File: chap11_mj.html

package info (click to toggle)
gap-ctbllib 1.3.9-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 74,872 kB
  • sloc: xml: 41,268; makefile: 215; javascript: 155
file content (7452 lines) | stat: -rw-r--r-- 623,209 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
  src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (CTblLibXpls) - Chapter 11: GAP Computations Concerning Probabilistic Generation of Finite
Simple Groups</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap11"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap10_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chapBib_mj.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap11.html">[MathJax off]</a></p>
<p><a id="X7BE9906583D0FCEC" name="X7BE9906583D0FCEC"></a></p>
<div class="ChapSects"><a href="chap11_mj.html#X7BE9906583D0FCEC">11 <span class="Heading"><strong class="pkg">GAP</strong> Computations Concerning Probabilistic Generation of Finite
Simple Groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X8389AD927B74BA4A">11.1 <span class="Heading">Overview</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7B4649CF7B7CFAA1">11.2 <span class="Heading">Prerequisites</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7B6AEBDF7B857E2E">11.2-1 <span class="Heading">Theoretical Background</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X79D7312484E78274">11.2-2 <span class="Heading">Computational Criteria</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7B56BE5384BAD54E">11.3 <span class="Heading"><strong class="pkg">GAP</strong> Functions for the Computations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X806328747D1D4ECC">11.3-1 <span class="Heading">General Utilities</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7A221012861440E2">11.3-2 <span class="Heading">Character-Theoretic Computations</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X83DACCF07EF62FAE">11.3-3 <span class="Heading">Computations with Groups</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7A221012861440E2">11.4 <span class="Heading">Character-Theoretic Computations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X86CE51E180A3D4ED">11.4-1 <span class="Heading">Sporadic Simple Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X84E9D10F80A74A53">11.4-2 <span class="Heading">Automorphism Groups of Sporadic Simple Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X80DA58F187CDCF5F">11.4-3 <span class="Heading">Other Simple Groups – Easy Cases</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7B1E26D586337487">11.4-4 <span class="Heading">Automorphism Groups of other Simple Groups – Easy Cases</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X78B856907ED13545">11.4-5 <span class="Heading"><span class="SimpleMath">\(O_8^-(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X84AB334886DCA746">11.4-6 <span class="Heading"><span class="SimpleMath">\(O_{10}^+(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X84E3E4837BB93977">11.4-7 <span class="Heading"><span class="SimpleMath">\(O_{10}^-(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X8307367E7C7C3BCE">11.4-8 <span class="Heading"><span class="SimpleMath">\(O_{12}^+(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X834FE1B58119A5FF">11.4-9 <span class="Heading"><span class="SimpleMath">\(O_{12}^-(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7C5980A385C088FA">11.4-10 <span class="Heading"><span class="SimpleMath">\(S_6(4)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X829EDF7F7C0BCB8E">11.4-11 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(S_6(5)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X85162B297E4B67EB">11.4-12 <span class="Heading"><span class="SimpleMath">\(S_8(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X8495C2BF7B6EFFEF">11.4-13 <span class="Heading"><span class="SimpleMath">\(U_4(4)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7A3BB5AA83A2BDF3">11.4-14 <span class="Heading"><span class="SimpleMath">\(U_6(2)\)</span></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X8237B8617D6F6027">11.5 <span class="Heading">Computations using Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X815320787B601000">11.5-1 <span class="Heading"><span class="SimpleMath">\(A_{2m+1}\)</span>, <span class="SimpleMath">\(2 \leq m \leq 11\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7B5321337B28100B">11.5-2 <span class="Heading"><span class="SimpleMath">\(A_5\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X82C3B4287B0C7BEE">11.5-3 <span class="Heading"><span class="SimpleMath">\(A_6\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X85B3C7217B105D4D">11.5-4 <span class="Heading"><span class="SimpleMath">\(A_7\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X84EA645A82E2BAFB">11.5-5 <span class="Heading"><span class="SimpleMath">\(L_d(q)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X855460BE787188B9">11.5-6 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(L_d(q)\)</span> with prime <span class="SimpleMath">\(d\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7EA88CEF81962F3F">11.5-7 <span class="Heading">Automorphic Extensions of <span class="SimpleMath">\(L_d(q)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7C8806DB8588BB51">11.5-8 <span class="Heading"><span class="SimpleMath">\(L_3(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7B7061917ED3714D">11.5-9 <span class="Heading"><span class="SimpleMath">\(M_{11}\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X82E0F48A7FF82BB3">11.5-10 <span class="Heading"><span class="SimpleMath">\(M_{12}\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7FF2E8F27FBEB65C">11.5-11 <span class="Heading"><span class="SimpleMath">\(O_7(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7F80F2527C424AA4">11.5-12 <span class="Heading"><span class="SimpleMath">\(O_8^+(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X78F0815B86253A1F">11.5-13 <span class="Heading"><span class="SimpleMath">\(O_8^+(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X85BACC4A83F73392">11.5-14 <span class="Heading"><span class="SimpleMath">\(O^+_8(4)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X86EC26F78609618E">11.5-15 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(O_9(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X8393978A8773997E">11.5-16 <span class="Heading"><span class="SimpleMath">\(O_{10}^-(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7BBBEEEF834F1002">11.5-17 <span class="Heading"><span class="SimpleMath">\(O_{14}^-(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X8477457780B69BC7">11.5-18 <span class="Heading"><span class="SimpleMath">\(O_{12}^+(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X854D85F287767342">11.5-19 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(S_4(8)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X82CFBAF07D3487A0">11.5-20 <span class="Heading"><span class="SimpleMath">\(S_6(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X826658207D9D6570">11.5-21 <span class="Heading"><span class="SimpleMath">\(S_8(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X82A6496887F80843">11.5-22 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(S_{10}(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7A03F8EC839AF0B5">11.5-23 <span class="Heading"><span class="SimpleMath">\(U_4(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7D738BE5804CF22E">11.5-24 <span class="Heading"><span class="SimpleMath">\(U_4(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7D4BC6A38074BF68">11.5-25 <span class="Heading"><span class="SimpleMath">\(U_6(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap11_mj.html#X7A92577A830B5F23">11.5-26 <span class="Heading"><span class="SimpleMath">\(U_8(2)\)</span></span></a>
</span>
</div></div>
</div>

<h3>11 <span class="Heading"><strong class="pkg">GAP</strong> Computations Concerning Probabilistic Generation of Finite
Simple Groups</span></h3>

<p>Date: March 28th, 2012</p>

<p>This is a collection of examples showing how the <strong class="pkg">GAP</strong> system <a href="chapBib_mj.html#biBGAP">[GAP21]</a> can be used to compute information about the probabilistic generation of finite almost simple groups. It includes all examples that were needed for the computational results in <a href="chapBib_mj.html#biBBGK">[BGK08]</a>.</p>

<p>The purpose of this writeup is twofold. On the one hand, the computations are documented this way. On the other hand, the <strong class="pkg">GAP</strong> code shown for the examples can be used as test input for automatic checking of the data and the functions used.</p>

<p>A first version of this document, which was based on <strong class="pkg">GAP</strong> 4.4.10, had been accessible in the web since April 2006 and is available in the arXiv (no. 0710.3267) since October 2007. The differences between that document and the current version are as follows.</p>


<ul>
<li><p>The format of the <strong class="pkg">GAP</strong> output was adjusted to the changed behaviour of <strong class="pkg">GAP</strong> until version 4.10. This affects mainly the way how <strong class="pkg">GAP</strong> records are printed.</p>

</li>
<li><p>Several computations are now easier because more character tables of almost simple groups and maximal subgroups of such groups are available in the <strong class="pkg">GAP</strong> Character Table Library. (The more involved computations from the original version have been kept in the file.)</p>

</li>
<li><p>The computation of all conjugacy classes of a subgroup of <span class="SimpleMath">\(PΩ^+(12,3)\)</span> has been replaced by the computation of the conjugacy classes of elements of prime order in this subgroup.</p>

</li>
<li><p>The irreducible element chosen in the simple group <span class="SimpleMath">\(PΩ^-(10,3)\)</span> has order <span class="SimpleMath">\(61\)</span> not <span class="SimpleMath">\(122\)</span>.</p>

</li>
</ul>
<p><a id="X8389AD927B74BA4A" name="X8389AD927B74BA4A"></a></p>

<h4>11.1 <span class="Heading">Overview</span></h4>

<p>The main purpose of this note is to document the <strong class="pkg">GAP</strong> computations that were carried out in order to obtain the computational results in <a href="chapBib_mj.html#biBBGK">[BGK08]</a>. Table I lists the simple groups among these examples. The first column gives the group names, the second and third columns contain a plus sign <span class="SimpleMath">\(+\)</span> or a minus sign <span class="SimpleMath">\(-\)</span>, depending on whether the quantities <span class="SimpleMath">\(σ(G,s)\)</span> and <span class="SimpleMath">\(P(G,s)\)</span>, respectively, are less than <span class="SimpleMath">\(1/3\)</span>. The fourth column lists the orders of elements <span class="SimpleMath">\(s\)</span> which either prove the <span class="SimpleMath">\(+\)</span> signs or cover most of the cases for proving these signs. The fifth column lists the sections in this note where the example is treated. The rows of the table are ordered alphabetically w.r.t. the group names.</p>

<p>In order to keep this note self-contained, we first describe the theory needed, in Section <a href="chap11_mj.html#X7B4649CF7B7CFAA1"><span class="RefLink">11.2</span></a>. The translation of the relevant formulae into <strong class="pkg">GAP</strong> functions can be found in Section <a href="chap11_mj.html#X7B56BE5384BAD54E"><span class="RefLink">11.3</span></a>. Then Section <a href="chap11_mj.html#X7A221012861440E2"><span class="RefLink">11.4</span></a> describes the computations that only require (ordinary) character tables in the <strong class="pkg">GAP</strong> Character Table Library <a href="chapBib_mj.html#biBCTblLib">[Bre24]</a>. Computations using also the groups are shown in Section <a href="chap11_mj.html#X8237B8617D6F6027"><span class="RefLink">11.5</span></a>. In each of the last two sections, the examples are ordered alphabetically w.r.t. the names of the simple groups.</p>

<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b>Table I: Computations needed in <a href="chapBib_mj.html#biBBGK">[BGK08]</a></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(G\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(σ &lt; \frac{1}{3}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(P &lt; \frac{1}{3}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(|s|\)</span></td>
<td class="tdright">see</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_5\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(5\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7B5321337B28100B"><span class="RefLink">11.5-2</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_6\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(4\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X82C3B4287B0C7BEE"><span class="RefLink">11.5-3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_7\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(7\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X85B3C7217B105D4D"><span class="RefLink">11.5-4</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_8\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(15\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_9\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(9\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{11}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(11\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{13}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(13\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{15}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(15\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{17}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(17\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{19}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(19\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{21}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(21\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{23}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(23\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_3(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(7\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a>,</td>
</tr>
<tr>
<td class="tdleft"> </td>
<td class="tdcenter"> </td>
<td class="tdcenter"> </td>
<td class="tdright"> </td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a>, <a href="chap11_mj.html#X7C8806DB8588BB51"><span class="RefLink">11.5-8</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_3(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(13\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a>,</td>
</tr>
<tr>
<td class="tdleft"> </td>
<td class="tdcenter"> </td>
<td class="tdcenter"> </td>
<td class="tdright"> </td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_3(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(7\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_4(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(20\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_4(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(85\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_6(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(63\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_6(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(182\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_6(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(455\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_6(5)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(1953\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_8(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(255\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_{10}(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(1023\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{11}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(11\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7B7061917ED3714D"><span class="RefLink">11.5-9</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{12}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdright"><span class="SimpleMath">\(10\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84E9D10F80A74A53"><span class="RefLink">11.4-2</span></a>, <a href="chap11_mj.html#X82E0F48A7FF82BB3"><span class="RefLink">11.5-10</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^+_8(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(15\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7F80F2527C424AA4"><span class="RefLink">11.5-12</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^+_8(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(20\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X78F0815B86253A1F"><span class="RefLink">11.5-13</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^+_8(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(65\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X85BACC4A83F73392"><span class="RefLink">11.5-14</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^+_{10}(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(45\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84AB334886DCA746"><span class="RefLink">11.4-6</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^+_{12}(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(85\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X8307367E7C7C3BCE"><span class="RefLink">11.4-8</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^+_{12}(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(205\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X8477457780B69BC7"><span class="RefLink">11.5-18</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^-_8(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(17\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^-_8(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(41\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X78B856907ED13545"><span class="RefLink">11.4-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^-_{10}(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(33\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84E3E4837BB93977"><span class="RefLink">11.4-7</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^-_{10}(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(122\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X8393978A8773997E"><span class="RefLink">11.5-16</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^-_{12}(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(65\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X834FE1B58119A5FF"><span class="RefLink">11.4-9</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^-_{14}(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(129\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7BBBEEEF834F1002"><span class="RefLink">11.5-17</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O_7(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(14\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7FF2E8F27FBEB65C"><span class="RefLink">11.5-11</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_4(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(17\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_6(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(9\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X82CFBAF07D3487A0"><span class="RefLink">11.5-20</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_6(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(14\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_6(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(65\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7C5980A385C088FA"><span class="RefLink">11.4-10</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_8(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(17\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X826658207D9D6570"><span class="RefLink">11.5-21</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_8(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(41\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X85162B297E4B67EB"><span class="RefLink">11.4-12</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_3(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(6\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_3(5)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(10\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_4(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(9\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7A03F8EC839AF0B5"><span class="RefLink">11.5-23</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_4(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdright"><span class="SimpleMath">\(7\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7D738BE5804CF22E"><span class="RefLink">11.5-24</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_4(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(65\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X8495C2BF7B6EFFEF"><span class="RefLink">11.4-13</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_5(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(11\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_6(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(11\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7A3BB5AA83A2BDF3"><span class="RefLink">11.4-14</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_6(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(122\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7D4BC6A38074BF68"><span class="RefLink">11.5-25</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_8(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(129\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7A92577A830B5F23"><span class="RefLink">11.5-26</span></a></td>
</tr>
</table><br />
</div>

<p>Contrary to <a href="chapBib_mj.html#biBBGK">[BGK08]</a>, <strong class="pkg">Atlas</strong> notation is used throughout this note, because the identifiers used for character tables in the <strong class="pkg">GAP</strong> Character Table Library follow mainly the <strong class="pkg">Atlas</strong> <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>. For example, we write <span class="SimpleMath">\(L_d(q)\)</span> for <span class="SimpleMath">\(PSL(d,q)\)</span>, <span class="SimpleMath">\(S_d(q)\)</span> for <span class="SimpleMath">\(PSp(d,q)\)</span>, <span class="SimpleMath">\(U_d(q)\)</span> for <span class="SimpleMath">\(PSU(d,q)\)</span>, and <span class="SimpleMath">\(O^+_{2d}(q)\)</span>, <span class="SimpleMath">\(O^-_{2d}(q)\)</span>, <span class="SimpleMath">\(O_{2d+1}(q)\)</span> for <span class="SimpleMath">\(PΩ^+(2d,q)\)</span>, <span class="SimpleMath">\(PΩ^-(2d,q)\)</span>, <span class="SimpleMath">\(PΩ(2d+1,q)\)</span>, respectively.</p>

<p>Furthermore, in the case of classical groups, the character tables of the (almost) <em>simple</em> groups are considered not the tables of the matrix groups (which are in fact often not available in the <strong class="pkg">GAP</strong> Character Table Library). Consequently, also element orders and the description of maximal subgroups refer to the (almost) simple groups not to the matrix groups.</p>

<p>This note contains also several examples that are not needed for the proofs in <a href="chapBib_mj.html#biBBGK">[BGK08]</a>. Besides several small simple groups <span class="SimpleMath">\(G\)</span> whose character table is contained in the <strong class="pkg">GAP</strong> Character Table Library and for which enough information is available for computing <span class="SimpleMath">\(σ(G)\)</span>, in Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, a few such examples appear in individual sections. In the table of contents, the section headers of the latter kind of examples are marked with an asterisk <span class="SimpleMath">\((\ast)\)</span>.</p>

<p>The examples use the <strong class="pkg">GAP</strong> Character Table Library, the <strong class="pkg">GAP</strong> Library of Tables of Marks, and the <strong class="pkg">GAP</strong> interface <a href="chapBib_mj.html#biBAtlasRep">[WPN+22]</a> to the <strong class="pkg">Atlas</strong> of Group Representations <a href="chapBib_mj.html#biBAGRv3">[WWT+]</a>, so we first load these three packages in the required versions. The <strong class="pkg">GAP</strong> output was adjusted to the versions shown below; in older versions, features necessary for the computations may be missing, and it may happen that with newer versions, the behaviour is different.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CompareVersionNumbers( GAPInfo.Version, "4.5.0" );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "ctbllib", "1.2", false );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "tomlib", "1.2", false );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "atlasrep", "1.5", false );</span>
true
</pre></div>

<p>Some of the computations in Section <a href="chap11_mj.html#X8237B8617D6F6027"><span class="RefLink">11.5</span></a> require about <span class="SimpleMath">\(800\)</span> MB of space (on <span class="SimpleMath">\(32\)</span> bit machines). Therefore we check whether <strong class="pkg">GAP</strong> was started with sufficient maximal memory; the command line option for this is <code class="code">-o 800m</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">max:= GAPInfo.CommandLineOptions.o;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">if not ( ( IsSubset( max, "m" ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              Int( Filtered( max, IsDigitChar ) ) &gt;= 800 ) or</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            ( IsSubset( max, "g" ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              Int( Filtered( max, IsDigitChar ) ) &gt;= 1 ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Print( "the maximal allowed memory might be too small\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   fi;</span>
</pre></div>

<p>Several computations involve calls to the <strong class="pkg">GAP</strong> function <code class="func">Random</code> (<a href="../../../doc/ref/chap30_mj.html#X7FF906E57D6936F8"><span class="RefLink">Reference: Random</span></a>). In order to make the results of individual examples reproducible, independent of the rest of the computations, we reset the relevant random number generators whenever this is appropriate. For that, we store the initial states in the variable <code class="code">staterandom</code>, and provide a function for resetting the random number generators. (The <code class="func">Random</code> (<a href="../../../doc/ref/chap30_mj.html#X7FF906E57D6936F8"><span class="RefLink">Reference: Random</span></a>) calls in the <strong class="pkg">GAP</strong> library use the two random number generators <code class="func">GlobalRandomSource</code> (<a href="../../../doc/ref/chap14_mj.html#X7AC96008820FAF1F"><span class="RefLink">Reference: GlobalRandomSource</span></a>) and <code class="func">GlobalMersenneTwister</code> (<a href="../../../doc/ref/chap14_mj.html#X7AC96008820FAF1F"><span class="RefLink">Reference: GlobalMersenneTwister</span></a>).)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">staterandom:= [ State( GlobalRandomSource ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   State( GlobalMersenneTwister ) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators:= function()</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    Reset( GlobalRandomSource, staterandom[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    Reset( GlobalMersenneTwister, staterandom[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p><a id="X7B4649CF7B7CFAA1" name="X7B4649CF7B7CFAA1"></a></p>

<h4>11.2 <span class="Heading">Prerequisites</span></h4>

<p><a id="X7B6AEBDF7B857E2E" name="X7B6AEBDF7B857E2E"></a></p>

<h5>11.2-1 <span class="Heading">Theoretical Background</span></h5>

<p>Let <span class="SimpleMath">\(G\)</span> be a finite group, <span class="SimpleMath">\(S\)</span> the socle of <span class="SimpleMath">\(G\)</span>, and denote by <span class="SimpleMath">\(G^{\times}\)</span> the set of nonidentity elements in <span class="SimpleMath">\(G\)</span>. For <span class="SimpleMath">\(s, g \in G^{\times}\)</span>, let <span class="SimpleMath">\(P( g, s ):= |\{ h \in G; S \nsubseteq \langle s^h, g \rangle \}| / |G|\)</span>, the proportion of elements in the class <span class="SimpleMath">\(s^G\)</span> which fail to generate at least <span class="SimpleMath">\(S\)</span> with <span class="SimpleMath">\(g\)</span>; we set <span class="SimpleMath">\(P( G, s ):= \max\{ P( g, s ); g \in G^{\times} \}\)</span>. We are interested in finding a class <span class="SimpleMath">\(s^G\)</span> of elements in <span class="SimpleMath">\(S\)</span> such that <span class="SimpleMath">\(P( G, s ) &lt; 1/3\)</span> holds.</p>

<p>First consider <span class="SimpleMath">\(g \in S\)</span>, and let <span class="SimpleMath">\(𝕄(S,s)\)</span> denote the set of those maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain <span class="SimpleMath">\(s\)</span>. We have</p>

<p class="center">\[
   |\{ h \in S; S \nsubseteq \langle s^h, g \rangle \}|
       =  |\{ h \in S; \langle s, h g h^{-1} \rangle ≠ S \}| \\
       \leq  \sum_{M \in 𝕄(S,s)} |\{ h \in S; h g h^{-1} \in M \}|
\]</p>

<p>Since <span class="SimpleMath">\(h g h^{-1} \in M\)</span> holds if and only if the coset <span class="SimpleMath">\(M h\)</span> is fixed by <span class="SimpleMath">\(g\)</span> under the permutation action of <span class="SimpleMath">\(S\)</span> on the right cosets of <span class="SimpleMath">\(M\)</span> in <span class="SimpleMath">\(S\)</span>, we get that <span class="SimpleMath">\(|\{ h \in S; h g h^{-1} \in M \}| = |C_S(g)| \cdot |g^S \cap M| = |M| \cdot 1_M^S(g)\)</span>, where <span class="SimpleMath">\(1_M^S\)</span> is the permutation character of this action, of degree <span class="SimpleMath">\(|S|/|M|\)</span>. Thus</p>

<p class="center">\[
   |\{ h \in S; \langle s, h g h^{-1} \rangle ≠ S \}| / |S|
       \leq  \sum_{M \in 𝕄(S,s)} 1_M^S(g) / 1_M^S(1) .
\]</p>

<p>We abbreviate the right hand side of this inequality by <span class="SimpleMath">\(σ( g, s )\)</span>, set <span class="SimpleMath">\(σ( S, s ):= \max\{ σ( g, s ); g \in S^{\times} \}\)</span>, and choose a transversal <span class="SimpleMath">\(T\)</span> of <span class="SimpleMath">\(S\)</span> in <span class="SimpleMath">\(G\)</span>. Then <span class="SimpleMath">\(P( g, s ) \leq |T|^{-1} \cdot \sum_{t \in T} σ( g^t, s )\)</span> and thus <span class="SimpleMath">\(P( G, s ) \leq σ( S, s )\)</span> holds.</p>

<p>If <span class="SimpleMath">\(S = G\)</span> and if <span class="SimpleMath">\(𝕄(G,s)\)</span> consists of a single maximal subgroup <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(G\)</span> then equality holds, i.e., <span class="SimpleMath">\(P( g, s ) = σ( g, s ) = 1_M^S(g) / 1_M^S(1)\)</span>.</p>

<p>The quantity <span class="SimpleMath">\(1_M^S(g) / 1_M^S(1) = |g^S \cap M| / |g^S|\)</span> is the proportion of fixed points of <span class="SimpleMath">\(g\)</span> in the permutation action of <span class="SimpleMath">\(S\)</span> on the right cosets of its subgroup <span class="SimpleMath">\(M\)</span>. This is called the <em>fixed point ratio</em> of <span class="SimpleMath">\(g\)</span> w. r. t. <span class="SimpleMath">\(S/M\)</span>, and is denoted as <span class="SimpleMath">\(μ(g,S/M)\)</span>.</p>

<p>For a subgroup <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(S\)</span>, the number <span class="SimpleMath">\(n\)</span> of <span class="SimpleMath">\(S\)</span>-conjugates of <span class="SimpleMath">\(M\)</span> containing <span class="SimpleMath">\(s\)</span> is equal to <span class="SimpleMath">\(|M^S| \cdot |s^S \cap M| / |s^S|\)</span>. To see this, consider the set <span class="SimpleMath">\(\{ (s^h, M^k); h, k \in S, s^h \in M^k \}\)</span>, the cardinality of which can be counted either as <span class="SimpleMath">\(|M^S| \cdot |s^S \cap M|\)</span> or as <span class="SimpleMath">\(|s^S| \cdot n\)</span>. So we get <span class="SimpleMath">\(n = |M| \cdot 1_M^S(s) / |N_S(M)|\)</span>.</p>

<p>If <span class="SimpleMath">\(S\)</span> is a finite <em>nonabelian simple</em> group then each maximal subgroup in <span class="SimpleMath">\(S\)</span> is self-normalizing, and we have <span class="SimpleMath">\(n = 1_M^S(s)\)</span> if <span class="SimpleMath">\(M\)</span> is maximal. So we can replace the summation over <span class="SimpleMath">\(𝕄(S,s)\)</span> by one over a set <span class="SimpleMath">\(𝕄/~(S,s)\)</span> of representatives of conjugacy classes of maximal subgroups of <span class="SimpleMath">\(S\)</span>, and get that</p>

<p class="center">\[
   σ( g, s ) = \sum_{M \in 𝕄/~(S,s)}
     \frac{1_M^S(s) \cdot 1_M^S(g)}{1_M^S(1)}.
\]</p>

<p>Furthermore, we have <span class="SimpleMath">\(|𝕄(S,s)| = \sum_{M \in 𝕄/~(S,s)} 1_M^S(s)\)</span>.</p>

<p>In the following, we will often deal with the quantities <span class="SimpleMath">\(σ(S):= \min\{ σ( S, s ); s \in S^{\times} \}\)</span> and <span class="SimpleMath">\(𝕊/~(S):= \lceil 1 / σ(S) - 1 \rceil\)</span>. These values can be computed easily from the primitive permutation characters of <span class="SimpleMath">\(S\)</span>.</p>

<p>Analogously, we set <span class="SimpleMath">\(P(S):= \min \{ P( S, s ); s \in S^{\times} \}\)</span> and <span class="SimpleMath">\(P(S):= \lceil 1 / P(S) - 1 \rceil\)</span>. Clearly we have <span class="SimpleMath">\(P(S) \leq σ(S)\)</span> and <span class="SimpleMath">\(P(S) \geq 𝕊/~(S)\)</span>.</p>

<p>One interpretation of <span class="SimpleMath">\(P(S)\)</span> is that if this value is at least <span class="SimpleMath">\(k\)</span> then it follows that for any <span class="SimpleMath">\(g_1, g_2, \ldots, g_k \in S^{\times}\)</span>, there is some <span class="SimpleMath">\(s \in S\)</span> such that <span class="SimpleMath">\(S = \langle g_i, s \rangle\)</span>, for <span class="SimpleMath">\(1 \leq i \leq k\)</span>. In this case, <span class="SimpleMath">\(S\)</span> is said to have <em>spread</em> at least <span class="SimpleMath">\(k\)</span>. (Note that the lower bound <span class="SimpleMath">\(𝕊/~(S)\)</span> for <span class="SimpleMath">\(P(S)\)</span> can be computed from the list of primitive permutation characters of <span class="SimpleMath">\(S\)</span>.)</p>

<p>Moreover, <span class="SimpleMath">\(P(S) \geq k\)</span> implies that the element <span class="SimpleMath">\(s\)</span> can be chosen uniformly from a fixed conjugacy class of <span class="SimpleMath">\(S\)</span>. This is called <em>uniform spread</em> at least <span class="SimpleMath">\(k\)</span> in <a href="chapBib_mj.html#biBBGK">[BGK08]</a>.</p>

<p>It is proved in <a href="chapBib_mj.html#biBGK">[GK00]</a> that all finite simple groups have uniform spread at least <span class="SimpleMath">\(1\)</span>, that is, for any element <span class="SimpleMath">\(x \in S^{\times}\)</span>, there is an element <span class="SimpleMath">\(y\)</span> in a prescribed class of <span class="SimpleMath">\(S\)</span> such that <span class="SimpleMath">\(G = \langle x, y \rangle\)</span> holds. In <a href="chapBib_mj.html#biBBGK">[BGK08, Corollary 1.3]</a>, it is shown that all finite simple groups have uniform spread at least <span class="SimpleMath">\(2\)</span>, and the finite simple groups with (uniform) spread exactly <span class="SimpleMath">\(2\)</span> are listed.</p>

<p>Concerning the spread, it should be mentioned that the methods used here and in <a href="chapBib_mj.html#biBBGK">[BGK08]</a> are nonconstructive in the sense that they cannot be used for finding an element <span class="SimpleMath">\(s\)</span> that generates <span class="SimpleMath">\(G\)</span> together with each of the <span class="SimpleMath">\(k\)</span> prescribed elements <span class="SimpleMath">\(g_1, g_2, \ldots, g_k\)</span>.</p>

<p>Now consider <span class="SimpleMath">\(g \in G \setminus S\)</span>. Since <span class="SimpleMath">\(P( g^k, s ) \geq P( g, s )\)</span> for any positive integer <span class="SimpleMath">\(k\)</span>, we can assume that <span class="SimpleMath">\(g\)</span> has prime order <span class="SimpleMath">\(p\)</span>, say. We set <span class="SimpleMath">\(H = \langle S, g \rangle \leq G\)</span>, with <span class="SimpleMath">\([H:S] = p\)</span>, choose a transversal <span class="SimpleMath">\(T\)</span> of <span class="SimpleMath">\(H\)</span> in <span class="SimpleMath">\(G\)</span>, let <span class="SimpleMath">\(𝕄^{\prime}(H,s):= 𝕄(H,s) \setminus \{ S \}\)</span>, and let <span class="SimpleMath">\(𝕄/~^{\prime}(H,s)\)</span> denote a set of representatives of <span class="SimpleMath">\(H\)</span>-conjugacy classes of these groups. As above,</p>

<div class="pcenter"><table class="GAPDocTablenoborder">
<tr>
<td class="tdright"><span class="SimpleMath">\(|\{ h \in H; S \nsubseteq \langle s^h, g \rangle \}| / |H|\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(=\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(|\{ h \in H; \langle s^h, g \rangle ≠ H \}| / |H|\)</span></td>
</tr>
<tr>
<td class="tdright"> </td>
<td class="tdcenter"><span class="SimpleMath">\(\leq\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\sum_{M \in 𝕄^{\prime}(H,s)} |\{ h \in H; h g h^{-1} \in M \}| / |H|\)</span></td>
</tr>
<tr>
<td class="tdright"> </td>
<td class="tdcenter"><span class="SimpleMath">\(=\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\sum_{M \in 𝕄^{\prime}(H,s)} 1_M^H(g) / 1_M^H(1)\)</span></td>
</tr>
<tr>
<td class="tdright"> </td>
<td class="tdcenter"><span class="SimpleMath">\(=\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\sum_{M \in 𝕄/~^{\prime}(H,s)} 1_M^H(g) \cdot 1_M^H(s) / 1_M^H(1)\)</span></td>
</tr>
</table><br />
</div>

<p>(Note that no summand for <span class="SimpleMath">\(M = S\)</span> occurs, so each group in <span class="SimpleMath">\(𝕄/~^{\prime}(H,s)\)</span> is self-normalizing.) We abbreviate the right hand side by <span class="SimpleMath">\(σ(H,g,s)\)</span>, and set <span class="SimpleMath">\(σ^{\prime}( H, s ) = \max\{ σ(H,g,s); g \in H \setminus S, |g| = [H:S] \}\)</span>. Then we get <span class="SimpleMath">\(P( g, s ) \leq |T|^{-1} \cdot \sum_{t \in T} σ(H^t,g^t,s)\)</span> and thus</p>

<p class="center">\[
   P( G, s ) \leq \max\{ P( S, s ),
     \max\{ σ^{\prime}( H, s );
               S \leq H \leq G, [H:S] \textrm{\ prime} \} \} .
\]</p>

<p>For convenience, we set <span class="SimpleMath">\(P^{\prime}(G,s) = \max\{ P(g,s); g \in G \setminus S \}\)</span>.</p>

<p><a id="X79D7312484E78274" name="X79D7312484E78274"></a></p>

<h5>11.2-2 <span class="Heading">Computational Criteria</span></h5>

<p>The following criteria will be used when we have to show the existence or nonexistence of <span class="SimpleMath">\(x_1, x_2, \ldots, x_k\)</span>, and <span class="SimpleMath">\(s \in G\)</span> with the property <span class="SimpleMath">\(\langle x_i, s \rangle = G\)</span> for <span class="SimpleMath">\(1 \leq i \leq k\)</span>. Note that manipulating lists of integers (representing fixed or moved points) is much more efficient than testing whether certain permutations generate a given group.</p>

<p>Lemma:</p>

<p>Let <span class="SimpleMath">\(G\)</span> be a finite group, <span class="SimpleMath">\(s \in G^{\times}\)</span>, and <span class="SimpleMath">\(X = \bigcup_{M \in 𝕄(G,s)} G/M\)</span>. For <span class="SimpleMath">\(x_1, x_2, \ldots, x_k \in G\)</span>, the conjugate <span class="SimpleMath">\(s^{\prime}\)</span> of <span class="SimpleMath">\(s\)</span> satisfies <span class="SimpleMath">\(\langle x_i, s^{\prime} \rangle = G\)</span> for <span class="SimpleMath">\(1 \leq i \leq k\)</span> if and only if <span class="SimpleMath">\(Fix_{X}(s^{\prime}) \cap \bigcup_{i=1}^k Fix_{X}(x_i) = \emptyset\)</span> holds.</p>

<p><em>Proof.</em> If <span class="SimpleMath">\(s^g \in U \leq G\)</span> for some <span class="SimpleMath">\(g \in G\)</span> then <span class="SimpleMath">\(Fix_{X}(U) = \emptyset\)</span> if and only if <span class="SimpleMath">\(U = G\)</span> holds; note that <span class="SimpleMath">\(Fix_{X}(G) = \emptyset\)</span>, and <span class="SimpleMath">\(Fix_{X}(U) = \emptyset\)</span> implies that <span class="SimpleMath">\(U \nsubseteq h^{-1} M h\)</span> holds for all <span class="SimpleMath">\(h \in G\)</span> and <span class="SimpleMath">\(M \in 𝕄(G,s)\)</span>, thus <span class="SimpleMath">\(U = G\)</span>. Applied to <span class="SimpleMath">\(U = \langle x_i, s^{\prime} \rangle\)</span>, we get <span class="SimpleMath">\(\langle x_i, s^{\prime} \rangle = G\)</span> if and only if <span class="SimpleMath">\(Fix_{X}(s^{\prime}) \cap Fix_{X}(x_i) = Fix_{X}(U) = \emptyset\)</span>.</p>

<p>Corollary 1:</p>

<p>If <span class="SimpleMath">\(𝕄(G,s) = \{ M \}\)</span> in the situation of the above Lemma then there is a conjugate <span class="SimpleMath">\(s^{\prime}\)</span> of <span class="SimpleMath">\(s\)</span> that satisfies <span class="SimpleMath">\(\langle x_i, s^{\prime} \rangle = G\)</span> for <span class="SimpleMath">\(1 \leq i \leq k\)</span> if and only if <span class="SimpleMath">\(\bigcup_{i=1}^k Fix_{X}(x_i) ≠ X\)</span>.</p>

<p>Corollary 2:</p>

<p>Let <span class="SimpleMath">\(G\)</span> be a finite simple group and let <span class="SimpleMath">\(X\)</span> be a <span class="SimpleMath">\(G\)</span>-set such that each <span class="SimpleMath">\(g \in G\)</span> fixes at least one point in <span class="SimpleMath">\(X\)</span> but that <span class="SimpleMath">\(Fix_{X}(G) = \emptyset\)</span> holds. If <span class="SimpleMath">\(x_1, x_2, \ldots x_k\)</span> are elements in <span class="SimpleMath">\(G\)</span> such that <span class="SimpleMath">\(\bigcup_{i=1}^k Fix_{X}(x_i) = X\)</span> holds then for each <span class="SimpleMath">\(s \in G\)</span> there is at least one <span class="SimpleMath">\(i\)</span> with <span class="SimpleMath">\(\langle x_i, s \rangle ≠ G\)</span>.</p>

<p><a id="X7B56BE5384BAD54E" name="X7B56BE5384BAD54E"></a></p>

<h4>11.3 <span class="Heading"><strong class="pkg">GAP</strong> Functions for the Computations</span></h4>

<p>After the introduction of general utilities in Section <a href="chap11_mj.html#X806328747D1D4ECC"><span class="RefLink">11.3-1</span></a>, we distinguish two different tasks. Section <a href="chap11_mj.html#X7A221012861440E2"><span class="RefLink">11.3-2</span></a> introduces functions that will be used in the following to compute <span class="SimpleMath">\(σ(g,s)\)</span> with character-theoretic methods. Functions for computing <span class="SimpleMath">\(P(g,s)\)</span> or an upper bound for this value will be introduced in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>

<p>The <strong class="pkg">GAP</strong> functions shown in this section are collected in the file <code class="file">tst/probgen.g</code> that is distributed with the <strong class="pkg">GAP</strong> Character Table Library, see <span class="URL"><a href="http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib">http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib</a></span>.</p>

<p>The functions have been designed for the examples in the later sections, they could be generalized and optimized for other examples. It is not our aim to provide a package for this functionality.</p>

<p><a id="X806328747D1D4ECC" name="X806328747D1D4ECC"></a></p>

<h5>11.3-1 <span class="Heading">General Utilities</span></h5>

<p>Let <code class="code">list</code> be a dense list and <code class="code">prop</code> be a unary function that returns <code class="keyw">true</code> or <code class="keyw">false</code> when applied to the entries of <code class="code">list</code>. <code class="code">PositionsProperty</code> returns the set of positions in <code class="code">list</code> for which <code class="keyw">true</code> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">if not IsBound( PositionsProperty ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     PositionsProperty:= function( list, prop )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       return Filtered( [ 1 .. Length( list ) ], i -&gt; prop( list[i] ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     end;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   fi;</span>
</pre></div>

<p>The following two functions implement loops over ordered triples (and quadruples, respectively) in a Cartesian product. A prescribed function <code class="code">prop</code> is subsequently applied to the triples (quadruples), and if the result of this call is <code class="keyw">true</code> then this triple (quadruple) is returned immediately; if none of the calls to <code class="code">prop</code> yields <code class="keyw">true</code> then <code class="keyw">fail</code> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "TripleWithProperty", function( threelists, prop )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local i, j, k, test;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for i in threelists[1] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      for j in threelists[2] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        for k in threelists[3] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          test:= [ i, j, k ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          if prop( test ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              return test;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "QuadrupleWithProperty", function( fourlists, prop )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local i, j, k, l, test;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for i in fourlists[1] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      for j in fourlists[2] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        for k in fourlists[3] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          for l in fourlists[4] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            test:= [ i, j, k, l ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            if prop( test ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              return test;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>Of course one could do better by considering <em>un</em>ordered <span class="SimpleMath">\(n\)</span>-tuples when several of the argument lists are equal, and in practice, backtrack searches would often allow one to prune parts of the search tree in early stages. However, the above loops are not time critical in the examples presented here, so the possible improvements are not worth the effort for our purposes.</p>

<p>The function <code class="code">PrintFormattedArray</code> prints the matrix <code class="code">array</code> in a columnwise formatted way. (The only diference to the <strong class="pkg">GAP</strong> library function <code class="func">PrintArray</code> (<a href="../../../doc/ref/chap24_mj.html#X7DEBC9967DFDFC18"><span class="RefLink">Reference: PrintArray</span></a>) is that <code class="code">PrintFormattedArray</code> chooses each column width according to the entries only in this column not w.r.t. the whole matrix.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "PrintFormattedArray", function( array )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     local colwidths, n, row;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     array:= List( array, row -&gt; List( row, String ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     colwidths:= List( TransposedMat( array ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       col -&gt; Maximum( List( col, Length ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     n:= Length( array[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for row in List( array, row -&gt; List( [ 1 .. n ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  i -&gt; String( row[i], colwidths[i] ) ) ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "  ", JoinStringsWithSeparator( row, " " ), "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>Finally, <code class="code">CleanWorkspace</code> is a utility for reducing the space needed. This is achieved by unbinding those user variables that are not write protected and are not mentioned in the list <code class="code">NeededVariables</code> of variable names that are bound now, and by flushing the caches of tables of marks and character tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "NeededVariables", NamesUserGVars() );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "CleanWorkspace", function()</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      local name, record;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      for name in Difference( NamesUserGVars(), NeededVariables ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if not IsReadOnlyGlobal( name ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         UnbindGlobal( name );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for record in [ LIBTOMKNOWN, LIBTABLE ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       for name in RecNames( record.LOADSTATUS ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Unbind( record.LOADSTATUS.( name ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Unbind( record.( name ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>The function <code class="code">PossiblePermutationCharacters</code> takes two ordinary character tables <code class="code">sub</code> and <code class="code">tbl</code>, computes the possible class fusions from <code class="code">sub</code> to <code class="code">tbl</code>, then induces the trivial character of <code class="code">sub</code> to <code class="code">tbl</code>, w.r.t. these fusions, and returns the set of these class functions. (So if <code class="code">sub</code> and <code class="code">tbl</code> are the character tables of groups <span class="SimpleMath">\(H\)</span> and <span class="SimpleMath">\(G\)</span>, respectively, where <span class="SimpleMath">\(H\)</span> is a subgroup of <span class="SimpleMath">\(G\)</span>, then the result contains the permutation character <span class="SimpleMath">\(1_H^G\)</span>.)</p>

<p>Note that the columns of the character tables in the <strong class="pkg">GAP</strong> Character Table Library are not explicitly associated with particular conjugacy classes of the corresponding groups, so from the character tables, we can compute only <em>possible</em> class fusions, i.e., maps between the columns of two tables that satisfy certain necessary conditions, see the section about the function <code class="code">PossibleClassFusions</code> in the <strong class="pkg">GAP</strong> Reference Manual for details. There is no problem if the permutation character is uniquely determined by the character tables, in all other cases we give ad hoc arguments for resolving the ambiguities.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">if not IsBound( PossiblePermutationCharacters ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     BindGlobal( "PossiblePermutationCharacters", function( sub, tbl )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       local fus, triv;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fus:= PossibleClassFusions( sub, tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if fus = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       triv:= [ TrivialCharacter( sub ) ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       return Set(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           List( fus, map -&gt; Induced( sub, tbl, triv, map )[1] ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     end );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   fi;</span>
</pre></div>

<p><a id="X7A221012861440E2" name="X7A221012861440E2"></a></p>

<h5>11.3-2 <span class="Heading">Character-Theoretic Computations</span></h5>

<p>We want to use the <strong class="pkg">GAP</strong> libraries of character tables and of tables of marks, and proceed in three steps.</p>

<p>First we extract the primitive permutation characters from the library information if this is available; for that, we write the function <code class="code">PrimitivePermutationCharacters</code>. Then the result can be used as the input for the function <code class="code">ApproxP</code>, which computes the values <span class="SimpleMath">\(σ( g, s )\)</span>. Finally, the functions <code class="code">ProbGenInfoSimple</code> and <code class="code">ProbGenInfoAlmostSimple</code> compute <span class="SimpleMath">\(𝕊/~( G )\)</span>.</p>

<p>For a group <span class="SimpleMath">\(G\)</span> whose character table <span class="SimpleMath">\(T\)</span> is contained in the <strong class="pkg">GAP</strong> character table library, the complete set of primitive permutation characters can be easily computed if the character tables of all maximal subgroups and their class fusions into <span class="SimpleMath">\(T\)</span> are known (in this case, we check whether the attribute <code class="func">Maxes</code> (<a href="..//doc/chap3_mj.html#X8150E63F7DBDF252"><span class="RefLink">CTblLib: Maxes</span></a>) of <span class="SimpleMath">\(T\)</span> is bound) or if the table of marks of <span class="SimpleMath">\(G\)</span> and the class fusion from <span class="SimpleMath">\(T\)</span> into this table of marks are known (in this case, we check whether the attribute <code class="func">FusionToTom</code> (<a href="..//doc/chap3_mj.html#X7B1AAED68753B1BE"><span class="RefLink">CTblLib: FusionToTom</span></a>) of <span class="SimpleMath">\(T\)</span> is bound). If the attribute <code class="func">UnderlyingGroup</code> (<a href="../../../doc/ref/chap70_mj.html#X81E41D3880FA6C4C"><span class="RefLink">Reference: UnderlyingGroup for tables of marks</span></a>) of <span class="SimpleMath">\(T\)</span> is bound then this group can be used to compute the primitive permutation characters. The latter happens if <span class="SimpleMath">\(T\)</span> was computed from the group object in <strong class="pkg">GAP</strong>; for tables in the <strong class="pkg">GAP</strong> character table library, this is not the case by default.</p>

<p>The <strong class="pkg">GAP</strong> function <code class="code">PrimitivePermutationCharacters</code> tries to compute the primitive permutation characters of a group using this information; it returns the required list of characters if this can be computed this way, otherwise <code class="keyw">fail</code> is returned. (For convenience, we use the <strong class="pkg">GAP</strong> mechanism of <em>attributes</em> in order to store the permutation characters in the character table object once they have been computed.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DeclareAttribute( "PrimitivePermutationCharacters", IsCharacterTable );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">InstallOtherMethod( PrimitivePermutationCharacters,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    [ IsCharacterTable ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    function( tbl )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local maxes, tom, G;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if HasMaxes( tbl ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      maxes:= List( Maxes( tbl ), CharacterTable );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if ForAll( maxes, s -&gt; GetFusionMap( s, tbl ) &lt;&gt; fail ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        return List( maxes, subtbl -&gt; TrivialCharacter( subtbl )^tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif HasFusionToTom( tbl ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      tom:= TableOfMarks( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      maxes:= MaximalSubgroupsTom( tom );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return PermCharsTom( tbl, tom ){ maxes[1] };</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif HasUnderlyingGroup( tbl ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      G:= UnderlyingGroup( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return List( MaximalSubgroupClassReps( G ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   M -&gt; TrivialCharacter( M )^tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>The function <code class="code">ApproxP</code> takes a list <code class="code">primitives</code> of primitive permutation characters of a group <span class="SimpleMath">\(G\)</span>, say, and the position <code class="code">spos</code> of the class <span class="SimpleMath">\(s^G\)</span> in the character table of <span class="SimpleMath">\(G\)</span>.</p>

<p>Assume that the elements in <code class="code">primitives</code> have the form <span class="SimpleMath">\(1_M^G\)</span>, for suitable maximal subgroups <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(G\)</span>, and let <span class="SimpleMath">\(𝕄/~\)</span> be the set of these groups <span class="SimpleMath">\(M\)</span>. <code class="code">ApproxP</code> returns the class function <span class="SimpleMath">\(\psi\)</span> of <span class="SimpleMath">\(G\)</span> that is defined by <span class="SimpleMath">\(\psi(1) = 0\)</span> and</p>

<p class="center">\[
   \psi(g) = \sum_{M \in 𝕄/~}
                 \frac{1_M^G(s) \cdot 1_M^G(g)}{1_M^G(1)}
\]</p>

<p>otherwise.</p>

<p>If <code class="code">primitives</code> contains all those primitive permutation characters <span class="SimpleMath">\(1_M^G\)</span> of <span class="SimpleMath">\(G\)</span> (with multiplicity according to the number of conjugacy classes of these maximal subgroups) that do not vanish at <span class="SimpleMath">\(s\)</span>, and if all these <span class="SimpleMath">\(M\)</span> are self-normalizing in <span class="SimpleMath">\(G\)</span> –this holds for example if <span class="SimpleMath">\(G\)</span> is a finite simple group– then <span class="SimpleMath">\(\psi(g) = σ( g, s )\)</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "ApproxP", function( primitives, spos )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local sum;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    sum:= ShallowCopy( Sum( List( primitives,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                  pi -&gt; pi[ spos ] * pi / pi[1] ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    sum[1]:= 0;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return sum;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>Note that for computations with permutation characters, it would make the functions more complicated (and not more efficient) if we would consider only elements <span class="SimpleMath">\(g\)</span> of prime order, and only one representative of Galois conjugate classes.</p>

<p>The next functions needed in this context compute <span class="SimpleMath">\(σ(S)\)</span> and <span class="SimpleMath">\(𝕊/~( S )\)</span>, for a simple group <span class="SimpleMath">\(S\)</span>, and <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> for an almost simple group <span class="SimpleMath">\(G\)</span> with socle <span class="SimpleMath">\(S\)</span>, respectively.</p>

