to table autom.,\n",
"unique map that is compatible with Brauer tables"
]);
MOT("U4(3).D8",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5,7],\n",
"constructions: Aut(U4(3)), PGU(4,3) extended by transpose-inverse"
],
[26127360,9216,46656,3888,648,768,128,40,576,144,28,64,54,96,48384,5760,4608,
512,864,72,72,64,40,288,72,28,24192,384,80,192,64,432,48,36,20,24,28,28,
103680,2304,384,192,1296,432,216,144,36,32,20,48,24,18,2880,192,36,192,64,16,
20,24,24],
[,[1,1,3,4,5,2,2,8,3,4,11,6,13,9,1,1,2,2,3,4,5,6,8,9,10,11,15,15,16,17,17,19,
19,21,23,24,26,26,1,1,2,2,3,4,4,4,5,6,8,9,10,13,1,2,5,6,6,7,8,9,14],[1,2,1,1,
1,6,7,8,2,2,11,12,3,6,15,16,17,18,15,16,15,22,23,17,17,26,27,28,29,30,31,27,
28,27,35,30,37,38,39,40,41,42,39,39,39,40,40,48,49,41,42,43,53,54,53,56,57,58,
59,54,56],,[1,2,3,4,5,6,7,1,9,10,11,12,13,14,15,16,17,18,19,20,21,22,16,24,25,
26,27,28,29,30,31,32,33,34,29,36,38,37,39,40,41,42,43,44,45,46,47,48,39,50,51,
52,53,54,55,56,57,58,53,60,61],,[1,2,3,4,5,6,7,8,9,10,1,12,13,14,15,16,17,18,
19,20,21,22,23,24,25,15,27,28,29,30,31,32,33,34,35,36,27,27,39,40,41,42,43,44,
45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,1,1,1,1,1,1,1,1,1],
[TENSOR,[2,3]],[2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[21,
5,-6,3,3,1,1,1,2,-1,0,-1,0,-2,-7,1,5,-3,2,1,-1,-1,1,2,-1,0,7,-1,-1,-3,1,-2,2,
1,-1,0,0,0,9,1,-3,1,0,-3,3,1,1,-1,-1,0,1,0,1,-3,1,3,-1,-1,1,0,0],
[TENSOR,[6,2]],
[TENSOR,[6,3]],
[TENSOR,[6,4]],[42,10,-12,6,6,2,2,2,4,-2,0,-2,0,-4,14,-2,-10,6,-4,-2,2,2,-2,
-4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],[70,6,16,7,-2,6,-2,0,0,3,0,-2,1,0,14,-10,-2,-2,-4,-1,2,-2,0,4,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,10,-6,2,2,10,1,1,-3,0,-2,0,2,-1,1,0,0,0,0,0,0,0,0,0],[70,6,16,
7,-2,6,-2,0,0,3,0,-2,1,0,-14,10,2,2,4,1,-2,2,0,-4,-1,0,0,0,0,0,0,0,0,0,0,0,0,
0,20,4,-4,4,2,5,-1,1,-2,0,0,2,1,-1,0,0,0,0,0,0,0,0,0],
[TENSOR,[11,3]],
[TENSOR,[12,3]],[90,10,9,9,0,-2,2,0,1,1,-1,0,0,1,6,10,10,2,-3,1,0,0,0,1,1,-1,
6,-2,0,4,0,-3,1,0,0,1,-1,-1,30,6,2,2,3,3,3,3,0,0,0,-1,-1,0,0,4,0,2,-2,0,0,1,
-1],
[TENSOR,[15,2]],
[TENSOR,[15,3]],
[TENSOR,[15,4]],[180,20,18,18,0,-4,4,0,2,2,-2,0,0,2,-12,-20,-20,-4,6,-2,0,0,0,
-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],[140,12,5,-4,5,4,0,0,-3,0,0,0,-1,1,28,0,4,4,1,0,1,0,0,1,-2,0,14,-2,0,2,2,5,
1,-1,0,-1,0,0,20,4,4,0,-7,2,2,-2,1,0,0,1,0,-1,10,2,1,2,2,0,0,-1,-1],
[TENSOR,[20,2]],
[TENSOR,[20,3]],
[TENSOR,[20,4]],[280,24,10,-8,10,8,0,0,-6,0,0,0,-2,2,-56,0,-8,-8,-2,0,-2,0,0,
-2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],[189,-3,27,0,0,5,1,-1,3,0,0,1,0,-1,21,9,-3,-3,3,0,0,1,-1,3,0,0,21,5,-1,1,1,
3,-1,0,-1,1,0,0,9,9,1,-3,9,0,0,0,0,1,-1,1,0,0,9,1,0,1,1,-1,-1,1,1],
[TENSOR,[25,2]],
[TENSOR,[25,3]],
[TENSOR,[25,4]],[378,-6,54,0,0,10,2,-2,6,0,0,2,0,-2,-42,-18,6,6,-6,0,0,-2,2,
-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],[210,2,21,3,3,-2,-2,0,5,-1,0,0,0,1,14,-10,10,2,5,-1,-1,0,0,1,1,0,28,4,0,2,
-2,1,1,1,0,-1,0,0,30,-10,2,-2,3,3,3,-1,-1,0,0,-1,1,0,-10,2,-1,4,0,0,0,-1,1],
[TENSOR,[30,2]],
[TENSOR,[30,3]],
[TENSOR,[30,4]],[420,4,42,6,6,-4,-4,0,10,-2,0,0,0,2,-28,20,-20,-4,-10,2,2,0,0,
-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],[1120,-32,40,22,4,0,0,0,-8,-2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,80,-16,0,0,8,2,-4,2,2,0,0,0,0,-1,0,0,0,0,0,0,0,0,0],
[TENSOR,[35,3]],[630,22,-18,9,0,-2,-2,0,-2,1,0,2,0,-2,-42,-10,14,-2,-6,-1,0,2,
0,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,90,-6,-6,2,0,-3,3,-3,0,2,0,0,-1,0,0,0,0,0,0,
0,0,0,0],[630,22,-18,9,0,-2,-2,0,-2,1,0,2,0,-2,42,10,-14,2,6,1,0,-2,0,-2,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,60,12,4,4,6,-3,-3,-3,0,0,0,-2,1,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[37,3]],
[TENSOR,[38,3]],[420,4,-39,6,-3,4,0,0,1,-2,0,0,0,1,28,0,12,-4,1,0,1,0,0,-3,0,
0,14,-2,0,-2,-2,5,1,-1,0,1,0,0,60,-4,4,0,-3,-6,0,2,-1,0,0,1,0,0,-10,-2,-1,2,2,
0,0,1,-1],
[TENSOR,[41,2]],
[TENSOR,[41,3]],
[TENSOR,[41,4]],[840,8,-78,12,-6,8,0,0,2,-4,0,0,0,2,-56,0,-24,8,-2,0,-2,0,0,6,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[
1120,-32,-68,4,4,0,0,0,4,4,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,56,-8,0,0,0,2,-2,
2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[TENSOR,[46,2]],[1280,0,-16,-16,2,0,0,0,0,0,-1,0,2,0,-64,0,0,0,8,0,2,0,0,0,0,
-1,64,0,0,0,0,-8,0,-2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[
1280,0,-16,-16,2,0,0,0,0,0,-1,0,2,0,64,0,0,0,-8,0,-2,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,0,E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27,-E(28)^3+E(28)^11
+E(28)^15-E(28)^19+E(28)^23-E(28)^27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],
[TENSOR,[48,2]],
[TENSOR,[49,2]],[729,9,0,0,0,-3,1,-1,0,0,1,-1,0,0,-27,9,9,1,0,0,0,-1,-1,0,0,1,
27,3,1,-3,1,0,0,0,1,0,-1,-1,81,9,-3,-3,0,0,0,0,0,-1,1,0,0,0,9,-3,0,3,-1,1,-1,
0,0],
[TENSOR,[52,2]],
[TENSOR,[52,3]],
[TENSOR,[52,4]],[1458,18,0,0,0,-6,2,-2,0,0,2,-2,0,0,54,-18,-18,-2,0,0,0,2,2,0,
0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[
896,0,32,-4,-4,0,0,1,0,0,0,0,-1,0,0,16,0,0,0,-2,0,0,1,0,0,0,0,0,4,0,0,0,0,0,
-1,0,0,0,64,0,0,0,-8,4,-2,0,0,0,-1,0,0,1,16,0,-2,0,0,0,1,0,0],
[TENSOR,[57,2]],
[TENSOR,[57,3]],
[TENSOR,[57,4]],[1792,0,64,-8,-8,0,0,2,0,0,0,0,-2,0,0,-32,0,0,0,4,0,0,-2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],
[(37,38)]);
ARC("U4(3).D8","CAS",[rec(name:="u4q3.d8",
permclasses:=(),
permchars:=(),
text:=[
"Maximal subgroup of sporadic Conway group c2.\n",
"Source: Atlas tables (autom.gp. of u4q3)\n",
"Test: 1.OR, JAMES, JAMES,n=3,\n",
"and restricted characters decompose properly"])]);
ALF("U4(3).D8","Co2",[1,3,5,6,6,9,11,15,16,20,22,27,29,35,2,4,9,8,17,21,
19,24,32,35,37,42,7,10,13,24,27,34,38,36,52,56,57,57,2,4,9,12,17,18,19,21,
21,27,31,35,41,50,4,11,21,24,27,28,32,40,56],[
"fusion map is unique, equal to that on the CAS table"
]);
ALN("U4(3).D8",["u4q3.d8"]);
MOT("(3^2x2).U4(3)",
[
"constructed using `CharacterTableOfCommonCentralExtension'"
],
[58786560,58786560,58786560,58786560,58786560,58786560,58786560,58786560,
58786560,58786560,58786560,58786560,58786560,58786560,58786560,58786560,
58786560,58786560,20736,20736,20736,20736,20736,20736,20736,20736,20736,20736,
20736,20736,20736,20736,20736,20736,20736,20736,104976,104976,104976,104976,
104976,104976,104976,104976,104976,104976,104976,104976,104976,104976,104976,
104976,104976,104976,5832,5832,5832,5832,5832,5832,5832,5832,5832,5832,5832,
5832,162,162,1728,1728,1728,1728,1728,1728,1728,1728,1728,1728,1728,1728,1728,
1728,1728,1728,1728,1728,144,144,144,144,144,144,144,144,144,90,90,90,90,90,90
,90,90,90,90,90,90,90,90,90,90,90,90,1296,1296,1296,1296,1296,1296,1296,1296,
1296,1296,1296,1296,1296,1296,1296,1296,1296,1296,648,648,648,648,648,648,648,
648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,
648,648,648,648,648,648,648,648,648,648,126,126,126,126,126,126,126,126,126,
126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,
126,126,126,126,126,126,126,126,144,144,144,144,144,144,144,144,144,144,144,
144,144,144,144,144,144,144,162,162,162,162,162,162,162,162,162,162,162,162,
162,162,162,162,162,162,162,162,162,162,162,162,216,216,216,216,216,216,216,
216,216,216,216,216,216,216,216,216,216,216],
[,[1,3,5,1,3,5,13,15,17,13,15,17,10,12,8,10,12,8,1,3,5,1,3,5,13,15,17,13,15,17
,10,12,8,10,12,8,37,39,41,37,39,41,49,51,53,49,51,53,46,48,44,46,48,44,55,57,
59,55,57,59,65,61,63,65,61,63,67,67,19,21,23,19,21,23,31,33,35,31,33,35,28,30,
26,28,30,26,22,24,20,34,36,32,25,27,29,96,98,100,96,98,100,108,110,112,108,110
,112,105,107,103,105,107,103,37,39,41,37,39,41,49,51,53,49,51,53,46,48,44,46,
48,44,55,57,59,55,57,59,55,57,59,55,57,59,55,57,59,55,57,59,63,65,61,63,65,61,
61,63,65,61,63,65,65,61,63,65,61,63,168,170,172,168,170,172,180,182,184,180,
182,184,177,179,175,177,179,175,186,188,190,186,188,190,198,200,202,198,200,
202,195,197,193,195,197,193,72,74,70,72,74,70,84,86,82,84,86,82,75,77,79,75,77
,79,228,230,232,228,230,232,222,224,226,222,224,226,244,240,242,244,240,242,
238,234,236,238,234,236,114,116,118,114,116,118,126,128,130,126,128,130,123,
125,121,123,125,121],[1,4,1,4,1,4,4,1,4,1,4,1,1,4,1,4,1,4,19,22,19,22,19,22,22
,19,22,19,22,19,19,22,19,22,19,22,1,4,1,4,1,4,4,1,4,1,4,1,1,4,1,4,1,4,1,4,1,4,
1,4,1,4,1,4,1,4,1,4,69,72,69,72,69,72,72,69,72,69,72,69,69,72,69,72,69,72,87,
87,87,87,87,87,87,87,87,96,99,96,99,96,99,99,96,99,96,99,96,96,99,96,99,96,99,
19,22,19,22,19,22,22,19,22,19,22,19,19,22,19,22,19,22,19,22,19,22,19,22,22,19,
22,19,22,19,19,22,19,22,19,22,19,22,19,22,19,22,22,19,22,19,22,19,19,22,19,22,
19,22,186,189,186,189,186,189,189,186,189,186,189,186,186,189,186,189,186,189,
168,171,168,171,168,171,171,168,171,168,171,168,168,171,168,171,168,171,207,
204,207,204,207,204,204,207,204,207,204,207,207,204,207,204,207,204,51,54,51,
54,51,54,44,47,44,47,44,47,49,52,49,52,49,52,46,43,46,43,46,43,69,72,69,72,69,
72,72,69,72,69,72,69,69,72,69,72,69,72],,[1,6,5,4,3,2,16,15,14,13,18,17,10,9,8
,7,12,11,19,24,23,22,21,20,34,33,32,31,36,35,28,27,26,25,30,29,37,42,41,40,39,
38,52,51,50,49,54,53,46,45,44,43,48,47,55,60,59,58,57,56,65,64,63,62,61,66,67,
68,69,74,73,72,71,70,84,83,82,81,86,85,78,77,76,75,80,79,87,89,88,93,95,94,90,
92,91,1,6,5,4,3,2,16,15,14,13,18,17,10,9,8,7,12,11,114,119,118,117,116,115,129
,128,127,126,131,130,123,122,121,120,125,124,132,137,136,135,134,133,147,146,
145,144,149,148,141,140,139,138,143,142,150,155,154,153,152,151,165,164,163,
162,167,166,159,158,157,156,161,160,186,191,190,189,188,187,201,200,199,198,
203,202,195,194,193,192,197,196,168,173,172,171,170,169,183,182,181,180,185,
184,177,176,175,174,179,178,204,209,208,207,206,205,219,218,217,216,221,220,
213,212,211,210,215,214,228,233,232,231,230,229,222,227,226,225,224,223,244,
243,242,241,240,245,238,237,236,235,234,239,246,251,250,249,248,247,261,260,
259,258,263,262,255,254,253,252,257,256],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41
,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67
,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93
,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114
,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,
134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,
153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,207,
208,209,204,205,206,213,214,215,210,211,212,219,220,221,216,217,218,222,223,
224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,
243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,
262,263]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[21,21,21,21,21,
21,21,21,21,21,21,21,21,21,21,21,21,21,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,3,3,3,3,3,3,3,3,3,3,3,3,3,3
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2],[35,
35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,3,3,3,3,3,3,3,3,3,3,3,3,3,3
,3,3,3,3,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,-1,-1,-1,-1,-1,-1,-1,
-1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[35,35,35,35,35,35,35,35,35,35,35,
35,35,35,35,35,35,35,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,8,8,8,8,8,8,8,8,8,8,8
,8,8,8,8,8,8,8,-1,-1,-1,-1,-1,-1,8,8,8,8,8,8,-1,-1,3,3,3,3,3,3,3,3,3,3,3,3,3,3
,3,3,3,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0],[90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9
,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
,-2,-2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1],[140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,
140,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5,5,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,5,5,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1],[189,189,189,189,189,189,189,189,189,189,189,189,189,189
,189,189,189,189,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,27,27,
27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[210,210,210,210,210,210,210,210,210,210,
210,210,210,210,210,210,210,210,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,21,21,21,
21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,3,3,3,3,3,3,3,3,3,3,3,3,3,3,-2,-2
,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[280,280,280,280,
280,280,280,280,280,280,280,280,280,280,280,280,280,280,-8,-8,-8,-8,-8,-8,-8,
-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2
,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
,-2,-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
2*E(3)-E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0],
[GALOIS,[9,2]],[280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,
280,280,280,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,10,10,10,10,10,10,1,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2*E(3)-E(3)^2,
2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[11,2]],[315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,
315,315,315,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,-9,-9,-9,-9,
-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,18,18,18,18,18,18,-9,-9,-9,-9,-9,-9,
0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1],[315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,
315,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,-9,-9,-9,-9,-9,-9,-9
,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,18,18,18,18,18,18,0,0,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]
,[420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,
-39,-39,-39,-39,-39,-39,-39,6,6,6,6,6,6,6,6,6,6,6,6,-3,-3,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1],[560,560,560,560,560,560,560,560,560,560,560,560,560,560,560,
560,560,560,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,
-16,-16,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,
-34,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[640,640,640,640,640
,640,640,640,640,640,640,640,640,640,640,640,640,640,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,
-8,-8,-8,-8,-8,-8,-8,-8,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],
[GALOIS,[17,3]],[729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,
729,729,729,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3
,-3,-3,-3,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0],[896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,
896,896,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,32,32,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0],[20,-20,20,-20,20,-20,-20,20,-20,20,-20,20,20,-20,20,-20,20,-20,4,-4
,4,-4,4,-4,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4,-7,7,-7,7,-7,7,7,-7,7,-7,7,-7,-7,7,-7
,7,-7,7,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,4,-4,
4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1
,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2
,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,
1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1],[56,-56,56,-56,56,-56,-56,56,-56,56,
-56,56,56,-56,56,-56,56,-56,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,2,-2,
2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,11,-11,11,-11,11,-11,2,-2,2,-2,2,-2,2,
-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,
-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,
-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,
-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-1,1,-1,1,-1,
1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[56,-56,56,-56,56,-56,
-56,56,-56,56,-56,56,56,-56,56,-56,56,-56,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,
-8,8,-8,8,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,11,-11,
11,-11,11,-11,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,
1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,
2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,
-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[70,-70,
70,-70,70,-70,-70,70,-70,70,-70,70,70,-70,70,-70,70,-70,-2,2,-2,2,-2,2,2,-2,2,
-2,2,-2,-2,2,-2,2,-2,2,16,-16,16,-16,16,-16,-16,16,-16,16,-16,16,16,-16,16,-16
,16,-16,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,
2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4
,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,
1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,2,-2,2,-2,2,-2,-2,2,-2,
2,-2,2,2,-2,2,-2,2,-2],[70,-70,70,-70,70,-70,-70,70,-70,70,-70,70,70,-70,70,
-70,70,-70,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-11,11,-11,11,-11,11,
11,-11,11,-11,11,-11,-11,11,-11,11,-11,11,7,-7,7,-7,7,-7,-2,2,-2,2,-2,2,-2,2,2
,-2,2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,
-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,
-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,1,-1,1,-1,1,-1,1,-1,
1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1],
[GALOIS,[25,2]],[70,-70,70,-70,70,-70,-70,70,-70,70,-70,70,70,-70,70,-70,70,
-70,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-11,11,-11,11,-11,11,11,-11,
11,-11,11,-11,-11,11,-11,11,-11,11,-2,2,-2,2,-2,2,7,-7,7,-7,7,-7,-2,2,2,-2,2,
-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2
,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,2*E(3)-E(3)^2,
-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,
-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,
E(3)-2*E(3)^2,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1],
[GALOIS,[27,2]],[120,-120,120,-120,120,-120,-120,120,-120,120,-120,120,120,
-120,120,-120,120,-120,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,12,-12,12,
-12,12,-12,-12,12,-12,12,-12,12,12,-12,12,-12,12,-12,-6,6,-6,6,-6,6,-6,6,-6,6,
-6,6,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4,-2,2,-2,2,
-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,
2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1
,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[210,-210,210,-210,
210,-210,-210,210,-210,210,-210,210,210,-210,210,-210,210,-210,10,-10,10,-10,
10,-10,-10,10,-10,10,-10,10,10,-10,10,-10,10,-10,21,-21,21,-21,21,-21,-21,21,
-21,21,-21,21,21,-21,21,-21,21,-21,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,2,-2,2,
-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1
,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(4),
-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),
2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1],
[GALOIS,[30,3]],[504,-504,504,-504,504,-504,-504,504,-504,504,-504,504,504,
-504,504,-504,504,-504,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,18,-18,18,
-18,18,-18,-18,18,-18,18,-18,18,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,-9,9
,-9,9,-9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1
,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2
,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,
1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[504,-504,504,-504,504,
-504,-504,504,-504,504,-504,504,504,-504,504,-504,504,-504,-8,8,-8,8,-8,8,8,-8
,8,-8,8,-8,-8,8,-8,8,-8,8,18,-18,18,-18,18,-18,-18,18,-18,18,-18,18,18,-18,18,
-18,18,-18,-9,9,-9,9,-9,9,18,-18,18,-18,18,-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-2,2,
-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,
-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0],[540,-540,540,-540,540,-540,-540,540,-540,540,-540,540,540,-540,
540,-540,540,-540,12,-12,12,-12,12,-12,-12,12,-12,12,-12,12,12,-12,12,-12,12,
-12,-27,27,-27,27,-27,27,27,-27,27,-27,27,-27,-27,27,-27,27,-27,27,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,-3,3,-3,3,3,-3,3,-3,3,-3,-3,3,-3,3,
-3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1
,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1],[560,-560,560,
-560,560,-560,-560,560,-560,560,-560,560,560,-560,560,-560,560,-560,-16,16,-16
,16,-16,16,16,-16,16,-16,16,-16,-16,16,-16,16,-16,16,-34,34,-34,34,-34,34,34,
-34,34,-34,34,-34,-34,34,-34,34,-34,34,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,
-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[630,-630,630,-630,630,-630,-630,630,-630,
630,-630,630,630,-630,630,-630,630,-630,14,-14,14,-14,14,-14,-14,14,-14,14,-14
,14,14,-14,14,-14,14,-14,-18,18,-18,18,-18,18,18,-18,18,-18,18,-18,-18,18,-18,
18,-18,18,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,0,0,-6,6,-6,6,-6,6,6,-6,6,-6,6,-6,-6,6
,-6,6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,
-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0],[640,-640,640,-640,640,-640,-640,640,-640,640,-640,640,640,-640,640,-640,
640,-640,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,
8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,-E(7)-E(7)^2-E(7)^4
,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4
,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[37,3]],[896,-896,896,-896,896,-896,-896,896,-896,896,-896,896,896,
-896,896,-896,896,-896,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,-32,32,-32,32,
-32,-32,32,-32,32,-32,32,32,-32,32,-32,32,-32,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4
,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,
-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0],[36,36,36,36,36,36,36*E(3),36*E(3),36*E(3),36*E(3),
36*E(3),36*E(3),36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,4,
4,4,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2
,4*E(3)^2,4*E(3)^2,4*E(3)^2,9,9,9,9,9,9,9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),
9*E(3),9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,4,4,4,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3)^2,
4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,
E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,
1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2
,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),
E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2],
[GALOIS,[40,2]],[45,45,45,45,45,45,45*E(3),45*E(3),45*E(3),45*E(3),45*E(3),
45*E(3),45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,-3,-3,-3,
-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-9,-9,-9,-9,-9,-9,-9*E(3),-9*E(3),
-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,
-9*E(3)^2,-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),
E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,-1,
-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,
1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2]
,
[GALOIS,[42,2]],
[GALOIS,[42,10]],
[GALOIS,[42,5]],[126,126,126,126,126,126,126*E(3),126*E(3),126*E(3),126*E(3),
126*E(3),126*E(3),126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,
126*E(3)^2,14,14,14,14,14,14,14*E(3),14*E(3),14*E(3),14*E(3),14*E(3),14*E(3),
14*E(3)^2,14*E(3)^2,14*E(3)^2,14*E(3)^2,14*E(3)^2,14*E(3)^2,-9,-9,-9,-9,-9,-9,
-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,
-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,1,1,1,
1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,2,2,2,2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[46,2]],[189,189,189,189,189,189,189*E(3),189*E(3),189*E(3),189*E(3),
189*E(3),189*E(3),189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,
189*E(3)^2,-3,-3,-3,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,27,27,27,27,27,27,
27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3)^2,27*E(3)^2,27*E(3)^2,
27*E(3)^2,27*E(3)^2,27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,5,5,5,5,5,5*E(3),
5*E(3),5*E(3),5*E(3),5*E(3),5*E(3),5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,
5*E(3)^2,5*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,
3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[48,2]],[315,315,315,315,315,315,315*E(3),315*E(3),315*E(3),315*E(3),
315*E(3),315*E(3),315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,11,11,11,11,11,11,11*E(3),11*E(3),11*E(3),11*E(3),11*E(3),11*E(3),
11*E(3)^2,11*E(3)^2,11*E(3)^2,11*E(3)^2,11*E(3)^2,11*E(3)^2,18,18,18,18,18,18,
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,2,2,2,2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),
E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2],
[GALOIS,[50,2]],[315,315,315,315,315,315,315*E(3),315*E(3),315*E(3),315*E(3),
315*E(3),315*E(3),315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,-5,-5,-5,-5,-5,-5,-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),
-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,18,18,18,18,18,18,
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2
,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,4,4,4,4,4,4,4*E(3),4*E(3),
4*E(3),4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,
4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[52,2]],[315,315,315,315,315,315,315*E(3),315*E(3),315*E(3),315*E(3),
315*E(3),315*E(3),315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,-5,-5,-5,-5,-5,-5,-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),
-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,18,18,18,18,18,18,
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,4,
4,4,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2
,4*E(3)^2,4*E(3)^2,4*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1
,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[54,2]],[630,630,630,630,630,630,630*E(3),630*E(3),630*E(3),630*E(3),
630*E(3),630*E(3),630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,
630*E(3)^2,6,6,6,6,6,6,6*E(3),6*E(3),6*E(3),6*E(3),6*E(3),6*E(3),6*E(3)^2,
6*E(3)^2,6*E(3)^2,6*E(3)^2,6*E(3)^2,6*E(3)^2,-45,-45,-45,-45,-45,-45,-45*E(3),
-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,
-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3)
,3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1
,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2],
[GALOIS,[56,2]],[720,720,720,720,720,720,720*E(3),720*E(3),720*E(3),720*E(3),
720*E(3),720*E(3),720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,
720*E(3)^2,16,16,16,16,16,16,16*E(3),16*E(3),16*E(3),16*E(3),16*E(3),16*E(3),
16*E(3)^2,16*E(3)^2,16*E(3)^2,16*E(3)^2,16*E(3)^2,16*E(3)^2,18,18,18,18,18,18,
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2
,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-1,-1,-1,
-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],
[GALOIS,[58,2]],[729,729,729,729,729,729,729*E(3),729*E(3),729*E(3),729*E(3),
729*E(3),729*E(3),729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,
729*E(3)^2,9,9,9,9,9,9,9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3)^2,
9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),
-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2
,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[60,2]],[756,756,756,756,756,756,756*E(3),756*E(3),756*E(3),756*E(3),
756*E(3),756*E(3),756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,
756*E(3)^2,-12,-12,-12,-12,-12,-12,-12*E(3),-12*E(3),-12*E(3),-12*E(3),
-12*E(3),-12*E(3),-12*E(3)^2,-12*E(3)^2,-12*E(3)^2,-12*E(3)^2,-12*E(3)^2,
-12*E(3)^2,27,27,27,27,27,27,27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),
27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-4,-4,-4,-4,-4,-4,-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),
-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2
,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3)
,-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[62,2]],[945,945,945,945,945,945,945*E(3),945*E(3),945*E(3),945*E(3),
945*E(3),945*E(3),945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,
945*E(3)^2,-15,-15,-15,-15,-15,-15,-15*E(3),-15*E(3),-15*E(3),-15*E(3),
-15*E(3),-15*E(3),-15*E(3)^2,-15*E(3)^2,-15*E(3)^2,-15*E(3)^2,-15*E(3)^2,
-15*E(3)^2,-27,-27,-27,-27,-27,-27,-27*E(3),-27*E(3),-27*E(3),-27*E(3),
-27*E(3),-27*E(3),-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,
-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),
E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,
E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3*E(3),
-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2],
[GALOIS,[64,2]],[90,-90,90,-90,90,-90,-90*E(3),90*E(3),-90*E(3),90*E(3),
-90*E(3),90*E(3),90*E(3)^2,-90*E(3)^2,90*E(3)^2,-90*E(3)^2,90*E(3)^2,
-90*E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,-18,18,-18,18,-18,18,
18*E(3),-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),-18*E(3)^2,18*E(3)^2,
-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-6,6,
-6,6,-6,-6*E(3),6*E(3),-6*E(3),6*E(3),-6*E(3),6*E(3),6*E(3)^2,-6*E(3)^2,
6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2,-2,2,-2,2,-2,
-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),
-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,-1,1,
-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[66,2]],[126,-126,126,-126,126,-126,-126*E(3),126*E(3),-126*E(3),
126*E(3),-126*E(3),126*E(3),126*E(3)^2,-126*E(3)^2,126*E(3)^2,-126*E(3)^2,
126*E(3)^2,-126*E(3)^2,-10,10,-10,10,-10,10,10*E(3),-10*E(3),10*E(3),-10*E(3),
10*E(3),-10*E(3),-10*E(3)^2,10*E(3)^2,-10*E(3)^2,10*E(3)^2,-10*E(3)^2,
10*E(3)^2,-9,9,-9,9,-9,9,9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),
-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,
-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2
,E(3)^2,-E(3)^2,E(3)^2,-4,4,-4,4,-4,4,4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),
-4*E(3),-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,2,-2,2,-2,2,
-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[68,2]],[126,-126,126,-126,126,-126,-126*E(3),126*E(3),-126*E(3),
126*E(3),-126*E(3),126*E(3),126*E(3)^2,-126*E(3)^2,126*E(3)^2,-126*E(3)^2,
126*E(3)^2,-126*E(3)^2,-10,10,-10,10,-10,10,10*E(3),-10*E(3),10*E(3),-10*E(3),
10*E(3),-10*E(3),-10*E(3)^2,10*E(3)^2,-10*E(3)^2,10*E(3)^2,-10*E(3)^2,
10*E(3)^2,-9,9,-9,9,-9,9,9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),
-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,
-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2
,E(3)^2,-E(3)^2,E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,-4,4,-4,4,-4,4
,4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),-4*E(3)^2,4*E(3)^2,-4*E(3)^2,
4*E(3)^2,-4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[70,2]],[126,-126,126,-126,126,-126,-126*E(3),126*E(3),-126*E(3),
126*E(3),-126*E(3),126*E(3),126*E(3)^2,-126*E(3)^2,126*E(3)^2,-126*E(3)^2,
126*E(3)^2,-126*E(3)^2,6,-6,6,-6,6,-6,-6*E(3),6*E(3),-6*E(3),6*E(3),-6*E(3),
6*E(3),6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,-9,9,-9,9,-9,9
,9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),-9*E(3)^2,9*E(3)^2,-9*E(3)^2,
9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,2,2*E(3),
-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),
-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,3,-3,3,-3,3,-3,-3*E(3)
,3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,
3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),-2*E(12)^7,2*E(12)^7,
-2*E(12)^7,2*E(12)^7,-2*E(12)^7,2*E(12)^7,2*E(12)^11,-2*E(12)^11,2*E(12)^11,
-2*E(12)^11,2*E(12)^11,-2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2],
[GALOIS,[72,5]],
[GALOIS,[72,7]],
[GALOIS,[72,11]],[270,-270,270,-270,270,-270,-270*E(3),270*E(3),-270*E(3),
270*E(3),-270*E(3),270*E(3),270*E(3)^2,-270*E(3)^2,270*E(3)^2,-270*E(3)^2,
270*E(3)^2,-270*E(3)^2,6,-6,6,-6,6,-6,-6*E(3),6*E(3),-6*E(3),6*E(3),-6*E(3),
6*E(3),6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,27,-27,27,-27,
27,-27,-27*E(3),27*E(3),-27*E(3),27*E(3),-27*E(3),27*E(3),27*E(3)^2,-27*E(3)^2
,27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,
-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,3,-3,3,-3,3,-3,-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),
3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(7)-E(7)^2-E(7)^4,
E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
-E(21)-E(21)^4-E(21)^16,E(21)+E(21)^4+E(21)^16,-E(21)-E(21)^4-E(21)^16,
E(21)+E(21)^4+E(21)^16,-E(21)-E(21)^4-E(21)^16,-E(21)^2-E(21)^8-E(21)^11,
E(21)^2+E(21)^8+E(21)^11,-E(21)^2-E(21)^8-E(21)^11,E(21)^2+E(21)^8+E(21)^11,
-E(21)^2-E(21)^8-E(21)^11,E(21)^2+E(21)^8+E(21)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,E(3),
-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[76,2]],
[GALOIS,[76,10]],
[GALOIS,[76,5]],[504,-504,504,-504,504,-504,-504*E(3),504*E(3),-504*E(3),
504*E(3),-504*E(3),504*E(3),504*E(3)^2,-504*E(3)^2,504*E(3)^2,-504*E(3)^2,
504*E(3)^2,-504*E(3)^2,-8,8,-8,8,-8,8,8*E(3),-8*E(3),8*E(3),-8*E(3),8*E(3),
-8*E(3),-8*E(3)^2,8*E(3)^2,-8*E(3)^2,8*E(3)^2,-8*E(3)^2,8*E(3)^2,-36,36,-36,36
,-36,36,36*E(3),-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),-36*E(3)^2,
36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,E(3),
-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,4,-4,
4,-4,4,-4,-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),4*E(3)^2,-4*E(3)^2,
4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),
-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),-2*E(3)^2
,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],
[GALOIS,[80,2]],[540,-540,540,-540,540,-540,-540*E(3),540*E(3),-540*E(3),
540*E(3),-540*E(3),540*E(3),540*E(3)^2,-540*E(3)^2,540*E(3)^2,-540*E(3)^2,
540*E(3)^2,-540*E(3)^2,12,-12,12,-12,12,-12,-12*E(3),12*E(3),-12*E(3),12*E(3),
-12*E(3),12*E(3),12*E(3)^2,-12*E(3)^2,12*E(3)^2,-12*E(3)^2,12*E(3)^2,
-12*E(3)^2,-27,27,-27,27,-27,27,27*E(3),-27*E(3),27*E(3),-27*E(3),27*E(3),
-27*E(3),-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),
4*E(3),4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,-3,3,-3,3,3*E(3),-3*E(3),3*E(3),
-3*E(3),3*E(3),-3*E(3),-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,
3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),
E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2],
[GALOIS,[82,2]],[630,-630,630,-630,630,-630,-630*E(3),630*E(3),-630*E(3),
630*E(3),-630*E(3),630*E(3),630*E(3)^2,-630*E(3)^2,630*E(3)^2,-630*E(3)^2,
630*E(3)^2,-630*E(3)^2,-18,18,-18,18,-18,18,18*E(3),-18*E(3),18*E(3),-18*E(3),
18*E(3),-18*E(3),-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,
18*E(3)^2,36,-36,36,-36,36,-36,-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),
36*E(3),36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,
-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2],
[GALOIS,[84,2]],[720,-720,720,-720,720,-720,-720*E(3),720*E(3),-720*E(3),
720*E(3),-720*E(3),720*E(3),720*E(3)^2,-720*E(3)^2,720*E(3)^2,-720*E(3)^2,
720*E(3)^2,-720*E(3)^2,16,-16,16,-16,16,-16,-16*E(3),16*E(3),-16*E(3),16*E(3),
-16*E(3),16*E(3),16*E(3)^2,-16*E(3)^2,16*E(3)^2,-16*E(3)^2,16*E(3)^2,
-16*E(3)^2,18,-18,18,-18,18,-18,-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),
18*E(3),18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2,2,
-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),
-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0],
[GALOIS,[86,2]],[1260,-1260,1260,-1260,1260,-1260,-1260*E(3),1260*E(3),
-1260*E(3),1260*E(3),-1260*E(3),1260*E(3),1260*E(3)^2,-1260*E(3)^2,1260*E(3)^2
,-1260*E(3)^2,1260*E(3)^2,-1260*E(3)^2,-4,4,-4,4,-4,4,4*E(3),-4*E(3),4*E(3),
-4*E(3),4*E(3),-4*E(3),-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,
4*E(3)^2,-9,9,-9,9,-9,9,9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),-9*E(3)^2
,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4
,4,-4,4,-4,4,4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),-4*E(3)^2,4*E(3)^2,
-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),
-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2,-2,2
,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),
E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[88,2]],[15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2
,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2
,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)
,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[90,2]],[21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,5,
5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3)
,5*E(3)^2,5,5*E(3),5*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,6,6*E(3),
6*E(3)^2,6,6*E(3),6*E(3)^2,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2*E(3)+E(3)^2
,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[92,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3)
,105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3
,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)
,E(3)^2,1,E(3),E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[94,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3)
,105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,
-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0
,0,0,0,0,0,0,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),
5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[96,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3)
,105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),
12*E(3)^2,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2],
[GALOIS,[98,2]],[210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3)
,210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),
210*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,0,0,0,0,0,0,0,0,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2],
[GALOIS,[100,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),
