File: chap10_mj.html

package info (click to toggle)
gap-ctbllib 1.3.9-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 74,872 kB
  • sloc: xml: 41,268; makefile: 215; javascript: 155
file content (802 lines) | stat: -rw-r--r-- 55,672 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
  src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (CTblLibXpls) - Chapter 10: GAP computations needed in the proof of
[DNT13, Theorem 6.1 (ii)]</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap10"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap9_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap11_mj.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap10.html">[MathJax off]</a></p>
<p><a id="X831E9D0A7A2DBC72" name="X831E9D0A7A2DBC72"></a></p>
<div class="ChapSects"><a href="chap10_mj.html#X831E9D0A7A2DBC72">10 <span class="Heading"><strong class="pkg">GAP</strong> computations needed in the proof of
<a href="chapBib_mj.html#biBDNT">[DNT13, Theorem 6.1 (ii)]</a></span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X82BDD020860C6E95">10.1 <span class="Heading"><span class="SimpleMath">\(G/N \cong Sz(8)\)</span> and <span class="SimpleMath">\(|N| = 2^{12}\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X7C01350E8217B0B1">10.2 <span class="Heading"><span class="SimpleMath">\(G/N \cong M_{22}\)</span> and <span class="SimpleMath">\(|N| = 2^{10}\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X7E356703856DF22E">10.3 <span class="Heading"><span class="SimpleMath">\(G/N \cong J_2\)</span> and <span class="SimpleMath">\(|N| = 2^{12}\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X797E2EDB78F05F6E">10.4 <span class="Heading"><span class="SimpleMath">\(G/N \cong J_2\)</span> and <span class="SimpleMath">\(|N| = 5^{14}\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X828AECAE82B0CEB6">10.5 <span class="Heading"><span class="SimpleMath">\(G/N \cong J_2\)</span> and <span class="SimpleMath">\(|N| = 2^{28}\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X81AB173981E3EED7">10.6 <span class="Heading"><span class="SimpleMath">\(G/N \cong {}^3D_4(2)\)</span> and <span class="SimpleMath">\(|N| = 2^{26}\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X83B044547B96B7A5">10.7 <span class="Heading"><span class="SimpleMath">\(G/N \cong {}^3D_4(2)\)</span> and <span class="SimpleMath">\(|N| = 3^{25}\)</span></span></a>
</span>
</div>
</div>

<h3>10 <span class="Heading"><strong class="pkg">GAP</strong> computations needed in the proof of
<a href="chapBib_mj.html#biBDNT">[DNT13, Theorem 6.1 (ii)]</a></span></h3>

<p>Date: September 19th, 2011</p>

<p>(This is joint work with Klaus Lux.)</p>

<p>This is a collection of example computations that are cited in the Appendix of <a href="chapBib_mj.html#biBDNT">[DNT13]</a>. In each case, the aim is to show that the extension of a given finite simple group by an elementary abelian group of given rank has the property that not all complex irreducible characters of the same degree are Galois conjugate.</p>

<p>The purpose of this writeup is twofold. On the one hand, the details of the computations are documented this way. On the other hand, the <strong class="pkg">GAP</strong> code shown for the examples can be used as test input for automatic checking of the data and the functions used.} For the computations, we need some Brauer character tables from <a href="chapBib_mj.html#biBJLPW95">[JLPW95]</a>, some generating matrices from <a href="chapBib_mj.html#biBAGRv3">[WWT+]</a>, and some functions from the <strong class="pkg">GAP</strong> system <a href="chapBib_mj.html#biBGAP">[GAP21]</a> and its packages <code class="code">AtlasRep</code> <a href="chapBib_mj.html#biBAtlasRep">[WPN+22]</a>, <code class="code">cohomolo</code> <a href="chapBib_mj.html#biBcohomolo">[Hol08]</a>, <code class="code">CTblLib</code> <a href="chapBib_mj.html#biBCTblLib">[Bre24]</a>, and <code class="code">TomLib</code> <a href="chapBib_mj.html#biBTomLib">[MNP19]</a>.</p>

<p>First we load the necessary <strong class="pkg">GAP</strong> packages.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "AtlasRep", "1.5", false );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "cohomolo", "1.6", false );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "CTblLib", "1.2", false );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "TomLib", "1.2.1", false );</span>
true
</pre></div>

<p><a id="X82BDD020860C6E95" name="X82BDD020860C6E95"></a></p>

<h4>10.1 <span class="Heading"><span class="SimpleMath">\(G/N \cong Sz(8)\)</span> and <span class="SimpleMath">\(|N| = 2^{12}\)</span></span></h4>

<p>The group <span class="SimpleMath">\(S = Sz(8)\)</span> has exactly one irreducible <span class="SimpleMath">\(12\)</span>-dimensional module over the field with two elements, up to isomorphism. This module can be obtained from any of the three absolutely irreducible <span class="SimpleMath">\(4\)</span>-dimensional <span class="SimpleMath">\(S\)</span>-modules in characteristic two, by regarding it as a module over the prime field <span class="SimpleMath">\(GF(2)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:= 2;;  d:= 12;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Sz(8)" ) mod p;</span>
BrauerTable( "Sz(8)", 2 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr:= Filtered( Irr( t ), x -&gt; x[1] &lt;= d );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( t, rec( chars:= irr, powermap:= false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    centralizers:= false ) );</span>
Sz(8)mod2

       1a 5a 7a 7b 7c 13a 13b 13c

Y.1     1  1  1  1  1   1   1   1
Y.2     4 -1  A  C  B   D   F   E
Y.3     4 -1  B  A  C   E   D   F
Y.4     4 -1  C  B  A   F   E   D