<p><code class="code">ProbGenInfoSimple</code> takes the character table <code class="code">tbl</code> of <span class="SimpleMath">\(S\)</span> as its argument. If the full list of primitive permutation characters of <span class="SimpleMath">\(S\)</span> cannot be computed with <code class="code">PrimitivePermutationCharacters</code> then the function returns <code class="keyw">fail</code>. Otherwise <code class="code">ProbGenInfoSimple</code> returns a list containing the identifier of the table, the value <span class="SimpleMath">\(σ(S)\)</span>, the integer <span class="SimpleMath">\(𝕊/~( S )\)</span>, a list of <strong class="pkg">Atlas</strong> names of representatives of Galois families of those classes of elements <span class="SimpleMath">\(s\)</span> for which <span class="SimpleMath">\(σ(S) = σ( S, s )\)</span> holds, and the list of the corresponding cardinalities <span class="SimpleMath">\(|𝕄(S,s)|\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "ProbGenInfoSimple", function( tbl )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local prim, max, min, bound, s;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    prim:= PrimitivePermutationCharacters( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if prim = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    max:= List( [ 1 .. NrConjugacyClasses( tbl ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                i -&gt; Maximum( ApproxP( prim, i ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    min:= Minimum( max );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    bound:= Inverse( min );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if IsInt( bound ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      bound:= bound - 1;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      bound:= Int( bound );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    s:= PositionsProperty( max, x -&gt; x = min );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    s:= List( Set( s, i -&gt; ClassOrbit( tbl, i ) ), i -&gt; i[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return [ Identifier( tbl ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             min,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             bound,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             AtlasClassNames( tbl ){ s },</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Sum( List( prim, pi -&gt; pi{ s } ) ) ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p><code class="code">ProbGenInfoAlmostSimple</code> takes the character tables <code class="code">tblS</code> and <code class="code">tblG</code> of <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(G\)</span>, and a list <code class="code">sposS</code> of class positions (w.r.t. <code class="code">tblS</code>) as its arguments. It is assumed that <span class="SimpleMath">\(S\)</span> is simple and has prime index in <span class="SimpleMath">\(G\)</span>. If <code class="code">PrimitivePermutationCharacters</code> can compute the full list of primitive permutation characters of <span class="SimpleMath">\(G\)</span> then the function returns a list containing the identifier of <code class="code">tblG</code>, the maximum <span class="SimpleMath">\(m\)</span> of <span class="SimpleMath">\(σ^{\prime}( G, s )\)</span>, for <span class="SimpleMath">\(s\)</span> in the classes described by <code class="code">sposS</code>, a list of <strong class="pkg">Atlas</strong> names (in <span class="SimpleMath">\(G\)</span>) of the classes of elements <span class="SimpleMath">\(s\)</span> for which this maximum is attained, and the list of the corresponding cardinalities <span class="SimpleMath">\(|𝕄^{\prime}(G,s)|\)</span>. When <code class="code">PrimitivePermutationCharacters</code> returns <code class="keyw">fail</code>, also <code class="code">ProbGenInfoAlmostSimple</code> returns <code class="keyw">fail</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "ProbGenInfoAlmostSimple", function( tblS, tblG, sposS )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local p, fus, inv, prim, sposG, outer, approx, l, max, min,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          s, cards, i, names;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    p:= Size( tblG ) / Size( tblS );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if not IsPrimeInt( p )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       or Length( ClassPositionsOfNormalSubgroups( tblG ) ) &lt;&gt; 3 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fus:= GetFusionMap( tblS, tblG );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if fus = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    inv:= InverseMap( fus );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    prim:= PrimitivePermutationCharacters( tblG );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if prim = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    sposG:= Set( fus{ sposS } );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    outer:= Difference( PositionsProperty(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                OrdersClassRepresentatives( tblG ), IsPrimeInt ), fus );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    approx:= List( sposG, i -&gt; ApproxP( prim, i ){ outer } );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if IsEmpty( outer ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      max:= List( approx, x -&gt; 0 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      max:= List( approx, Maximum );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    min:= Minimum( max);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    s:= sposG{ PositionsProperty( max, x -&gt; x = min ) };</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    cards:= List( prim, pi -&gt; pi{ s } );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for i in [ 1 .. Length( prim ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      # Omit the character that is induced from the simple group.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if ForAll( prim[i], x -&gt; x = 0 or x = prim[i][1] ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        cards[i]:= 0;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    names:= AtlasClassNames( tblG ){ s };</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    Perform( names, ConvertToStringRep );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return [ Identifier( tblG ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             min,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             names,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Sum( cards ) ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>The next function computes <span class="SimpleMath">\(σ(G,s)\)</span> from the character table <code class="code">tbl</code> of a simple or almost simple group <span class="SimpleMath">\(G\)</span>, the name <code class="code">sname</code> of the class of <span class="SimpleMath">\(s\)</span> in this table, the list <code class="code">maxes</code> of the character tables of all subgroups <span class="SimpleMath">\(M\)</span> with <span class="SimpleMath">\(M \in 𝕄(G,s)\)</span>, and the list <code class="code">numpermchars</code> of the numbers of possible permutation characters induced from <code class="code">maxes</code>. If the string <code class="code">"outer"</code> is given as an optional argument then <span class="SimpleMath">\(G\)</span> is assumed to be an automorphic extension of a simple group <span class="SimpleMath">\(S\)</span>, with <span class="SimpleMath">\([G:S]\)</span> a prime, and <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> is returned. In both situations, the result is <code class="keyw">fail</code> if the numbers of possible permutation characters induced from <code class="code">maxes</code> do not coincide with the numbers prescribed in <code class="code">numpermchars</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "SigmaFromMaxes", function( arg )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local t, sname, maxes, numpermchars, prim, spos, outer;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    t:= arg[1];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    sname:= arg[2];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    maxes:= arg[3];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    numpermchars:= arg[4];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    prim:= List( maxes, s -&gt; PossiblePermutationCharacters( s, t ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    spos:= Position( AtlasClassNames( t ), sname );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if ForAny( [ 1 .. Length( maxes ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               i -&gt; Length( prim[i] ) &lt;&gt; numpermchars[i] ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif Length( arg ) = 5 and arg[5] = "outer" then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      outer:= Difference(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          PositionsProperty( OrdersClassRepresentatives( t ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          ClassPositionsOfDerivedSubgroup( t ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return Maximum( ApproxP( Concatenation( prim ), spos ){ outer } );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return Maximum( ApproxP( Concatenation( prim ), spos ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>The following function allows us to extract information about <span class="SimpleMath">\(𝕄(G,s)\)</span> from the character table <code class="code">tbl</code> of <span class="SimpleMath">\(G\)</span> and a list <code class="code">snames</code> of class positions of <span class="SimpleMath">\(s\)</span>. If <code class="code">Maxes( tbl )</code> is stored then the names of the character tables of the subgroups in <span class="SimpleMath">\(𝕄(G,s)\)</span> and the number of conjugates are printed, otherwise <code class="keyw">fail</code> is printed.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "DisplayProbGenMaxesInfo", function( tbl, snames )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local mx, prim, i, spos, nonz, indent, j;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if not HasMaxes( tbl ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      Print( Identifier( tbl ), ": fail\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    mx:= List( Maxes( tbl ), CharacterTable );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    prim:= List( mx, s -&gt; TrivialCharacter( s )^tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    Assert( 1, SortedList( prim ) =</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               SortedList( PrimitivePermutationCharacters( tbl ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for i in [ 1 .. Length( prim ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      # Deal with the case that the subgroup is normal.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if ForAll( prim[i], x -&gt; x = 0 or x = prim[i][1] ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        prim[i]:= prim[i] / prim[i][1];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    spos:= List( snames,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 nam -&gt; Position( AtlasClassNames( tbl ), nam ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    nonz:= List( spos, x -&gt; PositionsProperty( prim, pi -&gt; pi[x] &lt;&gt; 0 ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for i in [ 1 .. Length( spos ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      Print( Identifier( tbl ), ", ", snames[i], ": " );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      indent:= ListWithIdenticalEntries(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          Length( Identifier( tbl ) ) + Length( snames[i] ) + 4, ' ' );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if not IsEmpty( nonz[i] ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        Print( Identifier( mx[ nonz[i][1] ] ), "  (",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               prim[ nonz[i][1] ][ spos[i] ], ")\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        for j in [ 2 .. Length( nonz[i] ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          Print( indent, Identifier( mx[ nonz[i][j] ] ), "  (",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               prim[ nonz[i][j] ][ spos[i] ], ")\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        Print( "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p><a id="X83DACCF07EF62FAE" name="X83DACCF07EF62FAE"></a></p>

<h5>11.3-3 <span class="Heading">Computations with Groups</span></h5>

<p>Here, the task is to compute <span class="SimpleMath">\(P(g,s)\)</span> or <span class="SimpleMath">\(P(G,s)\)</span> using explicit computations with <span class="SimpleMath">\(G\)</span>, where the character-theoretic bounds are not sufficient.</p>

<p>We start with small utilities that make the examples shorter.</p>

<p>For a finite solvable group <code class="code">G</code>, the function <code class="code">PcConjugacyClassReps</code> returns a list of representatives of the conjugacy classes of <code class="code">G</code>, which are computed using a polycyclic presentation for <code class="code">G</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "PcConjugacyClassReps", function( G )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     local iso;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     iso:= IsomorphismPcGroup( G );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     return List( ConjugacyClasses( Image( iso ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              c -&gt; PreImagesRepresentative( iso, Representative( c ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>For a finite group <code class="code">G</code>, a list <code class="code">primes</code> of prime integers, and a normal subgroup <code class="code">N</code> of <code class="code">G</code>, the function <code class="code">ClassesOfPrimeOrder</code> returns a list of those conjugacy classes of <code class="code">G</code> that are not contained in <code class="code">N</code> and whose elements' orders occur in <code class="code">primes</code>.</p>

<p>For each prime <span class="SimpleMath">\(p\)</span> in <code class="code">primes</code>, first class representatives of order <span class="SimpleMath">\(p\)</span> in a Sylow <span class="SimpleMath">\(p\)</span> subgroup of <code class="code">G</code> are computed, then the representatives in <code class="code">N</code> are discarded, and then representatives w. r. t. conjugacy in <code class="code">G</code> are computed.</p>

<p>(Note that this approach may be inappropriate for example if a large elementary abelian Sylow <span class="SimpleMath">\(p\)</span> subgroup occurs, and if the conjugacy tests in <code class="code">G</code> are expensive, see Section <a href="chap11_mj.html#X85BACC4A83F73392"><span class="RefLink">11.5-14</span></a>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "ClassesOfPrimeOrder", function( G, primes, N )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     local ccl, p, syl, Greps, reps, r, cr;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ccl:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for p in primes do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       syl:= SylowSubgroup( G, p );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Greps:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       reps:= Filtered( PcConjugacyClassReps( syl ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  r -&gt; Order( r ) = p and not r in N );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       for r in reps do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         cr:= ConjugacyClass( G, r );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if ForAll( Greps, c -&gt; c &lt;&gt; cr ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Add( Greps, cr );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Append( ccl, Greps );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     return ccl;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>The function <code class="code">IsGeneratorsOfTransPermGroup</code> takes a <em>transitive</em> permutation group <code class="code">G</code> and a list <code class="code">list</code> of elements in <code class="code">G</code>, and returns <code class="keyw">true</code> if the elements in <code class="code">list</code> generate <code class="code">G</code>, and <code class="keyw">false</code> otherwise. The main point is that the return value <code class="keyw">true</code> requires the group generated by <code class="code">list</code> to be transitive, and the check for transitivity is much cheaper than the test whether this group is equal to <code class="code">G</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">if not IsBound( IsGeneratorsOfTransPermGroup) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     BindGlobal( "IsGeneratorsOfTransPermGroup", function( G, list )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       local S;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if not IsTransitive( G ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Error( "&lt;G&gt; must be transitive on its moved points" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       S:= SubgroupNC( G, list );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       return IsTransitive( S, MovedPoints( G ) ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              Size( S ) = Size( G );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     end );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   fi;</span>
</pre></div>

<p><code class="code">RatioOfNongenerationTransPermGroup</code> takes a <em>transitive</em> permutation group <code class="code">G</code> and two elements <code class="code">g</code> and <code class="code">s</code> of <code class="code">G</code>, and returns the proportion <span class="SimpleMath">\(P(g,s)\)</span>. (The function tests the (non)generation only for representatives of <span class="SimpleMath">\(C_G(g)\)</span>-<span class="SimpleMath">\(C_G(s)\)</span>-double cosets. Note that for <span class="SimpleMath">\(c_1 \in C_G(g)\)</span>, <span class="SimpleMath">\(c_2 \in C_G(s)\)</span>, and a representative <span class="SimpleMath">\(r \in G\)</span>, we have <span class="SimpleMath">\(\langle g^{c_1 r c_2}, s \rangle = \langle g^r, s \rangle^{c_2}\)</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "RatioOfNongenerationTransPermGroup", function( G, g, s )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local nongen, pair;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if not IsTransitive( G ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      Error( "&lt;G&gt; must be transitive on its moved points" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    nongen:= 0;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for pair in DoubleCosetRepsAndSizes( G, Centralizer( G, g ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    Centralizer( G, s ) ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if not IsGeneratorsOfTransPermGroup( G, [ s, g^pair[1] ] ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        nongen:= nongen + pair[2];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return nongen / Size( G );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>Let <span class="SimpleMath">\(G\)</span> be a group, and let <code class="code">groups</code> be a list <span class="SimpleMath">\([ G_1, G_2, \ldots, G_n ]\)</span> of permutation groups such that <span class="SimpleMath">\(G_i\)</span> describes the action of <span class="SimpleMath">\(G\)</span> on a set <span class="SimpleMath">\(\Omega_i\)</span>, say. Moreover, we require that for <span class="SimpleMath">\(1 \leq i, j \leq n\)</span>, mapping the <code class="code">GeneratorsOfGroup</code> list of <span class="SimpleMath">\(G_i\)</span> to that of <span class="SimpleMath">\(G_j\)</span> defines an isomorphism. <code class="code">DiagonalProductOfPermGroups</code> takes <code class="code">groups</code> as its argument, and returns the action of <span class="SimpleMath">\(G\)</span> on the disjoint union of <span class="SimpleMath">\(\Omega_1, \Omega_2, \ldots, \Omega_n\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "DiagonalProductOfPermGroups", function( groups )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local prodgens, deg, i, gens, D, pi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    prodgens:= GeneratorsOfGroup( groups[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    deg:= NrMovedPoints( prodgens );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for i in [ 2 .. Length( groups ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      gens:= GeneratorsOfGroup( groups[i] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      D:= MovedPoints( gens );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      pi:= MappingPermListList( D, [ deg+1 .. deg+Length( D ) ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      deg:= deg + Length( D );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      prodgens:= List( [ 1 .. Length( prodgens ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       i -&gt; prodgens[i] * gens[i]^pi );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return Group( prodgens );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>The following two functions are used to reduce checks of generation to class representatives of maximal order. Note that if <span class="SimpleMath">\(\langle s, g \rangle\)</span> is a proper subgroup of <span class="SimpleMath">\(G\)</span> then also <span class="SimpleMath">\(\langle s^k, g \rangle\)</span> is a proper subgroup of <span class="SimpleMath">\(G\)</span>, so we need not check powers <span class="SimpleMath">\(s^k\)</span> different from <span class="SimpleMath">\(s\)</span> in this situation.</p>

<p>For an ordinary character table <code class="code">tbl</code>, the function <code class="code">RepresentativesMaximallyCyclicSubgroups</code> returns a list of class positions, containing one class of generators for each class of maximally cyclic subgroups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "RepresentativesMaximallyCyclicSubgroups", function( tbl )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local n, result, orders, p, pmap, i, j;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Initialize.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    n:= NrConjugacyClasses( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    result:= BlistList( [ 1 .. n ], [ 1 .. n ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Omit powers of smaller order.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    orders:= OrdersClassRepresentatives( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for p in PrimeDivisors( Size( tbl ) ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      pmap:= PowerMap( tbl, p );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      for i in [ 1 .. n ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        if orders[ pmap[i] ] &lt; orders[i] then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          result[ pmap[i] ]:= false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Omit Galois conjugates.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for i in [ 1 .. n ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if result[i] then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        for j in ClassOrbit( tbl, i ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          if i &lt;&gt; j then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            result[j]:= false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Return the result.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return ListBlist( [ 1 .. n ], result );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>Let <code class="code">G</code> be a finite group, <code class="code">tbl</code> be the ordinary character table of <code class="code">G</code>, and <code class="code">cols</code> be a list of class positions in <code class="code">tbl</code>, for example the list returned by <code class="code">RepresentativesMaximallyCyclicSubgroups</code>. The function <code class="code">ClassesPerhapsCorrespondingToTableColumns</code> returns the sublist of those conjugacy classes of <code class="code">G</code> for which the corresponding column in <code class="code">tbl</code> can be contained in <code class="code">cols</code>, according to element order and class size.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "ClassesPerhapsCorrespondingToTableColumns",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   function( G, tbl, cols )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local orders, classes, invariants;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    orders:= OrdersClassRepresentatives( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    classes:= SizesConjugacyClasses( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    invariants:= List( cols, i -&gt; [ orders[i], classes[i] ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return Filtered( ConjugacyClasses( G ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        c -&gt; [ Order( Representative( c ) ), Size(c) ] in invariants );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>The next function computes, for a finite group <span class="SimpleMath">\(G\)</span> and subgroups <span class="SimpleMath">\(M_1, M_2, \ldots, M_n\)</span> of <span class="SimpleMath">\(G\)</span>, an upper bound for <span class="SimpleMath">\(\max \{ \sum_{i=1}^n μ(g,G/M_i); g \in G \setminus Z(G) \}\)</span>. So if the <span class="SimpleMath">\(M_i\)</span> are the groups in <span class="SimpleMath">\(𝕄(G,s)\)</span>, for some <span class="SimpleMath">\(s \in G^{\times}\)</span>, then we get an upper bound for <span class="SimpleMath">\(σ(G,s)\)</span>.</p>

<p>The idea is that for <span class="SimpleMath">\(M \leq G\)</span> and <span class="SimpleMath">\(g \in G\)</span> of order <span class="SimpleMath">\(p\)</span>, we have</p>

<p class="center">\[
   μ(g,G/M) = |g^G \cap M| / |g^G|
               \leq \sum_{h \in C} |h^M| / |g^G|
               =    \sum_{h \in C} |h^M| \cdot |C_G(g)| / |G| ,
\]</p>

<p>where <span class="SimpleMath">\(C\)</span> is a set of class representatives <span class="SimpleMath">\(h \in M\)</span> of all those classes that satisfy <span class="SimpleMath">\(|h| = p\)</span> and <span class="SimpleMath">\(|C_G(h)| = |C_G(g)|\)</span>, and in the case that <span class="SimpleMath">\(G\)</span> is a permutation group additionally that <span class="SimpleMath">\(h\)</span> and <span class="SimpleMath">\(g\)</span> move the same number of points. (Note that it is enough to consider elements of <em>prime</em> order.)</p>

<p>For computing the maximum of the rightmost term in this inequality, for <span class="SimpleMath">\(g \in G \setminus Z(G)\)</span>, we need not determine the <span class="SimpleMath">\(G\)</span>-conjugacy of class representatives in <span class="SimpleMath">\(M\)</span>. Of course we pay the price that the result may be larger than the leftmost term. However, if the maximal sum is in fact taken only over a single class representative, we are sure that equality holds. Thus we return a list of length two, containing the maximum of the right hand side of the above inequality and a Boolean value indicating whether this is equal to <span class="SimpleMath">\(\max \{ μ(g,G/M); g \in G \setminus Z(G) \}\)</span> or just an upper bound.</p>

<p>The arguments for <code class="code">UpperBoundFixedPointRatios</code> are the group <code class="code">G</code>, a list <code class="code">maxesclasses</code> such that the <span class="SimpleMath">\(i\)</span>-th entry is a list of conjugacy classes of <span class="SimpleMath">\(M_i\)</span>, which covers all classes of prime element order in <span class="SimpleMath">\(M_i\)</span>, and either <code class="keyw">true</code> or <code class="keyw">false</code>, where <code class="keyw">true</code> means that the <em>exact</em> value of <span class="SimpleMath">\(σ(G,s)\)</span> is computed, not just an upper bound; this can be much more expensive because of the conjugacy tests in <span class="SimpleMath">\(G\)</span> that may be necessary. (We try to reduce the number of conjugacy tests in this case, the second half of the code is not completely straightforward. The special treatment of conjugacy checks for elements with the same sets of fixed points is essential in the computation of <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> for <span class="SimpleMath">\(G = PGL(6,4)\)</span>; the critical input line is <code class="code">ApproxPForOuterClassesInGL( 6, 4 )</code>, see Section <a href="chap11_mj.html#X7EA88CEF81962F3F"><span class="RefLink">11.5-7</span></a>. Currently the standard <strong class="pkg">GAP</strong> conjugacy test for an element of order three and its inverse in <span class="SimpleMath">\(G \setminus G^{\prime}\)</span> requires hours of CPU time, whereas the check for existence of a conjugating element in the stabilizer of the common set of fixed points of the two elements is almost free of charge.)</p>

<p><code class="code">UpperBoundFixedPointRatios</code> can be used to compute <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> in the case that <span class="SimpleMath">\(G\)</span> is an automorphic extension of a simple group <span class="SimpleMath">\(S\)</span>, with <span class="SimpleMath">\([G:S] = p\)</span> a prime; if <span class="SimpleMath">\(𝕄^{\prime}(G,s) = \{ M_1, M_2, \ldots, M_n \}\)</span> then the <span class="SimpleMath">\(i\)</span>-th entry of <code class="code">maxesclasses</code> must contain only the classes of element order <span class="SimpleMath">\(p\)</span> in <span class="SimpleMath">\(M_i \setminus (M_i \cap S)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "UpperBoundFixedPointRatios",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   function( G, maxesclasses, truetest )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local myIsConjugate, invs, info, c, r, o, inv, pos, sums, max, maxpos,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          maxlen, reps, split, i, found, j;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    myIsConjugate:= function( G, x, y )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      local movx, movy;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      movx:= MovedPoints( x );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      movy:= MovedPoints( y );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if movx = movy then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        G:= Stabilizer( G, movx, OnSets );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return IsConjugate( G, x, y );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    end;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    invs:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    info:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # First distribute the classes according to invariants.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for c in Concatenation( maxesclasses ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      r:= Representative( c );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      o:= Order( r );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      # Take only prime order representatives.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if IsPrimeInt( o ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        inv:= [ o, Size( Centralizer( G, r ) ) ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        # Omit classes that are central in `G'.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        if inv[2] &lt;&gt; Size( G ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          if IsPerm( r ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            Add( inv, NrMovedPoints( r ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          pos:= First( [ 1 .. Length( invs ) ], i -&gt; inv = invs[i] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          if pos = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            # This class is not `G'-conjugate to any of the previous ones.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            Add( invs, inv );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            Add( info, [ [ r, Size( c ) * inv[2] ] ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            # This class may be conjugate to an earlier one.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            Add( info[ pos ], [ r, Size( c ) * inv[2] ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if info = [] then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return [ 0, true ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    repeat</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      # Compute the contributions of the classes with the same invariants.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      sums:= List( info, x -&gt; Sum( List( x, y -&gt; y[2] ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      max:= Maximum( sums );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      maxpos:= Filtered( [ 1 .. Length( info ) ], i -&gt; sums[i] = max );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      maxlen:= List( maxpos, i -&gt; Length( info[i] ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      # Split the sets with the same invariants if necessary</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      # and if we want to compute the exact value.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if truetest and not 1 in maxlen then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        # Make one conjugacy test.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        pos:= Position( maxlen, Minimum( maxlen ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        reps:= info[ maxpos[ pos ] ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        if myIsConjugate( G, reps[1][1], reps[2][1] ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          # Fuse the two classes.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          reps[1][2]:= reps[1][2] + reps[2][2];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          reps[2]:= reps[ Length( reps ) ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          Unbind( reps[ Length( reps ) ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          # Split the list. This may require additional conjugacy tests.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          Unbind( info[ maxpos[ pos ] ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          split:= [ reps[1], reps[2] ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          for i in [ 3 .. Length( reps ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            found:= false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            for j in split do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              if myIsConjugate( G, reps[i][1], j[1] ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                j[2]:= reps[i][2] + j[2];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                found:= true;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                break;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            if not found then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              Add( split, reps[i] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          info:= Compacted( Concatenation( info,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                           List( split, x -&gt; [ x ] ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    until 1 in maxlen or not truetest;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return [ max / Size( G ), 1 in maxlen ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>Suppose that <span class="SimpleMath">\(C_1, C_2, C_3\)</span> are conjugacy classes in <span class="SimpleMath">\(G\)</span>, and that we have to prove, for each <span class="SimpleMath">\((x_1, x_2, x_3) \in C_1 \times C_2 \times C_3\)</span>, the existence of an element <span class="SimpleMath">\(s\)</span> in a prescribed class <span class="SimpleMath">\(C\)</span> of <span class="SimpleMath">\(G\)</span> such that <span class="SimpleMath">\(\langle x_1, s \rangle = \langle x_2, s \rangle = \langle x_2, s \rangle = G\)</span> holds.</p>

<p>We have to check only representatives under the conjugation action of <span class="SimpleMath">\(G\)</span> on <span class="SimpleMath">\(C_1 \times C_2 \times C_3\)</span>. For each representative, we try a prescribed number of random elements in <span class="SimpleMath">\(C\)</span>. If this is successful then we are done. The following two functions implement this idea.</p>

<p>For a group <span class="SimpleMath">\(G\)</span> and a list <span class="SimpleMath">\([ g_1, g_2, \ldots, g_n ]\)</span> of elements in <span class="SimpleMath">\(G\)</span>, <code class="code">OrbitRepresentativesProductOfClasses</code> returns a list <span class="SimpleMath">\(R(G, g_1, g_2, \ldots, g_n)\)</span> of representatives of <span class="SimpleMath">\(G\)</span>-orbits on the Cartesian product <span class="SimpleMath">\(g_1^G \times g_2^G \times \cdots \times g_n^G\)</span>.</p>

<p>The idea behind this function is to choose <span class="SimpleMath">\(R(G, g_1) = \{ ( g_1 ) \}\)</span> in the case <span class="SimpleMath">\(n = 1\)</span>, and, for <span class="SimpleMath">\(n &gt; 1\)</span>,</p>

<p class="center">\[
   R(G, g_1, g_2, \ldots, g_n)  =  \{ (h_1, h_2, \ldots, h_n) \mid
          (h_1, h_2, \ldots, h_{n-1}) \in R(G, g_1, g_2, \ldots, g_{n-1}), \\
            h_n = g_n^d, \textrm{\ for\ } d \in D \} ,
\]</p>

<p>where <span class="SimpleMath">\(D\)</span> is a set of representatives of double cosets <span class="SimpleMath">\(C_G(g_n) \setminus G / \cap_{i=1}^{n-1} C_G(h_i)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "OrbitRepresentativesProductOfClasses",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   function( G, classreps )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local cents, n, orbreps;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    cents:= List( classreps, x -&gt; Centralizer( G, x ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    n:= Length( classreps );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    orbreps:= function( reps, intersect, pos )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if pos &gt; n then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        return [ reps ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return Concatenation( List(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          DoubleCosetRepsAndSizes( G, cents[ pos ], intersect ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            r -&gt; orbreps( Concatenation( reps, [ classreps[ pos ]^r[1] ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 Intersection( intersect, cents[ pos ]^r[1] ), pos+1 ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    end;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return orbreps( [ classreps[1] ], cents[1], 2 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>The function <code class="code">RandomCheckUniformSpread</code> takes a transitive permutation group <span class="SimpleMath">\(G\)</span>, a list of class representatives <span class="SimpleMath">\(g_i \in G\)</span>, an element <span class="SimpleMath">\(s \in G\)</span>, and a positive integer <span class="SimpleMath">\(N\)</span>. The return value is <code class="keyw">true</code> if for each representative of <span class="SimpleMath">\(G\)</span>-orbits on the product of the classes <span class="SimpleMath">\(g_i^G\)</span>, a good conjugate of <span class="SimpleMath">\(s\)</span> is found in at most <span class="SimpleMath">\(N\)</span> random tests.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "RandomCheckUniformSpread", function( G, classreps, s, try )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local elms, found, i, conj;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if not IsTransitive( G, MovedPoints( G ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      Error( "&lt;G&gt; must be transitive on its moved points" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Compute orbit representatives of G on the direct product,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # and try to find a good conjugate of s for each representative.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for elms in OrbitRepresentativesProductOfClasses( G, classreps ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      found:= false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      for i in [ 1 .. try ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        conj:= s^Random( G );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        if ForAll( elms,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; IsGeneratorsOfTransPermGroup( G, [ x, conj ] ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          found:= true;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          break;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      if not found then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        return elms;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return true;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>Of course this approach is not suitable for <em>dis</em>proving the existence of <span class="SimpleMath">\(s\)</span>, but it is much cheaper than an exhaustive search in the class <span class="SimpleMath">\(C\)</span>. (Typically, <span class="SimpleMath">\(|C|\)</span> is large whereas the <span class="SimpleMath">\(|C_i|\)</span> are small.)</p>

<p>The following function can be used to verify that a given <span class="SimpleMath">\(n\)</span>-tuple <span class="SimpleMath">\((x_1, x_2, \ldots, x_n)\)</span> of elements in a group <span class="SimpleMath">\(G\)</span> has the property that for all elements <span class="SimpleMath">\(g \in G\)</span>, at least one <span class="SimpleMath">\(x_i\)</span> satisfies <span class="SimpleMath">\(\langle x_i, g \rangle\)</span>. The arguments are a transitive permutation group <span class="SimpleMath">\(G\)</span>, a list of class representatives in <span class="SimpleMath">\(G\)</span>, and the <span class="SimpleMath">\(n\)</span>-tuple in question. The return value is a conjugate <span class="SimpleMath">\(g\)</span> of the given representatives that has the property if such an element exists, and <code class="keyw">fail</code> otherwise.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "CommonGeneratorWithGivenElements",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   function( G, classreps, tuple )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local inter, rep, repcen, pair;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if not IsTransitive( G, MovedPoints( G ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      Error( "&lt;G&gt; must be transitive on its moved points" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    inter:= Intersection( List( tuple, x -&gt; Centralizer( G, x ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for rep in classreps do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      repcen:= Centralizer( G, rep );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      for pair in DoubleCosetRepsAndSizes( G, repcen, inter ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        if ForAll( tuple,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; IsGeneratorsOfTransPermGroup( G, [ x, rep^pair[1] ] ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          return rep;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p><a id="X7A221012861440E2" name="X7A221012861440E2"></a></p>

<h4>11.4 <span class="Heading">Character-Theoretic Computations</span></h4>

<p>In this section, we apply the functions introduced in Section <a href="chap11_mj.html#X7A221012861440E2"><span class="RefLink">11.3-2</span></a> to the character tables of simple groups that are available in the <strong class="pkg">GAP</strong> Character Table Library.</p>

<p>Our first examples are the sporadic simple groups, in Section <a href="chap11_mj.html#X86CE51E180A3D4ED"><span class="RefLink">11.4-1</span></a>, then their automorphism groups are considered in Section <a href="chap11_mj.html#X84E9D10F80A74A53"><span class="RefLink">11.4-2</span></a>.</p>

<p>Then we consider those other simple groups for which <strong class="pkg">GAP</strong> provides enough information for automatically computing an upper bound on <span class="SimpleMath">\(σ(G,s)\)</span> –see Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>– and their automorphic extensions –see Section <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a>.</p>

<p>After that, individual groups are considered.</p>

<p><a id="X86CE51E180A3D4ED" name="X86CE51E180A3D4ED"></a></p>

<h5>11.4-1 <span class="Heading">Sporadic Simple Groups</span></h5>

<p>The <strong class="pkg">GAP</strong> Character Table Library contains the tables of maximal subgroups of all sporadic simple groups except <span class="SimpleMath">\(B\)</span> and <span class="SimpleMath">\(M\)</span>, so all primitive permutation characters can be computed via the function <code class="code">PrimitivePermutationCharacters</code> for <span class="SimpleMath">\(24\)</span> of the <span class="SimpleMath">\(26\)</span> sporadic simple groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sporinfo:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spornames:= AllCharacterTableNames( IsSporadicSimple, true,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                       IsDuplicateTable, false );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for tbl in List( spornames, CharacterTable ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     info:= ProbGenInfoSimple( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if info &lt;&gt; fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( sporinfo, info );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p>We show the result as a formatted table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintFormattedArray( sporinfo );</span>
   Co1    421/1545600         3671        [ "35A" ]    [ 4 ]
   Co2          1/270          269        [ "23A" ]    [ 1 ]
   Co3        64/6325           98        [ "21A" ]    [ 4 ]
   F3+ 1/269631216855 269631216854        [ "29A" ]    [ 1 ]
  Fi22         43/585           13        [ "16A" ]    [ 7 ]
  Fi23   2651/2416635          911        [ "23A" ]    [ 2 ]
    HN        4/34375         8593        [ "19A" ]    [ 1 ]
    HS        64/1155           18        [ "15A" ]    [ 2 ]
    He          3/595          198        [ "14C" ]    [ 3 ]
    J1           1/77           76        [ "19A" ]    [ 1 ]
    J2           5/28            5        [ "10C" ]    [ 3 ]
    J3          2/153           76        [ "19A" ]    [ 2 ]
    J4   1/1647124116   1647124115        [ "29A" ]    [ 1 ]
    Ly     1/35049375     35049374        [ "37A" ]    [ 1 ]
   M11            1/3            2        [ "11A" ]    [ 1 ]
   M12            1/3            2        [ "10A" ]    [ 3 ]
   M22           1/21           20        [ "11A" ]    [ 1 ]
   M23         1/8064         8063        [ "23A" ]    [ 1 ]
   M24       108/1265           11        [ "21A" ]    [ 2 ]
   McL      317/22275           70 [ "15A", "30A" ] [ 3, 3 ]
    ON       10/30723         3072        [ "31A" ]    [ 2 ]
    Ru         1/2880         2879        [ "29A" ]    [ 1 ]
   Suz       141/5720           40        [ "14A" ]    [ 3 ]
    Th       2/267995       133997 [ "27A", "27B" ] [ 2, 2 ]
</pre></div>

<p>We see that in all these cases, <span class="SimpleMath">\(σ(G) &lt; 1/2\)</span> and thus <span class="SimpleMath">\(P( G ) \geq 2\)</span>, and all sporadic simple groups <span class="SimpleMath">\(G\)</span> except <span class="SimpleMath">\(G = M_{11}\)</span> and <span class="SimpleMath">\(G = M_{12}\)</span> satisfy <span class="SimpleMath">\(σ(G) &lt; 1/3\)</span>. See <a href="chap11_mj.html#X7B7061917ED3714D"><span class="RefLink">11.5-9</span></a> and <a href="chap11_mj.html#X82E0F48A7FF82BB3"><span class="RefLink">11.5-10</span></a> for a proof that also these two groups have uniform spread at least three.</p>

<p>The structures and multiplicities of the maximal subgroups containing <span class="SimpleMath">\(s\)</span> are as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for entry in sporinfo do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     DisplayProbGenMaxesInfo( CharacterTable( entry[1] ), entry[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
Co1, 35A: (A5xJ2):2  (1)
          (A6xU3(3)):2  (2)
          (A7xL2(7)):2  (1)
Co2, 23A: M23  (1)
Co3, 21A: U3(5).3.2  (2)
          L3(4).D12  (1)
          s3xpsl(2,8).3  (1)
F3+, 29A: 29:14  (1)
Fi22, 16A: 2^10:m22  (1)
           (2x2^(1+8)):U4(2):2  (1)
           2F4(2)'  (4)
           2^(5+8):(S3xA6)  (1)
Fi23, 23A: 2..11.m23  (1)
           L2(23)  (1)
HN, 19A: U3(8).3_1  (1)
HS, 15A: A8.2  (1)
         5:4xa5  (1)
He, 14C: 2^1+6.psl(3,2)  (1)
         7^2:2psl(2,7)  (1)
         7^(1+2):(S3x3)  (1)
J1, 19A: 19:6  (1)
J2, 10C: 2^1+4b:a5  (1)
         a5xd10  (1)
         5^2:D12  (1)
J3, 19A: L2(19)  (1)
         J3M3  (1)
J4, 29A: frob  (1)
Ly, 37A: 37:18  (1)
M11, 11A: L2(11)  (1)
M12, 10A: A6.2^2  (1)
          M12M4  (1)
          2xS5  (1)
M22, 11A: L2(11)  (1)
M23, 23A: 23:11  (1)
M24, 21A: L3(4).3.2_2  (1)
          2^6:(psl(3,2)xs3)  (1)
McL, 15A: 3^(1+4):2S5  (1)
          2.A8  (1)
          5^(1+2):3:8  (1)
McL, 30A: 3^(1+4):2S5  (1)
          2.A8  (1)
          5^(1+2):3:8  (1)
ON, 31A: L2(31)  (1)
         ONM8  (1)
Ru, 29A: L2(29)  (1)
Suz, 14A: J2.2  (2)
          (a4xpsl(3,4)):2  (1)
Th, 27A: ThN3B  (1)
         ThM7  (1)
Th, 27B: ThN3B  (1)
         ThM7  (1)
</pre></div>

<p>For the remaining two sporadic simple groups, <span class="SimpleMath">\(B\)</span> and <span class="SimpleMath">\(M\)</span>, we choose suitable elements <span class="SimpleMath">\(s\)</span>. If <span class="SimpleMath">\(G = B\)</span> and <span class="SimpleMath">\(s \in G\)</span> is of order <span class="SimpleMath">\(47\)</span> then, by <a href="chapBib_mj.html#biBWil99">[Wil99]</a>, <span class="SimpleMath">\(𝕄(G,s) = \{ 47:23 \}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "B" ), "47A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ CharacterTable( "47:23" ) ], [ 1 ] );</span>
1/174702778623598780219392000000
</pre></div>

<p>If <span class="SimpleMath">\(G = M\)</span> and <span class="SimpleMath">\(s \in G\)</span> is of order <span class="SimpleMath">\(59\)</span> then, by <a href="chapBib_mj.html#biBHW04">[HW04]</a>, <span class="SimpleMath">\(𝕄(G,s) = \{ L_2(59) \}\)</span>. In this case, the permutation character is not uniquely determined by the character tables, but all possibilities lead to the same value for <span class="SimpleMath">\(σ(G)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= CharacterTable( "L2(59)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( pi );</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 59 );</span>
152
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Set( pi, x -&gt; Maximum( ApproxP( [ x ], spos ) ) );</span>
[ 1/3385007637938037777290625 ]
</pre></div>

<p>Essentially the same approach is taken in <a href="chapBib_mj.html#biBGM01">[GM01]</a>. However, there <span class="SimpleMath">\(s\)</span> is restricted to classes of prime order. Thus the results in the above table are better for <span class="SimpleMath">\(J_2\)</span>, <span class="SimpleMath">\(HS\)</span>, <span class="SimpleMath">\(M_{24}\)</span>, <span class="SimpleMath">\(McL\)</span>, <span class="SimpleMath">\(He\)</span>, <span class="SimpleMath">\(Suz\)</span>, <span class="SimpleMath">\(Co_3\)</span>, <span class="SimpleMath">\(Fi_{22}\)</span>, <span class="SimpleMath">\(Ly\)</span>, <span class="SimpleMath">\(Th\)</span>, <span class="SimpleMath">\(Co_1\)</span>, and <span class="SimpleMath">\(J_4\)</span>. Besides that, the value <span class="SimpleMath">\(10\,999\)</span> claimed in <a href="chapBib_mj.html#biBGM01">[GM01]</a> for <span class="SimpleMath">\(𝕊/~( HN )\)</span> is not correct.</p>

<p><a id="X84E9D10F80A74A53" name="X84E9D10F80A74A53"></a></p>

<h5>11.4-2 <span class="Heading">Automorphism Groups of Sporadic Simple Groups</span></h5>

<p>Next we consider the automorphism groups of the sporadic simple groups. There are exactly <span class="SimpleMath">\(12\)</span> cases where nontrivial outer automorphisms exist, and then the simple group <span class="SimpleMath">\(S\)</span> has index <span class="SimpleMath">\(2\)</span> in its automorphism group <span class="SimpleMath">\(G\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sporautnames:= AllCharacterTableNames( IsSporadicSimple, true,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                      IsDuplicateTable, false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                      OfThose, AutomorphismGroup );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sporautnames:= Difference( sporautnames, spornames );</span>
[ "F3+.2", "Fi22.2", "HN.2", "HS.2", "He.2", "J2.2", "J3.2", "M12.2", 
  "M22.2", "McL.2", "ON.2", "Suz.2" ]
</pre></div>

<p>First we compute the values <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span>, for the same <span class="SimpleMath">\(s \in S\)</span> that were chosen for the simple group <span class="SimpleMath">\(S\)</span> in Section <a href="chap11_mj.html#X86CE51E180A3D4ED"><span class="RefLink">11.4-1</span></a>.</p>

<p>For six of the groups <span class="SimpleMath">\(G\)</span> in question, the character tables of all maximal subgroups are available in the <strong class="pkg">GAP</strong> Character Table Library. In these cases, the values <span class="SimpleMath">\(σ^{\prime}( G, s )\)</span> can be computed using <code class="code">ProbGenInfoAlmostSimple</code>.</p>

<p><em>(The above statement can meanwhile be replaced by the statement that the character tables of all maximal subgroups are available for all twelve groups. We show the table results for all these groups but keep the individual computations from the original computations.)</em></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sporautinfo:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fails:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for name in sporautnames do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tbl:= CharacterTable( name{ [ 1 .. Position( name, '.' ) - 1 ] } );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblG:= CharacterTable( name );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     info:= ProbGenInfoSimple( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     info:= ProbGenInfoAlmostSimple( tbl, tblG,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         List( info[4], x -&gt; Position( AtlasClassNames( tbl ), x ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if info = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( fails, name );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( sporautinfo, info );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintFormattedArray( sporautinfo );</span>
   F3+.2         0         [ "29AB" ]    [ 1 ]
  Fi22.2  251/3861         [ "16AB" ]    [ 7 ]
    HN.2    1/6875         [ "19AB" ]    [ 1 ]
    HS.2    36/275          [ "15A" ]    [ 2 ]
    He.2   37/9520         [ "14CD" ]    [ 3 ]
    J2.2      1/15         [ "10CD" ]    [ 3 ]
    J3.2    1/1080         [ "19AB" ]    [ 1 ]
   M12.2      4/99          [ "10A" ]    [ 1 ]
   M22.2      1/21         [ "11AB" ]    [ 1 ]
   McL.2      1/63 [ "15AB", "30AB" ] [ 3, 3 ]
    ON.2   1/84672         [ "31AB" ]    [ 1 ]
   Suz.2 661/46332          [ "14A" ]    [ 3 ]
</pre></div>

<p>Note that for <span class="SimpleMath">\(S = McL\)</span>, the bound <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> for <span class="SimpleMath">\(G = S.2\)</span> (in the second column) is worse than the bound for the simple group <span class="SimpleMath">\(S\)</span>.</p>

<p>The structures and multiplicities of the maximal subgroups containing <span class="SimpleMath">\(s\)</span> are as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for entry in sporautinfo do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     DisplayProbGenMaxesInfo( CharacterTable( entry[1] ), entry[3] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
F3+.2, 29AB: F3+  (1)
             frob  (1)
Fi22.2, 16AB: Fi22  (1)
              Fi22.2M4  (1)
              (2x2^(1+8)):(U4(2):2x2)  (1)
              2F4(2)'.2  (4)
              2^(5+8):(S3xS6)  (1)
HN.2, 19AB: HN  (1)
            U3(8).6  (1)
HS.2, 15A: HS  (1)
           S8x2  (1)
           5:4xS5  (1)
He.2, 14CD: He  (1)
            2^(1+6)_+.L3(2).2  (1)
            7^2:2.L2(7).2  (1)
            7^(1+2):(S3x6)  (1)
J2.2, 10CD: J2  (1)
            2^(1+4).S5  (1)
            (A5xD10).2  (1)
            5^2:(4xS3)  (1)
J3.2, 19AB: J3  (1)
            19:18  (1)
M12.2, 10A: M12  (1)
            (2^2xA5):2  (1)
M22.2, 11AB: M22  (1)
             L2(11).2  (1)
McL.2, 15AB: McL  (1)
             3^(1+4):4S5  (1)
             Isoclinic(2.A8.2)  (1)
             5^(1+2):(24:2)  (1)
McL.2, 30AB: McL  (1)
             3^(1+4):4S5  (1)
             Isoclinic(2.A8.2)  (1)
             5^(1+2):(24:2)  (1)
ON.2, 31AB: ON  (1)
            31:30  (1)
Suz.2, 14A: Suz  (1)
            J2.2x2  (2)
            (A4xL3(4):2_3):2  (1)
</pre></div>

<p>Note that the maximal subgroups <span class="SimpleMath">\(L_2(19)\)</span> of <span class="SimpleMath">\(J_3\)</span> do not extend to <span class="SimpleMath">\(J_3.2\)</span> and that a class of maximal subgroups of the type <span class="SimpleMath">\(19:18\)</span> appears in <span class="SimpleMath">\(J_3.2\)</span> whose intersection with <span class="SimpleMath">\(J_3\)</span> is not maximal in <span class="SimpleMath">\(J_3\)</span>. Similarly, the maximal subgroups <span class="SimpleMath">\(A_6.2^2\)</span> of <span class="SimpleMath">\(M_{12}\)</span> do not extend to <span class="SimpleMath">\(M_{12}.2\)</span>.</p>

<p>For the other six groups, we use individual computations.</p>

<p>In the case <span class="SimpleMath">\(S = Fi_{24}^{\prime}\)</span>, the unique maximal subgroup <span class="SimpleMath">\(29:14\)</span> that contains an element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(29\)</span> extends to a group of the type <span class="SimpleMath">\(29:28\)</span> in <span class="SimpleMath">\(Fi_{24}\)</span>, which is a nonsplit extension of <span class="SimpleMath">\(29:14\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "Fi24'.2" ), "29AB",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ CharacterTable( "29:28" ) ], [ 1 ], "outer" );</span>
0
</pre></div>

<p>In the case <span class="SimpleMath">\(S = Fi_{22}\)</span>, there are four classes of maximal subgroups that contain <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(16\)</span>. They extend to <span class="SimpleMath">\(G = Fi_{22}.2\)</span>, and none of the <em>novelties</em> in <span class="SimpleMath">\(G\)</span> (i. e., subgroups of <span class="SimpleMath">\(G\)</span> that are maximal in <span class="SimpleMath">\(G\)</span> but whose intersections with <span class="SimpleMath">\(S\)</span> are not maximal in <span class="SimpleMath">\(S\)</span>) contains <span class="SimpleMath">\(s\)</span>, cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 163]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">16 in OrdersClassRepresentatives( CharacterTable( "U4(2).2" ) );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">16 in OrdersClassRepresentatives( CharacterTable( "G2(3).2" ) );</span>
false
</pre></div>

<p>The character tables of three of the four extensions are available in the <strong class="pkg">GAP</strong> Character Table Library. The permutation character on the cosets of the fourth extension can be obtained as the extension of the permutation character of <span class="SimpleMath">\(S\)</span> on the cosets of its maximal subgroup of the type <span class="SimpleMath">\(2^{5+8}:(S_3 \times A_6)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "Fi22.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= List( [ "Fi22.2M4", "(2x2^(1+8)):(U4(2):2x2)", "2F4(2)" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       n -&gt; PossiblePermutationCharacters( CharacterTable( n ), t2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Fi22" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            CharacterTable( "2^(5+8):(S3xA6)" ), t );</span>
[ Character( CharacterTable( "Fi22" ),
  [ 3648645, 56133, 10629, 2245, 567, 729, 405, 81, 549, 165, 133, 
      37, 69, 20, 27, 81, 9, 39, 81, 19, 1, 13, 33, 13, 1, 0, 13, 13, 
      5, 1, 0, 0, 0, 8, 4, 0, 0, 9, 3, 15, 3, 1, 1, 1, 1, 3, 3, 1, 0, 
      0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">torso:= CompositionMaps( pi[1], InverseMap( GetFusionMap( t, t2 ) ) );</span>
[ 3648645, 56133, 10629, 2245, 567, 729, 405, 81, 549, 165, 133, 37, 
  69, 20, 27, 81, 9, 39, 81, 19, 1, 13, 33, 13, 1, 0, 13, 13, 5, 1, 
  0, 0, 0, 8, 4, 0, 9, 3, 15, 3, 1, 1, 1, 3, 3, 1, 0, 0, 2, 1, 0, 0, 
  0, 0, 0, 0, 1, 1, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= PermChars( t2, rec( torso:= torso ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Add( prim, ext );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= Concatenation( prim );;  Length( prim );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t2 ), 16 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( prim, x -&gt; x[ spos ] );</span>
[ 1, 1, 4, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sigma:= ApproxP( prim, spos );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( sigma{ Difference( PositionsProperty(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
251/3861
</pre></div>

<p>In the case <span class="SimpleMath">\(S = HN\)</span>, the unique maximal subgroup <span class="SimpleMath">\(U_3(8).3\)</span> that contains the fixed element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(19\)</span> extends to a group of the type <span class="SimpleMath">\(U_3(8).6\)</span> in <span class="SimpleMath">\(HN.2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "HN.2" ), "19AB",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ CharacterTable( "U3(8).6" ) ], [ 1 ], "outer" );</span>
1/6875
</pre></div>

<p>In the case <span class="SimpleMath">\(S = HS\)</span>, there are two classes of maximal subgroups that contain <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>. They extend to <span class="SimpleMath">\(G = HS.2\)</span>, and none of the novelties in <span class="SimpleMath">\(G\)</span> contains <span class="SimpleMath">\(s\)</span> (cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 80]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "HS.2" ), "15A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ CharacterTable( "S8x2" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "5:4" ) * CharacterTable( "A5.2" ) ], [ 1, 1 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     "outer" );</span>
36/275
</pre></div>

<p>In the case <span class="SimpleMath">\(S = He\)</span>, there are three classes of maximal subgroups that contain <span class="SimpleMath">\(s\)</span> in the class <code class="code">14C</code>. They extend to <span class="SimpleMath">\(G = He.2\)</span>, and none of the novelties in <span class="SimpleMath">\(G\)</span> contains <span class="SimpleMath">\(s\)</span> (cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 104]</a>). We compute the extensions of the corresponding primitive permutation characters of <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "He" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "He.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( AtlasClassNames( t ), "14C" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= Filtered( prim, x -&gt; x[ spos ] &lt;&gt; 0 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">map:= InverseMap( GetFusionMap( t, t2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">torso:= List( prim, pi -&gt; CompositionMaps( pi, map ) );</span>
[ [ 187425, 945, 449, 0, 21, 21, 25, 25, 0, 0, 5, 0, 0, 7, 1, 0, 0, 
      1, 0, 1, 0, 0, 0, 0, 0, 0 ], 
  [ 244800, 0, 64, 0, 84, 0, 0, 16, 0, 0, 4, 24, 45, 3, 4, 0, 0, 0, 
      0, 1, 0, 0, 0, 0, 0, 0 ], 
  [ 652800, 0, 512, 120, 72, 0, 0, 0, 0, 0, 8, 8, 22, 1, 0, 0, 0, 0, 
      0, 1, 0, 0, 1, 1, 2, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= List( torso, x -&gt; PermChars( t2, rec( torso:= x ) ) );</span>
[ [ Character( CharacterTable( "He.2" ),
      [ 187425, 945, 449, 0, 21, 21, 25, 25, 0, 0, 5, 0, 0, 7, 1, 0, 
          0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 315, 15, 0, 0, 3, 7, 7, 3, 0, 
          0, 0, 1, 1, 0, 1, 1, 0, 0, 0 ] ) ], 
  [ Character( CharacterTable( "He.2" ),
      [ 244800, 0, 64, 0, 84, 0, 0, 16, 0, 0, 4, 24, 45, 3, 4, 0, 0, 
          0, 0, 1, 0, 0, 0, 0, 0, 0, 360, 0, 0, 0, 6, 0, 0, 0, 0, 0, 
          3, 2, 2, 0, 0, 0, 0, 0, 0 ] ) ], 
  [ Character( CharacterTable( "He.2" ),
      [ 652800, 0, 512, 120, 72, 0, 0, 0, 0, 0, 8, 8, 22, 1, 0, 0, 0, 
          0, 0, 1, 0, 0, 1, 1, 2, 0, 480, 0, 120, 0, 12, 0, 0, 0, 0, 
          0, 4, 0, 0, 0, 0, 0, 0, 1, 1 ] ) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( AtlasClassNames( t2 ), "14CD" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sigma:= ApproxP( Concatenation( ext ), spos );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( sigma{ Difference( PositionsProperty(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
37/9520
</pre></div>

<p>In the case <span class="SimpleMath">\(S = O'N\)</span>, the two classes of maximal subgroups of the type <span class="SimpleMath">\(L_2(31)\)</span> do not extend to <span class="SimpleMath">\(G = O'N.2\)</span>, and a class of novelties of the structure <span class="SimpleMath">\(31:30\)</span> appears (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 132]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "ON.2" ), "31AB",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ CharacterTable( "P:Q", [ 31, 30 ] ) ], [ 1 ], "outer" );</span>
1/84672
</pre></div>

<p>Now we consider also <span class="SimpleMath">\(σ(G,\hat{s})\)</span>, for suitable <span class="SimpleMath">\(\hat{s} \in G \setminus S\)</span>; this yields lower bounds for the spread of the nonsimple groups <span class="SimpleMath">\(G\)</span>. (These results are shown in the last two columns of <a href="chapBib_mj.html#biBBGK">[BGK08, Table 9]</a>.)</p>