-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2
,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,
4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[102,2]],[336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),
16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,-6,
-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3)
,6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)
,E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[104,2]],[360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,
8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,-18,-18*E(3),-18*E(3)^2,
-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0],
[GALOIS,[106,2]],
[GALOIS,[106,10]],
[GALOIS,[106,5]],[384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,24*E(3),24*E(3)^2,
24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),
24*E(3)^2,24,24*E(3),24*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[110,2]],[420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,
4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,33,33*E(3),33*E(3)^2,33,
33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),
33*E(3)^2,33,33*E(3),33*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,0,0,0
,0,0,0,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2
,-2*E(3)-E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[112,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,
6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3)
,9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,0,0,0,0,0,0,0,0,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[114,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,
9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0],
[GALOIS,[116,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),
-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,0,0,0
,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[118,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,
-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,
-15*E(3),-15*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,
-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2],
[GALOIS,[120,2]],[15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6*E(3)^2,6,6*E(3),
6*E(3)^2,6,6*E(3),6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,0,0,0,0,0,0,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,
3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)
,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2
,1,E(3),E(3)^2,1,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3)
,E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[122,2]],[21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21*E(3)^2,21,
21*E(3),21*E(3)^2,21,21*E(3),21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,5,
5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3),
5*E(3)^2,5,5*E(3),5*E(3)^2,5,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,
6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),
E(3),E(3)^2,1,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2
,2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0
,0,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[124,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105*E(3)^2,
105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,105,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,
9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,15,0,0,0,0,0,0,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,1,
E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),
E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2
,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[126,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105*E(3)^2,
105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,105,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7*E(3)^2,-7,-7*E(3),
-7*E(3)^2,-7,-7*E(3),-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,0,0,0,0,0,0,3*E(3),3*E(3)^2,3,3*E(3)
,3*E(3)^2,3,0,0,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5*E(3)^2,5,5*E(3),5*E(3)^2
,5,5*E(3),5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)
,E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,
0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1],
[GALOIS,[128,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105*E(3)^2,
105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,105,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,
9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3),
-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,0,0,0,0,0,0,12*E(3),12*E(3)^2,12,
12*E(3),12*E(3)^2,12,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0
,0,0,0,0,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2],
[GALOIS,[130,2]],[210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210*E(3)^2,
210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3),210*E(3)^2,210,210*E(3),
210*E(3)^2,210,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,
2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2
,3,0,0,0,0,0,0,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,0,0,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,
-2*E(3),-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[132,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3)^2,
315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3),315*E(3)^2,315,315*E(3),
315*E(3)^2,315,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5*E(3)^2,-5,-5*E(3),
-5*E(3)^2,-5,-5*E(3),-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-36,-36*E(3),
-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,
-36*E(3),-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,0,0,0,0,0,0,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,
3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)
,4*E(3)^2,4,4*E(3),4*E(3)^2,4,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[134,2]],[336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336*E(3)^2,
336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3),336*E(3)^2,336,336*E(3),
336*E(3)^2,336,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16*E(3)^2,16,16*E(3),
16*E(3)^2,16,16*E(3),16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,-6,-6*E(3),
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),
-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,0,0,0,0,0,0,6*E(3),6*E(3)^2,6,6*E(3)
,6*E(3)^2,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,
-2,-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2
,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[136,2]],[360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360*E(3)^2,
360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3),360*E(3)^2,360,360*E(3),
360*E(3)^2,360,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8*E(3)^2,8,8*E(3),8*E(3)^2,
8,8*E(3),8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3)^2,-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3),
-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,0,0,0,0,0,0,-9*E(3),-9*E(3)^2,-9,
-9*E(3),-9*E(3)^2,-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20
,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0],
[GALOIS,[138,2]],
[GALOIS,[138,10]],
[GALOIS,[138,5]],[384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384*E(3)^2,
384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3),384*E(3)^2,384,384*E(3),
384*E(3)^2,384,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,24*E(3),24*E(3)^2,24,
24*E(3),24*E(3)^2,24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3),24*E(3)^2,
24,24*E(3),24*E(3)^2,24,0,0,0,0,0,0,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,12,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2
,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[142,2]],[420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420*E(3)^2,
420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3),420*E(3)^2,420,420*E(3),
420*E(3)^2,420,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3)^2,
4,4*E(3),4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,33,33*E(3),33*E(3)^2,33,33*E(3),
33*E(3)^2,33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3),33*E(3)^2,33,
33*E(3),33*E(3)^2,33,0,0,0,0,0,0,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,0,0
,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[144,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630*E(3)^2,
630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3),630*E(3)^2,630,630*E(3),
630*E(3)^2,630,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6*E(3)^2,6,6*E(3),6*E(3)^2,
6,6*E(3),6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2
,9,0,0,0,0,0,0,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,0,0,2,2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,
-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1],
[GALOIS,[146,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729*E(3)^2,
729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3),729*E(3)^2,729,729*E(3),
729*E(3)^2,729,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,
9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],
[GALOIS,[148,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756*E(3)^2,
756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3),756*E(3)^2,756,756*E(3),
756*E(3)^2,756,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,
-12,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27*E(3)^2,27,27*E(3),27*E(3)^2,
27,27*E(3),27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4
,-4*E(3),-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,3
,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1],
[GALOIS,[150,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945*E(3)^2,
945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3),945*E(3)^2,945,945*E(3),
945*E(3)^2,945,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15*E(3)^2,-15,
-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,
-15,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27*E(3)^2,-27,-27*E(3),
-27*E(3)^2,-27,-27*E(3),-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),
E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[152,2]],[36,36*E(3),36*E(3)^2,36,36*E(3),36*E(3)^2,36*E(3),36*E(3)^2
,36,36*E(3),36*E(3)^2,36,36*E(3)^2,36,36*E(3),36*E(3)^2,36,36*E(3),4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)^2,4,
4*E(3),4*E(3)^2,4,4*E(3),9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3),9*E(3)^2,9
,9*E(3),9*E(3)^2,9,9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),0,0,0,0,0,0,0,0,0,0,0,0
,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,1
,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3)],
[GALOIS,[154,2]],[45,45*E(3),45*E(3)^2,45,45*E(3),45*E(3)^2,45*E(3),45*E(3)^2
,45,45*E(3),45*E(3)^2,45,45*E(3)^2,45,45*E(3),45*E(3)^2,45,45*E(3),-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),
E(3)^2,1,E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3
,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20
,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3)^2,1,E(3),E(3)^2,1,E(3)],
[GALOIS,[156,2]],
[GALOIS,[156,10]],
[GALOIS,[156,5]],[126,126*E(3),126*E(3)^2,126,126*E(3),126*E(3)^2,126*E(3),
126*E(3)^2,126,126*E(3),126*E(3)^2,126,126*E(3)^2,126,126*E(3),126*E(3)^2,126,
126*E(3),14,14*E(3),14*E(3)^2,14,14*E(3),14*E(3)^2,14*E(3),14*E(3)^2,14,
14*E(3),14*E(3)^2,14,14*E(3)^2,14,14*E(3),14*E(3)^2,14,14*E(3),-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,
-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3)
,2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3)
,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,
1,E(3),-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[160,2]],[189,189*E(3),189*E(3)^2,189,189*E(3),189*E(3)^2,189*E(3),
189*E(3)^2,189,189*E(3),189*E(3)^2,189,189*E(3)^2,189,189*E(3),189*E(3)^2,189,
189*E(3),-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3)^2,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,
27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,5*E(3)
,5*E(3)^2,5,5*E(3),5*E(3)^2,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3)^2,5,
5*E(3),5*E(3)^2,5,5*E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[162,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),11,11*E(3),11*E(3)^2,11,11*E(3),11*E(3)^2,11*E(3),11*E(3)^2,11,
11*E(3),11*E(3)^2,11,11*E(3)^2,11,11*E(3),11*E(3)^2,11,11*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,
2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2
,2,2*E(3),2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)],
[GALOIS,[164,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5*E(3),-5*E(3)^2,-5,
-5*E(3),-5*E(3)^2,-5,-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3)
,-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),4,4*E(3),4*E(3)^2,4,
4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),4*E(3)^2
,4,4*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[166,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5*E(3),-5*E(3)^2,-5,
-5*E(3),-5*E(3)^2,-5,-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,
4,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[168,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630*E(3),
630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2
,6,6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),
-45*E(3)^2,-45*E(3),-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45,-45*E(3)^2,-45,
-45*E(3),-45*E(3)^2,-45,-45*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,
-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,
-1,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[170,2]],[720,720*E(3),720*E(3)^2,720,720*E(3),720*E(3)^2,720*E(3),
720*E(3)^2,720,720*E(3),720*E(3)^2,720,720*E(3)^2,720,720*E(3),720*E(3)^2,720,
720*E(3),16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16*E(3),16*E(3)^2,16,
16*E(3),16*E(3)^2,16,16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2
,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)
,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0],
[GALOIS,[172,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729*E(3),
729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2
,9,9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),1,
E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[174,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756*E(3),
756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12*E(3),-12*E(3)^2,
-12,-12*E(3),-12*E(3)^2,-12,-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),27
,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2
,27,27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,
-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,
-4,-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1
,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[176,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945*E(3),
945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15*E(3),-15*E(3)^2,
-15,-15*E(3),-15*E(3)^2,-15,-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),
-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,
1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3)],
[GALOIS,[178,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),
-840*E(3),840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8*E(3),8,
-8*E(3)^2,8*E(3),-8,8*E(3)^2,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),-8,12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),-12*E(3),12,-12*E(3)^2,12*E(3),-12,
12*E(3)^2,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,0,0,0,0,0,0,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
-4*E(3),4,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[180,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),-840,
840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),840,-840*E(3)^2,840*E(3),-840,
840*E(3)^2,-840*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8,8*E(3)^2,
-8*E(3),8,-8*E(3)^2,8*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2
,12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),6,-6*E(3)^2,6*E(3),-6,
6*E(3)^2,-6*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[182,2]],[84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,-84*E(3),-84*E(3),84,
-84*E(3)^2,84*E(3),-84,84*E(3)^2,84*E(3)^2,-84*E(3),84,-84*E(3)^2,84*E(3),-84,
4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,
15*E(3),15*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,-15*E(3)^2,15*E(3),-15,
15*E(3)^2,-15*E(3),15,0,0,0,0,0,0,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,0,0,4
,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,2*E(3)^2,-2*E(3)
,2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3)
,-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1],
[GALOIS,[184,2]],[384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),
-384*E(3),384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,384*E(3)^2,-384*E(3),384,
-384*E(3)^2,384*E(3),-384,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,-24*E(3)^2,
24*E(3),-24,24*E(3)^2,-24*E(3),-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,
24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,0,0,0,0,0,0,12*E(3)^2,-12*E(3),12
,-12*E(3)^2,12*E(3),-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3)
,-1,E(3)^2,-E(3),1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[186,2]],[84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,-84*E(3),-84,84*E(3)^2,
-84*E(3),84,-84*E(3)^2,84*E(3),84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,-84*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,
15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,-15*E(3),-15,15*E(3)^2,-15*E(3),15
,-15*E(3)^2,15*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),0,0,0,0,0,0,0,0,4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3)],
[GALOIS,[188,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),
-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),10*E(3)
,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,-10*E(3)^2,10*E(3),-10,10*E(3)^2,
-10*E(3),10,18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),-18*E(3),18,
-18*E(3)^2,18*E(3),-18,18*E(3)^2,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,
0,0,0,0,0,0,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,0,0,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2],
[GALOIS,[190,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),
-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),18*E(3)
,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,-18*E(3)^2,18*E(3),-18,18*E(3)^2,
-18*E(3),18,9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),-9*E(3),9,-9*E(3)^2,9*E(3),
-9,9*E(3)^2,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,0,0,0,0,0,0,-9*E(3)^2,
9*E(3),-9,9*E(3)^2,-9*E(3),9,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,-3*E(3)^2,3*E(3),-3,
3*E(3)^2,-3*E(3),3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,-3*E(3)^2,3*E(3),-3,
3*E(3)^2,-3*E(3),3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1],
[GALOIS,[192,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),
-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,9,
-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,0,0,0,0,0,0,-9*E(3)^2,9*E(3),-9,
9*E(3)^2,-9*E(3),9,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),
-2*E(12)^11,-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),
1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1],
[GALOIS,[194,5]],
[GALOIS,[194,7]],
[GALOIS,[194,11]],[420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),
-420*E(3),420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,420*E(3)^2,-420*E(3),420,
-420*E(3)^2,420*E(3),-420,-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),12*E(3)
,-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,-12*E(3)^2,12*E(3),-12,12*E(3)^2,
-12*E(3),12,-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,21*E(3),21*E(3),-21,21*E(3)^2
,-21*E(3),21,-21*E(3)^2,-21*E(3)^2,21*E(3),-21,21*E(3)^2,-21*E(3),21,0,0,0,0,0
,0,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,0,0,-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,-4*E(3)^2,4*E(3),-4,
4*E(3)^2,-4*E(3),4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1],
[GALOIS,[198,2]],[210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),
-210*E(3),210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,210*E(3)^2,-210*E(3),210,
-210*E(3)^2,210*E(3),-210,-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6*E(3),-6,
6*E(3)^2,-6*E(3),6,-6*E(3)^2,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-24,
24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),24*E(3),-24,24*E(3)^2,-24*E(3),24,
-24*E(3)^2,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,0,0,0,0,0,0,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),3,0,0,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),
-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2
,-3*E(3),-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,3*E(3)^2,-3*E(3),3,-3*E(3)^2,
3*E(3),-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2
,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[200,2]],[336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),
-336*E(3),336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,336*E(3)^2,-336*E(3),336,
-336*E(3)^2,336*E(3),-336,16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),
-16*E(3),16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,16*E(3)^2,-16*E(3),16,-16*E(3)^2,
16*E(3),-16,-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6*E(3),-6,6*E(3)^2,-6*E(3),
6,-6*E(3)^2,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,0,0,0,0,0,0,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2
,-E(3),1,-E(3)^2,E(3),-1,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[202,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),
-840*E(3),840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8*E(3),8,
-8*E(3)^2,8*E(3),-8,8*E(3)^2,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),-8,-42,
42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),42*E(3),-42,42*E(3)^2,-42*E(3),42,
-42*E(3)^2,-42*E(3)^2,42*E(3),-42,42*E(3)^2,-42*E(3),42,0,0,0,0,0,0,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[204,2]],[120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),
-120*E(3),120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,120*E(3)^2,-120*E(3),120,
-120*E(3)^2,120*E(3),-120,-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),8*E(3),-8,
8*E(3)^2,-8*E(3),8,-8*E(3)^2,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),8,-6,
6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,0,0,0,0,0,0,15*E(3)^2,-15*E(3),15,
-15*E(3)^2,15*E(3),-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,1,-E(3)^2,E(3),-1,E(3)^2
,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[206,2]],[270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),
-270*E(3),270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,270*E(3)^2,-270*E(3),270,
-270*E(3)^2,270*E(3),-270,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3),6,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),-27*E(3),27,-27*E(3)^2,27*E(3),-27,
27*E(3)^2,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,
E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,
-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,
E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1
,E(3)^2,-E(3),1],
[GALOIS,[208,2]],
[GALOIS,[208,10]],
[GALOIS,[208,5]],[6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3),6,-6*E(3)^2,
6*E(3),-6,6*E(3)^2,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,-2,2*E(3)^2,-2*E(3),
2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3*E(3),-3,3*E(3)^2,
-3*E(3),3,-3*E(3)^2,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,0,0,0,0,0,0,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-1,E(3)^2,-E(3),
1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1],
[GALOIS,[212,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),-126,
126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),126,-126*E(3)^2,126*E(3),-126,
126*E(3)^2,-126*E(3),-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),10,
-10*E(3)^2,10*E(3),-10,10*E(3)^2,-10*E(3),-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2
,10*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),-18,18*E(3)^2,-18*E(3),
18,-18*E(3)^2,18*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),9,-9*E(3)^2
,9*E(3),-9,9*E(3)^2,-9*E(3),0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2
,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3)],
[GALOIS,[214,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630,
630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),630,-630*E(3)^2,630*E(3),-630,
630*E(3)^2,-630*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),18,
-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2
,18*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),-3,
3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3)],
[GALOIS,[216,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630,
630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),630,-630*E(3)^2,630*E(3),-630,
630*E(3)^2,-630*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3)
,-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),9,-9*E(3)^2,9*E(3)
,-9,9*E(3)^2,-9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9,-9*E(3)^2,9*E(3)
,-9,9*E(3)^2,-9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),0,0,0,0,0,0,0,0,-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,2*E(4),-2*E(12)^11
,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3)],
[GALOIS,[218,5]],
[GALOIS,[218,7]],
[GALOIS,[218,11]],[420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),-420,
420*E(3)^2,-420*E(3),420,-420*E(3)^2,420*E(3),420,-420*E(3)^2,420*E(3),-420,
420*E(3)^2,-420*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2
,12*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,21*E(3),21,-21*E(3)^2,21*E(3),
-21,21*E(3)^2,-21*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,21*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),0,0,0,0,0,0,0,0,-4,4*E(3)^2,-4*E(3),
4,-4*E(3)^2,4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),
4,-4*E(3)^2,4*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3)],
[GALOIS,[222,2]],[210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),-210,
210*E(3)^2,-210*E(3),210,-210*E(3)^2,210*E(3),210,-210*E(3)^2,210*E(3),-210,
210*E(3)^2,-210*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3)
,-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-24,24*E(3)^2,
-24*E(3),24,-24*E(3)^2,24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),
-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,
3*E(3),0,0,0,0,0,0,0,0,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),
3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[224,2]],[336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),-336,
336*E(3)^2,-336*E(3),336,-336*E(3)^2,336*E(3),336,-336*E(3)^2,336*E(3),-336,
336*E(3)^2,-336*E(3),16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),-16,
16*E(3)^2,-16*E(3),16,-16*E(3)^2,16*E(3),16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,
-16*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2
,-6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2
,-6*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),
-1,E(3)^2,-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0],
[GALOIS,[226,2]],[120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),-120,
120*E(3)^2,-120*E(3),120,-120*E(3)^2,120*E(3),120,-120*E(3)^2,120*E(3),-120,
120*E(3)^2,-120*E(3),-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),8,-8*E(3)^2,8*E(3)
,-8,8*E(3)^2,-8*E(3),-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,-15*E(3),0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[228,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),-840,
840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),840,-840*E(3)^2,840*E(3),-840,
840*E(3)^2,-840*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8,8*E(3)^2,
-8*E(3),8,-8*E(3)^2,8*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-42,
42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),42,-42*E(3)^2,42*E(3),-42,42*E(3)^2,
-42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2
,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[230,2]],[6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,-6*E(3),
6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-2,2*E(3)^2,-2*E(3),
2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),
2,-2*E(3)^2,2*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),
-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),
-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0
,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1
,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1
,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3)],
[GALOIS,[232,2]],[384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),-384,
384*E(3)^2,-384*E(3),384,-384*E(3)^2,384*E(3),384,-384*E(3)^2,384*E(3),-384,
384*E(3)^2,-384*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,-24*E(3)^2,24*E(3)
,-24,24*E(3)^2,-24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),24,
-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,
-12*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3)
,1,-E(3)^2,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1
,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1
,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[234,2]],[270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),-270,
270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),270,-270*E(3)^2,270*E(3),-270,
270*E(3)^2,-270*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2
,27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),0,0,0,0,0,0,0,0,0,0,0,0,
0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,
-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,
E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,
E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,
-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,
-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,
E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3)
,1,-E(3)^2,E(3)],
[GALOIS,[236,2]],
[GALOIS,[236,10]],
[GALOIS,[236,5]],[270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),
-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,270*E(3),-270,270*E(3)^2,
-270*E(3),270,-270*E(3)^2,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),-27*E(3)^2,27*E(3),-27,27*E(3)^2,
-27*E(3),27,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),3,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,
-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,
E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2
,E(3),-1,E(3)^2],
[GALOIS,[240,2]],
[GALOIS,[240,10]],
[GALOIS,[240,5]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,126*E(3),-126,126*E(3)^2,
-126*E(3),126,-126*E(3)^2,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),
10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),-10,-10*E(3),10,-10*E(3)^2,10*E(3),
-10,10*E(3)^2,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),-9,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3)
,-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-4,4*E(3)^2,
-4*E(3),4,-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[244,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,126*E(3),-126,126*E(3)^2,
-126*E(3),126,-126*E(3)^2,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),
10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),-10,-10*E(3),10,-10*E(3)^2,10*E(3),
-10,10*E(3)^2,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),-9,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3)
,4,-4*E(3)^2,4*E(3),-4,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[246,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,630*E(3),-630,630*E(3)^2,
-630*E(3),630,-630*E(3)^2,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),
18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,-18*E(3),18,-18*E(3)^2,18*E(3),
-18,18*E(3)^2,36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),-36*E(3)^2,36*E(3),
-36,36*E(3)^2,-36*E(3),36,36*E(3),-36,36*E(3)^2,-36*E(3),36,-36*E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2],
[GALOIS,[248,2]],[90,-90*E(3)^2,90*E(3),-90,90*E(3)^2,-90*E(3),-90*E(3)^2,
90*E(3),-90,90*E(3)^2,-90*E(3),90,90*E(3),-90,90*E(3)^2,-90*E(3),90,-90*E(3)^2
,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,
18*E(3),18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,-18*E(3),18,-18*E(3)^2,
18*E(3),-18,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-6*E(3)^2,6*E(3),-6,
6*E(3)^2,-6*E(3),-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[250,2]],[720,-720*E(3)^2,720*E(3),-720,720*E(3)^2,-720*E(3),
-720*E(3)^2,720*E(3),-720,720*E(3)^2,-720*E(3),720,720*E(3),-720,720*E(3)^2,
-720*E(3),720,-720*E(3)^2,16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),
-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),16,16*E(3),-16,16*E(3)^2,-16*E(3),16
,-16*E(3)^2,18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),-18*E(3)^2,18*E(3),
-18,18*E(3)^2,-18*E(3),18,18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[252,2]],[504,-504*E(3)^2,504*E(3),-504,504*E(3)^2,-504*E(3),
-504*E(3)^2,504*E(3),-504,504*E(3)^2,-504*E(3),504,504*E(3),-504,504*E(3)^2,
-504*E(3),504,-504*E(3)^2,-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),8*E(3)^2,
-8*E(3),8,-8*E(3)^2,8*E(3),-8,-8*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-36,
36*E(3)^2,-36*E(3),36,-36*E(3)^2,36*E(3),36*E(3)^2,-36*E(3),36,-36*E(3)^2,
36*E(3),-36,-36*E(3),36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1
,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[254,2]],[1260,-1260*E(3)^2,1260*E(3),-1260,1260*E(3)^2,-1260*E(3),
-1260*E(3)^2,1260*E(3),-1260,1260*E(3)^2,-1260*E(3),1260,1260*E(3),-1260,
1260*E(3)^2,-1260*E(3),1260,-1260*E(3)^2,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,-4*E(3),4,-4*E(3)^2,4*E(3),-4,
4*E(3)^2,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,-9*E(3)^2,
9*E(3),-9,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,
-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[256,2]],[540,-540*E(3)^2,540*E(3),-540,540*E(3)^2,-540*E(3),
-540*E(3)^2,540*E(3),-540,540*E(3)^2,-540*E(3),540,540*E(3),-540,540*E(3)^2,
-540*E(3),540,-540*E(3)^2,12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,12*E(3),-12,12*E(3)^2,-12*E(3),12
,-12*E(3)^2,-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),27*E(3)^2,-27*E(3),27
,-27*E(3)^2,27*E(3),-27,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4*E(3)^2,4*E(3),-4,
4*E(3)^2,-4*E(3),4,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,-E(3)^2],
[GALOIS,[258,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,126*E(3),-126,126*E(3)^2,
-126*E(3),126,-126*E(3)^2,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,-9,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2
,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,3,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,3*E(3),-3,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,
2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,-2*E(4),-2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),
-1,E(3)^2,-E(3),1,-E(3)^2],
[GALOIS,[260,5]],
[GALOIS,[260,7]],
[GALOIS,[260,11]]],
[
(204,207)(205,208)(206,209)(210,213)(211,214)(212,215)(216,219)(217,220)
(218,221)
,
(168,186)(169,187)(170,188)(171,189)(172,190)(173,191)(174,192)(175,193)
(176,194)(177,195)(178,196)(179,197)(180,198)(181,199)(182,200)(183,201)
(184,202)(185,203)
,
( 7, 18)( 8, 13)( 9, 14)( 10, 15)( 11, 16)( 12, 17)( 25, 36)( 26, 31)
( 27, 32)( 28, 33)( 29, 34)( 30, 35)( 43, 54)( 44, 49)( 45, 50)( 46, 51)
( 47, 52)( 48, 53)( 55, 63)( 56, 64)( 57, 65)( 58, 66)( 59, 61)( 60, 62)
( 75, 86)( 76, 81)( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 90, 95)( 91, 93)
( 92, 94)(102,113)(103,108)(104,109)(105,110)(106,111)(107,112)(120,131)
(121,126)(122,127)(123,128)(124,129)(125,130)(132,150)(133,151)(134,152)
(135,153)(136,154)(137,155)(138,167)(139,162)(140,163)(141,164)(142,165)
(143,166)(144,157)(145,158)(146,159)(147,160)(148,161)(149,156)(174,185)
(175,180)(176,181)(177,182)(178,183)(179,184)(192,203)(193,198)(194,199)
(195,200)(196,201)(197,202)(210,221)(211,216)(212,217)(213,218)(214,219)
(215,220)(222,240)(223,241)(224,242)(225,243)(226,244)(227,245)(228,238)
(229,239)(230,234)(231,235)(232,236)(233,237)(252,263)(253,258)(254,259)
(255,260)(256,261)(257,262)
,
( 2, 6)( 3, 5)( 7, 11)( 8, 10)( 13, 15)( 16, 18)( 20, 24)( 21, 23)
( 25, 29)( 26, 28)( 31, 33)( 34, 36)( 38, 42)( 39, 41)( 43, 47)( 44, 46)
( 49, 51)( 52, 54)( 55, 63)( 56, 62)( 57, 61)( 58, 66)( 59, 65)( 60, 64)
( 70, 74)( 71, 73)( 75, 79)( 76, 78)( 81, 83)( 84, 86)( 88, 89)( 90, 91)
( 93, 95)( 97,101)( 98,100)(102,106)(103,105)(108,110)(111,113)(115,119)