A = E(7)^2+E(7)^3+E(7)^4+E(7)^5
B = E(7)+E(7)^2+E(7)^5+E(7)^6
C = E(7)+E(7)^3+E(7)^4+E(7)^6
D = E(13)+E(13)^5+E(13)^8+E(13)^12
E = E(13)^4+E(13)^6+E(13)^7+E(13)^9
F = E(13)^2+E(13)^3+E(13)^10+E(13)^11
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( irr, x -&gt; SizeOfFieldOfDefinition( x, p ) );</span>
[ 2, 8, 8, 8 ]
</pre></div>

<p>First we construct the <span class="SimpleMath">\(12\)</span>-dimensional irreducible representation of <span class="SimpleMath">\(S\)</span> over <span class="SimpleMath">\(GF(2)\)</span>, using that the <strong class="pkg">Atlas</strong> of Group Representations provides matrix generators for <span class="SimpleMath">\(S\)</span> in the <span class="SimpleMath">\(4\)</span>-dimensional representation over <span class="SimpleMath">\(GF(8)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= OneAtlasGeneratingSetInfo( "Sz(8)", Dimension, 4,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              Characteristic, p );</span>
rec( charactername := "4a", constituents := [ 2 ], contents := "core",
  dim := 4, groupname := "Sz(8)", id := "a", 
  identifier := [ "Sz(8)", [ "Sz8G1-f8r4aB0.m1", "Sz8G1-f8r4aB0.m2" ],
      1, 8 ], repname := "Sz8G1-f8r4aB0", repnr := 17, 
  ring := GF(2^3), size := 29120, standardization := 1, 
  type := "matff" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_dim4:= AtlasGenerators( info ).generators;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b:= Basis( GF(8) );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_dim12:= List( gens_dim4, x -&gt; BlownUpMatrix( b, x ) );;</span>
</pre></div>

<p>We claim that any extension of <span class="SimpleMath">\(S\)</span> with the given module splits.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= AtlasGroup( "Sz(8)", IsPermGroup, true );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chr:= CHR( s, p, 0, gens_dim12 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizeScreen( [ 100 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SecondCohomologyDimension( chr );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizeScreen( [ 72 ] );;</span>
</pre></div>

<p>(The function <code class="code">CHR</code> takes as its arguments a permutation group, the characteristic of the module, a finitely presented group (or zero), and a list of matrices that define the module in the sense that they correspond to the generators of the given permutation group. Note that this condition is satisfied because the generators provided by the <strong class="pkg">Atlas</strong> of Group Representations are compatible.) So it is enough to consider the semidirect product <span class="SimpleMath">\(G = 2^{12}\!:\!Sz(8)\)</span>. If we would like then we could represent this group as a group of <span class="SimpleMath">\(13 \times 13\)</span> matrices over <span class="SimpleMath">\(GF(2)\)</span>, as follows. For each element of <span class="SimpleMath">\(G\)</span>, the submatrix consisting of the first <span class="SimpleMath">\(12\)</span> rows and columns describes the part from the complement <span class="SimpleMath">\(Sz(8)\)</span>, in its action on the module in question, and the last row describes the part from the elementary abelian normal group <span class="SimpleMath">\(N\)</span>; the last column is zero, except for an identity entry in the last row. In order to write down generators of this group, it suffices to take the two generators of the complement plus one nonidentity element from <span class="SimpleMath">\(N\)</span>. (Note that <span class="SimpleMath">\(N\)</span> is irreducible.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats:= List( [1 .. 3 ], x -&gt; IdentityMat( d+1, GF(p) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v:= mats[1][ d+1 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats[1]{ [ 1 .. d ] }{ [ 1 .. d ] }:= gens_dim12[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats[2]{ [ 1 .. d ] }{ [ 1 .. d ] }:= gens_dim12[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats[3][ d+1 ][1]:= Z(p)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">grp:= Group( mats );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Image( IsomorphismPermGroup( grp ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( g );</span>
119275520
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrConjugacyClasses( g );</span>
41
</pre></div>

<p>The <strong class="pkg">GAP</strong> Character Table Library contains the ordinary character table of <span class="SimpleMath">\(G\)</span>. We check this as follows. By the above cohomology result, the group <span class="SimpleMath">\(G\)</span> is uniquely determined, up to isomorphism, by the group order and the property that <span class="SimpleMath">\(G\)</span> has a minimal normal subgroup <span class="SimpleMath">\(N\)</span> such that <span class="SimpleMath">\(G/N\)</span> is a simple group isomorphic with <span class="SimpleMath">\(S\)</span>.</p>

<p>(Since <span class="SimpleMath">\(|G|/|S|\)</span> is a power of two, <span class="SimpleMath">\(N\)</span> is a <span class="SimpleMath">\(2\)</span>-group. By the minimality condition, <span class="SimpleMath">\(N\)</span> is elementary abelian and the action of <span class="SimpleMath">\(S\)</span> on <span class="SimpleMath">\(N\)</span> affords the desired <span class="SimpleMath">\(S\)</span>-module. Note that the isomorphism type of a finite simple group is determined by its character table.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= IsomorphismTypeInfoFiniteSimpleGroup( s );</span>
rec( name := "2B(2,8) = 2C(2,8) = Sz(8)", parameter := 8, 
  series := "2B", shortname := "Sz(8)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">names:= AllCharacterTableNames( Size, 2^12 * Size( s ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( names, CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= Filtered( cand,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     t -&gt; ForAny( ClassPositionsOfMinimalNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            n -&gt; IsomorphismTypeInfoFiniteSimpleGroup( t / n ) = iso ) );</span>
[ CharacterTable( "2^12:Sz(8)" ) ]
</pre></div>

<p>So we can easily check that <span class="SimpleMath">\(G\)</span> has eight rational valued irreducibles of the degree <span class="SimpleMath">\(455\)</span> (or of the degree <span class="SimpleMath">\(3\,640\)</span>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= cand[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rationals:= Filtered( Irr( t ), x -&gt; IsSubset( Integers, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( List( rationals, x -&gt; x[1] ) );</span>
[ [ 1, 1 ], [ 64, 1 ], [ 91, 1 ], [ 455, 8 ], [ 3640, 8 ] ]
</pre></div>