<p>As above, we use the known character tables of the maximal subgroups in order to compute the optimal choice for <span class="SimpleMath">\(\hat{s} \in G \setminus S\)</span>. (We may use the function <code class="code">ProbGenInfoSimple</code> although the groups are not simple; all we need is that the relevant maximal subgroups are self-normalizing.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sporautinfo2:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for name in List( sporautinfo, x -&gt; x[1] ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Add( sporautinfo2, ProbGenInfoSimple( CharacterTable( name ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintFormattedArray( sporautinfo2 );</span>
   F3+.2    19/5684  299        [ "42E" ]   [ 10 ]
  Fi22.2 1165/20592   17        [ "24G" ]    [ 3 ]
    HN.2     1/1425 1424        [ "24B" ]    [ 4 ]
    HS.2     21/550   26        [ "20C" ]    [ 4 ]
    He.2    33/4165  126        [ "24A" ]    [ 2 ]
    J2.2       1/15   14        [ "14A" ]    [ 1 ]
    J3.2   77/10260  133        [ "34A" ]    [ 1 ]
   M12.2    113/495    4        [ "12B" ]    [ 3 ]
   M22.2       8/33    4        [ "10A" ]    [ 4 ]
   McL.2      1/135  134        [ "22A" ]    [ 1 ]
    ON.2  61/109368 1792 [ "22A", "38A" ] [ 1, 1 ]
   Suz.2      1/351  350        [ "28A" ]    [ 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for entry in sporautinfo2 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     DisplayProbGenMaxesInfo( CharacterTable( entry[1] ), entry[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
F3+.2, 42E: 2^12.M24  (2)
            2^2.U6(2):S3x2  (1)
            2^(3+12).(L3(2)xS6)  (2)
            (S3xS3xG2(3)):2  (1)
            S6xL2(8):3  (1)
            7:6xS7  (1)
            7^(1+2)_+:(6xS3).2  (2)
Fi22.2, 24G: Fi22.2M4  (1)
             2^(5+8):(S3xS6)  (1)
             3^5:(2xU4(2).2)  (1)
HN.2, 24B: 2^(1+8)_+.(A5xA5).2^2  (1)
           5^2.5.5^2.4S5  (2)
           HN.2M13  (1)
HS.2, 20C: (2xA6.2^2).2  (1)
           HS.2N5  (2)
           5:4xS5  (1)
He.2, 24A: 2^(1+6)_+.L3(2).2  (1)
           S4xL3(2).2  (1)
J2.2, 14A: L3(2).2x2  (1)
J3.2, 34A: L2(17)x2  (1)
M12.2, 12B: L2(11).2  (1)
            2^3.(S4x2)  (1)
            3^(1+2):D8  (1)
M22.2, 10A: M22.2M4  (1)
            A6.2^2  (1)
            L2(11).2  (2)
McL.2, 22A: 2xM11  (1)
ON.2, 22A: J1x2  (1)
ON.2, 38A: J1x2  (1)
Suz.2, 28A: (A4xL3(4):2_3):2  (1)
</pre></div>

<p>In the other six cases, we do not have the complete lists of primitive permutation characters, so we choose a suitable element <span class="SimpleMath">\(\hat{s}\)</span> for each group. It is sufficient to prescribe <span class="SimpleMath">\(|\hat{s}|\)</span>, as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sporautchoices:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ "Fi22",  "Fi22.2",  42 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ "Fi24'", "Fi24'.2", 46 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ "He",    "He.2",    42 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ "HN",    "HN.2",    44 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ "HS",    "HS.2",    30 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ "ON",    "ON.2",    38 ], ];;</span>
</pre></div>

<p>First we list the maximal subgroups of the corresponding simple groups that contain the square of <span class="SimpleMath">\(\hat{s}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for triple in sporautchoices do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tbl:= CharacterTable( triple[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tbl2:= CharacterTable( triple[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     spos2:= PowerMap( tbl2, 2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Position( OrdersClassRepresentatives( tbl2 ), triple[3] ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     spos:= Position( GetFusionMap( tbl, tbl2 ), spos2 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     DisplayProbGenMaxesInfo( tbl, AtlasClassNames( tbl ){ [ spos ] } );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
Fi22, 21A: O8+(2).3.2  (1)
           S3xU4(3).2_2  (1)
           A10.2  (1)
           A10.2  (1)
F3+, 23A: Fi23  (1)
          F3+M7  (1)
He, 21B: 3.A7.2  (1)
         7^(1+2):(S3x3)  (1)
         7:3xpsl(3,2)  (2)
HN, 22A: 2.HS.2  (1)
HS, 15A: A8.2  (1)
         5:4xa5  (1)
ON, 19B: L3(7).2  (1)
         ONM2  (1)
         J1  (1)
</pre></div>

<p>According to <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>, exactly the following maximal subgroups of the simple group <span class="SimpleMath">\(S\)</span> in the above list do <em>not</em> extend to <span class="SimpleMath">\(Aut(S)\)</span>: The two <span class="SimpleMath">\(S_{10}\)</span> type subgroups of <span class="SimpleMath">\(Fi_{22}\)</span> and the two <span class="SimpleMath">\(L_3(7).2\)</span> type subgroups of <span class="SimpleMath">\(O'N\)</span>.</p>

<p>Furthermore, the following maximal subgroups of <span class="SimpleMath">\(Aut(S)\)</span> with the property that the intersection with <span class="SimpleMath">\(S\)</span> is not maximal in <span class="SimpleMath">\(S\)</span> have to be considered whether they contain <span class="SimpleMath">\(s^{\prime}\)</span>: <span class="SimpleMath">\(G_2(3).2\)</span> and <span class="SimpleMath">\(3^5:(2 \times U_4(2).2)\)</span> in <span class="SimpleMath">\(Fi_{22}.2\)</span>. (Note that the order of the <span class="SimpleMath">\(7^{1+2}_+:(3 \times D_{16})\)</span> type subgroup in <span class="SimpleMath">\(O'N.2\)</span> is obviously not divisible by <span class="SimpleMath">\(19\)</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">42 in OrdersClassRepresentatives( CharacterTable( "G2(3).2" ) );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( CharacterTable( "U4(2)" ) ) mod 7 = 0;</span>
false
</pre></div>

<p>So we take the extensions of the above maximal subgroups, as described in <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "Fi22.2" ), "42A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    [ CharacterTable( "O8+(2).3.2" ) * CharacterTable( "Cyclic", 2 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      CharacterTable( "S3" ) * CharacterTable( "U4(3).(2^2)_{122}" ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    [ 1, 1 ] );</span>
163/1170
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "Fi24'.2" ), "46A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ CharacterTable( "Fi23" ) * CharacterTable( "Cyclic", 2 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "2^12.M24" ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ 1, 1 ] );</span>
566/5481
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "He.2" ), "42A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ CharacterTable( "3.A7.2" ) * CharacterTable( "Cyclic", 2 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "7^(1+2):(S3x6)" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "7:6" ) * CharacterTable( "L3(2)" ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ 1, 1, 1 ] );</span>
1/119
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "HN.2" ), "44A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ CharacterTable( "4.HS.2" ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ 1 ] );</span>
997/192375
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "HS.2" ), "30A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ CharacterTable( "S8" ) * CharacterTable( "C2" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "5:4" ) * CharacterTable( "S5" ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ 1, 1 ] );</span>
36/275
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "ON.2" ), "38A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ CharacterTable( "J1" ) * CharacterTable( "C2" ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ 1 ] );</span>
61/109368
</pre></div>

<p><a id="X80DA58F187CDCF5F" name="X80DA58F187CDCF5F"></a></p>

<h5>11.4-3 <span class="Heading">Other Simple Groups – Easy Cases</span></h5>

<p>We are interested in simple groups <span class="SimpleMath">\(G\)</span> for which <code class="code">ProbGenInfoSimple</code> does not guarantee <span class="SimpleMath">\(𝕊/~(G) \geq 3\)</span>. So we examine the remaining tables of simple groups in the <strong class="pkg">GAP</strong> Character Table Library, and distinguish the following three cases: Either <code class="code">ProbGenInfoSimple</code> yields the lower bound at least three, or a smaller bound, or the computation of a lower bound fails because not enough information is available to compute the primitive permutation characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">names:= AllCharacterTableNames( IsSimple, true, IsAbelian, false,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                   IsDuplicateTable, false );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">names:= Difference( names, spornames );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fails:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lessthan3:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">atleast3:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for name in names do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tbl:= CharacterTable( name );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     info:= ProbGenInfoSimple( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if info = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( fails, name );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     elif info[3] &lt; 3 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( lessthan3, info );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( atleast3, info );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p>For the following simple groups, (currently) not enough information is available in the <strong class="pkg">GAP</strong> Character Table Library and in the <strong class="pkg">GAP</strong> Library of Tables of Marks, for computing a lower bound for <span class="SimpleMath">\(σ(G)\)</span>. Some of these groups will be dealt with in later sections, and for the other groups, the bounds derived with theoretical arguments in <a href="chapBib_mj.html#biBBGK">[BGK08]</a> are sufficient, so we need no <strong class="pkg">GAP</strong> computations for them.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fails;</span>
[ "2E6(2)", "2F4(8)", "3D4(3)", "3D4(4)", "A14", "A15", "A16", "A17", 
  "A18", "A19", "E6(2)", "L4(4)", "L4(5)", "L4(9)", "L5(3)", "L8(2)", 
  "O10+(2)", "O10+(3)", "O10-(2)", "O10-(3)", "O12+(2)", "O12+(3)", 
  "O12-(2)", "O12-(3)", "O7(5)", "O8+(7)", "O8-(3)", "O9(3)", 
  "R(27)", "S10(2)", "S12(2)", "S4(7)", "S4(8)", "S4(9)", "S6(4)", 
  "S6(5)", "S8(3)", "U4(4)", "U4(5)", "U5(3)", "U5(4)", "U6(4)", 
  "U7(2)" ]
</pre></div>

<p>The following simple groups appear in <a href="chapBib_mj.html#biBBGK">[BGK08, Table 1–6]</a>. More detailed computations can be found in the sections <a href="chap11_mj.html#X7B5321337B28100B"><span class="RefLink">11.5-2</span></a>, <a href="chap11_mj.html#X82C3B4287B0C7BEE"><span class="RefLink">11.5-3</span></a>, <a href="chap11_mj.html#X85B3C7217B105D4D"><span class="RefLink">11.5-4</span></a>, <a href="chap11_mj.html#X7F80F2527C424AA4"><span class="RefLink">11.5-12</span></a>, <a href="chap11_mj.html#X78F0815B86253A1F"><span class="RefLink">11.5-13</span></a>, <a href="chap11_mj.html#X82CFBAF07D3487A0"><span class="RefLink">11.5-20</span></a>, <a href="chap11_mj.html#X7A03F8EC839AF0B5"><span class="RefLink">11.5-23</span></a>, <a href="chap11_mj.html#X7D738BE5804CF22E"><span class="RefLink">11.5-24</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintFormattedArray( lessthan3 );</span>
      A5      1/3 2                [ "5A" ]       [ 1 ]
      A6      2/3 1                [ "5A" ]       [ 2 ]
      A7      2/5 2                [ "7A" ]       [ 2 ]
   O7(3)  199/351 1               [ "14A" ]       [ 3 ]
  O8+(2)  334/315 0 [ "15A", "15B", "15C" ] [ 7, 7, 7 ]
  O8+(3) 863/1820 2 [ "20A", "20B", "20C" ] [ 8, 8, 8 ]
   S6(2)      4/7 1                [ "9A" ]       [ 4 ]
   S8(2)     8/15 1               [ "17A" ]       [ 3 ]
   U4(2)    21/40 1               [ "12A" ]       [ 2 ]
   U4(3)   53/135 2                [ "7A" ]       [ 7 ]
</pre></div>

<p>For the following simple groups <span class="SimpleMath">\(G\)</span>, the inequality <span class="SimpleMath">\(σ(G) &lt; 1/3\)</span> follows from the loop above. The columns show the name of <span class="SimpleMath">\(G\)</span>, the values <span class="SimpleMath">\(σ(G)\)</span> and <span class="SimpleMath">\(𝕊/~(G)\)</span>, the class names of <span class="SimpleMath">\(s\)</span> for which these values are attained, and <span class="SimpleMath">\(|𝕄(G,s)|\)</span>.</p>

<p>(We increase the line length for this table. Even with this width, the entry for the group <span class="SimpleMath">\(L_7(2)\)</span> would not fit on one screen line, we show it separately below.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">oldsize:= SizeScreen();;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizeScreen( [ 80 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintFormattedArray( Filtered( atleast3, l -&gt; l[1] &lt;&gt; "L7(2)" ) );</span>
  2F4(2)'  118/1755   14                           [ "16A" ]             [ 2 ]
   3D4(2)    1/5292 5291                           [ "13A" ]             [ 1 ]
      A10      3/10    3                           [ "21A" ]             [ 1 ]
      A11     2/105   52                           [ "11A" ]             [ 2 ]
      A12       2/9    4                           [ "35A" ]             [ 1 ]
      A13    4/1155  288                           [ "13A" ]             [ 5 ]
       A8      3/14    4                           [ "15A" ]             [ 1 ]
       A9      9/35    3                      [ "9A", "9B" ]          [ 4, 4 ]
    F4(2)     9/595   66                           [ "13A" ]             [ 5 ]
    G2(3)       1/7    6                           [ "13A" ]             [ 3 ]
    G2(4)      1/21   20                           [ "13A" ]             [ 2 ]
    G2(5)      1/31   30                     [ "7A", "21A" ]         [ 10, 1 ]
  L2(101)     1/101  100                    [ "51A", "17A" ]          [ 1, 1 ]
  L2(103)   53/5253   99             [ "52A", "26A", "13A" ]       [ 1, 1, 1 ]
  L2(107)   55/5671  103 [ "54A", "27A", "18A", "9A", "6A" ] [ 1, 1, 1, 1, 1 ]
  L2(109)     1/109  108                    [ "55A", "11A" ]          [ 1, 1 ]
   L2(11)      7/55    7                            [ "6A" ]             [ 1 ]
  L2(113)     1/113  112                    [ "57A", "19A" ]          [ 1, 1 ]
  L2(121)     1/121  120                           [ "61A" ]             [ 1 ]
  L2(125)     1/125  124        [ "63A", "21A", "9A", "7A" ]    [ 1, 1, 1, 1 ]
   L2(13)      1/13   12                            [ "7A" ]             [ 1 ]
   L2(16)      1/15   14                           [ "17A" ]             [ 1 ]
   L2(17)      1/17   16                            [ "9A" ]             [ 1 ]
   L2(19)    11/171   15                           [ "10A" ]             [ 1 ]
   L2(23)    13/253   19                     [ "6A", "12A" ]          [ 1, 1 ]
   L2(25)      1/25   24                           [ "13A" ]             [ 1 ]
   L2(27)     5/117   23                     [ "7A", "14A" ]          [ 1, 1 ]
   L2(29)      1/29   28                           [ "15A" ]             [ 1 ]
   L2(31)    17/465   27                     [ "8A", "16A" ]          [ 1, 1 ]
   L2(32)      1/31   30              [ "3A", "11A", "33A" ]       [ 1, 1, 1 ]
   L2(37)      1/37   36                           [ "19A" ]             [ 1 ]
   L2(41)      1/41   40                     [ "21A", "7A" ]          [ 1, 1 ]
   L2(43)    23/903   39                    [ "22A", "11A" ]          [ 1, 1 ]
   L2(47)   25/1081   43        [ "24A", "12A", "8A", "6A" ]    [ 1, 1, 1, 1 ]
   L2(49)      1/49   48                           [ "25A" ]             [ 1 ]
   L2(53)      1/53   52                     [ "27A", "9A" ]          [ 1, 1 ]
   L2(59)   31/1711   55       [ "30A", "15A", "10A", "6A" ]    [ 1, 1, 1, 1 ]
   L2(61)      1/61   60                           [ "31A" ]             [ 1 ]
   L2(64)      1/63   62                    [ "65A", "13A" ]          [ 1, 1 ]
   L2(67)   35/2211   63                    [ "34A", "17A" ]          [ 1, 1 ]
   L2(71)   37/2485   67 [ "36A", "18A", "12A", "9A", "6A" ] [ 1, 1, 1, 1, 1 ]
   L2(73)      1/73   72                           [ "37A" ]             [ 1 ]
   L2(79)   41/3081   75       [ "40A", "20A", "10A", "8A" ]    [ 1, 1, 1, 1 ]
    L2(8)       1/7    6                      [ "3A", "9A" ]          [ 1, 1 ]
   L2(81)      1/81   80                           [ "41A" ]             [ 1 ]
   L2(83)   43/3403   79 [ "42A", "21A", "14A", "7A", "6A" ] [ 1, 1, 1, 1, 1 ]
   L2(89)      1/89   88              [ "45A", "15A", "9A" ]       [ 1, 1, 1 ]
   L2(97)      1/97   96                     [ "49A", "7A" ]          [ 1, 1 ]
   L3(11)    1/6655 6654                   [ "19A", "133A" ]          [ 1, 1 ]
    L3(2)       1/4    3                            [ "7A" ]             [ 1 ]
    L3(3)      1/24   23                           [ "13A" ]             [ 1 ]
    L3(4)       1/5    4                            [ "7A" ]             [ 3 ]
    L3(5)     1/250  249                           [ "31A" ]             [ 1 ]
    L3(7)    1/1372 1371                           [ "19A" ]             [ 1 ]
    L3(8)    1/1792 1791                           [ "73A" ]             [ 1 ]
    L3(9)    1/2880 2879                           [ "91A" ]             [ 1 ]
    L4(3)   53/1053   19                           [ "20A" ]             [ 1 ]
    L5(2)    1/5376 5375                           [ "31A" ]             [ 1 ]
    L6(2) 365/55552  152                    [ "21A", "63A" ]          [ 2, 2 ]
   O8-(2)      1/63   62                           [ "17A" ]             [ 1 ]
    S4(4)      4/15    3                           [ "17A" ]             [ 2 ]
    S4(5)       1/5    4                           [ "13A" ]             [ 1 ]
    S6(3)     1/117  116                           [ "14A" ]             [ 2 ]
   Sz(32)    1/1271 1270                     [ "5A", "25A" ]          [ 1, 1 ]
    Sz(8)      1/91   90                            [ "5A" ]             [ 1 ]
   U3(11)    1/6655 6654                           [ "37A" ]             [ 1 ]
    U3(3)     16/63    3                     [ "6A", "12A" ]          [ 2, 2 ]
    U3(4)     1/160  159                           [ "13A" ]             [ 1 ]
    U3(5)    46/525   11                           [ "10A" ]             [ 2 ]
    U3(7)    1/1372 1371                           [ "43A" ]             [ 1 ]
    U3(8)    1/1792 1791                           [ "19A" ]             [ 1 ]
    U3(9)    1/3600 3599                           [ "73A" ]             [ 1 ]
    U5(2)      1/54   53                           [ "11A" ]             [ 1 ]
    U6(2)      5/21    4                           [ "11A" ]             [ 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizeScreen( oldsize );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">First( atleast3, l -&gt; l[1] = "L7(2)" );</span>
[ "L7(2)", 1/4388290560, 4388290559, [ "127A" ], [ 1 ] ]
</pre></div>

<p>It should be mentioned that <a href="chapBib_mj.html#biBBW1">[BW75]</a> states the following lower bounds for the uniform spread of the groups <span class="SimpleMath">\(L_2(q)\)</span>.</p>

<div class="pcenter"><table class="GAPDocTable">
<tr>
<td class="tdleft"><span class="SimpleMath">\(q-2\)</span></td>
<td class="tdleft">if <span class="SimpleMath">\(4 \leq q\)</span> is even,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q-1\)</span></td>
<td class="tdleft">if <span class="SimpleMath">\(11 \leq q \equiv 1 \pmod{4}\)</span>,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q-4\)</span></td>
<td class="tdleft">if <span class="SimpleMath">\(11 \leq q \equiv -1 \pmod{4}\)</span>.</td>
</tr>
</table><br />
</div>

<p>These bounds appear in the third column of the above table. Furthermore, <a href="chapBib_mj.html#biBBW1">[BW75]</a> states that the (uniform) spread of alternating groups of even degree at least <span class="SimpleMath">\(8\)</span> is exactly <span class="SimpleMath">\(4\)</span>.</p>

<p>For the sake of completeness, Table II gives an overview of the sets <span class="SimpleMath">\(𝕄(G,s)\)</span> for those cases in the above list that are needed in <a href="chapBib_mj.html#biBBGK">[BGK08]</a> but that do not require a further discussion here. The structure of the maximal subgroups and the order of <span class="SimpleMath">\(s\)</span> in the table refer to the matrix groups not to the simple groups. The number of the subgroups has been shown above, the structure follows from <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>.</p>

<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b>Table II: Maximal subgroups/&gt;</caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(G\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(𝕄(G,s)\)</span></td>
<td class="tdright"><span class="SimpleMath">\(|s|\)</span></td>
<td class="tdright">see <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(SL(3,4) = 3.L_3(4)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3 \times L_3(2), 3 \times L_3(2), 3 \times L_3(2)\)</span></td>
<td class="tdright"><span class="SimpleMath">\(21\)</span></td>
<td class="tdright">p. 23</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(\Omega^-(8,2) = O^-_8(2)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\Omega^-(4,4).2 = L_2(16).2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(17\)</span></td>
<td class="tdright">p. 89</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Sp(4,4) = S_4(4)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\Omega^-(4,4).2 = L_2(16).2, Sp(2,16).2 = L_2(16).2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(17\)</span></td>
<td class="tdright">p. 44</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Sp(6,3) = 2.S_6(3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\((4 \times U_3(3)).2, Sp(2,17).3 = 2.L_2(27).3\)</span></td>
<td class="tdright"><span class="SimpleMath">\(28\)</span></td>
<td class="tdright">p. 113</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(SU(3,3) = U_3(3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+2}_+:8, GU(2,3) = 4.S_4\)</span></td>
<td class="tdright"><span class="SimpleMath">\(6\)</span></td>
<td class="tdright">p. 14</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(SU(3,5) = 3.U_3(5)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3 \times 5^{1+2}_+:8, GU(2,5) = 3 \times 2S_5\)</span></td>
<td class="tdright"><span class="SimpleMath">\(30\)</span></td>
<td class="tdright">p. 34</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(SU(5,2) = U_5(2)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(L_2(11)\)</span></td>
<td class="tdright"><span class="SimpleMath">\(11\)</span></td>
<td class="tdright">p. 73</td>
</tr>
</table><br />
</div>

<p><a id="X7B1E26D586337487" name="X7B1E26D586337487"></a></p>

<h5>11.4-4 <span class="Heading">Automorphism Groups of other Simple Groups – Easy Cases</span></h5>

<p>We deal with automorphic extensions of those simple groups that are listed in Table I and that have been treated successfully in Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>

<p>For the following groups, <code class="code">ProbGenInfoAlmostSimple</code> can be used because <strong class="pkg">GAP</strong> can compute their primitive permutation characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "A5", "A5.2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "A6", "A6.2_1" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "A6", "A6.2_2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "A6", "A6.2_3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "A7", "A7.2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "A8", "A8.2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "A9", "A9.2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "A11", "A11.2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "L3(2)", "L3(2).2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "L3(3)", "L3(3).2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "L3(4)", "L3(4).2_1" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "L3(4)", "L3(4).2_2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "L3(4)", "L3(4).2_3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "L3(4)", "L3(4).3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "S4(4)", "S4(4).2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "U3(3)", "U3(3).2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "U3(5)", "U3(5).2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "U3(5)", "U3(5).3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "U4(2)", "U4(2).2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "U4(3)", "U4(3).2_1" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  [ "U4(3)", "U4(3).2_3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">autinfo:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fails:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for pair in list do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tbl:= CharacterTable( pair[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblG:= CharacterTable( pair[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     info:= ProbGenInfoSimple( tbl );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     spos:= List( info[4], x -&gt; Position( AtlasClassNames( tbl ), x ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Add( autinfo, ProbGenInfoAlmostSimple( tbl, tblG, spos ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintFormattedArray( autinfo );</span>
       A5.2      0        [ "5AB" ]    [ 1 ]
     A6.2_1    2/3        [ "5AB" ]    [ 2 ]
     A6.2_2    1/6         [ "5A" ]    [ 1 ]
     A6.2_3      0        [ "5AB" ]    [ 1 ]
       A7.2   1/15        [ "7AB" ]    [ 1 ]
       A8.2  13/28       [ "15AB" ]    [ 1 ]
       A9.2    1/4        [ "9AB" ]    [ 1 ]
      A11.2  1/945       [ "11AB" ]    [ 1 ]
    L3(2).2    1/4        [ "7AB" ]    [ 1 ]
    L3(3).2   1/18       [ "13AB" ]    [ 1 ]
  L3(4).2_1   3/10        [ "7AB" ]    [ 3 ]
  L3(4).2_2  11/60         [ "7A" ]    [ 1 ]
  L3(4).2_3   1/12        [ "7AB" ]    [ 1 ]
    L3(4).3   1/64         [ "7A" ]    [ 1 ]
    S4(4).2      0       [ "17AB" ]    [ 2 ]
    U3(3).2    2/7 [ "6A", "12AB" ] [ 2, 2 ]
    U3(5).2   2/21        [ "10A" ]    [ 2 ]
    U3(5).3 46/525        [ "10A" ]    [ 2 ]
    U4(2).2  16/45       [ "12AB" ]    [ 2 ]
  U4(3).2_1 76/135         [ "7A" ]    [ 3 ]
  U4(3).2_3 31/162        [ "7AB" ]    [ 3 ]
</pre></div>

<p>We see that from this list, the two groups <span class="SimpleMath">\(A_6.2_1 = S_6\)</span> and <span class="SimpleMath">\(U_4(3).2_1\)</span> require further computations (see Sections <a href="chap11_mj.html#X82C3B4287B0C7BEE"><span class="RefLink">11.5-3</span></a> and <a href="chap11_mj.html#X7D738BE5804CF22E"><span class="RefLink">11.5-24</span></a>, respectively) because the bound in the second column is larger than <span class="SimpleMath">\(1/2\)</span>.</p>

<p>Also <span class="SimpleMath">\(U_4(2)\)</span> is not done by the above, because in <a href="chapBib_mj.html#biBBGK">[BGK08, Table 4]</a>, an element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span> is chosen for the simple group, see Section <a href="chap11_mj.html#X7A03F8EC839AF0B5"><span class="RefLink">11.5-23</span></a>.</p>

<p>Finally, we deal with automorphic extensions of the groups <span class="SimpleMath">\(L_4(3)\)</span>, <span class="SimpleMath">\(O_8^-(2)\)</span>, <span class="SimpleMath">\(S_6(3)\)</span>, and <span class="SimpleMath">\(U_5(2)\)</span>.</p>

<p>For <span class="SimpleMath">\(S = L_4(3)\)</span> and <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(20\)</span>, we have <span class="SimpleMath">\(𝕄(S,s) = \{ (4 \times A_6):2 \}\)</span>, the subgroup has index <span class="SimpleMath">\(2\,106\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 69]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "L4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( AtlasClassNames( t ), "20A" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= Filtered( prim, x -&gt; x[ spos ] &lt;&gt; 0 );</span>
[ Character( CharacterTable( "L4(3)" ),
  [ 2106, 106, 42, 0, 27, 27, 0, 46, 6, 6, 1, 7, 7, 0, 3, 3, 0, 0, 0, 
      1, 1, 1, 0, 0, 0, 0, 0, 1, 1 ] ) ]
</pre></div>

<p>For the three automorphic extensions of the structure <span class="SimpleMath">\(G = S.2\)</span>, we compute the extensions of the permutation character, and the bounds <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for name in [ "L4(3).2_1", "L4(3).2_2", "L4(3).2_3" ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     t2:= CharacterTable( name );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     map:= InverseMap( GetFusionMap( t, t2 ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     torso:= List( prim, pi -&gt; CompositionMaps( pi, map ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ext:= Concatenation( List( torso,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                             x -&gt; PermChars( t2, rec( torso:= x ) ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     sigma:= ApproxP( ext, Position( OrdersClassRepresentatives( t2 ), 20 ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     max:= Maximum( sigma{ Difference( PositionsProperty(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                          OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                          ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Print( name, ":\n", ext, "\n", max, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
L4(3).2_1:
[ Character( CharacterTable( "L4(3).2_1" ), 
    [ 2106, 106, 42, 0, 27, 0, 46, 6, 6, 1, 7, 0, 3, 0, 0, 1, 1, 0, 
      0, 0, 0, 0, 1, 1, 0, 4, 0, 0, 6, 6, 6, 6, 2, 0, 0, 0, 0, 0, 0, 
      1, 1, 1, 1 ] ) ]
0
L4(3).2_2:
[ Character( CharacterTable( "L4(3).2_2" ), 
    [ 2106, 106, 42, 0, 27, 27, 0, 46, 6, 6, 1, 7, 7, 0, 3, 3, 0, 0, 
      0, 1, 1, 1, 0, 0, 0, 1, 306, 306, 42, 6, 10, 10, 0, 0, 15, 15, 
      3, 3, 3, 3, 0, 0, 1, 1, 0, 1, 1, 0, 0 ] ) ]
17/117
L4(3).2_3:
[ Character( CharacterTable( "L4(3).2_3" ), 
    [ 2106, 106, 42, 0, 27, 0, 46, 6, 6, 1, 7, 0, 3, 0, 0, 1, 1, 0, 
      0, 0, 1, 36, 0, 0, 6, 6, 2, 2, 2, 1, 1, 0, 0, 0 ] ) ]
2/117
</pre></div>

<p>For <span class="SimpleMath">\(S = O_8^-(2)\)</span> and <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(17\)</span>, we have <span class="SimpleMath">\(𝕄(S,s) = \{ L_2(16).2 \}\)</span>, the subgroup extends to <span class="SimpleMath">\(L_2(16).4\)</span> in <span class="SimpleMath">\(S.2\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 89]</a>. This is a non-split extension, so <span class="SimpleMath">\(σ^{\prime}(S.2,s) = 0\)</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "O8-(2).2" ), "17AB",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ CharacterTable( "L2(16).4" ) ], [ 1 ], "outer" );</span>
0
</pre></div>

<p>For <span class="SimpleMath">\(S = S_6(3)\)</span> and <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\(14\)</span>, we have <span class="SimpleMath">\(𝕄(S,s) = \{ (2 \times U_3(3)).2, L_2(27).3 \}\)</span>. In <span class="SimpleMath">\(G = S.2\)</span>, the subgroups extend to <span class="SimpleMath">\((4 \times U_3(3)).2\)</span> and <span class="SimpleMath">\(L_2(27).6\)</span>, respectively, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 113]</a>. In order to show that <span class="SimpleMath">\(σ^{\prime}(G,s) = 7/3240\)</span> holds, we compute the primitive permutation characters of <span class="SimpleMath">\(S\)</span> (cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>) and the unique extensions to <span class="SimpleMath">\(G\)</span> of those which are nonzero on <span class="SimpleMath">\(s\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "S6(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "S6(3).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( AtlasClassNames( t ), "14A" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= Filtered( prim, x -&gt; x[ spos ] &lt;&gt; 0 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">map:= InverseMap( GetFusionMap( t, t2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">torso:= List( prim, pi -&gt; CompositionMaps( pi, map ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= List( torso, pi -&gt; PermChars( t2, rec( torso:= pi ) ) );</span>
[ [ Character( CharacterTable( "S6(3).2" ),
      [ 155520, 0, 288, 0, 0, 0, 216, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
          0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 
          0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 144, 288, 0, 0, 0, 
          6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 
          0 ] ) ], 
  [ Character( CharacterTable( "S6(3).2" ),
      [ 189540, 1620, 568, 0, 486, 0, 0, 27, 540, 84, 24, 0, 0, 0, 0, 
          0, 54, 0, 0, 10, 0, 7, 1, 6, 6, 0, 0, 0, 0, 0, 0, 18, 0, 0, 
          0, 6, 12, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 234, 64, 
          30, 8, 0, 3, 90, 6, 0, 4, 10, 6, 0, 2, 1, 0, 0, 0, 0, 0, 0, 
          0, 1, 1, 0, 0 ] ) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( AtlasClassNames( t2 ), "14A" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sigma:= ApproxP( Concatenation( ext ), spos );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( sigma{ Difference(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
7/3240
</pre></div>

<p>For <span class="SimpleMath">\(S = U_5(2)\)</span> and <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(11\)</span>, we have <span class="SimpleMath">\(𝕄(S,s) = \{ L_2(11) \}\)</span>, the subgroup extends to <span class="SimpleMath">\(L_2(11).2\)</span> in <span class="SimpleMath">\(S.2\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 73]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "U5(2).2" ), "11AB",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ CharacterTable( "L2(11).2" ) ], [ 1 ], "outer" );</span>
1/288
</pre></div>

<p>Here we clean the workspace for the first time. This may save more than <span class="SimpleMath">\(100\)</span> megabytes, due to the fact that the caches for tables of marks and character tables are flushed.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>

<p><a id="X78B856907ED13545" name="X78B856907ED13545"></a></p>

<h5>11.4-5 <span class="Heading"><span class="SimpleMath">\(O_8^-(3)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = O_8^-(3) = \Omega^-(8,3)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(41\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(L_2(81).2_1 = \Omega^-(4,9).2\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/567\)</span>.</p>

</dd>
</dl>
<p>The only maximal subgroups of <span class="SimpleMath">\(S\)</span> containing elements of order <span class="SimpleMath">\(41\)</span> have the type <span class="SimpleMath">\(L_2(81).2_1\)</span>, and there is one class of these subgroups, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 141]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "O8-(3)" ), "41A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   [ CharacterTable( "L2(81).2_1" ) ], [ 1 ] );</span>
1/567
</pre></div>

<p><a id="X84AB334886DCA746" name="X84AB334886DCA746"></a></p>

<h5>11.4-6 <span class="Heading"><span class="SimpleMath">\(O_{10}^+(2)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = O_{10}^+(2) = \Omega^+(10,2)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>Ford<span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(45\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\((A_5 \times U_4(2)).2 = (\Omega^-(4,2) \times \Omega^-(6,2)).2\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 43/4\,216\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s\)</span> as in (a), the maximal subgroup in (a) extends to <span class="SimpleMath">\(S_5 \times U_4(2).2\)</span> in <span class="SimpleMath">\(G = Aut(S) = S.2\)</span>, and <span class="SimpleMath">\(σ^{\prime}(G,s) = 23/248\)</span>.</p>

</dd>
</dl>
<p>The only maximal subgroups of <span class="SimpleMath">\(S\)</span> containing elements of order <span class="SimpleMath">\(45\)</span> are one class of groups <span class="SimpleMath">\(H = (A_5 \times U_4(2)):2\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 146]</a>. (Note that none of the groups <span class="SimpleMath">\(S_8(2)\)</span>, <span class="SimpleMath">\(O_8^+(2)\)</span>, <span class="SimpleMath">\(L_5(2)\)</span>, <span class="SimpleMath">\(O_8^-(2)\)</span>, and <span class="SimpleMath">\(A_8\)</span> contains elements of order <span class="SimpleMath">\(45\)</span>.) <span class="SimpleMath">\(H\)</span> extends to subgroups of the type <span class="SimpleMath">\(H.2 = S_5 \times U_4(2):2\)</span> in <span class="SimpleMath">\(G\)</span>, so we can compute <span class="SimpleMath">\(1_H^S = (1_{H.2}^G)_S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAny( [ "S8(2)", "O8+(2)", "L5(2)", "O8-(2)", "A8" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; 45 in OrdersClassRepresentatives( CharacterTable( x ) ) );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "O10+(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "O10+(2).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s2:= CharacterTable( "A5.2" ) * CharacterTable( "U4(2).2" );</span>
CharacterTable( "A5.2xU4(2).2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s2, t2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t2 ), 45 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( pi, spos );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( approx{ ClassPositionsOfDerivedSubgroup( t2 ) } );</span>
43/4216
</pre></div>

<p>Statement (c) follows from considering the outer classes of prime element order.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( approx{ Difference(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
23/248
</pre></div>

<p>Alternatively, we can use <code class="code">SigmaFromMaxes</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( t2, "45AB", [ s2 ], [ 1 ], "outer" );</span>
23/248
</pre></div>

<p><a id="X84E3E4837BB93977" name="X84E3E4837BB93977"></a></p>

<h5>11.4-7 <span class="Heading"><span class="SimpleMath">\(O_{10}^-(2)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = O_{10}^-(2) = \Omega^-(10,2)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(33\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(3 \times U_5(2) = GU(5,2)\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/119\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s\)</span> as in (a), the maximal subgroup in (a) extends to <span class="SimpleMath">\((3 \times U_5(2)).2\)</span> in <span class="SimpleMath">\(G\)</span>, and <span class="SimpleMath">\(σ^{\prime}(G,s) = 1/595\)</span>.</p>

</dd>
</dl>
<p>The only maximal subgroups of <span class="SimpleMath">\(S\)</span> containing elements of order <span class="SimpleMath">\(11\)</span> have the types <span class="SimpleMath">\(A_{12}\)</span> and <span class="SimpleMath">\(3 \times U_5(2)\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 147]</a>. So <span class="SimpleMath">\(3 \times U_5(2)\)</span> is the unique class of subgroups containing elements of order <span class="SimpleMath">\(33\)</span>. This shows statement (a), and statement (b) follows using <code class="code">SigmaFromMaxes</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "O10-(2)" ), "33A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   [ CharacterTable( "Cyclic", 3 ) * CharacterTable( "U5(2)" ) ], [ 1 ] );</span>
1/119
</pre></div>

<p>The structure of the maximal subgroup of <span class="SimpleMath">\(G\)</span> follows from <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 147]</a>. We create its character table with a generic construction that is based on the fact that the outer automorphism acts nontrivially on the two direct factors; this determines the character table uniquely. (See <a href="chapBib_mj.html#biBAuto">[Brec]</a> for details.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "U5(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG:= CharacterTable( "Cyclic", 3 ) * tblG;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA:= CharacterTable( "U5(2).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">acts:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= Concatenation( List( acts, pi -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, pi,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               "(3xU5(2)).2" ) ) );</span>
[ rec( 
      MGfusMGA := [ 1, 2, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 12, 
          13, 13, 14, 14, 15, 15, 16, 17, 17, 18, 18, 19, 20, 21, 21, 
          22, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 
          30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 
          44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 
          59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 
          74, 75, 76, 77, 31, 32, 33, 35, 34, 37, 36, 38, 39, 40, 41, 
          42, 43, 45, 44, 47, 46, 49, 48, 51, 50, 52, 54, 53, 56, 55, 
          57, 58, 60, 59, 62, 61, 64, 63, 66, 65, 68, 67, 69, 71, 70, 
          73, 72, 75, 74, 77, 76 ], 
      table := CharacterTable( "(3xU5(2)).2" ) ) ]
</pre></div>

<p>Now statement (c) follows using <code class="code">SigmaFromMaxes</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "O10-(2).2" ), "33AB",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ poss[1].table ], [ 1 ], "outer" );</span>
1/595
</pre></div>

<p><a id="X8307367E7C7C3BCE" name="X8307367E7C7C3BCE"></a></p>

<h5>11.4-8 <span class="Heading"><span class="SimpleMath">\(O_{12}^+(2)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = O_{12}^+(2) = \Omega^+(12,2)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(4^- \perp 8^-\)</span> (i. e., <span class="SimpleMath">\(s\)</span> decomposes the natural <span class="SimpleMath">\(12\)</span>-dimensional module for <span class="SimpleMath">\(GO^+_{12}(2) = S.2\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(4\)</span> and <span class="SimpleMath">\(8\)</span>, respectively) and of order <span class="SimpleMath">\(85\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(G_8 = (\Omega^-(4,2) \times \Omega^-(8,2)).2\)</span> and two groups of the type <span class="SimpleMath">\(L_4(4).2^2 = \Omega^+(6,4).2^2\)</span> that are conjugate in <span class="SimpleMath">\(G = Aut(S) = S.2 = SO^+(12,2)\)</span> but <em>not</em> conjugate in <span class="SimpleMath">\(S\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 7\,675/1\,031\,184\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(σ^{\prime}(G,s) = 73/1\,008\)</span>.</p>

</dd>
</dl>
<p>The element <span class="SimpleMath">\(s\)</span> is a ppd<span class="SimpleMath">\((12,2;8)\)</span>-element in the sense of <a href="chapBib_mj.html#biBGPPS">[GPPS99]</a>, so the maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain <span class="SimpleMath">\(s\)</span> are among the nine cases (2.1)–(2.9) listed in this paper; in the notation of this paper, we have <span class="SimpleMath">\(q = 2\)</span>, <span class="SimpleMath">\(d = 12\)</span>, <span class="SimpleMath">\(e = 8\)</span>, and <span class="SimpleMath">\(r = 17\)</span>. Case (2.1) does not occur for orthogonal groups and <span class="SimpleMath">\(q = 2\)</span>, according to <a href="chapBib_mj.html#biBKlL90">[KL90]</a>; case (2.2) contributes a unique maximal subgroup, the stabilizer <span class="SimpleMath">\(G_8\)</span> of the orthogonal decomposition; the cases (2.3), (2.4) (a), (2.5), and (2.6) (a) do not occur because <span class="SimpleMath">\(r ≠ e+1\)</span> in our situation; case (2.4) (b) describes extension field type subgroups that are contained in <span class="SimpleMath">\(ΓL(6,4)\)</span>, which yields the candidates <span class="SimpleMath">\(GU(6,2).2 \cong 3.U_6(2).S_3\)</span> –but <span class="SimpleMath">\(3.U_6(2).3\)</span> does not contain elements of order <span class="SimpleMath">\(85\)</span>– and <span class="SimpleMath">\(\Omega^+(6,4).2^2 \cong L_4(4).2^2\)</span> (two classes by <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.14]</a>); the cases (2.6) (b)–(c) and (2.8) do not occur because they require <span class="SimpleMath">\(d \leq 8\)</span>; case (2.7) does not occur because <a href="chapBib_mj.html#biBGPPS">[GPPS99, Table 5]</a> contains no entry for <span class="SimpleMath">\(r = 2e+1 = 17\)</span>; finally, case (2.9) does not occur because it requires <span class="SimpleMath">\(e \in \{ d-1, d \}\)</span> in the case <span class="SimpleMath">\(r = 2e+1\)</span>.</p>

<p>So we need the permutation characters of the actions on the cosets of <span class="SimpleMath">\(L_4(4).2^2\)</span> (two classes) and <span class="SimpleMath">\(G_8\)</span>. According to <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.1.6]</a>, <span class="SimpleMath">\(G_8\)</span> has the structure <span class="SimpleMath">\((\Omega^-(4,2) \times \Omega^-(8,2)).2\)</span>.</p>

<p>Newer versions of the <strong class="pkg">GAP</strong> Character Table Library contain the character table of <span class="SimpleMath">\(S\)</span>, but it is still easier to work with the table of <span class="SimpleMath">\(G\)</span>, which was already available at the times when the first version of these examples was created.</p>

<p>The two classes of <span class="SimpleMath">\(L_4(4).2^2\)</span> type subgroups in <span class="SimpleMath">\(S\)</span> are fused in <span class="SimpleMath">\(G\)</span>. This can be seen from the fact that inducing the trivial character of a subgroup <span class="SimpleMath">\(H_1 = L_4(4).2^2\)</span> of <span class="SimpleMath">\(S\)</span> to <span class="SimpleMath">\(G\)</span> yields a character <span class="SimpleMath">\(\psi\)</span> whose values are not all even; note that if <span class="SimpleMath">\(H_1\)</span> would extend in <span class="SimpleMath">\(G\)</span> to a subgroup of twice the size of <span class="SimpleMath">\(H_1\)</span> then <span class="SimpleMath">\(\psi\)</span> would be induced from a degree two character of this subgroup whose values are all even, and induction preserves this property.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "O12+(2).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h1:= CharacterTable( "L4(4).2^2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi:= PossiblePermutationCharacters( h1, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( psi );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAny( psi[1], IsOddInt );</span>
true
</pre></div>

<p>The fixed element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(85\)</span> is contained in a member of each of the two conjugacy classes of the type <span class="SimpleMath">\(L_4(4).2^2\)</span> in <span class="SimpleMath">\(S\)</span>, since <span class="SimpleMath">\(S\)</span> contains only one class of subgroups of the order <span class="SimpleMath">\(85\)</span>; note that the order of the Sylow <span class="SimpleMath">\(17\)</span> centralizer (in both <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(G\)</span>) is not divisible by <span class="SimpleMath">\(25\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesCentralizers( t ){ PositionsProperty(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       OrdersClassRepresentatives( t ), x -&gt; x = 17 ) } / 25;</span>
[ 408/5, 408/5 ]
</pre></div>

<p>This implies that the restriction of <span class="SimpleMath">\(\psi\)</span> to <span class="SimpleMath">\(S\)</span> is the sum <span class="SimpleMath">\(\psi_S = \pi_1 + \pi_2\)</span>, say, of the first two interesting permutation characters of <span class="SimpleMath">\(S\)</span>.</p>

<p>The subgroup <span class="SimpleMath">\(G_8\)</span> of <span class="SimpleMath">\(S\)</span> extends to a group of the structure <span class="SimpleMath">\(H_2 = \Omega^-(4,2).2 \times \Omega^-(8,2).2\)</span> in <span class="SimpleMath">\(G\)</span>, inducing the trivial characters of <span class="SimpleMath">\(H_2\)</span> to <span class="SimpleMath">\(G\)</span> yields a permutation character <span class="SimpleMath">\(\varphi\)</span> of <span class="SimpleMath">\(G\)</span> whose restriction to <span class="SimpleMath">\(S\)</span> is the third permutation character <span class="SimpleMath">\(\varphi_S = \pi_3\)</span>, say.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h2:= CharacterTable( "S5" ) * CharacterTable( "O8-(2).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi:= PossiblePermutationCharacters( h2, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( phi );</span>
1
</pre></div>

<p>We have <span class="SimpleMath">\(\pi_1(1) = \pi_2(1)\)</span> and <span class="SimpleMath">\(\pi_1(s) = \pi_2(s)\)</span>, the latter again because <span class="SimpleMath">\(S\)</span> contains only one class of subgroups of order <span class="SimpleMath">\(85\)</span>.</p>

<p>Now statement (a) follows from the fact that <span class="SimpleMath">\(\pi_i(s) = 1\)</span> holds for <span class="SimpleMath">\(1 \leq i \leq 3\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= Concatenation( psi, phi );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 85 );</span>
213
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( prim, x -&gt; x[ spos ] );</span>
[ 2, 1 ]
</pre></div>

<p>For statement (b), we compute <span class="SimpleMath">\(σ(S,s)\)</span>. Note that we have to consider only classes inside <span class="SimpleMath">\(S = G^{\prime}\)</span>, and that</p>

<p class="center">\[
   σ( g, s )
     = \sum_{i=1}^3 \frac{\pi_i(s) \cdot \pi_i(g)}{\pi_i(1)}
     = \frac{\psi(s) \cdot \psi(g)}{\psi(1)}
       + \frac{\varphi(s) \cdot \varphi(g)}{\varphi(1)}
\]</p>

<p>holds for <span class="SimpleMath">\(g \in S^{\times}\)</span>, so the characters <span class="SimpleMath">\(\psi\)</span> and <span class="SimpleMath">\(\varphi\)</span> are sufficient.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( prim, spos );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( approx{ ClassPositionsOfDerivedSubgroup( t ) } );</span>
7675/1031184
</pre></div>

<p>Statement (c) follows from considering the outer involution classes. Note that by <a href="chapBib_mj.html#biBBGK">[BGK08, Remark after Proposition 5.14]</a>, only the subgroup <span class="SimpleMath">\(H_2\)</span> need to be considered, no novelties appear.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( approx{ Difference(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     PositionsProperty( OrdersClassRepresentatives( t ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ClassPositionsOfDerivedSubgroup( t ) ) } );</span>
73/1008
</pre></div>

<p><a id="X834FE1B58119A5FF" name="X834FE1B58119A5FF"></a></p>

<h5>11.4-9 <span class="Heading"><span class="SimpleMath">\(O_{12}^-(2)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = O_{12}^-(2) = \Omega^-(12,2)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\(2^6+1 = 65\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two groups of the types <span class="SimpleMath">\(U_4(4).2 = \Omega^-(6,4).2\)</span> and <span class="SimpleMath">\(L_2(64).3 = \Omega^-(4,8).3\)</span>, respectively.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/1\,023\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(σ^{\prime}(Aut(S),s) = 1/347\,820\)</span>.</p>

</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of extension field subgroups, which have the structures <span class="SimpleMath">\(U_4(4).2\)</span> and <span class="SimpleMath">\(L_2(64).3\)</span>, respectively, and by <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.16]</a>, there is just one class of each of these types.</p>

<p>Newer versions of the <strong class="pkg">GAP</strong> Character Table Library contain the character table of <span class="SimpleMath">\(S\)</span>, but using this table for the computations is not easier than using the table of <span class="SimpleMath">\(G = Aut(S) = O_{12}^-(2).2\)</span>, which was already available at the times when the first version of these examples was created. So we compute the permutation characters <span class="SimpleMath">\(\pi_1, \pi_2\)</span> of the extensions of the groups in <span class="SimpleMath">\(𝕄(S,s)\)</span> to <span class="SimpleMath">\(G\)</span> –these maximal subgroups have the structures <span class="SimpleMath">\(U_4(4).4\)</span> and <span class="SimpleMath">\(L_2(64).6\)</span>, respectively– and compute the fixed point ratios of the restrictions to <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "O12-(2).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s1:= CharacterTable( "U4(4).4" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi1:= PossiblePermutationCharacters( s1, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s2:= CharacterTable( "L2(64).6" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi2:= PossiblePermutationCharacters( s2, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= Concatenation( pi1, pi2 );;  Length( prim );</span>
2
</pre></div>

<p>Now statement (a) follows from the fact that <span class="SimpleMath">\(\pi_1(s) = \pi_2(s) = 1\)</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 65 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( prim, x -&gt; x[ spos ] );</span>
[ 1, 1 ]
</pre></div>

<p>For statement (b), we compute <span class="SimpleMath">\(σ(S,s)\)</span>; note that we have to consider only classes inside <span class="SimpleMath">\(S = G^{\prime}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( prim, spos );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( approx{ ClassPositionsOfDerivedSubgroup( t ) } );</span>
1/1023
</pre></div>

<p>Statement (c) follows from the values on the outer involution classes.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( approx{ Difference(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     PositionsProperty( OrdersClassRepresentatives( t ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ClassPositionsOfDerivedSubgroup( t ) ) } );</span>
1/347820
</pre></div>

<p><a id="X7C5980A385C088FA" name="X7C5980A385C088FA"></a></p>

<h5>11.4-10 <span class="Heading"><span class="SimpleMath">\(S_6(4)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = S_6(4) = Sp(6,4)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\(65\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two groups of the types <span class="SimpleMath">\(U_4(4).2 = \Omega^-(6,4).2\)</span> and <span class="SimpleMath">\(L_2(64).3 = Sp(2,64).3\)</span>, respectively.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 16/63\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(σ^{\prime}(Aut(S),s) = 0\)</span>.</p>

</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, the element <span class="SimpleMath">\(s\)</span> is contained in maximal subgroups of the given types, and by <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.10, 4.8.6]</a>, there is exactly one class of these subgroups.</p>

<p>The character tables of these two subgroups are currently not contained in the <strong class="pkg">GAP</strong> Character Table Library. We compute the permutation character induced from the first subgroup as the unique character of the right degree that is combinatorially possible (cf. <a href="chapBib_mj.html#biBBP98copy">[BP98]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "S6(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">degree:= Size( t ) / ( 2 * Size( CharacterTable( "U4(4)" ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi1:= PermChars( t, rec( torso:= [ degree ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( pi1 );</span>
1
</pre></div>