(116,118)(120,124)(121,123)(126,128)(129,131)(132,150)(133,155)(134,154)
(135,153)(136,152)(137,151)(138,160)(139,159)(140,158)(141,157)(142,156)
(143,161)(144,164)(145,163)(146,162)(147,167)(148,166)(149,165)(169,173)
(170,172)(174,178)(175,177)(180,182)(183,185)(187,191)(188,190)(192,196)
(193,195)(198,200)(201,203)(205,209)(206,208)(210,214)(211,213)(216,218)
(219,221)(222,238)(223,237)(224,236)(225,235)(226,234)(227,239)(228,240)
(229,245)(230,244)(231,243)(232,242)(233,241)(247,251)(248,250)(252,256)
(253,255)(258,260)(261,263)
,
( 2, 9)( 3, 17)( 5, 12)( 6, 14)( 8, 15)( 11, 18)( 20, 27)( 21, 35)
( 23, 30)( 24, 32)( 26, 33)( 29, 36)( 38, 45)( 39, 53)( 41, 48)( 42, 50)
( 44, 51)( 47, 54)( 56, 60)( 57, 59)( 70, 77)( 71, 85)( 73, 80)( 74, 82)
( 76, 83)( 79, 86)( 88, 92)( 89, 94)( 91, 95)( 97,104)( 98,112)(100,107)
(101,109)(103,110)(106,113)(115,122)(116,130)(118,125)(119,127)(121,128)
(124,131)(133,140)(134,148)(136,143)(137,145)(139,146)(142,149)(151,158)
(152,166)(154,161)(155,163)(157,164)(160,167)(169,176)(170,184)(172,179)
(173,181)(175,182)(178,185)(187,194)(188,202)(190,197)(191,199)(193,200)
(196,203)(205,212)(206,220)(208,215)(209,217)(211,218)(214,221)(222,228)
(223,233)(224,232)(225,231)(226,230)(227,229)(247,254)(248,262)(250,257)
(251,259)(253,260)(256,263)
]);
ALF("(3^2x2).U4(3)","3_2.U4(3)",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,
4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,
10,10,10,10,11,11,11,11,11,11,12,12,13,13,13,13,13,13,14,14,14,14,14,14,
15,15,15,15,15,15,16,16,16,17,17,17,18,18,18,19,19,19,19,19,19,20,20,20,
20,20,20,21,21,21,21,21,21,22,22,22,22,22,22,23,23,23,23,23,23,24,24,24,
24,24,24,25,25,25,25,25,25,26,26,26,26,26,26,27,27,27,27,27,27,28,28,28,
28,28,28,29,29,29,29,29,29,30,30,30,30,30,30,31,31,31,31,31,31,32,32,32,
32,32,32,33,33,33,33,33,33,34,34,34,34,34,34,35,35,35,35,35,35,36,36,36,
36,36,36,37,37,37,37,37,37,38,38,38,38,38,38,39,39,39,39,39,39,40,40,40,
40,40,40,41,41,41,41,41,41,42,42,42,42,42,42,43,43,43,43,43,43,44,44,44,
44,44,44,45,45,45,45,45,45,46,46,46,46,46,46]);
ALF("(3^2x2).U4(3)","6_1.U4(3)",[1,2,3,4,5,6,6,1,2,3,4,5,5,6,1,2,3,4,7,8,
9,10,11,12,12,7,8,9,10,11,11,12,7,8,9,10,13,14,15,16,17,18,18,13,14,15,16,
17,17,18,13,14,15,16,25,26,25,26,25,26,23,24,19,20,21,22,27,28,29,30,31,
32,33,34,34,29,30,31,32,33,33,34,29,30,31,32,35,36,37,37,35,36,36,37,35,
38,39,40,41,42,43,43,38,39,40,41,42,42,43,38,39,40,41,44,45,46,47,48,49,
49,44,45,46,47,48,48,49,44,45,46,47,56,57,58,59,60,61,61,56,57,58,59,60,
60,61,56,57,58,59,50,51,52,53,54,55,55,50,51,52,53,54,54,55,50,51,52,53,
62,63,64,65,66,67,67,62,63,64,65,66,66,67,62,63,64,65,68,69,70,71,72,73,
73,68,69,70,71,72,72,73,68,69,70,71,74,75,76,77,78,79,79,74,75,76,77,78,
78,79,74,75,76,77,94,95,94,95,94,95,92,93,92,93,92,93,88,89,90,91,86,87,
80,81,82,83,84,85,96,97,98,99,100,101,101,96,97,98,99,100,100,101,96,97,
98,99]);
ALF("(3^2x2).U4(3)","6_2.U4(3)",[1,4,1,4,1,4,2,5,2,5,2,5,3,6,3,6,3,6,7,10,
7,10,7,10,8,11,8,11,8,11,9,12,9,12,9,12,13,16,13,16,13,16,14,17,14,17,14,
17,15,18,15,18,15,18,19,20,19,20,19,20,21,22,21,22,21,22,23,24,25,28,25,
28,25,28,26,29,26,29,26,29,27,30,27,30,27,30,31,31,31,32,32,32,33,33,33,
34,37,34,37,34,37,35,38,35,38,35,38,36,39,36,39,36,39,40,43,40,43,40,43,
41,44,41,44,41,44,42,45,42,45,42,45,46,49,46,49,46,49,47,50,47,50,47,50,
48,51,48,51,48,51,52,55,52,55,52,55,53,56,53,56,53,56,54,57,54,57,54,57,
58,61,58,61,58,61,59,62,59,62,59,62,60,63,60,63,60,63,64,67,64,67,64,67,
65,68,65,68,65,68,66,69,66,69,66,69,70,73,70,73,70,73,71,74,71,74,71,74,
72,75,72,75,72,75,76,77,76,77,76,77,78,79,78,79,78,79,80,81,80,81,80,81,
82,83,82,83,82,83,84,87,84,87,84,87,85,88,85,88,85,88,86,89,86,89,86,89]);
ALF("(3^2x2).U4(3)","3^2.U4(3)",[1,2,3,1,2,3,4,5,6,4,5,6,7,8,9,7,8,9,10,
11,12,10,11,12,13,14,15,13,14,15,16,17,18,16,17,18,19,20,21,19,20,21,22,
23,24,22,23,24,25,26,27,25,26,27,28,29,30,28,29,30,31,32,33,31,32,33,34,
34,35,36,37,35,36,37,38,39,40,38,39,40,41,42,43,41,42,43,44,45,46,47,48,
49,50,51,52,53,54,55,53,54,55,56,57,58,56,57,58,59,60,61,59,60,61,62,63,
64,62,63,64,65,66,67,65,66,67,68,69,70,68,69,70,71,72,73,71,72,73,74,75,
76,74,75,76,77,78,79,77,78,79,80,81,82,80,81,82,83,84,85,83,84,85,86,87,
88,86,87,88,89,90,91,89,90,91,92,93,94,92,93,94,95,96,97,95,96,97,98,99,
100,98,99,100,101,102,103,101,102,103,104,105,106,104,105,106,107,108,109,
107,108,109,110,111,112,110,111,112,113,114,115,113,114,115,116,117,118,
116,117,118,119,120,121,119,120,121,122,123,124,122,123,124,125,126,127,
125,126,127,128,129,130,128,129,130,131,132,133,131,132,133,134,135,136,
134,135,136]);
MOT("(3^2x4).U4(3)",
[
"constructed using `CharacterTableOfCommonCentralExtension'"
],
[117573120,117573120,117573120,117573120,117573120,117573120,117573120,
117573120,117573120,117573120,117573120,117573120,117573120,117573120,
117573120,117573120,117573120,117573120,117573120,117573120,117573120,
117573120,117573120,117573120,117573120,117573120,117573120,117573120,
117573120,117573120,117573120,117573120,117573120,117573120,117573120,
117573120,20736,20736,20736,20736,20736,20736,20736,20736,20736,20736,20736,
20736,20736,20736,20736,20736,20736,20736,209952,209952,209952,209952,209952,
209952,209952,209952,209952,209952,209952,209952,209952,209952,209952,209952,
209952,209952,209952,209952,209952,209952,209952,209952,209952,209952,209952,
209952,209952,209952,209952,209952,209952,209952,209952,209952,11664,11664,
11664,11664,11664,11664,11664,11664,11664,11664,11664,11664,11664,11664,11664,
11664,11664,11664,11664,11664,11664,11664,11664,11664,324,324,324,324,3456,
3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,
3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,3456,
3456,3456,3456,3456,3456,144,144,144,144,144,144,144,144,144,180,180,180,180,
180,180,180,180,180,180,180,180,180,180,180,180,180,180,180,180,180,180,180,
180,180,180,180,180,180,180,180,180,180,180,180,180,2592,2592,2592,2592,2592,
2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,
2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,2592,
2592,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,
648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,648,252,
252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,
252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,
252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,
252,252,252,252,252,252,252,252,252,252,252,252,252,252,288,288,288,288,288,
288,288,288,288,288,288,288,288,288,288,288,288,288,288,288,288,288,288,288,
288,288,288,288,288,288,288,288,288,288,288,288,324,324,324,324,324,324,324,
324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,
324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,324,
324,324,324,432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,
432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,432,
432],
[,[1,3,5,7,9,11,1,3,5,7,9,11,25,27,29,31,33,35,25,27,29,31,33,35,22,24,14,16,
18,20,22,24,14,16,18,20,1,3,5,7,9,11,25,27,29,31,33,35,22,24,14,16,18,20,55,57
,59,61,63,65,55,57,59,61,63,65,79,81,83,85,87,89,79,81,83,85,87,89,76,78,68,70
,72,74,76,78,68,70,72,74,91,93,95,97,99,101,91,93,95,97,99,101,107,109,111,113
,103,105,107,109,111,113,103,105,115,117,115,117,37,39,41,37,39,41,37,39,41,37
,39,41,49,51,53,49,51,53,49,51,53,49,51,53,46,48,44,46,48,44,46,48,44,46,48,44
,40,42,38,52,54,50,43,45,47,164,166,168,170,172,174,164,166,168,170,172,174,
188,190,192,194,196,198,188,190,192,194,196,198,185,187,177,179,181,183,185,
187,177,179,181,183,55,57,59,61,63,65,55,57,59,61,63,65,79,81,83,85,87,89,79,
81,83,85,87,89,76,78,68,70,72,74,76,78,68,70,72,74,91,93,95,97,99,101,97,99,
101,91,93,95,91,93,95,97,99,101,111,113,103,105,107,109,109,111,113,103,105,
107,107,109,111,113,103,105,272,274,276,278,280,282,272,274,276,278,280,282,
296,298,300,302,304,306,296,298,300,302,304,306,293,295,285,287,289,291,293,
295,285,287,289,291,308,310,312,314,316,318,308,310,312,314,316,318,332,334,
336,338,340,342,332,334,336,338,340,342,329,331,321,323,325,327,329,331,321,
323,325,327,122,124,126,128,130,120,122,124,126,128,130,120,146,148,150,152,
154,144,146,148,150,152,154,144,131,133,135,137,139,141,131,133,135,137,139,
141,392,394,396,398,400,402,392,394,396,398,400,402,380,382,384,386,388,390,
380,382,384,386,388,390,420,422,424,426,416,418,420,422,424,426,416,418,408,
410,412,414,404,406,408,410,412,414,404,406,200,202,204,206,208,210,200,202,
204,206,208,210,224,226,228,230,232,234,224,226,228,230,232,234,221,223,213,
215,217,219,221,223,213,215,217,219],[1,4,7,10,1,4,7,10,1,4,7,10,10,1,4,7,10,1
,4,7,10,1,4,7,7,10,1,4,7,10,1,4,7,10,1,4,37,40,37,40,37,40,40,37,40,37,40,37,
37,40,37,40,37,40,1,4,7,10,1,4,7,10,1,4,7,10,10,1,4,7,10,1,4,7,10,1,4,7,7,10,1
,4,7,10,1,4,7,10,1,4,1,10,7,4,1,10,7,4,1,10,7,4,1,10,7,4,1,10,7,4,1,10,7,4,1,
10,7,4,119,122,125,128,119,122,125,128,119,122,125,128,128,119,122,125,128,119
,122,125,128,119,122,125,125,128,119,122,125,128,119,122,125,128,119,122,155,
155,155,155,155,155,155,155,155,164,167,170,173,164,167,170,173,164,167,170,
173,173,164,167,170,173,164,167,170,173,164,167,170,170,173,164,167,170,173,
164,167,170,173,164,167,37,40,37,40,37,40,37,40,37,40,37,40,40,37,40,37,40,37,
40,37,40,37,40,37,37,40,37,40,37,40,37,40,37,40,37,40,37,40,37,40,37,40,40,37,
40,37,40,37,37,40,37,40,37,40,37,40,37,40,37,40,40,37,40,37,40,37,37,40,37,40,
37,40,308,311,314,317,308,311,314,317,308,311,314,317,317,308,311,314,317,308,
311,314,317,308,311,314,314,317,308,311,314,317,308,311,314,317,308,311,272,
275,278,281,272,275,278,281,272,275,278,281,281,272,275,278,281,272,275,278,
281,272,275,278,278,281,272,275,278,281,272,275,278,281,272,275,353,344,347,
350,353,344,347,350,353,344,347,350,350,353,344,347,350,353,344,347,350,353,
344,347,347,350,353,344,347,350,353,344,347,350,353,344,81,90,87,84,81,90,87,
84,81,90,87,84,68,77,74,71,68,77,74,71,68,77,74,71,85,82,79,88,85,82,79,88,85,
82,79,88,76,73,70,67,76,73,70,67,76,73,70,67,119,122,125,128,119,122,125,128,
119,122,125,128,128,119,122,125,128,119,122,125,128,119,122,125,125,128,119,
122,125,128,119,122,125,128,119,122],,[1,6,11,4,9,2,7,12,5,10,3,8,34,27,32,25,
30,35,28,33,26,31,36,29,16,21,14,19,24,17,22,15,20,13,18,23,37,42,41,40,39,38,
52,51,50,49,54,53,46,45,44,43,48,47,55,60,65,58,63,56,61,66,59,64,57,62,88,81,
86,79,84,89,82,87,80,85,90,83,70,75,68,73,78,71,76,69,74,67,72,77,91,96,101,94
,99,92,97,102,95,100,93,98,107,112,105,110,103,108,113,106,111,104,109,114,115
,116,117,118,119,124,129,122,127,120,125,130,123,128,121,126,152,145,150,143,
148,153,146,151,144,149,154,147,134,139,132,137,142,135,140,133,138,131,136,
141,155,157,156,161,163,162,158,160,159,1,6,11,4,9,2,7,12,5,10,3,8,34,27,32,25
,30,35,28,33,26,31,36,29,16,21,14,19,24,17,22,15,20,13,18,23,200,205,210,203,
208,201,206,211,204,209,202,207,233,226,231,224,229,234,227,232,225,230,235,
228,215,220,213,218,223,216,221,214,219,212,217,222,236,241,240,239,238,237,
251,250,249,248,253,252,245,244,243,242,247,246,254,259,258,257,256,255,269,
268,267,266,271,270,263,262,261,260,265,264,308,313,318,311,316,309,314,319,
312,317,310,315,341,334,339,332,337,342,335,340,333,338,343,336,323,328,321,
326,331,324,329,322,327,320,325,330,272,277,282,275,280,273,278,283,276,281,
274,279,305,298,303,296,301,306,299,304,297,302,307,300,287,292,285,290,295,
288,293,286,291,284,289,294,344,349,354,347,352,345,350,355,348,353,346,351,
377,370,375,368,373,378,371,376,369,374,379,372,359,364,357,362,367,360,365,
358,363,356,361,366,392,397,402,395,400,393,398,403,396,401,394,399,380,385,
390,383,388,381,386,391,384,389,382,387,420,425,418,423,416,421,426,419,424,
417,422,427,408,413,406,411,404,409,414,407,412,405,410,415,428,433,438,431,
436,429,434,439,432,437,430,435,461,454,459,452,457,462,455,460,453,458,463,
456,443,448,441,446,451,444,449,442,447,440,445,450],,[1,8,3,10,5,12,7,2,9,4,
11,6,19,14,21,16,23,18,13,20,15,22,17,24,25,32,27,34,29,36,31,26,33,28,35,30,
37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,62,57,64,59,66,61,56,
63,58,65,60,73,68,75,70,77,72,67,74,69,76,71,78,79,86,81,88,83,90,85,80,87,82,
89,84,91,98,93,100,95,102,97,92,99,94,101,96,103,110,105,112,107,114,109,104,
111,106,113,108,115,118,117,116,119,126,121,128,123,130,125,120,127,122,129,
124,137,132,139,134,141,136,131,138,133,140,135,142,143,150,145,152,147,154,
149,144,151,146,153,148,155,156,157,158,159,160,161,162,163,164,171,166,173,
168,175,170,165,172,167,174,169,182,177,184,179,186,181,176,183,178,185,180,
187,188,195,190,197,192,199,194,189,196,191,198,193,200,207,202,209,204,211,
206,201,208,203,210,205,218,213,220,215,222,217,212,219,214,221,216,223,224,
231,226,233,228,235,230,225,232,227,234,229,236,237,238,239,240,241,242,243,
244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,
263,264,265,266,267,268,269,270,271,1,8,3,10,5,12,7,2,9,4,11,6,19,14,21,16,23,
18,13,20,15,22,17,24,25,32,27,34,29,36,31,26,33,28,35,30,1,8,3,10,5,12,7,2,9,4
,11,6,19,14,21,16,23,18,13,20,15,22,17,24,25,32,27,34,29,36,31,26,33,28,35,30,
353,348,355,350,345,352,347,354,349,344,351,346,359,366,361,356,363,358,365,
360,367,362,357,364,377,372,379,374,369,376,371,378,373,368,375,370,380,387,
382,389,384,391,386,381,388,383,390,385,392,399,394,401,396,403,398,393,400,
395,402,397,404,411,406,413,408,415,410,405,412,407,414,409,416,423,418,425,
420,427,422,417,424,419,426,421,428,435,430,437,432,439,434,429,436,431,438,
433,446,441,448,443,450,445,440,447,442,449,444,451,452,459,454,461,456,463,
458,453,460,455,462,457]],
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[21,21,
21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,
21,21,21,21,21,21,21,21,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2],[35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,
35,35,35,35,35,35,35,35,35,35,35,35,35,35,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,-1,-1,-1,-1,-1,-1,
-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[35,35,35,35,35,35,35,35,35,35,
35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,8,8,8,8,8,8,
8,8,8,8,8,8,-1,-1,-1,-1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0],[90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,
90,90,90,90,90,90,90,90,90,90,90,90,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,0,0,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1],[140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,
140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,140,12,12,
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,5,5,5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[189,189,189,189,189,189,189,189,189,
189,189,189,189,189,189,189,189,189,189,189,189,189,189,189,189,189,189,189,
189,189,189,189,189,189,189,189,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,
27,27,27,27,27,27,27,27,27,27,27,27,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
,5,5,5,5,5,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]
,[210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,
210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,210,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,
21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,3,3,3,3,3,3,3,3,3,3,3
,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
,5,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1],[280,280,280,280,280,280,280,280,280,280,280,280,
280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,
280,280,280,280,280,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[9,2]],[280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,
280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,
280,280,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,1,1,1,1,1,1,1,1,1,1,1,1,10,10,10,10,10,10,10,10,10,10,10,10,1,1
,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,2*E(3)-E(3)^2,
2*E(3)-E(3)^2,2*E(3)-E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,
-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,-E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[11,2]],[315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,
315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,
315,315,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,-9,-9,-9,-9,-9,
-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,
-9,-9,-9,-9,-9,18,18,18,18,18,18,18,18,18,18,18,18,-9,-9,-9,-9,-9,-9,-9,-9,-9,
-9,-9,-9,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[315,315,315,
315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,315,
315,315,315,315,315,315,315,315,315,315,315,315,315,315,11,11,11,11,11,11,11,
11,11,11,11,11,11,11,11,11,11,11,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,
-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,
-9,-9,-9,-9,-9,-9,-9,18,18,18,18,18,18,18,18,18,18,18,18,0,0,0,0,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[420,420,420,420,420,420,420,420,420,420,420
,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,420,
420,420,420,420,420,420,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,-39,-39,-39,-39,
-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,
-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,-39,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,-3,-3,-3,-3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],[560,560,560,560,
560,560,560,560,560,560,560,560,560,560,560,560,560,560,560,560,560,560,560,
560,560,560,560,560,560,560,560,560,560,560,560,560,-16,-16,-16,-16,-16,-16,
-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16,-34,-34,-34,-34,-34,-34,-34,
-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,
-34,-34,-34,-34,-34,-34,-34,-34,-34,-34,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[640,640,640,640,640,
640,640,640,640,640,640,640,640,640,640,640,640,640,640,640,640,640,640,640,
640,640,640,640,640,640,640,640,640,640,640,640,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,
-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,
-8,-8,-8,-8,-8,-8,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[17,3]],[729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,
729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,729,
729,729,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3
,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[896,896,896,896,896,896,896,896,896,896,
896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,896,
896,896,896,896,896,896,896,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,32,32,32,32
,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32
,32,32,32,32,32,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4
,-4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[20,-20,20,-20,20,
-20,20,-20,20,-20,20,-20,-20,20,-20,20,-20,20,-20,20,-20,20,-20,20,20,-20,20,
-20,20,-20,20,-20,20,-20,20,-20,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4,
-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,-7,7,-7,7,-7,7,-7,
7,-7,7,-7,7,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2
,-2,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4
,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,
2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1
,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,
1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1],[56,-56,56,-56,56,-56,56,-56,
56,-56,56,-56,-56,56,-56,56,-56,56,-56,56,-56,56,-56,56,56,-56,56,-56,56,-56,
56,-56,56,-56,56,-56,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,2,-2,2,-2,2,
-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,
11,-11,11,-11,11,-11,11,-11,11,-11,11,-11,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2
,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,
2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,
-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,
-2,2,-2,2,-2,2,-2,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[56,
-56,56,-56,56,-56,56,-56,56,-56,56,-56,-56,56,-56,56,-56,56,-56,56,-56,56,-56,
56,56,-56,56,-56,56,-56,56,-56,56,-56,56,-56,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,
8,-8,8,-8,8,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2
,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,11,-11,11,-11,11,-11,11,
-11,11,-11,11,-11,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,
1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,-2,2,-2,2,
-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,
2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1
,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,
-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0],[70,-70,70,-70,70,-70,70,-70,70,-70,70,-70,-70,70,-70,70,-70
,70,-70,70,-70,70,-70,70,70,-70,70,-70,70,-70,70,-70,70,-70,70,-70,-2,2,-2,2,
-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,16,-16,16,-16,16,-16,16,-16,16,-16,16,-16,
-16,16,-16,16,-16,16,-16,16,-16,16,-16,16,16,-16,16,-16,16,-16,16,-16,16,-16,
16,-16,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,-2,2,-2,2,2
,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2
,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,-4,4,-4,4,
-4,4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,2,-2,
2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,
-2,2,-2],[70,-70,70,-70,70,-70,70,-70,70,-70,70,-70,-70,70,-70,70,-70,70,-70,
70,-70,70,-70,70,70,-70,70,-70,70,-70,70,-70,70,-70,70,-70,-2,2,-2,2,-2,2,2,-2
,2,-2,2,-2,-2,2,-2,2,-2,2,-11,11,-11,11,-11,11,-11,11,-11,11,-11,11,11,-11,11,
-11,11,-11,11,-11,11,-11,11,-11,-11,11,-11,11,-11,11,-11,11,-11,11,-11,11,7,-7
,7,-7,7,-7,7,-7,7,-7,7,-7,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,
-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1
,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2
,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,
2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,
-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,
-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,
E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,1,-1,1
,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1
,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1],
[GALOIS,[25,2]],[70,-70,70,-70,70,-70,70,-70,70,-70,70,-70,-70,70,-70,70,-70,
70,-70,70,-70,70,-70,70,70,-70,70,-70,70,-70,70,-70,70,-70,70,-70,-2,2,-2,2,-2
,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-11,11,-11,11,-11,11,-11,11,-11,11,-11,11,11,
-11,11,-11,11,-11,11,-11,11,-11,11,-11,-11,11,-11,11,-11,11,-11,11,-11,11,-11,
11,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,7,-7,7,-7,7,-7,7,-7,7,-7,7,-7,-2,2,-2,2,2,-2,
2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,
-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1
,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,
2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,2*E(3)-E(3)^2,
-2*E(3)+E(3)^2,2*E(3)-E(3)^2,-2*E(3)+E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,
-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,
E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-E(3)+2*E(3)^2,E(3)-2*E(3)^2,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,1],
[GALOIS,[27,2]],[120,-120,120,-120,120,-120,120,-120,120,-120,120,-120,-120,
120,-120,120,-120,120,-120,120,-120,120,-120,120,120,-120,120,-120,120,-120,
120,-120,120,-120,120,-120,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,12,-12
,12,-12,12,-12,12,-12,12,-12,12,-12,-12,12,-12,12,-12,12,-12,12,-12,12,-12,12,
12,-12,12,-12,12,-12,12,-12,12,-12,12,-12,-6,6,-6,6,-6,6,-6,6,-6,6,-6,6,-6,6,
-6,6,-6,6,-6,6,-6,6,-6,6,3,-3,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,-4,4,-4
,4,-4,4,-4,4,-4,4,-4,4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,-2,2,-2,2,-2,2,2,-2,2,-2,
2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0],[210,-210,210,-210,210,-210,210,-210,210,-210,210,-210,
-210,210,-210,210,-210,210,-210,210,-210,210,-210,210,210,-210,210,-210,210,
-210,210,-210,210,-210,210,-210,10,-10,10,-10,10,-10,-10,10,-10,10,-10,10,10,
-10,10,-10,10,-10,21,-21,21,-21,21,-21,21,-21,21,-21,21,-21,-21,21,-21,21,-21,
21,-21,21,-21,21,-21,21,21,-21,21,-21,21,-21,21,-21,21,-21,21,-21,3,-3,3,-3,3,
-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,2,-2,2,-2,2,-2,2,-2,
2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1
,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1
,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),
2*E(4),-2*E(4),2*E(4),-2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),
-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),
2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,
1,-1,1,-1,1],
[GALOIS,[30,3]],[504,-504,504,-504,504,-504,504,-504,504,-504,504,-504,-504,
504,-504,504,-504,504,-504,504,-504,504,-504,504,504,-504,504,-504,504,-504,
504,-504,504,-504,504,-504,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,18,-18
,18,-18,18,-18,18,-18,18,-18,18,-18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,
18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,
18,-18,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-2,2,-2,
2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,
-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,1,-1,1,-1,1,-1,-1,1,-1,1,-1,
1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0],[504,-504,504,-504,504,-504,504,-504,504,-504,504,-504,-504,504,
-504,504,-504,504,-504,504,-504,504,-504,504,504,-504,504,-504,504,-504,504,
-504,504,-504,504,-504,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,18,-18,18,
-18,18,-18,18,-18,18,-18,18,-18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,18,
-18,18,-18,18,-18,18,-18,18,-18,18,-18,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,18,-18,18
,-18,18,-18,18,-18,18,-18,18,-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-2,2,-2,2,-2,
2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,1
,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,-2,2
,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],[540,-540,540,-540,540,-540,540,-540,540,-540,540,-540,-540,540,-540,540
,-540,540,-540,540,-540,540,-540,540,540,-540,540,-540,540,-540,540,-540,540,
-540,540,-540,12,-12,12,-12,12,-12,-12,12,-12,12,-12,12,12,-12,12,-12,12,-12,
-27,27,-27,27,-27,27,-27,27,-27,27,-27,27,27,-27,27,-27,27,-27,27,-27,27,-27,
27,-27,-27,27,-27,27,-27,27,-27,27,-27,27,-27,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,-4,4,-4,4,-4,4,-4,4,
-4,4,-4,4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,-3,3,-3,3,-3,3,-3,3,
-3,3,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,3,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1
,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1
,-1,1,-1,1,-1,1,-1,1,-1,1,-1],[560,-560,560,-560,560,-560,560,-560,560,-560,
560,-560,-560,560,-560,560,-560,560,-560,560,-560,560,-560,560,560,-560,560,
-560,560,-560,560,-560,560,-560,560,-560,-16,16,-16,16,-16,16,16,-16,16,-16,16
,-16,-16,16,-16,16,-16,16,-34,34,-34,34,-34,34,-34,34,-34,34,-34,34,34,-34,34,
-34,34,-34,34,-34,34,-34,34,-34,-34,34,-34,34,-34,34,-34,34,-34,34,-34,34,2,-2
,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2
,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2
,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2
,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[630,-630,630,-630,630,-630,630,-630,630,
-630,630,-630,-630,630,-630,630,-630,630,-630,630,-630,630,-630,630,630,-630,
630,-630,630,-630,630,-630,630,-630,630,-630,14,-14,14,-14,14,-14,-14,14,-14,
14,-14,14,14,-14,14,-14,14,-14,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,18,
-18,18,-18,18,-18,18,-18,18,-18,18,-18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,
18,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,-9,0,0,0,0,-6,6,-6
,6,-6,6,-6,6,-6,6,-6,6,6,-6,6,-6,6,-6,6,-6,6,-6,6,-6,-6,6,-6,6,-6,6,-6,6,-6,6,
-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2
,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1
,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[640,-640,640,-640,640,-640,640,-640,640,
-640,640,-640,-640,640,-640,640,-640,640,-640,640,-640,640,-640,640,640,-640,
640,-640,640,-640,640,-640,640,-640,640,-640,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,-8,8,-8,8,-8,8,
-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,-8,8,1,
-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4
,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4
,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4
,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[37,3]],[896,-896,896,-896,896,-896,896,-896,896,-896,896,-896,-896,
896,-896,896,-896,896,-896,896,-896,896,-896,896,896,-896,896,-896,896,-896,
896,-896,896,-896,896,-896,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,-32,32,-32,
32,-32,32,-32,32,-32,32,-32,-32,32,-32,32,-32,32,-32,32,-32,32,-32,32,32,-32,
32,-32,32,-32,32,-32,32,-32,32,-32,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,
4,-4,4,-4,4,-4,4,-4,4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1
,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1
,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[20,-20*E(4),-20,
20*E(4),20,-20*E(4),-20,20*E(4),20,-20*E(4),-20,20*E(4),20*E(4),20,-20*E(4),
-20,20*E(4),20,-20*E(4),-20,20*E(4),20,-20*E(4),-20,-20,20*E(4),20,-20*E(4),
-20,20*E(4),20,-20*E(4),-20,20*E(4),20,-20*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-7,7*E(4),7,-7*E(4),-7,7*E(4),7,-7*E(4),-7,7*E(4),7,-7*E(4),-7*E(4),-7,
7*E(4),7,-7*E(4),-7,7*E(4),7,-7*E(4),-7,7*E(4),7,7,-7*E(4),-7,7*E(4),7,-7*E(4)
,-7,7*E(4),7,-7*E(4),-7,7*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,
2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),
2,2*E(4),-2,-2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,
2*E(4),2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,-2,2*E(4),2
,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(4),3,
-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(4),-3,3*E(4),3,-3*E(4),-3
,3*E(4),3,-3*E(4),-3,3*E(4),3,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,
-3*E(4),-3,3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(4),-1,E(4),1,
-E(4),-1,E(4),1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,
E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(4),-1,E(4),1,-E(4),-1,
E(4),1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),-1-E(4)
,-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),
1-E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),
-1-E(4),-1+E(4),1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),
-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4)
,1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,
-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),
-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(4),-1,E(4),1,-E(4),-1,E(4),
1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4)],
[GALOIS,[40,3]],[120,-120*E(4),-120,120*E(4),120,-120*E(4),-120,120*E(4),120,
-120*E(4),-120,120*E(4),120*E(4),120,-120*E(4),-120,120*E(4),120,-120*E(4),
-120,120*E(4),120,-120*E(4),-120,-120,120*E(4),120,-120*E(4),-120,120*E(4),120
,-120*E(4),-120,120*E(4),120,-120*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,
-12*E(4),-12,12*E(4),12,-12*E(4),-12,12*E(4),12,-12*E(4),-12,12*E(4),12*E(4),
12,-12*E(4),-12,12*E(4),12,-12*E(4),-12,12*E(4),12,-12*E(4),-12,-12,12*E(4),12
,-12*E(4),-12,12*E(4),12,-12*E(4),-12,12*E(4),12,-12*E(4),-6,-6*E(4),6,6*E(4),
-6,-6*E(4),6,6*E(4),-6,-6*E(4),6,6*E(4),-6,-6*E(4),6,6*E(4),-6,-6*E(4),6,
6*E(4),-6,-6*E(4),6,6*E(4),3,3*E(4),-3,-3*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),
-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4
,-4*E(4),-4,-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),1,-E(4),-1,
E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),1,-E(4),-1,
E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,
-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(4)
,2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2*E(4),-2,2*E(4),2,-2*E(4)
,-2,2*E(4),2,-2*E(4),-2,2*E(4),2,2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,
-2*E(4),-2,2*E(4)],
[GALOIS,[42,3]],[140,-140*E(4),-140,140*E(4),140,-140*E(4),-140,140*E(4),140,
-140*E(4),-140,140*E(4),140*E(4),140,-140*E(4),-140,140*E(4),140,-140*E(4),
-140,140*E(4),140,-140*E(4),-140,-140,140*E(4),140,-140*E(4),-140,140*E(4),140
,-140*E(4),-140,140*E(4),140,-140*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,
-5*E(4),-5,5*E(4),5,-5*E(4),-5,5*E(4),5,-5*E(4),-5,5*E(4),5*E(4),5,-5*E(4),-5,
5*E(4),5,-5*E(4),-5,5*E(4),5,-5*E(4),-5,-5,5*E(4),5,-5*E(4),-5,5*E(4),5,
-5*E(4),-5,5*E(4),5,-5*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4)
,4,4*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,4*E(4),5,5*E(4)
,-5,-5*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),
-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,2,-2*E(4),-2,
2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(4),3,-3*E(4)
,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4)
,3,-3*E(4),-3,3*E(4),3,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,
3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+E(4),
1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),
-1+E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),
1+E(4),1-E(4),-1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),
1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),
1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,
-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),1
,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),1,-E(4),-1
,E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4)],
[GALOIS,[44,3]],[224,-224*E(4),-224,224*E(4),224,-224*E(4),-224,224*E(4),224,
-224*E(4),-224,224*E(4),224*E(4),224,-224*E(4),-224,224*E(4),224,-224*E(4),
-224,224*E(4),224,-224*E(4),-224,-224,224*E(4),224,-224*E(4),-224,224*E(4),224
,-224*E(4),-224,224*E(4),224,-224*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,
-8*E(4),-8,8*E(4),8,-8*E(4),-8,8*E(4),8,-8*E(4),-8,8*E(4),8*E(4),8,-8*E(4),-8,
8*E(4),8,-8*E(4),-8,8*E(4),8,-8*E(4),-8,-8,8*E(4),8,-8*E(4),-8,8*E(4),8,
-8*E(4),-8,8*E(4),8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),
-8,-8*E(4),-10,-10*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),-10,-10*E(4),10,
10*E(4),-1,-E(4),1,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,
-E(4),-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),
-1,E(4),1,-E(4),-1,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-2*E(3)+E(3)^2,-2*E(12)^7+E(12)^11,2*E(3)-E(3)^2,2*E(12)^7-E(12)^11,
-2*E(3)+E(3)^2,-2*E(12)^7+E(12)^11,2*E(3)-E(3)^2,2*E(12)^7-E(12)^11,
-2*E(3)+E(3)^2,-2*E(12)^7+E(12)^11,2*E(3)-E(3)^2,2*E(12)^7-E(12)^11,
E(3)-2*E(3)^2,E(12)^7-2*E(12)^11,-E(3)+2*E(3)^2,-E(12)^7+2*E(12)^11,
E(3)-2*E(3)^2,E(12)^7-2*E(12)^11,-E(3)+2*E(3)^2,-E(12)^7+2*E(12)^11,
E(3)-2*E(3)^2,E(12)^7-2*E(12)^11,-E(3)+2*E(3)^2,-E(12)^7+2*E(12)^11,-1,-E(4),1
,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4)
,1,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],
[GALOIS,[46,7]],
[GALOIS,[46,5]],
[GALOIS,[46,11]],[224,-224*E(4),-224,224*E(4),224,-224*E(4),-224,224*E(4),224
,-224*E(4),-224,224*E(4),224*E(4),224,-224*E(4),-224,224*E(4),224,-224*E(4),
-224,224*E(4),224,-224*E(4),-224,-224,224*E(4),224,-224*E(4),-224,224*E(4),224
,-224*E(4),-224,224*E(4),224,-224*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,
-8*E(4),-8,8*E(4),8,-8*E(4),-8,8*E(4),8,-8*E(4),-8,8*E(4),8*E(4),8,-8*E(4),-8,
8*E(4),8,-8*E(4),-8,8*E(4),8,-8*E(4),-8,-8,8*E(4),8,-8*E(4),-8,8*E(4),8,
-8*E(4),-8,8*E(4),8,-8*E(4),-10,-10*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),
-10,-10*E(4),10,10*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),-8,
-8*E(4),-1,-E(4),1,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,
-E(4),-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),
-1,E(4),1,-E(4),-1,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),
-1,-E(4),1,E(4),-2*E(3)+E(3)^2,-2*E(12)^7+E(12)^11,2*E(3)-E(3)^2,
2*E(12)^7-E(12)^11,-2*E(3)+E(3)^2,-2*E(12)^7+E(12)^11,2*E(3)-E(3)^2,
2*E(12)^7-E(12)^11,-2*E(3)+E(3)^2,-2*E(12)^7+E(12)^11,2*E(3)-E(3)^2,
2*E(12)^7-E(12)^11,E(3)-2*E(3)^2,E(12)^7-2*E(12)^11,-E(3)+2*E(3)^2,
-E(12)^7+2*E(12)^11,E(3)-2*E(3)^2,E(12)^7-2*E(12)^11,-E(3)+2*E(3)^2,
-E(12)^7+2*E(12)^11,E(3)-2*E(3)^2,E(12)^7-2*E(12)^11,-E(3)+2*E(3)^2,
-E(12)^7+2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0],
[GALOIS,[50,7]],
[GALOIS,[50,5]],
[GALOIS,[50,11]],[280,-280*E(4),-280,280*E(4),280,-280*E(4),-280,280*E(4),280
,-280*E(4),-280,280*E(4),280*E(4),280,-280*E(4),-280,280*E(4),280,-280*E(4),
-280,280*E(4),280,-280*E(4),-280,-280,280*E(4),280,-280*E(4),-280,280*E(4),280
,-280*E(4),-280,280*E(4),280,-280*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,37,
-37*E(4),-37,37*E(4),37,-37*E(4),-37,37*E(4),37,-37*E(4),-37,37*E(4),37*E(4),
37,-37*E(4),-37,37*E(4),37,-37*E(4),-37,37*E(4),37,-37*E(4),-37,-37,37*E(4),37
,-37*E(4),-37,37*E(4),37,-37*E(4),-37,37*E(4),37,-37*E(4),10,10*E(4),-10,
-10*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),-10,