<p><a id="X7C01350E8217B0B1" name="X7C01350E8217B0B1"></a></p>

<h4>10.2 <span class="Heading"><span class="SimpleMath">\(G/N \cong M_{22}\)</span> and <span class="SimpleMath">\(|N| = 2^{10}\)</span></span></h4>

<p>The group <span class="SimpleMath">\(S = M_{22}\)</span> has exactly two irreducible <span class="SimpleMath">\(10\)</span>-dimensional modules over the field with two elements, up to isomorphism. These modules are in fact absolutely irreducible.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:= 2;;  d:= 10;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "M22" ) mod p;</span>
BrauerTable( "M22", 2 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr:= Filtered( Irr( t ), x -&gt; x[1] &lt;= d );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( t, rec( chars:= irr, powermap:= false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    centralizers:= false ) );</span>
M22mod2

       1a 3a 5a 7a 7b 11a 11b

Y.1     1  1  1  1  1   1   1
Y.2    10  1  .  A /A  -1  -1
Y.3    10  1  . /A  A  -1  -1

A = E(7)+E(7)^2+E(7)^4
  = (-1+Sqrt(-7))/2 = b7
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( irr, x -&gt; SizeOfFieldOfDefinition( x, p ) );</span>
[ 2, 2, 2 ]
</pre></div>

<p>First we construct the two irreducible <span class="SimpleMath">\(10\)</span>-dimensional representations of <span class="SimpleMath">\(S\)</span> over <span class="SimpleMath">\(GF(2)\)</span>, again using that the <strong class="pkg">Atlas</strong> of Group Representations provides the matrix generators in question.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= AllAtlasGeneratingSetInfos( "M22", Dimension, d,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              Characteristic, p );</span>
[ rec( charactername := "10a", constituents := [ 2 ], 
      contents := "core", dim := 10, groupname := "M22", id := "a", 
      identifier := 
        [ "M22", [ "M22G1-f2r10aB0.m1", "M22G1-f2r10aB0.m2" ], 1, 2 ],
      repname := "M22G1-f2r10aB0", repnr := 13, ring := GF(2), 
      size := 443520, standardization := 1, type := "matff" ), 
  rec( charactername := "10b", constituents := [ 3 ], 
      contents := "core", dim := 10, groupname := "M22", id := "b", 
      identifier := 
        [ "M22", [ "M22G1-f2r10bB0.m1", "M22G1-f2r10bB0.m2" ], 1, 2 ],
      repname := "M22G1-f2r10bB0", repnr := 14, ring := GF(2), 
      size := 443520, standardization := 1, type := "matff" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= List( info, r -&gt; AtlasGenerators( r ).generators );;</span>
</pre></div>

<p>We claim that any extension of <span class="SimpleMath">\(S\)</span> with any of the two given modules splits.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= AtlasGroup( "M22", IsPermGroup, true );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chr:= CHR( s, p, 0, gens[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizeScreen( [ 100 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SecondCohomologyDimension( chr );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chr:= CHR( s, p, 0, gens[2] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SecondCohomologyDimension( chr );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizeScreen( [ 72 ] );;</span>
</pre></div>

<p>Again we see that it is enough to consider semidirect products <span class="SimpleMath">\(G = 2^{10}\!:\!M_{22}\)</span>, but this time for the two nonisomorphic modules.</p>

<p>We could use the same method as in the first case for constructing the two groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_1:= gens[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats:= List( [1 .. 3 ], x -&gt; IdentityMat( d+1, GF(p) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v:= mats[1][ d+1 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats[1]{ [ 1 .. d ] }{ [ 1 .. d ] }:= gens_1[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats[2]{ [ 1 .. d ] }{ [ 1 .. d ] }:= gens_1[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats[3][ d+1 ][1]:= Z(p)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">grp_1:= Group( mats );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( grp_1 );</span>
454164480
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_2:= gens[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats:= List( [1 .. 3 ], x -&gt; IdentityMat( d+1, GF(p) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v:= mats[1][ d+1 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats[1]{ [ 1 .. d ] }{ [ 1 .. d ] }:= gens_2[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats[2]{ [ 1 .. d ] }{ [ 1 .. d ] }:= gens_2[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats[3][ d+1 ][1]:= Z(p)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">grp_2:= Group( mats );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( grp_2 );</span>
454164480
</pre></div>

<p>The <strong class="pkg">GAP</strong> Character Table Library contains the ordinary character tables of the two groups in question. We check this with the same approach as in the previous examples.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= IsomorphismTypeInfoFiniteSimpleGroup( s );</span>
rec( name := "M(22)", series := "Spor", shortname := "M22" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">names:= AllCharacterTableNames( Size, 2^10 * Size( s ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( names, CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= Filtered( cand,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     t -&gt; ForAny( ClassPositionsOfMinimalNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            n -&gt; IsomorphismTypeInfoFiniteSimpleGroup( t / n ) = iso ) );</span>
[ CharacterTable( "2^10:M22'" ), CharacterTable( "2^10:m22" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( cand, NrConjugacyClasses );</span>
[ 47, 43 ]
</pre></div>