<p>The index of the second subgroup is too large for this simpleminded approach; therefore, we first restrict the set of possible irreducible constituents of the permutation character to those of <span class="SimpleMath">\(1_H^G\)</span>, where <span class="SimpleMath">\(H\)</span> is the derived subgroup of <span class="SimpleMath">\(L_2(64).3\)</span>, for which the character table is available.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterTable( "L2(64).3" );  CharacterTable( "U4(4).2" );</span>
fail
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= CharacterTable( "L2(64)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">subpi:= PossiblePermutationCharacters( s, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( subpi );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">scp:= MatScalarProducts( t, Irr( t ), subpi );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nonzero:= PositionsProperty( scp[1], x -&gt; x &lt;&gt; 0 );</span>
[ 1, 11, 13, 14, 17, 18, 32, 33, 56, 58, 59, 73, 74, 77, 78, 79, 80, 
  93, 95, 96, 103, 116, 117, 119, 120 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">const:= RationalizedMat( Irr( t ){ nonzero } );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">degree:= Size( t ) / ( 3 * Size( s ) );</span>
5222400
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi2:= PermChars( t, rec( torso:= [ degree ], chars:= const ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( pi2 );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= Concatenation( pi1, pi2 );;</span>
</pre></div>

<p>Now statement (a) follows from the fact that <span class="SimpleMath">\(\pi_1(s) = \pi_2(s) = 1\)</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 65 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( prim, x -&gt; x[ spos ] );</span>
[ 1, 1 ]
</pre></div>

<p>For statement (b), we compute <span class="SimpleMath">\(σ(G,s)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( ApproxP( prim, spos ) );</span>
16/63
</pre></div>

<p>In order to prove statement (c), we have to consider only the extensions of the above permutation characters of <span class="SimpleMath">\(S\)</span> to <span class="SimpleMath">\(Aut(S) \cong S.2\)</span> (cf. <a href="chapBib_mj.html#biBBGK">[BGK08, Section 2.2]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "S6(4).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tfust2:= GetFusionMap( t, t2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( prim, x -&gt; CompositionMaps( x, InverseMap( tfust2 ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= List( cand, pi -&gt; PermChars( t2, rec( torso:= pi ) ) );</span>
[ [ Character( CharacterTable( "S6(4).2" ),
      [ 2016, 512, 96, 128, 32, 120, 0, 6, 16, 40, 24, 0, 8, 136, 1, 
          6, 6, 1, 32, 0, 8, 6, 2, 0, 2, 0, 0, 4, 0, 16, 32, 1, 8, 2, 
          6, 2, 1, 2, 4, 0, 0, 1, 6, 0, 1, 10, 0, 1, 1, 0, 10, 10, 4, 
          0, 1, 0, 2, 0, 2, 1, 2, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 
          0, 0, 0, 32, 0, 0, 8, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 8, 0, 
          0, 0, 2, 2, 0, 2, 2, 0, 2, 2, 2, 0, 0 ] ) ], 
  [ Character( CharacterTable( "S6(4).2" ),
      [ 5222400, 0, 0, 0, 1280, 0, 960, 120, 0, 0, 0, 0, 0, 0, 1600, 
          0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 15, 0, 0, 0, 0, 0, 
          0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 
          0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 
          0, 0, 960, 0, 0, 0, 16, 0, 24, 12, 0, 0, 0, 0, 0, 0, 0, 0, 
          0, 0, 0, 0, 4, 1, 0, 0, 3, 0, 0, 0, 0, 0 ] ) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos2:= Position( OrdersClassRepresentatives( t2 ), 65 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sigma:= ApproxP( Concatenation( ext ), spos2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( approx{ Difference(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
0
</pre></div>

<p>For the simple group, we can <em>alternatively</em> consider a reducible element <span class="SimpleMath">\(s: 2 \perp 4\)</span> of order <span class="SimpleMath">\(85\)</span>, which is a multiple of the primitive prime divisor <span class="SimpleMath">\(r = 17\)</span> of <span class="SimpleMath">\(4^4-1\)</span>. So we have <span class="SimpleMath">\(e = 4\)</span>, <span class="SimpleMath">\(d = 6\)</span>, and <span class="SimpleMath">\(q = 4\)</span>, in the terminology of <a href="chapBib_mj.html#biBGPPS">[GPPS99]</a>. Then <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two groups, of the types <span class="SimpleMath">\(\Omega^+(6,4).2 \cong L_4(4).2_2\)</span> and <span class="SimpleMath">\(Sp(2,4) \times Sp(4,4)\)</span>. This can be shown by checking <a href="chapBib_mj.html#biBGPPS">[GPPS99, Ex. 2.1–2.9]</a>. Ex. 2.1 yields the candidates <span class="SimpleMath">\(\Omega^{\pm}(6,4).2\)</span>, but only <span class="SimpleMath">\(\Omega^+(6,4).2\)</span> contains elements of order <span class="SimpleMath">\(85\)</span>. Ex. 2.2 yields the stabilizer of a two-dimensional subspace, which has the structure <span class="SimpleMath">\(Sp(2,4) \times Sp(4,4)\)</span>, by <a href="chapBib_mj.html#biBKlL90">[KL90]</a>. All other cases except Ex. 2.4 (b) are excluded by the fact that <span class="SimpleMath">\(r = 4e+1\)</span>, and Ex. 2.4 (b) does not apply because <span class="SimpleMath">\(d/\gcd(d,e)\)</span> is odd.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "S6(4)" ), "85A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   [ CharacterTable( "L4(4).2_2" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     CharacterTable( "A5" ) * CharacterTable( "S4(4)" ) ], [ 1, 1 ] );</span>
142/455
</pre></div>

<p>This bound is not as good as the one obtained from the irreducible element of order <span class="SimpleMath">\(65\)</span> used above.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">16/63 &lt; 142/455;</span>
true
</pre></div>

<p><a id="X829EDF7F7C0BCB8E" name="X829EDF7F7C0BCB8E"></a></p>

<h5>11.4-11 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(S_6(5)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = S_6(5) = PSp(6,5)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(2 \perp 4\)</span> (i. e., the preimage of <span class="SimpleMath">\(s\)</span> in <span class="SimpleMath">\(Sp(6,5) = 2.G\)</span> decomposes the natural <span class="SimpleMath">\(6\)</span>-dimensional module for <span class="SimpleMath">\(Sp(6,5)\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(2\)</span> and <span class="SimpleMath">\(4\)</span>, respectively) and of order <span class="SimpleMath">\(78\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(G_2 = 2.(PSp(2,5) \times PSp(4,5))\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 9/217\)</span>.</p>

</dd>
</dl>
<p>The order of <span class="SimpleMath">\(s\)</span> is a multiple of the primitive prime divisor <span class="SimpleMath">\(r = 13\)</span> of <span class="SimpleMath">\(5^4-1\)</span>, so we have <span class="SimpleMath">\(e = 4\)</span>, <span class="SimpleMath">\(d = 6\)</span>, and <span class="SimpleMath">\(q = 5\)</span>, in the terminology of <a href="chapBib_mj.html#biBGPPS">[GPPS99]</a>. We check <a href="chapBib_mj.html#biBGPPS">[GPPS99, Ex. 2.1–2.9]</a>. Ex. 2.1 does not apply because the classes <span class="SimpleMath">\(C_5\)</span> and <span class="SimpleMath">\(C_8\)</span> are empty by <a href="chapBib_mj.html#biBKlL90">[KL90, Table 3.5.C]</a>, Ex. 2.2 yields exactly the stabilizer <span class="SimpleMath">\(G_2\)</span> of a <span class="SimpleMath">\(2\)</span>-dimensional subspace, Ex. 2.4 (b) does not apply because <span class="SimpleMath">\(d/\gcd(d,e)\)</span> is odd, and all other cases are excluded by the fact that <span class="SimpleMath">\(r = 3e+1\)</span>.</p>

<p>The group <span class="SimpleMath">\(G_2\)</span> has the structure <span class="SimpleMath">\(2.(PSp(2,5) \times PSp(4,5))\)</span>, which is a central product of <span class="SimpleMath">\(Sp(2,5) \cong 2.A_5\)</span> and <span class="SimpleMath">\(Sp(4,5) = 2.S_4(5)\)</span> (see <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.1.3]</a>). The character table of <span class="SimpleMath">\(G_2\)</span> can be derived from that of the direct product of <span class="SimpleMath">\(2.A_5\)</span> and <span class="SimpleMath">\(2.S_4(5)\)</span>, by factoring out the diagonal central subgroup of order two.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "S6(5)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s1:= CharacterTable( "2.A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s2:= CharacterTable( "2.S4(5)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dp:= s1 * s2;</span>
CharacterTable( "2.A5x2.S4(5)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c:= Difference( ClassPositionsOfCentre( dp ), Union(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       GetFusionMap( s1, dp ), GetFusionMap( s2, dp ) ) );</span>
[ 62 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= dp / c;</span>
CharacterTable( "2.A5x2.S4(5)/[ 1, 62 ]" )
</pre></div>

<p>Now we compute <span class="SimpleMath">\(σ(S,s)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( t, "78A", [ s ], [ 1 ] );</span>
9/217
</pre></div>

<p><a id="X85162B297E4B67EB" name="X85162B297E4B67EB"></a></p>

<h5>11.4-12 <span class="Heading"><span class="SimpleMath">\(S_8(3)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = S_8(3) = PSp(8,3)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\(41\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(S_4(9).2 = PSp(4,9).2\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/546\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>The preimage of <span class="SimpleMath">\(s\)</span> in the matrix group <span class="SimpleMath">\(2.S_8(3) = Sp(8,3)\)</span> can be chosen of order <span class="SimpleMath">\(82\)</span>, and the preimage of <span class="SimpleMath">\(M\)</span> is <span class="SimpleMath">\(2.S_4(9).2 = Sp(4,9).2\)</span>.</p>

</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, the only maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain irreducible elements of order <span class="SimpleMath">\((3^4+1)/2 = 41\)</span> are of extension field type, and by <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.10]</a>, these groups have the structure <span class="SimpleMath">\(S_4(9).2\)</span> and there is exactly one class of these groups.</p>

<p>The group <span class="SimpleMath">\(U = S_4(9)\)</span> has three nontrivial outer automorphisms, the character table of the subgroup <span class="SimpleMath">\(U.2\)</span> in question has the identifier <code class="code">"S4(9).2_1"</code>, which follows from the fact that the extensions of <span class="SimpleMath">\(U\)</span> by the other two outer automorphisms do not admit a class fusion into <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "S8(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= List( [ "S4(9).2_1", "S4(9).2_2", "S4(9).2_3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              name -&gt; PossiblePermutationCharacters(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                          CharacterTable( name ), t ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( pi, Length );</span>
[ 1, 0, 0 ]
</pre></div>

<p>Now statement (a) follows from the fact that <span class="SimpleMath">\((1_{U.2})^S(s) = 1\)</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 41 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi[1][1][ spos ];</span>
1
</pre></div>

<p>Now we compute <span class="SimpleMath">\(σ(S,s)\)</span> in order to show statement (b).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( ApproxP( pi[1], spos ) );</span>
1/546
</pre></div>

<p>Statement (c) is clear from the description of extension field type subgroups in <a href="chapBib_mj.html#biBKlL90">[KL90]</a>.</p>

<p><a id="X8495C2BF7B6EFFEF" name="X8495C2BF7B6EFFEF"></a></p>

<h5>11.4-13 <span class="Heading"><span class="SimpleMath">\(U_4(4)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = U_4(4) = SU(4,4)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(1 \perp 3\)</span> (i. e., <span class="SimpleMath">\(s\)</span> decomposes the natural <span class="SimpleMath">\(4\)</span>-dimensional module for <span class="SimpleMath">\(SU(4,4)\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(1\)</span> and <span class="SimpleMath">\(3\)</span>, respectively) and of order <span class="SimpleMath">\(4^3+1 = 65\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(G_1 = 5 \times U_3(4) = GU(3,4)\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 209/3\,264\)</span>.</p>

</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBMSW94">[MSW94]</a>, the only maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain <span class="SimpleMath">\(s\)</span> are one class of stabilizers <span class="SimpleMath">\(H \cong 5 \times U_3(4)\)</span> of this decomposition, and clearly there is only one such group containing <span class="SimpleMath">\(s\)</span>.</p>

<p>Note that <span class="SimpleMath">\(H\)</span> has index <span class="SimpleMath">\(3\,264\)</span> in <span class="SimpleMath">\(S\)</span>, since <span class="SimpleMath">\(S\)</span> has two orbits on the <span class="SimpleMath">\(1\)</span>-dimensional subspaces, of lengths <span class="SimpleMath">\(1\,105\)</span> and <span class="SimpleMath">\(3\,264\)</span>, respectively, and elements of order <span class="SimpleMath">\(13 = 65/5\)</span> lie in the stabilizers of points in the latter orbit.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= SU(4,4);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( g, NormedRowVectors( GF(16)^4 ), OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orblen:= List( orbs, Length );</span>
[ 1105, 3264 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orblen, x -&gt; x mod 13 );</span>
[ 0, 1 ]
</pre></div>

<p>We compute the permutation character <span class="SimpleMath">\(1_{G_1}^S\)</span>; there is exactly one combinatorially possible permutation character of degree <span class="SimpleMath">\(3\,264\)</span> (cf. <a href="chapBib_mj.html#biBBP98copy">[BP98]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "U4(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PermChars( t, rec( torso:= [ orblen[2] ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( pi );</span>
1
</pre></div>

<p>Now we compute <span class="SimpleMath">\(σ(S,s)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 65 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( ApproxP( pi, spos ) );</span>
209/3264
</pre></div>

<p><a id="X7A3BB5AA83A2BDF3" name="X7A3BB5AA83A2BDF3"></a></p>

<h5>11.4-14 <span class="Heading"><span class="SimpleMath">\(U_6(2)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = U_6(2) = PSU(6,2)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(11\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(U_5(2) = SU(5,2)\)</span> and three groups of the type <span class="SimpleMath">\(M_{22}\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 5/21\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>The preimage of <span class="SimpleMath">\(s\)</span> in the matrix group <span class="SimpleMath">\(SU(6,2) = 3.U_6(2)\)</span> can be chosen of order <span class="SimpleMath">\(33\)</span>, and the preimages of the groups in <span class="SimpleMath">\(𝕄(S,s)\)</span> have the structures <span class="SimpleMath">\(3 \times U_5(2) \cong GU(5,2)\)</span> and <span class="SimpleMath">\(3.M_{22}\)</span>, respectively.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>With <span class="SimpleMath">\(s\)</span> as in (a), the automorphic extensions <span class="SimpleMath">\(S.2\)</span>, <span class="SimpleMath">\(S.3\)</span> of <span class="SimpleMath">\(S\)</span> satisfy <span class="SimpleMath">\(σ^{\prime}(S.2,s) = 5/96\)</span> and <span class="SimpleMath">\(σ^{\prime}(S.3,s) = 59/224\)</span>.</p>

</dd>
</dl>
<p>According to the list of maximal subgroups of <span class="SimpleMath">\(S\)</span> in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 115]</a>, <span class="SimpleMath">\(s\)</span> is contained exactly in maximal subgroups of the types <span class="SimpleMath">\(U_5(2)\)</span> (one class) and <span class="SimpleMath">\(M_{22}\)</span> (three classes).</p>

<p>The permutation character of the action on the cosets of <span class="SimpleMath">\(U_5(2)\)</span> type subgroups is uniquely determined by the character tables. We get three possibilities for the permutation character on the cosets of <span class="SimpleMath">\(M_{22}\)</span> type subgroups; they correspond to the three classes of such subgroups, because each of these classes contains elements in exactly one of the conjugacy classes <code class="code">4C</code>, <code class="code">4D</code>, and <code class="code">4E</code> of elements in <span class="SimpleMath">\(S\)</span>, and these classes are fused under the outer automorphism of <span class="SimpleMath">\(S\)</span> of order three.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "U6(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s1:= CharacterTable( "U5(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi1:= PossiblePermutationCharacters( s1, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( pi1 );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s2:= CharacterTable( "M22" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi2:= PossiblePermutationCharacters( s2, t );</span>
[ Character( CharacterTable( "U6(2)" ),
  [ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 0, 48, 0, 16, 6, 0, 0, 0, 0, 
      0, 0, 6, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "U6(2)" ),
  [ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0, 0, 
      0, 0, 6, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "U6(2)" ),
  [ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 0, 16, 6, 0, 0, 0, 0, 
      0, 0, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">imgs:= Set( pi2, x -&gt; Position( x, 48 ) );</span>
[ 10, 11, 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t ){ imgs };</span>
[ "4C", "4D", "4E" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( t, CharacterTable( "U6(2).3" ) ){ imgs };</span>
[ 10, 10, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= Concatenation( pi1, pi2 );;</span>
</pre></div>

<p>Now statement (a) follows from the fact that the permutation characters have the value <span class="SimpleMath">\(1\)</span> on <span class="SimpleMath">\(s\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 11 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( prim, x -&gt; x[ spos ] );</span>
[ 1, 1, 1, 1 ]
</pre></div>

<p>For statement (b), we compute <span class="SimpleMath">\(σ(S,s)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( ApproxP( prim, spos ) );</span>
5/21
</pre></div>

<p>Statement (c) follows from <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>, plus the information that <span class="SimpleMath">\(3.U_6(2)\)</span> does not contain groups of the structure <span class="SimpleMath">\(3 \times M_{22}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossibleClassFusions(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "Cyclic", 3 ) * CharacterTable( "M22" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "3.U6(2)" ) );</span>
[  ]
</pre></div>

<p>For statement (d), we need that the relevant maximal subgroups of <span class="SimpleMath">\(S.2\)</span> are <span class="SimpleMath">\(U_5(2).2\)</span> and one subgroup <span class="SimpleMath">\(M_{22}.2\)</span>, and that the relevant maximal subgroup of <span class="SimpleMath">\(S.3\)</span> is <span class="SimpleMath">\(U_5(2) \times 3\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 115]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "U6(2).2" ), "11AB",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ CharacterTable( "U5(2).2" ), CharacterTable( "M22.2" ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ 1, 1 ], "outer" );</span>
5/96
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "U6(2).3" ), "11A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ CharacterTable( "U5(2)" ) * CharacterTable( "Cyclic", 3 ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ 1 ], "outer" );</span>
59/224
</pre></div>

<p><a id="X8237B8617D6F6027" name="X8237B8617D6F6027"></a></p>

<h4>11.5 <span class="Heading">Computations using Groups</span></h4>

<p>Before we start the computations using groups, we clean the workspace.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>

<p><a id="X815320787B601000" name="X815320787B601000"></a></p>

<h5>11.5-1 <span class="Heading"><span class="SimpleMath">\(A_{2m+1}\)</span>, <span class="SimpleMath">\(2 \leq m \leq 11\)</span></span></h5>

<p>For alternating groups of odd degree <span class="SimpleMath">\(n = 2m+1\)</span>, we choose <span class="SimpleMath">\(s\)</span> to be an <span class="SimpleMath">\(n\)</span>-cycle. The interesting cases in <a href="chapBib_mj.html#biBBGK">[BGK08, Proposition 6.7]</a> are <span class="SimpleMath">\(5 \leq n \leq 23\)</span>.</p>

<p>In each case, we compute representatives of the maximal subgroups of <span class="SimpleMath">\(A_n\)</span>, consider only those that contain an <span class="SimpleMath">\(n\)</span>-cycle, and then compute the permutation characters. Additionally, we show also the names that are used for the subgroups in the <strong class="pkg">GAP</strong> Library of Transitive Groups, see <a href="chapBib_mj.html#biBHulpkeTG">[Hul05]</a> and the documentation of this library in the <strong class="pkg">GAP</strong> Reference Manual.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimitivesInfoForOddDegreeAlternatingGroup:= function( n )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local G, max, cycle, spos, prim, nonz;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    G:= AlternatingGroup( n );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Compute representatives of the classes of maximal subgroups.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    max:= MaximalSubgroupClassReps( G );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Omit subgroups that cannot contain an `n'-cycle.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    max:= Filtered( max, m -&gt; IsTransitive( m, [ 1 .. n ] ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Compute the permutation characters.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    cycle:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    cycle[ n-1 ]:= 1;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    spos:= PositionProperty( ConjugacyClasses( CharacterTable( G ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               c -&gt; CycleStructurePerm( Representative( c ) ) = cycle );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    prim:= List( max, m -&gt; TrivialCharacter( m )^G );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    nonz:= PositionsProperty( prim, x -&gt; x[ spos ] &lt;&gt; 0 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Compute the subgroup names and the multiplicities.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return rec( spos := spos,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                prim := prim{ nonz },</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                grps := List( max{ nonz },</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                              m -&gt; TransitiveGroup( n,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                       TransitiveIdentification( m ) ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                mult := List( prim{ nonz }, x -&gt; x[ spos ] ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p>The sets <span class="SimpleMath">\(𝕄/~(s)\)</span> and the values <span class="SimpleMath">\(σ(A_n,s)\)</span> are as follows. For each degree in question, the first list shows names for representatives of the conjugacy classes of maximal subgroups containing a fixed <span class="SimpleMath">\(n\)</span>-cycle, and the second list shows the number of conjugates in each class.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for n in [ 5, 7 .. 23 ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     prim:= PrimitivesInfoForOddDegreeAlternatingGroup( n );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     bound:= Maximum( ApproxP( prim.prim, prim.spos ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Print( n, ": ", prim.grps, ", ", prim.mult, ", ", bound, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
5: [ D(5) = 5:2 ], [ 1 ], 1/3
7: [ L(7) = L(3,2), L(7) = L(3,2) ], [ 1, 1 ], 2/5
9: [ 1/2[S(3)^3]S(3), L(9):3=P|L(2,8) ], [ 1, 3 ], 9/35
11: [ M(11), M(11) ], [ 1, 1 ], 2/105
13: [ F_78(13)=13:6, L(13)=PSL(3,3), L(13)=PSL(3,3) ], [ 1, 2, 2 ], 4/
1155
15: [ 1/2[S(3)^5]S(5), 1/2[S(5)^3]S(3), L(15)=A_8(15)=PSL(4,2), 
  L(15)=A_8(15)=PSL(4,2) ], [ 1, 1, 1, 1 ], 29/273
17: [ L(17):4=PYL(2,16), L(17):4=PYL(2,16) ], [ 1, 1 ], 2/135135
19: [ F_171(19)=19:9 ], [ 1 ], 1/6098892800
21: [ t21n150, t21n161, t21n91 ], [ 1, 1, 2 ], 29/285
23: [ M(23), M(23) ], [ 1, 1 ], 2/130945815
</pre></div>

<p>In the above output, a subgroup printed as <code class="code">1/2[S(</code><span class="SimpleMath">\(n_1\)</span><code class="code">)^</code><span class="SimpleMath">\(n_2\)</span><code class="code">]S(</code><span class="SimpleMath">\(n_2\)</span><code class="code">)</code>, <code class="code">1/2[S(</code><span class="SimpleMath">\(n_1\)</span><code class="code">)^</code><span class="SimpleMath">\(n_2\)</span><code class="code">]S(</code><span class="SimpleMath">\(n_2\)</span><code class="code">)</code>, where <span class="SimpleMath">\(n = n_1 n_2\)</span> holds, denotes the intersection of <span class="SimpleMath">\(A_n\)</span> with the wreath product <span class="SimpleMath">\(S_{n_1} \wr S_{n_2} \leq S_n\)</span>. (Note that the <strong class="pkg">Atlas</strong> denotes the subgroup <code class="code">1/2[S(3)^3]S(3)</code> of <span class="SimpleMath">\(A_9\)</span> as <span class="SimpleMath">\(3^3:S_4\)</span>.) The groups printed as <code class="code">P|L(2,8)</code> and <code class="code">PYL(2,16)</code> denote <span class="SimpleMath">\(PΓL(2,8)\)</span> and <span class="SimpleMath">\(PΓL(2,16)\)</span>, respectively. And the three subgroups of <span class="SimpleMath">\(A_{21}\)</span> have the structures <span class="SimpleMath">\((S_3 \wr S_7) \cap A_{21}\)</span>, <span class="SimpleMath">\((S_7 \wr S_3) \cap A_{21}\)</span>, and <span class="SimpleMath">\(PGL(3,4)\)</span>, respectively.</p>

<p>Note that <span class="SimpleMath">\(A_9\)</span> contains two conjugacy classes of maximal subgroups of the type <span class="SimpleMath">\(PΓL(2,8) \cong L_2(8):3\)</span>, and that each <span class="SimpleMath">\(9\)</span>-cycle in <span class="SimpleMath">\(A_9\)</span> is contained in exactly three <em>conjugate</em> subgroups of this type. For <span class="SimpleMath">\(n \in \{ 13, 15, 17 \}\)</span>, <span class="SimpleMath">\(A_n\)</span> contains two conjugacy classes of isomorphic maximal subgroups of linear type, and each <span class="SimpleMath">\(n\)</span>-cycle is contained in subgroups from each class. Finally, <span class="SimpleMath">\(A_{21}\)</span> contains only one class of maximal subgroups of linear type.</p>

<p>For the two groups <span class="SimpleMath">\(A_5\)</span> and <span class="SimpleMath">\(A_7\)</span>, the values computed above are not sufficient. See Section <a href="chap11_mj.html#X7B5321337B28100B"><span class="RefLink">11.5-2</span></a> and <a href="chap11_mj.html#X85B3C7217B105D4D"><span class="RefLink">11.5-4</span></a> for a further treatment.</p>

<p>The above computations look like a brute-force approach, but note that the computation of the maximal subgroups of alternating and symmetric groups in <strong class="pkg">GAP</strong> uses the classification of these subgroups, and also the conjugacy classes of elements in alternating and symmetric groups can be computed cheaply.</p>

<p>Alternative (character-theoretic) computations for <span class="SimpleMath">\(n \in \{ 5, 7, 9, 11, 13 \}\)</span> were shown in Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>. (A hand calculation for the case <span class="SimpleMath">\(n = 19\)</span> can be found in <a href="chapBib_mj.html#biBBW1">[BW75]</a>.)</p>

<p><a id="X7B5321337B28100B" name="X7B5321337B28100B"></a></p>

<h5>11.5-2 <span class="Heading"><span class="SimpleMath">\(A_5\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = A_5\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 1/3\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(5\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(D_{10}\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 1/3\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>Each element in <span class="SimpleMath">\(S\)</span> together with one of <span class="SimpleMath">\((1,2)(3,4)\)</span>, <span class="SimpleMath">\((1,3)(2,4)\)</span>, <span class="SimpleMath">\((1,4)(2,3)\)</span> generates a proper subgroup of <span class="SimpleMath">\(S\)</span>.</p>

</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p>Both the spread and the uniform spread of <span class="SimpleMath">\(S\)</span> is exactly two (see <a href="chapBib_mj.html#biBBW1">[BW75]</a>), with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>.</p>

</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "A5", 1/3, 2, [ "5A" ], [ 1 ] ]
</pre></div>

<p>Statement (b) can be read off from the primitive permutation characters, and the fact that the unique class of maximal subgroups that contain elements of order <span class="SimpleMath">\(5\)</span> consists of groups of the structure <span class="SimpleMath">\(D_{10}\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 2]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 5, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimitivePermutationCharacters( t );</span>
[ Character( CharacterTable( "A5" ), [ 5, 1, 2, 0, 0 ] ), 
  Character( CharacterTable( "A5" ), [ 6, 2, 0, 1, 1 ] ), 
  Character( CharacterTable( "A5" ), [ 10, 2, 1, 0, 0 ] ) ]
</pre></div>

<p>For statement (c), we compute that for all nonidentity elements <span class="SimpleMath">\(s \in S\)</span> and involutions <span class="SimpleMath">\(g \in S\)</span>, <span class="SimpleMath">\(P(g,s) \geq 1/3\)</span> holds, with equality if and only if <span class="SimpleMath">\(s\)</span> has order <span class="SimpleMath">\(5\)</span>. We actually compute, for class representatives <span class="SimpleMath">\(s\)</span>, the proportion of involutions <span class="SimpleMath">\(g\)</span> such that <span class="SimpleMath">\(\langle g, s \rangle ≠ S\)</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= AlternatingGroup( 5 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= g.1^2 * g.2;</span>
(1,4)(2,5)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cclreps:= List( ConjugacyClasses( g ), Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortParallel( List( cclreps, Order ), cclreps );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( cclreps, Order );</span>
[ 1, 2, 3, 5, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( ConjugacyClass( g, inv ) );</span>
15
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop:= List( cclreps,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                r -&gt; RatioOfNongenerationTransPermGroup( g, inv, r ) );</span>
[ 1, 1, 3/5, 1/3, 1/3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Minimum( prop );</span>
1/3
</pre></div>

<p>Statement (d) follows by explicit computations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">triple:= [ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CommonGeneratorWithGivenElements( g, cclreps, triple );</span>
fail
</pre></div>

<p>As for statement (e), we know from (a) that the uniform spread of <span class="SimpleMath">\(S\)</span> is at least two, and from (d) that the spread is less than three.</p>

<p><a id="X82C3B4287B0C7BEE" name="X82C3B4287B0C7BEE"></a></p>

<h5>11.5-3 <span class="Heading"><span class="SimpleMath">\(A_6\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = A_6\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 2/3\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two nonconjugate groups of the type <span class="SimpleMath">\(A_5\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 5/9\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>Each element in <span class="SimpleMath">\(S\)</span> together with one of <span class="SimpleMath">\((1,2)(3,4)\)</span>, <span class="SimpleMath">\((1,3)(2,4)\)</span>, <span class="SimpleMath">\((1,4)(2,3)\)</span> generates a proper subgroup of <span class="SimpleMath">\(S\)</span>.</p>

</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p>Both the spread and the uniform spread of <span class="SimpleMath">\(S\)</span> is exactly two (see <a href="chapBib_mj.html#biBBW1">[BW75]</a>), with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(4\)</span>.</p>

</dd>
<dt><strong class="Mark">(f)</strong></dt>
<dd><p>For <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y \in S_6^{\times}\)</span>, there is <span class="SimpleMath">\(s \in S_6\)</span> such that <span class="SimpleMath">\(S \subseteq \langle x, s \rangle \cap \langle y, s \rangle\)</span>. It is <em>not</em> possible to find <span class="SimpleMath">\(s \in S\)</span> with this property, or <span class="SimpleMath">\(s\)</span> in a prescribed conjugacy class of <span class="SimpleMath">\(S_6\)</span>.</p>

</dd>
<dt><strong class="Mark">(g)</strong></dt>
<dd><p><span class="SimpleMath">\(σ( PGL(2,9) ) = 1/6\)</span> and <span class="SimpleMath">\(σ( M_{10} ) = 1/9\)</span>, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(10\)</span> and <span class="SimpleMath">\(8\)</span>, respectively.</p>

</dd>
</dl>
<p>(Note that in this example, the optimal choice of <span class="SimpleMath">\(s\)</span> for <span class="SimpleMath">\(P(S)\)</span> cannot be used to obtain the result on the exact spread.)</p>

<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "A6" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "A6", 2/3, 1, [ "5A" ], [ 2 ] ]
</pre></div>

<p>Statement (b) can be read off from the permutation characters, and the fact that the two classes of maximal subgroups that contain elements of order <span class="SimpleMath">\(5\)</span> consist of groups of the structure <span class="SimpleMath">\(A_5\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 4]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 3, 4, 5, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );</span>
[ Character( CharacterTable( "A6" ), [ 6, 2, 3, 0, 0, 1, 1 ] ), 
  Character( CharacterTable( "A6" ), [ 6, 2, 0, 3, 0, 1, 1 ] ), 
  Character( CharacterTable( "A6" ), [ 10, 2, 1, 1, 2, 0, 0 ] ), 
  Character( CharacterTable( "A6" ), [ 15, 3, 3, 0, 1, 0, 0 ] ), 
  Character( CharacterTable( "A6" ), [ 15, 3, 0, 3, 1, 0, 0 ] ) ]
</pre></div>

<p>For statement (c), we first compute that for all nonidentity elements <span class="SimpleMath">\(s \in S\)</span> and involutions <span class="SimpleMath">\(g \in S\)</span>, <span class="SimpleMath">\(P(g,s) \geq 5/9\)</span> holds, with equality if and only if <span class="SimpleMath">\(s\)</span> has order <span class="SimpleMath">\(5\)</span>. We actually compute, for class representatives <span class="SimpleMath">\(s\)</span>, the proportion of involutions <span class="SimpleMath">\(g\)</span> such that <span class="SimpleMath">\(\langle g, s \rangle ≠ S\)</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:= AlternatingGroup( 6 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= (S.1*S.2)^2;</span>
(1,3)(2,5)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cclreps:= List( ConjugacyClasses( S ), Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortParallel( List( cclreps, Order ), cclreps );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( cclreps, Order );</span>
[ 1, 2, 3, 3, 4, 5, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:= ConjugacyClass( S, inv );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( C );</span>
45
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop:= List( cclreps,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                r -&gt; RatioOfNongenerationTransPermGroup( S, inv, r ) );</span>
[ 1, 1, 1, 1, 29/45, 5/9, 5/9 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Minimum( prop );</span>
5/9
</pre></div>

<p>Now statement (c) follows from the fact that for <span class="SimpleMath">\(g \in S\)</span> of order larger than two, <span class="SimpleMath">\(σ(S,g) \leq 1/2 &lt; 5/9\)</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxP( prim, 6 );</span>
[ 0, 2/3, 1/2, 1/2, 0, 1/3, 1/3 ]
</pre></div>

<p>Statement (d) follows by explicit computations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">triple:= [ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CommonGeneratorWithGivenElements( S, cclreps, triple );</span>
fail
</pre></div>

<p>An alternative triple to that in statement (d) is the one given in <a href="chapBib_mj.html#biBBW1">[BW75]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">triple:= [ (1,3)(2,4), (1,5)(2,6), (3,6)(4,5) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CommonGeneratorWithGivenElements( S, cclreps, triple );</span>
fail
</pre></div>

<p>Of course we can also construct such a triple, as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TripleWithProperty( [ [ inv ], C, C ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       l -&gt; ForAll( S, elm -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  ForAny( l, x -&gt; not IsGeneratorsOfTransPermGroup( S, [ elm, x ] ) ) ) );</span>
[ (1,3)(2,5), (1,3)(2,6), (1,3)(2,4) ]
</pre></div>

<p>For statement (e), we use the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= (1,2,3,4)(5,6);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= Filtered( cclreps, x -&gt; Order( x ) &gt; 1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for pair in UnorderedTuples( reps, 2 ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if RandomCheckUniformSpread( S, pair, s, 40 ) &lt;&gt; true then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#E  nongeneration!\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p>We get no output, so a suitable element of order <span class="SimpleMath">\(4\)</span> works in all cases. Note that we cannot use an element of order <span class="SimpleMath">\(5\)</span>, because it fixes a point in the natural permutation representation, and we may take <span class="SimpleMath">\(x_1 = (1,2,3)\)</span> and <span class="SimpleMath">\(x_2 = (4,5,6)\)</span>. With this argument, only elements of order <span class="SimpleMath">\(4\)</span> and double <span class="SimpleMath">\(3\)</span>-cycles are possible choices for <span class="SimpleMath">\(s\)</span>, and the latter are excluded by the fact that an outer automorphism maps the class of double <span class="SimpleMath">\(s\)</span>-cycles in <span class="SimpleMath">\(A_6\)</span> to the class of <span class="SimpleMath">\(3\)</span>-cycles. So no element in <span class="SimpleMath">\(A_6\)</span> of order different from <span class="SimpleMath">\(4\)</span> works.</p>

<p>Next we show statement (f). Already in <span class="SimpleMath">\(A_6.2_1 = S_6\)</span>, elements <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(4\)</span> do in general not work because they do not generate with transpositions.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= SymmetricGroup( 6 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( G, s, (1,2) );</span>
1
</pre></div>

<p>Also, choosing <span class="SimpleMath">\(s\)</span> from a prescribed conjugacy class of <span class="SimpleMath">\(S_6\)</span> (that is, also <span class="SimpleMath">\(s\)</span> outside <span class="SimpleMath">\(A_6\)</span> is allowed) with the property that <span class="SimpleMath">\(A_6 \subseteq \langle x, s \rangle \cap \langle y, s \rangle\)</span> is not possible. Note that only <span class="SimpleMath">\(6\)</span>-cycles are possible for <span class="SimpleMath">\(s\)</span> if <span class="SimpleMath">\(x\)</span> and <span class="SimpleMath">\(y\)</span> are commuting transpositions, and –applying the outer automorphism– no <span class="SimpleMath">\(6\)</span>-cycle works for two commuting fixed-point free involutions. (The group is small enough for a brute force test.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">goods:= Filtered( Elements( G ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     s -&gt; IsGeneratorsOfTransPermGroup( G, [ s, (1,2) ] ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          IsGeneratorsOfTransPermGroup( G, [ s, (3,4) ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( List( goods, CycleStructurePerm ) );</span>
[ [ [ ,,,, 1 ], 24 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">goods:= Filtered( Elements( G ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     s -&gt; IsGeneratorsOfTransPermGroup( G, [ s, (1,2)(3,4)(5,6) ] ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          IsGeneratorsOfTransPermGroup( G, [ s, (1,3)(2,4)(5,6) ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( List( goods, CycleStructurePerm ) );</span>
[ [ [ 1, 1 ], 24 ] ]
</pre></div>

<p>However, for each pair of nonidentity element <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y \in S_6\)</span>, there is <span class="SimpleMath">\(s \in S_6\)</span> such that <span class="SimpleMath">\(\langle x, s \rangle\)</span> and <span class="SimpleMath">\(\langle y, s \rangle\)</span> both contain <span class="SimpleMath">\(A_6\)</span>. (If <span class="SimpleMath">\(s\)</span> works for the pair <span class="SimpleMath">\((x,y)\)</span> then <span class="SimpleMath">\(s^g\)</span> works for <span class="SimpleMath">\((x^g,y^g)\)</span>, so it is sufficient to consider only orbit representatives <span class="SimpleMath">\((x,y)\)</span> under the conjugation action of <span class="SimpleMath">\(G\)</span> on pairs. Thus we check conjugacy class representatives <span class="SimpleMath">\(x\)</span> and, for fixed <span class="SimpleMath">\(x\)</span>, representatives of orbits of <span class="SimpleMath">\(C_G(x)\)</span> on the classes <span class="SimpleMath">\(y^G\)</span>, i. e., representatives of <span class="SimpleMath">\(C_G(y)\)</span>-<span class="SimpleMath">\(C_G(x)\)</span>-double cosets in <span class="SimpleMath">\(G\)</span>. Moreover, clearly we can restrict the checks to elements <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> of prime order.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sgens:= GeneratorsOfGroup( S );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">primord:= Filtered( List( ConjugacyClasses( G ), Representative ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       x -&gt; IsPrimeInt( Order( x ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for x in primord do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for y in primord do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       for pair in DoubleCosetRepsAndSizes( G, Centralizer( G, y ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       Centralizer( G, x ) ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if not ForAny( G, s -&gt; IsSubset( Group( x,s ), S ) and </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                IsSubset( Group( y^pair[1], s ), S ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Error( [ x, y ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p>In other words, the spread of <span class="SimpleMath">\(S_6\)</span> is <span class="SimpleMath">\(2\)</span> but the uniform spread of <span class="SimpleMath">\(S_6\)</span> is not <span class="SimpleMath">\(2\)</span> but only <span class="SimpleMath">\(1\)</span>.</p>

<p>We cannot always find <span class="SimpleMath">\(s \in A_6\)</span> with the required property: If <span class="SimpleMath">\(x\)</span> is a transposition then any <span class="SimpleMath">\(s\)</span> with <span class="SimpleMath">\(S \subseteq\langle x, s \rangle\)</span> must be a <span class="SimpleMath">\(5\)</span>-cycle.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= Filtered( S, s -&gt; IsSubset( Group( (1,2), s ), S ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( List( filt, Order ) );</span>
[ [ 5, 48 ] ]
</pre></div>

<p>Moreover, clearly such <span class="SimpleMath">\(s\)</span> fixes one of the moved points of <span class="SimpleMath">\(x\)</span>, so we may prescribe a transposition <span class="SimpleMath">\(y ≠ x\)</span> that commutes with <span class="SimpleMath">\(x\)</span>, it satisfies <span class="SimpleMath">\(S \nsubseteq\langle y, s \rangle\)</span>.</p>

<p>For the other two automorphic extensions <span class="SimpleMath">\(A_6.2_2 = PGL(2,9)\)</span> and <span class="SimpleMath">\(A_6.2_3 = M_{10}\)</span>, we compute the character-theoretic bounds <span class="SimpleMath">\(σ(A_6.2_2) = 1/6\)</span> and <span class="SimpleMath">\(σ(A_6.2_3) = 1/9\)</span>, which shows statement (g).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( CharacterTable( "A6.2_2" ) );</span>
[ "A6.2_2", 1/6, 5, [ "10A" ], [ 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( CharacterTable( "A6.2_3" ) );</span>
[ "A6.2_3", 1/9, 8, [ "8C" ], [ 1 ] ]
</pre></div>

<p>Note that <span class="SimpleMath">\(σ^{\prime}( PGL(2,9), s ) = 1/6\)</span>, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>, and <span class="SimpleMath">\(σ^{\prime}( M_{10}, s ) = 0\)</span> for any <span class="SimpleMath">\(s \in A_6\)</span> since <span class="SimpleMath">\(M_{10}\)</span> is a non-split extension of <span class="SimpleMath">\(A_6\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "A6" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "A6.2_2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= PositionsProperty( OrdersClassRepresentatives( t ), x -&gt; x = 5 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoAlmostSimple( t, t2, spos );</span>
[ "A6.2_2", 1/6, [ "5A", "5B" ], [ 1, 1 ] ]
</pre></div>

<p><a id="X85B3C7217B105D4D" name="X85B3C7217B105D4D"></a></p>

<h5>11.5-4 <span class="Heading"><span class="SimpleMath">\(A_7\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = A_7\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 2/5\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two nonconjugate subgroups of the type <span class="SimpleMath">\(L_2(7)\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 2/5\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is exactly three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>

</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "A7" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "A7", 2/5, 2, [ "7A" ], [ 2 ] ]
</pre></div>

<p>Statement (b) can be read off from the permutation characters, and the fact that the two classes of maximal subgroups that contain elements of order <span class="SimpleMath">\(7\)</span> consist of groups of the structure <span class="SimpleMath">\(L_2(7)\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 10]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 3, 4, 5, 6, 7, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );</span>
[ Character( CharacterTable( "A7" ), [ 7, 3, 4, 1, 1, 2, 0, 0, 0 ] ), 
  Character( CharacterTable( "A7" ), [ 15, 3, 0, 3, 1, 0, 0, 1, 1 ] ),
  Character( CharacterTable( "A7" ), [ 15, 3, 0, 3, 1, 0, 0, 1, 1 ] ),
  Character( CharacterTable( "A7" ), [ 21, 5, 6, 0, 1, 1, 2, 0, 0 ] ),
  Character( CharacterTable( "A7" ), [ 35, 7, 5, 2, 1, 0, 1, 0, 0 ] ) 
 ]
</pre></div>

<p>For statement (c), we compute that for all nonidentity elements <span class="SimpleMath">\(s \in S\)</span> and involutions <span class="SimpleMath">\(g \in S\)</span>, <span class="SimpleMath">\(P(g,s) \geq 2/5\)</span> holds, with equality if and only if <span class="SimpleMath">\(s\)</span> has order <span class="SimpleMath">\(7\)</span>. We actually compute, for class representatives <span class="SimpleMath">\(s\)</span>, the proportion of involutions <span class="SimpleMath">\(g\)</span> such that <span class="SimpleMath">\(\langle g, s \rangle ≠ S\)</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= AlternatingGroup( 7 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= (g.1^3*g.2)^3;</span>
(2,6)(3,7)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= List( ConjugacyClasses( g ), Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortParallel( List( ccl, Order ), ccl );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ccl, Order );</span>
[ 1, 2, 3, 3, 4, 5, 6, 7, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( ConjugacyClass( g, inv ) );</span>
105
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop:= List( ccl, r -&gt; RatioOfNongenerationTransPermGroup( g, inv, r ) );</span>
[ 1, 1, 1, 1, 89/105, 17/21, 19/35, 2/5, 2/5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Minimum( prop );</span>
2/5
</pre></div>

<p>For statement (d), we use the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>. By the character-theoretic bounds, it suffices to consider triples of elements in the classes <code class="code">2A</code> or <code class="code">3B</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 3, 4, 5, 6, 7, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 7 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesCentralizers( t );</span>
[ 2520, 24, 36, 9, 4, 5, 12, 7, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxP( prim, spos );</span>
[ 0, 2/5, 0, 2/5, 2/15, 0, 0, 2/15, 2/15 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= (1,2,3,4,5,6,7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3B:= (1,2,3)(4,5,6);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C3B:= ConjugacyClass( g, 3B );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( C3B );</span>
280
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for triple in UnorderedTuples( [ inv, 3B ], 3 ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if RandomCheckUniformSpread( g, triple, s, 80 ) &lt;&gt; true then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#E  nongeneration!\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p>We get no output, so the uniform spread of <span class="SimpleMath">\(S\)</span> is at least three.</p>

<p>Alternatively, we can use the lemma from Section <a href="chap11_mj.html#X79D7312484E78274"><span class="RefLink">11.2-2</span></a>; this approach is technically more involved but faster. We work with the diagonal product of the two degree <span class="SimpleMath">\(15\)</span> representations of <span class="SimpleMath">\(S\)</span>, which is constructed from the information stored in the <strong class="pkg">GAP</strong> Library of Tables of Marks.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( "A7" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a7:= UnderlyingGroup( tom );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tommaxes:= MaximalSubgroupsTom( tom );</span>
[ [ 39, 38, 37, 36, 35 ], [ 7, 15, 15, 21, 35 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">index15:= List( tommaxes[1]{ [ 2, 3 ] },</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   i -&gt; RepresentativeTom( tom, i ) );</span>
[ Group([ (1,3)(2,7), (1,5,7)(3,4,6) ]), 
  Group([ (1,4)(2,3), (2,4,6)(3,5,7) ]) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">deg15:= List( index15, s -&gt; RightTransversal( a7, s ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= List( deg15, l -&gt; Action( a7, l, OnRight ) );</span>
[ Group([ (1,5,7)(2,9,10)(3,11,4)(6,12,8)(13,14,15), (1,8,15,5,12)
      (2,13,11,3,10)(4,14,9,7,6) ]), 
  Group([ (1,2,3)(4,6,5)(7,8,9)(10,12,11)(13,15,14), (1,12,3,13,10)
      (2,9,15,4,11)(5,6,14,7,8) ]) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= DiagonalProductOfPermGroups( reps );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 7;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints( s );</span>
28
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mpg:= MovedPoints( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fixs:= Difference( mpg, MovedPoints( s ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb_s:= Orbit( g, fixs, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( orb_s );</span>
120
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesCentralizers( t );</span>
[ 2520, 24, 36, 9, 4, 5, 12, 7, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat 2a:= Random( g ); until Order( 2a ) = 2;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat 3b:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( 3b ) = 3 and Size( Centralizer( g, 3b ) ) = 9;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb2a:= Orbit( g, Difference( mpg, MovedPoints( 2a ) ), OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb3b:= Orbit( g, Difference( mpg, MovedPoints( 3b ) ), OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb2aor3b:= Union( orb2a, orb3b );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TripleWithProperty( [ [ orb2a[1], orb3b[1] ], orb2aor3b, orb2aor3b ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       l -&gt; ForAll( orb_s,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                f -&gt; not IsEmpty( Intersection( Union( l ), f ) ) ) );</span>
fail
</pre></div>

<p>It remains to show that for any choice of <span class="SimpleMath">\(s \in S\)</span>, a quadruple of elements in <span class="SimpleMath">\(S^{\times}\)</span> exists such that <span class="SimpleMath">\(s\)</span> generates a proper subgroup of <span class="SimpleMath">\(S\)</span> together with at least one of these elements.</p>

<p>First we observe (without using <strong class="pkg">GAP</strong>) that there is a pair of <span class="SimpleMath">\(3\)</span>-cycles whose fixed points cover the seven points of the natural permutation representation. This implies the statement for all elements <span class="SimpleMath">\(s \in S\)</span> that fix a point in this representation. So it remains to consider elements <span class="SimpleMath">\(s\)</span> of the orders six and seven.</p>

<p>For the order seven element, the above setup and the lemma from Section <a href="chap11_mj.html#X79D7312484E78274"><span class="RefLink">11.2-2</span></a> can be used.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">QuadrupleWithProperty( [ [ orb2a[1] ], orb2a, orb2a, orb2a ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       l -&gt; ForAll( orb_s,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                f -&gt; not IsEmpty( Intersection( Union( l ), f ) ) ) );</span>
[ [ 2, 5, 12, 18, 19, 26 ], [ 7, 8, 9, 16, 21, 25 ], 
  [ 1, 6, 10, 17, 20, 27 ], [ 13, 14, 15, 28, 29, 30 ] ]
</pre></div>

<p>For the order six element, we use the diagonal product of the primitive permutation representations of the degrees <span class="SimpleMath">\(21\)</span> and <span class="SimpleMath">\(35\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">has6A:= List( tommaxes[1]{ [ 4, 5 ] },</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 i -&gt; RepresentativeTom( tom, i ) );</span>
[ Group([ (1,2)(3,7), (2,6,5,4)(3,7) ]), 
  Group([ (2,3)(5,7), (1,2)(4,5,6,7), (2,3)(5,6) ]) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">trans:= List( has6A, s -&gt; RightTransversal( a7, s ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= List( trans, l -&gt; Action( a7, l, OnRight ) );</span>
[ Group([ (1,16,12)(2,17,13)(3,18,11)(4,19,14)(15,20,21), (1,4,7,9,10)
      (2,5,8,3,6)(11,12,15,14,13)(16,20,19,17,18) ]), 
  Group([ (2,16,6)(3,17,7)(4,18,8)(5,19,9)(10,20,26)(11,21,27)
      (12,22,28)(13,23,29)(14,24,30)(15,25,31), (1,2,3,4,5)
      (6,10,13,15,9)(7,11,14,8,12)(16,20,23,25,19)(17,21,24,18,22)
      (26,32,35,31,28)(27,33,29,34,30) ]) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= DiagonalProductOfPermGroups( reps );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 6;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints( s );</span>
53
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mpg:= MovedPoints( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fixs:= Difference( mpg, MovedPoints( s ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb_s:= Orbit( g, fixs, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( orb_s );</span>
105
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat 3a:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( 3a ) = 3 and Size( Centralizer( g, 3a ) ) = 36;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb3a:= Orbit( g, Difference( mpg, MovedPoints( 3a ) ), OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( orb3a );</span>
35
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TripleWithProperty( [ [ orb3a[1] ], orb3a, orb3a ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       l -&gt; ForAll( orb_s,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                f -&gt; not IsEmpty( Intersection( Union( l ), f ) ) ) );</span>
[ [ 1, 4, 6, 12, 14, 15, 34, 37, 40, 43, 49 ], 
  [ 1, 4, 6, 16, 19, 20, 27, 30, 33, 44, 49 ], 
  [ 2, 3, 4, 5, 7, 9, 26, 47, 48, 50, 53 ] ]
</pre></div>

<p>So we have found not only a quadruple but even a triple of <span class="SimpleMath">\(3\)</span>-cycles that excludes candidates <span class="SimpleMath">\(s\)</span> of order six.</p>

<p><a id="X84EA645A82E2BAFB" name="X84EA645A82E2BAFB"></a></p>

<h5>11.5-5 <span class="Heading"><span class="SimpleMath">\(L_d(q)\)</span></span></h5>