-10*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),-10,-10*E(4),1,E(4),-1,-E(4),4,
-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(4),4,-4*E(4),-4,
4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,-4,4*E(4),4,-4*E(4),-4,4*E(4),4,
-4*E(4),-4,4*E(4),4,-4*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,
-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3
,3*E(4),3,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(4),-1,-E(4),1,E(4),-1,-E(4),
1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,
-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),
-1,-E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),
1,-E(4),-1,E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4)],
[GALOIS,[54,3]],[280,-280*E(4),-280,280*E(4),280,-280*E(4),-280,280*E(4),280,
-280*E(4),-280,280*E(4),280*E(4),280,-280*E(4),-280,280*E(4),280,-280*E(4),
-280,280*E(4),280,-280*E(4),-280,-280,280*E(4),280,-280*E(4),-280,280*E(4),280
,-280*E(4),-280,280*E(4),280,-280*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-17
,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17*E(4),
-17,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17,17*E(4),17,17,-17*E(4),-17
,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17,17*E(4),10,10*E(4),-10,
-10*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),-10,-10*E(4),-8,-8*E(4),8,8*E(4),
-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),1,E(4),-1,-E(4),4,-4*E(4),-4,4*E(4),4,
-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,
4*E(4),4,-4*E(4),-4,-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,
-4*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,
3*E(4),3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,-3,3*E(4),3
,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,
2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),1,E(4),-1,
-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),
-1,-E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),
1,-E(4),-1,E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4)],
[GALOIS,[56,3]],[280,-280*E(4),-280,280*E(4),280,-280*E(4),-280,280*E(4),280,
-280*E(4),-280,280*E(4),280*E(4),280,-280*E(4),-280,280*E(4),280,-280*E(4),
-280,280*E(4),280,-280*E(4),-280,-280,280*E(4),280,-280*E(4),-280,280*E(4),280
,-280*E(4),-280,280*E(4),280,-280*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-17
,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17*E(4),
-17,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17,17*E(4),17,17,-17*E(4),-17
,17*E(4),17,-17*E(4),-17,17*E(4),17,-17*E(4),-17,17*E(4),-8,-8*E(4),8,8*E(4),
-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),10,10*E(4),-10,-10*E(4),10,10*E(4),-10
,-10*E(4),10,10*E(4),-10,-10*E(4),1,E(4),-1,-E(4),4,-4*E(4),-4,4*E(4),4,
-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,
4*E(4),4,-4*E(4),-4,-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,
-4*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,
3*E(4),3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,-3,3*E(4),3
,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,
E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2
,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4),2,2*E(4),-2,-2*E(4)
,2,2*E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4)
,1,-E(4),-1,E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4)],
[GALOIS,[58,3]],[420,-420*E(4),-420,420*E(4),420,-420*E(4),-420,420*E(4),420,
-420*E(4),-420,420*E(4),420*E(4),420,-420*E(4),-420,420*E(4),420,-420*E(4),
-420,420*E(4),420,-420*E(4),-420,-420,420*E(4),420,-420*E(4),-420,420*E(4),420
,-420*E(4),-420,420*E(4),420,-420*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-39
,39*E(4),39,-39*E(4),-39,39*E(4),39,-39*E(4),-39,39*E(4),39,-39*E(4),-39*E(4),
-39,39*E(4),39,-39*E(4),-39,39*E(4),39,-39*E(4),-39,39*E(4),39,39,-39*E(4),-39
,39*E(4),39,-39*E(4),-39,39*E(4),39,-39*E(4),-39,39*E(4),6,6*E(4),-6,-6*E(4),6
,6*E(4),-6,-6*E(4),6,6*E(4),-6,-6*E(4),6,6*E(4),-6,-6*E(4),6,6*E(4),-6,-6*E(4)
,6,6*E(4),-6,-6*E(4),-3,-3*E(4),3,3*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,
2*E(4),2,-2*E(4),-2,2*E(4),2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,
-2*E(4),-2,-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(4),-3,
3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,3,-3*E(4),-3,3*E(4),3,-3*E(4)
,-3,3*E(4),3,-3*E(4),-3,3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),
1+E(4),1-E(4),-1-E(4),-1+E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),
1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),
-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(4),-1,E(4),1,-E(4),-1,E(4),
1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4)],
[GALOIS,[60,3]],[540,-540*E(4),-540,540*E(4),540,-540*E(4),-540,540*E(4),540,
-540*E(4),-540,540*E(4),540*E(4),540,-540*E(4),-540,540*E(4),540,-540*E(4),
-540,540*E(4),540,-540*E(4),-540,-540,540*E(4),540,-540*E(4),-540,540*E(4),540
,-540*E(4),-540,540*E(4),540,-540*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27
,27*E(4),27,-27*E(4),-27,27*E(4),27,-27*E(4),-27,27*E(4),27,-27*E(4),-27*E(4),
-27,27*E(4),27,-27*E(4),-27,27*E(4),27,-27*E(4),-27,27*E(4),27,27,-27*E(4),-27
,27*E(4),27,-27*E(4),-27,27*E(4),27,-27*E(4),-27,27*E(4),0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,
2*E(4),2,-2*E(4),-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,2
,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,
3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(4),-3,3*E(4),3,
-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,
3*E(4),3,-3*E(4),-3,3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,
-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,
E(4),1,-E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,
E(4),1,-E(4),-1,E(4),1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,
-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),
-1+E(4),1+E(4),1-E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),
1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),
1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(4)
,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),
1,-E(4),-1,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4)],
[GALOIS,[62,3]],[640,-640*E(4),-640,640*E(4),640,-640*E(4),-640,640*E(4),640,
-640*E(4),-640,640*E(4),640*E(4),640,-640*E(4),-640,640*E(4),640,-640*E(4),
-640,640*E(4),640,-640*E(4),-640,-640,640*E(4),640,-640*E(4),-640,640*E(4),640
,-640*E(4),-640,640*E(4),640,-640*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,
8*E(4),8,-8*E(4),-8,8*E(4),8,-8*E(4),-8,8*E(4),8,-8*E(4),-8*E(4),-8,8*E(4),8,
-8*E(4),-8,8*E(4),8,-8*E(4),-8,8*E(4),8,8,-8*E(4),-8,8*E(4),8,-8*E(4),-8,
8*E(4),8,-8*E(4),-8,8*E(4),-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),-8,-8*E(4),
8,8*E(4),-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),-8,-8*E(4),8,8*E(4),1,E(4),-1
,-E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,
E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,
-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,
-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,
E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,
-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,
-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,
E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,
-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,
-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,
E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,
E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,
E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,
E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,
-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,
-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,
E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,
-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,
-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,
E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,
-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,
E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,
E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(4),-1,
-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),
-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,
E(4),-1,-E(4),1,E(4),-1,-E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[64,11]],
[GALOIS,[64,5]],
[GALOIS,[64,3]],[840,-840*E(4),-840,840*E(4),840,-840*E(4),-840,840*E(4),840,
-840*E(4),-840,840*E(4),840*E(4),840,-840*E(4),-840,840*E(4),840,-840*E(4),
-840,840*E(4),840,-840*E(4),-840,-840,840*E(4),840,-840*E(4),-840,840*E(4),840
,-840*E(4),-840,840*E(4),840,-840*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3*E(4),3,-3*E(4),-3,
3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,
-3*E(4),-3,3*E(4),3,-3*E(4),12,12*E(4),-12,-12*E(4),12,12*E(4),-12,-12*E(4),12
,12*E(4),-12,-12*E(4),12,12*E(4),-12,-12*E(4),12,12*E(4),-12,-12*E(4),12,
12*E(4),-12,-12*E(4),3,3*E(4),-3,-3*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,
-4*E(4),-4,4*E(4),4,-4*E(4),-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4
,4*E(4),4,4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3*E(4),3,
-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,-3,3*E(4),3,-3*E(4),-3,
3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4)
,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,1,-E(4),-1,E(4),1,-E(4),-1,
E(4),1,-E(4),-1,E(4)],
[GALOIS,[68,3]],[896,-896*E(4),-896,896*E(4),896,-896*E(4),-896,896*E(4),896,
-896*E(4),-896,896*E(4),896*E(4),896,-896*E(4),-896,896*E(4),896,-896*E(4),
-896,896*E(4),896,-896*E(4),-896,-896,896*E(4),896,-896*E(4),-896,896*E(4),896
,-896*E(4),-896,896*E(4),896,-896*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,
-32*E(4),-32,32*E(4),32,-32*E(4),-32,32*E(4),32,-32*E(4),-32,32*E(4),32*E(4),
32,-32*E(4),-32,32*E(4),32,-32*E(4),-32,32*E(4),32,-32*E(4),-32,-32,32*E(4),32
,-32*E(4),-32,32*E(4),32,-32*E(4),-32,32*E(4),32,-32*E(4),-4,-4*E(4),4,4*E(4),
-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,
4*E(4),-4,-4*E(4),4,4*E(4),-4,-4*E(4),4,4*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(4),-1,E(4),1,
-E(4),-1,E(4),1,-E(4),-1,E(4),E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,
-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,
E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),
1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),-1,-E(4),1,E(4),0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[70,3]],[36,36,36,36,36,36,36,36,36,36,36,36,36*E(3),36*E(3),36*E(3),
36*E(3),36*E(3),36*E(3),36*E(3),36*E(3),36*E(3),36*E(3),36*E(3),36*E(3),
36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,
36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,36*E(3)^2,4,4,4,4,4,4,4*E(3),4*E(3),
4*E(3),4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,
4*E(3)^2,9,9,9,9,9,9,9,9,9,9,9,9,9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),
9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,
9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,4,4,4,4,
4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),
4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2
,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1
,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,1,
1,1,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,1,1,1,1,1,1,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3)
,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,1,1,1,1,1,1,1,1,1,E(3),E(3),
E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,
1,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2],
[GALOIS,[72,2]],[45,45,45,45,45,45,45,45,45,45,45,45,45*E(3),45*E(3),45*E(3),
45*E(3),45*E(3),45*E(3),45*E(3),45*E(3),45*E(3),45*E(3),45*E(3),45*E(3),
45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,
45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,45*E(3)^2,-3,-3,-3,-3,-3,-3,-3*E(3),
-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9,-9*E(3),
-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),
-9*E(3),-9*E(3),-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,
-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,E(3),E(3),E(3),
E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4
,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,
E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,
1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2
,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2]
,
[GALOIS,[74,2]],
[GALOIS,[74,10]],
[GALOIS,[74,5]],[126,126,126,126,126,126,126,126,126,126,126,126,126*E(3),
126*E(3),126*E(3),126*E(3),126*E(3),126*E(3),126*E(3),126*E(3),126*E(3),
126*E(3),126*E(3),126*E(3),126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,
126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,126*E(3)^2,
126*E(3)^2,14,14,14,14,14,14,14*E(3),14*E(3),14*E(3),14*E(3),14*E(3),14*E(3),
14*E(3)^2,14*E(3)^2,14*E(3)^2,14*E(3)^2,14*E(3)^2,14*E(3)^2,-9,-9,-9,-9,-9,-9,
-9,-9,-9,-9,-9,-9,-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),
-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3),-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,
-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,-9*E(3)^2,
-9*E(3)^2,-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
2,2,2,2,2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,2*E(3),
2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,1,1,1,1,1,1,1,1,1,1,1,1,E(3),E(3),
E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)
,2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,2,2,2,
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[78,2]],[189,189,189,189,189,189,189,189,189,189,189,189,189*E(3),
189*E(3),189*E(3),189*E(3),189*E(3),189*E(3),189*E(3),189*E(3),189*E(3),
189*E(3),189*E(3),189*E(3),189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,
189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,189*E(3)^2,
189*E(3)^2,-3,-3,-3,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,27,27,27,27,27,27,
27,27,27,27,27,27,27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),
27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3)^2,27*E(3)^2,27*E(3)^2,
27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,
27*E(3)^2,27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,
5,5,5,5,5,5,5,5,5,5,5,5*E(3),5*E(3),5*E(3),5*E(3),5*E(3),5*E(3),5*E(3),5*E(3),
5*E(3),5*E(3),5*E(3),5*E(3),5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,
5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,5*E(3)^2,1,1,1,E(3),E(3)
,E(3),E(3)^2,E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,3,3,3,3,3,3,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,
E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[80,2]],[315,315,315,315,315,315,315,315,315,315,315,315,315*E(3),
315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),
315*E(3),315*E(3),315*E(3),315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,11,11,11,11,11,11,11*E(3),11*E(3),11*E(3),11*E(3),11*E(3),11*E(3),
11*E(3)^2,11*E(3)^2,11*E(3)^2,11*E(3)^2,11*E(3)^2,11*E(3)^2,18,18,18,18,18,18,
18,18,18,18,18,18,18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-1,-1,-1,-E(3),-E(3),-E(3),
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1
,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2],
[GALOIS,[82,2]],[315,315,315,315,315,315,315,315,315,315,315,315,315*E(3),
315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),
315*E(3),315*E(3),315*E(3),315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,-5,-5,-5,-5,-5,-5,-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),
-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,18,18,18,18,18,18,
18,18,18,18,18,18,18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
3,3,3,3,3,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,-1,-1,-1,-E(3),
-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2*E(3),
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,4,4,4,4,4,4,4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),
4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)
,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[84,2]],[315,315,315,315,315,315,315,315,315,315,315,315,315*E(3),
315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),315*E(3),
315*E(3),315*E(3),315*E(3),315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,315*E(3)^2,
315*E(3)^2,-5,-5,-5,-5,-5,-5,-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),-5*E(3),
-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,-5*E(3)^2,18,18,18,18,18,18,
18,18,18,18,18,18,18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
3,3,3,3,3,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,-1,-1,-1,-E(3),
-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2*E(3),
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,4,4,4,4,4,4,4*E(3)
,4*E(3),4*E(3),4*E(3),4*E(3),4*E(3),4*E(3)^2,4*E(3)^2,4*E(3)^2,4*E(3)^2,
4*E(3)^2,4*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[86,2]],[630,630,630,630,630,630,630,630,630,630,630,630,630*E(3),
630*E(3),630*E(3),630*E(3),630*E(3),630*E(3),630*E(3),630*E(3),630*E(3),
630*E(3),630*E(3),630*E(3),630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,
630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,630*E(3)^2,
630*E(3)^2,6,6,6,6,6,6,6*E(3),6*E(3),6*E(3),6*E(3),6*E(3),6*E(3),6*E(3)^2,
6*E(3)^2,6*E(3)^2,6*E(3)^2,6*E(3)^2,6*E(3)^2,-45,-45,-45,-45,-45,-45,-45,-45,
-45,-45,-45,-45,-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3)
,-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3),-45*E(3)^2,-45*E(3)^2,-45*E(3)^2
,-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,-45*E(3)^2,
-45*E(3)^2,-45*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2,2,2,2,2,2,2,2,2,2,2,2,2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),
2*E(3),2*E(3),2*E(3),2*E(3),2*E(3),2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,
2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,2*E(3)^2,-2,-2,
-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),
3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2
,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3)
,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2],
[GALOIS,[88,2]],[720,720,720,720,720,720,720,720,720,720,720,720,720*E(3),
720*E(3),720*E(3),720*E(3),720*E(3),720*E(3),720*E(3),720*E(3),720*E(3),
720*E(3),720*E(3),720*E(3),720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,
720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,720*E(3)^2,
720*E(3)^2,16,16,16,16,16,16,16*E(3),16*E(3),16*E(3),16*E(3),16*E(3),16*E(3),
16*E(3)^2,16*E(3)^2,16*E(3)^2,16*E(3)^2,16*E(3)^2,16*E(3)^2,18,18,18,18,18,18,
18,18,18,18,18,18,18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),
18*E(3),18*E(3),18*E(3),18*E(3),18*E(3),18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,18*E(3)^2,
18*E(3)^2,18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),
-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,
-2*E(3)^2,-2*E(3)^2,-2,-2,-2,-2,-2,-2,-2*E(3),-2*E(3),-2*E(3),-2*E(3),-2*E(3),
-2*E(3),-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-2*E(3)^2,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[90,2]],[729,729,729,729,729,729,729,729,729,729,729,729,729*E(3),
729*E(3),729*E(3),729*E(3),729*E(3),729*E(3),729*E(3),729*E(3),729*E(3),
729*E(3),729*E(3),729*E(3),729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,
729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,729*E(3)^2,
729*E(3)^2,9,9,9,9,9,9,9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3),9*E(3)^2,
9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3*E(3),-3*E(3),-3*E(3),
-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,1,1,1,E(3),E(3),E(3),E(3)^2,
E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,
1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1
,1,1,1,1,1,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),
E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],
[GALOIS,[92,2]],[756,756,756,756,756,756,756,756,756,756,756,756,756*E(3),
756*E(3),756*E(3),756*E(3),756*E(3),756*E(3),756*E(3),756*E(3),756*E(3),
756*E(3),756*E(3),756*E(3),756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,
756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,756*E(3)^2,
756*E(3)^2,-12,-12,-12,-12,-12,-12,-12*E(3),-12*E(3),-12*E(3),-12*E(3),
-12*E(3),-12*E(3),-12*E(3)^2,-12*E(3)^2,-12*E(3)^2,-12*E(3)^2,-12*E(3)^2,
-12*E(3)^2,27,27,27,27,27,27,27,27,27,27,27,27,27*E(3),27*E(3),27*E(3),27*E(3)
,27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3),27*E(3)^2,
27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,
27*E(3)^2,27*E(3)^2,27*E(3)^2,27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4*E(3),-4*E(3),-4*E(3),
-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),-4*E(3),
-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,
-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,-4*E(3)^2,0,0,0,0,0,0,0,0,0,1,1,1,1,1,
1,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,3,3,3,3,3,3,3,3,3,3,3,3,3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),
3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3),3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,
3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,3*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),-E(3),
-E(3),-E(3),-E(3),-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,
-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2,-E(3)^2],
[GALOIS,[94,2]],[945,945,945,945,945,945,945,945,945,945,945,945,945*E(3),
945*E(3),945*E(3),945*E(3),945*E(3),945*E(3),945*E(3),945*E(3),945*E(3),
945*E(3),945*E(3),945*E(3),945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,
945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,945*E(3)^2,
945*E(3)^2,-15,-15,-15,-15,-15,-15,-15*E(3),-15*E(3),-15*E(3),-15*E(3),
-15*E(3),-15*E(3),-15*E(3)^2,-15*E(3)^2,-15*E(3)^2,-15*E(3)^2,-15*E(3)^2,
-15*E(3)^2,-27,-27,-27,-27,-27,-27,-27,-27,-27,-27,-27,-27,-27*E(3),-27*E(3),
-27*E(3),-27*E(3),-27*E(3),-27*E(3),-27*E(3),-27*E(3),-27*E(3),-27*E(3),
-27*E(3),-27*E(3),-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,
-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,-27*E(3)^2,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1
,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,1,1,1,
E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3*E(3),
-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),-3*E(3),
-3*E(3),-3*E(3),-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,
-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,E(3),E(3),
E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,
1,1,1,1,1,1,1,1,1,1,E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),E(3),
E(3),E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,E(3)^2,
E(3)^2,E(3)^2],
[GALOIS,[96,2]],[90,-90,90,-90,90,-90,90,-90,90,-90,90,-90,-90*E(3),90*E(3),
-90*E(3),90*E(3),-90*E(3),90*E(3),-90*E(3),90*E(3),-90*E(3),90*E(3),-90*E(3),
90*E(3),90*E(3)^2,-90*E(3)^2,90*E(3)^2,-90*E(3)^2,90*E(3)^2,-90*E(3)^2,
90*E(3)^2,-90*E(3)^2,90*E(3)^2,-90*E(3)^2,90*E(3)^2,-90*E(3)^2,2,-2,2,-2,2,-2,
-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,-18,18,-18,18,-18,18,-18,18,-18,18,-18,18,18*E(3)
,-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),
18*E(3),-18*E(3),-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,
18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-6,6,-6,6,-6,6,-6,6,-6,6,
-6,-6*E(3),6*E(3),-6*E(3),6*E(3),-6*E(3),6*E(3),-6*E(3),6*E(3),-6*E(3),6*E(3),
-6*E(3),6*E(3),6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,
6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2
,2,-2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2,
-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2
,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),
E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),
E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[98,2]],[126,-126,126,-126,126,-126,126,-126,126,-126,126,-126,
-126*E(3),126*E(3),-126*E(3),126*E(3),-126*E(3),126*E(3),-126*E(3),126*E(3),
-126*E(3),126*E(3),-126*E(3),126*E(3),126*E(3)^2,-126*E(3)^2,126*E(3)^2,
-126*E(3)^2,126*E(3)^2,-126*E(3)^2,126*E(3)^2,-126*E(3)^2,126*E(3)^2,
-126*E(3)^2,126*E(3)^2,-126*E(3)^2,-10,10,-10,10,-10,10,10*E(3),-10*E(3),
10*E(3),-10*E(3),10*E(3),-10*E(3),-10*E(3)^2,10*E(3)^2,-10*E(3)^2,10*E(3)^2,
-10*E(3)^2,10*E(3)^2,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,9*E(3),-9*E(3),9*E(3),
-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),-9*E(3)^2,
9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,
9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),
E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2
,E(3)^2,-E(3)^2,E(3)^2,-4,4,-4,4,-4,4,4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),
-4*E(3),-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,2,-2,2,-2,2,
-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[100,2]],[126,-126,126,-126,126,-126,126,-126,126,-126,126,-126,
-126*E(3),126*E(3),-126*E(3),126*E(3),-126*E(3),126*E(3),-126*E(3),126*E(3),
-126*E(3),126*E(3),-126*E(3),126*E(3),126*E(3)^2,-126*E(3)^2,126*E(3)^2,
-126*E(3)^2,126*E(3)^2,-126*E(3)^2,126*E(3)^2,-126*E(3)^2,126*E(3)^2,
-126*E(3)^2,126*E(3)^2,-126*E(3)^2,-10,10,-10,10,-10,10,10*E(3),-10*E(3),
10*E(3),-10*E(3),10*E(3),-10*E(3),-10*E(3)^2,10*E(3)^2,-10*E(3)^2,10*E(3)^2,
-10*E(3)^2,10*E(3)^2,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,9*E(3),-9*E(3),9*E(3),
-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),-9*E(3)^2,
9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,
9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,-1,1,-1,1,
-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),
E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2
,E(3)^2,-E(3)^2,E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,-4,4,-4,4,-4,4
,4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),-4*E(3)^2,4*E(3)^2,-4*E(3)^2,
4*E(3)^2,-4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[102,2]],[126,-126,126,-126,126,-126,126,-126,126,-126,126,-126,
-126*E(3),126*E(3),-126*E(3),126*E(3),-126*E(3),126*E(3),-126*E(3),126*E(3),
-126*E(3),126*E(3),-126*E(3),126*E(3),126*E(3)^2,-126*E(3)^2,126*E(3)^2,
-126*E(3)^2,126*E(3)^2,-126*E(3)^2,126*E(3)^2,-126*E(3)^2,126*E(3)^2,
-126*E(3)^2,126*E(3)^2,-126*E(3)^2,6,-6,6,-6,6,-6,-6*E(3),6*E(3),-6*E(3),
6*E(3),-6*E(3),6*E(3),6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2
,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),
9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),-9*E(3)^2,9*E(3)^2,-9*E(3)^2,
9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,
9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,
2,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,
0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),
E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2
,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,-3*E(3),
3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),
3*E(3),3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,
-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),
2*E(4),-2*E(4),2*E(4),-2*E(4),2*E(4),-2*E(4),-2*E(12)^7,2*E(12)^7,-2*E(12)^7,
2*E(12)^7,-2*E(12)^7,2*E(12)^7,-2*E(12)^7,2*E(12)^7,-2*E(12)^7,2*E(12)^7,
-2*E(12)^7,2*E(12)^7,2*E(12)^11,-2*E(12)^11,2*E(12)^11,-2*E(12)^11,2*E(12)^11,
-2*E(12)^11,2*E(12)^11,-2*E(12)^11,2*E(12)^11,-2*E(12)^11,2*E(12)^11,
-2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),
E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2
,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2],
[GALOIS,[104,5]],
[GALOIS,[104,7]],
[GALOIS,[104,11]],[270,-270,270,-270,270,-270,270,-270,270,-270,270,-270,
-270*E(3),270*E(3),-270*E(3),270*E(3),-270*E(3),270*E(3),-270*E(3),270*E(3),
-270*E(3),270*E(3),-270*E(3),270*E(3),270*E(3)^2,-270*E(3)^2,270*E(3)^2,
-270*E(3)^2,270*E(3)^2,-270*E(3)^2,270*E(3)^2,-270*E(3)^2,270*E(3)^2,
-270*E(3)^2,270*E(3)^2,-270*E(3)^2,6,-6,6,-6,6,-6,-6*E(3),6*E(3),-6*E(3),
6*E(3),-6*E(3),6*E(3),6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2,6*E(3)^2,-6*E(3)^2
,27,-27,27,-27,27,-27,27,-27,27,-27,27,-27,-27*E(3),27*E(3),-27*E(3),27*E(3),
-27*E(3),27*E(3),-27*E(3),27*E(3),-27*E(3),27*E(3),-27*E(3),27*E(3),27*E(3)^2,
-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,
27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,3,-3,3,-3,3,-3,3,-3,3,-3,-3*E(3)
,3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),
3*E(3),3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,
-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(7)-E(7)^2-E(7)^4,
E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,
E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,
E(7)+E(7)^2+E(7)^4,-E(7)-E(7)^2-E(7)^4,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(21)^10-E(21)^13-E(21)^19,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^5+E(21)^17+E(21)^20,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,
E(7)^3+E(7)^5+E(7)^6,-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,
-E(7)^3-E(7)^5-E(7)^6,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
-E(21)-E(21)^4-E(21)^16,E(21)+E(21)^4+E(21)^16,-E(21)-E(21)^4-E(21)^16,
E(21)+E(21)^4+E(21)^16,-E(21)-E(21)^4-E(21)^16,E(21)+E(21)^4+E(21)^16,
-E(21)-E(21)^4-E(21)^16,E(21)+E(21)^4+E(21)^16,-E(21)-E(21)^4-E(21)^16,
E(21)+E(21)^4+E(21)^16,-E(21)-E(21)^4-E(21)^16,-E(21)^2-E(21)^8-E(21)^11,
E(21)^2+E(21)^8+E(21)^11,-E(21)^2-E(21)^8-E(21)^11,E(21)^2+E(21)^8+E(21)^11,
-E(21)^2-E(21)^8-E(21)^11,E(21)^2+E(21)^8+E(21)^11,-E(21)^2-E(21)^8-E(21)^11,
E(21)^2+E(21)^8+E(21)^11,-E(21)^2-E(21)^8-E(21)^11,E(21)^2+E(21)^8+E(21)^11,
-E(21)^2-E(21)^8-E(21)^11,E(21)^2+E(21)^8+E(21)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,
-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),
-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[108,2]],
[GALOIS,[108,10]],
[GALOIS,[108,5]],[504,-504,504,-504,504,-504,504,-504,504,-504,504,-504,
-504*E(3),504*E(3),-504*E(3),504*E(3),-504*E(3),504*E(3),-504*E(3),504*E(3),
-504*E(3),504*E(3),-504*E(3),504*E(3),504*E(3)^2,-504*E(3)^2,504*E(3)^2,
-504*E(3)^2,504*E(3)^2,-504*E(3)^2,504*E(3)^2,-504*E(3)^2,504*E(3)^2,
-504*E(3)^2,504*E(3)^2,-504*E(3)^2,-8,8,-8,8,-8,8,8*E(3),-8*E(3),8*E(3),
-8*E(3),8*E(3),-8*E(3),-8*E(3)^2,8*E(3)^2,-8*E(3)^2,8*E(3)^2,-8*E(3)^2,
8*E(3)^2,-36,36,-36,36,-36,36,-36,36,-36,36,-36,36,36*E(3),-36*E(3),36*E(3),
-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),
-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,
36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,4,
-4,4,-4,4,-4,4,-4,4,-4,4,-4,-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),
-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),4*E(3)^2,-4*E(3)^2,4*E(3)^2,
-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,
-4*E(3)^2,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2,2,-2,2,-2,2,2*E(3)
,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0],
[GALOIS,[112,2]],[540,-540,540,-540,540,-540,540,-540,540,-540,540,-540,
-540*E(3),540*E(3),-540*E(3),540*E(3),-540*E(3),540*E(3),-540*E(3),540*E(3),
-540*E(3),540*E(3),-540*E(3),540*E(3),540*E(3)^2,-540*E(3)^2,540*E(3)^2,
-540*E(3)^2,540*E(3)^2,-540*E(3)^2,540*E(3)^2,-540*E(3)^2,540*E(3)^2,
-540*E(3)^2,540*E(3)^2,-540*E(3)^2,12,-12,12,-12,12,-12,-12*E(3),12*E(3),
-12*E(3),12*E(3),-12*E(3),12*E(3),12*E(3)^2,-12*E(3)^2,12*E(3)^2,-12*E(3)^2,
12*E(3)^2,-12*E(3)^2,-27,27,-27,27,-27,27,-27,27,-27,27,-27,27,27*E(3),
-27*E(3),27*E(3),-27*E(3),27*E(3),-27*E(3),27*E(3),-27*E(3),27*E(3),-27*E(3),
27*E(3),-27*E(3),-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,
27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,-27*E(3)^2,27*E(3)^2,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,-4,4,-4,4,-4,4,-4,4,
-4,-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),
-4*E(3),4*E(3),4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,
4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,-3,3
,-3,3,-3,3,-3,3,-3,3,3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),3*E(3),
-3*E(3),3*E(3),-3*E(3),3*E(3),-3*E(3),-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,
-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,-3*E(3)^2,3*E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),
-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1
,-1,1,-1,1,-1,1,-1,1,-1,-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3)
,-E(3),E(3),E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2
,-E(3)^2,E(3)^2,-E(3)^2],
[GALOIS,[114,2]],[630,-630,630,-630,630,-630,630,-630,630,-630,630,-630,
-630*E(3),630*E(3),-630*E(3),630*E(3),-630*E(3),630*E(3),-630*E(3),630*E(3),
-630*E(3),630*E(3),-630*E(3),630*E(3),630*E(3)^2,-630*E(3)^2,630*E(3)^2,
-630*E(3)^2,630*E(3)^2,-630*E(3)^2,630*E(3)^2,-630*E(3)^2,630*E(3)^2,
-630*E(3)^2,630*E(3)^2,-630*E(3)^2,-18,18,-18,18,-18,18,18*E(3),-18*E(3),
18*E(3),-18*E(3),18*E(3),-18*E(3),-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,
-18*E(3)^2,18*E(3)^2,36,-36,36,-36,36,-36,36,-36,36,-36,36,-36,-36*E(3),
36*E(3),-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),36*E(3),-36*E(3),36*E(3),
-36*E(3),36*E(3),36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,
-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,36*E(3)^2,-36*E(3)^2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,-2,2
,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3)
,-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2
,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2
,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2],
[GALOIS,[116,2]],[720,-720,720,-720,720,-720,720,-720,720,-720,720,-720,
-720*E(3),720*E(3),-720*E(3),720*E(3),-720*E(3),720*E(3),-720*E(3),720*E(3),
-720*E(3),720*E(3),-720*E(3),720*E(3),720*E(3)^2,-720*E(3)^2,720*E(3)^2,
-720*E(3)^2,720*E(3)^2,-720*E(3)^2,720*E(3)^2,-720*E(3)^2,720*E(3)^2,
-720*E(3)^2,720*E(3)^2,-720*E(3)^2,16,-16,16,-16,16,-16,-16*E(3),16*E(3),
-16*E(3),16*E(3),-16*E(3),16*E(3),16*E(3)^2,-16*E(3)^2,16*E(3)^2,-16*E(3)^2,
16*E(3)^2,-16*E(3)^2,18,-18,18,-18,18,-18,18,-18,18,-18,18,-18,-18*E(3),
18*E(3),-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),18*E(3),-18*E(3),18*E(3),
-18*E(3),18*E(3),18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,
-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,18*E(3)^2,-18*E(3)^2,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,2,-2,2,
-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),
-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2,2,-2,2,-2
,2,2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,
2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2,2,-2,2,-2,2,2*E(3),-2*E(3),2*E(3),-2*E(3),
2*E(3),-2*E(3),-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),
-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[118,2]],[1260,-1260,1260,-1260,1260,-1260,1260,-1260,1260,-1260,1260
,-1260,-1260*E(3),1260*E(3),-1260*E(3),1260*E(3),-1260*E(3),1260*E(3),
-1260*E(3),1260*E(3),-1260*E(3),1260*E(3),-1260*E(3),1260*E(3),1260*E(3)^2,
-1260*E(3)^2,1260*E(3)^2,-1260*E(3)^2,1260*E(3)^2,-1260*E(3)^2,1260*E(3)^2,
-1260*E(3)^2,1260*E(3)^2,-1260*E(3)^2,1260*E(3)^2,-1260*E(3)^2,-4,4,-4,4,-4,4,
4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),-4*E(3)^2,4*E(3)^2,-4*E(3)^2,
4*E(3)^2,-4*E(3)^2,4*E(3)^2,-9,9,-9,9,-9,9,-9,9,-9,9,-9,9,9*E(3),-9*E(3),
9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),9*E(3),-9*E(3),
-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,
-9*E(3)^2,9*E(3)^2,-9*E(3)^2,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,4*E(3),-4*E(3),4*E(3),-4*E(3),
4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),4*E(3),-4*E(3),-4*E(3)^2,4*E(3)^2
,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,-4*E(3)^2,4*E(3)^2,
-4*E(3)^2,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),
-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,
E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,2,-2,2,-2,2
,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,
-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2,-2,2,-2,2,-2,-2*E(3),2*E(3),-2*E(3),2*E(3),
-2*E(3),2*E(3),2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,2*E(3)^2,-2*E(3)^2,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,
-1,1,-1,1,-1,1,-1,1,-1,1,E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),-E(3),E(3),
-E(3),E(3),-E(3),-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,-E(3)^2,E(3)^2,
-E(3)^2,E(3)^2,-E(3)^2,E(3)^2],
[GALOIS,[120,2]],[36,-36*E(4),-36,36*E(4),36,-36*E(4),-36,36*E(4),36,-36*E(4)
,-36,36*E(4),36*E(12)^7,36*E(3),-36*E(12)^7,-36*E(3),36*E(12)^7,36*E(3),
-36*E(12)^7,-36*E(3),36*E(12)^7,36*E(3),-36*E(12)^7,-36*E(3),-36*E(3)^2,
36*E(12)^11,36*E(3)^2,-36*E(12)^11,-36*E(3)^2,36*E(12)^11,36*E(3)^2,
-36*E(12)^11,-36*E(3)^2,36*E(12)^11,36*E(3)^2,-36*E(12)^11,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,9,-9*E(4),-9,9*E(4),9,-9*E(4),-9,9*E(4),9,-9*E(4),-9,9*E(4),