<p>So we can easily check that in both cases, <span class="SimpleMath">\(G\)</span> has two rational valued irreducibles of the degree <span class="SimpleMath">\(1\,155\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= cand[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rationals:= Filtered( Irr( t ), x -&gt; IsSubset( Integers, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( List( rationals, x -&gt; x[1] ) );</span>
[ [ 1, 1 ], [ 21, 1 ], [ 22, 1 ], [ 55, 1 ], [ 99, 1 ], [ 154, 1 ], 
  [ 210, 1 ], [ 231, 3 ], [ 385, 1 ], [ 440, 1 ], [ 770, 5 ], 
  [ 924, 2 ], [ 1155, 2 ], [ 1386, 1 ], [ 1408, 1 ], [ 3080, 2 ], 
  [ 3465, 4 ], [ 4620, 2 ], [ 6930, 3 ], [ 9240, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= cand[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rationals:= Filtered( Irr( t ), x -&gt; IsSubset( Integers, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( List( rationals, x -&gt; x[1] ) );</span>
[ [ 1, 1 ], [ 21, 1 ], [ 55, 1 ], [ 77, 1 ], [ 99, 1 ], [ 154, 1 ], 
  [ 210, 1 ], [ 231, 1 ], [ 330, 1 ], [ 385, 3 ], [ 616, 2 ], 
  [ 693, 1 ], [ 770, 1 ], [ 1155, 2 ], [ 1980, 1 ], [ 2310, 4 ], 
  [ 2640, 1 ], [ 3465, 2 ], [ 4620, 1 ], [ 5544, 2 ], [ 6160, 1 ], 
  [ 6930, 2 ], [ 9856, 1 ] ]
</pre></div>

<p><a id="X7E356703856DF22E" name="X7E356703856DF22E"></a></p>

<h4>10.3 <span class="Heading"><span class="SimpleMath">\(G/N \cong J_2\)</span> and <span class="SimpleMath">\(|N| = 2^{12}\)</span></span></h4>

<p>The group <span class="SimpleMath">\(S = J_2\)</span> has exactly one irreducible <span class="SimpleMath">\(12\)</span>-dimensional module over the field with two elements, up to isomorphism. This module can be obtained from any of the two absolutely irreducible <span class="SimpleMath">\(6\)</span>-dimensional <span class="SimpleMath">\(S\)</span>-modules in characteristic two, by regarding it as a module over the prime field <span class="SimpleMath">\(GF(2)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:= 2;;  d:= 12;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "J2" ) mod p;</span>
BrauerTable( "J2", 2 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr:= Filtered( Irr( t ), x -&gt; x[1] &lt;= d );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( t, rec( chars:= irr, powermap:= false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    centralizers:= false ) );</span>
J2mod2

       1a 3a 3b 5a 5b 5c 5d 7a 15a 15b

Y.1     1  1  1  1  1  1  1  1   1   1
Y.2     6 -3  .  A *A  B *B -1   C  *C
Y.3     6 -3  . *A  A *B  B -1  *C   C

A = -2*E(5)-2*E(5)^4
  = 1-Sqrt(5) = 1-r5
B = E(5)+2*E(5)^2+2*E(5)^3+E(5)^4
  = (-3-Sqrt(5))/2 = -2-b5
C = E(5)+E(5)^4
  = (-1+Sqrt(5))/2 = b5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( irr, x -&gt; SizeOfFieldOfDefinition( x, p ) );</span>
[ 2, 4, 4 ]
</pre></div>

<p>First we construct the irreducible <span class="SimpleMath">\(12\)</span>-dimensional representation of <span class="SimpleMath">\(S\)</span> over <span class="SimpleMath">\(GF(2)\)</span>, using that the <strong class="pkg">Atlas</strong> of Group Representations provides matrix generators for <span class="SimpleMath">\(S\)</span> in the <span class="SimpleMath">\(6\)</span>-dimensional representation over <span class="SimpleMath">\(GF(4)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= OneAtlasGeneratingSetInfo( "J2", Dimension, 6,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              Characteristic, p );</span>
rec( charactername := "6a", constituents := [ 2 ], contents := "core",
  dim := 6, groupname := "J2", id := "a", 
  identifier := [ "J2", [ "J2G1-f4r6aB0.m1", "J2G1-f4r6aB0.m2" ], 1, 
      4 ], repname := "J2G1-f4r6aB0", repnr := 16, ring := GF(2^2), 
  size := 604800, standardization := 1, type := "matff" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_dim6:= AtlasGenerators( info ).generators;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b:= Basis( GF(4) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_dim12:= List( gens_dim6, x -&gt; BlownUpMatrix( b, x ) );;</span>
</pre></div>

<p>We claim that any extension of <span class="SimpleMath">\(S\)</span> with the given module splits.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= AtlasGroup( "J2", IsPermGroup, true );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chr:= CHR( s, p, 0, gens_dim12 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizeScreen( [ 100 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SecondCohomologyDimension( chr );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizeScreen( [ 72 ] );;</span>
</pre></div>

<p>Again we see that it is enough to consider a semidirect product <span class="SimpleMath">\(G = 2^{12}\!:\!J_2\)</span>.</p>

<p>Here is a description how we could construct the group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats:= List( [ 1 .. 3 ], x -&gt; IdentityMat( d+1, GF(p) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v:= mats[1][ d+1 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats[1]{ [ 1 .. d ] }{ [ 1 .. d ] }:= gens_dim12[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats[2]{ [ 1 .. d ] }{ [ 1 .. d ] }:= gens_dim12[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats[3][ d+1 ][1]:= Z(p)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">grp:= Group( mats );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Image( IsomorphismPermGroup( grp ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( g );</span>
2477260800
</pre></div>

<p>The <strong class="pkg">GAP</strong> Character Table Library contains the ordinary character table of <span class="SimpleMath">\(G\)</span>. We check this with the same approach as in the previous examples.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= IsomorphismTypeInfoFiniteSimpleGroup( s );</span>
rec( name := "HJ = J(2) = F(5-)", series := "Spor", shortname := "J2" 
 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">names:= AllCharacterTableNames( Size, 2^12 * Size( s ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( names, CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= Filtered( cand,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     t -&gt; ForAny( ClassPositionsOfMinimalNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            n -&gt; IsomorphismTypeInfoFiniteSimpleGroup( t / n ) = iso ) );</span>
[ CharacterTable( "2^12:J2" ) ]
</pre></div>