<p>In the treatment of small dimensional linear groups <span class="SimpleMath">\(S = SL(d,q)\)</span>, <a href="chapBib_mj.html#biBBGK">[BGK08]</a> uses a Singer element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\((q^d-1)/(q-1)\)</span>. (So the order of the corresponding element in <span class="SimpleMath">\(PSL(d,q) = (q^d-1)/[(q-1) \gcd(d,q-1)]\)</span>.) By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of extension field type subgroups, except in the cases <span class="SimpleMath">\(d = 2\)</span>, <span class="SimpleMath">\(q \in \{ 2, 5, 7, 9 \}\)</span>, and <span class="SimpleMath">\((d,q) = (3,4)\)</span>. These subgroups have the structure <span class="SimpleMath">\(GL(d/p,q^p):\alpha_q \cap S\)</span>, for prime divisors <span class="SimpleMath">\(p\)</span> of <span class="SimpleMath">\(d\)</span>, where <span class="SimpleMath">\(\alpha_q\)</span> denotes the Frobenius automorphism that acts on matrices by raising each entry to the <span class="SimpleMath">\(q\)</span>-th power. (If <span class="SimpleMath">\(q\)</span> is a prime then we have <span class="SimpleMath">\(GL(d/p,q^p):\alpha_q = ΓL(d/p,q^p)\)</span>.) Since <span class="SimpleMath">\(s\)</span> acts irreducibly, it is contained in at most one conjugate of each class of extension field type subgroups (cf. <a href="chapBib_mj.html#biBBGK">[BGK08, Lemma 2.12]</a>).</p>

<p>First we write a <strong class="pkg">GAP</strong> function <code class="code">RelativeSigmaL</code> that takes a positive integer <span class="SimpleMath">\(d\)</span> and a basis <span class="SimpleMath">\(B\)</span> of the field extension of degree <span class="SimpleMath">\(n\)</span> over the field with <span class="SimpleMath">\(q\)</span> elements, and returns the group <span class="SimpleMath">\(GL(d,q^n):\alpha_q\)</span>, as a subgroup of <span class="SimpleMath">\(GL(dn,q)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RelativeSigmaL:= function( d, B )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local n, F, q, glgens, diag, pi, frob, i;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    n:= Length( B );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    F:= LeftActingDomain( UnderlyingLeftModule( B ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    q:= Size( F );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Create the generating matrices inside the linear subgroup.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    glgens:= List( GeneratorsOfGroup( SL( d, q^n ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   m -&gt; BlownUpMat( B, m ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Create the matrix of a diagonal part that maps to determinant 1.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    diag:= IdentityMat( d*n, F );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    diag{ [ 1 .. n ] }{ [ 1 .. n ] }:= BlownUpMat( B, [ [ Z(q^n)^(q-1) ] ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    Add( glgens, diag );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Create the matrix that realizes the Frobenius action,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # and adjust the determinant.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    pi:= List( B, b -&gt; Coefficients( B, b^q ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    frob:= NullMat( d*n, d*n, F );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    for i in [ 0 .. d-1 ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      frob{ [ 1 .. n ] + i*n }{ [ 1 .. n ] + i*n }:= pi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    diag:= IdentityMat( d*n, F );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    diag{ [ 1 .. n ] }{ [ 1 .. n ] }:= BlownUpMat( B, [ [ Z(q^n) ] ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    diag:= diag^LogFFE( Inverse( Determinant( frob ) ), Determinant( diag ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Return the result.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return Group( Concatenation( glgens, [ diag * frob ] ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p>The next function computes <span class="SimpleMath">\(σ(SL(d,q),s)\)</span>, by computing the sum of <span class="SimpleMath">\(μ(g,S/(GL(d/p,q^p):\alpha_q \cap S))\)</span>, for prime divisors <span class="SimpleMath">\(p\)</span> of <span class="SimpleMath">\(d\)</span>, and taking the maximum over <span class="SimpleMath">\(g \in S^{\times}\)</span>. The computations take place in a permutation representation of <span class="SimpleMath">\(PSL(d,q)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForSL:= function( d, q )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local G, epi, PG, primes, maxes, names, ccl;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Check whether this is an admissible case (see [Be00]).</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if ( d = 2 and q in [ 2, 5, 7, 9 ] ) or ( d = 3 and q = 4 ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Create the group SL(d,q), and the map to PSL(d,q).</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    G:= SL( d, q );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    epi:= ActionHomomorphism( G, NormedRowVectors( GF(q)^d ), OnLines );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    PG:= ImagesSource( epi );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Create the subgroups corresponding to the prime divisors of `d'.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    primes:= PrimeDivisors( d );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    maxes:= List( primes, p -&gt; RelativeSigmaL( d/p,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                 Basis( AsField( GF(q), GF(q^p) ) ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    names:= List( primes, p -&gt; Concatenation( "GL(", String( d/p ), ",",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                 String( q^p ), ").", String( p ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if 2 &lt; q then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      names:= List( names, name -&gt; Concatenation( name, " cap G" ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Compute the conjugacy classes of prime order elements in the maxes.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # (In order to avoid computing all conjugacy classes of these subgroups,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # we work in Sylow subgroups.)</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    ccl:= List( List( maxes, x -&gt; ImagesSet( epi, x ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            M -&gt; ClassesOfPrimeOrder( M, PrimeDivisors( Size( M ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                      TrivialSubgroup( M ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return [ names, UpperBoundFixedPointRatios( PG, ccl, true )[1] ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p>We apply this function to the cases that are interesting in <a href="chapBib_mj.html#biBBGK">[BGK08, Section 5.12]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pairs:= [ [ 3, 2 ], [ 3, 3 ], [ 4, 2 ], [ 4, 3 ], [ 4, 4 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           [ 6, 2 ], [ 6, 3 ], [ 6, 4 ], [ 6, 5 ], [ 8, 2 ], [ 10, 2 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">array:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for pair in pairs do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     d:= pair[1];  q:= pair[2];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     approx:= ApproxPForSL( d, q );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Add( array, [ Concatenation( "SL(", String(d), ",", String(q), ")" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   (q^d-1)/(q-1),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   approx[1], approx[2] ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">oldsize:= SizeScreen();;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizeScreen( [ 80 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintFormattedArray( array );</span>
   SL(3,2)    7                             [ "GL(1,8).3" ]             1/4
   SL(3,3)   13                      [ "GL(1,27).3 cap G" ]            1/24
   SL(4,2)   15                             [ "GL(2,4).2" ]            3/14
   SL(4,3)   40                       [ "GL(2,9).2 cap G" ]         53/1053
   SL(4,4)   85                      [ "GL(2,16).2 cap G" ]           1/108
   SL(6,2)   63                [ "GL(3,4).2", "GL(2,8).3" ]       365/55552
   SL(6,3)  364   [ "GL(3,9).2 cap G", "GL(2,27).3 cap G" ] 22843/123845436
   SL(6,4) 1365  [ "GL(3,16).2 cap G", "GL(2,64).3 cap G" ]         1/85932
   SL(6,5) 3906 [ "GL(3,25).2 cap G", "GL(2,125).3 cap G" ]        1/484220
   SL(8,2)  255                             [ "GL(4,4).2" ]          1/7874
  SL(10,2) 1023               [ "GL(5,4).2", "GL(2,32).5" ]        1/129794
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizeScreen( oldsize );;</span>
</pre></div>

<p>The only missing case for <a href="chapBib_mj.html#biBBGK">[BGK08]</a> is <span class="SimpleMath">\(S = L_3(4)\)</span>, for which <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of three groups of the type <span class="SimpleMath">\(L_3(2)\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 23]</a>). The group <span class="SimpleMath">\(L_3(4)\)</span> has been considered already in Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, where <span class="SimpleMath">\(σ(S,s) = 1/5\)</span> has been proved. Also the cases <span class="SimpleMath">\(SL(3,3)\)</span>, <span class="SimpleMath">\(SL(4,2) \cong A_8\)</span>, and <span class="SimpleMath">\(SL(4,3)\)</span> have been handled there.</p>

<p>An alternative character-theoretic proof for <span class="SimpleMath">\(S = L_6(2)\)</span> looks as follows. In this case, the subgroups in <span class="SimpleMath">\(𝕄(S,s)\)</span> have the types <span class="SimpleMath">\(ΓL(3,4) \cong GL(3,4).2 \cong 3.L_3(4).3.2_2\)</span> and <span class="SimpleMath">\(ΓL(2,8) \cong GL(2,8).3 \cong (7 \times L_2(8)).3\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "L6(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s1:= CharacterTable( "3.L3(4).3.2_2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s2:= CharacterTable( "(7xL2(8)).3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( t, "63A", [ s1, s2 ], [ 1, 1 ] );</span>
365/55552
</pre></div>

<p><a id="X855460BE787188B9" name="X855460BE787188B9"></a></p>

<h5>11.5-6 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(L_d(q)\)</span> with prime <span class="SimpleMath">\(d\)</span></span></h5>

<p>For <span class="SimpleMath">\(S = SL(d,q)\)</span> with <em>prime</em> dimension <span class="SimpleMath">\(d\)</span>, and <span class="SimpleMath">\(s \in S\)</span> a Singer cycle, we have <span class="SimpleMath">\(𝕄(S,s) = \{ M \}\)</span>, where <span class="SimpleMath">\(M = N_S(\langle s \rangle) \cong ΓL(1,q^d) \cap S\)</span>. So</p>

<p class="center">\[
   σ(g,s) = μ(g,S/M) = |g^S \cap M|/|g^S|
               &lt; |M|/|g^S| \leq (q^d-1) \cdot d/|g^S|
\]</p>

<p>holds for any <span class="SimpleMath">\(g \in S \setminus Z(S)\)</span>, which implies <span class="SimpleMath">\(σ( S, s ) &lt; \max\{ (q^d-1) \cdot d/|g^S|; g \in S \setminus Z(S) \}\)</span>. The right hand side of this inequality is returned by the following function. In <a href="chapBib_mj.html#biBBGK">[BGK08, Lemma 3.8]</a>, the global upper bound <span class="SimpleMath">\(1/q^d\)</span> is derived for primes <span class="SimpleMath">\(d \geq 5\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundForSL:= function( d, q )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local G, Msize, ccl;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if not IsPrimeInt( d ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      Error( "&lt;d&gt; must be a prime" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    G:= SL( d, q );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    Msize:= (q^d-1) * d;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    ccl:= Filtered( ConjugacyClasses( G ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    c -&gt;     Msize mod Order( Representative( c ) ) = 0</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                         and Size( c ) &lt;&gt; 1 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return Msize / Minimum( List( ccl, Size ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p>The interesting values are <span class="SimpleMath">\((d,q)\)</span> with <span class="SimpleMath">\(d \in \{ 5, 7, 11 \}\)</span> and <span class="SimpleMath">\(q \in \{ 2, 3, 4 \}\)</span>, and perhaps also <span class="SimpleMath">\((d,q) \in \{ (3,2), (3,3) \}\)</span>. (Here we exclude <span class="SimpleMath">\(SL(11,4)\)</span> because writing down the conjugacy classes of this group would exceed the permitted memory.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrConjugacyClasses( SL(11,4) );</span>
1397660
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pairs:= [ [ 3, 2 ], [ 3, 3 ], [ 5, 2 ], [ 5, 3 ], [ 5, 4 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             [ 7, 2 ], [ 7, 3 ], [ 7, 4 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             [ 11, 2 ], [ 11, 3 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">array:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for pair in pairs do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     d:= pair[1];  q:= pair[2];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     approx:= UpperBoundForSL( d, q );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Add( array, [ Concatenation( "SL(", String(d), ",", String(q), ")" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   (q^d-1)/(q-1),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   approx ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintFormattedArray( array );</span>
   SL(3,2)     7                                   7/8
   SL(3,3)    13                                   3/4
   SL(5,2)    31                              31/64512
   SL(5,3)   121                                 10/81
   SL(5,4)   341                                15/256
   SL(7,2)   127                             7/9142272
   SL(7,3)  1093                                14/729
   SL(7,4)  5461                               21/4096
  SL(11,2)  2047 2047/34112245508649716682268134604800
  SL(11,3) 88573                              22/59049
</pre></div>

<p>The exact values are clearly better than the above bounds. We compute them for <span class="SimpleMath">\(L_5(2)\)</span> and <span class="SimpleMath">\(L_7(2)\)</span>. In the latter case, the class fusion of the <span class="SimpleMath">\(127:7\)</span> type subgroup <span class="SimpleMath">\(M\)</span> is not uniquely determined by the character tables; here we use the additional information that the elements of order <span class="SimpleMath">\(7\)</span> in <span class="SimpleMath">\(M\)</span> have centralizer order <span class="SimpleMath">\(49\)</span> in <span class="SimpleMath">\(L_7(2)\)</span>. (See Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a> for the examples with <span class="SimpleMath">\(d = 3\)</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "L5(2)" ), "31A",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       [ CharacterTable( "31:5" ) ], [ 1 ] );</span>
1/5376
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "L7(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= CharacterTable( "P:Q", [ 127, 7 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( pi );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord7:= PositionsProperty( OrdersClassRepresentatives( t ), x -&gt; x = 7 );</span>
[ 38, 45, 76, 77, 83 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sizes:= SizesCentralizers( t ){ ord7 };</span>
[ 141120, 141120, 3528, 3528, 49 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( pi, x -&gt; x[83] );</span>
[ 42, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 127 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( ApproxP( pi{ [ 1 ] }, spos ) );</span>
1/4388290560
</pre></div>

<p><a id="X7EA88CEF81962F3F" name="X7EA88CEF81962F3F"></a></p>

<h5>11.5-7 <span class="Heading">Automorphic Extensions of <span class="SimpleMath">\(L_d(q)\)</span></span></h5>

<p>For the following values of <span class="SimpleMath">\(d\)</span> and <span class="SimpleMath">\(q\)</span>, automorphic extensions <span class="SimpleMath">\(G\)</span> of <span class="SimpleMath">\(L_d(q)\)</span> had to be checked for <a href="chapBib_mj.html#biBBGK">[BGK08, Section 5.12]</a>.</p>

<p class="center">\[
   (d,q) \in \{ (3,4), (6,2), (6,3), (6,4), (6,5), (10,2) \}
\]</p>

<p>The first case has been treated in Section <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a>. For the other cases, we compute <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> below.</p>

<p>In any case, the extension by a <em>graph</em> automorphism occurs, which can be described by mapping each matrix in <span class="SimpleMath">\(SL(d,q)\)</span> to its inverse transpose. If <span class="SimpleMath">\(q &gt; 2\)</span>, also extensions by <em>diagonal</em> automorphisms occur, which are induced by conjugation with elements in <span class="SimpleMath">\(GL(d,q)\)</span>. If <span class="SimpleMath">\(q\)</span> is nonprime then also extensions by <em>field</em> automorphisms occur, which can be described by powering the matrix entries by roots of <span class="SimpleMath">\(q\)</span>. Finally, products (of prime order) of these three kinds of automorphisms have to be considered.</p>

<p>We start with the extension <span class="SimpleMath">\(G\)</span> of <span class="SimpleMath">\(S = SL(d,q)\)</span> by a graph automorphism. <span class="SimpleMath">\(G\)</span> can be embedded into <span class="SimpleMath">\(GL(2d,q)\)</span> by representing the matrix <span class="SimpleMath">\(A \in S\)</span> as a block diagonal matrix with diagonal blocks equal to <span class="SimpleMath">\(A\)</span> and <span class="SimpleMath">\(A^{-tr}\)</span>, and representing the graph automorphism by a permutation matrix that interchanges the two blocks. In order to construct the field extension type subgroups of <span class="SimpleMath">\(G\)</span>, we have to choose the basis of the field extension in such a way that the subgroup is normalized by the permutation matrix; a sufficient condition is that the matrices of the <span class="SimpleMath">\(𝔽_q\)</span>-linear mappings induced by the basis elements are symmetric.</p>

<p>(We do not give a function that computes a basis with this property from the parameters <span class="SimpleMath">\(d\)</span> and <span class="SimpleMath">\(q\)</span>. Instead, we only write down the bases that we will need.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SymmetricBasis:= function( q, n )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local vectors, B, issymmetric;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if   q = 2 and n = 2 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      vectors:= [ Z(2)^0, Z(2^2) ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif q = 2 and n = 3 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      vectors:= [ Z(2)^0, Z(2^3), Z(2^3)^5 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif q = 2 and n = 5 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      vectors:= [ Z(2)^0, Z(2^5), Z(2^5)^4, Z(2^5)^25, Z(2^5)^26 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif q = 3 and n = 2 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      vectors:= [ Z(3)^0, Z(3^2) ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif q = 3 and n = 3 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      vectors:= [ Z(3)^0, Z(3^3)^2, Z(3^3)^7 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif q = 4 and n = 2 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      vectors:= [ Z(2)^0, Z(2^4)^3 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif q = 4 and n = 3 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      vectors:= [ Z(2)^0, Z(2^3), Z(2^3)^5 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif q = 5 and n = 2 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      vectors:= [ Z(5)^0, Z(5^2)^2 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    elif q = 5 and n = 3 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      vectors:= [ Z(5)^0, Z(5^3)^9, Z(5^3)^27 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      Error( "sorry, no basis for &lt;q&gt; and &lt;n&gt; stored" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    B:= Basis( AsField( GF(q), GF(q^n) ), vectors );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Check that the basis really has the required property.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    issymmetric:= M -&gt; M = TransposedMat( M );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if not ForAll( B, b -&gt; issymmetric( BlownUpMat( B, [ [ b ] ] ) ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      Error( "wrong basis!" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Return the result.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return B;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p>In later examples, we will need similar embeddings of matrices. Therefore, we provide a more general function <code class="code">EmbeddedMatrix</code> that takes a field <code class="code">F</code>, a matrix <code class="code">mat</code>, and a function <code class="code">func</code>, and returns a block diagonal matrix over <code class="code">F</code> whose diagonal blocks are <code class="code">mat</code> and <code class="code">func( mat )</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BindGlobal( "EmbeddedMatrix", function( F, mat, func )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  local d, result;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  d:= Length( mat );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  result:= NullMat( 2*d, 2*d, F );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  result{ [ 1 .. d ] }{ [ 1 .. d ] }:= mat;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  result{ [ d+1 .. 2*d ] }{ [ d+1 .. 2*d ] }:= func( mat );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  return result;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
</pre></div>

<p>The following function is similar to <code class="code">ApproxPForSL</code>, the differences are that the group <span class="SimpleMath">\(G\)</span> in question is not <span class="SimpleMath">\(SL(d,q)\)</span> but the extension of this group by a graph automorphism, and that <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> is computed not <span class="SimpleMath">\(σ(G,s)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut:= function( d, q )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local embedG, swap, G, orb, epi, PG, Gprime, primes, maxes, ccl, names;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Check whether this is an admissible case (see [Be00],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # note that a graph automorphism exists only for `d &gt; 2').</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if d = 2 or ( d = 3 and q = 4 ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Provide a function that constructs a block diagonal matrix.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    embedG:= mat -&gt; EmbeddedMatrix( GF( q ), mat,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                    M -&gt; TransposedMat( M^-1 ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Create the matrix that exchanges the two blocks.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    swap:= NullMat( 2*d, 2*d, GF(q) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    swap{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    swap{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Create the group SL(d,q).2, and the map to the projective group.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    G:= ClosureGroupDefault( Group( List( GeneratorsOfGroup( SL( d, q ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                          embedG ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                      swap );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    orb:= Orbit( G, One( G )[1], OnLines );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    epi:= ActionHomomorphism( G, orb, OnLines );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    PG:= ImagesSource( epi );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    Gprime:= DerivedSubgroup( PG );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Create the subgroups corresponding to the prime divisors of `d'.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    primes:= PrimeDivisors( d );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    maxes:= List( primes,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              p -&gt; ClosureGroupDefault( Group( List( GeneratorsOfGroup(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                         RelativeSigmaL( d/p, SymmetricBasis( q, p ) ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                         embedG ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     swap ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Compute conjugacy classes of outer involutions in the maxes.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # (In order to avoid computing all conjugacy classes of these subgroups,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # we work in the Sylow $2$ subgroups.)</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    maxes:= List( maxes, M -&gt; ImagesSet( epi, M ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    ccl:= List( maxes, M -&gt; ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    names:= List( primes, p -&gt; Concatenation( "GL(", String( d/p ), ",",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                   String( q^p ), ").", String( p ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return [ names, UpperBoundFixedPointRatios( PG, ccl, true )[1] ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p>And these are the results for the groups we are interested in (and others).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 4, 3 );</span>
[ [ "GL(2,9).2" ], 17/117 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 4, 4 );</span>
[ [ "GL(2,16).2" ], 73/1008 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 6, 2 );</span>
[ [ "GL(3,4).2", "GL(2,8).3" ], 41/1984 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 6, 3 );</span>
[ [ "GL(3,9).2", "GL(2,27).3" ], 541/352836 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 6, 4 );</span>
[ [ "GL(3,16).2", "GL(2,64).3" ], 3265/12570624 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 6, 5 );</span>
[ [ "GL(3,25).2", "GL(2,125).3" ], 13001/195250000 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 8, 2 );</span>
[ [ "GL(4,4).2" ], 367/1007872 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 10, 2 );</span>
[ [ "GL(5,4).2", "GL(2,32).5" ], 609281/476346056704 ]
</pre></div>

<p>Now we consider diagonal automorphisms. We modify the approach for <span class="SimpleMath">\(SL(d,q)\)</span> by constructing the field extension type subgroups of <span class="SimpleMath">\(GL(d,q) \ldots\)</span></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RelativeGammaL:= function( d, B )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local n, F, q, diag;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    n:= Length( B );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    F:= LeftActingDomain( UnderlyingLeftModule( B ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    q:= Size( F );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    diag:= IdentityMat( d * n, F );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    diag{[ 1 .. n ]}{[ 1 .. n ]}:= BlownUpMat( B, [ [ Z(q^n) ] ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return ClosureGroup( RelativeSigmaL( d, B ),  diag );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p><span class="SimpleMath">\(\ldots\)</span> and counting the elements of prime order outside the simple group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInGL:= function( d, q )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local G, epi, PG, Gprime, primes, maxes, names;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Check whether this is an admissible case (see [Be00]).</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    if ( d = 2 and q in [ 2, 5, 7, 9 ] ) or ( d = 3 and q = 4 ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      return fail;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Create the group GL(d,q), and the map to PGL(d,q).</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    G:= GL( d, q );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    epi:= ActionHomomorphism( G, NormedRowVectors( GF(q)^d ), OnLines );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    PG:= ImagesSource( epi );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    Gprime:= ImagesSet( epi, SL( d, q ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    # Create the subgroups corresponding to the prime divisors of `d'.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    primes:= PrimeDivisors( d );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    maxes:= List( primes, p -&gt; RelativeGammaL( d/p,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                   Basis( AsField( GF(q), GF(q^p) ) ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    maxes:= List( maxes, M -&gt; ImagesSet( epi, M ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    names:= List( primes, p -&gt; Concatenation( "M(", String( d/p ), ",",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                   String( q^p ), ")" ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return [ names,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             UpperBoundFixedPointRatios( PG, List( maxes,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 M -&gt; ClassesOfPrimeOrder( M,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                          PrimeDivisors( Index( PG, Gprime ) ), Gprime ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 true )[1] ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p>Here are the required results.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInGL( 6, 3 );</span>
[ [ "M(3,9)", "M(2,27)" ], 41/882090 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInGL( 4, 3 );</span>
[ [ "M(2,9)" ], 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInGL( 6, 4 );</span>
[ [ "M(3,16)", "M(2,64)" ], 1/87296 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ApproxPForOuterClassesInGL( 6, 5 );</span>
[ [ "M(3,25)", "M(2,125)" ], 821563/756593750000 ]
</pre></div>

<p>(Note that the extension field type subgroup in <span class="SimpleMath">\(PGL(4,3) = L_4(3).2_1\)</span> is a <em>non-split</em> extension of its intersection with <span class="SimpleMath">\(L_4(3)\)</span>, hence the zero value.)</p>

<p>Concerning extensions by Frobenius automorphisms, only the case <span class="SimpleMath">\((d,q) = (6,4)\)</span> is interesting in <a href="chapBib_mj.html#biBBGK">[BGK08]</a>. In fact, we would not need to compute anything for the extension <span class="SimpleMath">\(G\)</span> of <span class="SimpleMath">\(S = SL(6,4)\)</span> by the Frobenius map that squares each matrix entry. This is because <span class="SimpleMath">\(𝕄^{\prime}(G,s)\)</span> consists of the normalizers of the two subgroups of the types <span class="SimpleMath">\(SL(3,16)\)</span> and <span class="SimpleMath">\(SL(2,64)\)</span>, and the former maximal subgroup is a <em>non-split</em> extension of its intersection with <span class="SimpleMath">\(S\)</span>, so only one maximal subgroup can contribute to <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span>, which is thus smaller than <span class="SimpleMath">\(1/2\)</span>, by <a href="chapBib_mj.html#biBBGK">[BGK08, Prop. 2.6]</a>.</p>

<p>However, it is easy enough to compute the exact value of <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span>. We work with the projective action of <span class="SimpleMath">\(S\)</span> on its natural module, and compute the permutation induced by the Frobenius map as the Frobenius action on the normed row vectors.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">matgrp:= SL(6,4);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dom:= NormedRowVectors( GF(4)^6 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Gprime:= Action( matgrp, dom, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PermList( List( dom, v -&gt; Position( dom, List( v, x -&gt; x^2 ) ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= ClosureGroup( Gprime, pi );;</span>
</pre></div>

<p>Then we compute the maximal subgroups, the classes of outer involutions, and the bound, similar to the situation with graph automorphisms.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxes:= List( [ 2, 3 ], p -&gt; Normalizer( G,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Action( RelativeSigmaL( 6/p,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               Basis( AsField( GF(4), GF(4^p) ) ) ), dom, OnLines ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= List( maxes, M -&gt; ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ccl, Length );</span>
[ 0, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundFixedPointRatios( G, ccl, true );</span>
[ 1/34467840, true ]
</pre></div>

<p>For <span class="SimpleMath">\((d,q) = (6,4)\)</span>, we have to consider also the extension <span class="SimpleMath">\(G\)</span> of <span class="SimpleMath">\(S = SL(6,4)\)</span> by the product <span class="SimpleMath">\(\alpha\)</span> of the Frobenius map and the graph automorphism. We use the same approach as for the graph automorphism, i. e., we embed <span class="SimpleMath">\(SL(6,4)\)</span> into a <span class="SimpleMath">\(12\)</span>-dimensional group of <span class="SimpleMath">\(6 \times 6\)</span> block matrices, where the second block is the image of the first block under <span class="SimpleMath">\(\alpha\)</span>, and describe <span class="SimpleMath">\(\alpha\)</span> by the transposition of the two blocks.</p>

<p>First we construct the projective actions of <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(G\)</span> on an orbit of <span class="SimpleMath">\(1\)</span>-spaces.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">embedFG:= function( F, mat )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     return EmbeddedMatrix( F, mat,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                M -&gt; List( TransposedMat( M^-1 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                           row -&gt; List( row, x -&gt; x^2 ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   end;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">d:= 6;;  q:= 4;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha:= NullMat( 2*d, 2*d, GF(q) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Gprime:= Group( List( GeneratorsOfGroup( SL(d,q) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                         mat -&gt; embedFG( GF(q), mat ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= ClosureGroupDefault( Gprime, alpha );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= Orbit( G, One( G )[1], OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= Action( G, orb, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Gprime:= Action( Gprime, orb, OnLines );;</span>
</pre></div>

<p>Next we construct the maximal subgroups, the classes of outer involutions, and the bound.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxes:= List( PrimeDivisors( d ), p -&gt; Group( List( GeneratorsOfGroup(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             RelativeSigmaL( d/p, Basis( AsField( GF(q), GF(q^p) ) ) ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               mat -&gt; embedFG( GF(q), mat ) ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxes:= List( maxes, x -&gt; Action( x, orb, OnLines ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxes:= List( maxes, x -&gt; Normalizer( G, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= List( maxes, M -&gt; ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ccl, Length );</span>
[ 0, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundFixedPointRatios( G, ccl, true );</span>
[ 1/10792960, true ]
</pre></div>

<p>The only missing cases are the extensions of <span class="SimpleMath">\(SL(6,3)\)</span> and <span class="SimpleMath">\(SL(6,5)\)</span> by the involutory outer automorphism that acts as the product of a diagonal and a graph automorphism.</p>

<p>In the case <span class="SimpleMath">\(S = SL(6,3)\)</span>, we can directly write down the extension <span class="SimpleMath">\(G\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">d:= 6;;  q:= 3;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">diag:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">diag[1][1]:= Z(q);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">embedDG:= mat -&gt; EmbeddedMatrix( GF(q), mat,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                    M -&gt; TransposedMat( M^-1 )^diag );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Gprime:= Group( List( GeneratorsOfGroup( SL(d,q) ), embedDG ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha:= NullMat( 2*d, 2*d, GF(q) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= ClosureGroupDefault( Gprime, alpha );;</span>
</pre></div>

<p>The maximal subgroups are constructed as the normalizers in <span class="SimpleMath">\(G\)</span> of the extension field type subgroups in <span class="SimpleMath">\(S\)</span>. We work with a permutation representation of <span class="SimpleMath">\(G\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxes:= List( PrimeDivisors( d ), p -&gt; Group( List( GeneratorsOfGroup(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             RelativeSigmaL( d/p, Basis( AsField( GF(q), GF(q^p) ) ) ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               embedDG ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= Orbit( G, One( G )[1], OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= Action( G, orb, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Gprime:= Action( Gprime, orb, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxes:= List( maxes, M -&gt; Normalizer( G, Action( M, orb, OnLines ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= List( maxes, M -&gt; ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ccl, Length );</span>
[ 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundFixedPointRatios( G, ccl, true );</span>
[ 25/352836, true ]
</pre></div>

<p>For <span class="SimpleMath">\(S = SL(6,5)\)</span>, this approach does not work because we cannot realize the diagonal involution by an involutory matrix. Instead, we consider the extension of <span class="SimpleMath">\(GL(6,5) \cong 2.(2 \times L_6(5)).2\)</span> by the graph automorphism <span class="SimpleMath">\(\alpha\)</span>, which can be embedded into <span class="SimpleMath">\(GL(12,5)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">d:= 6;;  q:= 5;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">embedG:= mat -&gt; EmbeddedMatrix( GF(q),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                   mat, M -&gt; TransposedMat( M^-1 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Gprime:= Group( List( GeneratorsOfGroup( SL(d,q) ), embedG ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxes:= List( PrimeDivisors( d ), p -&gt; Group( List( GeneratorsOfGroup(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             RelativeSigmaL( d/p, Basis( AsField( GF(q), GF(q^p) ) ) ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               embedG ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">diag:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">diag[1][1]:= Z(q);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">diag:= embedG( diag );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha:= NullMat( 2*d, 2*d, GF(q) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= ClosureGroupDefault( Gprime, alpha * diag );;</span>
</pre></div>

<p>Now we switch to the permutation action of this group on the <span class="SimpleMath">\(1\)</span>-dimensional subspaces, thus factoring out the cyclic normal subgroup of order four. In this action, the involutory diagonal automorphism is represented by an involution, and we can proceed as above.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= Orbit( G, One( G )[1], OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Gprime:= Action( Gprime, orb, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= Action( G, orb, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxes:= List( maxes, M -&gt; Action( M, orb, OnLines ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">extmaxes:= List( maxes, M -&gt; Normalizer( G, M ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= List( extmaxes, M -&gt; ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ccl, Length );</span>
[ 2, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundFixedPointRatios( G, ccl, true );</span>
[ 3863/6052750000, true ]
</pre></div>

<p>In the same way, we can recheck the values for the extensions of <span class="SimpleMath">\(SL(6,5)\)</span> by the diagonal or by the graph automorphism.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">diag:= Permutation( diag, orb, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= ClosureGroupDefault( Gprime, diag );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">extmaxes:= List( maxes, M -&gt; Normalizer( G, M ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= List( extmaxes, M -&gt; ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ccl, Length );</span>
[ 3, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundFixedPointRatios( G, ccl, true );</span>
[ 821563/756593750000, true ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha:= Permutation( alpha, orb, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= ClosureGroupDefault( Gprime, alpha );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">extmaxes:= List( maxes, M -&gt; Normalizer( G, M ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= List( extmaxes, M -&gt; ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ccl, Length );</span>
[ 2, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundFixedPointRatios( G, ccl, true );</span>
[ 13001/195250000, true ]
</pre></div>

<p>gap&gt; t2:= CharacterTable( "L6(2).2" );; gap&gt; map:= InverseMap( GetFusionMap( t, t2 ) );; gap&gt; torso:= List( Concatenation( prim ), pi -&gt; CompositionMaps( pi, map ) );; gap&gt; ext:= List( torso, x -&gt; PermChars( t2, rec( torso:= x ) ) ); [ [ Character( CharacterTable( "L6(2).2" ), [ 55552, 0, 128, 256, 337, 112, 22, 0, 0, 16, 0, 16, 2, 17, 0, 0, 8, 2, 4, 28, 0, 0, 0, 4, 1, 0, 1, 0, 0, 4, 0, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1120, 192, 32, 0, 0, 40, 13, 0, 4, 6, 0, 4, 4, 4, 0, 2, 8, 5, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0 ] ) ], [ Character( CharacterTable( "L6(2).2" ), [ 1904640, 0, 0, 512, 960, 0, 120, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 73, 24, 3, 0, 0, 15, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 960, 960, 0, 0, 0, 0, 24, 0, 12, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0 ] ) ] ] gap&gt; sigma:= ApproxP( Concatenation( ext ), &gt; Position( OrdersClassRepresentatives( t2 ), 63 ) );; gap&gt; Maximum( sigma{ Difference( PositionsProperty( &gt; OrdersClassRepresentatives( t2 ), IsPrimeInt ), &gt; ClassPositionsOfDerivedSubgroup( t2 ) ) } ); 41/1984 --&gt;</p>

<p><a id="X7C8806DB8588BB51" name="X7C8806DB8588BB51"></a></p>

<h5>11.5-8 <span class="Heading"><span class="SimpleMath">\(L_3(2)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = L_3(2) = SL(3,2)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 1/4\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(7:3\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 1/4\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at exactly three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>, and the spread of <span class="SimpleMath">\(S\)</span> is exactly four. (This had been left open in <a href="chapBib_mj.html#biBBW1">[BW75]</a>.)</p>

</dd>
</dl>
<p>(Note that in this example, the spread and the uniform spread differ.)</p>

<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "L3(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "L3(2)", 1/4, 3, [ "7A" ], [ 1 ] ]
</pre></div>

<p>Statement (b) can be read off from the permutation characters, and the fact that the unique class of maximal subgroups that contain elements of order <span class="SimpleMath">\(7\)</span> consists of groups of the structure <span class="SimpleMath">\(7:3\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 3]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 4, 7, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimitivePermutationCharacters( t );</span>
[ Character( CharacterTable( "L3(2)" ), [ 7, 3, 1, 1, 0, 0 ] ), 
  Character( CharacterTable( "L3(2)" ), [ 7, 3, 1, 1, 0, 0 ] ), 
  Character( CharacterTable( "L3(2)" ), [ 8, 0, 2, 0, 1, 1 ] ) ]
</pre></div>

<p>For the other statements, we will use the primitive permutation representations on <span class="SimpleMath">\(7\)</span> and <span class="SimpleMath">\(8\)</span> points of <span class="SimpleMath">\(S\)</span> (computed from the <strong class="pkg">GAP</strong> Library of Tables of Marks), and their diagonal products of the degrees <span class="SimpleMath">\(14\)</span> and <span class="SimpleMath">\(15\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tom:= TableOfMarks( "L3(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= UnderlyingGroup( tom );</span>
Group([ (2,4)(5,7), (1,2,3)(4,5,6) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mx:= MaximalSubgroupsTom( tom );</span>
[ [ 14, 13, 12 ], [ 7, 7, 8 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxes:= List( mx[1], i -&gt; RepresentativeTom( tom, i ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr:= List( maxes, s -&gt; RightTransversal( g, s ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">acts:= List( tr, x -&gt; Action( g, x, OnRight ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g7:= acts[1];</span>
Group([ (3,4)(6,7), (1,3,2)(4,6,5) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g8:= acts[3];</span>
Group([ (1,6)(2,5)(3,8)(4,7), (1,7,3)(2,5,8) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g14:= DiagonalProductOfPermGroups( acts{ [ 1, 2 ] } );</span>
Group([ (3,4)(6,7)(11,13)(12,14), (1,3,2)(4,6,5)(8,11,9)(10,12,13) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g15:= DiagonalProductOfPermGroups( acts{ [ 2, 3 ] } );</span>
Group([ (4,6)(5,7)(8,13)(9,12)(10,15)(11,14), (1,4,2)(3,5,6)(8,14,10)
  (9,12,15) ])
</pre></div>

<p>First we compute that for all nonidentity elements <span class="SimpleMath">\(s \in S\)</span> and order three elements <span class="SimpleMath">\(g \in S\)</span>, <span class="SimpleMath">\(P(g,s) \geq 1/4\)</span> holds, with equality if and only if <span class="SimpleMath">\(s\)</span> has order <span class="SimpleMath">\(7\)</span>; this implies statement (c). We actually compute, for class representatives <span class="SimpleMath">\(s\)</span>, the proportion of order three elements <span class="SimpleMath">\(g\)</span> such that <span class="SimpleMath">\(\langle g, s \rangle ≠ S\)</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= List( ConjugacyClasses( g7 ), Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortParallel( List( ccl, Order ), ccl );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ccl, Order );</span>
[ 1, 2, 3, 4, 7, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( ConjugacyClass( g7, ccl[3] ) );</span>
56
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop:= List( ccl,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                r -&gt; RatioOfNongenerationTransPermGroup( g7, ccl[3], r ) );</span>
[ 1, 5/7, 19/28, 2/7, 1/4, 1/4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Minimum( prop );</span>
1/4
</pre></div>

<p>Now we show that the uniform spread of <span class="SimpleMath">\(S\)</span> is less than four. In any of the primitive permutation representations of degree seven, we find three involutions whose sets of fixed points cover the seven points. The elements <span class="SimpleMath">\(s\)</span> of order different from <span class="SimpleMath">\(7\)</span> in <span class="SimpleMath">\(S\)</span> fix a point in this representation, so each such <span class="SimpleMath">\(s\)</span> generates a proper subgroup of <span class="SimpleMath">\(S\)</span> together with one of the three involutions.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= g7.1;</span>
(3,4)(6,7)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fix:= Difference( MovedPoints( g7 ), MovedPoints( x ) );</span>
[ 1, 2, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= Orbit( g7, fix, OnSets );</span>
[ [ 1, 2, 5 ], [ 1, 3, 4 ], [ 2, 3, 6 ], [ 2, 4, 7 ], [ 1, 6, 7 ], 
  [ 3, 5, 7 ], [ 4, 5, 6 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Union( orb{ [ 1, 2, 5 ] } ) = [ 1 .. 7 ];</span>
true
</pre></div>

<p>So we still have to exclude elements <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>. In the primitive permutation representation of <span class="SimpleMath">\(S\)</span> on eight points, we find four elements of order three whose sets of fixed points cover the set of all points that are moved by <span class="SimpleMath">\(S\)</span>, so with each element of order seven in <span class="SimpleMath">\(S\)</span>, one of them generates an intransitive group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">three:= g8.2;</span>
(1,7,3)(2,5,8)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fix:= Difference( MovedPoints( g8 ), MovedPoints( three ) );</span>
[ 4, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= Orbit( g8, fix, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">QuadrupleWithProperty( [ [ fix ], orb, orb, orb ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       list -&gt; Union( list ) = [ 1 .. 8 ] );</span>
[ [ 4, 6 ], [ 1, 7 ], [ 3, 8 ], [ 2, 5 ] ]
</pre></div>

<p>Together with statement (a), this proves that the uniform spread of <span class="SimpleMath">\(S\)</span> is exactly three, with <span class="SimpleMath">\(s\)</span> of order seven.</p>

<p>Each element of <span class="SimpleMath">\(S\)</span> fixes a point in the permutation representation on <span class="SimpleMath">\(15\)</span> points. So for proving that the spread of <span class="SimpleMath">\(S\)</span> is less than five, it is sufficient to find a quintuple of elements whose sets of fixed points cover all <span class="SimpleMath">\(15\)</span> points. (From the permutation characters it is clear that four of these elements must have order three, and the fifth must be an involution.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= g15.1;</span>
(4,6)(5,7)(8,13)(9,12)(10,15)(11,14)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fixx:= Difference( MovedPoints( g15 ), MovedPoints( x ) );</span>
[ 1, 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbx:= Orbit( g15, fixx, OnSets );</span>
[ [ 1, 2, 3 ], [ 1, 4, 5 ], [ 1, 6, 7 ], [ 2, 4, 6 ], [ 3, 4, 7 ], 
  [ 3, 5, 6 ], [ 2, 5, 7 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">y:= g15.2;</span>
(1,4,2)(3,5,6)(8,14,10)(9,12,15)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fixy:= Difference( MovedPoints( g15 ), MovedPoints( y ) );</span>
[ 7, 11, 13 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orby:= Orbit( g15, fixy, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">QuadrupleWithProperty( [ [ fixy ], orby, orby, orby ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       l -&gt; Difference( [ 1 .. 15 ], Union( l ) ) in orbx );</span>
[ [ 7, 11, 13 ], [ 5, 8, 14 ], [ 1, 10, 15 ], [ 3, 9, 12 ] ]
</pre></div>

<p>It remains to show that the spread of <span class="SimpleMath">\(S\)</span> is (at least) four. By the consideration of permutation characters, we know that we can find a suitable order seven element for all quadruples in question except perhaps quadruples of order three elements. We show that for each such case, we can choose <span class="SimpleMath">\(s\)</span> of order four. Since <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two subgroups of the type <span class="SimpleMath">\(S_4\)</span>, we work with the representation on <span class="SimpleMath">\(14\)</span> points.)</p>

<p>First we compute <span class="SimpleMath">\(s\)</span> and the <span class="SimpleMath">\(S\)</span>-orbit of its fixed points, and the <span class="SimpleMath">\(S\)</span>-orbit of the fixed points of an element <span class="SimpleMath">\(x\)</span> of order three. Then we prove that for each quadruple of conjugates of <span class="SimpleMath">\(x\)</span>, the union of their fixed points intersects the fixed points of at least one conjugate of <span class="SimpleMath">\(s\)</span> trivially.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g14 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 4;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s;</span>
(1,3)(2,6,7,5)(9,11,10,12)(13,14)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fixs:= Difference( MovedPoints( g14 ), MovedPoints( s ) );</span>
[ 4, 8 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= Orbit( g14, fixs, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( orbs );</span>
21
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">three:= g14.2;</span>
(1,3,2)(4,6,5)(8,11,9)(10,12,13)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fix:= Difference( MovedPoints( g14 ), MovedPoints( three ) );</span>
[ 7, 14 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= Orbit( g14, fix, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( orb );</span>
28
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">QuadrupleWithProperty( [ [ fix ], orb, orb, orb ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       l -&gt; ForAll( orbs, o -&gt; not IsEmpty( Intersection( o,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       Union( l ) ) ) ) );</span>
fail
</pre></div>

<p>By the lemma from Section <a href="chap11_mj.html#X79D7312484E78274"><span class="RefLink">11.2-2</span></a>, we are done.</p>

<p><a id="X7B7061917ED3714D" name="X7B7061917ED3714D"></a></p>

<h5>11.5-9 <span class="Heading"><span class="SimpleMath">\(M_{11}\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = M_{11}\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 1/3\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(11\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(11\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(L_2(11)\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 1/3\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(11\)</span>.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>Both the uniform spread and the spread of <span class="SimpleMath">\(S\)</span> is exactly three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(11\)</span>.</p>

</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X86CE51E180A3D4ED"><span class="RefLink">11.4-1</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "M11" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "M11", 1/3, 2, [ "11A" ], [ 1 ] ]
</pre></div>

<p>Statement (b) can be read off from the permutation characters, and the fact that the unique class of maximal subgroups that contain elements of order <span class="SimpleMath">\(11\)</span> consists of groups of the structure <span class="SimpleMath">\(L_2(11)\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 18]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 4, 5, 6, 8, 8, 11, 11 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimitivePermutationCharacters( t );</span>
[ Character( CharacterTable( "M11" ),
  [ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ), 
  Character( CharacterTable( "M11" ),
  [ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ), 
  Character( CharacterTable( "M11" ),
  [ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ), 
  Character( CharacterTable( "M11" ),
  [ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ), 
  Character( CharacterTable( "M11" ),
  [ 165, 13, 3, 1, 0, 1, 1, 1, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maxes( t );</span>
[ "A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4" ]
</pre></div>

<p>For the other statements, we will use the primitive permutation representations of <span class="SimpleMath">\(S\)</span> on <span class="SimpleMath">\(11\)</span> and <span class="SimpleMath">\(12\)</span> points (which are fetched from the <strong class="pkg">Atlas</strong> of Group Representations <a href="chapBib_mj.html#biBAGRv3">[WWT+]</a>), and their diagonal product.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens11:= OneAtlasGeneratingSet( "M11", NrMovedPoints, 11 );</span>
rec( charactername := "1a+10a", constituents := [ 1, 2 ], 
  contents := "core", 
  generators := [ (2,10)(4,11)(5,7)(8,9), (1,4,3,8)(2,5,6,9) ], 
  groupname := "M11", id := "", 
  identifier := [ "M11", [ "M11G1-p11B0.m1", "M11G1-p11B0.m2" ], 1, 
      11 ], isPrimitive := true, maxnr := 1, p := 11, rankAction := 2,
  repname := "M11G1-p11B0", repnr := 1, size := 7920, 
  stabilizer := "A6.2_3", standardization := 1, transitivity := 4, 
  type := "perm" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g11:= GroupWithGenerators( gens11.generators );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens12:= OneAtlasGeneratingSet( "M11", NrMovedPoints, 12 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g12:= GroupWithGenerators( gens12.generators );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g23:= DiagonalProductOfPermGroups( [ g11, g12 ] );</span>
Group([ (2,10)(4,11)(5,7)(8,9)(12,17)(13,20)(16,18)(19,21), (1,4,3,8)
  (2,5,6,9)(12,17,18,15)(13,19)(14,20)(16,22,23,21) ])
</pre></div>

<p>First we compute that for all nonidentity elements <span class="SimpleMath">\(s \in S\)</span> and involutions <span class="SimpleMath">\(g \in S\)</span>, <span class="SimpleMath">\(P(g,s) \geq 1/3\)</span> holds, with equality if and only if <span class="SimpleMath">\(s\)</span> has order <span class="SimpleMath">\(11\)</span>; this implies statement (c). We actually compute, for class representatives <span class="SimpleMath">\(s\)</span>, the proportion of involutions <span class="SimpleMath">\(g\)</span> such that <span class="SimpleMath">\(\langle g, s \rangle ≠ S\)</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= g11.1;</span>
(2,10)(4,11)(5,7)(8,9)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= List( ConjugacyClasses( g11 ), Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortParallel( List( ccl, Order ), ccl );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ccl, Order );</span>
[ 1, 2, 3, 4, 5, 6, 8, 8, 11, 11 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( ConjugacyClass( g11, inv ) );</span>
165
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop:= List( ccl,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                r -&gt; RatioOfNongenerationTransPermGroup( g11, inv, r ) );</span>
[ 1, 1, 1, 149/165, 25/33, 31/55, 23/55, 23/55, 1/3, 1/3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Minimum( prop );</span>
1/3
</pre></div>

<p>For the first part of statement (d), we have to deal only with the case of triples of involutions.</p>

<p>The <span class="SimpleMath">\(11\)</span>-cycle <span class="SimpleMath">\(s\)</span> is contained in exactly one maximal subgroup of <span class="SimpleMath">\(S\)</span>, of index <span class="SimpleMath">\(12\)</span>. By Corollary 1 in Section <a href="chap11_mj.html#X79D7312484E78274"><span class="RefLink">11.2-2</span></a>, it is enough to show that in the primitive degree <span class="SimpleMath">\(12\)</span> representation of <span class="SimpleMath">\(S\)</span>, the fixed points of no triple <span class="SimpleMath">\((x_1, x_2, x_3)\)</span> of involutions in <span class="SimpleMath">\(S\)</span> can cover all twelve points; equivalenly (considering complements), we show that there is no triple such that the intersection of the sets of <em>moved</em> points is empty.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= g12.1;</span>
(1,6)(2,9)(5,7)(8,10)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">moved:= MovedPoints( inv );</span>
[ 1, 2, 5, 6, 7, 8, 9, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb12:= Orbit( g12, moved, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( orb12 );</span>
165
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TripleWithProperty( [ orb12{[1]}, orb12, orb12 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       list -&gt; IsEmpty( Intersection( list ) ) );</span>
fail
</pre></div>

<p>This implies that the uniform spread of <span class="SimpleMath">\(S\)</span> is at least three.</p>

<p>Now we show that there is a quadruple consisting of one element of order three and three involutions whose fixed points cover all points in the degree <span class="SimpleMath">\(23\)</span> representation constructed above; since the permutation character of this representation is strictly positive, this implies that <span class="SimpleMath">\(S\)</span> does not have spread four, by Corollary 2 in Section <a href="chap11_mj.html#X79D7312484E78274"><span class="RefLink">11.2-2</span></a>, and we have proved statement (d).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= g23.1;</span>
(2,10)(4,11)(5,7)(8,9)(12,17)(13,20)(16,18)(19,21)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">moved:= MovedPoints( inv );</span>
[ 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb23:= Orbit( g23, moved, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">three:= ( g23.1*g23.2^2 )^2;</span>
(2,6,10)(4,8,7)(5,9,11)(12,17,23)(15,18,16)(19,21,22)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">movedthree:= MovedPoints( three );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">QuadrupleWithProperty( [ [ movedthree ], orb23, orb23, orb23 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       list -&gt; IsEmpty( Intersection( list ) ) );</span>
[ [ 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23 ],
  [ 1, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21 ], 
  [ 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 18, 19, 20, 23 ], 
  [ 1, 2, 3, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 22, 23 ] ]
</pre></div>

<p><a id="X82E0F48A7FF82BB3" name="X82E0F48A7FF82BB3"></a></p>

<h5>11.5-10 <span class="Heading"><span class="SimpleMath">\(M_{12}\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = M_{12}\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 1/3\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(10\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(10\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two nonconjugate subgroups of the type <span class="SimpleMath">\(A_6.2^2\)</span>, and one group of the type <span class="SimpleMath">\(2 \times S_5\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 31/99\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(10\)</span>.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(10\)</span>.</p>

</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p><span class="SimpleMath">\(σ^{\prime}(Aut(S), s) = 4/99\)</span>.</p>

</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X86CE51E180A3D4ED"><span class="RefLink">11.4-1</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "M12" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "M12", 1/3, 2, [ "10A" ], [ 3 ] ]
</pre></div>

<p>Statement (b) can be read off from the permutation characters, and the fact that the only classes of maximal subgroups that contain elements of order <span class="SimpleMath">\(10\)</span> consist of groups of the structures <span class="SimpleMath">\(A_6.2^2\)</span> (two classes) and <span class="SimpleMath">\(2 \times S_5\)</span> (one class), see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 33]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 10 );</span>
13
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( prim, x -&gt; x{ [ 1, spos ] } );</span>
[ [ 12, 0 ], [ 12, 0 ], [ 66, 1 ], [ 66, 1 ], [ 144, 0 ], [ 220, 0 ], 
  [ 220, 0 ], [ 396, 1 ], [ 495, 0 ], [ 495, 0 ], [ 1320, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maxes( t );</span>
[ "M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7", 
  "2xS5", "M8.S4", "4^2:D12", "A4xS3" ]
</pre></div>