9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),
9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),-9*E(3)^2,9*E(12)^11,9*E(3)^2,-9*E(12)^11,
-9*E(3)^2,9*E(12)^11,9*E(3)^2,-9*E(12)^11,-9*E(3)^2,9*E(12)^11,9*E(3)^2,
-9*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(4),
-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2*E(12)^7,2*E(3),-2*E(12)^7,
-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,
-2*E(3),-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,
2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,0,0,0,0,0,0,0,0
,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,-E(3)
,E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11,
E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),
-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),
-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,
3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,
3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,
-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11
,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),
-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2
,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,
E(3)^2,-E(12)^11,1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),
1+E(4),1-E(4),-1-E(4),-1+E(4),-E(12)^4+E(12)^7,E(12)^4+E(12)^7,E(12)^4-E(12)^7
,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,E(12)^4+E(12)^7,E(12)^4-E(12)^7,
-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,E(12)^4+E(12)^7,E(12)^4-E(12)^7,
-E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-E(12)^8+E(12)^11,E(12)^8+E(12)^11,
E(12)^8-E(12)^11,-E(12)^8-E(12)^11,-E(12)^8+E(12)^11,E(12)^8+E(12)^11,
E(12)^8-E(12)^11,-E(12)^8-E(12)^11,-E(12)^8+E(12)^11,E(12)^8+E(12)^11,
E(12)^8-E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,
-E(4),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),
E(12)^7,E(3),E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,
E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11],
[GALOIS,[122,5]],
[GALOIS,[122,7]],
[GALOIS,[122,11]],[216,-216*E(4),-216,216*E(4),216,-216*E(4),-216,216*E(4),
216,-216*E(4),-216,216*E(4),216*E(12)^7,216*E(3),-216*E(12)^7,-216*E(3),
216*E(12)^7,216*E(3),-216*E(12)^7,-216*E(3),216*E(12)^7,216*E(3),-216*E(12)^7,
-216*E(3),-216*E(3)^2,216*E(12)^11,216*E(3)^2,-216*E(12)^11,-216*E(3)^2,
216*E(12)^11,216*E(3)^2,-216*E(12)^11,-216*E(3)^2,216*E(12)^11,216*E(3)^2,
-216*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27,27*E(4),27,-27*E(4),-27,
27*E(4),27,-27*E(4),-27,27*E(4),27,-27*E(4),-27*E(12)^7,-27*E(3),27*E(12)^7,
27*E(3),-27*E(12)^7,-27*E(3),27*E(12)^7,27*E(3),-27*E(12)^7,-27*E(3),
27*E(12)^7,27*E(3),27*E(3)^2,-27*E(12)^11,-27*E(3)^2,27*E(12)^11,27*E(3)^2,
-27*E(12)^11,-27*E(3)^2,27*E(12)^11,27*E(3)^2,-27*E(12)^11,-27*E(3)^2,
27*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(4),
-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(12)^7,4*E(3),-4*E(12)^7,
-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,
-4*E(3),-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,
4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,0,0,0,0,0,0,0,0
,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,-E(3)
,E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11,
E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),
-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),
-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,
3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,
3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(12)^7,-E(3),E(12)^7,
E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),E(3)^2,-E(12)^11,
-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,
E(12)^11,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(12)^7,-E(3),
E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),E(3)^2,
-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,
-E(3)^2,E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),
E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,
-E(3),-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,
-E(3)^2,E(12)^11,E(3)^2,-E(12)^11],
[GALOIS,[126,5]],
[GALOIS,[126,7]],
[GALOIS,[126,11]],[360,-360*E(4),-360,360*E(4),360,-360*E(4),-360,360*E(4),
360,-360*E(4),-360,360*E(4),360*E(12)^7,360*E(3),-360*E(12)^7,-360*E(3),
360*E(12)^7,360*E(3),-360*E(12)^7,-360*E(3),360*E(12)^7,360*E(3),-360*E(12)^7,
-360*E(3),-360*E(3)^2,360*E(12)^11,360*E(3)^2,-360*E(12)^11,-360*E(3)^2,
360*E(12)^11,360*E(3)^2,-360*E(12)^11,-360*E(3)^2,360*E(12)^11,360*E(3)^2,
-360*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9*E(4),-9,9*E(4),9,
-9*E(4),-9,9*E(4),9,-9*E(4),-9,9*E(4),9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),
9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),
-9*E(3)^2,9*E(12)^11,9*E(3)^2,-9*E(12)^11,-9*E(3)^2,9*E(12)^11,9*E(3)^2,
-9*E(12)^11,-9*E(3)^2,9*E(12)^11,9*E(3)^2,-9*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,
4*E(4),4,-4*E(4),-4*E(12)^7,-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,-4*E(3),
4*E(12)^7,4*E(3),-4*E(12)^7,-4*E(3),4*E(12)^7,4*E(3),4*E(3)^2,-4*E(12)^11,
-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,4*E(3)^2,
-4*E(12)^11,-4*E(3)^2,4*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,
-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,
-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),3*E(3)^2,
-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,
3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,
E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,-E(7)-E(7)^2-E(7)^4,
E(28)^11+E(28)^15+E(28)^23,E(7)+E(7)^2+E(7)^4,-E(28)^11-E(28)^15-E(28)^23,
-E(7)-E(7)^2-E(7)^4,E(28)^11+E(28)^15+E(28)^23,E(84)^13+E(84)^61+E(84)^73,
E(21)^10+E(21)^13+E(21)^19,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^10-E(21)^13-E(21)^19,E(84)^13+E(84)^61+E(84)^73,
E(21)^10+E(21)^13+E(21)^19,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^10-E(21)^13-E(21)^19,E(84)^13+E(84)^61+E(84)^73,
E(21)^10+E(21)^13+E(21)^19,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^10-E(21)^13-E(21)^19,-E(21)^5-E(21)^17-E(21)^20,
E(84)^5+E(84)^17+E(84)^41,E(21)^5+E(21)^17+E(21)^20,-E(84)^5-E(84)^17-E(84)^41
,-E(21)^5-E(21)^17-E(21)^20,E(84)^5+E(84)^17+E(84)^41,
E(21)^5+E(21)^17+E(21)^20,-E(84)^5-E(84)^17-E(84)^41,
-E(21)^5-E(21)^17-E(21)^20,E(84)^5+E(84)^17+E(84)^41,E(21)^5+E(21)^17+E(21)^20
,-E(84)^5-E(84)^17-E(84)^41,E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,
-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,E(7)^3+E(7)^5+E(7)^6,
-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,E(28)^3+E(28)^19+E(28)^27,
E(7)^3+E(7)^5+E(7)^6,-E(28)^3-E(28)^19-E(28)^27,-E(7)^3-E(7)^5-E(7)^6,
E(28)^3+E(28)^19+E(28)^27,E(84)+E(84)^25+E(84)^37,E(21)+E(21)^4+E(21)^16,
-E(84)-E(84)^25-E(84)^37,-E(21)-E(21)^4-E(21)^16,E(84)+E(84)^25+E(84)^37,
E(21)+E(21)^4+E(21)^16,-E(84)-E(84)^25-E(84)^37,-E(21)-E(21)^4-E(21)^16,
E(84)+E(84)^25+E(84)^37,E(21)+E(21)^4+E(21)^16,-E(84)-E(84)^25-E(84)^37,
-E(21)-E(21)^4-E(21)^16,-E(21)^2-E(21)^8-E(21)^11,E(84)^29+E(84)^53+E(84)^65,
E(21)^2+E(21)^8+E(21)^11,-E(84)^29-E(84)^53-E(84)^65,-E(21)^2-E(21)^8-E(21)^11
,E(84)^29+E(84)^53+E(84)^65,E(21)^2+E(21)^8+E(21)^11,
-E(84)^29-E(84)^53-E(84)^65,-E(21)^2-E(21)^8-E(21)^11,
E(84)^29+E(84)^53+E(84)^65,E(21)^2+E(21)^8+E(21)^11,
-E(84)^29-E(84)^53-E(84)^65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,
E(4),1,-E(4),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,
-E(3),E(12)^7,E(3),E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,
E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11],
[GALOIS,[130,29]],
[GALOIS,[130,43]],
[GALOIS,[130,11]],
[GALOIS,[130,13]],
[GALOIS,[130,5]],
[GALOIS,[130,19]],
[GALOIS,[130,47]],[504,-504*E(4),-504,504*E(4),504,-504*E(4),-504,504*E(4),
504,-504*E(4),-504,504*E(4),504*E(12)^7,504*E(3),-504*E(12)^7,-504*E(3),
504*E(12)^7,504*E(3),-504*E(12)^7,-504*E(3),504*E(12)^7,504*E(3),-504*E(12)^7,
-504*E(3),-504*E(3)^2,504*E(12)^11,504*E(3)^2,-504*E(12)^11,-504*E(3)^2,
504*E(12)^11,504*E(3)^2,-504*E(12)^11,-504*E(3)^2,504*E(12)^11,504*E(3)^2,
-504*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-36,36*E(4),36,-36*E(4),-36,
36*E(4),36,-36*E(4),-36,36*E(4),36,-36*E(4),-36*E(12)^7,-36*E(3),36*E(12)^7,
36*E(3),-36*E(12)^7,-36*E(3),36*E(12)^7,36*E(3),-36*E(12)^7,-36*E(3),
36*E(12)^7,36*E(3),36*E(3)^2,-36*E(12)^11,-36*E(3)^2,36*E(12)^11,36*E(3)^2,
-36*E(12)^11,-36*E(3)^2,36*E(12)^11,36*E(3)^2,-36*E(12)^11,-36*E(3)^2,
36*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(4),
-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(12)^7,4*E(3),-4*E(12)^7,
-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,
-4*E(3),-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,
4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,0,0,0,0,0,0,0,0
,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(12)^7,-E(3),E(12)^7,E(3)
,-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),E(3)^2,-E(12)^11,
-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,
E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,
2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2*E(12)^7,-2*E(3),
2*E(12)^7,2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,-2*E(3),
2*E(12)^7,2*E(3),2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,2*E(3)^2,
-2*E(12)^11,-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11],
[GALOIS,[138,5]],
[GALOIS,[138,7]],
[GALOIS,[138,11]],[504,-504*E(4),-504,504*E(4),504,-504*E(4),-504,504*E(4),
504,-504*E(4),-504,504*E(4),504*E(12)^7,504*E(3),-504*E(12)^7,-504*E(3),
504*E(12)^7,504*E(3),-504*E(12)^7,-504*E(3),504*E(12)^7,504*E(3),-504*E(12)^7,
-504*E(3),-504*E(3)^2,504*E(12)^11,504*E(3)^2,-504*E(12)^11,-504*E(3)^2,
504*E(12)^11,504*E(3)^2,-504*E(12)^11,-504*E(3)^2,504*E(12)^11,504*E(3)^2,
-504*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,-45*E(4),-45,45*E(4),45,
-45*E(4),-45,45*E(4),45,-45*E(4),-45,45*E(4),45*E(12)^7,45*E(3),-45*E(12)^7,
-45*E(3),45*E(12)^7,45*E(3),-45*E(12)^7,-45*E(3),45*E(12)^7,45*E(3),
-45*E(12)^7,-45*E(3),-45*E(3)^2,45*E(12)^11,45*E(3)^2,-45*E(12)^11,-45*E(3)^2,
45*E(12)^11,45*E(3)^2,-45*E(12)^11,-45*E(3)^2,45*E(12)^11,45*E(3)^2,
-45*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(4)
,-4,4*E(4),4,-4*E(4),-4,4*E(4),4,-4*E(4),-4,4*E(4),4*E(12)^7,4*E(3),-4*E(12)^7
,-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,-4*E(3),4*E(12)^7,4*E(3),-4*E(12)^7,
-4*E(3),-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,
4*E(3)^2,-4*E(12)^11,-4*E(3)^2,4*E(12)^11,4*E(3)^2,-4*E(12)^11,0,0,0,0,0,0,0,0
,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-E(12)^7,-E(3),E(12)^7,E(3)
,-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),E(3)^2,-E(12)^11,
-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,
E(12)^11,-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),
-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),
-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,
3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,
3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,
-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11
,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11],
[GALOIS,[142,5]],
[GALOIS,[142,7]],
[GALOIS,[142,11]],[540,-540*E(4),-540,540*E(4),540,-540*E(4),-540,540*E(4),
540,-540*E(4),-540,540*E(4),540*E(12)^7,540*E(3),-540*E(12)^7,-540*E(3),
540*E(12)^7,540*E(3),-540*E(12)^7,-540*E(3),540*E(12)^7,540*E(3),-540*E(12)^7,
-540*E(3),-540*E(3)^2,540*E(12)^11,540*E(3)^2,-540*E(12)^11,-540*E(3)^2,
540*E(12)^11,540*E(3)^2,-540*E(12)^11,-540*E(3)^2,540*E(12)^11,540*E(3)^2,
-540*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27,27*E(4),27,-27*E(4),-27,
27*E(4),27,-27*E(4),-27,27*E(4),27,-27*E(4),-27*E(12)^7,-27*E(3),27*E(12)^7,
27*E(3),-27*E(12)^7,-27*E(3),27*E(12)^7,27*E(3),-27*E(12)^7,-27*E(3),
27*E(12)^7,27*E(3),27*E(3)^2,-27*E(12)^11,-27*E(3)^2,27*E(12)^11,27*E(3)^2,
-27*E(12)^11,-27*E(3)^2,27*E(12)^11,27*E(3)^2,-27*E(12)^11,-27*E(3)^2,
27*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(4),
2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2*E(12)^7,-2*E(3),2*E(12)^7
,2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,
2*E(3),2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,
-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,
3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3*E(12)^7,-3*E(3),
3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),
3*E(12)^7,3*E(3),3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,
-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(4),
-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,
E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,
1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,-E(3),
E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11,
E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),
-1+E(4),1+E(4),1-E(4),E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1
,E(4),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),
-E(12)^7,-E(3),-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11],
[GALOIS,[146,5]],
[GALOIS,[146,7]],
[GALOIS,[146,11]],[756,-756*E(4),-756,756*E(4),756,-756*E(4),-756,756*E(4),
756,-756*E(4),-756,756*E(4),756*E(12)^7,756*E(3),-756*E(12)^7,-756*E(3),
756*E(12)^7,756*E(3),-756*E(12)^7,-756*E(3),756*E(12)^7,756*E(3),-756*E(12)^7,
-756*E(3),-756*E(3)^2,756*E(12)^11,756*E(3)^2,-756*E(12)^11,-756*E(3)^2,
756*E(12)^11,756*E(3)^2,-756*E(12)^11,-756*E(3)^2,756*E(12)^11,756*E(3)^2,
-756*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,-27*E(4),-27,27*E(4),27,
-27*E(4),-27,27*E(4),27,-27*E(4),-27,27*E(4),27*E(12)^7,27*E(3),-27*E(12)^7,
-27*E(3),27*E(12)^7,27*E(3),-27*E(12)^7,-27*E(3),27*E(12)^7,27*E(3),
-27*E(12)^7,-27*E(3),-27*E(3)^2,27*E(12)^11,27*E(3)^2,-27*E(12)^11,-27*E(3)^2,
27*E(12)^11,27*E(3)^2,-27*E(12)^11,-27*E(3)^2,27*E(12)^11,27*E(3)^2,
-27*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(4)
,-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2*E(12)^7,2*E(3),-2*E(12)^7
,-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,
-2*E(3),-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,
2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,0,0,0,0,0,0,0,0
,0,1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,-E(3)
,E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11,
E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),
3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),
3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,
-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,
-3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),
1+E(4),1-E(4),E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),1,
-E(4),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),
E(12)^7,E(3),E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,
E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11],
[GALOIS,[150,5]],
[GALOIS,[150,7]],
[GALOIS,[150,11]],[1260,-1260*E(4),-1260,1260*E(4),1260,-1260*E(4),-1260,
1260*E(4),1260,-1260*E(4),-1260,1260*E(4),1260*E(12)^7,1260*E(3),-1260*E(12)^7
,-1260*E(3),1260*E(12)^7,1260*E(3),-1260*E(12)^7,-1260*E(3),1260*E(12)^7,
1260*E(3),-1260*E(12)^7,-1260*E(3),-1260*E(3)^2,1260*E(12)^11,1260*E(3)^2,
-1260*E(12)^11,-1260*E(3)^2,1260*E(12)^11,1260*E(3)^2,-1260*E(12)^11,
-1260*E(3)^2,1260*E(12)^11,1260*E(3)^2,-1260*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-9,9*E(4),9,-9*E(4),-9,9*E(4),9,-9*E(4),-9,9*E(4),9,-9*E(4),
-9*E(12)^7,-9*E(3),9*E(12)^7,9*E(3),-9*E(12)^7,-9*E(3),9*E(12)^7,9*E(3),
-9*E(12)^7,-9*E(3),9*E(12)^7,9*E(3),9*E(3)^2,-9*E(12)^11,-9*E(3)^2,9*E(12)^11,
9*E(3)^2,-9*E(12)^11,-9*E(3)^2,9*E(12)^11,9*E(3)^2,-9*E(12)^11,-9*E(3)^2,
9*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(4),2
,-2*E(4),-2,2*E(4),2,-2*E(4),-2,2*E(4),2,-2*E(4),-2*E(12)^7,-2*E(3),2*E(12)^7,
2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,2*E(3),-2*E(12)^7,-2*E(3),2*E(12)^7,2*E(3)
,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,
2*E(12)^11,2*E(3)^2,-2*E(12)^11,-2*E(3)^2,2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(4),-3,
3*E(4),3,-3*E(4),-3,3*E(4),3,-3*E(4),-3,3*E(4),3*E(12)^7,3*E(3),-3*E(12)^7,
-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,-3*E(3),3*E(12)^7,3*E(3),-3*E(12)^7,
-3*E(3),-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,
3*E(3)^2,-3*E(12)^11,-3*E(3)^2,3*E(12)^11,3*E(3)^2,-3*E(12)^11,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+E(4),1-E(4),-1-E(4),-1+E(4),
1+E(4),1-E(4),-1-E(4),-1+E(4),1+E(4),1-E(4),-1-E(4),-1+E(4),-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^4+E(12)^7,
E(12)^4+E(12)^7,E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,-E(12)^8-E(12)^11,
-E(12)^8+E(12)^11,E(12)^8+E(12)^11,E(12)^8-E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(4),
-1,E(4),1,-E(4),-1,E(4),1,-E(4),-1,E(4),E(12)^7,E(3),-E(12)^7,-E(3),E(12)^7,
E(3),-E(12)^7,-E(3),E(12)^7,E(3),-E(12)^7,-E(3),-E(3)^2,E(12)^11,E(3)^2,
-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11,-E(3)^2,E(12)^11,E(3)^2,-E(12)^11]
,
[GALOIS,[154,5]],
[GALOIS,[154,7]],
[GALOIS,[154,11]],[15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,6,
6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3)
,6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),
6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)
,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[158,2]],[21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,
21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3)
,5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),
5*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),
6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2],
[GALOIS,[160,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,
9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[162,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),
-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,5*E(3),5*E(3)^2,5
,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,
5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3)
,5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[164,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,
9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,-12,-12*E(3),-12*E(3)^2,
-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),
12*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2],
[GALOIS,[166,2]],[210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,
210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,
210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,
210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,
210*E(3),210*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2
,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[168,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),
-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4*E(3),4*E(3)^2,4,
4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)
,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0],
[GALOIS,[170,2]],[336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),
16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,-6,
-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,
-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),
6*E(3)^2,6,6*E(3),6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0],
[GALOIS,[172,2]],[360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,
8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,-18,-18*E(3),-18*E(3)^2,
-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)
,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[174,2]],
[GALOIS,[174,10]],
[GALOIS,[174,5]],[384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,24*E(3),24*E(3)^2,
24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),
24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,
24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),
24*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,12,
12*E(3),12*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[178,2]],[420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,
4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,33,33*E(3),33*E(3)^2,33,
33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),
33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,
33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),
33*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,
-6*E(3),-6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[180,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,
6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3)
,9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[182,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,
9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
,
[GALOIS,[184,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,
27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,
-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),
-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,
-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,0,0,0,0,0,0,0,0,0,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2],
[GALOIS,[186,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,
-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,
-15*E(3),-15*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2],
[GALOIS,[188,2]],[15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,
6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)
,6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,0,0,0,0,0,0,
0,0,0,0,0,0,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2
,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2
,2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[190,2]],[21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,21,21*E(3),21*E(3)^2,21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3),21*E(3)^2,21,21*E(3),
21*E(3)^2,21,21*E(3),21*E(3)^2,21,21*E(3),21*E(3)^2,21,5,5*E(3),5*E(3)^2,5,
5*E(3),5*E(3)^2,5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3),5*E(3)^2,5,5*E(3),
5*E(3)^2,5,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3
,0,0,0,0,0,0,0,0,0,0,0,0,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6
,6*E(3),6*E(3)^2,6,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),
E(3)^2,1,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3)
,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[192,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105*E(3)^2,105,105*E(3),105*E(3)^2
,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3),
105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,105,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,
9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,15,15*E(3),15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15*E(3)^2,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,0,
0,0,0,0,0,0,0,0,0,0,0,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),
E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1
,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[194,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105*E(3)^2,105,105*E(3),105*E(3)^2
,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3),
105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,105,-7,-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7*E(3)^2,-7,-7*E(3),
-7*E(3)^2,-7,-7*E(3),-7*E(3),-7*E(3)^2,-7,-7*E(3),-7*E(3)^2,-7,15,15*E(3),
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,
15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,
15*E(3),15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3)
,15*E(3)^2,15,0,0,0,0,0,0,0,0,0,0,0,0,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,5,5*E(3),5*E(3)^2,5,5*E(3),
5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5*E(3)^2,5,5*E(3),5*E(3)^2,5,
5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5
,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2
,2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1],
[GALOIS,[196,2]],[105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,
105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105*E(3)^2,105,105*E(3),105*E(3)^2
,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3),
105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),105*E(3)^2,105,105*E(3),
105*E(3)^2,105,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,
9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12*E(3)^2
,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,
-12*E(3),-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,
-12,-12*E(3),-12*E(3)^2,-12,0,0,0,0,0,0,0,0,0,0,0,0,12*E(3),12*E(3)^2,12,
12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,12,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)
,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2],
[GALOIS,[198,2]],[210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,
210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210*E(3)^2,210,210*E(3),210*E(3)^2
,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3),
210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),210*E(3)^2,210,210*E(3),
210*E(3)^2,210,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,
2,2*E(3),2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,3,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3
,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0,15*E(3),15*E(3)^2
,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,15*E(3),15*E(3)^2,15,0,0,0,0,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),
-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[200,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3)^2,315,315*E(3),315*E(3)^2
,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),
315*E(3)^2,315,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5*E(3)^2,-5,-5*E(3),
-5*E(3)^2,-5,-5*E(3),-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-36,-36*E(3),
-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),
-36*E(3)^2,-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,
-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,
-36,-36*E(3),-36*E(3)^2,-36,-36*E(3),-36*E(3)^2,-36,0,0,0,0,0,0,0,0,0,0,0,0,
9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,0,0,0,
0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,-1,-E(3),
-E(3)^2,-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,
4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2
,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[202,2]],[336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,
336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336*E(3)^2,336,336*E(3),336*E(3)^2
,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3),
336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),336*E(3)^2,336,336*E(3),
336*E(3)^2,336,16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16*E(3)^2,16,16*E(3),
16*E(3)^2,16,16*E(3),16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16,-6,-6*E(3),
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,
-6*E(3),-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3)
,-6*E(3)^2,-6,0,0,0,0,0,0,0,0,0,0,0,0,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,
6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[204,2]],[360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,
360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360*E(3)^2,360,360*E(3),360*E(3)^2
,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3),
360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),360*E(3)^2,360,360*E(3),
360*E(3)^2,360,8,8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8*E(3)^2,8,8*E(3),8*E(3)^2,
8,8*E(3),8*E(3),8*E(3)^2,8,8*E(3),8*E(3)^2,8,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18*E(3)^2
,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,
-18*E(3),-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,-18,-18*E(3),-18*E(3)^2,
-18,-18*E(3),-18*E(3)^2,-18,0,0,0,0,0,0,0,0,0,0,0,0,-9*E(3),-9*E(3)^2,-9,
-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2
,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)
,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),2*E(3)^2
,2,2*E(3),2*E(3)^2,2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(21)^5+E(21)^17+E(21)^20
,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[206,2]],
[GALOIS,[206,10]],
[GALOIS,[206,5]],[384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,
384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384*E(3)^2,384,384*E(3),384*E(3)^2
,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3),
384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),384*E(3)^2,384,384*E(3),
384*E(3)^2,384,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,24*E(3),24*E(3)^2,24,
24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24*E(3)^2,24,
24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)
,24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,24*E(3),24*E(3)^2,24,0
,0,0,0,0,0,0,0,0,0,0,0,12*E(3),12*E(3)^2,12,12*E(3),12*E(3)^2,12,12*E(3),
12*E(3)^2,12,12*E(3),12*E(3)^2,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[210,2]],[420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,
420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420*E(3)^2,420,420*E(3),420*E(3)^2
,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3),
420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),420*E(3)^2,420,420*E(3),
420*E(3)^2,420,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3)^2,
4,4*E(3),4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,33,33*E(3),33*E(3)^2,33,33*E(3),
33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33*E(3)^2,33,33*E(3),
33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3),
33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,33*E(3),33*E(3)^2,33,0,
0,0,0,0,0,0,0,0,0,0,0,-6*E(3),-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,-6*E(3),
-6*E(3)^2,-6,-6*E(3),-6*E(3)^2,-6,0,0,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,
4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)
,4*E(3)^2,4,4*E(3),4*E(3)^2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,-2,-2*E(3),-2*E(3)^2,
-2,-2*E(3),-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,-E(3)+E(3)^2,
-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-E(3)-2*E(3)^2,2*E(3)+E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,
-2*E(3)-E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
E(3)+2*E(3)^2,-2*E(3)-E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1],
[GALOIS,[212,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630*E(3)^2,630,630*E(3),630*E(3)^2
,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3),
630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),
630*E(3)^2,630,6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6*E(3)^2,6,6*E(3),6*E(3)^2,
6,6*E(3),6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6,9,9*E(3),9*E(3)^2,9,9*E(3),
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,9,
9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9
,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,0,0,0,0,0,0,0,0,0,0,0,0,-9*E(3),-9*E(3)^2
,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,0,0,0,0,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3)^2
,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,-2,-2*E(3),
-2*E(3)^2,-2*E(3)^2,-2,-2*E(3),-2*E(3),-2*E(3)^2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2
,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1],
[GALOIS,[214,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729*E(3)^2,729,729*E(3),729*E(3)^2
,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3),
729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),
729*E(3)^2,729,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3)^2,9,9*E(3),9*E(3)^2,
9,9*E(3),9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,1,E(3),E(3)^2,E(3)^2,1,
E(3),E(3),E(3)^2,1,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)
,-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[216,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756*E(3)^2,756,756*E(3),756*E(3)^2
,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3),
756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),
756*E(3)^2,756,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12*E(3)^2,-12,
-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,
-12,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3)^2,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,
-4*E(3),-4*E(3)^2,-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,
-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3)
,-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,3,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3),3*E(3)^2,3
,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1],
[GALOIS,[218,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945*E(3)^2,945,945*E(3),945*E(3)^2
,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3),
945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),
945*E(3)^2,945,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15*E(3)^2,-15,
-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,
-15,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,
-27,-27*E(3),-27*E(3)^2,-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),
-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,
1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,1,E(3),E(3)^2,
E(3)^2,1,E(3),E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3),-3*E(3)^2,-3,-3*E(3),
-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2
,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1],
[GALOIS,[220,2]],[36,36*E(3),36*E(3)^2,36,36*E(3),36*E(3)^2,36,36*E(3),
36*E(3)^2,36,36*E(3),36*E(3)^2,36*E(3),36*E(3)^2,36,36*E(3),36*E(3)^2,36,
36*E(3),36*E(3)^2,36,36*E(3),36*E(3)^2,36,36*E(3)^2,36,36*E(3),36*E(3)^2,36,
36*E(3),36*E(3)^2,36,36*E(3),36*E(3)^2,36,36*E(3),4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),4*E(3)^2,4,
4*E(3),9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2
,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,
9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2
,4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2
,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3)],
[GALOIS,[222,2]],[45,45*E(3),45*E(3)^2,45,45*E(3),45*E(3)^2,45,45*E(3),
45*E(3)^2,45,45*E(3),45*E(3)^2,45*E(3),45*E(3)^2,45,45*E(3),45*E(3)^2,45,
45*E(3),45*E(3)^2,45,45*E(3),45*E(3)^2,45,45*E(3)^2,45,45*E(3),45*E(3)^2,45,
45*E(3),45*E(3)^2,45,45*E(3),45*E(3)^2,45,45*E(3),-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3),-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,
-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,
-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9
,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1
,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3)
,3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^10+E(21)^13+E(21)^19,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,E(21)^10+E(21)^13+E(21)^19,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,
E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,E(21)+E(21)^4+E(21)^16,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)
],
[GALOIS,[224,2]],
[GALOIS,[224,10]],
[GALOIS,[224,5]],[126,126*E(3),126*E(3)^2,126,126*E(3),126*E(3)^2,126,
126*E(3),126*E(3)^2,126,126*E(3),126*E(3)^2,126*E(3),126*E(3)^2,126,126*E(3),
126*E(3)^2,126,126*E(3),126*E(3)^2,126,126*E(3),126*E(3)^2,126,126*E(3)^2,126,
126*E(3),126*E(3)^2,126,126*E(3),126*E(3)^2,126,126*E(3),126*E(3)^2,126,
126*E(3),14,14*E(3),14*E(3)^2,14,14*E(3),14*E(3)^2,14*E(3),14*E(3)^2,14,
14*E(3),14*E(3)^2,14,14*E(3)^2,14,14*E(3),14*E(3)^2,14,14*E(3),-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,
-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),-9*E(3)^2,-9,-9*E(3),
-9*E(3)^2,-9,-9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2
,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2
,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2
,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,
1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2
,2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[228,2]],[189,189*E(3),189*E(3)^2,189,189*E(3),189*E(3)^2,189,
189*E(3),189*E(3)^2,189,189*E(3),189*E(3)^2,189*E(3),189*E(3)^2,189,189*E(3),
189*E(3)^2,189,189*E(3),189*E(3)^2,189,189*E(3),189*E(3)^2,189,189*E(3)^2,189,
189*E(3),189*E(3)^2,189,189*E(3),189*E(3)^2,189,189*E(3),189*E(3)^2,189,
189*E(3),-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),27,27*E(3),
27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,
27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27,27*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5
,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5*E(3),
5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3)^2,5,
5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),5*E(3)^2,5,5*E(3),1,E(3),E(3)^2,
E(3),E(3)^2,1,E(3)^2,1,E(3),-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)