<p>So we can easily check that <span class="SimpleMath">\(G\)</span> has two rational valued irreducibles of the degree <span class="SimpleMath">\(1\,575\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= cand[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rationals:= Filtered( Irr( t ), x -&gt; IsSubset( Integers, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( List( rationals, x -&gt; x[1] ) );</span>
[ [ 1, 1 ], [ 36, 1 ], [ 63, 1 ], [ 90, 1 ], [ 126, 1 ], [ 160, 1 ], 
  [ 175, 1 ], [ 225, 1 ], [ 288, 1 ], [ 300, 1 ], [ 336, 1 ], 
  [ 1575, 2 ], [ 2520, 4 ], [ 3150, 1 ], [ 4725, 6 ], [ 9450, 1 ], 
  [ 10080, 4 ], [ 12600, 4 ], [ 18900, 2 ] ]
</pre></div>

<p><a id="X797E2EDB78F05F6E" name="X797E2EDB78F05F6E"></a></p>

<h4>10.4 <span class="Heading"><span class="SimpleMath">\(G/N \cong J_2\)</span> and <span class="SimpleMath">\(|N| = 5^{14}\)</span></span></h4>

<p>The group <span class="SimpleMath">\(S = J_2\)</span> has exactly one irreducible <span class="SimpleMath">\(14\)</span>-dimensional module over the field with <span class="SimpleMath">\(5\)</span> elements, up to isomorphism. This module is in fact absolutely irreducible.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:= 5;;  d:= 14;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "J2" ) mod p;</span>
BrauerTable( "J2", 5 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr:= Filtered( Irr( t ), x -&gt; x[1] &lt;= d );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( t, rec( chars:= irr, powermap:= false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    centralizers:= false ) );</span>
J2mod5

       1a 2a 2b 3a 3b 4a 6a 6b 7a 8a 12a

Y.1     1  1  1  1  1  1  1  1  1  1   1
Y.2    14 -2  2  5 -1  2  1 -1  .  .  -1
</pre></div>

<p>In this case, we do not attempt to compute the complete character table of <span class="SimpleMath">\(G\)</span>. Instead, we show that <span class="SimpleMath">\(G/N\)</span> has at least five regular orbits on the dual space of <span class="SimpleMath">\(N\)</span>, and apply \cite[Lemma 5.1 (i)]{DNT}. (Note that <span class="SimpleMath">\(N\)</span> is in fact self-dual.)</p>

<p>For that, we use <strong class="pkg">GAP</strong>'s table of marks of <span class="SimpleMath">\(S\)</span>. The information stored for this table of marks allows us to compute, for each class of subgroups <span class="SimpleMath">\(U\)</span> of <span class="SimpleMath">\(S\)</span>, the numbers of orbits in the dual space of <span class="SimpleMath">\(N\)</span> for which contain the point stabilizers in <span class="SimpleMath">\(S\)</span> are exactly the conjugates of <span class="SimpleMath">\(U\)</span>. The following <strong class="pkg">GAP</strong> function takes the table of marks <code class="code">tom</code> of <span class="SimpleMath">\(S\)</span>, a list <code class="code">matgens</code> of matrices that describe the action of the generators of <span class="SimpleMath">\(S\)</span> on the vector space in question, and the size <code class="code">q</code> of its field of scalars. The return value is a record with the components <code class="code">fixed</code> (the vector of numbers of fixed points of the subgroups of <span class="SimpleMath">\(S\)</span> on the dual of <span class="SimpleMath">\(N\)</span>), <code class="code">decomp</code> (the numbers of orbits with the corresponding point stabilizers), <code class="code">nonzeropos</code> (the positions of subgroups that occur as point stabilizers), and <code class="code">staborders</code> (the list of orders of the subgroups that occur as point stabilizers).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbits_from_tom:= function( tom, matgens, q )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local slp, fixed, idmat, i, rest, decomp, nonzeropos;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    slp:= StraightLineProgramsTom( tom );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fixed:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    idmat:= matgens[1]^0;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for i in [ 1 .. Length( slp ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if IsList( slp[i] ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        # Each subgroup generator has a program of its own.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        rest:= List( slp[i],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     prg -&gt; ResultOfStraightLineProgram( prg, gens ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        # The subgroup generators are computed with one common program.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        rest:= ResultOfStraightLineProgram( slp[i], gens );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if IsEmpty( rest ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        # The subgroup is trivial.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        fixed[i]:= q^Length( idmat );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        # Compute the intersection of fixed spaces of the transposed</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        # matrices, since we act on Irr(N) not on N.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        fixed[i]:= q^Length( NullspaceMat( TransposedMat( Concatenation(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       List( rest, x -&gt; x - idmat ) ) ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    decomp:= DecomposedFixedPointVector( tom, fixed );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    nonzeropos:= Filtered( [ 1 .. Length( decomp ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                           i -&gt; decomp[i] &lt;&gt; 0 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return rec( fixed:= fixed,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                decomp:= decomp,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                nonzeropos:= nonzeropos,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                staborders:= OrdersTom( tom ){ nonzeropos },</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p>Note that this function assumes that the generators of <span class="SimpleMath">\(S\)</span> obtained from the <strong class="pkg">Atlas</strong> of Group Representations are compatible with the generators from <strong class="pkg">GAP</strong>'s table of marks of <span class="SimpleMath">\(S\)</span>. This fact can be read off from the <code class="keyw">true</code> value of the <code class="code">ATLAS</code> component in the <code class="func">StandardGeneratorsInfo</code> (<a href="../../../pkg/tomlib/doc/chap1_mj.html#X7984E27078B20557"><span class="RefLink">TomLib: StandardGeneratorsInfo for groups</span></a>) value of the table of marks.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( "J2" );</span>
TableOfMarks( "J2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StandardGeneratorsInfo( tom );</span>
[ rec( ATLAS := true, 
      description := "|z|=10, z^5=a, |b|=3, |C(b)|=36, |ab|=7", 
      generators := "a, b", 
      script := 
        [ [ 1, 10, 5 ], [ 2, 3 ], [ [ 2, 1 ], [ "|C(",, ")|" ], 36 ], 
          [ 1, 1, 2, 1, 7 ] ], standardization := 1 ) ]
</pre></div>