<p>For statement (c) (which implies statement (d)), we use the primitive permutation representation on <span class="SimpleMath">\(12\)</span> points.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= MathieuGroup( 12 );</span>
Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6), (1,12)(2,11)
  (3,6)(4,8)(5,9)(7,10) ])
</pre></div>

<p>First we show that for <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(10\)</span>, <span class="SimpleMath">\(P(S,s) = 31/99\)</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( prim, spos );</span>
[ 0, 3/11, 1/3, 1/11, 1/132, 13/99, 13/99, 13/396, 1/132, 1/33, 1/33, 
  1/33, 13/396, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2B:= g.2^2;</span>
(3,11)(4,5)(6,10)(7,8)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( ConjugacyClass( g, 2B ) );</span>
495
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 10;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop:= RatioOfNongenerationTransPermGroup( g, 2B, s );</span>
31/99
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( approx, x -&gt; x &gt;= prop );</span>
[ 1/3 ]
</pre></div>

<p>Next we show that for <span class="SimpleMath">\(s\)</span> of order different from <span class="SimpleMath">\(10\)</span>, <span class="SimpleMath">\(P(g,s)\)</span> is larger than <span class="SimpleMath">\(31/99\)</span> for suitable <span class="SimpleMath">\(g \in S^{\times}\)</span>. Except for <span class="SimpleMath">\(s\)</span> in the class <code class="code">6A</code> (which fixes no point in the degree <span class="SimpleMath">\(12\)</span> representation), it suffices to consider <span class="SimpleMath">\(g\)</span> in the class <code class="code">2B</code> (with four fixed points).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= g.2^2;</span>
(3,11)(4,5)(6,10)(7,8)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= List( ConjugacyClasses( g ), Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortParallel( List( ccl, Order ), ccl );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop:= List( ccl, r -&gt; RatioOfNongenerationTransPermGroup( g, x, r ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortedList( prop );</span>
[ 7/55, 31/99, 5/9, 5/9, 39/55, 383/495, 383/495, 43/55, 29/33, 1, 1, 
  1, 1, 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bad:= Filtered( prop, x -&gt; x &lt; 31/99 );</span>
[ 7/55 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pos:= Position( prop, bad[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ Order( ccl[ pos ] ), NrMovedPoints( ccl[ pos ] ) ];</span>
[ 6, 12 ]
</pre></div>

<p>In the remaining case, we choose <span class="SimpleMath">\(g\)</span> in the class <code class="code">2A</code> (which is fixed point free).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= g.3;</span>
(1,12)(2,11)(3,6)(4,8)(5,9)(7,10)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= ccl[ pos ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop:= RatioOfNongenerationTransPermGroup( g, x, s );</span>
17/33
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop &gt; 31/99;</span>
true
</pre></div>

<p>Statement (e) has been shown already in Section <a href="chap11_mj.html#X84E9D10F80A74A53"><span class="RefLink">11.4-2</span></a>.</p>

<p><a id="X7FF2E8F27FBEB65C" name="X7FF2E8F27FBEB65C"></a></p>

<h5>11.5-11 <span class="Heading"><span class="SimpleMath">\(O_7(3)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = O_7(3)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 199/351\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(14\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(14\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(2.U_4(3).2_2 = \Omega^-(6,3).2\)</span> and two nonconjugate groups of the type <span class="SimpleMath">\(S_9\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 155/351\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(14\)</span>.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(14\)</span>.</p>

</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p><span class="SimpleMath">\(σ^{\prime}(Aut(S), s) = 1/3\)</span>.</p>

</dd>
</dl>
<p>Currently <strong class="pkg">GAP</strong> provides neither the table of marks of <span class="SimpleMath">\(S\)</span> nor all character tables of its maximal subgroups. First we compute those primitive permutation characters of <span class="SimpleMath">\(S\)</span> that have the degrees <span class="SimpleMath">\(351\)</span> (point stabilizer <span class="SimpleMath">\(2.U_4(3).2_2\)</span>), <span class="SimpleMath">\(364\)</span> (point stabilizer <span class="SimpleMath">\(3^5:U_4(2).2\)</span>), <span class="SimpleMath">\(378\)</span> (point stabilizer <span class="SimpleMath">\(L_4(3).2_2\)</span>), <span class="SimpleMath">\(1\,080\)</span> (point stabilizer <span class="SimpleMath">\(G_2(3)\)</span>, two classes), <span class="SimpleMath">\(1\,120\)</span> (point stabilizer <span class="SimpleMath">\(3^{3+3}:L_3(3)\)</span>), <span class="SimpleMath">\(3\,159\)</span> (point stabilizer <span class="SimpleMath">\(S_6(2)\)</span>, two classes), <span class="SimpleMath">\(12\,636\)</span> (point stabilizer <span class="SimpleMath">\(S_9\)</span>, two classes), <span class="SimpleMath">\(22\,113\)</span> (point stabilizer <span class="SimpleMath">\((2^2 \times U_4(2)).2\)</span>, which extends to <span class="SimpleMath">\(D_8 \times U_4(2).2\)</span> in <span class="SimpleMath">\(O_7(3).2\)</span>), and <span class="SimpleMath">\(28\,431\)</span> (point stabilizer <span class="SimpleMath">\(2^6:A_7\)</span>).</p>

<p>(So we ignore the primitive permutation characters of the degrees <span class="SimpleMath">\(3\,640\)</span>, <span class="SimpleMath">\(265\,356\)</span>, and <span class="SimpleMath">\(331\,695\)</span>. Note that the orders of the corresponding subgroups are not divisible by <span class="SimpleMath">\(7\)</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "O7(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">someprim:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            CharacterTable( "2.U4(3).2_2" ), t );;  Length( pi );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PermChars( t, rec( torso:= [ 364 ] ) );;  Length( pi );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            CharacterTable( "L4(3).2_2" ), t );;  Length( pi );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters( CharacterTable( "G2(3)" ), t );</span>
[ Character( CharacterTable( "O7(3)" ),
  [ 1080, 0, 0, 24, 108, 0, 0, 0, 27, 18, 9, 0, 12, 4, 0, 0, 0, 0, 0, 
      0, 0, 0, 12, 0, 0, 0, 0, 0, 3, 6, 0, 3, 2, 2, 2, 0, 0, 0, 3, 0, 
      0, 0, 0, 0, 0, 4, 0, 3, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ] ), 
  Character( CharacterTable( "O7(3)" ),
  [ 1080, 0, 0, 24, 108, 0, 0, 27, 0, 18, 9, 0, 12, 4, 0, 0, 0, 0, 0, 
      0, 0, 0, 12, 0, 0, 0, 0, 3, 0, 0, 6, 3, 2, 2, 2, 0, 0, 3, 0, 0, 
      0, 0, 0, 0, 0, 4, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PermChars( t, rec( torso:= [ 1120 ] ) );;  Length( pi );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters( CharacterTable( "S6(2)" ), t );</span>
[ Character( CharacterTable( "O7(3)" ),
  [ 3159, 567, 135, 39, 0, 81, 0, 0, 27, 27, 0, 15, 3, 3, 7, 4, 0, 
      27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 0, 3, 9, 3, 0, 2, 1, 1, 0, 0, 0, 
      3, 0, 2, 0, 0, 0, 3, 0, 0, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] ), 
  Character( CharacterTable( "O7(3)" ),
  [ 3159, 567, 135, 39, 0, 81, 0, 27, 0, 27, 0, 15, 3, 3, 7, 4, 0, 
      27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 3, 0, 3, 9, 0, 2, 1, 1, 0, 0, 3, 
      0, 0, 2, 0, 0, 0, 3, 0, 3, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters( CharacterTable( "S9" ), t );</span>
[ Character( CharacterTable( "O7(3)" ),
  [ 12636, 1296, 216, 84, 0, 81, 0, 0, 108, 27, 0, 6, 0, 12, 10, 1, 
      0, 27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 0, 12, 9, 3, 0, 1, 0, 2, 0, 
      0, 0, 3, 1, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 
      1 ] ), Character( CharacterTable( "O7(3)" ),
  [ 12636, 1296, 216, 84, 0, 81, 0, 108, 0, 27, 0, 6, 0, 12, 10, 1, 
      0, 27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 12, 0, 3, 9, 0, 1, 0, 2, 0, 
      0, 3, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 
      1 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "O7(3).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s2:= CharacterTable( "Dihedral", 8 ) * CharacterTable( "U4(2).2" );</span>
CharacterTable( "Dihedral(8)xU4(2).2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s2, t2 );;  Length( pi );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= RestrictedClassFunctions( pi, t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            CharacterTable( "2^6:A7" ), t );;  Length( pi );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( someprim, x -&gt; x[1] );</span>
[ 351, 364, 378, 1080, 1080, 1120, 3159, 3159, 12636, 12636, 22113, 
  28431 ]
</pre></div>

<p>Note that in the three cases where two possible permutation characters were found, there are in fact two classes of subgroups that induce different permutation characters. For the subgroups of the types <span class="SimpleMath">\(G_2(3)\)</span> and <span class="SimpleMath">\(S_6(2)\)</span>, this is stated in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 109]</a>, and for the subgroups of the type <span class="SimpleMath">\(S_9\)</span>, this follows from the fact that each <span class="SimpleMath">\(S_9\)</span> type subgroup in <span class="SimpleMath">\(S\)</span> contains elements in exactly one of the classes <code class="code">3D</code> or <code class="code">3E</code>, and these two classes are fused by the outer automorphism of <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cl:= PositionsProperty( AtlasClassNames( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                           x -&gt; x in [ "3D", "3E" ] );</span>
[ 8, 9 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Filtered( someprim, x -&gt; x[1] = 12636 ), pi -&gt; pi{ cl } );</span>
[ [ 0, 108 ], [ 108, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( t, t2 ){ cl };</span>
[ 8, 8 ]
</pre></div>

<p>Now we compute the lower bounds for <span class="SimpleMath">\(σ( S, s^{\prime} )\)</span> that are given by the sublist <code class="code">someprim</code> of the primitive permutation characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 14 );</span>
52
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( ApproxP( someprim, spos ) );</span>
199/351
</pre></div>

<p>This shows that <span class="SimpleMath">\(σ( S, s ) = 199/351\)</span> holds. For statement (a), we have to show that choosing <span class="SimpleMath">\(s^{\prime}\)</span> from another class than <code class="code">14A</code> yields a larger value for <span class="SimpleMath">\(σ( S, s^{\prime} )\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= List( [ 1 .. NrConjugacyClasses( t ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      i -&gt; Maximum( ApproxP( someprim, i ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( approx, x -&gt; x &lt;= 199/351 );</span>
[ 52 ]
</pre></div>

<p>Statement (b) can be read off from the permutation characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pos:= PositionsProperty( someprim, x -&gt; x[ spos ] &lt;&gt; 0 );</span>
[ 1, 9, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( someprim{ pos }, x -&gt; x{ [ 1, spos ] } );</span>
[ [ 351, 1 ], [ 12636, 1 ], [ 12636, 1 ] ]
</pre></div>

<p>For statement (c), we first compute <span class="SimpleMath">\(P(g, s)\)</span> for <span class="SimpleMath">\(g\)</span> in the class <code class="code">2A</code>, via explicit computations with the group. For dealing with this case, we first construct a faithful permutation representation of <span class="SimpleMath">\(O_7(3)\)</span> from the natural matrix representation of <span class="SimpleMath">\(SO(7,3)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">so73:= SpecialOrthogonalGroup( 7, 3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">o73:= DerivedSubgroup( so73 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( o73, Elements( GF(3)^7 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Set( orbs, Length );</span>
[ 1, 702, 728, 756 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Action( o73, First( orbs, x -&gt; Length( x ) = 702 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( g ) = Size( t );</span>
true
</pre></div>

<p>A <code class="code">2A</code> element <span class="SimpleMath">\(g\)</span> can be found as the <span class="SimpleMath">\(7\)</span>-th power of any element of order <span class="SimpleMath">\(14\)</span> in <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 14;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2A:= s^7;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bad:= RatioOfNongenerationTransPermGroup( g, 2A, s );</span>
155/351
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bad &gt; 1/3;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( someprim, spos );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( approx, x -&gt; x &gt;= 1/3 );</span>
[ 2 ]
</pre></div>

<p>This shows that <span class="SimpleMath">\(P(g,s) = 155/351 &gt; 1/3\)</span>. Since <span class="SimpleMath">\(σ( g, s ) &lt; 1/3\)</span> for all nonidentity <span class="SimpleMath">\(g\)</span> not in the class <code class="code">2A</code>, we have <span class="SimpleMath">\(P( S, s ) = 155/351\)</span>. For statement (c), it remains to show that <span class="SimpleMath">\(P( S, s^{\prime} )\)</span> is larger than <span class="SimpleMath">\(155/351\)</span> whenever <span class="SimpleMath">\(s^{\prime}\)</span> is not of order <span class="SimpleMath">\(14\)</span>. First we compute <span class="SimpleMath">\(P( g, s^{\prime} )\)</span>, for <span class="SimpleMath">\(g\)</span> in the class <code class="code">2A</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">consider:= RepresentativesMaximallyCyclicSubgroups( t );</span>
[ 18, 19, 25, 26, 27, 30, 31, 32, 34, 35, 38, 39, 41, 42, 43, 44, 45, 
  46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( consider );</span>
28
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">consider:= ClassesPerhapsCorrespondingToTableColumns( g, t, consider );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( consider );</span>
31
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">consider:= List( consider, Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortParallel( List( consider, Order ), consider );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">app2A:= List( consider, c -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      RatioOfNongenerationTransPermGroup( g, 2A, c ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortedList( app2A );</span>
[ 1/3, 1/3, 155/351, 191/351, 67/117, 23/39, 23/39, 85/117, 10/13, 
  10/13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
  1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">test:= PositionsProperty( app2A, x -&gt; x &lt;= 155/351 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( test, i -&gt; Order( consider[i] ) );</span>
[ 13, 13, 14 ]
</pre></div>

<p>We see that only for <span class="SimpleMath">\(s^{\prime}\)</span> in one of the two (algebraically conjugate) classes of element order <span class="SimpleMath">\(13\)</span>, <span class="SimpleMath">\(P( S, s^{\prime} )\)</span> has a chance to be smaller than <span class="SimpleMath">\(155/351\)</span>. This possibility is now excluded by counting elements in the class <code class="code">3A</code> that do not generate <span class="SimpleMath">\(S\)</span> together with <span class="SimpleMath">\(s^{\prime}\)</span> of order <span class="SimpleMath">\(13\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C3A:= First( ConjugacyClasses( g ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              c -&gt; Order( Representative( c ) ) = 3 and Size( c ) = 7280 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat ss:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( ss ) = 13;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bad:= RatioOfNongenerationTransPermGroup( g, Representative( C3A ), ss );</span>
17/35
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bad &gt; 155/351;</span>
true
</pre></div>

<p>Now we show statement (d): For each triple <span class="SimpleMath">\((x_1, x_2, x_3)\)</span> of nonidentity elements in <span class="SimpleMath">\(S\)</span>, there is an element <span class="SimpleMath">\(s\)</span> in the class <code class="code">14A</code> such that <span class="SimpleMath">\(\langle x_i, s \rangle = S\)</span> holds for <span class="SimpleMath">\(1 \leq i \leq 3\)</span>. We can read off from the character-theoretic data that only those triples have to be checked for which at least two elements are contained in the class <code class="code">2A</code>, and the third element lies in one of the classes <code class="code">2A</code>, <code class="code">2B</code>, <code class="code">3B</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( someprim, spos );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">max:= Maximum( approx{ [ 3 .. Length( approx ) ] } );</span>
59/351
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">155 + 2*59 &lt; 351;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">third:= PositionsProperty( approx, x -&gt; 2 * 155/351 + x &gt;= 1 );</span>
[ 2, 3, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassNames( t ){ third };</span>
[ "2a", "2b", "3b" ]
</pre></div>

<p>We can find elements in the classes <code class="code">2B</code> and <code class="code">3B</code> as powers of arbitrary elements of the orders <span class="SimpleMath">\(20\)</span> and <span class="SimpleMath">\(15\)</span>, respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord20:= PositionsProperty( OrdersClassRepresentatives( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                              x -&gt; x = 20 );</span>
[ 58 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerMap( t, 10 ){ ord20 };</span>
[ 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( x ) = 20;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2B:= x^10;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C2B:= ConjugacyClass( g, 2B );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord15:= PositionsProperty( OrdersClassRepresentatives( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                              x -&gt; x = 15 );</span>
[ 53 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerMap( t, 10 ){ ord15 };</span>
[ 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( x ) = 15;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3B:= x^5;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C3B:= ConjugacyClass( g, 3B );;</span>
</pre></div>

<p>The existence of <span class="SimpleMath">\(s\)</span> can be shown with the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 14;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 2A, 2A, 2A ], s, 50 );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 2B, 2A, 2A ], s, 50 );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 3B, 2A, 2A ], s, 50 );</span>
true
</pre></div>

<p>Finally, we show statement (e). Let <span class="SimpleMath">\(G = Aut(S) = S.2\)</span>. By <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 109]</a>, <span class="SimpleMath">\(𝕄^{\prime}(G,s)\)</span> consists of the extension of the <span class="SimpleMath">\(2.U_4(3).2_1\)</span> type subgroup. We compute the extension of the permutation character.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= someprim{ [ 1 ] };</span>
[ Character( CharacterTable( "O7(3)" ),
  [ 351, 127, 47, 15, 27, 45, 36, 0, 0, 9, 0, 15, 3, 3, 7, 6, 19, 19, 
      10, 11, 12, 8, 3, 5, 3, 6, 1, 0, 0, 3, 3, 0, 1, 1, 1, 6, 3, 0, 
      0, 2, 2, 0, 3, 0, 3, 3, 0, 0, 1, 0, 0, 1, 0, 4, 4, 1, 2, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( AtlasClassNames( t ), "14A" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "O7(3).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">map:= InverseMap( GetFusionMap( t, t2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">torso:= List( prim, pi -&gt; CompositionMaps( pi, map ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= List( torso, x -&gt; PermChars( t2, rec( torso:= x ) ) );</span>
[ [ Character( CharacterTable( "O7(3).2" ),
      [ 351, 127, 47, 15, 27, 45, 36, 0, 9, 0, 15, 3, 3, 7, 6, 19, 
          19, 10, 11, 12, 8, 3, 5, 3, 6, 1, 0, 3, 0, 1, 1, 1, 6, 3, 
          0, 2, 2, 0, 3, 0, 3, 3, 0, 1, 0, 0, 1, 0, 4, 1, 2, 0, 117, 
          37, 21, 45, 1, 13, 5, 1, 9, 9, 18, 15, 1, 7, 9, 6, 4, 0, 3, 
          0, 3, 3, 6, 2, 2, 9, 6, 1, 3, 1, 4, 1, 2, 1, 1, 0, 3, 1, 0, 
          0, 0, 0, 1, 1, 0, 0 ] ) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( Concatenation( ext ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Position( AtlasClassNames( t2 ), "14A" ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( approx{ Difference(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
1/3
</pre></div>

<p><a id="X7F80F2527C424AA4" name="X7F80F2527C424AA4"></a></p>

<h5>11.5-12 <span class="Heading"><span class="SimpleMath">\(O_8^+(2)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = O_8^+(2) = \Omega^+(8,2)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 334/315\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(15\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(S_6(2)\)</span>, two conjugate groups of the type <span class="SimpleMath">\(2^6:A_8\)</span>, two conjugate groups of the type <span class="SimpleMath">\(A_9\)</span>, and one group of each of the types <span class="SimpleMath">\((3 \times U_4(2)):2 = (3 \times \Omega^-(6,2)):2\)</span> and <span class="SimpleMath">\((A_5 \times A_5):2^2 = (\Omega^-(4,2) \times \Omega^-(4,2)):2^2\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 29/42\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>Let <span class="SimpleMath">\(x, y \in S\)</span> such that <span class="SimpleMath">\(x, y, x y\)</span> lie in the unique involution class of length <span class="SimpleMath">\(1\,575\)</span> of <span class="SimpleMath">\(S\)</span>. (This is the class <code class="code">2A</code>.) Then each element in <span class="SimpleMath">\(S\)</span> together with one of <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span>, <span class="SimpleMath">\(x y\)</span> generates a proper subgroup of <span class="SimpleMath">\(S\)</span>.</p>

</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p>Both the spread and the uniform spread of <span class="SimpleMath">\(S\)</span> is exactly two, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>.</p>

</dd>
<dt><strong class="Mark">(f)</strong></dt>
<dd><p>For each choice of <span class="SimpleMath">\(s \in S\)</span>, there is an extension <span class="SimpleMath">\(S.2\)</span> such that for any element <span class="SimpleMath">\(g\)</span> in the (outer) class <code class="code">2F</code>, <span class="SimpleMath">\(\langle s, g \rangle\)</span> does not contain <span class="SimpleMath">\(S\)</span>.</p>

</dd>
<dt><strong class="Mark">(g)</strong></dt>
<dd><p>For an element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span> in <span class="SimpleMath">\(S\)</span>, either <span class="SimpleMath">\(S\)</span> is the only maximal subgroup of <span class="SimpleMath">\(S.2\)</span> that contains <span class="SimpleMath">\(s\)</span>, or the maximal subgroups of <span class="SimpleMath">\(S.2\)</span> that contain <span class="SimpleMath">\(s\)</span> are <span class="SimpleMath">\(S\)</span> and the extensions of the subgroups listed in statement (b); these groups have the structures <span class="SimpleMath">\(S_6(2) \times 2\)</span>, <span class="SimpleMath">\(2^6:S_8\)</span> (twice), <span class="SimpleMath">\(S_9\)</span> (twice), <span class="SimpleMath">\(S_3 \times U_4(2).2\)</span>, and <span class="SimpleMath">\(S_5 \wr 2\)</span>.</p>

</dd>
<dt><strong class="Mark">(h)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(15\)</span> and arbitrary <span class="SimpleMath">\(g \in S.3 \setminus S\)</span>, we have <span class="SimpleMath">\(\langle s, g \rangle = S.3\)</span>.</p>

</dd>
<dt><strong class="Mark">(i)</strong></dt>
<dd><p>If <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> are nonidentity elements in <span class="SimpleMath">\(Aut(S)\)</span> then there is an element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span> in <span class="SimpleMath">\(S\)</span> such that <span class="SimpleMath">\(S \subseteq \langle x, s \rangle \cap \langle y, s \rangle\)</span>.</p>

</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "O8+(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "O8+(2)", 334/315, 0, [ "15A", "15B", "15C" ], [ 7, 7, 7 ] ]
</pre></div>

<p>Statement (b) can be read off from the permutation characters, and the fact that the only classes of maximal subgroups that contain elements of order <span class="SimpleMath">\(15\)</span> consist of groups of the structures as claimed, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 15 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Filtered( prim, x -&gt; x[ spos ] &lt;&gt; 0 ), l -&gt; l{ [ 1, spos ] } );</span>
[ [ 120, 1 ], [ 135, 2 ], [ 960, 2 ], [ 1120, 1 ], [ 12096, 1 ] ]
</pre></div>

<p>For the remaining statements, we take a primitive permutation representation on <span class="SimpleMath">\(120\)</span> points, and assume that the permutation character is <code class="code">1a+35a+84a</code>. (See <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85]</a>, note that the three classes of maximal subgroups of index <span class="SimpleMath">\(120\)</span> in <span class="SimpleMath">\(S\)</span> are conjugate under triality.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">matgroup:= DerivedSubgroup( GeneralOrthogonalGroup( 1, 8, 2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">points:= NormedRowVectors( GF(2)^8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( matgroup, points );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 135, 120 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Action( matgroup, orbs[2] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( g );</span>
174182400
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= Sum( Irr( t ){ [ 1, 3, 7 ] } );</span>
Character( CharacterTable( "O8+(2)" ),
 [ 120, 24, 32, 0, 0, 8, 36, 0, 0, 3, 6, 12, 4, 8, 0, 0, 0, 10, 0, 0, 
  12, 0, 0, 8, 0, 0, 3, 6, 0, 0, 2, 0, 0, 2, 1, 2, 2, 3, 0, 0, 2, 0, 
  0, 0, 0, 0, 3, 2, 0, 0, 1, 0, 0 ] )
</pre></div>

<p>In order to show statement (c), we first observe that for <span class="SimpleMath">\(s\)</span> in the class <code class="code">15A</code> and <span class="SimpleMath">\(g\)</span> <em>not</em> in one of the classes <code class="code">2A</code>, <code class="code">2B</code>, <code class="code">3A</code>, <span class="SimpleMath">\(σ(g,s) &lt; 1/3\)</span> holds, and for the exceptional three classes, we have <span class="SimpleMath">\(σ(g,s) &gt; 1/2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( prim, spos );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">testpos:= PositionsProperty( approx, x -&gt; x &gt;= 1/3 );</span>
[ 2, 3, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t ){ testpos };</span>
[ "2A", "2B", "3A" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx{ testpos };</span>
[ 254/315, 334/315, 1093/1120 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( approx{ testpos }, x -&gt; x &gt; 1/2 );</span>
true
</pre></div>

<p>Now we compute the values <span class="SimpleMath">\(P(g,s)\)</span>, for <span class="SimpleMath">\(s\)</span> in the class <code class="code">15A</code> and <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code>, <code class="code">2B</code>, <code class="code">3A</code>.</p>

<p>By our choice of the character of the permutation representation we use, the class <code class="code">15A</code> is determined as the unique class of element order <span class="SimpleMath">\(15\)</span> with one fixed point. (Note that the three classes of element order <span class="SimpleMath">\(15\)</span> in <span class="SimpleMath">\(S\)</span> are conjugate under triality.) A <code class="code">2A</code> element can be found as the fourth power of any element of order <span class="SimpleMath">\(8\)</span> in <span class="SimpleMath">\(S\)</span>, a <code class="code">3A</code> element can be found as the fifth power of a <code class="code">15A</code> element, and a <code class="code">2B</code> element can be found as the sixth power of an element of order <span class="SimpleMath">\(12\)</span>, with <span class="SimpleMath">\(32\)</span> fixed points.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 15 and NrMovedPoints( g ) = 1 + NrMovedPoints( s );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3A:= s^5;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( g ); until Order( x ) = 8;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2A:= x^4;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( g ); until Order( x ) = 12 and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     NrMovedPoints( g ) = 32 + NrMovedPoints( x^6 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2B:= x^6;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop15A:= List( [ 2A, 2B, 3A ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   x -&gt; RatioOfNongenerationTransPermGroup( g, x, s ) );</span>
[ 23/35, 29/42, 149/224 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( prop15A );</span>
29/42
</pre></div>

<p>This means that for <span class="SimpleMath">\(s\)</span> in the class <code class="code">15A</code>, we have <span class="SimpleMath">\(P( S, s ) = 29/42\)</span>, and the same holds for all <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span> since the three classes of element order <span class="SimpleMath">\(15\)</span> are conjugate under triality. Now we show that for <span class="SimpleMath">\(s\)</span> of order different from <span class="SimpleMath">\(15\)</span>, the value <span class="SimpleMath">\(P(g,s)\)</span> is larger than <span class="SimpleMath">\(29/42\)</span>, for <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code>, <code class="code">2B</code>, <code class="code">3A</code>, or their images under triality. This implies statement (c).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">test:= List( [ 2A, 2B, 3A ], x -&gt; ConjugacyClass( g, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= ConjugacyClasses( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">consider:= Filtered( ccl, c -&gt; Size( c ) in List( test, Size ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( consider );</span>
7
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= Filtered( ccl, c -&gt; ForAll( consider, cc -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      RatioOfNongenerationTransPermGroup( g, Representative( cc ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          Representative( c ) ) &lt;= 29/42 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( filt );</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( filt, c -&gt; Order( Representative( c ) ) );</span>
[ 15, 15, 15 ]
</pre></div>

<p>Now we show statement (d). First we observe that all those Klein four groups in <span class="SimpleMath">\(S\)</span> whose involutions lie in the class <code class="code">2A</code> are conjugate in <span class="SimpleMath">\(S\)</span>. Note that this is the unique class of length <span class="SimpleMath">\(1\,575\)</span> in <span class="SimpleMath">\(S\)</span>, and also the unique class whose elements have <span class="SimpleMath">\(24\)</span> fixed points in the degree <span class="SimpleMath">\(120\)</span> permutation representation.</p>

<p>For that, we use the character table of <span class="SimpleMath">\(S\)</span> to read off that <span class="SimpleMath">\(S\)</span> contains exactly <span class="SimpleMath">\(14\,175\)</span> such subgroups, and we use the group to compute one such subgroup and its normalizer of index <span class="SimpleMath">\(14\,175\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesConjugacyClasses( t );</span>
[ 1, 1575, 3780, 3780, 3780, 56700, 2240, 2240, 2240, 89600, 268800, 
  37800, 340200, 907200, 907200, 907200, 2721600, 580608, 580608, 
  580608, 100800, 100800, 100800, 604800, 604800, 604800, 806400, 
  806400, 806400, 806400, 2419200, 2419200, 2419200, 7257600, 
  24883200, 5443200, 5443200, 6451200, 6451200, 6451200, 8709120, 
  8709120, 8709120, 1209600, 1209600, 1209600, 4838400, 7257600, 
  7257600, 7257600, 11612160, 11612160, 11612160 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrPolyhedralSubgroups( t, 2, 2, 2 );</span>
rec( number := 14175, type := "V4" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until     Order( x ) mod 2 = 0</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         and NrMovedPoints( x^( Order(x)/2 ) ) = 120 - 24;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= x^( Order(x)/2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat y:= x^Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until NrMovedPoints( x*y ) = 120 - 24;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v4:= SubgroupNC( g, [ x, y ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= Normalizer( g, v4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Index( g, n );</span>
14175
</pre></div>

<p>We verify that the triple has the required property.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxorder:= RepresentativesMaximallyCyclicSubgroups( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxorderreps:= List( ClassesPerhapsCorrespondingToTableColumns( g, t,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       maxorder ), Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( maxorderreps );</span>
28
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CommonGeneratorWithGivenElements( g, maxorderreps, [ x, y, x*y ] );</span>
fail
</pre></div>

<p>For the simple group <span class="SimpleMath">\(S\)</span>, it remains to show statement (e). We want to show that for any choice of two nonidentity elements <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> in <span class="SimpleMath">\(S\)</span>, there is an element <span class="SimpleMath">\(s\)</span> in the class <code class="code">15A</code> such that <span class="SimpleMath">\(\langle s, x \rangle = \langle s, y \rangle = S\)</span> holds. Only <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> in the classes given by the list <code class="code">testpos</code> must be considered, by the estimates <span class="SimpleMath">\(σ(g,s)\)</span>.</p>

<p>We replace the values <span class="SimpleMath">\(σ(g,s)\)</span> by the exact values <span class="SimpleMath">\(P(g,s)\)</span>, for <span class="SimpleMath">\(g\)</span> in one of these three classes. Each of the three classes is determined by its element order and its number of fixed points.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= List( ccl, Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bading:= List( testpos, i -&gt; Filtered( reps,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       r -&gt; Order( r ) = OrdersClassRepresentatives( t )[i] and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            NrMovedPoints( r ) = 120 - pi[i] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( bading, Length );</span>
[ 1, 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bading:= List( bading, x -&gt; x[1] );;</span>
</pre></div>

<p>For each pair <span class="SimpleMath">\((C_1, C_2)\)</span> of classes represented by this list, we have to show that for any choice of elements <span class="SimpleMath">\(x \in C_1\)</span>, <span class="SimpleMath">\(y \in C_2\)</span> there is <span class="SimpleMath">\(s\)</span> in the class <code class="code">15A</code> such that <span class="SimpleMath">\(\langle s, x \rangle = \langle s, y \rangle = S\)</span> holds. This is done with the random approach that is described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for pair in UnorderedTuples( bading, 2 ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     test:= RandomCheckUniformSpread( g, pair, s, 80 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if test &lt;&gt; true then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Error( test );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p>We get no error message, so statement (e) holds.</p>

<p>Now we turn to the automorphic extensions of <span class="SimpleMath">\(S\)</span>. First we compute a permutation representation of <span class="SimpleMath">\(SO^+(8,2) \cong S.2\)</span> and an element <span class="SimpleMath">\(g\)</span> in the class <code class="code">2F</code>, which is the unique conjugacy class of size <span class="SimpleMath">\(120\)</span> in <span class="SimpleMath">\(S.2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">matgrp:= SO(1,8,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g2:= Image( IsomorphismPermGroup( matgrp ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsTransitive( g2, MovedPoints( g2 ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( g2 ); until Order( x ) = 14;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2F:= x^7;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( ConjugacyClass( g2, 2F ) );</span>
120
</pre></div>

<p>Only for <span class="SimpleMath">\(s\)</span> in six conjugacy classes of <span class="SimpleMath">\(S\)</span>, there is a nonzero probability to have <span class="SimpleMath">\(S.2 = \langle g, s \rangle\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der:= DerivedSubgroup( g2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cclreps:= List( ConjugacyClasses( der ), Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nongen:= List( cclreps,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; RatioOfNongenerationTransPermGroup( g2, 2F, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">goodpos:= PositionsProperty( nongen, x -&gt; x &lt; 1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invariants:= List( goodpos, i -&gt; [ Order( cclreps[i] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Size( Centralizer( g2, cclreps[i] ) ), nongen[i] ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortedList( invariants );</span>
[ [ 10, 20, 1/3 ], [ 10, 20, 1/3 ], [ 12, 24, 2/5 ], [ 12, 24, 2/5 ], 
  [ 15, 15, 0 ], [ 15, 15, 0 ] ]
</pre></div>

<p><span class="SimpleMath">\(S\)</span> contains three classes of element order <span class="SimpleMath">\(10\)</span>, which are conjugate in <span class="SimpleMath">\(S.3\)</span>. For a fixed extension of the type <span class="SimpleMath">\(S.2\)</span>, the element <span class="SimpleMath">\(s\)</span> can be chosen only in two of these three classes, which means that there is another group of the type <span class="SimpleMath">\(S.2\)</span> (more precisely, another subgroup of index three in <span class="SimpleMath">\(S.S_3\)</span>) in which this choice of <span class="SimpleMath">\(s\)</span> is not suitable –note that the general aim is to find <span class="SimpleMath">\(s \in S\)</span> uniformly for all automorphic extensions of <span class="SimpleMath">\(S\)</span>. Analogous statements hold for the other possibilities for <span class="SimpleMath">\(s\)</span>, so statement (f) follows.</p>

<p>Statement (g) follows from the list of maximal subgroups in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85]</a>.</p>

<p>Statement (h) follows from the fact that <span class="SimpleMath">\(S\)</span> is the only maximal subgroup of <span class="SimpleMath">\(S.3\)</span> that contains elements of order <span class="SimpleMath">\(15\)</span>, according to the list of maximal subgroups in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85]</a>. Alternatively, if we do not want to assume this information, we can use explicit computations, as follows. All we have to check is that any element in the classes <code class="code">3F</code> and <code class="code">3G</code> generates <span class="SimpleMath">\(S.3\)</span> together with a fixed element of order <span class="SimpleMath">\(15\)</span> in <span class="SimpleMath">\(S\)</span>.</p>

<p>We compute a permutation representation of <span class="SimpleMath">\(S.3\)</span> as the derived subgroup of a subgroup of the type <span class="SimpleMath">\(S.S_3\)</span> inside the sporadic simple Fischer group <span class="SimpleMath">\(Fi_{22}\)</span>; these subgroups lie in the fourth class of maximal subgroups of <span class="SimpleMath">\(Fi_{22}\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 163]</a>. An element in the class <code class="code">3F</code> of <span class="SimpleMath">\(S.3\)</span> can be found as a power of an order <span class="SimpleMath">\(21\)</span> element, and an element in the class <code class="code">3G</code> can be found as the fourth power of a <code class="code">12P</code> element.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">aut:= Group( AtlasGenerators( "Fi22", 1, 4 ).generators );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( aut ) = 6 * Size( t );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g3:= DerivedSubgroup( aut );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( g3, MovedPoints( g3 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 3150, 360 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g3:= Action( g3, orbs[2] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g3 ); until Order( s ) = 15;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( g3 ); until Order( x ) = 21;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3F:= x^7;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( g3, 3F, s );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( g3 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( x ) = 12 and Size( Centralizer( g3, x^4 ) ) = 648;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3G:= x^4;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( g3, 3G, s );</span>
0
</pre></div>

<p>Finally, consider statement (i). It implies that <a href="chapBib_mj.html#biBBGK">[BGK08, Corollary 1.5]</a> holds for <span class="SimpleMath">\(\Omega^+(8,2)\)</span>, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>. Note that by part (f), <span class="SimpleMath">\(s\)</span> <em>cannot be chosen in a prescribed conjugacy class</em> of <span class="SimpleMath">\(S\)</span> that is independent of the elements <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span>.</p>

<p>If <span class="SimpleMath">\(x\)</span> and <span class="SimpleMath">\(y\)</span> lie in <span class="SimpleMath">\(S\)</span> then statement (i) follows from part (e), and by part (g), the case that <span class="SimpleMath">\(x\)</span> or <span class="SimpleMath">\(y\)</span> lie in <span class="SimpleMath">\(S.3 \setminus S\)</span> is also not a problem. We now show that also <span class="SimpleMath">\(x\)</span> or <span class="SimpleMath">\(y\)</span> in <span class="SimpleMath">\(S.2 \setminus S\)</span> is not a problem. Here we have to deal with the cases that <span class="SimpleMath">\(x\)</span> and <span class="SimpleMath">\(y\)</span> lie in the same subgroup of index <span class="SimpleMath">\(3\)</span> in <span class="SimpleMath">\(Aut(S)\)</span> or in different such subgroups. Actually we show that for each index <span class="SimpleMath">\(3\)</span> subgroup <span class="SimpleMath">\(H = S.2 &lt; Aut(S)\)</span>, we can choose <span class="SimpleMath">\(s\)</span> from two of the three classes of element order <span class="SimpleMath">\(15\)</span> in <span class="SimpleMath">\(S\)</span> such that <span class="SimpleMath">\(S\)</span> is the only maximal subgroup of <span class="SimpleMath">\(H\)</span> that contains <span class="SimpleMath">\(s\)</span>, and thus <span class="SimpleMath">\(\langle x, s \rangle\)</span> contains <span class="SimpleMath">\(H\)</span>, for any choice of <span class="SimpleMath">\(x \in H \setminus S\)</span>.</p>

<p>For that, we note that no novelty in <span class="SimpleMath">\(S.2\)</span> contains elements of order <span class="SimpleMath">\(15\)</span>, so all maximal subgroups of <span class="SimpleMath">\(S.2\)</span> that contain such elements –besides <span class="SimpleMath">\(S\)</span>– have one of the indices <span class="SimpleMath">\(120, 135, 960, 1120\)</span>, or <span class="SimpleMath">\(12096\)</span>, and point stabilizers of the types <span class="SimpleMath">\(S_6(2) \times 2\)</span>, <span class="SimpleMath">\(2^6:S_8\)</span>, <span class="SimpleMath">\(S_9\)</span>, <span class="SimpleMath">\(S_3 \times U_4(2):2\)</span>, or <span class="SimpleMath">\(S_5 \wr 2\)</span>. We compute the corresponding permutation characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "O8+(2).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= CharacterTable( "S6(2)" ) * CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s, t2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= pi;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PermChars( t2, rec( torso:= [ 135 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( prim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters( CharacterTable( "A9.2" ), t2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( prim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= CharacterTable( "Dihedral(6)" ) * CharacterTable( "U4(2).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s, t2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( prim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= CharacterTableWreathSymmetric( CharacterTable( "S5" ), 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s, t2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( prim, pi );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( prim );</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord15:= PositionsProperty( OrdersClassRepresentatives( t2 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                              x -&gt; x = 15 );</span>
[ 39, 40 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( prim, pi -&gt; pi{ ord15 } );</span>
[ [ 1, 0 ], [ 2, 0 ], [ 2, 0 ], [ 1, 0 ], [ 1, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ord15, i -&gt; Maximum( ApproxP( prim, i ) ) );</span>
[ 307/120, 0 ]
</pre></div>

<p>Here it is appropriate to clean the workspace again.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>

<p><a id="X78F0815B86253A1F" name="X78F0815B86253A1F"></a></p>

<h5>11.5-13 <span class="Heading"><span class="SimpleMath">\(O_8^+(3)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = O_8^+(3)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 863/1820\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(20\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(20\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two nonconjugate groups of the type <span class="SimpleMath">\(O_7(3) = \Omega(7,3)\)</span>, two conjugate subgroups of the type <span class="SimpleMath">\(3^6:L_4(3)\)</span>, two nonconjugate subgroups of the type <span class="SimpleMath">\((A_4 \times U_4(2)):2\)</span>, and one subgroup of each of the types <span class="SimpleMath">\(2.U_4(3).(2^2)_{122}\)</span> and <span class="SimpleMath">\((A_6 \times A_6):2^2\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 194/455\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(20\)</span>.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(20\)</span>.</p>

</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p>The preimage of <span class="SimpleMath">\(s\)</span> in the matrix group <span class="SimpleMath">\(2.S = \Omega^+(8,3)\)</span> can be chosen of order <span class="SimpleMath">\(40\)</span>, and then the maximal subgroups of <span class="SimpleMath">\(2.S\)</span> containing <span class="SimpleMath">\(s\)</span> have the structures <span class="SimpleMath">\(2.O_7(3)\)</span>, <span class="SimpleMath">\(3^6:2.L_4(3)\)</span>, <span class="SimpleMath">\(4.U_4(3).2^2 = SU(4,3).2^2\)</span>, <span class="SimpleMath">\(2.(A_4 \times U_4(2)).2 = 2.(PSp(2,3) \otimes PSp(4,3)).2\)</span>, and <span class="SimpleMath">\(2.(A_6 \times A_6):2^2 = 2.(\Omega^-(4,3) \times \Omega^-(4,3)):2^2\)</span>, respectively.</p>

</dd>
<dt><strong class="Mark">(f)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(20\)</span>, we have <span class="SimpleMath">\(P^{\prime}(S.2_1, s) \in \{ 83/567, 574/1215 \}\)</span>, <span class="SimpleMath">\(P^{\prime}(S.2_2, s) \in \{ 0, 1 \}\)</span> (depending on the choice of <span class="SimpleMath">\(s\)</span>), and <span class="SimpleMath">\(σ^{\prime}(S.3, s) = 0\)</span>.</p>

<p>Furthermore, for any choice of <span class="SimpleMath">\(s^{\prime} \in S\)</span>, we have <span class="SimpleMath">\(σ^{\prime}(S.2_2, s^{\prime}) = 1\)</span> for some group <span class="SimpleMath">\(S.2_2\)</span>. However, if it is allowed to choose <span class="SimpleMath">\(s\)</span> from an <span class="SimpleMath">\(Aut(S)\)</span>-class of elements of order <span class="SimpleMath">\(20\)</span> (and not from a fixed <span class="SimpleMath">\(S\)</span>-class) then we can achieve <span class="SimpleMath">\(σ(g,s) = 0\)</span> for any given <span class="SimpleMath">\(g \in S.2_2 \setminus S\)</span>.</p>

</dd>
<dt><strong class="Mark">(g)</strong></dt>
<dd><p>The maximal subgroups of <span class="SimpleMath">\(S.2_1\)</span> that contain an element of order <span class="SimpleMath">\(20\)</span> are either <span class="SimpleMath">\(S\)</span> and the extensions of the subgroups listed in statement (b) or they are <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(L_4(3).2^2\)</span>, <span class="SimpleMath">\(3^6:L_4(3).2\)</span> (twice), <span class="SimpleMath">\(2.U_4(3).(2^2)_{122}.2\)</span>, and <span class="SimpleMath">\((A_6 \times A_6):2^2.2\)</span>.</p>

<p>In the former case, the groups have the structures <span class="SimpleMath">\(O_7(3):2\)</span> (twice), <span class="SimpleMath">\(3^6:(L_4(3) \times 2)\)</span> (twice), <span class="SimpleMath">\(S_4 \times U_4(2).2\)</span> (twice), <span class="SimpleMath">\(2.U_4(3).(2^2)_{122}.2\)</span>, and <span class="SimpleMath">\((A_6 \times A_6):2^2 \times 2\)</span>.</p>

</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "O8+(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "O8+(3)", 863/1820, 2, [ "20A", "20B", "20C" ], [ 8, 8, 8 ] ]
</pre></div>

<p>Also statement (b) follows from the information provided by the character table of <span class="SimpleMath">\(S\)</span> (cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord:= OrdersClassRepresentatives( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( ord, 20 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= PositionsProperty( prim, x -&gt; x[ spos ] &lt;&gt; 0 );</span>
[ 1, 2, 7, 15, 18, 19, 24 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maxes( t ){ filt };</span>
[ "O7(3)", "O8+(3)M2", "3^6:L4(3)", "2.U4(3).(2^2)_{122}", 
  "(A4xU4(2)):2", "O8+(3)M19", "(A6xA6):2^2" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim{ filt }{ [ 1, spos ] };</span>
[ [ 1080, 1 ], [ 1080, 1 ], [ 1120, 2 ], [ 189540, 1 ], 
  [ 7960680, 1 ], [ 7960680, 1 ], [ 9552816, 1 ] ]
</pre></div>

<p>For statement (c), we first show that <span class="SimpleMath">\(P(S,s) = 194/455\)</span> holds. Since this value is larger than <span class="SimpleMath">\(1/3\)</span>, we have to inspect only those classes <span class="SimpleMath">\(g^S\)</span> for which <span class="SimpleMath">\(σ(g,s) \geq 1/3\)</span> holds,</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord:= OrdersClassRepresentatives( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord20:= PositionsProperty( ord, x -&gt; x = 20 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in ord20 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     approx:= ApproxP( prim, i );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Add( cand, PositionsProperty( approx, x -&gt; x &gt;= 1/3 ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand;</span>
[ [ 2, 6, 7, 10 ], [ 3, 6, 8, 11 ], [ 4, 6, 9, 12 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t ){ cand[1] };</span>
[ "2A", "3A", "3B", "3E" ]
</pre></div>

<p>The three possibilities form one orbit under the outer automorphism group of <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t3:= CharacterTable( "O8+(3).3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tfust3:= GetFusionMap( t, t3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( cand, x -&gt; tfust3{ x } );</span>
[ [ 2, 4, 5, 6 ], [ 2, 4, 5, 6 ], [ 2, 4, 5, 6 ] ]
</pre></div>

<p>By symmetry, we may consider only the first possibility, and assume that <span class="SimpleMath">\(s\)</span> is in the class <code class="code">20A</code>.</p>

<p>We work with a permutation representation of degree <span class="SimpleMath">\(1\,080\)</span>, and assume that the permutation character is <code class="code">1a+260a+819a</code>. (Note that all permutation characters of <span class="SimpleMath">\(S\)</span> of degree <span class="SimpleMath">\(1\,080\)</span> are conjugate under <span class="SimpleMath">\(Aut(S)\)</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Action( SO(1,8,3), NormedRowVectors( GF(3)^8 ), OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( g );</span>
9904359628800
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= DerivedSubgroup( g );;  Size( g );</span>
4952179814400
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( g, MovedPoints( g ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 1080, 1080, 1120 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Action( g, orbs[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionProperty( Irr( t ), chi -&gt; chi[1] = 819 );</span>
9
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">permchar:= Sum( Irr( t ){ [ 1, 2, 9 ] } );</span>
Character( CharacterTable( "O8+(3)" ),
 [ 1080, 128, 0, 0, 24, 108, 135, 0, 0, 108, 0, 0, 27, 27, 0, 0, 18, 
  9, 12, 16, 0, 0, 4, 15, 0, 0, 20, 0, 0, 12, 11, 0, 0, 20, 0, 0, 15, 
  0, 0, 12, 0, 0, 2, 0, 0, 3, 3, 0, 0, 6, 6, 0, 0, 3, 2, 2, 2, 18, 0, 
  0, 9, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 3, 0, 0, 12, 0, 0, 3, 0, 0, 0, 
  0, 0, 4, 3, 3, 0, 0, 1, 0, 0, 4, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 3, 
  0, 0, 2, 0, 0, 5, 0, 0, 1, 0, 0 ] )
</pre></div>

<p>Now we show that for <span class="SimpleMath">\(s\)</span> in the class <code class="code">20A</code> (which fixes one point), the proportion of nongenerating elements <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code>, <code class="code">3A</code>, <code class="code">3B</code>, <code class="code">3E</code> has the maximum <span class="SimpleMath">\(194/455\)</span>, which is attained exactly for <code class="code">3A</code>. (We find a <code class="code">2A</code> element as a power of <span class="SimpleMath">\(s\)</span>, a <code class="code">3A</code> element as a power of any element of order <span class="SimpleMath">\(18\)</span>, a <code class="code">3B</code> and a <code class="code">3E</code> element as elements with <span class="SimpleMath">\(135\)</span> and <span class="SimpleMath">\(108\)</span> fixed points, respectively, which occur as powers of suitable elements of order <span class="SimpleMath">\(15\)</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">permchar{ ord20 };</span>
[ 1, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t )[ PowerMap( t, 10 )[ ord20[1] ] ];</span>
"2A"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord18:= PositionsProperty( ord, x -&gt; x = 18 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Set( AtlasClassNames( t ){ PowerMap( t, 6 ){ ord18 } } );</span>
[ "3A" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord15:= PositionsProperty( ord, x -&gt; x = 15 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerMap( t, 5 ){ ord15 };</span>
[ 7, 8, 9, 10, 11, 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t ){ [ 7 .. 12 ] };</span>
[ "3B", "3C", "3D", "3E", "3F", "3G" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">permchar{ [ 7 .. 12 ] };</span>
[ 135, 0, 0, 108, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mp:= NrMovedPoints( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat 20A:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( 20A ) = 20 and mp - NrMovedPoints( 20A ) = 1;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2A:= 20A^10;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( g ); until Order( x ) = 18;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3A:= x^6;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( x ) = 15 and mp - NrMovedPoints( x^5 ) = 135;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3B:= x^5;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( x ) = 15 and mp - NrMovedPoints( x^5 ) = 108;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3E:= x^5;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nongen:= List( [ 2A, 3A, 3B, 3E ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  c -&gt; RatioOfNongenerationTransPermGroup( g, c, 20A ) );</span>
[ 3901/9477, 194/455, 451/1092, 451/1092 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( nongen );</span>
194/455
</pre></div>

<p>Next we compute the values <span class="SimpleMath">\(P(g,s)\)</span>, for <span class="SimpleMath">\(g\)</span> is in the class <code class="code">3A</code> and certain elements <span class="SimpleMath">\(s\)</span>. It is enough to consider representatives <span class="SimpleMath">\(s\)</span> of maximally cyclic subgroups in <span class="SimpleMath">\(S\)</span>, but here we can do better, as follows. Since <code class="code">3A</code> is the unique class of length <span class="SimpleMath">\(72\,800\)</span>, it is fixed under <span class="SimpleMath">\(Aut(S)\)</span>, so it is enough to consider one element <span class="SimpleMath">\(s\)</span> from each <span class="SimpleMath">\(Aut(S)\)</span>-orbit on the classes of <span class="SimpleMath">\(S\)</span>. We use the class fusion between the character tables of <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(Aut(S)\)</span> for computing orbit representatives.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">maxorder:= RepresentativesMaximallyCyclicSubgroups( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( maxorder );</span>
57
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">autt:= CharacterTable( "O8+(3).S4" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( t, autt );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbreps:= Set( fus, map -&gt; Set( ProjectionMap( map ) ) );</span>
[ [ 1, 2, 5, 6, 7, 13, 17, 18, 19, 20, 23, 24, 27, 30, 31, 37, 43, 
      46, 50, 54, 55, 56, 57, 58, 64, 68, 72, 75, 78, 84, 85, 89, 95, 
      96, 97, 100, 106, 112 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">totest:= Intersection( maxorder, orbreps[1] );</span>
[ 43, 50, 54, 56, 57, 64, 68, 75, 78, 84, 85, 89, 95, 97, 100, 106, 
  112 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( totest );</span>
17
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t ){ totest };</span>
[ "6Q", "6X", "6B1", "8A", "8B", "9G", "9K", "12A", "12D", "12J", 
  "12K", "12O", "13A", "14A", "15A", "18A", "20A" ]
</pre></div>