,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[230,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3),315*E(3)^2,315,315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),11,11*E(3),11*E(3)^2,11,11*E(3),11*E(3)^2,11*E(3),11*E(3)^2,11,
11*E(3),11*E(3)^2,11,11*E(3)^2,11,11*E(3),11*E(3)^2,11,11*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,
18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-1,-E(3),-E(3)^2,-E(3),
-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2
,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3),2*E(3)^2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),
2*E(3)^2,2,2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3)],
[GALOIS,[232,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3),315*E(3)^2,315,315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5*E(3),-5*E(3)^2,-5,
-5*E(3),-5*E(3)^2,-5,-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,
18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3
,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),-1,-E(3),-E(3)^2,
-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2
,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),4,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4*E(3),
4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3),0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[234,2]],[315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315*E(3),315*E(3)^2,315,315*E(3),
315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3)^2,315,
315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,315*E(3),315*E(3)^2,315,
315*E(3),-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5*E(3),-5*E(3)^2,-5,
-5*E(3),-5*E(3)^2,-5,-5*E(3)^2,-5,-5*E(3),-5*E(3)^2,-5,-5*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,
18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3
,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),-1,-E(3),-E(3)^2,
-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2
,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),4,4*E(3),4*E(3)^2,4,4*E(3),
4*E(3)^2,4*E(3),4*E(3)^2,4,4*E(3),4*E(3)^2,4,4*E(3)^2,4,4*E(3),4*E(3)^2,4,
4*E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,
-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)
,-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[236,2]],[630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630*E(3),630*E(3)^2,630,630*E(3),
630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3)^2,630,
630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,630*E(3),630*E(3)^2,630,
630*E(3),6,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2,6*E(3),6*E(3)^2,6,6*E(3),6*E(3)^2
,6,6*E(3)^2,6,6*E(3),6*E(3)^2,6,6*E(3),-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),
-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45*E(3),-45*E(3)^2
,-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45,
-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),-45*E(3)^2,-45,-45*E(3),
-45*E(3)^2,-45,-45*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,
2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,
2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),2*E(3)^2,2,2*E(3),-2,
-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),3*E(3)^2,3,
3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3)],
[GALOIS,[238,2]],[720,720*E(3),720*E(3)^2,720,720*E(3),720*E(3)^2,720,
720*E(3),720*E(3)^2,720,720*E(3),720*E(3)^2,720*E(3),720*E(3)^2,720,720*E(3),
720*E(3)^2,720,720*E(3),720*E(3)^2,720,720*E(3),720*E(3)^2,720,720*E(3)^2,720,
720*E(3),720*E(3)^2,720,720*E(3),720*E(3)^2,720,720*E(3),720*E(3)^2,720,
720*E(3),16,16*E(3),16*E(3)^2,16,16*E(3),16*E(3)^2,16*E(3),16*E(3)^2,16,
16*E(3),16*E(3)^2,16,16*E(3)^2,16,16*E(3),16*E(3)^2,16,16*E(3),18,18*E(3),
18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,
18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),18*E(3)^2,18,18*E(3),
18*E(3)^2,18,18*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)
,-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,
-2*E(3),-2*E(3)^2,-2,-2*E(3),-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3)
,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2*E(3),-2*E(3)^2,-2,-2*E(3),
-2*E(3)^2,-2,-2*E(3)^2,-2,-2*E(3),-2*E(3)^2,-2,-2*E(3),-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0],
[GALOIS,[240,2]],[729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729*E(3),729*E(3)^2,729,729*E(3),
729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3)^2,729,
729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,729*E(3),729*E(3)^2,729,
729*E(3),9,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2,9*E(3),9*E(3)^2,9,9*E(3),9*E(3)^2
,9,9*E(3)^2,9,9*E(3),9*E(3)^2,9,9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,
-3,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3
,-3*E(3),-3*E(3)^2,-3,-3*E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,E(3)^2,1,E(3),-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2
,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),-1,-E(3)
,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[242,2]],[756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756*E(3),756*E(3)^2,756,756*E(3),
756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3)^2,756,
756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,756*E(3),756*E(3)^2,756,
756*E(3),-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12*E(3),-12*E(3)^2,
-12,-12*E(3),-12*E(3)^2,-12,-12*E(3)^2,-12,-12*E(3),-12*E(3)^2,-12,-12*E(3),27
,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),
27*E(3)^2,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,
27*E(3),27*E(3)^2,27,27*E(3)^2,27,27*E(3),27*E(3)^2,27,27*E(3),27*E(3)^2,27,
27*E(3),27*E(3)^2,27,27*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,
-4*E(3),-4*E(3)^2,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,
-4,-4*E(3),-4*E(3)^2,-4,-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4,-4*E(3),-4*E(3)^2,-4
,-4*E(3),-4*E(3)^2,-4,-4*E(3),0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3*E(3),3*E(3)^2
,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3)^2,3,3*E(3),
3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),3*E(3)^2,3,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-E(3),-E(3)^2,-1,-E(3),
-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,
-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3)^2,-1,-E(3),-E(3)^2,-1,-E(3),-E(3)^2,-1
,-E(3),-E(3)^2,-1,-E(3)],
[GALOIS,[244,2]],[945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945*E(3),945*E(3)^2,945,945*E(3),
945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3)^2,945,
945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,945*E(3),945*E(3)^2,945,
945*E(3),-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15*E(3),-15*E(3)^2,
-15,-15*E(3),-15*E(3)^2,-15,-15*E(3)^2,-15,-15*E(3),-15*E(3)^2,-15,-15*E(3),
-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),
-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,
-27*E(3),-27*E(3)^2,-27,-27*E(3),-27*E(3)^2,-27,-27*E(3),0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1
,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),1,E(3),E(3)^2,E(3),E(3)^2,1,
E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,
-3*E(3),-3*E(3)^2,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,
-3,-3*E(3),-3*E(3)^2,-3,-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3,-3*E(3),-3*E(3)^2,-3
,-3*E(3),-3*E(3)^2,-3,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,E(3),
E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3)
,E(3)^2,1,E(3),E(3)^2,1,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,E(3),E(3)^2,1,E(3),E(3)^2,1,
E(3),E(3)^2,1,E(3),E(3)^2,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),
E(3)^2,1,E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3),E(3)^2,1,E(3)],
[GALOIS,[246,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),-840*E(3),840,-840*E(3)^2,
840*E(3),-840,840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,
840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8*E(3),8,
-8*E(3)^2,8*E(3),-8,8*E(3)^2,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),-8,12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,
-12*E(3),-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,
12*E(3),-12,12*E(3)^2,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,
-12*E(3),12,-12*E(3)^2,12*E(3),-12,0,0,0,0,0,0,0,0,0,0,0,0,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,
4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),
4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0],
[GALOIS,[248,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),-840,
840*E(3)^2,-840*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8,8*E(3)^2,
-8*E(3),8,-8*E(3)^2,8*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,
-12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),
12,-12*E(3)^2,12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2
,4*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2
,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],
[GALOIS,[250,2]],[84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,-84*E(3),84,-84*E(3)^2,
84*E(3),-84,84*E(3)^2,-84*E(3),-84*E(3),84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,
-84*E(3),84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,84*E(3)^2,-84*E(3),84,-84*E(3)^2,
84*E(3),-84,84*E(3)^2,-84*E(3),84,-84*E(3)^2,84*E(3),-84,4,-4*E(3)^2,4*E(3),-4
,4*E(3)^2,-4*E(3),-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2
,-15*E(3),15,-15*E(3)^2,15*E(3),15*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,
15*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,-15*E(3)^2,15*E(3),-15,15*E(3)^2,
-15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,-15*E(3),15,0,0,0,0,0,0,0,0,0,0,0
,0,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),
-6,0,0,0,0,4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,
4*E(3)^2,-4*E(3),-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2
,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),
-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1],
[GALOIS,[252,2]],[384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),384,
-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),-384*E(3),384,-384*E(3)^2,
384*E(3),-384,384*E(3)^2,-384*E(3),384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,
384*E(3)^2,-384*E(3),384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),384,
-384*E(3)^2,384*E(3),-384,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,-24*E(3)^2,
24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),
-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),
-24,24*E(3)^2,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),
24,-24*E(3)^2,24*E(3),-24,0,0,0,0,0,0,0,0,0,0,0,0,12*E(3)^2,-12*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),
-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[254,2]],[84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,-84*E(3),84,-84*E(3)^2,
84*E(3),-84,84*E(3)^2,-84*E(3),-84,84*E(3)^2,-84*E(3),84,-84*E(3)^2,84*E(3),
-84,84*E(3)^2,-84*E(3),84,-84*E(3)^2,84*E(3),84,-84*E(3)^2,84*E(3),-84,
84*E(3)^2,-84*E(3),84,-84*E(3)^2,84*E(3),-84,84*E(3)^2,-84*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,15*E(3),-15,
15*E(3)^2,-15*E(3),15,-15*E(3)^2,15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,
-15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,-15*E(3),-15,15*E(3)^2,-15*E(3),
15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,15*E(3),6,-6*E(3)^2
,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3)
,-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
-4*E(3),4,-4*E(3)^2,4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2
,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3)],
[GALOIS,[256,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),-126*E(3),126,-126*E(3)^2,
126*E(3),-126,126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,
126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),10*E(3)
,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,-10*E(3)^2,10*E(3),-10,10*E(3)^2,
-10*E(3),10,18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3)
,-18,18*E(3)^2,-18*E(3),-18*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),
18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),
-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,0,0,0,0,0,0,0,0,0,0,0,0,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2],
[GALOIS,[258,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630*E(3),630,-630*E(3)^2,
630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,
630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),18*E(3)
,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,-18*E(3)^2,18*E(3),-18,18*E(3)^2,
-18*E(3),18,9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
9*E(3)^2,-9*E(3),-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,
9*E(3),-9,9*E(3)^2,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),-9,0,0,0,0,0,0,0,0,0,0,0,0,-9*E(3)^2,9*E(3),-9,9*E(3)^2,
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,0,0,0,0,2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),
3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),
3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1],
[GALOIS,[260,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630*E(3),630,-630*E(3)^2,
630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,
630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,9,
-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
0,0,0,0,0,0,0,0,0,0,0,0,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,
9*E(3),-9,9*E(3)^2,-9*E(3),9,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(4),2*E(12)^11,
-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,
-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,
2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1],
[GALOIS,[262,5]],
[GALOIS,[262,7]],
[GALOIS,[262,11]],[420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),420,
-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),-420*E(3),420,-420*E(3)^2,
420*E(3),-420,420*E(3)^2,-420*E(3),420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,
420*E(3)^2,-420*E(3),420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),420,
-420*E(3)^2,420*E(3),-420,-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),12*E(3)
,-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,-12*E(3)^2,12*E(3),-12,12*E(3)^2,
-12*E(3),12,-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,21*E(3),-21,21*E(3)^2,
-21*E(3),21,-21*E(3)^2,21*E(3),21*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,
21*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,-21*E(3)^2,21*E(3),-21,21*E(3)^2,
-21*E(3),21,-21*E(3)^2,21*E(3),-21,21*E(3)^2,-21*E(3),21,0,0,0,0,0,0,0,0,0,0,0
,0,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,
-12*E(3)^2,12*E(3),-12,0,0,0,0,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,
4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3),3,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1],
[GALOIS,[266,2]],[210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),210,
-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),-210*E(3),210,-210*E(3)^2,
210*E(3),-210,210*E(3)^2,-210*E(3),210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,
210*E(3)^2,-210*E(3),210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),210,
-210*E(3)^2,210*E(3),-210,-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6*E(3),-6,
6*E(3)^2,-6*E(3),6,-6*E(3)^2,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-24,
24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,
24*E(3),24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,
-24*E(3),24,-24*E(3)^2,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2
,24*E(3),-24,24*E(3)^2,-24*E(3),24,0,0,0,0,0,0,0,0,0,0,0,0,-3*E(3)^2,3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,0,0,0,0,6,-6*E(3)^2
,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3),6,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),
-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0],
[GALOIS,[268,2]],[336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),336,
-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),-336*E(3),336,-336*E(3)^2,
336*E(3),-336,336*E(3)^2,-336*E(3),336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,
336*E(3)^2,-336*E(3),336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),336,
-336*E(3)^2,336*E(3),-336,16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),
-16*E(3),16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,16*E(3)^2,-16*E(3),16,-16*E(3)^2,
16*E(3),-16,-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6
,6*E(3)^2,-6*E(3),6,0,0,0,0,0,0,0,0,0,0,0,0,6*E(3)^2,-6*E(3),6,-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[270,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),-840*E(3),840,-840*E(3)^2,
840*E(3),-840,840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,
840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8*E(3),8,
-8*E(3)^2,8*E(3),-8,8*E(3)^2,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),-8,-42,
42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2,
42*E(3),42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),-42,42*E(3)^2,
-42*E(3),42,-42*E(3)^2,-42*E(3)^2,42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2
,42*E(3),-42,42*E(3)^2,-42*E(3),42,0,0,0,0,0,0,0,0,0,0,0,0,-3*E(3)^2,3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[272,2]],[120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),120,
-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),-120*E(3),120,-120*E(3)^2,
120*E(3),-120,120*E(3)^2,-120*E(3),120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,
120*E(3)^2,-120*E(3),120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),120,
-120*E(3)^2,120*E(3),-120,-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),8*E(3),-8,
8*E(3)^2,-8*E(3),8,-8*E(3)^2,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),8,-6,
6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),
6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
0,0,0,0,0,0,0,0,0,0,0,0,15*E(3)^2,-15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2
,-15*E(3),15,-15*E(3)^2,15*E(3),-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2,2*E(3)^2,-2*E(3)
,2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2
,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[274,2]],[270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,
-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),-270*E(3),270,-270*E(3)^2,
270*E(3),-270,270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,
270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,
-270*E(3)^2,270*E(3),-270,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3),6,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,
-27*E(3),-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,
27*E(3),-27,27*E(3)^2,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,
-27*E(3),27,-27*E(3)^2,27*E(3),-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,
-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(7)^3-E(7)^5-E(7)^6,
E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,
-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,
E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,
-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1],
[GALOIS,[276,2]],
[GALOIS,[276,10]],
[GALOIS,[276,5]],[6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),
-6,6*E(3)^2,-6*E(3),-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2
,6*E(3),-6,6*E(3)^2,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),-6,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-3,3*E(3)^2,-3*E(3)
,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3*E(3),-3,3*E(3)^2,
-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,-3*E(3)^2,3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,0,0,0,0,0,0,0,0,0,0
,0,0,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,
3*E(3),-3,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,1,-E(3)^2
,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-E(3),1,-E(3)^2,E(3),-1,E(3)^2,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1],
[GALOIS,[280,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,
126*E(3)^2,-126*E(3),-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),10,
-10*E(3)^2,10*E(3),-10,10*E(3)^2,-10*E(3),-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2
,10*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),
-18,18*E(3)^2,-18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,
18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,
-18*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),9,-9*E(3)^2,9*E(3),-9,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2
,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3)],
[GALOIS,[282,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,
630*E(3)^2,-630*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),18,
-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2
,18*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2
,-9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
9*E(3)^2,-9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3)],
[GALOIS,[284,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,
630*E(3)^2,-630*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3)
,-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),9,-9*E(3)^2,9*E(3)
,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),-9,9*E(3)^2,
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9,-9*E(3)^2,
9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),-9,9*E(3)^2,
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3)
,2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3)
,2,-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,
2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,
2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),
-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,
2*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3)],
[GALOIS,[286,5]],
[GALOIS,[286,7]],
[GALOIS,[286,11]],[420,-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),420,
-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),-420,420*E(3)^2,-420*E(3),420,
-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),420,-420*E(3)^2,420*E(3),420,
-420*E(3)^2,420*E(3),-420,420*E(3)^2,-420*E(3),420,-420*E(3)^2,420*E(3),-420,
420*E(3)^2,-420*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),12,
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2
,12*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,21*E(3),-21,21*E(3)^2,-21*E(3),
21,-21*E(3)^2,21*E(3),21,-21*E(3)^2,21*E(3),-21,21*E(3)^2,-21*E(3),21,
-21*E(3)^2,21*E(3),-21,21*E(3)^2,-21*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2
,21*E(3),-21,21*E(3)^2,-21*E(3),21,-21*E(3)^2,21*E(3),12,-12*E(3)^2,12*E(3),
-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
-4*E(3),4,-4*E(3)^2,4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,
-4*E(3),4,-4*E(3)^2,4*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),
3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),
-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),
3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2
,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3)],
[GALOIS,[290,2]],[210,-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),210,
-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),-210,210*E(3)^2,-210*E(3),210,
-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),210,-210*E(3)^2,210*E(3),210,
-210*E(3)^2,210*E(3),-210,210*E(3)^2,-210*E(3),210,-210*E(3)^2,210*E(3),-210,
210*E(3)^2,-210*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3)
,-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-24,24*E(3)^2,
-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),24
,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2
,-24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),
24,-24*E(3)^2,24*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,
-3*E(3),3,-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-6*E(3)^2,6*E(3),
-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,-6*E(3)
,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),
-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[292,2]],[336,-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),336,
-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),-336,336*E(3)^2,-336*E(3),336,
-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),336,-336*E(3)^2,336*E(3),336,
-336*E(3)^2,336*E(3),-336,336*E(3)^2,-336*E(3),336,-336*E(3)^2,336*E(3),-336,
336*E(3)^2,-336*E(3),16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),-16,
16*E(3)^2,-16*E(3),16,-16*E(3)^2,16*E(3),16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,
-16*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,
6*E(3)^2,-6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,
6*E(3)^2,-6*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0],
[GALOIS,[294,2]],[120,-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),120,
-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),-120,120*E(3)^2,-120*E(3),120,
-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),120,-120*E(3)^2,120*E(3),120,
-120*E(3)^2,120*E(3),-120,120*E(3)^2,-120*E(3),120,-120*E(3)^2,120*E(3),-120,
120*E(3)^2,-120*E(3),-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),8,-8*E(3)^2,8*E(3)
,-8,8*E(3)^2,-8*E(3),-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),15,
-15*E(3)^2,15*E(3),-15,15*E(3)^2,-15*E(3),15,-15*E(3)^2,15*E(3),-15,15*E(3)^2,
-15*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),
-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0],
[GALOIS,[296,2]],[840,-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),-840,840*E(3)^2,-840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),840,
-840*E(3)^2,840*E(3),-840,840*E(3)^2,-840*E(3),840,-840*E(3)^2,840*E(3),-840,
840*E(3)^2,-840*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-8,8*E(3)^2,
-8*E(3),8,-8*E(3)^2,8*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-8*E(3),-42,
42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2,
42*E(3),42,-42*E(3)^2,42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),-42
,42*E(3)^2,-42*E(3),-42,42*E(3)^2,-42*E(3),42,-42*E(3)^2,42*E(3),-42,42*E(3)^2
,-42*E(3),42,-42*E(3)^2,42*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,
3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[298,2]],[6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),
-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3)
,6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,6*E(3),
-6,6*E(3)^2,-6*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-3,3*E(3)^2,-3*E(3)
,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),
-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3)
,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),
-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,
E(3)+2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,
-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3)],
[GALOIS,[300,2]],[384,-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),384,
-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),-384,384*E(3)^2,-384*E(3),384,
-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),384,-384*E(3)^2,384*E(3),384,
-384*E(3)^2,384*E(3),-384,384*E(3)^2,-384*E(3),384,-384*E(3)^2,384*E(3),-384,
384*E(3)^2,-384*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,-24*E(3)^2,24*E(3)
,-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),-24,
24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,
24*E(3),24,-24*E(3)^2,24*E(3),-24,24*E(3)^2,-24*E(3),24,-24*E(3)^2,24*E(3),-24
,24*E(3)^2,-24*E(3),12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,-12*E(3)^2
,12*E(3),-12,12*E(3)^2,-12*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),
1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
-1,E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
-1,E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,
E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,-2*E(3)-E(3)^2,
-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,E(3)+2*E(3)^2,-E(3)+E(3)^2,
-2*E(3)-E(3)^2,-E(3)-2*E(3)^2,E(3)-E(3)^2,2*E(3)+E(3)^2,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0],
[GALOIS,[302,2]],[270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,
-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),-270,270*E(3)^2,-270*E(3),270,
-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),270,
-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),-270,
270*E(3)^2,-270*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6,6*E(3)^2,
-6*E(3),6,-6*E(3)^2,6*E(3),6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,
-27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),
27,-27*E(3)^2,27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3)
,2,-2*E(3)^2,2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3
,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3)],
[GALOIS,[304,2]],
[GALOIS,[304,10]],
[GALOIS,[304,5]],[270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,
-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),-270*E(3)^2,270*E(3),-270,
270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,-270*E(3),270,
270*E(3),-270,270*E(3)^2,-270*E(3),270,-270*E(3)^2,270*E(3),-270,270*E(3)^2,
-270*E(3),270,-270*E(3)^2,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,27,
-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,
-27*E(3),-27*E(3)^2,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,
27*E(3)^2,-27*E(3),27,27*E(3),-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27
,27*E(3)^2,-27*E(3),27,-27*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(7)^3-E(7)^5-E(7)^6,
E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,
-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,
E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,
-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,
-E(21)-E(21)^4-E(21)^16,E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,
E(21)+E(21)^4+E(21)^16,-E(7)^3-E(7)^5-E(7)^6,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(21)-E(21)^4-E(21)^16,
E(7)^3+E(7)^5+E(7)^6,-E(21)^2-E(21)^8-E(21)^11,E(21)+E(21)^4+E(21)^16,
-E(7)^3-E(7)^5-E(7)^6,E(21)^2+E(21)^8+E(21)^11,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
E(21)^5+E(21)^17+E(21)^20,-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,
-E(21)^10-E(21)^13-E(21)^19,E(7)+E(7)^2+E(7)^4,-E(21)^5-E(21)^17-E(21)^20,
E(21)^10+E(21)^13+E(21)^19,-E(7)-E(7)^2-E(7)^4,E(21)^5+E(21)^17+E(21)^20,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1
,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[308,2]],
[GALOIS,[308,10]],
[GALOIS,[308,5]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),-126*E(3)^2,126*E(3),-126,
126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
126*E(3),-126,126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,
-126*E(3),126,-126*E(3)^2,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),
10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),-10,-10*E(3),10,-10*E(3)^2,10*E(3),
-10,10*E(3)^2,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),-9,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2
,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-4,4*E(3)^2,-4*E(3),
4,-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,-4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[312,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),-126*E(3)^2,126*E(3),-126,
126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
126*E(3),-126,126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,
-126*E(3),126,-126*E(3)^2,-10,10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),
10*E(3)^2,-10*E(3),10,-10*E(3)^2,10*E(3),-10,-10*E(3),10,-10*E(3)^2,10*E(3),
-10,10*E(3)^2,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,
-9*E(3)^2,9*E(3),-9,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2
,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,2,-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[314,2]],[630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),-630*E(3)^2,630*E(3),-630,
630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,-630*E(3),630,
630*E(3),-630,630*E(3)^2,-630*E(3),630,-630*E(3)^2,630*E(3),-630,630*E(3)^2,
-630*E(3),630,-630*E(3)^2,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),
18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,-18*E(3),18,-18*E(3)^2,18*E(3),
-18,18*E(3)^2,36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),36,-36*E(3)^2,
36*E(3),-36,36*E(3)^2,-36*E(3),-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),36,
-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),36,36*E(3),-36,36*E(3)^2,-36*E(3),36
,-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),36,-36*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),
2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2],
[GALOIS,[316,2]],[90,-90*E(3)^2,90*E(3),-90,90*E(3)^2,-90*E(3),90,-90*E(3)^2,
90*E(3),-90,90*E(3)^2,-90*E(3),-90*E(3)^2,90*E(3),-90,90*E(3)^2,-90*E(3),90,
-90*E(3)^2,90*E(3),-90,90*E(3)^2,-90*E(3),90,90*E(3),-90,90*E(3)^2,-90*E(3),90
,-90*E(3)^2,90*E(3),-90,90*E(3)^2,-90*E(3),90,-90*E(3)^2,2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2
,-18*E(3),18,-18*E(3)^2,18*E(3),18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,
18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,-18*E(3),18,-18*E(3)^2,18*E(3),
-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,
-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),6,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2,-2*E(3)^2,2*E(3),
-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,
-2*E(3),2,-2*E(3)^2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[318,2]],[720,-720*E(3)^2,720*E(3),-720,720*E(3)^2,-720*E(3),720,
-720*E(3)^2,720*E(3),-720,720*E(3)^2,-720*E(3),-720*E(3)^2,720*E(3),-720,
720*E(3)^2,-720*E(3),720,-720*E(3)^2,720*E(3),-720,720*E(3)^2,-720*E(3),720,
720*E(3),-720,720*E(3)^2,-720*E(3),720,-720*E(3)^2,720*E(3),-720,720*E(3)^2,
-720*E(3),720,-720*E(3)^2,16,-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),
-16*E(3)^2,16*E(3),-16,16*E(3)^2,-16*E(3),16,16*E(3),-16,16*E(3)^2,-16*E(3),16
,-16*E(3)^2,18,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,18*E(3)
,-18,18*E(3)^2,-18*E(3),-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),18,
-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),18,18*E(3),-18,18*E(3)^2,-18*E(3),18
,-18*E(3)^2,18*E(3),-18,18*E(3)^2,-18*E(3),18,-18*E(3)^2,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,2*E(3),-2
,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[320,2]],[504,-504*E(3)^2,504*E(3),-504,504*E(3)^2,-504*E(3),504,
-504*E(3)^2,504*E(3),-504,504*E(3)^2,-504*E(3),-504*E(3)^2,504*E(3),-504,
504*E(3)^2,-504*E(3),504,-504*E(3)^2,504*E(3),-504,504*E(3)^2,-504*E(3),504,
504*E(3),-504,504*E(3)^2,-504*E(3),504,-504*E(3)^2,504*E(3),-504,504*E(3)^2,
-504*E(3),504,-504*E(3)^2,-8,8*E(3)^2,-8*E(3),8,-8*E(3)^2,8*E(3),8*E(3)^2,
-8*E(3),8,-8*E(3)^2,8*E(3),-8,-8*E(3),8,-8*E(3)^2,8*E(3),-8,8*E(3)^2,-36,
36*E(3)^2,-36*E(3),36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),36,-36*E(3)^2,
36*E(3),36*E(3)^2,-36*E(3),36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),36,
-36*E(3)^2,36*E(3),-36,-36*E(3),36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,-36*E(3),
36,-36*E(3)^2,36*E(3),-36,36*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,4*E(3),-4,
4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,
-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[322,2]],[1260,-1260*E(3)^2,1260*E(3),-1260,1260*E(3)^2,-1260*E(3),
1260,-1260*E(3)^2,1260*E(3),-1260,1260*E(3)^2,-1260*E(3),-1260*E(3)^2,
1260*E(3),-1260,1260*E(3)^2,-1260*E(3),1260,-1260*E(3)^2,1260*E(3),-1260,
1260*E(3)^2,-1260*E(3),1260,1260*E(3),-1260,1260*E(3)^2,-1260*E(3),1260,
-1260*E(3)^2,1260*E(3),-1260,1260*E(3)^2,-1260*E(3),1260,-1260*E(3)^2,-4,
4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,
-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),
-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),4*E(3)^2,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,-4*E(3),4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2
,4*E(3),-4,4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3)
,1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,2,-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,
2*E(3)^2,-2*E(3),2,-2*E(3)^2,2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),-2*E(3)^2,
2*E(3),-2,2*E(3)^2,-2*E(3),2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2],
[GALOIS,[324,2]],[540,-540*E(3)^2,540*E(3),-540,540*E(3)^2,-540*E(3),540,
-540*E(3)^2,540*E(3),-540,540*E(3)^2,-540*E(3),-540*E(3)^2,540*E(3),-540,
540*E(3)^2,-540*E(3),540,-540*E(3)^2,540*E(3),-540,540*E(3)^2,-540*E(3),540,