<p>Alternatively, we can compute whether the generators are compatible, as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= OneAtlasGeneratingSetInfo( "J2", Dimension, d, Ring, GF(p) );</span>
rec( charactername := "14a", constituents := [ 2 ], 
  contents := "core", dim := 14, givenRing := GF(5), 
  groupname := "J2", id := "", 
  identifier := [ "J2", [ "J2G1-f5r14B0.m1", "J2G1-f5r14B0.m2" ], 1, 
      5 ], repname := "J2G1-f5r14B0", repnr := 19, ring := GF(5), 
  size := 604800, standardization := 1, type := "matff" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= AtlasGenerators( info ).generators;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">map:= GroupGeneralMappingByImages( UnderlyingGroup( tom ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Group( gens ), GeneratorsOfGroup( UnderlyingGroup( tom ) ), gens );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsGroupHomomorphism( map );</span>
true
</pre></div>

<p>Now we are sure that we may apply the function <code class="code">orbits_from_tom</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbits_from_tom( tom, gens, p );</span>
rec( 
  decomp := [ 8600, 0, 2512, 359, 10, 0, 0, 212, 5, 0, 0, 4, 0, 240, 
      16, 10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 2, 0, 0, 36, 0, 0, 0, 26, 
      0, 0, 0, 0, 0, 0, 0, 20, 0, 10, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 10, 0, 0, 5, 0, 0, 0, 26, 0, 10, 0, 0, 0, 0, 10, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 2, 0, 
      0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 4, 0, 0, 0, 4, 0, 0, 1 ], 
  fixed := [ 6103515625, 15625, 390625, 390625, 625, 25, 3125, 3125, 
      625, 625, 625, 625, 5, 3125, 125, 625, 25, 25, 125, 5, 125, 25, 
      125, 25, 25, 25, 5, 125, 125, 125, 25, 25, 3125, 1, 1, 5, 5, 
      25, 5, 25, 125, 5, 25, 25, 25, 25, 25, 25, 5, 25, 25, 5, 25, 5, 
      5, 5, 5, 25, 25, 1, 125, 1, 5, 5, 125, 1, 25, 5, 25, 1, 5, 25, 
      5, 5, 25, 25, 5, 5, 5, 1, 5, 5, 1, 1, 1, 5, 1, 25, 25, 25, 1, 
      5, 25, 5, 5, 1, 1, 125, 5, 5, 5, 25, 5, 5, 5, 1, 1, 5, 5, 1, 5, 
      1, 5, 1, 1, 25, 5, 5, 1, 1, 1, 1, 5, 1, 1, 25, 1, 1, 5, 1, 1, 
      5, 1, 5, 1, 1, 5, 1, 5, 1, 1, 1, 5, 1, 1, 1 ], 
  nonzeropos := [ 1, 3, 4, 5, 8, 9, 12, 14, 15, 16, 21, 26, 29, 33, 
      41, 43, 44, 58, 61, 65, 67, 72, 89, 93, 98, 99, 105, 116, 126, 
      139, 143, 146 ], 
  staborders := [ 1, 2, 3, 3, 4, 4, 5, 6, 6, 6, 8, 9, 10, 12, 12, 12, 
      14, 20, 24, 24, 24, 30, 48, 50, 60, 60, 72, 120, 192, 600, 
      1920, 604800 ] )
</pre></div>

<p>We see that <span class="SimpleMath">\(S\)</span> has <span class="SimpleMath">\(8\,600\)</span> regular orbits on (the dual space of) <span class="SimpleMath">\(N\)</span>.</p>

<p><a id="X828AECAE82B0CEB6" name="X828AECAE82B0CEB6"></a></p>

<h4>10.5 <span class="Heading"><span class="SimpleMath">\(G/N \cong J_2\)</span> and <span class="SimpleMath">\(|N| = 2^{28}\)</span></span></h4>

<p>The group <span class="SimpleMath">\(S = J_2\)</span> has exactly one irreducible <span class="SimpleMath">\(28\)</span>-dimensional module over the field with two elements, up to isomorphism. This module can be obtained from any of the two absolutely irreducible <span class="SimpleMath">\(14\)</span>-dimensional <span class="SimpleMath">\(S\)</span>-modules in characteristic two, by regarding it as a module over the prime field <span class="SimpleMath">\(GF(2)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:= 2;;  d:= 28;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "J2" ) mod p;</span>
BrauerTable( "J2", 2 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr:= Filtered( Irr( t ), x -&gt; x[1] &lt;= d );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( t, rec( chars:= irr, powermap:= false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    centralizers:= false ) );</span>
J2mod2

       1a 3a 3b 5a 5b  5c  5d 7a 15a 15b

Y.1     1  1  1  1  1   1   1  1   1   1
Y.2     6 -3  .  A *A   C  *C -1   D  *D
Y.3     6 -3  . *A  A  *C   C -1  *D   D
Y.4    14  5 -1  B *B  -C -*C  .   .   .
Y.5    14  5 -1 *B  B -*C  -C  .   .   .