<p>This means that we have to test one element of each of the element orders <span class="SimpleMath">\(13\)</span>, <span class="SimpleMath">\(14\)</span>, <span class="SimpleMath">\(15\)</span>, and <span class="SimpleMath">\(18\)</span> (note that we know already a bound for elements of order <span class="SimpleMath">\(20\)</span>), plus certain elements of the orders <span class="SimpleMath">\(6\)</span>, <span class="SimpleMath">\(8\)</span>, <span class="SimpleMath">\(9\)</span>, and <span class="SimpleMath">\(12\)</span> which can be identified by their centralizer orders and (for elements of order <span class="SimpleMath">\(6\)</span> and <span class="SimpleMath">\(8\)</span>) perhaps the centralizer orders of some powers.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elementstotest:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for elord in [ 13, 14, 15, 18 ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     until Order( s ) = elord;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Add( elementstotest, s );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p>The next elements to be tested are in the classes <code class="code">6B1</code> (centralizer order <span class="SimpleMath">\(162\)</span>), in one of <code class="code">9G</code>–<code class="code">9J</code> (centralizer order <span class="SimpleMath">\(729\)</span>), in one of <code class="code">9K</code>–<code class="code">9N</code> (centralizer order <span class="SimpleMath">\(81\)</span>), in one of <code class="code">12A</code>–<code class="code">12C</code> (centralizer order <span class="SimpleMath">\(1\,728\)</span>), in one of <code class="code">12D</code>–<code class="code">12I</code> (centralizer order <span class="SimpleMath">\(432\)</span>), in <code class="code">12J</code> (centralizer order <span class="SimpleMath">\(192\)</span>), in one of <code class="code">12K</code>–<code class="code">12N</code> (centralizer order <span class="SimpleMath">\(108\)</span>), and in one of <code class="code">12O</code>–<code class="code">12T</code> (centralizer order <span class="SimpleMath">\(72\)</span>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ordcent:= [ [ 6, 162 ], [ 9, 729 ], [ 9, 81 ], [ 12, 1728 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               [ 12, 432 ], [ 12, 192 ], [ 12, 108 ], [ 12, 72 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cents:= SizesCentralizers( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for pair in ordcent do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Print( pair, ": ", AtlasClassNames( t ){</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Filtered( [ 1 .. Length( ord ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   i -&gt; ord[i] = pair[1] and cents[i] = pair[2] ) }, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     until Order( s ) = pair[1] and Size( Centralizer( g, s ) ) = pair[2];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Add( elementstotest, s );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
[ 6, 162 ]: [ "6B1" ]
[ 9, 729 ]: [ "9G", "9H", "9I", "9J" ]
[ 9, 81 ]: [ "9K", "9L", "9M", "9N" ]
[ 12, 1728 ]: [ "12A", "12B", "12C" ]
[ 12, 432 ]: [ "12D", "12E", "12F", "12G", "12H", "12I" ]
[ 12, 192 ]: [ "12J" ]
[ 12, 108 ]: [ "12K", "12L", "12M", "12N" ]
[ 12, 72 ]: [ "12O", "12P", "12Q", "12R", "12S", "12T" ]
</pre></div>

<p>The next elements to be tested are in one of the classes <code class="code">6Q</code>–<code class="code">6S</code> (centralizer order <span class="SimpleMath">\(648\)</span>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t ){ Filtered( [ 1 .. Length( ord ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       i -&gt; cents[i] = 648 and cents[ PowerMap( t, 2 )[i] ] = 52488</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                           and cents[ PowerMap( t, 3 )[i] ] = 26127360 ) };</span>
[ "6Q", "6R", "6S" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 6 and Size( Centralizer( g, s ) ) = 648</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     and Size( Centralizer( g, s^2 ) ) = 52488</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     and Size( Centralizer( g, s^3 ) ) = 26127360;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Add( elementstotest, s );</span>
</pre></div>

<p>The next elements to be tested are in the class <code class="code">6X</code>–<code class="code">6A1</code> (centralizer order <span class="SimpleMath">\(648\)</span>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t ){ Filtered( [ 1 .. Length( ord ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       i -&gt; cents[i] = 648 and cents[ PowerMap( t, 2 )[i] ] = 52488</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                           and cents[ PowerMap( t, 3 )[i] ] = 331776 ) };</span>
[ "6X", "6Y", "6Z", "6A1" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 6 and Size( Centralizer( g, s ) ) = 648</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     and Size( Centralizer( g, s^2 ) ) = 52488</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     and Size( Centralizer( g, s^3 ) ) = 331776;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Add( elementstotest, s );</span>
</pre></div>

<p>Finally, we add elements from the classes <code class="code">8A</code> and <code class="code">8B</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t ){ Filtered( [ 1 .. Length( ord ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       i -&gt; ord[i] = 8 and cents[ PowerMap( t, 2 )[i] ] = 13824 ) };</span>
[ "8A" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 8 and Size( Centralizer( g, s^2 ) ) = 13824;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Add( elementstotest, s );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t ){ Filtered( [ 1 .. Length( ord ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       i -&gt; ord[i] = 8 and cents[ PowerMap( t, 2 )[i] ] = 1536 ) };</span>
[ "8B" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 8 and Size( Centralizer( g, s^2 ) ) = 1536;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Add( elementstotest, s );</span>
</pre></div>

<p>Now we compute the ratios. It turns out that from these candidates, only elements <span class="SimpleMath">\(s\)</span> of the orders <span class="SimpleMath">\(14\)</span> and <span class="SimpleMath">\(15\)</span> satisfy <span class="SimpleMath">\(P(g,s) &lt; 194/455\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nongen:= List( elementstotest,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  s -&gt; RatioOfNongenerationTransPermGroup( g, 3A, s ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">smaller:= PositionsProperty( nongen, x -&gt; x &lt; 194/455 );</span>
[ 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nongen{ smaller };</span>
[ 127/325, 1453/3640 ]
</pre></div>

<p>So the only candidates for <span class="SimpleMath">\(s\)</span> that may be better than order <span class="SimpleMath">\(20\)</span> elements are elements of order <span class="SimpleMath">\(14\)</span> or <span class="SimpleMath">\(15\)</span>. In order to exclude these two possibilities, we compute <span class="SimpleMath">\(P(g,s)\)</span> for <span class="SimpleMath">\(s\)</span> in the class <code class="code">14A</code> and <span class="SimpleMath">\(g = s^7\)</span> in the class <code class="code">2A</code>, and for <span class="SimpleMath">\(s\)</span> in the class <code class="code">15A</code> and <span class="SimpleMath">\(g\)</span> in the class <code class="code">2A</code>, which yields values that are larger than <span class="SimpleMath">\(194/455\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 14 and NrMovedPoints( s ) = 1078;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2A:= s^7;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nongen:= RatioOfNongenerationTransPermGroup( g, 2A, s );</span>
1573/3645
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nongen &gt; 194/455;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 15 and NrMovedPoints( s ) = 1080 - 3;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nongen:= RatioOfNongenerationTransPermGroup( g, 2A, s );</span>
490/1053
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nongen &gt; 194/455;</span>
true
</pre></div>

<p>For statement (d), we show that for each triple of elements in the union of the classes <code class="code">2A</code>, <code class="code">3A</code>, <code class="code">3B</code>, <code class="code">3E</code> there is an element in the class <code class="code">20A</code> that generates <span class="SimpleMath">\(S\)</span> together with each element of the triple.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for tup in UnorderedTuples( [ 2A, 3A, 3B, 3E ], 3 ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     cl:= ShallowCopy( tup );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     test:= RandomCheckUniformSpread( g, cl, 20A, 100 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if test &lt;&gt; true then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Error( test );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p>We get no error message, so statement (d) is true.</p>

<p>For statement (e), first we show that <span class="SimpleMath">\(2.S = \Omega^+(8,3)\)</span> contains elements of order <span class="SimpleMath">\(40\)</span> but <span class="SimpleMath">\(S\)</span> does not.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der:= DerivedSubgroup( SO(1,8,3) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= PseudoRandom( der ); until Order( x ) = 40;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">40 in ord;</span>
false
</pre></div>

<p>Thus elements of order <span class="SimpleMath">\(40\)</span> must arise as preimages of order <span class="SimpleMath">\(20\)</span> elements under the natural epimorphism from <span class="SimpleMath">\(2.S\)</span> to <span class="SimpleMath">\(S\)</span>, which means that we may choose an order <span class="SimpleMath">\(40\)</span> preimage <span class="SimpleMath">\(\hat{s}\)</span> of <span class="SimpleMath">\(s\)</span>. Then <span class="SimpleMath">\(𝕄(2.S, \hat{s})\)</span> consists of central extensions of the subgroups listed in statement (b). The perfect subgroups <span class="SimpleMath">\(O_7(3)\)</span>, <span class="SimpleMath">\(L_4(3)\)</span>, <span class="SimpleMath">\(2.U_4(3)\)</span>, and <span class="SimpleMath">\(U_4(2)\)</span> of these groups must lift to their Schur double covers in <span class="SimpleMath">\(2.S\)</span> because otherwise the preimages would not contain elements of order <span class="SimpleMath">\(40\)</span>.</p>

<p>Next we consider the preimage of the subgroup <span class="SimpleMath">\(U = (A_4 \times U_4(2)).2\)</span> of <span class="SimpleMath">\(S\)</span>. We show that the preimages of the two direct factors <span class="SimpleMath">\(A_4\)</span> and <span class="SimpleMath">\(U_4(2)\)</span> in <span class="SimpleMath">\(U^{\prime} = A_4 \times U_4(2)\)</span> are Schur covers. For <span class="SimpleMath">\(A_4\)</span>, this follows from the fact that the preimage of <span class="SimpleMath">\(U^{\prime}\)</span> must contain elements of order <span class="SimpleMath">\(20\)</span>, and that <span class="SimpleMath">\(U_4(2)\)</span> does not contain elements of order <span class="SimpleMath">\(10\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">u42:= CharacterTable( "U4(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( OrdersClassRepresentatives( u42 ), x -&gt; x mod 5 = 0 );</span>
[ 5 ]
</pre></div>

<p>In order to show that the <span class="SimpleMath">\(U_4(2)\)</span> type subgroup of <span class="SimpleMath">\(U^{\prime}\)</span> lifts to its double cover in <span class="SimpleMath">\(2.S\)</span>, we note that the class <code class="code">2B</code> of <span class="SimpleMath">\(U_4(2)\)</span> lifts to a class of elements of order four in the double cover <span class="SimpleMath">\(2.U_4(2)\)</span>, and that the corresponding class of elements in <span class="SimpleMath">\(U\)</span> is <span class="SimpleMath">\(S\)</span>-conjugate to the class of involutions in the direct factor <span class="SimpleMath">\(A_4\)</span> (which is the unique class of length three in <span class="SimpleMath">\(U\)</span>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">u:= CharacterTable( Maxes( t )[18] );</span>
CharacterTable( "(A4xU4(2)):2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2u42:= CharacterTable( "2.U4(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( 2u42 )[4];</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( 2u42, u42 )[4];</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( u42 )[3];</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( PossibleClassFusions( u42, u ), x -&gt; x[3] );</span>
[ 8 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( SizesConjugacyClasses( u ), x -&gt; x = 3 );</span>
[ 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( PossibleClassFusions( u, t ), x -&gt; x[2] = x[8] );</span>
true
</pre></div>

<p>The last subgroup for which the structure of the preimage has to be shown is <span class="SimpleMath">\(U = (A_6 \times A_6):2^2\)</span>. We claim that each of the <span class="SimpleMath">\(A_6\)</span> type subgroups in the derived subgroup <span class="SimpleMath">\(U^{\prime} = A_6 \times A_6\)</span> lifts to its double cover in <span class="SimpleMath">\(2.S\)</span>. Since all elements of order <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(U\)</span> lie in <span class="SimpleMath">\(U^{\prime}\)</span>, at least one of the two direct factors must lift to its double cover, in order to give rise to an order <span class="SimpleMath">\(40\)</span> element in <span class="SimpleMath">\(U\)</span>. In fact both factors lift to the double cover since the two direct factors are interchanged by conjugation in <span class="SimpleMath">\(U\)</span>; the latter follows form tha fact that <span class="SimpleMath">\(U\)</span> has no normal subgroup of type <span class="SimpleMath">\(A_6\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">u:= CharacterTable( Maxes( t )[24] );</span>
CharacterTable( "(A6xA6):2^2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassPositionsOfDerivedSubgroup( u );</span>
[ 1 .. 22 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( OrdersClassRepresentatives( u ), x -&gt; x = 20 );</span>
[ 8 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ClassPositionsOfNormalSubgroups( u ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         x -&gt; Sum( SizesConjugacyClasses( u ){ x } ) );</span>
[ 1, 129600, 259200, 259200, 259200, 518400 ]
</pre></div>

<p>So statement (e) holds.</p>

<p>For statement (f), we have to consider the upward extensions <span class="SimpleMath">\(S.2_1\)</span>, <span class="SimpleMath">\(S.2_2\)</span>, and <span class="SimpleMath">\(S.3\)</span>.</p>

<p>First we look at <span class="SimpleMath">\(S.2_1\)</span>, an extension by an outer automorphism that acts as a double transposition in the outer automorphism group <span class="SimpleMath">\(S_4\)</span>. Note that the symmetry between the three classes of element oder <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span> is broken in <span class="SimpleMath">\(S.2_1\)</span>, two of these classes have square roots in <span class="SimpleMath">\(S.2_1\)</span>, the third has not.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "O8+(3).2_1" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord20:= PositionsProperty( OrdersClassRepresentatives( t2 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               x -&gt; x = 20 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord20:= Intersection( ord20, ClassPositionsOfDerivedSubgroup( t2 ) );</span>
[ 84, 85, 86 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ord20, x -&gt; x in PowerMap( t2, 2 ) );</span>
[ false, true, true ]
</pre></div>

<p>Changing the viewpoint, we see that for each class of element order <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span>, there is a group of the type <span class="SimpleMath">\(S.2_1\)</span> in which the elements in this class do not have square roots, and there are groups of this type in which these elements have square roots. So we have to deal with two different cases, and we do this by first collecting the permutation characters induced from <em>all</em> maximal subgroups of <span class="SimpleMath">\(S.2_1\)</span> (other than <span class="SimpleMath">\(S\)</span>) that contain elements of order <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span>, and then considering <span class="SimpleMath">\(s\)</span> in each of these classes of <span class="SimpleMath">\(S\)</span>.</p>

<p>We fix an embedding of <span class="SimpleMath">\(S\)</span> into <span class="SimpleMath">\(S.2_1\)</span> in which the elements in the class <code class="code">20A</code> do not have square roots. This situation is given for the stored class fusion between the tables in the <strong class="pkg">GAP</strong> Character Table Library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tfust2:= GetFusionMap( t, t2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tfust2{ PositionsProperty( OrdersClassRepresentatives( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               x -&gt; x = 20 ) };</span>
[ 84, 85, 86 ]
</pre></div>

<p>The six different actions of <span class="SimpleMath">\(S\)</span> on the cosets of <span class="SimpleMath">\(O_7(3)\)</span> type subgroups induce pairwise different permutation characters that form an orbit under the action of <span class="SimpleMath">\(Aut(S)\)</span>. Four of these characters cannot extend to <span class="SimpleMath">\(S.2_1\)</span>, the other two extend to permutation characters of <span class="SimpleMath">\(S.2_1\)</span> on the cosets of <span class="SimpleMath">\(O_7(3).2\)</span> type subgroups; these subgroups contain <code class="code">20A</code> elements.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">primt2:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossiblePermutationCharacters( CharacterTable( "O7(3)" ), t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invfus:= InverseMap( tfust2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( poss, pi -&gt; ForAll( CompositionMaps( pi, invfus ), IsInt ) );</span>
[ false, false, false, false, true, true ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossiblePermutationCharacters(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "O7(3)" ) * CharacterTable( "Cyclic", 2 ), t2 );</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= PossiblePermutationCharacters( CharacterTable( "O7(3).2" ), t2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ext, pi -&gt; pi{ ord20 } );</span>
[ [ 1, 0, 0 ], [ 1, 0, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>

<p>The novelties in <span class="SimpleMath">\(S.2_1\)</span> that arise from <span class="SimpleMath">\(O_7(3)\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> have the structure <span class="SimpleMath">\(L_4(3).2^2\)</span>. These subgroups contain elements in the classes <code class="code">20B</code> and <code class="code">20C</code> of <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= PossiblePermutationCharacters( CharacterTable( "L4(3).2^2" ), t2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ext, pi -&gt; pi{ ord20 } );</span>
[ [ 0, 0, 1 ], [ 0, 1, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>

<p>Note that from the possible permutation characters of <span class="SimpleMath">\(S.2_1\)</span> on the cosets of <span class="SimpleMath">\(L_4(3):2 \times 2\)</span> type subgroups, we see that such subgroups must contain <code class="code">20A</code> elements, i. e., all such subgroups of <span class="SimpleMath">\(S.2_1\)</span> lie inside <span class="SimpleMath">\(O_7(3).2\)</span> type subgroups. This means that the structure description of these novelties in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a> is not correct. The correct structure is <span class="SimpleMath">\(L_4(3).2^2\)</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( PossiblePermutationCharacters( CharacterTable( "L4(3).2_2" ) *</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             CharacterTable( "Cyclic", 2 ), t2 ), pi -&gt; pi{ ord20 } );</span>
[ [ 1, 0, 0 ] ]
</pre></div>

<p>All <span class="SimpleMath">\(3^6:L_4(3)\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> extend to <span class="SimpleMath">\(S.2_1\)</span>. We compute these permutation characters as the possible permutation characters of the right degree.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= PermChars( t2, rec( torso:= [ 1120 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ext, pi -&gt; pi{ ord20 } );</span>
[ [ 2, 0, 0 ], [ 0, 0, 2 ], [ 0, 2, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>

<p>Also all <span class="SimpleMath">\(2.U_4(3).2^2\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> extend to <span class="SimpleMath">\(S.2_1\)</span>. We compute the permutation characters as the extensions of the corresponding permutation characters of <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= Filtered( prim, x -&gt; x[1] = 189540 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( filt, x -&gt; CompositionMaps( x, invfus ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= Concatenation( List( cand,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             pi -&gt; PermChars( t2, rec( torso:= pi ) ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ext, x -&gt; x{ ord20 } );</span>
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>

<p>The extensions of <span class="SimpleMath">\((A_4 \times U_4(2)):2\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> to <span class="SimpleMath">\(S.2_1\)</span> have the type <span class="SimpleMath">\(S_4 \times U_4(2):2\)</span>, they contain <code class="code">20A</code> elements.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= PossiblePermutationCharacters( CharacterTable( "Symmetric", 4 ) *</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             CharacterTable( "U4(2).2" ), t2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ext, x -&gt; x{ ord20 } );</span>
[ [ 1, 0, 0 ], [ 1, 0, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>

<p>All <span class="SimpleMath">\((A_6 \times A_6):2^2\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> extend to <span class="SimpleMath">\(S.2_1\)</span>. We compute the permutation characters as the extensions of the corresponding permutation characters of <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= Filtered( prim, x -&gt; x[1] = 9552816 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( filt, x -&gt; CompositionMaps( x, InverseMap( tfust2 ) ));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= Concatenation( List( cand,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             pi -&gt; PermChars( t2, rec( torso:= pi ) ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ext, x -&gt; x{ ord20 } );</span>
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>

<p>We have found all relevant permutation characters of <span class="SimpleMath">\(S.2_1\)</span>. This together with the list in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a> implies statement (g).</p>

<p>Now we compute the bounds <span class="SimpleMath">\(σ^{\prime}(S.2_1, s)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( primt2 );</span>
15
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= List( ord20, x -&gt; ApproxP( primt2, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">outer:= Difference(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ClassPositionsOfDerivedSubgroup( t2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( approx, l -&gt; Maximum( l{ outer } ) );</span>
[ 574/1215, 83/567, 83/567 ]
</pre></div>

<p>Next we look at <span class="SimpleMath">\(S.2_2\)</span>, an extension by an outer automorphism that acts as a transposition in the outer automorphism group <span class="SimpleMath">\(S_4\)</span>. Similar to the above situation, the symmetry between the three classes of element oder <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span> is broken also in <span class="SimpleMath">\(S.2_2\)</span>: The first is a conjugacy class of <span class="SimpleMath">\(S.2_2\)</span>, the other two classes are fused in <span class="SimpleMath">\(S.2_2\)</span>,</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "O8+(3).2_2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord20:= PositionsProperty( OrdersClassRepresentatives( t2 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               x -&gt; x = 20 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord20:= Intersection( ord20, ClassPositionsOfDerivedSubgroup( t2 ) );</span>
[ 82, 83 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tfust2:= GetFusionMap( t, t2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tfust2{ PositionsProperty( OrdersClassRepresentatives( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               x -&gt; x = 20 ) };</span>
[ 82, 83, 83 ]
</pre></div>

<p>Like in the case <span class="SimpleMath">\(S.2_1\)</span>, we compute the permutation characters induced from <em>all</em> maximal subgroups of <span class="SimpleMath">\(S.2_2\)</span> (other than <span class="SimpleMath">\(S\)</span>) that contain elements of order <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span>.</p>

<p>We fix the embedding of <span class="SimpleMath">\(S\)</span> into <span class="SimpleMath">\(S.2_2\)</span> in which the class <code class="code">20A</code> of <span class="SimpleMath">\(S\)</span> is a class of <span class="SimpleMath">\(S.2_2\)</span>. This situation is given for the stored class fusion between the tables in the <strong class="pkg">GAP</strong> Character Table Library.</p>

<p>Exactly two classes of <span class="SimpleMath">\(O_7(3)\)</span> type subgroups in <span class="SimpleMath">\(S\)</span> extend to <span class="SimpleMath">\(S.2_2\)</span>, these groups contain <code class="code">20A</code> elements.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">primt2:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= PermChars( t2, rec( torso:= [ 1080 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ext, pi -&gt; pi{ ord20 } );</span>
[ [ 1, 0 ], [ 1, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>

<p>Only one class of <span class="SimpleMath">\(3^6:L_4(3)\)</span> type subgroups extends to <span class="SimpleMath">\(S.2_2\)</span>. (Note that we need not consider the novelties of the type <span class="SimpleMath">\(3^{3+6}:(L_3(3) \times 2)\)</span>, because the order of these groups is not divisible by <span class="SimpleMath">\(5\)</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= PermChars( t2, rec( torso:= [ 1120 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ext, pi -&gt; pi{ ord20 } );</span>
[ [ 2, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>

<p>Only one class of <span class="SimpleMath">\(2.U_4(3).2^2\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> extends to <span class="SimpleMath">\(S.2_2\)</span>. We compute the permutation character as the extension of the corresponding permutation characters of <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= Filtered( prim, x -&gt; x[1] = 189540 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( filt, x -&gt; CompositionMaps( x, InverseMap( tfust2 ) ));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= Concatenation( List( cand,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             pi -&gt; PermChars( t2, rec( torso:= pi ) ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ext, x -&gt; x{ ord20 } );</span>
[ [ 1, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>

<p>Two classes of <span class="SimpleMath">\((A_4 \times U_4(2)):2\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> extend to <span class="SimpleMath">\(S.2_2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= Filtered( prim, x -&gt; x[1] = 7960680 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( filt, x -&gt; CompositionMaps( x, InverseMap( tfust2 ) ));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= Concatenation( List( cand,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             pi -&gt; PermChars( t2, rec( torso:= pi ) ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ext, x -&gt; x{ ord20 } );</span>
[ [ 1, 0 ], [ 1, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>

<p>Exactly one class of <span class="SimpleMath">\((A_6 \times A_6):2^2\)</span> type subgroups in <span class="SimpleMath">\(S\)</span> extends to <span class="SimpleMath">\(S.2_2\)</span>, and the extensions have the structure <span class="SimpleMath">\(S_6 \wr 2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= PossiblePermutationCharacters( CharacterTableWreathSymmetric(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             CharacterTable( "S6" ), 2 ), t2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ext, x -&gt; x{ ord20 } );</span>
[ [ 1, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>

<p>We have found all relevant permutation characters of <span class="SimpleMath">\(S.2_2\)</span>, and compute the bounds <span class="SimpleMath">\(σ^{\prime}(S.2_2, s)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( primt2 );</span>
7
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= List( ord20, x -&gt; ApproxP( primt2, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">outer:= Difference(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ClassPositionsOfDerivedSubgroup( t2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( approx, l -&gt; Maximum( l{ outer } ) );</span>
[ 14/9, 0 ]
</pre></div>

<p>This means that there is an extension of the type <span class="SimpleMath">\(S.2_2\)</span> in which <span class="SimpleMath">\(s\)</span> cannot be chosen such that the bound is less than <span class="SimpleMath">\(1/2\)</span>. More precisely, we have <span class="SimpleMath">\(σ(g,s) \geq 1/2\)</span> exactly for <span class="SimpleMath">\(g\)</span> in the unique outer involution class of size <span class="SimpleMath">\(1\,080\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( primt2, ord20[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bad:= Filtered( outer, i -&gt; approx[i] &gt;= 1/2 );</span>
[ 84 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t2 ){ bad };</span>
[ 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesConjugacyClasses( t2 ){ bad };</span>
[ 1080 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Number( SizesConjugacyClasses( t2 ), x -&gt; x = 1080 );</span>
1
</pre></div>

<p>So we compute the proportion of elements in this class that generate <span class="SimpleMath">\(S.2_2\)</span> together with an element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span>. (As above, we have to consider two conjugacy classes.) For that, we first compute a permutation representation of <span class="SimpleMath">\(S.2_2\)</span>, using that <span class="SimpleMath">\(S.2_2\)</span> is isomporphic to the two subgroups of index <span class="SimpleMath">\(2\)</span> in <span class="SimpleMath">\(PGO^+(8,3) = O_8^+(3).2^2_{122}\)</span> that are different from <span class="SimpleMath">\(PSO^+(8,3) = O_8^+(3).2_1\)</span>, cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">go:= GO(1,8,3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">so:= SO(1,8,3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">outerelm:= First( GeneratorsOfGroup( go ), x -&gt; not x in so );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g2:= ClosureGroup( DerivedSubgroup( so ), outerelm );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( g2 );</span>
19808719257600
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dom:= NormedRowVectors( GF(3)^8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( g2, dom, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 1080, 1080, 1120 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">act:= Action( g2, orbs[1], OnLines );;</span>
</pre></div>

<p>An involution <span class="SimpleMath">\(g\)</span> can be found as a power of one of the given generators.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Order( outerelm );</span>
26
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Permutation( outerelm^13, orbs[1], OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( ConjugacyClass( act, g ) );</span>
1080
</pre></div>

<p>Now we find the candidates for the elements <span class="SimpleMath">\(s\)</span>, and compute their ratios of nongeneration.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord20;</span>
[ 82, 83 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesCentralizers( t2 ){ ord20 };</span>
[ 40, 20 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der:= DerivedSubgroup( act );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat 20A:= Random( der );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( 20A ) = 20 and Size( Centralizer( act, 20A ) ) = 40;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( act, g, 20A );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat 20BC:= Random( der );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( 20BC ) = 20 and Size( Centralizer( act, 20BC ) ) = 20;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( act, g, 20BC );</span>
0
</pre></div>

<p>This means that for <span class="SimpleMath">\(s\)</span> in one <span class="SimpleMath">\(S\)</span>-class of elements of order <span class="SimpleMath">\(20\)</span>, we have <span class="SimpleMath">\(P^{\prime}(g, s) = 1\)</span>, and <span class="SimpleMath">\(s\)</span> in the other two <span class="SimpleMath">\(S\)</span>-classes of elements of order <span class="SimpleMath">\(20\)</span> generates with any conjugate of <span class="SimpleMath">\(g\)</span>.</p>

<p>Concerning <span class="SimpleMath">\(S.2_2\)</span>, it remains to show that we cannot find a better element than <span class="SimpleMath">\(s\)</span>. For that, we first compute class representatives <span class="SimpleMath">\(s^{\prime}\)</span> in <span class="SimpleMath">\(S\)</span>, w.r.t. conjugacy in <span class="SimpleMath">\(S.2_2\)</span>, and then compute <span class="SimpleMath">\(P^{\prime}( s^{\prime}, g )\)</span>. (It would be enough to check representatives of classes of maximal element order, but computing all classes is easy enough.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= ConjugacyClasses( act );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der:= DerivedSubgroup( act );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= Filtered( List( ccl, Representative ), x -&gt; x in der );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( reps );</span>
83
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ratios:= List( reps,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  s -&gt; RatioOfNongenerationTransPermGroup( act, g, s ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= PositionsProperty( ratios, x -&gt; x &lt; 1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ratios:= ratios{ cand };;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortParallel( ratios, cand );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ratios;</span>
[ 0, 1/10, 1/10, 16/135, 1/3, 1/3, 11/27, 7/15, 7/15 ]
</pre></div>

<p>For <span class="SimpleMath">\(S.2_2\)</span>, it remains to show that there is no element <span class="SimpleMath">\(s^{\prime} \in S\)</span> such that <span class="SimpleMath">\(P^{\prime}( {s^{\prime}}^x, g ) &lt; 1\)</span> holds for any <span class="SimpleMath">\(x \in Aut(S)\)</span> and <span class="SimpleMath">\(g \in S.2_2\)</span>. So we are done when we can show that each class given by <code class="code">cand</code> is conjugate in <span class="SimpleMath">\(S.3\)</span> to a class outside <code class="code">cand</code>. The classes can be identified by element orders and centralizer orders.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invs:= List( cand,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      x -&gt; [ Order( reps[x] ), Size( Centralizer( der, reps[x] ) ) ] );</span>
[ [ 20, 20 ], [ 18, 108 ], [ 18, 108 ], [ 14, 28 ], [ 15, 45 ], 
  [ 15, 45 ], [ 10, 40 ], [ 12, 72 ], [ 12, 72 ] ]
</pre></div>

<p>Namely, <code class="code">cand</code> contains no full <span class="SimpleMath">\(S.3\)</span>-orbit of classes of the element orders <span class="SimpleMath">\(20\)</span>, <span class="SimpleMath">\(18\)</span>, <span class="SimpleMath">\(14\)</span>, <span class="SimpleMath">\(15\)</span>, and <span class="SimpleMath">\(10\)</span>; also, <code class="code">cand</code> does not contain full <span class="SimpleMath">\(S.3\)</span>-orbits on the classes <code class="code">12O</code>–<code class="code">12T</code>.</p>

<p>Finally, we deal with <span class="SimpleMath">\(S.3\)</span>. The fact that no maximal subgroup of <span class="SimpleMath">\(S\)</span> containing an element of order <span class="SimpleMath">\(20\)</span> extends to <span class="SimpleMath">\(S.3\)</span> follows either from the list of maximal subgroups of <span class="SimpleMath">\(S\)</span> in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a> or directly from the permutation characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t3:= CharacterTable( "O8+(3).3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tfust3:= GetFusionMap( t, t3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= InverseMap( tfust3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= PositionsProperty( prim, x -&gt; x[ spos ] &lt;&gt; 0 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( prim{ filt },</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           pi -&gt; ForAny( CompositionMaps( pi, inv ), IsList ) );</span>
true
</pre></div>

<p>So we have to consider only the classes of novelties in <span class="SimpleMath">\(S.3\)</span>, but the order of none of these groups is divisible by <span class="SimpleMath">\(20\)</span> –again see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a>). This means that <em>any</em> element in <span class="SimpleMath">\(S.3 \setminus S\)</span> together with an element of order <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span> generates <span class="SimpleMath">\(S.3\)</span>. This is in fact stronger than statement (f), which claims this property only for elements of prime order in <span class="SimpleMath">\(S.3 \setminus S\)</span> (and their roots); note that <span class="SimpleMath">\(S.3 \setminus S\)</span> contains elements of the orders <span class="SimpleMath">\(9\)</span> and <span class="SimpleMath">\(27\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">outer:= Difference( [ 1 .. NrConjugacyClasses( t3 ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               ClassPositionsOfDerivedSubgroup( t3 ) );</span>
[ 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 
  70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 
  87, 88, 89, 90, 91, 92, 93, 94 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Set( OrdersClassRepresentatives( t3 ){ outer } );</span>
[ 3, 6, 9, 12, 18, 21, 24, 27, 36, 39 ]
</pre></div>

<p>Before we turn to the next computations, we clean the workspace.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>

<p><a id="X85BACC4A83F73392" name="X85BACC4A83F73392"></a></p>

<h5>11.5-14 <span class="Heading"><span class="SimpleMath">\(O^+_8(4)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = O^+_8(4) = \Omega^+(8,4)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For suitable <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(2^- \perp 6^-\)</span> (i. e., <span class="SimpleMath">\(s\)</span> decomposes the natural <span class="SimpleMath">\(8\)</span>-dimensional module for <span class="SimpleMath">\(S\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(2\)</span> and <span class="SimpleMath">\(6\)</span>, respectively) and of order <span class="SimpleMath">\(65\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of exactly three pairwise nonconjugate subgroups of the type <span class="SimpleMath">\((5 \times O^-_6(4)).2 = (5 \times \Omega^-(6,4)).2\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ( S, s ) \leq 34\,817 / 1\,645\,056\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>In the extensions <span class="SimpleMath">\(S.2_1\)</span> and <span class="SimpleMath">\(S.3\)</span> of <span class="SimpleMath">\(S\)</span> by graph automorphisms, there is at most one maximal subgroup besides <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(s\)</span>. For the extension <span class="SimpleMath">\(S.2_2\)</span> of <span class="SimpleMath">\(S\)</span> by a field automorphism, we have <span class="SimpleMath">\(σ^{\prime}(S.2_2, s) = 0\)</span>. In the extension <span class="SimpleMath">\(S.2_3\)</span> of <span class="SimpleMath">\(S\)</span> by the product of an involutory graph automorphism and a field automorphism, there is a unique maximal subgroup besides <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(s\)</span>.</p>

</dd>
</dl>
<p>A safe source for determining <span class="SimpleMath">\(𝕄(S,s)\)</span> is <a href="chapBib_mj.html#biBKle87">[Kle87]</a>. By inspection of the result matrix in this paper, we get that the only maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain elements of order <span class="SimpleMath">\(65\)</span> occur in the rows 9–14 and 23–25; they have the isomorphism types <span class="SimpleMath">\(S_6(4) = Sp(6,4) \cong O_7(4) = \Omega(7,4)\)</span> and <span class="SimpleMath">\((5 \times O_6^-(4)).2 = (5 \times \Omega^-(6,4)).2\)</span>, respectively, and for each of these, there are three conjugacy classes of subgroups in <span class="SimpleMath">\(S\)</span>, which are conjugate under the triality graph automorphism of <span class="SimpleMath">\(S\)</span>.</p>

<p>We start with the natural matrix representation of <span class="SimpleMath">\(S\)</span>. For convenience, we compute an isomorphic permutation group on <span class="SimpleMath">\(5\,525\)</span> points.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">q:= 4;;  n:= 8;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= DerivedSubgroup( SO( 1, n, q ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">points:= NormedRowVectors( GF(q)^n );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( G, points, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 5525, 16320 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hom:= ActionHomomorphism( G, orbs[1], OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= Image( hom );;</span>
</pre></div>

<p>The group <span class="SimpleMath">\(S\)</span> contains exactly six conjugacy classes of (cyclic) subgroups of order <span class="SimpleMath">\(65\)</span>; this follows from the fact that the centralizer of any Sylow <span class="SimpleMath">\(13\)</span> subgroup in <span class="SimpleMath">\(S\)</span> has the structure <span class="SimpleMath">\(5 \times 5 \times 13\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( Factors( Size( G ) ) );</span>
[ [ 2, 24 ], [ 3, 5 ], [ 5, 4 ], [ 7, 1 ], [ 13, 1 ], [ 17, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( G );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( x ) mod 13 = 0;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= x^( Order( x ) / 13 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c:= Centralizer( G, x );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsAbelian( c );  AbelianInvariants( c );</span>
true
[ 5, 5, 13 ]
</pre></div>

<p>The group <span class="SimpleMath">\(S_6(4)\)</span> contains exactly one class of subgroups of order <span class="SimpleMath">\(65\)</span>, since the conjugacy classes of elements of order <span class="SimpleMath">\(65\)</span> in <span class="SimpleMath">\(S_6(4)\)</span> are algebraically conjugate.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "S6(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord65:= PositionsProperty( OrdersClassRepresentatives( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                              x -&gt; x = 65 );</span>
[ 105, 106, 107, 108, 109, 110, 111, 112 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord65 = ClassOrbit( t, ord65[1] );</span>
true
</pre></div>

<p>Thus there are at least three classes of order <span class="SimpleMath">\(65\)</span> elements in <span class="SimpleMath">\(S\)</span> that are <em>not</em> contained in <span class="SimpleMath">\(S_6(4)\)</span> type subgroups of <span class="SimpleMath">\(S\)</span>. So we choose such an element <span class="SimpleMath">\(s\)</span>, and have to consider only overgroups of the type <span class="SimpleMath">\((5 \times \Omega^-(6,4)).2\)</span>.</p>

<p>The group <span class="SimpleMath">\(\Omega^-(6,4) \cong U_4(4)\)</span> contains exactly one class of subgroups of order <span class="SimpleMath">\(65\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "U4(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ords:= OrdersClassRepresentatives( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord65:= PositionsProperty( ords, x -&gt; x = 65 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord65 = ClassOrbit( t, ord65[1] );</span>
true
</pre></div>

<p>So <span class="SimpleMath">\(5 \times \Omega^-(6,4)\)</span> contains exactly six such classes. Furthermore, subgroups in different classes are not <span class="SimpleMath">\(S\)</span>-conjugate.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">syl5:= SylowSubgroup( c, 5 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= Filtered( Elements( syl5 ), y -&gt; Order( y ) = 5 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= Set( elms, SmallestGeneratorPerm );;  Length( reps );</span>
6
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps65:= List( reps, y -&gt; SubgroupNC( G, [ y * x ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pairs:= Combinations( reps65, 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAny( pairs, p -&gt; IsConjugate( G, p[1], p[2] ) );</span>
false
</pre></div>

<p>We consider only subgroups <span class="SimpleMath">\(M \leq S\)</span> in the three <span class="SimpleMath">\(S\)</span>-classes of the type <span class="SimpleMath">\((5 \times \Omega^-(6,4)).2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( reps, y -&gt; Normalizer( G, SubgroupNC( G, [ y ] ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= Filtered( cand, y -&gt; Size( y ) = 10 * Size( t ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( cand );</span>
3
</pre></div>

<p>(Note that one of the members in <span class="SimpleMath">\(𝕄(S,s)\)</span> is the stabilizer in <span class="SimpleMath">\(S\)</span> of the orthogonal decomposition <span class="SimpleMath">\(2^- \perp 6^-\)</span>, the other two members are not reducible.)</p>

<p>By the above, the classes of subgroups of order <span class="SimpleMath">\(65\)</span> in each such <span class="SimpleMath">\(M\)</span> are in bijection with the corresponding classes in <span class="SimpleMath">\(S\)</span>. Since <span class="SimpleMath">\(N_S(\langle g \rangle) \subseteq M\)</span> holds for any <span class="SimpleMath">\(g \in M\)</span> of order <span class="SimpleMath">\(65\)</span>, also the conjugacy classes of <em>elements</em> of order <span class="SimpleMath">\(65\)</span> in <span class="SimpleMath">\(M\)</span> are in bijection with those in <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">norms:= List( reps65, y -&gt; Normalizer( G, y ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( norms, y -&gt; ForAll( cand, M -&gt; IsSubset( M, y ) ) );</span>
true
</pre></div>

<p>As a consequence, we have <span class="SimpleMath">\(g^S \cap M = g^M\)</span> and thus <span class="SimpleMath">\(1_M^S(g) = 1\)</span>. This implies statement (a).</p>

<p>In order to show statement (b), we want to use the function <code class="code">UpperBoundFixedPointRatios</code> introduced in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>. For that, we first compute the conjugacy classes of the three class representatives <span class="SimpleMath">\(M\)</span>. (Since the groups have elementary abelian Sylow <span class="SimpleMath">\(5\)</span> subgroups of the order <span class="SimpleMath">\(5^4\)</span>, computing all conjugacy classes appears to be faster than using <code class="code">ClassesOfPrimeOrder</code>.) Then we compute an upper bound for <span class="SimpleMath">\(σ(S,s)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">syl5:= SylowSubgroup( cand[1], 5 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( syl5 );  IsElementaryAbelian( syl5 );</span>
625
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundFixedPointRatios( G, List( cand, ConjugacyClasses ), false );</span>
[ 34817/1645056, false ]
</pre></div>

<p><em>Remark:</em></p>

<p>Computing the exact value <span class="SimpleMath">\(σ(S,s)\)</span> in the above setup would require to test the <span class="SimpleMath">\(S\)</span>-conjugacy of certain order <span class="SimpleMath">\(5\)</span> elements in <span class="SimpleMath">\(M\)</span>. With the current <strong class="pkg">GAP</strong> implementation, some of the relevant tests need several hours of CPU time.</p>

<p>An alternative approach would be to compute the permutation action of <span class="SimpleMath">\(S\)</span> on the cosets of <span class="SimpleMath">\(M\)</span>, of degree <span class="SimpleMath">\(6\,580\,224\)</span>, and to count the fixed points of conjugacy class representatives of prime order. The currently available <strong class="pkg">GAP</strong> library methods are not sufficient for computing this in reasonable time. "Ad-hoc code" for this special case works, but it seemed to be not appropriate to include it here.</p>

<p>In the proof of statement (c), again we consult the result matrix in <a href="chapBib_mj.html#biBKle87">[Kle87]</a>. For <span class="SimpleMath">\(S.3\)</span>, the maximal subgroups are in the rows <span class="SimpleMath">\(4\)</span>, <span class="SimpleMath">\(15\)</span>, <span class="SimpleMath">\(22\)</span>, <span class="SimpleMath">\(26\)</span>, and <span class="SimpleMath">\(61\)</span>. Only row <span class="SimpleMath">\(26\)</span> yields subgroups that contain elements <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(65\)</span>, they have the isomorphism type <span class="SimpleMath">\((5 \times GU(3,4)).2 \cong (5^2 \times U_3(4)).2\)</span>. Note that the conjugacy classes of the members in <span class="SimpleMath">\(𝕄(S,s)\)</span> are permuted by the outer automorphism of order <span class="SimpleMath">\(3\)</span>, so none of the subgroups in <span class="SimpleMath">\(𝕄(S,s)\)</span> extends to <span class="SimpleMath">\(S.3\)</span>. By <a href="chapBib_mj.html#biBBGK">[BGK08, Lemma 2.4 (2)]</a>, if there is a maximal subgroup of <span class="SimpleMath">\(S.3\)</span> besides <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(s\)</span> then this subgroup is the normalizer in <span class="SimpleMath">\(S.3\)</span> of the intersection of the three members of <span class="SimpleMath">\(𝕄(S,s)\)</span>, i. e., <span class="SimpleMath">\(s\)</span> is contained in at most one such subgroup.</p>

<p>For <span class="SimpleMath">\(S.2_1\)</span>, only the rows <span class="SimpleMath">\(9\)</span> and <span class="SimpleMath">\(23\)</span> yield maximal subgroups containing elements of order <span class="SimpleMath">\(65\)</span>, and since we had chosen <span class="SimpleMath">\(s\)</span> in such a way that row <span class="SimpleMath">\(9\)</span> was excluded already for the simple group, only extensions of the elements in <span class="SimpleMath">\(𝕄(S,s)\)</span> can appear. Exactly one of these three subgroups of <span class="SimpleMath">\(S\)</span> extends to <span class="SimpleMath">\(S.2_1\)</span>, so again we get just one maximal subgroup of <span class="SimpleMath">\(S.2_1\)</span>, besides <span class="SimpleMath">\(S\)</span>, that contains <span class="SimpleMath">\(s\)</span>.</p>

<p>All subgroups in <span class="SimpleMath">\(𝕄(S,s)\)</span> extend to <span class="SimpleMath">\(S.2_2\)</span>, see <a href="chapBib_mj.html#biBKle87">[Kle87]</a>. We compute the extensions of the above subgroups <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(S\)</span> to <span class="SimpleMath">\(S.2_2\)</span>, by constructing the action of the field automorphism in the permutation representation we used for <span class="SimpleMath">\(S\)</span>. In other words, we compute the projective action of the Frobenius map.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">frob:= PermList( List( orbs[1], v -&gt; Position( orbs[1],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             List( v, x -&gt; x^2 ) ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G2:= ClosureGroupDefault( G, frob );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand2:= List( cand, M -&gt; Normalizer( G2, M ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= List( cand2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               M2 -&gt; PcConjugacyClassReps( SylowSubgroup( M2, 2 ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ccl, l -&gt; Number( l, x -&gt; Order( x ) = 2 and not x in G ) );</span>
[ 0, 0, 0 ]
</pre></div>

<p>So in each case, the extension of <span class="SimpleMath">\(M\)</span> to its normalizer in <span class="SimpleMath">\(S.2_2\)</span> is non-split. This implies <span class="SimpleMath">\(σ^{\prime}(S.2_2,s) = 0\)</span>.</p>

<p>Finally, in the extension of <span class="SimpleMath">\(S\)</span> by the product of a graph automorphism and the field automorphism, exactly that member of <span class="SimpleMath">\(𝕄(S,s)\)</span> is invariant that is invariant under the graph automorphism, hence statement (c) holds.</p>

<p>It is again time to clean the workspace.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>

<p><a id="X86EC26F78609618E" name="X86EC26F78609618E"></a></p>

<h5>11.5-15 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(O_9(3)\)</span></span></h5>

<p>The group <span class="SimpleMath">\(S = O_9(3) = \Omega_9(3)\)</span> is the first member in the series dealt with in <a href="chapBib_mj.html#biBBGK">[BGK08, Proposition 5.7]</a>, and serves as an example to illustrate this statement.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(1 \perp 8^-\)</span> (i. e., <span class="SimpleMath">\(s\)</span> decomposes the natural <span class="SimpleMath">\(9\)</span>-dimensional module for <span class="SimpleMath">\(S\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(1\)</span> and <span class="SimpleMath">\(8\)</span>, respectively) and of order <span class="SimpleMath">\((3^4 + 1)/2 = 41\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(O_8^-(3).2_1 = PGO^-(8,3)\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/3\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(41\)</span>.</p>

</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBMSW94">[MSW94]</a>, the only maximal subgroup of <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(s\)</span> is the stabilizer <span class="SimpleMath">\(M\)</span> of the orthogonal decomposition. The group <span class="SimpleMath">\(2 \times O_8^-(3).2_1 = GO^-(8,3)\)</span> embeds naturally into <span class="SimpleMath">\(SO(9,3)\)</span>, its intersection with <span class="SimpleMath">\(S\)</span> is <span class="SimpleMath">\(PGO^-(8,3)\)</span>. This proves statement (a).</p>

<p>The group <span class="SimpleMath">\(M\)</span> is the stabilizer of a <span class="SimpleMath">\(1\)</span>-space, it has index <span class="SimpleMath">\(3\,240\)</span> in <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= SO( 9, 3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= DerivedSubgroup( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( g );</span>
65784756654489600
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( g, NormedRowVectors( GF(3)^9 ), OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length ) / 41;</span>
[ 3240/41, 81, 80 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( SO( 9, 3 ) ) / Size( GO( -1, 8, 3 ) );</span>
3240
</pre></div>

<p>So we compute the unique transitive permutation character of <span class="SimpleMath">\(S\)</span> that has degree <span class="SimpleMath">\(3\,240\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "O9(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PermChars( t, rec( torso:= [ 3240 ] ) );</span>
[ Character( CharacterTable( "O9(3)" ),
  [ 3240, 1080, 380, 132, 48, 324, 378, 351, 0, 0, 54, 27, 54, 27, 0, 
      118, 0, 36, 46, 18, 12, 2, 8, 45, 0, 108, 108, 135, 126, 0, 0, 
      56, 0, 0, 36, 47, 38, 27, 39, 36, 24, 12, 18, 18, 15, 24, 2, 
      18, 15, 9, 0, 0, 0, 2, 0, 18, 11, 3, 9, 6, 6, 9, 6, 3, 6, 3, 0, 
      6, 16, 0, 4, 6, 2, 45, 36, 0, 0, 0, 0, 0, 0, 0, 9, 9, 6, 3, 0, 
      0, 15, 13, 0, 5, 7, 36, 0, 10, 0, 10, 19, 6, 15, 0, 0, 0, 0, 
      12, 3, 10, 0, 3, 3, 7, 0, 6, 6, 2, 8, 0, 4, 0, 2, 0, 1, 3, 0, 
      0, 3, 0, 3, 2, 2, 3, 3, 6, 2, 2, 9, 6, 3, 0, 0, 18, 9, 0, 0, 
      12, 0, 0, 8, 0, 6, 9, 5, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 2, 1, 
      3, 3, 1, 0, 0, 4, 1, 0, 0, 1, 0, 3, 3, 1, 1, 2, 2, 0, 0, 1, 3, 
      4, 0, 1, 2, 0, 0, 1, 0, 4, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 
      1, 1, 1, 1, 0, 0, 1, 1, 1, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 41 );</span>
208
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( pi, spos );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( approx );</span>
1/3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( approx, x -&gt; x = 1/3 );</span>
[ 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesConjugacyClasses( t )[2];</span>
3321
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t )[2];</span>
2
</pre></div>

<p>We see that <span class="SimpleMath">\(P( S, s ) = σ( S, s ) = 1/3\)</span> holds, and that <span class="SimpleMath">\(σ( g, s )\)</span> attains this maximum only for <span class="SimpleMath">\(g\)</span> in one class of involutions in <span class="SimpleMath">\(S\)</span>; let us call this class <code class="code">2A</code>. (This class consists of the negatives of a class of <em>reflections</em> in <span class="SimpleMath">\(GO(9,3)\)</span>.) This shows statement (b).</p>

<p>In order to show that the uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, it suffices to show that for each triple of <code class="code">2A</code> elements, there is an element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(41\)</span> in <span class="SimpleMath">\(S\)</span> that generates <span class="SimpleMath">\(S\)</span> with each element of the triple.</p>

<p>We work with the primitive permutation representation of <span class="SimpleMath">\(S\)</span> on <span class="SimpleMath">\(3\,240\)</span> points. In this representation, <span class="SimpleMath">\(s\)</span> fixes exactly one point, and by statement (a), <span class="SimpleMath">\(s\)</span> generates <span class="SimpleMath">\(S\)</span> with <span class="SimpleMath">\(x \in S\)</span> if and only if <span class="SimpleMath">\(x\)</span> moves this point. Since the number of fixed points of each <code class="code">2A</code> involution in <span class="SimpleMath">\(S\)</span> is exactly one third of the moved points of <span class="SimpleMath">\(S\)</span>, it suffices to show that we cannot choose three such involutions with mutually disjoint fixed point sets. And this is shown particularly easily because it will turn out that already for any two different <code class="code">2A</code> involutions, the sets of fixed points of are never disjoint.</p>