540*E(3),-540,540*E(3)^2,-540*E(3),540,-540*E(3)^2,540*E(3),-540,540*E(3)^2,
-540*E(3),540,-540*E(3)^2,12,-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),
-12*E(3)^2,12*E(3),-12,12*E(3)^2,-12*E(3),12,12*E(3),-12,12*E(3)^2,-12*E(3),12
,-12*E(3)^2,-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,
-27*E(3),27,-27*E(3)^2,27*E(3),27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,
27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,-27*E(3),27,-27*E(3)^2,27*E(3),
-27,27*E(3)^2,-27*E(3),27,-27*E(3)^2,27*E(3),-27,27*E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,
-4*E(3)^2,4*E(3),-4,4*E(3)^2,-4*E(3),4,4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,
4*E(3),-4,4*E(3)^2,-4*E(3),4,-4*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,-3*E(3),3,-3*E(3)^2
,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,
-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
-E(3)^2],
[GALOIS,[326,2]],[126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),-126*E(3)^2,126*E(3),-126,
126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,-126*E(3),126,
126*E(3),-126,126*E(3)^2,-126*E(3),126,-126*E(3)^2,126*E(3),-126,126*E(3)^2,
-126*E(3),126,-126*E(3)^2,6,-6*E(3)^2,6*E(3),-6,6*E(3)^2,-6*E(3),-6*E(3)^2,
6*E(3),-6,6*E(3)^2,-6*E(3),6,6*E(3),-6,6*E(3)^2,-6*E(3),6,-6*E(3)^2,-9,
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),
9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,
-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,-9*E(3),9,-9*E(3)^2,9*E(3),-9,9*E(3)^2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),2*E(3)^2,-2*E(3),2,
-2*E(3)^2,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,-2*E(3),2,-2*E(3)^2
,2*E(3),-2,2*E(3)^2,-2*E(3),2,-2*E(3)^2,2*E(3),-2,2*E(3)^2,0,0,0,0,0,0,0,0,0,1
,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),-E(3)^2,E(3),-1,
E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,3,-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,
-3*E(3)^2,3*E(3),-3,3*E(3)^2,-3*E(3),3,3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,
3*E(3),-3,3*E(3)^2,-3*E(3),3,-3*E(3)^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,
2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,
2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,-2*E(4),2*E(12)^11,
-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,-2*E(4),-2*E(12)^7,2*E(4),-2*E(12)^11,
2*E(12)^7,-2*E(4),2*E(12)^11,-2*E(12)^7,2*E(4),-2*E(12)^11,2*E(12)^7,-2*E(4),
2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,
E(3)^2,-E(3),-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,
E(3),-1,E(3)^2,-E(3),1,-E(3)^2,E(3),-1,E(3)^2,-E(3),1,-E(3)^2],
[GALOIS,[328,5]],
[GALOIS,[328,7]],
[GALOIS,[328,11]],[120,-120*E(12)^7,-120*E(3)^2,120*E(4),120*E(3),
-120*E(12)^11,-120,120*E(12)^7,120*E(3)^2,-120*E(4),-120*E(3),120*E(12)^11,
120*E(12)^11,120,-120*E(12)^7,-120*E(3)^2,120*E(4),120*E(3),-120*E(12)^11,-120
,120*E(12)^7,120*E(3)^2,-120*E(4),-120*E(3),-120*E(3),120*E(12)^11,120,
-120*E(12)^7,-120*E(3)^2,120*E(4),120*E(3),-120*E(12)^11,-120,120*E(12)^7,
120*E(3)^2,-120*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21,-21*E(12)^7,
-21*E(3)^2,21*E(4),21*E(3),-21*E(12)^11,-21,21*E(12)^7,21*E(3)^2,-21*E(4),
-21*E(3),21*E(12)^11,21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,21*E(4),21*E(3),
-21*E(12)^11,-21,21*E(12)^7,21*E(3)^2,-21*E(4),-21*E(3),-21*E(3),21*E(12)^11,
21,-21*E(12)^7,-21*E(3)^2,21*E(4),21*E(3),-21*E(12)^11,-21,21*E(12)^7,
21*E(3)^2,-21*E(4),0,0,0,0,0,0,0,0,0,0,0,0,6*E(3),6*E(12)^11,-6,-6*E(12)^7,
6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),0,0,0,0,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),
-4*E(3),4*E(12)^11,4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11
,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),-4*E(3),4*E(12)^11,4,-4*E(12)^7,
-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4)
,3*E(3),-3*E(12)^11,-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,
-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2
,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,
-E(4),-E(3),E(12)^11,E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
E(12)^7,E(3)^2,-E(4),-E(3),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,-E(4)],
[GALOIS,[332,5]],
[GALOIS,[332,7]],
[GALOIS,[332,11]],[120,-120*E(12)^7,-120*E(3)^2,120*E(4),120*E(3),
-120*E(12)^11,-120,120*E(12)^7,120*E(3)^2,-120*E(4),-120*E(3),120*E(12)^11,
120*E(4),120*E(3),-120*E(12)^11,-120,120*E(12)^7,120*E(3)^2,-120*E(4),
-120*E(3),120*E(12)^11,120,-120*E(12)^7,-120*E(3)^2,-120,120*E(12)^7,
120*E(3)^2,-120*E(4),-120*E(3),120*E(12)^11,120,-120*E(12)^7,-120*E(3)^2,
120*E(4),120*E(3),-120*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21,
-21*E(12)^7,-21*E(3)^2,21*E(4),21*E(3),-21*E(12)^11,-21,21*E(12)^7,21*E(3)^2,
-21*E(4),-21*E(3),21*E(12)^11,21*E(4),21*E(3),-21*E(12)^11,-21,21*E(12)^7,
21*E(3)^2,-21*E(4),-21*E(3),21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,-21,
21*E(12)^7,21*E(3)^2,-21*E(4),-21*E(3),21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,
21*E(4),21*E(3),-21*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),6*E(3),6*E(12)^11,
-6,-6*E(12)^7,6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,
-4*E(4),-4*E(3),4*E(12)^11,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,
-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,-4,4*E(12)^7,4*E(3)^2,
-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7
,-E(3)^2,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3)
,E(12)^11,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11
,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,
2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,
-E(4),-E(3),E(12)^11,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11],
[GALOIS,[336,5]],
[GALOIS,[336,7]],
[GALOIS,[336,11]],[840,-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),
-840*E(12)^11,-840,840*E(12)^7,840*E(3)^2,-840*E(4),-840*E(3),840*E(12)^11,
840*E(12)^11,840,-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),-840*E(12)^11,-840
,840*E(12)^7,840*E(3)^2,-840*E(4),-840*E(3),-840*E(3),840*E(12)^11,840,
-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),-840*E(12)^11,-840,840*E(12)^7,
840*E(3)^2,-840*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-15,15*E(12)^7,
15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,15,-15*E(12)^7,-15*E(3)^2,15*E(4),
15*E(3),-15*E(12)^11,-15*E(12)^11,-15,15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),
15*E(12)^11,15,-15*E(12)^7,-15*E(3)^2,15*E(4),15*E(3),15*E(3),-15*E(12)^11,-15
,15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,15,-15*E(12)^7,-15*E(3)^2,
15*E(4),0,0,0,0,0,0,0,0,0,0,0,0,-12*E(3),-12*E(12)^11,12,12*E(12)^7,-12*E(3)^2
,-12*E(4),12*E(3),12*E(12)^11,-12,-12*E(12)^7,12*E(3)^2,12*E(4),0,0,0,0,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),
4*E(3),-4*E(12)^11,-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),
4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),4*E(3),-4*E(12)^11,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),
-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4)],
[GALOIS,[340,5]],
[GALOIS,[340,7]],
[GALOIS,[340,11]],[840,-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),
-840*E(12)^11,-840,840*E(12)^7,840*E(3)^2,-840*E(4),-840*E(3),840*E(12)^11,
840*E(4),840*E(3),-840*E(12)^11,-840,840*E(12)^7,840*E(3)^2,-840*E(4),
-840*E(3),840*E(12)^11,840,-840*E(12)^7,-840*E(3)^2,-840,840*E(12)^7,
840*E(3)^2,-840*E(4),-840*E(3),840*E(12)^11,840,-840*E(12)^7,-840*E(3)^2,
840*E(4),840*E(3),-840*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-15,
15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,15,-15*E(12)^7,-15*E(3)^2,
15*E(4),15*E(3),-15*E(12)^11,-15*E(4),-15*E(3),15*E(12)^11,15,-15*E(12)^7,
-15*E(3)^2,15*E(4),15*E(3),-15*E(12)^11,-15,15*E(12)^7,15*E(3)^2,15,
-15*E(12)^7,-15*E(3)^2,15*E(4),15*E(3),-15*E(12)^11,-15,15*E(12)^7,15*E(3)^2,
-15*E(4),-15*E(3),15*E(12)^11,-12,-12*E(12)^7,12*E(3)^2,12*E(4),-12*E(3),
-12*E(12)^11,12,12*E(12)^7,-12*E(3)^2,-12*E(4),12*E(3),12*E(12)^11,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4*E(4),-4*E(3),4*E(12)^11,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),
-4*E(3),4*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,
3*E(3)^2,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,
3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,
-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2
,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2
,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11],
[GALOIS,[344,5]],
[GALOIS,[344,7]],
[GALOIS,[344,11]],[504,-504*E(12)^7,-504*E(3)^2,504*E(4),504*E(3),
-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,
504*E(12)^11,504,-504*E(12)^7,-504*E(3)^2,504*E(4),504*E(3),-504*E(12)^11,-504
,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),-504*E(3),504*E(12)^11,504,
-504*E(12)^7,-504*E(3)^2,504*E(4),504*E(3),-504*E(12)^11,-504,504*E(12)^7,
504*E(3)^2,-504*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,9*E(12)^7,9*E(3)^2
,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),9*E(3),-9*E(12)^11,
-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,
-9*E(3)^2,9*E(4),9*E(3),9*E(3),-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,-9*E(4),
-9*E(3),9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),0,0,0,0,0,0,0,0,0,0,0,0,
-18*E(3),-18*E(12)^11,18,18*E(12)^7,-18*E(3)^2,-18*E(4),18*E(3),18*E(12)^11,
-18,-18*E(12)^7,18*E(3)^2,18*E(4),0,0,0,0,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3)
,-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4*E(12)^11,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),
-4*E(3),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4
,4*E(12)^7,4*E(3)^2,-4*E(4),0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,
-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),3,-3*E(12)^7,-3*E(3)^2,
3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,
3*E(3)^2,-3*E(4),-3*E(3),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),
3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4)],
[GALOIS,[348,5]],
[GALOIS,[348,7]],
[GALOIS,[348,11]],[216,-216*E(12)^7,-216*E(3)^2,216*E(4),216*E(3),
-216*E(12)^11,-216,216*E(12)^7,216*E(3)^2,-216*E(4),-216*E(3),216*E(12)^11,
216*E(12)^11,216,-216*E(12)^7,-216*E(3)^2,216*E(4),216*E(3),-216*E(12)^11,-216
,216*E(12)^7,216*E(3)^2,-216*E(4),-216*E(3),-216*E(3),216*E(12)^11,216,
-216*E(12)^7,-216*E(3)^2,216*E(4),216*E(3),-216*E(12)^11,-216,216*E(12)^7,
216*E(3)^2,-216*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27,27*E(12)^7,
27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),
27*E(3),-27*E(12)^11,-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),
27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),27*E(3),-27*E(12)^11,-27
,27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,
27*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(12)^7,
-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),
4*E(12)^11,4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,
4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),0,0,0,0,0,0,0,0,0,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4)
,3*E(3),-3*E(12)^11,-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),
-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
E(12)^7,E(3)^2,-E(4)],
[GALOIS,[352,5]],
[GALOIS,[352,7]],
[GALOIS,[352,11]],[504,-504*E(12)^7,-504*E(3)^2,504*E(4),504*E(3),
-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,
504*E(4),504*E(3),-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),
-504*E(3),504*E(12)^11,504,-504*E(12)^7,-504*E(3)^2,-504,504*E(12)^7,
504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,504,-504*E(12)^7,-504*E(3)^2,
504*E(4),504*E(3),-504*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,
9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),
9*E(3),-9*E(12)^11,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),
9*E(3),-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,9,-9*E(12)^7,-9*E(3)^2,9*E(4),9*E(3),
-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,-18,-18*E(12)^7,
18*E(3)^2,18*E(4),-18*E(3),-18*E(12)^11,18,18*E(12)^7,-18*E(3)^2,-18*E(4),
18*E(3),18*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4*E(12)^7,-4*E(3)^2,
4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,
4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,
-4*E(12)^7,-4*E(3)^2,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,0,0,0,0,0,0,0,0,0,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3)
,E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),
-3*E(3),3*E(12)^11,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),
-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,-3,3*E(12)^7,3*E(3)^2,-3*E(4),
-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,-1,E(12)^7
,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11],
[GALOIS,[356,5]],
[GALOIS,[356,7]],
[GALOIS,[356,11]],[216,-216*E(12)^7,-216*E(3)^2,216*E(4),216*E(3),
-216*E(12)^11,-216,216*E(12)^7,216*E(3)^2,-216*E(4),-216*E(3),216*E(12)^11,
216*E(4),216*E(3),-216*E(12)^11,-216,216*E(12)^7,216*E(3)^2,-216*E(4),
-216*E(3),216*E(12)^11,216,-216*E(12)^7,-216*E(3)^2,-216,216*E(12)^7,
216*E(3)^2,-216*E(4),-216*E(3),216*E(12)^11,216,-216*E(12)^7,-216*E(3)^2,
216*E(4),216*E(3),-216*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27,
27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,
27*E(4),27*E(3),-27*E(12)^11,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,
-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,27,
-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,
-27*E(4),-27*E(3),27*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2
,-4*E(4),-4*E(3),4*E(12)^11,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,
-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,-4,4*E(12)^7,4*E(3)^2,
-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,0,
0,0,0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4)
,-E(3),E(12)^11,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(4),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),
-3*E(3),3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),
E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),
E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11],
[GALOIS,[360,5]],
[GALOIS,[360,7]],
[GALOIS,[360,11]],[216,-216*E(12)^7,-216*E(3)^2,216*E(4),216*E(3),
-216*E(12)^11,-216,216*E(12)^7,216*E(3)^2,-216*E(4),-216*E(3),216*E(12)^11,
216*E(12)^7,216*E(3)^2,-216*E(4),-216*E(3),216*E(12)^11,216,-216*E(12)^7,
-216*E(3)^2,216*E(4),216*E(3),-216*E(12)^11,-216,-216*E(3)^2,216*E(4),216*E(3)
,-216*E(12)^11,-216,216*E(12)^7,216*E(3)^2,-216*E(4),-216*E(3),216*E(12)^11,
216,-216*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27,27*E(12)^7,27*E(3)^2,
-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),
-27*E(12)^11,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,
27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,27*E(3)^2,-27*E(4),
-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,
-27,27*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),
-4*E(3),4*E(12)^11,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,
-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,0,0,0,0,0,0,0,0,0,1
,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4)
,3*E(3),-3*E(12)^11,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,E(3)^2,
-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,-1,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),
E(3),-E(12)^11,-1,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7],
[GALOIS,[364,5]],
[GALOIS,[364,7]],
[GALOIS,[364,11]],[84,-84*E(12)^7,-84*E(3)^2,84*E(4),84*E(3),-84*E(12)^11,-84
,84*E(12)^7,84*E(3)^2,-84*E(4),-84*E(3),84*E(12)^11,84*E(4),84*E(3),
-84*E(12)^11,-84,84*E(12)^7,84*E(3)^2,-84*E(4),-84*E(3),84*E(12)^11,84,
-84*E(12)^7,-84*E(3)^2,-84,84*E(12)^7,84*E(3)^2,-84*E(4),-84*E(3),84*E(12)^11,
84,-84*E(12)^7,-84*E(3)^2,84*E(4),84*E(3),-84*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,-15,15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,15,
-15*E(12)^7,-15*E(3)^2,15*E(4),15*E(3),-15*E(12)^11,-15*E(4),-15*E(3),
15*E(12)^11,15,-15*E(12)^7,-15*E(3)^2,15*E(4),15*E(3),-15*E(12)^11,-15,
15*E(12)^7,15*E(3)^2,15,-15*E(12)^7,-15*E(3)^2,15*E(4),15*E(3),-15*E(12)^11,
-15,15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,6,6*E(12)^7,-6*E(3)^2,
-6*E(4),6*E(3),6*E(12)^11,-6,-6*E(12)^7,6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11
,-2,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2*E(4),2*E(3),-2*E(12)^11,-2
,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),
2*E(3),-2*E(12)^11,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,
3*E(3)^2,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,
3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,
E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7
,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(4),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11],
[GALOIS,[368,5]],
[GALOIS,[368,7]],
[GALOIS,[368,11]],[420,-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),
-420*E(12)^11,-420,420*E(12)^7,420*E(3)^2,-420*E(4),-420*E(3),420*E(12)^11,
420*E(12)^11,420,-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),-420*E(12)^11,-420
,420*E(12)^7,420*E(3)^2,-420*E(4),-420*E(3),-420*E(3),420*E(12)^11,420,
-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),-420*E(12)^11,-420,420*E(12)^7,
420*E(3)^2,-420*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,33,-33*E(12)^7,
-33*E(3)^2,33*E(4),33*E(3),-33*E(12)^11,-33,33*E(12)^7,33*E(3)^2,-33*E(4),
-33*E(3),33*E(12)^11,33*E(12)^11,33,-33*E(12)^7,-33*E(3)^2,33*E(4),33*E(3),
-33*E(12)^11,-33,33*E(12)^7,33*E(3)^2,-33*E(4),-33*E(3),-33*E(3),33*E(12)^11,
33,-33*E(12)^7,-33*E(3)^2,33*E(4),33*E(3),-33*E(12)^11,-33,33*E(12)^7,
33*E(3)^2,-33*E(4),0,0,0,0,0,0,0,0,0,0,0,0,-6*E(3),-6*E(12)^11,6,6*E(12)^7,
-6*E(3)^2,-6*E(4),6*E(3),6*E(12)^11,-6,-6*E(12)^7,6*E(3)^2,6*E(4),0,0,0,0,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),
-2*E(3),2*E(12)^11,2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11
,-2,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),-2*E(3),2*E(12)^11,2,-2*E(12)^7,
-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4)
,3*E(3),-3*E(12)^11,-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,
E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,
E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,
-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4)],
[GALOIS,[372,5]],
[GALOIS,[372,7]],
[GALOIS,[372,11]],[420,-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),
-420*E(12)^11,-420,420*E(12)^7,420*E(3)^2,-420*E(4),-420*E(3),420*E(12)^11,
420*E(4),420*E(3),-420*E(12)^11,-420,420*E(12)^7,420*E(3)^2,-420*E(4),
-420*E(3),420*E(12)^11,420,-420*E(12)^7,-420*E(3)^2,-420,420*E(12)^7,
420*E(3)^2,-420*E(4),-420*E(3),420*E(12)^11,420,-420*E(12)^7,-420*E(3)^2,
420*E(4),420*E(3),-420*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-21,
21*E(12)^7,21*E(3)^2,-21*E(4),-21*E(3),21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,
21*E(4),21*E(3),-21*E(12)^11,-21*E(4),-21*E(3),21*E(12)^11,21,-21*E(12)^7,
-21*E(3)^2,21*E(4),21*E(3),-21*E(12)^11,-21,21*E(12)^7,21*E(3)^2,21,
-21*E(12)^7,-21*E(3)^2,21*E(4),21*E(3),-21*E(12)^11,-21,21*E(12)^7,21*E(3)^2,
-21*E(4),-21*E(3),21*E(12)^11,12,12*E(12)^7,-12*E(3)^2,-12*E(4),12*E(3),
12*E(12)^11,-12,-12*E(12)^7,12*E(3)^2,12*E(4),-12*E(3),-12*E(12)^11,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2*E(4),2*E(3),-2*E(12)^11,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),
2*E(3),-2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),
-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3*E(4),3*E(3),
-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,
1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,
-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2
,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3)
,E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11],
[GALOIS,[376,5]],
[GALOIS,[376,7]],
[GALOIS,[376,11]],[756,-756*E(12)^7,-756*E(3)^2,756*E(4),756*E(3),
-756*E(12)^11,-756,756*E(12)^7,756*E(3)^2,-756*E(4),-756*E(3),756*E(12)^11,
756*E(12)^7,756*E(3)^2,-756*E(4),-756*E(3),756*E(12)^11,756,-756*E(12)^7,
-756*E(3)^2,756*E(4),756*E(3),-756*E(12)^11,-756,-756*E(3)^2,756*E(4),756*E(3)
,-756*E(12)^11,-756,756*E(12)^7,756*E(3)^2,-756*E(4),-756*E(3),756*E(12)^11,
756,-756*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,-27*E(12)^7,-27*E(3)^2
,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),
27*E(12)^11,27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,
-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,-27*E(3)^2,27*E(4),27*E(3),
-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,
-27*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),
-2*E(3),2*E(12)^11,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,
-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,0,0,0,0,0,0,0,0,0,1
,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4)
,-3*E(3),3*E(12)^11,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7
,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3
,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-E(4),-E(12)^4+E(12)^7,
E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1
,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7]
,
[GALOIS,[380,5]],
[GALOIS,[380,7]],
[GALOIS,[380,11]],[756,-756*E(12)^7,-756*E(3)^2,756*E(4),756*E(3),
-756*E(12)^11,-756,756*E(12)^7,756*E(3)^2,-756*E(4),-756*E(3),756*E(12)^11,
756*E(12)^11,756,-756*E(12)^7,-756*E(3)^2,756*E(4),756*E(3),-756*E(12)^11,-756
,756*E(12)^7,756*E(3)^2,-756*E(4),-756*E(3),-756*E(3),756*E(12)^11,756,
-756*E(12)^7,-756*E(3)^2,756*E(4),756*E(3),-756*E(12)^11,-756,756*E(12)^7,
756*E(3)^2,-756*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,-27*E(12)^7,
-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,-27*E(4),
-27*E(3),27*E(12)^11,27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),
-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),-27*E(3),27*E(12)^11,
27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,
27*E(3)^2,-27*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),
-2*E(3),2*E(12)^11,2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11
,-2,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),-2*E(3),2*E(12)^11,2,-2*E(12)^7,
-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),0,0,0,0,0,0,
0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,
-E(4),-E(3),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,
3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),
3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-E(4),
-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,
1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,
-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^4+E(12)^7,E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4)],
[GALOIS,[384,5]],
[GALOIS,[384,7]],
[GALOIS,[384,11]],[84,-84*E(12)^7,-84*E(3)^2,84*E(4),84*E(3),-84*E(12)^11,-84
,84*E(12)^7,84*E(3)^2,-84*E(4),-84*E(3),84*E(12)^11,84*E(12)^11,84,-84*E(12)^7
,-84*E(3)^2,84*E(4),84*E(3),-84*E(12)^11,-84,84*E(12)^7,84*E(3)^2,-84*E(4),
-84*E(3),-84*E(3),84*E(12)^11,84,-84*E(12)^7,-84*E(3)^2,84*E(4),84*E(3),
-84*E(12)^11,-84,84*E(12)^7,84*E(3)^2,-84*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-15,15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,15,-15*E(12)^7,
-15*E(3)^2,15*E(4),15*E(3),-15*E(12)^11,-15*E(12)^11,-15,15*E(12)^7,15*E(3)^2,
-15*E(4),-15*E(3),15*E(12)^11,15,-15*E(12)^7,-15*E(3)^2,15*E(4),15*E(3),
15*E(3),-15*E(12)^11,-15,15*E(12)^7,15*E(3)^2,-15*E(4),-15*E(3),15*E(12)^11,15
,-15*E(12)^7,-15*E(3)^2,15*E(4),0,0,0,0,0,0,0,0,0,0,0,0,6*E(3),6*E(12)^11,-6,
-6*E(12)^7,6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),0
,0,0,0,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),
-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),-2*E(3),2*E(12)^11,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),0
,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),
3*E(3),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,
E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1+E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4)],
[GALOIS,[388,5]],
[GALOIS,[388,7]],
[GALOIS,[388,11]],[840,-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),
-840*E(12)^11,-840,840*E(12)^7,840*E(3)^2,-840*E(4),-840*E(3),840*E(12)^11,
840*E(12)^11,840,-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),-840*E(12)^11,-840
,840*E(12)^7,840*E(3)^2,-840*E(4),-840*E(3),-840*E(3),840*E(12)^11,840,
-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),-840*E(12)^11,-840,840*E(12)^7,
840*E(3)^2,-840*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,-12*E(12)^7,
-12*E(3)^2,12*E(4),12*E(3),-12*E(12)^11,-12,12*E(12)^7,12*E(3)^2,-12*E(4),
-12*E(3),12*E(12)^11,12*E(12)^11,12,-12*E(12)^7,-12*E(3)^2,12*E(4),12*E(3),
-12*E(12)^11,-12,12*E(12)^7,12*E(3)^2,-12*E(4),-12*E(3),-12*E(3),12*E(12)^11,
12,-12*E(12)^7,-12*E(3)^2,12*E(4),12*E(3),-12*E(12)^11,-12,12*E(12)^7,
12*E(3)^2,-12*E(4),0,0,0,0,0,0,0,0,0,0,0,0,6*E(3),6*E(12)^11,-6,-6*E(12)^7,
6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),0,0,0,0,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),
4*E(3),-4*E(12)^11,-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),
4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),4*E(3),-4*E(12)^11,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7
,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),
2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),-2*E(3),2*E(12)^11,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4)],
[GALOIS,[392,5]],
[GALOIS,[392,7]],
[GALOIS,[392,11]],[384,-384*E(12)^7,-384*E(3)^2,384*E(4),384*E(3),
-384*E(12)^11,-384,384*E(12)^7,384*E(3)^2,-384*E(4),-384*E(3),384*E(12)^11,
384*E(12)^11,384,-384*E(12)^7,-384*E(3)^2,384*E(4),384*E(3),-384*E(12)^11,-384
,384*E(12)^7,384*E(3)^2,-384*E(4),-384*E(3),-384*E(3),384*E(12)^11,384,
-384*E(12)^7,-384*E(3)^2,384*E(4),384*E(3),-384*E(12)^11,-384,384*E(12)^7,
384*E(3)^2,-384*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,-24*E(12)^7,
-24*E(3)^2,24*E(4),24*E(3),-24*E(12)^11,-24,24*E(12)^7,24*E(3)^2,-24*E(4),
-24*E(3),24*E(12)^11,24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,24*E(4),24*E(3),
-24*E(12)^11,-24,24*E(12)^7,24*E(3)^2,-24*E(4),-24*E(3),-24*E(3),24*E(12)^11,
24,-24*E(12)^7,-24*E(3)^2,24*E(4),24*E(3),-24*E(12)^11,-24,24*E(12)^7,
24*E(3)^2,-24*E(4),0,0,0,0,0,0,0,0,0,0,0,0,12*E(3),12*E(12)^11,-12,-12*E(12)^7
,12*E(3)^2,12*E(4),-12*E(3),-12*E(12)^11,12,12*E(12)^7,-12*E(3)^2,-12*E(4),0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2
,E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,
2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2
,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[396,5]],
[GALOIS,[396,7]],
[GALOIS,[396,11]],[420,-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),
-420*E(12)^11,-420,420*E(12)^7,420*E(3)^2,-420*E(4),-420*E(3),420*E(12)^11,
420*E(12)^11,420,-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),-420*E(12)^11,-420
,420*E(12)^7,420*E(3)^2,-420*E(4),-420*E(3),-420*E(3),420*E(12)^11,420,
-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),-420*E(12)^11,-420,420*E(12)^7,
420*E(3)^2,-420*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-21,21*E(12)^7,
21*E(3)^2,-21*E(4),-21*E(3),21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,21*E(4),
21*E(3),-21*E(12)^11,-21*E(12)^11,-21,21*E(12)^7,21*E(3)^2,-21*E(4),-21*E(3),
21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,21*E(4),21*E(3),21*E(3),-21*E(12)^11,-21
,21*E(12)^7,21*E(3)^2,-21*E(4),-21*E(3),21*E(12)^11,21,-21*E(12)^7,-21*E(3)^2,
21*E(4),0,0,0,0,0,0,0,0,0,0,0,0,12*E(3),12*E(12)^11,-12,-12*E(12)^7,12*E(3)^2,
12*E(4),-12*E(3),-12*E(12)^11,12,12*E(12)^7,-12*E(3)^2,-12*E(4),0,0,0,0,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),
-2*E(3),2*E(12)^11,2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11
,-2,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),-2*E(3),2*E(12)^11,2,-2*E(12)^7,
-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4)
,-3*E(3),3*E(12)^11,3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),
-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,
E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,
-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7,-E(3)^2,E(4)],
[GALOIS,[400,5]],
[GALOIS,[400,7]],
[GALOIS,[400,11]],[480,-480*E(12)^7,-480*E(3)^2,480*E(4),480*E(3),
-480*E(12)^11,-480,480*E(12)^7,480*E(3)^2,-480*E(4),-480*E(3),480*E(12)^11,
480*E(12)^11,480,-480*E(12)^7,-480*E(3)^2,480*E(4),480*E(3),-480*E(12)^11,-480
,480*E(12)^7,480*E(3)^2,-480*E(4),-480*E(3),-480*E(3),480*E(12)^11,480,
-480*E(12)^7,-480*E(3)^2,480*E(4),480*E(3),-480*E(12)^11,-480,480*E(12)^7,
480*E(3)^2,-480*E(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-24,24*E(12)^7,
24*E(3)^2,-24*E(4),-24*E(3),24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,24*E(4),
24*E(3),-24*E(12)^11,-24*E(12)^11,-24,24*E(12)^7,24*E(3)^2,-24*E(4),-24*E(3),
24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,24*E(4),24*E(3),24*E(3),-24*E(12)^11,-24
,24*E(12)^7,24*E(3)^2,-24*E(4),-24*E(3),24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,
24*E(4),0,0,0,0,0,0,0,0,0,0,0,0,6*E(3),6*E(12)^11,-6,-6*E(12)^7,6*E(3)^2,
6*E(4),-6*E(3),-6*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(7)-E(7)^2-E(7)^4
,E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20,
-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,
-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,E(84)^13+E(84)^61+E(84)^73,
E(21)^5+E(21)^17+E(21)^20,-E(28)^11-E(28)^15-E(28)^23,
-E(21)^10-E(21)^13-E(21)^19,E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,
-E(84)^13-E(84)^61-E(84)^73,-E(21)^5-E(21)^17-E(21)^20,
E(28)^11+E(28)^15+E(28)^23,E(21)^10+E(21)^13+E(21)^19,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,
E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20,
-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,-E(7)^3-E(7)^5-E(7)^6,
E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,-E(28)^3-E(28)^19-E(28)^27,
-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,E(7)^3+E(7)^5+E(7)^6,
-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,
E(21)+E(21)^4+E(21)^16,-E(84)^29-E(84)^53-E(84)^65,-E(84)^29-E(84)^53-E(84)^65
,-E(7)^3-E(7)^5-E(7)^6,E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,
-E(28)^3-E(28)^19-E(28)^27,-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,
E(7)^3+E(7)^5+E(7)^6,-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,
E(28)^3+E(28)^19+E(28)^27,E(21)+E(21)^4+E(21)^16,E(21)+E(21)^4+E(21)^16,
-E(84)^29-E(84)^53-E(84)^65,-E(7)^3-E(7)^5-E(7)^6,E(84)+E(84)^25+E(84)^37,
E(21)^2+E(21)^8+E(21)^11,-E(28)^3-E(28)^19-E(28)^27,-E(21)-E(21)^4-E(21)^16,
E(84)^29+E(84)^53+E(84)^65,E(7)^3+E(7)^5+E(7)^6,-E(84)-E(84)^25-E(84)^37,
-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11
,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,
-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,
2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2
,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[404,29]],
[GALOIS,[404,43]],
[GALOIS,[404,11]],
[GALOIS,[404,13]],
[GALOIS,[404,5]],
[GALOIS,[404,19]],
[GALOIS,[404,47]],[420,-420*E(12)^7,-420*E(3)^2,420*E(4),420*E(3),
-420*E(12)^11,-420,420*E(12)^7,420*E(3)^2,-420*E(4),-420*E(3),420*E(12)^11,
420*E(4),420*E(3),-420*E(12)^11,-420,420*E(12)^7,420*E(3)^2,-420*E(4),
-420*E(3),420*E(12)^11,420,-420*E(12)^7,-420*E(3)^2,-420,420*E(12)^7,
420*E(3)^2,-420*E(4),-420*E(3),420*E(12)^11,420,-420*E(12)^7,-420*E(3)^2,
420*E(4),420*E(3),-420*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,33,
-33*E(12)^7,-33*E(3)^2,33*E(4),33*E(3),-33*E(12)^11,-33,33*E(12)^7,33*E(3)^2,
-33*E(4),-33*E(3),33*E(12)^11,33*E(4),33*E(3),-33*E(12)^11,-33,33*E(12)^7,
33*E(3)^2,-33*E(4),-33*E(3),33*E(12)^11,33,-33*E(12)^7,-33*E(3)^2,-33,
33*E(12)^7,33*E(3)^2,-33*E(4),-33*E(3),33*E(12)^11,33,-33*E(12)^7,-33*E(3)^2,
33*E(4),33*E(3),-33*E(12)^11,-6,-6*E(12)^7,6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11
,6,6*E(12)^7,-6*E(3)^2,-6*E(4),6*E(3),6*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),
-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,
E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11],
[GALOIS,[412,5]],
[GALOIS,[412,7]],
[GALOIS,[412,11]],[384,-384*E(12)^7,-384*E(3)^2,384*E(4),384*E(3),
-384*E(12)^11,-384,384*E(12)^7,384*E(3)^2,-384*E(4),-384*E(3),384*E(12)^11,
384*E(4),384*E(3),-384*E(12)^11,-384,384*E(12)^7,384*E(3)^2,-384*E(4),
-384*E(3),384*E(12)^11,384,-384*E(12)^7,-384*E(3)^2,-384,384*E(12)^7,
384*E(3)^2,-384*E(4),-384*E(3),384*E(12)^11,384,-384*E(12)^7,-384*E(3)^2,
384*E(4),384*E(3),-384*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,
-24*E(12)^7,-24*E(3)^2,24*E(4),24*E(3),-24*E(12)^11,-24,24*E(12)^7,24*E(3)^2,
-24*E(4),-24*E(3),24*E(12)^11,24*E(4),24*E(3),-24*E(12)^11,-24,24*E(12)^7,
24*E(3)^2,-24*E(4),-24*E(3),24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,-24,
24*E(12)^7,24*E(3)^2,-24*E(4),-24*E(3),24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,
24*E(4),24*E(3),-24*E(12)^11,12,12*E(12)^7,-12*E(3)^2,-12*E(4),12*E(3),
12*E(12)^11,-12,-12*E(12)^7,12*E(3)^2,12*E(4),-12*E(3),-12*E(12)^11,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[416,5]],
[GALOIS,[416,7]],
[GALOIS,[416,11]],[480,-480*E(12)^7,-480*E(3)^2,480*E(4),480*E(3),
-480*E(12)^11,-480,480*E(12)^7,480*E(3)^2,-480*E(4),-480*E(3),480*E(12)^11,
480*E(4),480*E(3),-480*E(12)^11,-480,480*E(12)^7,480*E(3)^2,-480*E(4),
-480*E(3),480*E(12)^11,480,-480*E(12)^7,-480*E(3)^2,-480,480*E(12)^7,
480*E(3)^2,-480*E(4),-480*E(3),480*E(12)^11,480,-480*E(12)^7,-480*E(3)^2,
480*E(4),480*E(3),-480*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-24,
24*E(12)^7,24*E(3)^2,-24*E(4),-24*E(3),24*E(12)^11,24,-24*E(12)^7,-24*E(3)^2,
24*E(4),24*E(3),-24*E(12)^11,-24*E(4),-24*E(3),24*E(12)^11,24,-24*E(12)^7,
-24*E(3)^2,24*E(4),24*E(3),-24*E(12)^11,-24,24*E(12)^7,24*E(3)^2,24,
-24*E(12)^7,-24*E(3)^2,24*E(4),24*E(3),-24*E(12)^11,-24,24*E(12)^7,24*E(3)^2,
-24*E(4),-24*E(3),24*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),6*E(3),6*E(12)^11,
-6,-6*E(12)^7,6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-E(7)-E(7)^2-E(7)^4,E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20,
-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,
-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,
E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20,E(7)+E(7)^2+E(7)^4,
-E(84)^13-E(84)^61-E(84)^73,-E(21)^5-E(21)^17-E(21)^20,
E(28)^11+E(28)^15+E(28)^23,E(21)^10+E(21)^13+E(21)^19,
-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,E(84)^13+E(84)^61+E(84)^73,
E(21)^5+E(21)^17+E(21)^20,-E(28)^11-E(28)^15-E(28)^23,
-E(21)^10-E(21)^13-E(21)^19,E(84)^5+E(84)^17+E(84)^41,-E(7)^3-E(7)^5-E(7)^6,
E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,-E(28)^3-E(28)^19-E(28)^27,
-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,E(7)^3+E(7)^5+E(7)^6,
-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,
E(21)+E(21)^4+E(21)^16,-E(84)^29-E(84)^53-E(84)^65,-E(28)^3-E(28)^19-E(28)^27,
-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,E(7)^3+E(7)^5+E(7)^6,
-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,
E(21)+E(21)^4+E(21)^16,-E(84)^29-E(84)^53-E(84)^65,-E(7)^3-E(7)^5-E(7)^6,
E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,E(7)^3+E(7)^5+E(7)^6,
-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,
E(21)+E(21)^4+E(21)^16,-E(84)^29-E(84)^53-E(84)^65,-E(7)^3-E(7)^5-E(7)^6,
E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,-E(28)^3-E(28)^19-E(28)^27,
-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,
E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,
-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[GALOIS,[420,29]],
[GALOIS,[420,43]],
[GALOIS,[420,11]],
[GALOIS,[420,13]],
[GALOIS,[420,5]],
[GALOIS,[420,19]],
[GALOIS,[420,47]],[756,-756*E(12)^7,-756*E(3)^2,756*E(4),756*E(3),
-756*E(12)^11,-756,756*E(12)^7,756*E(3)^2,-756*E(4),-756*E(3),756*E(12)^11,
756*E(4),756*E(3),-756*E(12)^11,-756,756*E(12)^7,756*E(3)^2,-756*E(4),
-756*E(3),756*E(12)^11,756,-756*E(12)^7,-756*E(3)^2,-756,756*E(12)^7,
756*E(3)^2,-756*E(4),-756*E(3),756*E(12)^11,756,-756*E(12)^7,-756*E(3)^2,
756*E(4),756*E(3),-756*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,
-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,27*E(3)^2,
-27*E(4),-27*E(3),27*E(12)^11,27*E(4),27*E(3),-27*E(12)^11,-27,27*E(12)^7,
27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,-27,
27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,
27*E(4),27*E(3),-27*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,-2,2*E(12)^7,2*E(3)^2,
-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,0,
0,0,0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4)