A = -2*E(5)-2*E(5)^4
  = 1-Sqrt(5) = 1-r5
B = -3*E(5)-3*E(5)^4
  = (3-3*Sqrt(5))/2 = -3b5
C = E(5)+2*E(5)^2+2*E(5)^3+E(5)^4
  = (-3-Sqrt(5))/2 = -2-b5
D = E(5)+E(5)^4
  = (-1+Sqrt(5))/2 = b5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( irr, x -&gt; SizeOfFieldOfDefinition( x, p ) );</span>
[ 2, 4, 4, 4, 4 ]
</pre></div>

<p>We use the same approach as in the previous example.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( "J2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= OneAtlasGeneratingSetInfo( "J2", Dimension, 14, Ring, GF(4) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= List( AtlasGenerators( info ).generators,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                x -&gt; BlownUpMat( Basis(GF(4)), x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbits_from_tom( tom, gens, p );</span>
rec( 
  decomp := [ 235, 33, 282, 38, 0, 0, 6, 31, 36, 0, 0, 0, 3, 66, 9, 
      0, 0, 0, 0, 0, 0, 2, 18, 0, 0, 1, 0, 0, 15, 0, 0, 0, 6, 0, 0, 
      0, 0, 0, 0, 0, 12, 0, 0, 5, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 3, 1, 3, 0, 9, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 
      3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 
      0, 0, 3, 0, 0, 1 ], 
  fixed := [ 268435456, 65536, 65536, 65536, 256, 1024, 4096, 1024, 
      1024, 256, 256, 256, 64, 1024, 64, 256, 16, 16, 64, 64, 64, 
      256, 256, 64, 16, 16, 64, 64, 64, 64, 16, 16, 1024, 4, 4, 4, 4, 
      16, 16, 16, 64, 16, 16, 16, 16, 64, 16, 16, 16, 64, 16, 16, 16, 
      16, 4, 16, 16, 16, 16, 1, 64, 4, 16, 4, 64, 4, 16, 4, 16, 1, 4, 
      16, 4, 4, 16, 16, 4, 4, 16, 1, 4, 16, 1, 1, 1, 16, 4, 16, 16, 
      16, 1, 4, 16, 4, 4, 1, 4, 64, 4, 4, 4, 16, 4, 4, 4, 1, 1, 4, 
      16, 1, 4, 1, 4, 1, 4, 16, 4, 4, 1, 1, 1, 1, 4, 1, 1, 16, 1, 1, 
      4, 1, 4, 4, 1, 4, 1, 1, 4, 1, 4, 1, 1, 1, 4, 1, 1, 1 ], 
  nonzeropos := [ 1, 2, 3, 4, 7, 8, 9, 13, 14, 15, 22, 23, 26, 29, 
      33, 41, 44, 46, 50, 61, 62, 63, 65, 72, 82, 93, 99, 105, 109, 
      116, 126, 131, 139, 143, 146 ], 
  staborders := [ 1, 2, 2, 3, 4, 4, 4, 6, 6, 6, 8, 8, 9, 10, 12, 12, 
      14, 16, 16, 24, 24, 24, 24, 30, 40, 50, 60, 72, 96, 120, 192, 
      240, 600, 1920, 604800 ] )
</pre></div>

<p>We see that <span class="SimpleMath">\(S\)</span> has <span class="SimpleMath">\(235\)</span> regular orbits on (the dual space of) <span class="SimpleMath">\(N\)</span>.</p>

<p><a id="X81AB173981E3EED7" name="X81AB173981E3EED7"></a></p>

<h4>10.6 <span class="Heading"><span class="SimpleMath">\(G/N \cong {}^3D_4(2)\)</span> and <span class="SimpleMath">\(|N| = 2^{26}\)</span></span></h4>

<p>The group <span class="SimpleMath">\(S = {}^3D_4(2)\)</span> has exactly one irreducible <span class="SimpleMath">\(26\)</span>-dimensional module over the field with two elements, up to isomorphism. This module is in fact absolutely irreducible.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:= 2;;  d:= 26;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "3D4(2)" ) mod p;</span>
BrauerTable( "3D4(2)", 2 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr:= Filtered( Irr( t ), x -&gt; x[1] &lt;= d );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( t, rec( chars:= irr, powermap:= false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    centralizers:= false ) );</span>
3D4(2)mod2

       1a 3a 3b 7a 7b 7c 7d 9a 9b 9c 13a 13b 13c 21a 21b 21c

Y.1     1  1  1  1  1  1  1  1  1  1   1   1   1   1   1   1
Y.2     8  2 -1  A  C  B  1  D  F  E   G   I   H   J   L   K
Y.3     8  2 -1  B  A  C  1  E  D  F   H   G   I   K   J   L
Y.4     8  2 -1  C  B  A  1  F  E  D   I   H   G   L   K   J
Y.5    26 -1 -1  5  5  5 -2  2  2  2   .   .   .  -1  -1  -1

A = 3*E(7)^2+E(7)^3+E(7)^4+3*E(7)^5
B = 3*E(7)+E(7)^2+E(7)^5+3*E(7)^6
C = E(7)+3*E(7)^3+3*E(7)^4+E(7)^6
D = -E(9)^2+E(9)^3-2*E(9)^4-2*E(9)^5+E(9)^6-E(9)^7
E = -E(9)^2+E(9)^3+E(9)^4+E(9)^5+E(9)^6-E(9)^7
F = 2*E(9)^2+E(9)^3+E(9)^4+E(9)^5+E(9)^6+2*E(9)^7
G = E(13)+E(13)^2+E(13)^3+E(13)^5+E(13)^8+E(13)^10+E(13)^11+E(13)^12
H = E(13)+E(13)^4+E(13)^5+E(13)^6+E(13)^7+E(13)^8+E(13)^9+E(13)^12
I = E(13)^2+E(13)^3+E(13)^4+E(13)^6+E(13)^7+E(13)^9+E(13)^10+E(13)^11
J = E(7)^3+E(7)^4
K = E(7)^2+E(7)^5
L = E(7)+E(7)^6
</pre></div>

<p>We try the same approach as in the examples about the group <span class="SimpleMath">\(J_2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( "3D4(2)" );</span>
TableOfMarks( "3D4(2)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StandardGeneratorsInfo( tom );</span>
[ rec( ATLAS := true, 
      description := "|z|=8, z^4=a, |b|=9, |ab|=13, |abb|=8", 
      generators := "a, b", 
      script := [ [ 1, 8, 4 ], [ 2, 9 ], [ 1, 1, 2, 1, 13 ], 
          [ 1, 1, 2, 1, 2, 1, 8 ] ], standardization := 1 ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= OneAtlasGeneratingSetInfo( "3D4(2)", Dimension, 26, Ring, GF(2) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= AtlasGenerators( info ).generators;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">map:= GroupGeneralMappingByImages( UnderlyingGroup( tom ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Group( gens ), GeneratorsOfGroup( UnderlyingGroup( tom ) ), gens );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsGroupHomomorphism( map );</span>
true
</pre></div>

<p>Now we apply the function <code class="code">orbits_from_tom</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbsinfo:= orbits_from_tom( tom, gens, p );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbsinfo.fixed[1];</span>
67108864
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbsinfo.decomp[1];</span>
0
</pre></div>

<p>Unfortunately, <span class="SimpleMath">\(S\)</span> has no regular orbit on (the dual of) <span class="SimpleMath">\(N\)</span>. However, there is one orbit whose point stabilizer in <span class="SimpleMath">\(S\)</span> is a dihedral group <span class="SimpleMath">\(D_{18}\)</span> of order <span class="SimpleMath">\(18\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbsinfo.staborders;</span>
[ 16, 16, 18, 42, 48, 52, 64, 72, 392, 1008, 1536, 3024, 3072, 3584, 
  258048, 211341312 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbsinfo.nonzeropos[3];</span>
446
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbsinfo.decomp[446];</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">u:= RepresentativeTom( tom, 446 );</span>
&lt;permutation group of size 18 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsDihedralGroup( u );</span>
true
</pre></div>

<p>Thus there ia a linear character <span class="SimpleMath">\(\lambda\)</span> of <span class="SimpleMath">\(N\)</span> whose inertia subgroup <span class="SimpleMath">\(T = I_G(\lambda)\)</span> has the structure <span class="SimpleMath">\(N.D_{18}\)</span>. Now <span class="SimpleMath">\(Irr( T | \lambda )\)</span> can be identified with those irreducibles of <span class="SimpleMath">\(T/\ker(\lambda)\)</span> that restrict nontrivially to <span class="SimpleMath">\(N/\ker(\lambda)\)</span>, and there are only two groups, up to isomorphism, that can occur as <span class="SimpleMath">\(T/\ker(\lambda)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= Filtered( AllSmallGroups( 36 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            x -&gt; Size( Centre( x ) ) = 2 and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 IsDihedralGroup( x / Centre( x ) ) );</span>
[ &lt;pc group of size 36 with 4 generators&gt;, 
  &lt;pc group of size 36 with 4 generators&gt; ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( cand, StructureDescription );</span>
[ "C9 : C4", "D36" ]
</pre></div>

<p>These two groups are a split and a nonsplit extension of the cyclic group of order <span class="SimpleMath">\(18\)</span> with a group of order two that acts by inverting. In other words, these two groups are the direct product of <span class="SimpleMath">\(D_{18}\)</span> with a cyclic group of order two and the subdirect product of <span class="SimpleMath">\(D_{18}\)</span> with a cyclic group of order four.</p>

<p>Both groups possess irreducible characters of degree two, one rational valued and the other not, which restrict nontrivially to the centre.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( CharacterTable( "Dihedral", 18 ) );</span>
Dihedral(18)

     2  1  .  .  .  .  1
     3  2  2  2  2  2  .

       1a 9a 9b 3a 9c 2a
    2P 1a 9b 9c 3a 9a 1a
    3P 1a 3a 3a 1a 3a 2a

X.1     1  1  1  1  1  1
X.2     1  1  1  1  1 -1
X.3     2  A  B -1  C  .
X.4     2  B  C -1  A  .
X.5     2 -1 -1  2 -1  .
X.6     2  C  A -1  B  .

A = -E(9)^2-E(9)^4-E(9)^5-E(9)^7
B = E(9)^2+E(9)^7
C = E(9)^4+E(9)^5
</pre></div>

<p>By \cite[Lemma 5.1 (ii)]{DNT}, we are done.</p>

<p><a id="X83B044547B96B7A5" name="X83B044547B96B7A5"></a></p>

<h4>10.7 <span class="Heading"><span class="SimpleMath">\(G/N \cong {}^3D_4(2)\)</span> and <span class="SimpleMath">\(|N| = 3^{25}\)</span></span></h4>

<p>The group <span class="SimpleMath">\(S = {}^3D_4(2)\)</span> has exactly one irreducible <span class="SimpleMath">\(25\)</span>-dimensional module over the field with three elements, up to isomorphism. This module is in fact absolutely irreducible.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:= 3;;  d:= 25;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "3D4(2)" ) mod p;</span>
BrauerTable( "3D4(2)", 3 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr:= Filtered( Irr( t ), x -&gt; x[1] &lt;= d );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( t, rec( chars:= irr, powermap:= false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    centralizers:= false ) );</span>
3D4(2)mod3

       1a 2a 2b 4a 4b 4c 7a 7b 7c 7d 8a 8b 13a 13b 13c 14a 14b 14c 28a

Y.1     1  1  1  1  1  1  1  1  1  1  1  1   1   1   1   1   1   1   1
Y.2    25 -7  1  5 -3  1  4  4  4 -3 -1 -1  -1  -1  -1   .   .   .  -2

       28b 28c

Y.1      1   1
Y.2     -2  -2
</pre></div>

<p>We use the same approach as in the examples about the group <span class="SimpleMath">\(J_2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( "3D4(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= OneAtlasGeneratingSetInfo( "3D4(2)", Dimension, d, Ring, GF(p) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= AtlasGenerators( info ).generators;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbsinfo:= orbits_from_tom( tom, gens, p );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbsinfo.fixed[1];</span>
847288609443
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbsinfo.decomp[1];</span>
3551
</pre></div>

<p>We see that <span class="SimpleMath">\(S\)</span> has <span class="SimpleMath">\(3\,551\)</span> regular orbits on (the dual space of) <span class="SimpleMath">\(N\)</span>.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap9_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap11_mj.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>