,-E(3),E(12)^11,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3*E(4),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),
3*E(3),-3*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1+E(4),
E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,
-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,
-E(12)^8+E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,
E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11],
[GALOIS,[428,5]],
[GALOIS,[428,7]],
[GALOIS,[428,11]],[840,-840*E(12)^7,-840*E(3)^2,840*E(4),840*E(3),
-840*E(12)^11,-840,840*E(12)^7,840*E(3)^2,-840*E(4),-840*E(3),840*E(12)^11,
840*E(4),840*E(3),-840*E(12)^11,-840,840*E(12)^7,840*E(3)^2,-840*E(4),
-840*E(3),840*E(12)^11,840,-840*E(12)^7,-840*E(3)^2,-840,840*E(12)^7,
840*E(3)^2,-840*E(4),-840*E(3),840*E(12)^11,840,-840*E(12)^7,-840*E(3)^2,
840*E(4),840*E(3),-840*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,
-12*E(12)^7,-12*E(3)^2,12*E(4),12*E(3),-12*E(12)^11,-12,12*E(12)^7,12*E(3)^2,
-12*E(4),-12*E(3),12*E(12)^11,12*E(4),12*E(3),-12*E(12)^11,-12,12*E(12)^7,
12*E(3)^2,-12*E(4),-12*E(3),12*E(12)^11,12,-12*E(12)^7,-12*E(3)^2,-12,
12*E(12)^7,12*E(3)^2,-12*E(4),-12*E(3),12*E(12)^11,12,-12*E(12)^7,-12*E(3)^2,
12*E(4),12*E(3),-12*E(12)^11,6,6*E(12)^7,-6*E(3)^2,-6*E(4),6*E(3),6*E(12)^11,
-6,-6*E(12)^7,6*E(3)^2,6*E(4),-6*E(3),-6*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,
4*E(4),4*E(3),-4*E(12)^11,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,
4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,4,-4*E(12)^7,-4*E(3)^2,4*E(4),
4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-E(3)-2*E(3)^2,
2*E(12)^7+E(12)^11,E(3)-E(3)^2,E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,
-E(12)^7+E(12)^11,E(3)+2*E(3)^2,-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,
-E(12)^7-2*E(12)^11,-2*E(3)-E(3)^2,E(12)^7-E(12)^11,-2*E(3)-E(3)^2,
E(12)^7-E(12)^11,-E(3)-2*E(3)^2,2*E(12)^7+E(12)^11,E(3)-E(3)^2,
E(12)^7+2*E(12)^11,2*E(3)+E(3)^2,-E(12)^7+E(12)^11,E(3)+2*E(3)^2,
-2*E(12)^7-E(12)^11,-E(3)+E(3)^2,-E(12)^7-2*E(12)^11,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2*E(4),2*E(3),-2*E(12)^11,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),
2*E(3),-2*E(12)^11],
[GALOIS,[432,5]],
[GALOIS,[432,7]],
[GALOIS,[432,11]],[504,-504*E(12)^7,-504*E(3)^2,504*E(4),504*E(3),
-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,
504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,504,-504*E(12)^7,
-504*E(3)^2,504*E(4),504*E(3),-504*E(12)^11,-504,-504*E(3)^2,504*E(4),504*E(3)
,-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,
504,-504*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-36,36*E(12)^7,36*E(3)^2,
-36*E(4),-36*E(3),36*E(12)^11,36,-36*E(12)^7,-36*E(3)^2,36*E(4),36*E(3),
-36*E(12)^11,-36*E(12)^7,-36*E(3)^2,36*E(4),36*E(3),-36*E(12)^11,-36,
36*E(12)^7,36*E(3)^2,-36*E(4),-36*E(3),36*E(12)^11,36,36*E(3)^2,-36*E(4),
-36*E(3),36*E(12)^11,36,-36*E(12)^7,-36*E(3)^2,36*E(4),36*E(3),-36*E(12)^11,
-36,36*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),
-4*E(3),4*E(12)^11,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,
-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,0,0,0,0,0,0,0,0,0,
-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*E(12)^7
,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),
-2*E(12)^11,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,
2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7],
[GALOIS,[436,5]],
[GALOIS,[436,7]],
[GALOIS,[436,11]],[540,-540*E(12)^7,-540*E(3)^2,540*E(4),540*E(3),
-540*E(12)^11,-540,540*E(12)^7,540*E(3)^2,-540*E(4),-540*E(3),540*E(12)^11,
540*E(12)^7,540*E(3)^2,-540*E(4),-540*E(3),540*E(12)^11,540,-540*E(12)^7,
-540*E(3)^2,540*E(4),540*E(3),-540*E(12)^11,-540,-540*E(3)^2,540*E(4),540*E(3)
,-540*E(12)^11,-540,540*E(12)^7,540*E(3)^2,-540*E(4),-540*E(3),540*E(12)^11,
540,-540*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-27,27*E(12)^7,27*E(3)^2,
-27*E(4),-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),
-27*E(12)^11,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,-27,
27*E(12)^7,27*E(3)^2,-27*E(4),-27*E(3),27*E(12)^11,27,27*E(3)^2,-27*E(4),
-27*E(3),27*E(12)^11,27,-27*E(12)^7,-27*E(3)^2,27*E(4),27*E(3),-27*E(12)^11,
-27,27*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),
2*E(3),-2*E(12)^11,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7
,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),
3*E(3),-3*E(12)^11,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7
,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,-E(3)^2,E(4),
E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,E(12)^7,E(3)^2,-E(4),
-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,-E(3)^2,E(4),E(3),
-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,1,-E(12)^7,-E(3)^2
,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,E(12)^7,E(3)^2,
-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,-E(3)^2,E(4),
E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-1-E(4),
-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-1,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,-E(12)^7],
[GALOIS,[440,5]],
[GALOIS,[440,7]],
[GALOIS,[440,11]],[36,-36*E(12)^7,-36*E(3)^2,36*E(4),36*E(3),-36*E(12)^11,-36
,36*E(12)^7,36*E(3)^2,-36*E(4),-36*E(3),36*E(12)^11,36*E(12)^7,36*E(3)^2,
-36*E(4),-36*E(3),36*E(12)^11,36,-36*E(12)^7,-36*E(3)^2,36*E(4),36*E(3),
-36*E(12)^11,-36,-36*E(3)^2,36*E(4),36*E(3),-36*E(12)^11,-36,36*E(12)^7,
36*E(3)^2,-36*E(4),-36*E(3),36*E(12)^11,36,-36*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,9,-9*E(12)^7,-9*E(3)^2,9*E(4),9*E(3),-9*E(12)^11,-9,9*E(12)^7,
9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),
9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),9*E(3),-9*E(12)^11,-9,-9*E(3)^2,
9*E(4),9*E(3),-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,
-9*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,2*E(3)^2,-2*E(4),
-2*E(3),2*E(12)^11,2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,
-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,0,0,0,0,0,0,0,0,0,1
,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4)
,3*E(3),-3*E(12)^11,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,-E(3)^2,
E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,
-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^8-E(12)^11,-1+E(4),
E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,
1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-1,E(12)^7],
[GALOIS,[444,5]],
[GALOIS,[444,7]],
[GALOIS,[444,11]],[504,-504*E(12)^7,-504*E(3)^2,504*E(4),504*E(3),
-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,
504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,504,-504*E(12)^7,
-504*E(3)^2,504*E(4),504*E(3),-504*E(12)^11,-504,-504*E(3)^2,504*E(4),504*E(3)
,-504*E(12)^11,-504,504*E(12)^7,504*E(3)^2,-504*E(4),-504*E(3),504*E(12)^11,
504,-504*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,-45*E(12)^7,-45*E(3)^2
,45*E(4),45*E(3),-45*E(12)^11,-45,45*E(12)^7,45*E(3)^2,-45*E(4),-45*E(3),
45*E(12)^11,45*E(12)^7,45*E(3)^2,-45*E(4),-45*E(3),45*E(12)^11,45,-45*E(12)^7,
-45*E(3)^2,45*E(4),45*E(3),-45*E(12)^11,-45,-45*E(3)^2,45*E(4),45*E(3),
-45*E(12)^11,-45,45*E(12)^7,45*E(3)^2,-45*E(4),-45*E(3),45*E(12)^11,45,
-45*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),
-4*E(3),4*E(12)^11,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,
-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4,
4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,0,0,0,0,0,0,0,0,0,
-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,
-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4)
,3*E(3),-3*E(12)^11,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,3*E(3)^2,-3*E(4),-3*E(3),
3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-E(12)^7,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,E(12)^7,
E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,-E(3)^2,
E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7],
[GALOIS,[448,5]],
[GALOIS,[448,7]],
[GALOIS,[448,11]],[1260,-1260*E(12)^7,-1260*E(3)^2,1260*E(4),1260*E(3),
-1260*E(12)^11,-1260,1260*E(12)^7,1260*E(3)^2,-1260*E(4),-1260*E(3),
1260*E(12)^11,1260*E(12)^7,1260*E(3)^2,-1260*E(4),-1260*E(3),1260*E(12)^11,
1260,-1260*E(12)^7,-1260*E(3)^2,1260*E(4),1260*E(3),-1260*E(12)^11,-1260,
-1260*E(3)^2,1260*E(4),1260*E(3),-1260*E(12)^11,-1260,1260*E(12)^7,1260*E(3)^2
,-1260*E(4),-1260*E(3),1260*E(12)^11,1260,-1260*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-9,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,
-9*E(3)^2,9*E(4),9*E(3),-9*E(12)^11,-9*E(12)^7,-9*E(3)^2,9*E(4),9*E(3),
-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,9*E(3)^2,
-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),9*E(3),-9*E(12)^11,-9
,9*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,
2*E(12)^7,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,-2*E(12)^7,-2*E(3)^2,2*E(4),
2*E(3),-2*E(12)^11,-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7
,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,2*E(3)^2,-2*E(4),-2*E(3),2*E(12)^11,2,
-2*E(12)^7,-2*E(3)^2,2*E(4),2*E(3),-2*E(12)^11,-2,2*E(12)^7,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),
-3*E(3),3*E(12)^11,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,
-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3,
3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+E(4),E(12)^4-E(12)^7,
-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,E(12)^8-E(12)^11,-1-E(4),
-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,
1+E(4),E(12)^4-E(12)^7,-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^8-E(12)^11,-1+E(4),E(12)^4+E(12)^7,
E(12)^8-E(12)^11,-1-E(4),-E(12)^4+E(12)^7,E(12)^8+E(12)^11,1-E(4),
-E(12)^4-E(12)^7,-E(12)^8+E(12)^11,1+E(4),E(12)^4-E(12)^7,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,
E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,
-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7]
,
[GALOIS,[452,5]],
[GALOIS,[452,7]],
[GALOIS,[452,11]],[360,-360*E(12)^7,-360*E(3)^2,360*E(4),360*E(3),
-360*E(12)^11,-360,360*E(12)^7,360*E(3)^2,-360*E(4),-360*E(3),360*E(12)^11,
360*E(12)^7,360*E(3)^2,-360*E(4),-360*E(3),360*E(12)^11,360,-360*E(12)^7,
-360*E(3)^2,360*E(4),360*E(3),-360*E(12)^11,-360,-360*E(3)^2,360*E(4),360*E(3)
,-360*E(12)^11,-360,360*E(12)^7,360*E(3)^2,-360*E(4),-360*E(3),360*E(12)^11,
360,-360*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9*E(12)^7,-9*E(3)^2,
9*E(4),9*E(3),-9*E(12)^11,-9,9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,
9*E(12)^7,9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,-9*E(3)^2,9*E(4),
9*E(3),-9*E(12)^11,-9,-9*E(3)^2,9*E(4),9*E(3),-9*E(12)^11,-9,9*E(12)^7,
9*E(3)^2,-9*E(4),-9*E(3),9*E(12)^11,9,-9*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,
-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,-4*E(12)^7,-4*E(3)^2,4*E(4),
4*E(3),-4*E(12)^11,-4,4*E(12)^7,4*E(3)^2,-4*E(4),-4*E(3),4*E(12)^11,4,4*E(3)^2
,-4*E(4),-4*E(3),4*E(12)^11,4,-4*E(12)^7,-4*E(3)^2,4*E(4),4*E(3),-4*E(12)^11,
-4,4*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,
-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,-3*E(12)^7,-3*E(3)^2,3*E(4),
3*E(3),-3*E(12)^11,-3,3*E(12)^7,3*E(3)^2,-3*E(4),-3*E(3),3*E(12)^11,3,3*E(3)^2
,-3*E(4),-3*E(3),3*E(12)^11,3,-3*E(12)^7,-3*E(3)^2,3*E(4),3*E(3),-3*E(12)^11,
-3,3*E(12)^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,
E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20,
-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20
,-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,
-E(21)^5-E(21)^17-E(21)^20,E(28)^11+E(28)^15+E(28)^23,
E(21)^10+E(21)^13+E(21)^19,-E(84)^5-E(84)^17-E(84)^41,-E(7)-E(7)^2-E(7)^4,
E(84)^13+E(84)^61+E(84)^73,E(21)^5+E(21)^17+E(21)^20,
-E(28)^11-E(28)^15-E(28)^23,-E(21)^10-E(21)^13-E(21)^19,
E(84)^5+E(84)^17+E(84)^41,E(7)+E(7)^2+E(7)^4,-E(84)^13-E(84)^61-E(84)^73,
E(7)^3+E(7)^5+E(7)^6,-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,
E(28)^3+E(28)^19+E(28)^27,E(21)+E(21)^4+E(21)^16,-E(84)^29-E(84)^53-E(84)^65,
-E(7)^3-E(7)^5-E(7)^6,E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,
-E(28)^3-E(28)^19-E(28)^27,-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,
E(84)+E(84)^25+E(84)^37,E(21)^2+E(21)^8+E(21)^11,-E(28)^3-E(28)^19-E(28)^27,
-E(21)-E(21)^4-E(21)^16,E(84)^29+E(84)^53+E(84)^65,E(7)^3+E(7)^5+E(7)^6,
-E(84)-E(84)^25-E(84)^37,-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,
E(21)+E(21)^4+E(21)^16,-E(84)^29-E(84)^53-E(84)^65,-E(7)^3-E(7)^5-E(7)^6,
-E(21)^2-E(21)^8-E(21)^11,E(28)^3+E(28)^19+E(28)^27,E(21)+E(21)^4+E(21)^16,
-E(84)^29-E(84)^53-E(84)^65,-E(7)^3-E(7)^5-E(7)^6,E(84)+E(84)^25+E(84)^37,
E(21)^2+E(21)^8+E(21)^11,-E(28)^3-E(28)^19-E(28)^27,-E(21)-E(21)^4-E(21)^16,
E(84)^29+E(84)^53+E(84)^65,E(7)^3+E(7)^5+E(7)^6,-E(84)-E(84)^25-E(84)^37,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,-1,E(12)^7,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),
-E(12)^11,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,-1,E(12)^7,E(3)^2,-E(4),-E(3),
E(12)^11,1,E(3)^2,-E(4),-E(3),E(12)^11,1,-E(12)^7,-E(3)^2,E(4),E(3),-E(12)^11,
-1,E(12)^7],
[GALOIS,[456,29]],
[GALOIS,[456,43]],
[GALOIS,[456,11]],
[GALOIS,[456,13]],
[GALOIS,[456,5]],
[GALOIS,[456,19]],
[GALOIS,[456,47]]],
[
(272,308)(273,309)(274,310)(275,311)(276,312)(277,313)(278,314)(279,315)
(280,316)(281,317)(282,318)(283,319)(284,320)(285,321)(286,322)(287,323)
(288,324)(289,325)(290,326)(291,327)(292,328)(293,329)(294,330)(295,331)
(296,332)(297,333)(298,334)(299,335)(300,336)(301,337)(302,338)(303,339)
(304,340)(305,341)(306,342)(307,343)
,
( 13, 30)( 14, 31)( 15, 32)( 16, 33)( 17, 34)( 18, 35)( 19, 36)( 20, 25)
( 21, 26)( 22, 27)( 23, 28)( 24, 29)( 43, 54)( 44, 49)( 45, 50)( 46, 51)
( 47, 52)( 48, 53)( 67, 84)( 68, 85)( 69, 86)( 70, 87)( 71, 88)( 72, 89)
( 73, 90)( 74, 79)( 75, 80)( 76, 81)( 77, 82)( 78, 83)( 91,111)( 92,112)
( 93,113)( 94,114)( 95,103)( 96,104)( 97,105)( 98,106)( 99,107)(100,108)
(101,109)(102,110)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)
(137,154)(138,143)(139,144)(140,145)(141,146)(142,147)(158,163)(159,161)
(160,162)(176,193)(177,194)(178,195)(179,196)(180,197)(181,198)(182,199)
(183,188)(184,189)(185,190)(186,191)(187,192)(212,229)(213,230)(214,231)
(215,232)(216,233)(217,234)(218,235)(219,224)(220,225)(221,226)(222,227)
(223,228)(236,254)(237,255)(238,256)(239,257)(240,258)(241,259)(242,271)
(243,266)(244,267)(245,268)(246,269)(247,270)(248,261)(249,262)(250,263)
(251,264)(252,265)(253,260)(284,301)(285,302)(286,303)(287,304)(288,305)
(289,306)(290,307)(291,296)(292,297)(293,298)(294,299)(295,300)(320,337)
(321,338)(322,339)(323,340)(324,341)(325,342)(326,343)(327,332)(328,333)
(329,334)(330,335)(331,336)(356,373)(357,374)(358,375)(359,376)(360,377)
(361,378)(362,379)(363,368)(364,369)(365,370)(366,371)(367,372)(380,416)
(381,417)(382,418)(383,419)(384,420)(385,421)(386,422)(387,423)(388,424)
(389,425)(390,426)(391,427)(392,408)(393,409)(394,410)(395,411)(396,412)
(397,413)(398,414)(399,415)(400,404)(401,405)(402,406)(403,407)(440,457)
(441,458)(442,459)(443,460)(444,461)(445,462)(446,463)(447,452)(448,453)
(449,454)(450,455)(451,456)
,
( 2, 6)( 3, 11)( 5, 9)( 8, 12)( 13, 17)( 14, 22)( 16, 20)( 19, 23)
( 25, 33)( 27, 31)( 28, 36)( 30, 34)( 38, 42)( 39, 41)( 43, 47)( 44, 46)
( 49, 51)( 52, 54)( 56, 60)( 57, 65)( 59, 63)( 62, 66)( 67, 71)( 68, 76)
( 70, 74)( 73, 77)( 79, 87)( 81, 85)( 82, 90)( 84, 88)( 91,111)( 92,104)
( 93,109)( 94,114)( 95,107)( 96,112)( 97,105)( 98,110)( 99,103)(100,108)
(101,113)(102,106)(120,124)(121,129)(123,127)(126,130)(131,135)(132,140)
(134,138)(137,141)(143,151)(145,149)(146,154)(148,152)(156,157)(158,159)
(161,163)(165,169)(166,174)(168,172)(171,175)(176,180)(177,185)(179,183)
(182,186)(188,196)(190,194)(191,199)(193,197)(201,205)(202,210)(204,208)
(207,211)(212,216)(213,221)(215,219)(218,222)(224,232)(226,230)(227,235)
(229,233)(236,254)(237,259)(238,258)(239,257)(240,256)(241,255)(242,264)
(243,263)(244,262)(245,261)(246,260)(247,265)(248,268)(249,267)(250,266)
(251,271)(252,270)(253,269)(273,277)(274,282)(276,280)(279,283)(284,288)
(285,293)(287,291)(290,294)(296,304)(298,302)(299,307)(301,305)(309,313)
(310,318)(312,316)(315,319)(320,324)(321,329)(323,327)(326,330)(332,340)
(334,338)(335,343)(337,341)(345,349)(346,354)(348,352)(351,355)(356,360)
(357,365)(359,363)(362,366)(368,376)(370,374)(371,379)(373,377)(380,408)
(381,413)(382,406)(383,411)(384,404)(385,409)(386,414)(387,407)(388,412)
(389,405)(390,410)(391,415)(392,416)(393,421)(394,426)(395,419)(396,424)
(397,417)(398,422)(399,427)(400,420)(401,425)(402,418)(403,423)(429,433)
(430,438)(432,436)(435,439)(440,444)(441,449)(443,447)(446,450)(452,460)
(454,458)(455,463)(457,461)
,
( 2, 8)( 4, 10)( 6, 12)( 13, 19)( 15, 21)( 17, 23)( 26, 32)( 28, 34)
( 30, 36)( 56, 62)( 58, 64)( 60, 66)( 67, 73)( 69, 75)( 71, 77)( 80, 86)
( 82, 88)( 84, 90)( 92, 98)( 94,100)( 96,102)(104,110)(106,112)(108,114)
(116,118)(120,126)(122,128)(124,130)(131,137)(133,139)(135,141)(144,150)
(146,152)(148,154)(165,171)(167,173)(169,175)(176,182)(178,184)(180,186)
(189,195)(191,197)(193,199)(201,207)(203,209)(205,211)(212,218)(214,220)
(216,222)(225,231)(227,233)(229,235)(273,279)(275,281)(277,283)(284,290)
(286,292)(288,294)(297,303)(299,305)(301,307)(309,315)(311,317)(313,319)
(320,326)(322,328)(324,330)(333,339)(335,341)(337,343)(344,353)(345,348)
(346,355)(347,350)(349,352)(351,354)(356,359)(357,366)(358,361)(360,363)
(362,365)(364,367)(368,377)(369,372)(370,379)(371,374)(373,376)(375,378)
(381,387)(383,389)(385,391)(393,399)(395,401)(397,403)(405,411)(407,413)
(409,415)(417,423)(419,425)(421,427)(429,435)(431,437)(433,439)(440,446)
(442,448)(444,450)(453,459)(455,461)(457,463)
,
( 2, 15)( 3, 29)( 5, 18)( 6, 32)( 8, 21)( 9, 35)( 11, 24)( 12, 26)
( 14, 27)( 17, 30)( 20, 33)( 23, 36)( 38, 45)( 39, 53)( 41, 48)( 42, 50)
( 44, 51)( 47, 54)( 56, 69)( 57, 83)( 59, 72)( 60, 86)( 62, 75)( 63, 89)
( 65, 78)( 66, 80)( 68, 81)( 71, 84)( 74, 87)( 77, 90)( 92, 96)( 93,101)
( 95, 99)( 98,102)(120,133)(121,147)(123,136)(124,150)(126,139)(127,153)
(129,142)(130,144)(132,145)(135,148)(138,151)(141,154)(156,160)(157,162)
(159,163)(165,178)(166,192)(168,181)(169,195)(171,184)(172,198)(174,187)
(175,189)(177,190)(180,193)(183,196)(186,199)(201,214)(202,228)(204,217)
(205,231)(207,220)(208,234)(210,223)(211,225)(213,226)(216,229)(219,232)
(222,235)(237,244)(238,252)(240,247)(241,249)(243,250)(246,253)(255,262)
(256,270)(258,265)(259,267)(261,268)(264,271)(273,286)(274,300)(276,289)
(277,303)(279,292)(280,306)(282,295)(283,297)(285,298)(288,301)(291,304)
(294,307)(309,322)(310,336)(312,325)(313,339)(315,328)(316,342)(318,331)
(319,333)(321,334)(324,337)(327,340)(330,343)(345,358)(346,372)(348,361)
(349,375)(351,364)(352,378)(354,367)(355,369)(357,370)(360,373)(363,376)
(366,379)(380,392)(381,397)(382,402)(383,395)(384,400)(385,393)(386,398)
(387,403)(388,396)(389,401)(390,394)(391,399)(429,442)(430,456)(432,445)
(433,459)(435,448)(436,462)(438,451)(439,453)(441,454)(444,457)(447,460)
(450,463)
]);
ALF("(3^2x4).U4(3)","6_2.U4(3)",[1,4,1,4,1,4,1,4,1,4,1,4,2,5,2,5,2,5,2,5,
2,5,2,5,3,6,3,6,3,6,3,6,3,6,3,6,7,10,7,10,7,10,8,11,8,11,8,11,9,12,9,12,9,
12,13,16,13,16,13,16,13,16,13,16,13,16,14,17,14,17,14,17,14,17,14,17,14,
17,15,18,15,18,15,18,15,18,15,18,15,18,19,20,19,20,19,20,19,20,19,20,19,
20,21,22,21,22,21,22,21,22,21,22,21,22,23,24,23,24,25,28,25,28,25,28,25,
28,25,28,25,28,26,29,26,29,26,29,26,29,26,29,26,29,27,30,27,30,27,30,27,
30,27,30,27,30,31,31,31,32,32,32,33,33,33,34,37,34,37,34,37,34,37,34,37,
34,37,35,38,35,38,35,38,35,38,35,38,35,38,36,39,36,39,36,39,36,39,36,39,
36,39,40,43,40,43,40,43,40,43,40,43,40,43,41,44,41,44,41,44,41,44,41,44,
41,44,42,45,42,45,42,45,42,45,42,45,42,45,46,49,46,49,46,49,47,50,47,50,
47,50,48,51,48,51,48,51,52,55,52,55,52,55,53,56,53,56,53,56,54,57,54,57,
54,57,58,61,58,61,58,61,58,61,58,61,58,61,59,62,59,62,59,62,59,62,59,62,
59,62,60,63,60,63,60,63,60,63,60,63,60,63,64,67,64,67,64,67,64,67,64,67,
64,67,65,68,65,68,65,68,65,68,65,68,65,68,66,69,66,69,66,69,66,69,66,69,
66,69,70,73,70,73,70,73,70,73,70,73,70,73,71,74,71,74,71,74,71,74,71,74,
71,74,72,75,72,75,72,75,72,75,72,75,72,75,76,77,76,77,76,77,76,77,76,77,
76,77,78,79,78,79,78,79,78,79,78,79,78,79,80,81,80,81,80,81,80,81,80,81,
80,81,82,83,82,83,82,83,82,83,82,83,82,83,84,87,84,87,84,87,84,87,84,87,
84,87,85,88,85,88,85,88,85,88,85,88,85,88,86,89,86,89,86,89,86,89,86,89,
86,89]);
ALF("(3^2x4).U4(3)","12_1.U4(3)",[1,2,3,4,5,6,7,8,9,10,11,12,12,1,2,3,4,5,
6,7,8,9,10,11,11,12,1,2,3,4,5,6,7,8,9,10,13,14,15,16,17,18,18,13,14,15,16,
17,17,18,13,14,15,16,19,20,21,22,23,24,25,26,27,28,29,30,30,19,20,21,22,
23,24,25,26,27,28,29,29,30,19,20,21,22,23,24,25,26,27,28,43,46,45,44,43,
46,45,44,43,46,45,44,35,42,37,32,39,34,41,36,31,38,33,40,47,50,49,48,51,
52,53,54,55,56,57,58,59,60,61,62,62,51,52,53,54,55,56,57,58,59,60,61,61,
62,51,52,53,54,55,56,57,58,59,60,63,64,65,65,63,64,64,65,63,66,67,68,69,
70,71,72,73,74,75,76,77,77,66,67,68,69,70,71,72,73,74,75,76,76,77,66,67,
68,69,70,71,72,73,74,75,78,79,80,81,82,83,84,85,86,87,88,89,89,78,79,80,
81,82,83,84,85,86,87,88,88,89,78,79,80,81,82,83,84,85,86,87,96,97,98,99,
100,101,101,96,97,98,99,100,100,101,96,97,98,99,90,91,92,93,94,95,95,90,
91,92,93,94,94,95,90,91,92,93,102,103,104,105,106,107,108,109,110,111,112,
113,113,102,103,104,105,106,107,108,109,110,111,112,112,113,102,103,104,
105,106,107,108,109,110,111,114,115,116,117,118,119,120,121,122,123,124,
125,125,114,115,116,117,118,119,120,121,122,123,124,124,125,114,115,116,
117,118,119,120,121,122,123,129,130,131,132,133,134,135,136,137,126,127,
128,128,129,130,131,132,133,134,135,136,137,126,127,127,128,129,130,131,
132,133,134,135,136,137,126,166,169,168,167,166,169,168,167,166,169,168,
167,162,165,164,163,162,165,164,163,162,165,164,163,158,153,160,155,150,
157,152,159,154,161,156,151,138,145,140,147,142,149,144,139,146,141,148,
143,170,171,172,173,174,175,176,177,178,179,180,181,181,170,171,172,173,
174,175,176,177,178,179,180,180,181,170,171,172,173,174,175,176,177,178,
179]);
ALF("(3^2x4).U4(3)","12_2.U4(3)",[1,4,7,10,1,4,7,10,1,4,7,10,2,5,8,11,2,5,
8,11,2,5,8,11,3,6,9,12,3,6,9,12,3,6,9,12,13,16,13,16,13,16,14,17,14,17,14,
17,15,18,15,18,15,18,19,22,25,28,19,22,25,28,19,22,25,28,20,23,26,29,20,
23,26,29,20,23,26,29,21,24,27,30,21,24,27,30,21,24,27,30,31,32,33,34,31,
32,33,34,31,32,33,34,35,36,37,38,35,36,37,38,35,36,37,38,39,40,41,42,43,
46,49,52,43,46,49,52,43,46,49,52,44,47,50,53,44,47,50,53,44,47,50,53,45,
48,51,54,45,48,51,54,45,48,51,54,55,55,55,56,56,56,57,57,57,58,61,64,67,
58,61,64,67,58,61,64,67,59,62,65,68,59,62,65,68,59,62,65,68,60,63,66,69,
60,63,66,69,60,63,66,69,70,73,76,79,70,73,76,79,70,73,76,79,71,74,77,80,
71,74,77,80,71,74,77,80,72,75,78,81,72,75,78,81,72,75,78,81,82,85,82,85,
82,85,83,86,83,86,83,86,84,87,84,87,84,87,88,91,88,91,88,91,89,92,89,92,
89,92,90,93,90,93,90,93,94,97,100,103,94,97,100,103,94,97,100,103,95,98,
101,104,95,98,101,104,95,98,101,104,96,99,102,105,96,99,102,105,96,99,102,
105,106,109,112,115,106,109,112,115,106,109,112,115,107,110,113,116,107,
110,113,116,107,110,113,116,108,111,114,117,108,111,114,117,108,111,114,
117,118,121,124,127,118,121,124,127,118,121,124,127,119,122,125,128,119,
122,125,128,119,122,125,128,120,123,126,129,120,123,126,129,120,123,126,
129,130,131,132,133,130,131,132,133,130,131,132,133,134,135,136,137,134,
135,136,137,134,135,136,137,138,139,140,141,138,139,140,141,138,139,140,
141,142,143,144,145,142,143,144,145,142,143,144,145,146,149,152,155,146,
149,152,155,146,149,152,155,147,150,153,156,147,150,153,156,147,150,153,
156,148,151,154,157,148,151,154,157,148,151,154,157]);
ALF("(3^2x4).U4(3)","(3^2x2).U4(3)",[1,2,3,4,5,6,1,2,3,4,5,6,7,8,9,10,11,
12,7,8,9,10,11,12,13,14,15,16,17,18,13,14,15,16,17,18,19,20,21,22,23,24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,37,38,39,40,41,42,
43,44,45,46,47,48,43,44,45,46,47,48,49,50,51,52,53,54,49,50,51,52,53,54,
55,56,57,58,59,60,55,56,57,58,59,60,61,62,63,64,65,66,61,62,63,64,65,66,
67,68,67,68,69,70,71,72,73,74,69,70,71,72,73,74,75,76,77,78,79,80,75,76,
77,78,79,80,81,82,83,84,85,86,81,82,83,84,85,86,87,88,89,90,91,92,93,94,
95,96,97,98,99,100,101,96,97,98,99,100,101,102,103,104,105,106,107,102,
103,104,105,106,107,108,109,110,111,112,113,108,109,110,111,112,113,114,
115,116,117,118,119,114,115,116,117,118,119,120,121,122,123,124,125,120,
121,122,123,124,125,126,127,128,129,130,131,126,127,128,129,130,131,132,
133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,
151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,
169,170,171,172,173,168,169,170,171,172,173,174,175,176,177,178,179,174,
175,176,177,178,179,180,181,182,183,184,185,180,181,182,183,184,185,186,
187,188,189,190,191,186,187,188,189,190,191,192,193,194,195,196,197,192,
193,194,195,196,197,198,199,200,201,202,203,198,199,200,201,202,203,204,
205,206,207,208,209,204,205,206,207,208,209,210,211,212,213,214,215,210,
211,212,213,214,215,216,217,218,219,220,221,216,217,218,219,220,221,222,
223,224,225,226,227,222,223,224,225,226,227,228,229,230,231,232,233,228,
229,230,231,232,233,234,235,236,237,238,239,234,235,236,237,238,239,240,
241,242,243,244,245,240,241,242,243,244,245,246,247,248,249,250,251,246,
247,248,249,250,251,252,253,254,255,256,257,252,253,254,255,256,257,258,
259,260,261,262,263,258,259,260,261,262,263]);
# In principle, the following table could be encoded as a projective table
# of 3_2.U4(3).2_3', w.r.t. the centre of order 6,
# but the ordering of the classes of 6_2.U4(3).2_3' does not fit into the
# required scheme;
# in essence, the reason for this is that `ConstructProj' does not access
# factor fusions between intermediate tables and therefore must make certain
# assumptions about the ordering of classes.
MOT("(3^2x2).U4(3).2_3'",
[
"origin: ATLAS of finite groups"
],
[117573120,117573120,117573120,117573120,117573120,117573120,58786560,58786560
,58786560,58786560,58786560,58786560,41472,41472,41472,41472,41472,41472,20736
,20736,20736,20736,20736,20736,209952,209952,209952,209952,209952,209952,
104976,104976,104976,104976,104976,104976,5832,5832,5832,5832,5832,5832,324,
324,3456,3456,3456,3456,3456,3456,1728,1728,1728,1728,1728,1728,288,288,288,
144,144,144,180,180,180,180,180,180,90,90,90,90,90,90,2592,2592,2592,2592,2592
,2592,1296,1296,1296,1296,1296,1296,648,648,648,648,648,648,648,648,648,648,
648,648,648,648,648,648,648,648,126,126,126,126,126,126,126,126,126,126,126,
126,126,126,126,126,126,126,144,144,144,144,144,144,144,144,144,162,162,162,
162,162,162,162,162,162,162,162,162,432,432,432,432,432,432,216,216,216,216,
216,216,4320,4320,4320,288,288,288,36,36,576,576,576,576,576,576,96,96,96,48,
48,48,48,48,48,60,60,60,60,60,60,72,72,72,72,72,72,144,144,144,144,144,144,144
,144,144,144,144,144],
[,[1,1,5,5,4,4,8,8,12,12,9,9,1,1,5,5,4,4,8,8,12,12,9,9,25,25,29,29,28,28,32,32
,36,36,33,33,37,37,41,41,40,40,43,43,13,13,17,17,16,16,20,20,24,24,21,21,14,18
,15,19,23,22,63,63,67,67,66,66,70,70,74,74,71,71,25,25,29,29,28,28,32,32,36,36
,33,33,37,37,41,41,40,40,37,37,41,41,40,40,37,37,41,41,40,40,105,105,109,109,
108,108,117,117,121,121,120,120,112,112,116,116,113,113,46,50,47,51,51,55,55,
54,54,138,138,142,142,141,141,132,132,136,136,135,135,75,75,79,79,78,78,82,82,
86,86,83,83,1,5,4,13,17,16,43,43,45,45,49,49,48,48,45,49,48,57,57,59,59,58,58,
63,63,67,67,66,66,75,75,79,79,78,78,144,144,148,148,147,147,144,144,148,148,
147,147],[1,2,2,1,1,2,2,1,1,2,2,1,13,14,14,13,13,14,14,13,13,14,14,13,1,2,2,1,
1,2,2,1,1,2,2,1,1,2,2,1,1,2,1,2,45,46,46,45,45,46,46,45,45,46,46,45,57,57,57,
57,57,57,63,64,64,63,63,64,64,63,63,64,64,63,13,14,14,13,13,14,14,13,13,14,14,
13,13,14,14,13,13,14,14,13,13,14,14,13,13,14,14,13,13,14,105,106,106,105,105,
106,106,105,105,106,106,105,105,106,106,105,105,106,123,123,123,123,123,123,
123,123,123,36,35,35,36,36,35,33,34,34,33,33,34,45,46,46,45,45,46,46,45,45,46,
46,45,156,156,156,159,159,159,156,156,165,164,164,165,165,164,170,170,170,174,
173,173,174,174,173,180,179,179,180,180,179,159,159,159,159,159,159,165,164,
164,165,165,164,165,164,164,165,165,164],,[1,2,6,5,4,3,7,8,12,11,10,9,13,14,18
,17,16,15,19,20,24,23,22,21,25,26,30,29,28,27,31,32,36,35,34,33,37,38,42,41,40
,39,43,44,45,46,50,49,48,47,51,52,56,55,54,53,57,59,58,60,62,61,1,2,6,5,4,3,7,
8,12,11,10,9,75,76,80,79,78,77,81,82,86,85,84,83,87,88,92,91,90,89,100,99,103,
104,101,102,94,93,97,98,95,96,105,106,110,109,108,107,111,112,116,115,114,113,
117,118,122,121,120,119,123,125,124,127,126,130,131,128,129,138,139,143,142,
141,140,132,133,137,136,135,134,144,145,149,148,147,146,150,151,155,154,153,
152,156,158,157,159,161,160,162,163,165,164,168,169,166,167,170,172,171,174,
173,177,178,175,176,156,156,158,158,157,157,186,185,189,190,187,188,192,191,
195,196,193,194,198,197,201,202,199,200],,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41
,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67
,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93
,94,95,96,97,98,99,100,101,102,103,104,1,2,3,4,5,6,7,8,9,10,11,12,8,7,10,9,12,
11,123,124,125,127,126,129,128,131,130,132,133,134,135,136,137,138,139,140,141
,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,
161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,180,
179,182,181,184,183,185,186,187,188,189,190,191,192,193,194,195,196,197,198,
199,200,201,202]],
0,
[(111,118)(112,117)(113,120)(114,119)(115,122)(116,121),(126,127)(128,129)
(130,131),(162,163),(179,180)(181,182)(183,184),(185,186)(187,188)(189,190)
(191,197)(192,198)(193,199)(194,200)(195,201)(196,202),(164,165)(166,167)(168,
169)(173,174)(175,176)(177,178)(191,198)(192,197)(193,200)(194,199)(195,202)
(196,201),( 3, 6)( 4, 5)( 9, 12)( 10, 11)( 15, 18)( 16, 17)( 21, 24)( 22,
23)( 27, 30)( 28, 29)( 33, 36)( 34, 35)( 39, 42)( 40, 41)( 47, 50)( 48, 49)
( 53, 56)( 54, 55)( 58, 59)( 61, 62)( 65, 68)( 66, 67)( 71, 74)( 72, 73)
( 77, 80)( 78, 79)( 83, 86)( 84, 85)( 89, 92)( 90, 91)( 93,100)( 94, 99)
( 95,103)( 96,104)( 97,101)( 98,102)(107,110)(108,109)(113,116)(114,115)
(119,122)(120,121)(124,125)(128,131)(129,130)(132,138)(133,139)(134,143)
(135,142)(136,141)(137,140)(146,149)(147,148)(152,155)(153,154)(157,158)
(160,161)(166,169)(167,168)(171,172)(175,178)(176,177)(181,184)(182,183)
(187,190)(188,189)(193,196)(194,195)(199,202)(200,201)],
["ConstructProj",[["3^2.U4(3).2_3'",[]],["(3^2x2).U4(3).2_3'",[]]]]);
ALF("(3^2x2).U4(3).2_3'","3^2.U4(3).2_3'",[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,
8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,20,20,
21,21,22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,30,31,32,33,34,35,35,
36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,45,46,46,47,47,
48,48,49,49,50,50,51,51,52,52,53,53,54,54,55,55,56,56,57,57,58,58,59,59,
60,60,61,61,62,62,63,63,64,64,65,66,67,68,68,69,69,70,70,71,71,72,72,73,
73,74,74,75,75,76,76,77,77,78,78,79,79,80,80,81,81,82,82,83,84,85,86,87,
88,89,89,90,90,91,91,92,92,93,94,95,96,96,97,97,98,98,99,99,100,100,101,
101,102,102,103,103,104,104,105,105,106,106,107,107,108,108,109,109,110,
110]);
ALF("(3^2x2).U4(3).2_3'","6_2.U4(3).2_3'",[1,4,4,1,1,4,2,3,3,2,2,3,5,8,8,
5,5,8,6,7,7,6,6,7,9,12,12,9,9,12,10,11,11,10,10,11,13,14,14,13,13,14,15,
16,17,20,20,17,17,20,18,19,19,18,18,19,21,21,21,22,22,22,23,26,26,23,23,
26,24,25,25,24,24,25,27,30,30,27,27,30,28,29,29,28,28,29,31,34,34,31,31,
34,32,35,35,32,32,35,33,36,36,33,33,36,37,40,40,37,37,40,38,41,41,38,38,
41,39,42,42,39,39,42,43,43,43,44,45,45,44,44,45,46,47,47,46,46,47,48,49,
49,48,48,49,50,53,53,50,50,53,51,52,52,51,51,52,54,54,54,55,55,55,56,57,
58,59,59,58,58,59,60,60,60,61,62,62,61,61,62,63,64,64,63,63,64,65,66,66,
65,65,66,67,68,68,67,67,68,69,70,70,69,69,70]);
ALF("(3^2x2).U4(3).2_3'","3_2.U4(3).2_3'",[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,
3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,9,9,9,9,9,9,10,
10,10,10,10,10,11,11,11,12,12,12,13,13,13,13,13,13,14,14,14,14,14,14,15,
15,15,15,15,15,16,16,16,16,16,16,17,17,17,17,17,17,18,18,18,18,18,18,19,
19,19,19,19,19,20,20,20,20,20,20,21,21,21,21,21,21,22,22,22,22,22,22,23,
23,23,24,24,24,24,24,24,25,25,25,25,25,25,26,26,26,26,26,26,27,27,27,27,
27,27,28,28,28,28,28,28,29,29,29,30,30,30,31,31,32,32,32,32,32,32,33,33,
33,34,34,34,34,34,34,35,35,35,35,35,35,36,36,36,36,36,36,37,37,37,37,37,
37,38,38,38,38,38,38]);
ALF("(3^2x2).U4(3).2_3'","2.U4(3).2_3",[1,2,2,1,1,2,2,1,1,2,2,1,3,4,4,3,3,
4,4,3,3,4,4,3,5,6,6,5,5,6,6,5,5,6,6,5,7,8,8,7,7,8,9,10,11,12,12,11,11,12,
12,11,11,12,12,11,13,13,13,13,13,13,14,15,15,14,14,15,15,14,14,15,15,14,
16,17,17,16,16,17,17,16,16,17,17,16,18,19,19,18,18,19,19,18,18,19,19,18,
18,19,19,18,18,19,20,21,21,20,20,21,21,20,20,21,21,20,20,21,21,20,20,21,
22,22,22,22,22,22,22,22,22,23,24,24,23,23,24,25,26,26,25,25,26,27,28,28,
27,27,28,28,27,27,28,28,27,29,29,29,30,30,30,31,32,33,34,34,33,33,34,35,
35,35,36,37,37,36,36,37,38,39,39,38,38,39,40,41,41,40,40,41,42,43,43,42,
42,43,44,45,45,44,44,45]);
MOT("Isoclinic((3^2x2).U4(3).2_3')",
[
"2nd maximal subgroup of 6.Suz,\n",
"isoclinic group of the (3^2x2).U4(3).2_3' given in the ATLAS"
],
0,
0,
0,
[(111,118)(112,117)(113,120)(114,119)(115,122)(116,121),(126,127)(128,129)
(130,131),(162,163),(179,180)(181,182)(183,184),(185,186)(187,188)(189,190)
(191,197)(192,198)(193,199)(194,200)(195,201)(196,202),(164,165)(166,167)(168,
169)(173,174)(175,176)(177,178)(191,198)(192,197)(193,200)(194,199)(195,202)
(196,201),(3,6)(4,5)(9,12)(10,11)(15,18)(16,17)(21,24)(22,23)(27,30)(28,29)
(33,36)(34,35)(39,42)(40,41)(47,50)(48,49)(53,56)(54,55)(58,59)(61,62)(65,68)
(66,67)(71,74)(72,73)(77,80)(78,79)(83,86)(84,85)(89,92)(90,91)(93,100)(94,99)
(95,103)(96,104)(97,101)(98,102)(107,110)(108,109)(113,116)(114,115)(119,122)
(120,121)(124,125)(128,131)(129,130)(132,138)(133,139)(134,143)(135,142)(136,
141)(137,140)(146,149)(147,148)(152,155)(153,154)(157,158)(160,161)(166,169)
(167,168)(171,172)(175,178)(176,177)(181,184)(182,183)(187,190)(188,189)(193,
196)(194,195)(199,202)(200,201)],
["ConstructIsoclinic",[["(3^2x2).U4(3).2_3'"]]]);
ALF("Isoclinic((3^2x2).U4(3).2_3')","3_2.U4(3).2_3'",[1,1,1,1,1,1,2,2,2,2,
2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,9,9,9,
9,9,9,10,10,10,10,10,10,11,11,11,12,12,12,13,13,13,13,13,13,14,14,14,14,
14,14,15,15,15,15,15,15,16,16,16,16,16,16,17,17,17,17,17,17,18,18,18,18,
18,18,19,19,19,19,19,19,20,20,20,20,20,20,21,21,21,21,21,21,22,22,22,22,
22,22,23,23,23,24,24,24,24,24,24,25,25,25,25,25,25,26,26,26,26,26,26,27,
27,27,27,27,27,28,28,28,28,28,28,29,29,29,30,30,30,31,31,32,32,32,32,32,
32,33,33,33,34,34,34,34,34,34,35,35,35,35,35,35,36,36,36,36,36,36,37,37,
37,37,37,37,38,38,38,38,38,38]);
ALF("Isoclinic((3^2x2).U4(3).2_3')","3^2.U4(3).2_3'",[1,1,2,2,3,3,4,4,5,5,
6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,
19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,30,31,32,33,
34,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,45,46,
46,47,47,48,48,49,49,50,50,51,51,52,52,53,53,54,54,55,55,56,56,57,57,58,
58,59,59,60,60,61,61,62,62,63,63,64,64,65,66,67,68,68,69,69,70,70,71,71,
72,72,73,73,74,74,75,75,76,76,77,77,78,78,79,79,80,80,81,81,82,82,83,84,
85,86,87,88,89,89,90,90,91,91,92,92,93,94,95,96,96,97,97,98,98,99,99,100,
100,101,101,102,102,103,103,104,104,105,105,106,106,107,107,108,108,109,
109,110,110]);
ALF("Isoclinic((3^2x2).U4(3).2_3')","Isoclinic(6_2.U4(3).2_3')",[1,4,4,1,
1,4,2,3,3,2,2,3,5,8,8,5,5,8,6,7,7,6,6,7,9,12,12,9,9,12,10,11,11,10,10,11,
13,14,14,13,13,14,15,16,17,20,20,17,17,20,18,19,19,18,18,19,21,21,21,22,
22,22,23,26,26,23,23,26,24,25,25,24,24,25,27,30,30,27,27,30,28,29,29,28,
28,29,31,34,34,31,31,34,32,35,35,32,32,35,33,36,36,33,33,36,37,40,40,37,
37,40,38,41,41,38,38,41,39,42,42,39,39,42,43,43,43,44,45,45,44,44,45,46,
47,47,46,46,47,48,49,49,48,48,49,50,53,53,50,50,53,51,52,52,51,51,52,54,
54,54,55,55,55,56,57,58,59,59,58,58,59,60,60,60,61,62,62,61,61,62,63,64,
64,63,63,64,65,66,66,65,65,66,67,68,68,67,67,68,69,70,70,69,69,70]);
ALF("Isoclinic((3^2x2).U4(3).2_3')","6.Suz",[1,4,2,5,3,6,19,16,20,17,21,
18,7,10,8,11,9,12,60,57,61,58,62,59,16,19,17,20,18,21,25,22,26,23,27,24,
22,25,23,26,24,27,28,29,33,30,34,31,35,32,127,130,128,131,129,132,39,40,
41,139,140,141,51,54,52,55,53,56,172,169,173,170,174,171,57,60,58,61,59,
62,78,75,79,76,80,77,75,78,76,79,77,80,66,63,67,64,68,65,69,72,70,73,71,
74,82,85,83,86,84,87,196,193,197,194,198,195,199,202,200,203,201,204,88,
89,90,205,208,206,209,207,210,100,103,101,104,102,105,106,109,107,110,108,
111,130,127,131,128,132,129,133,136,134,137,135,138,13,14,15,39,40,41,81,
81,88,88,89,89,90,90,88,89,90,97,97,98,98,99,99,118,118,119,119,120,120,
139,139,140,140,141,141,205,208,206,209,207,210,208,205,209,206,210,207],[
"fusion map is unique up to table autom.,\n",
"representative compatible with factors"
]);
LIBTABLE.LOADSTATUS.ctounit1:="userloaded";
#############################################################################
##
#E
|