<p>First we compute a <code class="code">2A</code> element, which is determined as an involution with exactly <span class="SimpleMath">\(1\,080\)</span> fixed points.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Action( g, orbs[1], OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     repeat x:= Random( g ); ord:= Order( x ); until ord mod 2 = 0;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     y:= x^(ord/2);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">until NrMovedPoints( y ) = 3240 - 1080;</span>
</pre></div>

<p>Next we compute the sets of fixed points of the elements in the class <code class="code">2A</code>, by forming the <span class="SimpleMath">\(S\)</span>-orbit of the set of fixed points of the chosen <code class="code">2A</code> element.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fp:= Difference( MovedPoints( g ), MovedPoints( y ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= Orbit( g, fp, OnSets );;</span>
</pre></div>

<p>Finally, we show that for any pair of <code class="code">2A</code> elements, their sets of fixed points intersect nontrivially. (Of course we can fix one of the two elements.) This proves statement (c).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAny( orb, l -&gt; IsEmpty( Intersection( l, fp ) ) );</span>
false
</pre></div>

<p><a id="X8393978A8773997E" name="X8393978A8773997E"></a></p>

<h5>11.5-16 <span class="Heading"><span class="SimpleMath">\(O_{10}^-(3)\)</span></span></h5>

<p>We show that the group <span class="SimpleMath">\(S = O_{10}^-(3) = PΩ^-(10,3)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\((3^5 + 1)/4 = 61\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one subgroup of the type <span class="SimpleMath">\(SU(5,3) \cong U_5(3)\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/1\,066\)</span>.</p>

</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, the maximal subgroups of <span class="SimpleMath">\(S\)</span> containing <span class="SimpleMath">\(s\)</span> are of extension field type, and by <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.18 and 4.3.20]</a>, these groups have the structure <span class="SimpleMath">\(SU(5,3) = U_5(3)\)</span> (which lift to <span class="SimpleMath">\(2 \times U_5(3) &lt; GU(5,3)\)</span> in <span class="SimpleMath">\(\Omega^-(10,3) = 2.S\)</span>) or <span class="SimpleMath">\(\Omega(5,9).2\)</span>, but the order of the latter group is not divisible by <span class="SimpleMath">\(|s|\)</span>. Furthermore, by <a href="chapBib_mj.html#biBBGK">[BGK08, Lemma 2.12 (b)]</a>, <span class="SimpleMath">\(s\)</span> is contained in only one member of the former class.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( GO(5,9) ) / 61;</span>
6886425600/61
</pre></div>

<p><em>When the first version of these computations was written, the character tables of both <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(U_5(3)\)</span> were not contained in the <strong class="pkg">GAP</strong> Character Table Library, so we worked with the groups. Meanwhile the character tables are available, thus we can show also a character theoretic solution.)</em></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "O10-(3)" );  s:= CharacterTable( "U5(3)" );</span>
CharacterTable( "O10-(3)" )
CharacterTable( "U5(3)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SigmaFromMaxes( t, "61A", [ s ], [ 1 ] );</span>
1/1066
</pre></div>

<p><em>(Now follow the computations with groups.)</em></p>

<p>The first step is the construction of the embedding of <span class="SimpleMath">\(M = SU(5,3)\)</span> into the matrix group <span class="SimpleMath">\(2.S\)</span>, that is, we write the matrix generators of <span class="SimpleMath">\(M\)</span> as linear mappings on the natural module for <span class="SimpleMath">\(2.S\)</span>, and then conjugate them such that the result matrices respect the bilinear form of <span class="SimpleMath">\(2.S\)</span>. For convenience, we choose a basis for the field extension <span class="SimpleMath">\(𝔽_9/𝔽_3\)</span> such that the <span class="SimpleMath">\(𝔽_3\)</span>-linear mapping given by the invariant form of <span class="SimpleMath">\(M\)</span> is invariant under the <span class="SimpleMath">\(𝔽_3\)</span>-linear mappings given by the generators of <span class="SimpleMath">\(M\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:= SU(5,3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">so:= SO(-1,10,3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">omega:= DerivedSubgroup( so );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">om:= InvariantBilinearForm( so ).matrix;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( om );</span>
 . 1 . . . . . . . .
 1 . . . . . . . . .
 . . 1 . . . . . . .
 . . . 2 . . . . . .
 . . . . 2 . . . . .
 . . . . . 2 . . . .
 . . . . . . 2 . . .
 . . . . . . . 2 . .
 . . . . . . . . 2 .
 . . . . . . . . . 2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b:= Basis( GF(9), [ Z(3)^0, Z(3^2)^2 ] );</span>
Basis( GF(3^2), [ Z(3)^0, Z(3^2)^2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">blow:= List( GeneratorsOfGroup( m ), x -&gt; BlownUpMat( b, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">form:= BlownUpMat( b, InvariantSesquilinearForm( m ).matrix );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( blow, x -&gt; x * form * TransposedMat( x ) = form );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( form );</span>
 . . . . . . . . 1 .
 . . . . . . . . . 1
 . . . . . . 1 . . .
 . . . . . . . 1 . .
 . . . . 1 . . . . .
 . . . . . 1 . . . .
 . . 1 . . . . . . .
 . . . 1 . . . . . .
 1 . . . . . . . . .
 . 1 . . . . . . . .
</pre></div>

<p>The matrix <code class="code">om</code> of the invariant bilinear form of <span class="SimpleMath">\(2.S\)</span> is equivalent to the identity matrix <span class="SimpleMath">\(I\)</span>. So we compute matrices <code class="code">T1</code> and <code class="code">T2</code> that transform <code class="code">om</code> and <code class="code">form</code>, respectively, to <span class="SimpleMath">\(\pm I\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T1:= IdentityMat( 10, GF(3) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T1{[1..3]}{[1..3]}:= [[1,1,0],[1,-1,1],[1,-1,-1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PermutationMat( (1,10)(3,8), 10, GF(3) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr:= NullMat( 10,10,GF(3) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr{[1, 2]}{[1, 2]}:= [[1,1],[1,-1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr{[3, 4]}{[3, 4]}:= [[1,1],[1,-1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr{[7, 8]}{[7, 8]}:= [[1,1],[1,-1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr{[9,10]}{[9,10]}:= [[1,1],[1,-1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr{[5, 6]}{[5, 6]}:= [[1,0],[0,1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr2:= IdentityMat( 10,GF(3) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr2{[1,3]}{[1,3]}:= [[-1,1],[1,1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr2{[7,9]}{[7,9]}:= [[-1,1],[1,1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T2:= tr2 * tr * pi;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:= T1^-1 * T2;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblow:= List( blow, x -&gt; D * x * D^-1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSubset( omega, tblow );</span>
true
</pre></div>

<p>Now we switch to a permutation representation of <span class="SimpleMath">\(S\)</span>, and use the embedding of <span class="SimpleMath">\(M\)</span> into <span class="SimpleMath">\(2.S\)</span> to obtain the corresponding subgroup of type <span class="SimpleMath">\(M\)</span> in <span class="SimpleMath">\(S\)</span>. Then we compute an upper bound for <span class="SimpleMath">\(\max\{ μ(g,S/M); g \in S^{\times} \}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( omega, NormedRowVectors( GF(3)^10 ), OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 9882, 9882, 9760 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">permgrp:= Action( omega, orbs[3], OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:= SubgroupNC( permgrp,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           List( tblow, x -&gt; Permutation( x, orbs[3], OnLines ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= ClassesOfPrimeOrder( M, PrimeDivisors( Size( M ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                              TrivialSubgroup( M ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundFixedPointRatios( permgrp, [ ccl ], false );</span>
[ 1/1066, true ]
</pre></div>

<p>The entry <code class="keyw">true</code> in the second position of the result indicates that in fact the <em>exact</em> value for the maximum of <span class="SimpleMath">\(μ(g,S/M)\)</span> has been computed. This implies statement (b).</p>

<p>We clean the workspace.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>

<p><a id="X7BBBEEEF834F1002" name="X7BBBEEEF834F1002"></a></p>

<h5>11.5-17 <span class="Heading"><span class="SimpleMath">\(O_{14}^-(2)\)</span></span></h5>

<p>We show that the group <span class="SimpleMath">\(S = O_{14}^-(2) = \Omega^-(14,2)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\(2^7+1 = 129\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one subgroup <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(GU(7,2) \cong 3 \times U_7(2)\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/2\,015\)</span>.</p>

</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, any maximal subgroup of <span class="SimpleMath">\(S\)</span> containing <span class="SimpleMath">\(s\)</span> is of extension field type, and by <a href="chapBib_mj.html#biBKlL90">[KL90, Table 3.5.F, Prop. 4.3.18]</a>, these groups have the type <span class="SimpleMath">\(GU(7,2)\)</span>, and there is exactly one class of subgroups of this type. Furthermore, by <a href="chapBib_mj.html#biBBGK">[BGK08, Lemma 2.12 (a)]</a>, <span class="SimpleMath">\(s\)</span> is contained in only one member of this class.</p>

<p>We embed <span class="SimpleMath">\(U_7(2)\)</span> into <span class="SimpleMath">\(S\)</span>, by first replacing each element in <span class="SimpleMath">\(𝔽_4\)</span> by the <span class="SimpleMath">\(2 \times 2\)</span> matrix of the induced <span class="SimpleMath">\(𝔽_2\)</span>-linear mapping w.r.t. a suitable basis, and then conjugating the images of the generators such that the invariant quadratic form of <span class="SimpleMath">\(S\)</span> is respected.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">o:= SO(-1,14,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= SU(7,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b:= Basis( GF(4) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">blow:= List( GeneratorsOfGroup( g ), x -&gt; BlownUpMat( b, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">form:= NullMat( 14, 14, GF(2) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [ 1 .. 14 ] do form[i][ 15-i ]:= Z(2); od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( blow, x -&gt; x * form * TransposedMat( x ) = form );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PermutationMat( (1,13)(3,11)(5,9), 14, GF(2) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi * form * TransposedMat( pi ) = InvariantBilinearForm( o ).matrix;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi2:= PermutationMat( (7,3)(8,4), 14, GF(2) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:= pi2 * pi;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblow:= List( blow, x -&gt; D * x * D^-1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSubset( o, tblow );</span>
true
</pre></div>

<p>Note that the central subgroup of order three in <span class="SimpleMath">\(GU(7,2)\)</span> consists of scalar matrices.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">omega:= DerivedSubgroup( o );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSubset( omega, tblow );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">z:= Z(4) * One( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tz:= D * BlownUpMat( b, z ) * D^-1;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tz in omega;</span>
true
</pre></div>

<p>Now we switch to a permutation representation of <span class="SimpleMath">\(S\)</span>, and compute the conjugacy classes of prime element order in the subgroup <span class="SimpleMath">\(M\)</span>. The latter is done in two steps, first class representatives of the simple subgroup <span class="SimpleMath">\(U_7(2)\)</span> of <span class="SimpleMath">\(M\)</span> are computed, and then they are multiplied with the scalars in <span class="SimpleMath">\(M\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( omega, NormedRowVectors( GF(2)^14 ), OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 8127, 8256 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">omega:= Action( omega, orbs[1], OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= List( GeneratorsOfGroup( g ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            x -&gt; Permutation( D * BlownUpMat( b, x ) * D^-1, orbs[1] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Group( gens );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= ClassesOfPrimeOrder( g, PrimeDivisors( Size( g ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                              TrivialSubgroup( g ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tz:= Permutation( tz, orbs[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">primereps:= List( ccl, Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Add( primereps, () );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= Concatenation( List( primereps,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; List( [ 0 .. 2 ], i -&gt; x * tz^i ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">primereps:= Filtered( reps, x -&gt; IsPrimeInt( Order( x ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( primereps );</span>
48
</pre></div>

<p>Finally, we apply <code class="code">UpperBoundFixedPointRatios</code> (see Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>) to compute an upper bound for <span class="SimpleMath">\(μ(g,S/M)\)</span>, for <span class="SimpleMath">\(g \in S^{\times}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:= ClosureGroup( g, tz );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bccl:= List( primereps, x -&gt; ConjugacyClass( M, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundFixedPointRatios( omega, [ bccl ], false );</span>
[ 1/2015, true ]
</pre></div>

<p>Although some of the classes of <span class="SimpleMath">\(M\)</span> in the list <code class="code">bccl</code> may be <span class="SimpleMath">\(S\)</span>-conjugate, the entry <code class="keyw">true</code> in the second position of the result indicates that in fact the <em>exact</em> value for the maximum of <span class="SimpleMath">\(μ(g,S/M)\)</span>, for <span class="SimpleMath">\(g \in S^{\times}\)</span>, has been computed. This implies statement (b).</p>

<p>We clean the workspace.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>

<p><a id="X8477457780B69BC7" name="X8477457780B69BC7"></a></p>

<h5>11.5-18 <span class="Heading"><span class="SimpleMath">\(O_{12}^+(3)\)</span></span></h5>

<p>We show that the group <span class="SimpleMath">\(S = O_{12}^+(3) = PΩ^+(12,3)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(S\)</span> has a maximal subgroup <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(N_S(PΩ^+(6,9))\)</span>, which has the structure <span class="SimpleMath">\(PΩ^+(6,9).[4]\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(μ(g,S/M) \leq 2/88\,209\)</span> holds for all <span class="SimpleMath">\(g \in S^{\times}\)</span>.</p>

</dd>
</dl>
<p>(This result is used in the proof of <a href="chapBib_mj.html#biBBGK">[BGK08, Proposition 5.14]</a>, where it is shown that for <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(205\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one reducible subgroup <span class="SimpleMath">\(G_8\)</span> and at most two extension field type subgroups of the type <span class="SimpleMath">\(N_S(PΩ^+(6,9))\)</span>. By <a href="chapBib_mj.html#biBGK">[GK00, Proposition 3.16]</a>, <span class="SimpleMath">\(μ(g,S/G_8) \leq 19/3^5\)</span> holds for all <span class="SimpleMath">\(g \in S^{\times}\)</span>. This implies <span class="SimpleMath">\(P(g,s) \leq 19/3^5 + 2 \cdot 2/88\,209 = 6\,901/88\,209 &lt; 1/3\)</span>.)</p>

<p>Statement (a) follows from <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.14]</a>.</p>

<p>For statement (b), we embed <span class="SimpleMath">\(GO^+(6,9) \cong \Omega^+(6,9).2^2\)</span> into <span class="SimpleMath">\(SO^+(12,3) = 2.S.2\)</span>, by replacing each element in <span class="SimpleMath">\(𝔽_9\)</span> by the <span class="SimpleMath">\(2 \times 2\)</span> matrix of the induced <span class="SimpleMath">\(𝔽_3\)</span>-linear mapping w.r.t. a suitable basis <span class="SimpleMath">\((b_1, b_2)\)</span>. We choose a basis with the property <span class="SimpleMath">\(b_1 = 1\)</span> and <span class="SimpleMath">\(b_2^2 = 1 + b_2\)</span>, because then the image of a symmetric matrix is again symmetric (so the image of the invariant form is an invariant form for the image of the group), and apply an appropriate transformation to the images of the generators.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">so:= SO(+1,12,3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( InvariantBilinearForm( so ).matrix );</span>
 . 1 . . . . . . . . . .
 1 . . . . . . . . . . .
 . . 1 . . . . . . . . .
 . . . 2 . . . . . . . .
 . . . . 2 . . . . . . .
 . . . . . 2 . . . . . .
 . . . . . . 2 . . . . .
 . . . . . . . 2 . . . .
 . . . . . . . . 2 . . .
 . . . . . . . . . 2 . .
 . . . . . . . . . . 2 .
 . . . . . . . . . . . 2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= GO(+1,6,9);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Z(9)^2 = Z(3)^0 + Z(9);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b:= Basis( GF(9), [ Z(3)^0, Z(9) ] );</span>
Basis( GF(3^2), [ Z(3)^0, Z(3^2) ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">blow:= List( GeneratorsOfGroup( g ), x -&gt; BlownUpMat( b, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:= BlownUpMat( b, InvariantBilinearForm( g ).matrix );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( m );</span>
 . . 1 . . . . . . . . .
 . . . 1 . . . . . . . .
 1 . . . . . . . . . . .
 . 1 . . . . . . . . . .
 . . . . 2 . . . . . . .
 . . . . . 2 . . . . . .
 . . . . . . 2 . . . . .
 . . . . . . . 2 . . . .
 . . . . . . . . 2 . . .
 . . . . . . . . . 2 . .
 . . . . . . . . . . 2 .
 . . . . . . . . . . . 2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PermutationMat( (2,3), 12, GF(3) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr:= IdentityMat( 12, GF(3) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr{[3,4]}{[3,4]}:= [[1,-1],[1,1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:= tr * pi;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D * m * TransposedMat( D ) = InvariantBilinearForm( so ).matrix;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblow:= List( blow, x -&gt; D * x * D^-1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSubset( so, tblow );</span>
true
</pre></div>

<p>The image of <span class="SimpleMath">\(GO^+(6,9)\)</span> under the embedding into <span class="SimpleMath">\(SO^+(12,3)\)</span> does not lie in <span class="SimpleMath">\(\Omega^+(12,3) = 2.S\)</span>, so a factor of two is missing in <span class="SimpleMath">\(GO^+(6,9) \cap 2.S\)</span> for getting (the preimage <span class="SimpleMath">\(2.M\)</span> of) the required maximal subgroup <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(S\)</span>. Because of this, and also because currently it is time consuming to compute the derived subgroup of <span class="SimpleMath">\(SO^+(12,3)\)</span>, we work with the upward extension <span class="SimpleMath">\(PSO^+(12,3) = S.2\)</span>. Note that <span class="SimpleMath">\(M\)</span> extends to a maximal subgroup of <span class="SimpleMath">\(S.2\)</span>.</p>

<p>First we factor out the centre of <span class="SimpleMath">\(SO^+(12,3)\)</span>, and switch to a permutation representation of <span class="SimpleMath">\(S.2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( so, NormedRowVectors( GF(3)^12 ), OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 88452, 88452, 88816 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">act:= Action( so, orbs[1], OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetSize( act, Size( so ) / 2 );</span>
</pre></div>

<p>Next we rewrite the matrix generators for <span class="SimpleMath">\(GO^+(6,9)\)</span> accordingly, and compute the normalizer in <span class="SimpleMath">\(S.2\)</span> of the subgroup they generate; this is the maximal subgroup <span class="SimpleMath">\(M.2\)</span> we need.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">u:= SubgroupNC( act,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           List( tblow, x -&gt; Permutation( x, orbs[1], OnLines ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= Normalizer( act, u );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( n ) / Size( u );</span>
2
</pre></div>

<p>Now we compute class representatives of prime order in <span class="SimpleMath">\(M.2\)</span>, in a smaller faithful permutation representation, and then the desired upper bound for <span class="SimpleMath">\(μ(g, S/M)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">norbs:= OrbitsDomain( n, MovedPoints( n ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( norbs, Length );</span>
[ 58968, 29484 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hom:= ActionHomomorphism( n, norbs[2] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nact:= Image( hom );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( nact ) = Size( n );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= ClassesOfPrimeOrder( nact, PrimeDivisors( Size( nact ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                              TrivialSubgroup( nact ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( ccl );</span>
26
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">preim:= List( ccl,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       x -&gt; PreImagesRepresentative( hom, Representative( x ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pccl:= List( preim, x -&gt; ConjugacyClass( n, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [ 1 .. Length( pccl ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     SetSize( pccl[i], Size( ccl[i] ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperBoundFixedPointRatios( act, [ pccl ], false );</span>
[ 2/88209, true ]
</pre></div>

<p>Note that we have computed <span class="SimpleMath">\(\max\{ μ(g,S.2/M.2), g \in S.2^{\times} \} \geq \max\{ μ(g,S.2/M.2), g \in S^{\times} \} = \max\{ μ(g,S/M), g \in S^{\times} \}\)</span>.</p>

<p><a id="X854D85F287767342" name="X854D85F287767342"></a></p>

<h5>11.5-19 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(S_4(8)\)</span></span></h5>

<p>We show that the group <span class="SimpleMath">\(S = S_4(8) = Sp(4,8)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\(65\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two nonconjugate subgroups of the type <span class="SimpleMath">\(S_2(64).2 = Sp(2,64).2 \cong L_2(64).2 \cong O_4^-(8).2 = \Omega^-(4,8).2\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 8/63\)</span>.</p>

</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, the only maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain <span class="SimpleMath">\(s\)</span> are <span class="SimpleMath">\(O_4^-(8).2 = SO^-(4,8)\)</span> or of extension field type. By <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.10, 4.8.6]</a>, there is one class of each of these subgroups (which happen to be isomorphic).</p>

<p>These classes of subgroups induce different permutation characters. One argument to see this is that the involutions in the outer half of extension field type subgroup <span class="SimpleMath">\(S_2(64).2 &lt; S_4(8)\)</span> have a two-dimensional fixed space, whereas the outer involutions in <span class="SimpleMath">\(SO^-(4,8)\)</span> have a three-dimensional fixed space.</p>

<p>The former statement can be seen by using a normal basis of the field extension <span class="SimpleMath">\(𝔽_{64}/𝔽_8\)</span>, such that the action of the Frobenius automorphism (which yields a suitable outer involution) is just a double transposition on the basis vectors of the natural module for <span class="SimpleMath">\(S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sp:= SP(4,8);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( InvariantBilinearForm( sp ).matrix );</span>
 . . . 1
 . . 1 .
 . 1 . .
 1 . . .
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">z:= Z(64);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:= AsField( GF(8), GF(64) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     b:= Basis( f, [ z, z^8 ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     z:= z * Z(64);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">until b &lt;&gt; fail;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sub:= SP(2,64);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( InvariantBilinearForm( sub ).matrix );</span>
 . 1
 1 .
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= Group( List( GeneratorsOfGroup( sub ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                      x -&gt; BlownUpMat( b, x ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr:= PermutationMat( (3,4), 4, GF(2) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">conj:= ConjugateGroup( ext, tr );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSubset( sp, conj );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] * Z(2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv in sp;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv in conj;</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( NullspaceMat( inv - inv^0 ) );</span>
2
</pre></div>

<p>The latter statement can be shown by looking at an outer involution in <span class="SimpleMath">\(SO^-(4,8)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">so:= SO(-1,4,8);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der:= DerivedSubgroup( so );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= First( GeneratorsOfGroup( so ), x -&gt; not x in der );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= x^( Order(x)/2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( NullspaceMat( x - x^0 ) );</span>
3
</pre></div>

<p>The character table of <span class="SimpleMath">\(L_2(64).2\)</span> is currently not available in the <strong class="pkg">GAP</strong> Character Table Library, so we compute the possible permutation characters with a combinatorial approach, and show statement (a).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterTable( "L2(64).2" );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "S4(8)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">degree:= Size( t ) / ( 2 * Size( SL(2,64) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PermChars( t, rec( torso:= [ degree ] ) );</span>
[ Character( CharacterTable( "S4(8)" ),
  [ 2016, 0, 256, 32, 0, 36, 0, 8, 1, 0, 4, 0, 0, 0, 28, 28, 28, 0, 
      0, 0, 0, 0, 0, 36, 36, 36, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 
      4, 4, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
      1, 1, 1 ] ), Character( CharacterTable( "S4(8)" ),
  [ 2016, 256, 0, 32, 36, 0, 0, 8, 1, 4, 0, 28, 28, 28, 0, 0, 0, 0, 
      0, 0, 36, 36, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 4, 4, 4, 
      0, 0, 0, 4, 4, 4, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 
      1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
      1, 1, 1 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 65 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( pi, x -&gt; x[ spos ] );</span>
[ 1, 1 ]
</pre></div>

<p>Now we compute <span class="SimpleMath">\(σ(S,s)\)</span>, which yields statement (b).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( ApproxP( pi, spos ) );</span>
8/63
</pre></div>

<p>We clean the workspace.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>

<p><a id="X82CFBAF07D3487A0" name="X82CFBAF07D3487A0"></a></p>

<h5>11.5-20 <span class="Heading"><span class="SimpleMath">\(S_6(2)\)</span></span></h5>

<p>We show that the group <span class="SimpleMath">\(S = S_6(2) = Sp(6,2)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 4/7\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(9\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one subgroup of the type <span class="SimpleMath">\(U_4(2).2 = \Omega^-(6,2).2\)</span> and three conjugate subgroups of the type <span class="SimpleMath">\(L_2(8).3 = Sp(2,8).3\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(9\)</span>, and <span class="SimpleMath">\(g \in S^{\times}\)</span>, we have <span class="SimpleMath">\(P(g,s) &lt; 1/3\)</span>, except if <span class="SimpleMath">\(g\)</span> is in one of the classes <code class="code">2A</code> (the transvection class) or <code class="code">3A</code>.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(15\)</span>, and <span class="SimpleMath">\(g \in S^{\times}\)</span>, we have <span class="SimpleMath">\(P(g,s) &lt; 1/3\)</span>, except if <span class="SimpleMath">\(g\)</span> is in one of the classes <code class="code">2A</code> or <code class="code">2B</code>.</p>

</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 11/21\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>.</p>

</dd>
<dt><strong class="Mark">(f)</strong></dt>
<dd><p>For all <span class="SimpleMath">\(s^{\prime} \in S\)</span>, we have <span class="SimpleMath">\(P(g,s^{\prime}) &gt; 1/3\)</span> for <span class="SimpleMath">\(g\)</span> in at least two classes.</p>

</dd>
<dt><strong class="Mark">(g)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least two, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span>.</p>

</dd>
</dl>
<p>(Note that in this example, the optimal choice of <span class="SimpleMath">\(s\)</span> w.r.t. <span class="SimpleMath">\(σ(S,s)\)</span> is not optimal w.r.t. <span class="SimpleMath">\(P(S,s)\)</span>.)</p>

<p>Statement (a) follows from the inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "S6(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "S6(2)", 4/7, 1, [ "9A" ], [ 4 ] ]
</pre></div>

<p>Also statement (b) follows from the information provided by the character table of <span class="SimpleMath">\(S\)</span> (cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 46]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord:= OrdersClassRepresentatives( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( ord, 9 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= PositionsProperty( prim, x -&gt; x[ spos ] &lt;&gt; 0 );</span>
[ 1, 8 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maxes( t ){ filt };</span>
[ "U4(2).2", "L2(8).3" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( prim{ filt }, x -&gt; x[ spos ] );</span>
[ 1, 3 ]
</pre></div>

<p>Now we consider statement (c). For <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span> and <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code>, <code class="code">3A</code>, we observe that <span class="SimpleMath">\(P(g,s) = σ(g,s)\)</span> holds. This is because exactly one maximal subgroup of <span class="SimpleMath">\(S\)</span> contains both <span class="SimpleMath">\(s\)</span> and <span class="SimpleMath">\(g\)</span>. For all other elements <span class="SimpleMath">\(g\)</span>, we have even <span class="SimpleMath">\(σ(g,s) &lt; 1/3\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos9:= Position( ord, 9 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx9:= ApproxP( prim, spos9 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt9:= PositionsProperty( approx9, x -&gt; x &gt;= 1/3 );</span>
[ 2, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t ){ filt9 };</span>
[ "2A", "3A" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx9{ filt9 };</span>
[ 4/7, 5/14 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Filtered( prim, x -&gt; x[ spos9 ] &lt;&gt; 0 ), x -&gt; x{ filt9 } );</span>
[ [ 16, 10 ], [ 0, 0 ] ]
</pre></div>

<p>Similarly, statement (d) follows. For <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span> and <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code>, <code class="code">2B</code>, already the degree <span class="SimpleMath">\(36\)</span> permutation character yields <span class="SimpleMath">\(P(g,s) \geq 1/3\)</span>. And for all other elements <span class="SimpleMath">\(g\)</span>, again we have <span class="SimpleMath">\(σ(g,s) &lt; 1/3\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos15:= Position( ord, 15 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx15:= ApproxP( prim, spos15 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt15:= PositionsProperty( approx15, x -&gt; x &gt;= 1/3 );</span>
[ 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( ApproxP( prim{ [ 2 ] }, spos15 ), x -&gt; x &gt;= 1/3 );</span>
[ 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t ){ filt15 };</span>
[ "2A", "2B" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx15{ filt15 };</span>
[ 46/63, 8/21 ]
</pre></div>

<p>For the remaining statements, we use explicit computations with <span class="SimpleMath">\(S\)</span>, in the transitive degree <span class="SimpleMath">\(63\)</span> permutation representation. We start with a function that computes a transvection in <span class="SimpleMath">\(S_d(2)\)</span>; note that the invariant bilinear form used for symplectic groups in <strong class="pkg">GAP</strong> is described by a matrix with nonzero entries exactly in the positions <span class="SimpleMath">\((i,d+1-i)\)</span>, for <span class="SimpleMath">\(1 \leq i \leq d\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">transvection:= function( d )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    local mat;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    mat:= IdentityMat( d, Z(2) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    mat{ [ 1, d ] }{ [ 1, d ] }:= [ [ 0, 1 ], [ 1, 0 ] ] * Z(2);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return mat;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p>First we compute, for statement (d), the exact values <span class="SimpleMath">\(P(g,s)\)</span> for <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code> or <code class="code">2B</code>, and <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>. Note that the classes <code class="code">2A</code>, <code class="code">2B</code> are the unique classes of the lengths <span class="SimpleMath">\(63\)</span> and <span class="SimpleMath">\(315\)</span>, respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( SizesConjugacyClasses( t ), x -&gt; x in [ 63, 315 ] );</span>
[ 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">d:= 6;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">matgrp:= Sp(d,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hom:= ActionHomomorphism( matgrp, NormedRowVectors( GF(2)^d ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Image( hom, matgrp );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s15:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s15 ) = 15;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2A:= Image( hom, transvection( d ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( ConjugacyClass( g, 2A ) );</span>
63
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsTransitive( g, MovedPoints( g ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( g, 2A, s15 );</span>
11/21
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat 12C:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( 12C ) = 12 and Size( Centralizer( g, 12C ) ) = 12;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2B:= 12C^6;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( ConjugacyClass( g, 2B ) );</span>
315
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( g, 2B, s15 );</span>
8/21
</pre></div>

<p>For statement (e), we compute <span class="SimpleMath">\(P(g, s^{\prime})\)</span>, for a transvection <span class="SimpleMath">\(g\)</span> and class representatives <span class="SimpleMath">\(s^{\prime}\)</span> of <span class="SimpleMath">\(S\)</span>. It turns out that the minimum is <span class="SimpleMath">\(11/21\)</span>, and it is attained for exactly one <span class="SimpleMath">\(s^{\prime}\)</span>; by the above, this element has order <span class="SimpleMath">\(15\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= ConjugacyClasses( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= List( ccl, Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nongen2A:= List( reps,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       x -&gt; RatioOfNongenerationTransPermGroup( g, 2A, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">min:= Minimum( nongen2A );</span>
11/21
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Number( nongen2A, x -&gt; x = min );</span>
1
</pre></div>

<p>For statement (f), we show that for any choice of <span class="SimpleMath">\(s^{\prime}\)</span>, at least two of the values <span class="SimpleMath">\(P(g,s^{\prime})\)</span>, with <span class="SimpleMath">\(g\)</span> in the classes <code class="code">2A</code>, <code class="code">2B</code>, or <code class="code">3A</code>, are larger than <span class="SimpleMath">\(1/3\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nongen2B:= List( reps,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       x -&gt; RatioOfNongenerationTransPermGroup( g, 2B, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3A:= s15^5;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nongen3A:= List( reps,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       x -&gt; RatioOfNongenerationTransPermGroup( g, 3A, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bad:= List( [ 1 .. NrConjugacyClasses( t ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               i -&gt; Number( [ nongen2A, nongen2B, nongen3A ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                            x -&gt; x[i] &gt; 1/3 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Minimum( bad );</span>
2
</pre></div>

<p>Finally, for statement (g), we have to consider only the case that the two elements <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> are transvections.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( approx9, x -&gt; x + approx9[2] &gt;= 1 );</span>
[ 2 ]
</pre></div>

<p>We use the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s9:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s9 ) = 9;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 2A, 2A ], s9, 20 );</span>
true
</pre></div>

<p><a id="X826658207D9D6570" name="X826658207D9D6570"></a></p>

<h5>11.5-21 <span class="Heading"><span class="SimpleMath">\(S_8(2)\)</span></span></h5>

<p>We show that the group <span class="SimpleMath">\(S = S_8(2)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(17\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one subgroup of each of the types <span class="SimpleMath">\(O_8^-(2).2 = \Omega^-(8,2).2\)</span>, <span class="SimpleMath">\(S_4(4).2 = Sp(4,4).2\)</span>, and <span class="SimpleMath">\(L_2(17) = PSL(2,17)\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(17\)</span>, and <span class="SimpleMath">\(g \in S^{\times}\)</span>, we have <span class="SimpleMath">\(P(g,s) &lt; 1/3\)</span>, except if <span class="SimpleMath">\(g\)</span> is a transvection.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least two, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(17\)</span>.</p>

</dd>
</dl>
<p>Statement (a) follows from the list of maximal subgroups of <span class="SimpleMath">\(S\)</span> in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 123]</a>, and the fact that <span class="SimpleMath">\(1_H^S(s) = 1\)</span> holds for each <span class="SimpleMath">\(H \in 𝕄(S,s)\)</span>. Note that <span class="SimpleMath">\(17\)</span> divides the indices of the maximal subgroups of the types <span class="SimpleMath">\(O_8^+(2).2\)</span> and <span class="SimpleMath">\(2^7 : S_6(2)\)</span> in <span class="SimpleMath">\(S\)</span>, and obviously <span class="SimpleMath">\(17\)</span> does not divide the orders of the remaining maximal subgroups.</p>

<p>The permutation characters induced from the first two subgroups are uniquely determined by the ordinary character tables. The permutation character induced from the last subgroup is uniquely determined if one considers also the corresponding Brauer tables; the correct class fusion is stored in the <strong class="pkg">GAP</strong> Character Table Library, see <a href="chapBib_mj.html#biBAmbigFus">[Brea]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "S8(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi1:= PossiblePermutationCharacters( CharacterTable( "O8-(2).2" ), t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi2:= PossiblePermutationCharacters( CharacterTable( "S4(4).2" ), t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi3:= [ TrivialCharacter( CharacterTable( "L2(17)" ) )^t ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= Concatenation( pi1, pi2, pi3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( prim );</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 17 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( prim, x -&gt; x[ spos ] );</span>
[ 1, 1, 1 ]
</pre></div>

<p>For statement (b), we observe that <span class="SimpleMath">\(σ(g,s) &lt; 1/3\)</span> if <span class="SimpleMath">\(g\)</span> is not a transvection, and that <span class="SimpleMath">\(P(g,s) = σ(g,s)\)</span> for transvections <span class="SimpleMath">\(g\)</span> because exactly one of the three permutation characters is nonzero on both <span class="SimpleMath">\(s\)</span> and the class of transvections.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( prim, spos );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( approx, x -&gt; x &gt;= 1/3 );</span>
[ 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Number( prim, pi -&gt; pi[2] &lt;&gt; 0 and pi[ spos ] &lt;&gt; 0 );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx[2];</span>
8/15
</pre></div>

<p>In statement (c), we have to consider only the case that the two elements <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> are transvections.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( approx, x -&gt; x + approx[2] &gt;= 1 );</span>
[ 2 ]
</pre></div>

<p>We use the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">d:= 8;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">matgrp:= Sp(d,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hom:= ActionHomomorphism( matgrp, NormedRowVectors( GF(2)^d ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= Image( hom, transvection( d ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Image( hom, matgrp );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:= ConjugacyClass( g, x );;  Size( C );</span>
255
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 17;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomCheckUniformSpread( g, [ x, x ], s, 20 );</span>
true
</pre></div>

<p><a id="X82A6496887F80843" name="X82A6496887F80843"></a></p>

<h5>11.5-22 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(S_{10}(2)\)</span></span></h5>

<p>We show that the group <span class="SimpleMath">\(S = S_{10}(2)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(33\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one subgroup of each of the types <span class="SimpleMath">\(\Omega^-(10,2).2\)</span> and <span class="SimpleMath">\(L_2(32).5 = Sp(2,32).5\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(33\)</span>, and <span class="SimpleMath">\(g \in S^{\times}\)</span>, we have <span class="SimpleMath">\(P(g,s) &lt; 1/3\)</span>, except if <span class="SimpleMath">\(g\)</span> is a transvection.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least two, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(33\)</span>.</p>

</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, the only maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain <span class="SimpleMath">\(s\)</span> have the types stated in (a), and by <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.10 and 4.8.6]</a>, there is exactly one class of each of these subgroups.</p>

<p>We compute the values <span class="SimpleMath">\(σ( g, s )\)</span>, for all <span class="SimpleMath">\(g \in S^{\times}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "S10(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi1:= PossiblePermutationCharacters( CharacterTable( "O10-(2).2" ), t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi2:= PossiblePermutationCharacters( CharacterTable( "L2(32).5" ), t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= Concatenation( pi1, pi2 );;  Length( prim );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 33 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( prim, spos );;</span>
</pre></div>

<p>For statement (b), we observe that <span class="SimpleMath">\(σ(g,s) &lt; 1/3\)</span> if <span class="SimpleMath">\(g\)</span> is not a transvection, and that <span class="SimpleMath">\(P(g,s) = σ(g,s)\)</span> for transvections <span class="SimpleMath">\(g\)</span> because exactly one of the two permutation characters is nonzero on both <span class="SimpleMath">\(s\)</span> and the class of transvections.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( approx, x -&gt; x &gt;= 1/3 );</span>
[ 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Number( prim, pi -&gt; pi[2] &lt;&gt; 0 and pi[ spos ] &lt;&gt; 0 );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx[2];</span>
16/31
</pre></div>

<p>In statement (c), we have to consider only the case that the two elements <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> are transvections. We use the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">d:= 10;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">matgrp:= Sp(d,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hom:= ActionHomomorphism( matgrp, NormedRowVectors( GF(2)^d ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= Image( hom, transvection( d ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Image( hom, matgrp );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:= ConjugacyClass( g, x );;  Size( C );</span>
1023
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 33;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomCheckUniformSpread( g, [ x, x ], s, 20 );</span>
true
</pre></div>

<p><a id="X7A03F8EC839AF0B5" name="X7A03F8EC839AF0B5"></a></p>

<h5>11.5-23 <span class="Heading"><span class="SimpleMath">\(U_4(2)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = U_4(2) = SU(4,2) \cong S_4(3) = PSp(4,3)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 21/40\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(12\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(9\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two groups, of the types <span class="SimpleMath">\(3^{1+2}_+ \colon 2A_4 = GU(3,2)\)</span> and <span class="SimpleMath">\(3^3 \colon S_4\)</span>, respectively.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 2/5\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span>.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span>.</p>

</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p><span class="SimpleMath">\(σ^{\prime}(Aut(S),s) = 7/20\)</span>.</p>

</dd>
</dl>
<p>(Note that in this example, the optimal choice of <span class="SimpleMath">\(s\)</span> w.r.t. <span class="SimpleMath">\(σ(S,s)\)</span> is not optimal w.r.t. <span class="SimpleMath">\(P(S,s)\)</span>.)</p>

<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "U4(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "U4(2)", 21/40, 1, [ "12A" ], [ 2 ] ]
</pre></div>

<p>Statement (b) can be read off from the permutation characters, and the fact that the only classes of maximal subgroups that contain elements of order <span class="SimpleMath">\(9\)</span> consist of groups of the structures <span class="SimpleMath">\(3^{1+2}_+:2A_4\)</span> and <span class="SimpleMath">\(3^3:S_4\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 26]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 9, 9, 12, 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );</span>
[ Character( CharacterTable( "U4(2)" ),
  [ 27, 3, 7, 0, 0, 9, 0, 3, 1, 2, 0, 0, 3, 3, 0, 1, 0, 0, 0, 0 ] ), 
  Character( CharacterTable( "U4(2)" ),
  [ 36, 12, 8, 0, 0, 6, 3, 0, 2, 1, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0 ] ), 
  Character( CharacterTable( "U4(2)" ),
  [ 40, 8, 0, 13, 13, 4, 4, 4, 0, 0, 5, 5, 2, 2, 2, 0, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "U4(2)" ),
  [ 40, 16, 4, 4, 4, 1, 7, 0, 2, 0, 4, 4, 1, 1, 1, 1, 1, 1, 0, 0 ] ), 
  Character( CharacterTable( "U4(2)" ),
  [ 45, 13, 5, 9, 9, 6, 3, 1, 1, 0, 1, 1, 4, 4, 1, 2, 0, 0, 1, 1 ] ) ]
</pre></div>

<p>For statement (c), we use a primitive permutation representation on <span class="SimpleMath">\(40\)</span> points that occurs in the natural action of <span class="SimpleMath">\(SU(4,2)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= SU(4,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( g, NormedRowVectors( GF(4)^4 ), OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 45, 40 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Action( g, orbs[2], OnLines );;</span>
</pre></div>

<p>First we show that for <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span>, <span class="SimpleMath">\(P(S,s) = 2/5\)</span> holds. For that, we have to consider only <span class="SimpleMath">\(P(g,s)\)</span>, with <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code> (of length <span class="SimpleMath">\(45\)</span>) and <code class="code">3A</code> (of length <span class="SimpleMath">\(40\)</span>); since the class <code class="code">3B</code> contains the inverses of the elements in the class <code class="code">3A</code>, we need not test it.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 9 );</span>
17
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( prim, spos );</span>
[ 0, 3/5, 1/10, 17/40, 17/40, 1/8, 11/40, 1/10, 1/20, 0, 9/40, 9/40, 
  3/40, 3/40, 3/40, 1/40, 1/20, 1/20, 1/40, 1/40 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">badpos:= PositionsProperty( approx, x -&gt; x &gt;= 2/5 );</span>
[ 2, 4, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerMap( t, 2 )[4];</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 9, 9, 12, 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesConjugacyClasses( t );</span>
[ 1, 45, 270, 40, 40, 240, 480, 540, 3240, 5184, 360, 360, 720, 720, 
  1440, 2160, 2880, 2880, 2160, 2160 ]
</pre></div>

<p>A representative <span class="SimpleMath">\(g\)</span> of a class of length <span class="SimpleMath">\(40\)</span> can be found as the third power of any order <span class="SimpleMath">\(9\)</span> element.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerMap( t, 3 )[ spos ];</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 9;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( ConjugacyClass( g, s^3 ) );</span>
40
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop:= RatioOfNongenerationTransPermGroup( g, s^3, s );</span>
13/40
</pre></div>

<p>Next we examine <span class="SimpleMath">\(g\)</span> in the class <code class="code">2A</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( g ); until Order( x ) = 12;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( ConjugacyClass( g, x^6 ) );</span>
45
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop:= RatioOfNongenerationTransPermGroup( g, x^6, s );</span>
2/5
</pre></div>

<p>Finally, we compute that for <span class="SimpleMath">\(s\)</span> of order different from <span class="SimpleMath">\(9\)</span> and <span class="SimpleMath">\(g\)</span> in the class <code class="code">2A</code>, <span class="SimpleMath">\(P(g,s)\)</span> is larger than <span class="SimpleMath">\(2/5\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= List( ConjugacyClasses( g ), Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortParallel( List( ccl, Order ), ccl );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( ccl, Order );</span>
[ 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 9, 9, 12, 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prop:= List( ccl, r -&gt; RatioOfNongenerationTransPermGroup( g, x^6, r ) );</span>
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 5/9, 1, 1, 1, 1, 1, 1, 2/5, 2/5, 7/15, 
  7/15 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Minimum( prop );</span>
2/5
</pre></div>

<p>In order to show statement (d), we have to consider triples <span class="SimpleMath">\((x_1, x_2, x_3)\)</span> with <span class="SimpleMath">\(x_i\)</span> of prime order and <span class="SimpleMath">\(\sum_{i=1}^3 P(x_i,s) \geq 1\)</span>. This means that it suffices to check <span class="SimpleMath">\(x\)</span> in the class <code class="code">2A</code>, <span class="SimpleMath">\(y\)</span> in <code class="code">2A</code><span class="SimpleMath">\( \cup \)</span><code class="code">3A</code>, and <span class="SimpleMath">\(z\)</span> in <code class="code">2A</code><span class="SimpleMath">\( \cup \)</span><code class="code">3A</code><span class="SimpleMath">\( \cup \)</span><code class="code">3D</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx[2]:= 2/5;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx[4]:= 13/40;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">primeord:= PositionsProperty( OrdersClassRepresentatives( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                 IsPrimeInt );</span>
[ 2, 3, 4, 5, 6, 7, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RemoveSet( primeord, 5 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">primeord;</span>
[ 2, 3, 4, 6, 7, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx{ primeord };</span>
[ 2/5, 1/10, 13/40, 1/8, 11/40, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AtlasClassNames( t ){ primeord };</span>
[ "2A", "2B", "3A", "3C", "3D", "5A" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">triples:= Filtered( UnorderedTuples( primeord, 3 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 t -&gt; Sum( approx{ t } ) &gt;= 1 );</span>
[ [ 2, 2, 2 ], [ 2, 2, 4 ], [ 2, 2, 7 ], [ 2, 4, 4 ], [ 2, 4, 7 ] ]
</pre></div>

<p>We use the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat 6E:= Random( g );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( 6E ) = 6 and Size( Centralizer( g, 6E ) ) = 18;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2A:= 6E^3;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3A:= s^3;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3D:= 6E^2;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 2A, 2A, 2A ], s, 50 );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 2A, 2A, 3A ], s, 50 );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 3D, 2A, 2A ], s, 50 );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 2A, 3A, 3A ], s, 50 );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 3D, 3A, 2A ], s, 50 );</span>
true
</pre></div>

<p>Statement (e) can be proved using <code class="code">ProbGenInfoAlmostSimple</code>, cf. Section <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "U4(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "U4(2).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= PositionsProperty( OrdersClassRepresentatives( t ), x -&gt; x = 9 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoAlmostSimple( t, t2, spos );</span>
[ "U4(2).2", 7/20, [ "9AB" ], [ 2 ] ]
</pre></div>

<p><a id="X7D738BE5804CF22E" name="X7D738BE5804CF22E"></a></p>

<h5>11.5-24 <span class="Heading"><span class="SimpleMath">\(U_4(3)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = U_4(3) = PSU(4,3)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 53/153\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(7\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two nonconjugate groups of the type <span class="SimpleMath">\(L_3(4)\)</span>, one group of the type <span class="SimpleMath">\(U_3(3)\)</span>, and four pairwise nonconjugate groups of the type <span class="SimpleMath">\(A_7\)</span>.</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 43/135\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>

</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p>The preimage of <span class="SimpleMath">\(s\)</span> in the matrix group <span class="SimpleMath">\(SU(4,3) \cong 4.U_4(3)\)</span> has order <span class="SimpleMath">\(28\)</span>, the preimages of the groups in <span class="SimpleMath">\(𝕄(S,s)\)</span> have the structures <span class="SimpleMath">\(4_2.L_3(4)\)</span>, <span class="SimpleMath">\(4 \times U_3(3) \cong GU(3,3)\)</span>, and <span class="SimpleMath">\(4.A_7\)</span> (the latter being a central product of a cyclic group of order four and <span class="SimpleMath">\(2.A_7\)</span>).</p>

</dd>
<dt><strong class="Mark">(f)</strong></dt>
<dd><p><span class="SimpleMath">\(P^{\prime}(S.2_1,s) = 13/27\)</span>, <span class="SimpleMath">\(σ^{\prime}(S.2_2) = 1/3\)</span>, and <span class="SimpleMath">\(σ^{\prime}(S.2_3) = 31/162\)</span>, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span> in each case.</p>

</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "U4(3)", 53/135, 2, [ "7A" ], [ 7 ] ]
</pre></div>

<p>Statement (b) can be read off from the permutation characters, and the fact that the only classes of maximal subgroups that contain elements of order <span class="SimpleMath">\(7\)</span> consist of groups of the structures as claimed, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 52]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 7 );</span>
13
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Filtered( prim, x -&gt; x[ spos ] &lt;&gt; 0 ), l -&gt; l{ [ 1, spos ] } );</span>
[ [ 162, 1 ], [ 162, 1 ], [ 540, 1 ], [ 1296, 1 ], [ 1296, 1 ], 
  [ 1296, 1 ], [ 1296, 1 ] ]
</pre></div>

<p>In order to show statement (c) (which then implies statement (d)), we use a permutation representation on <span class="SimpleMath">\(112\)</span> points. It corresponds to an orbit of one-dimensional subspaces in the natural module of <span class="SimpleMath">\(\Omega^-(6,3) \cong S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">matgrp:= DerivedSubgroup( SO( -1, 6, 3 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( matgrp, NormedRowVectors( GF(3)^6 ), OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 126, 126, 112 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= Action( matgrp, orbs[3], OnLines );;</span>
</pre></div>

<p>It is sufficient to compute <span class="SimpleMath">\(P(g,s)\)</span>, for involutions <span class="SimpleMath">\(g \in S\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">approx:= ApproxP( prim, spos );</span>
[ 0, 53/135, 1/10, 1/24, 1/24, 7/45, 4/45, 1/27, 1/36, 1/90, 1/216, 
  1/216, 7/405, 7/405, 1/270, 0, 0, 0, 0, 1/270 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( approx, x -&gt; x &gt;= 43/135 );</span>
[ 53/135 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 7, 7, 8, 9, 9, 9, 9, 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat g:= Random( G ); until Order(g) = 2;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( G );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order(s) = 7;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bad:= RatioOfNongenerationTransPermGroup( G, g, s );</span>
43/135
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bad &lt; 1/3;</span>
true
</pre></div>

<p>Statement (e) can be shown easily with character-theoretic methods, as follows. Since <span class="SimpleMath">\(SU(4,3)\)</span> is a Schur cover of <span class="SimpleMath">\(S\)</span> and the groups in <span class="SimpleMath">\(𝕄(S,s)\)</span> are simple, only very few possibilities have to be checked. The Schur multiplier of <span class="SimpleMath">\(U_3(3)\)</span> is trivial (see, e. g., <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 14]</a>), so the preimage in <span class="SimpleMath">\(SU(4,3)\)</span> is a direct product of <span class="SimpleMath">\(U_3(3)\)</span> and the centre of <span class="SimpleMath">\(SU(4,3)\)</span>. Neither <span class="SimpleMath">\(L_3(4)\)</span> nor its double cover <span class="SimpleMath">\(2.L_3(4)\)</span> can be a subgroup of <span class="SimpleMath">\(SU(4,3)\)</span>, so the preimage of <span class="SimpleMath">\(L_3(4)\)</span> must be a Schur cover of <span class="SimpleMath">\(L_3(4)\)</span>, i. e., it must have either the type <span class="SimpleMath">\(4_1.L_3(4)\)</span> or <span class="SimpleMath">\(4_2.L_3(4)\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 23]</a>); only the type <span class="SimpleMath">\(4_2.L_3(4)\)</span> turns out to be possible.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">4t:= CharacterTable( "4.U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "L3(4)" ), 4t ) );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "2.L3(4)" ), 4t ) );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "4_1.L3(4)" ), 4t ) );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "4_2.L3(4)" ), 4t ) );</span>
4
</pre></div>

<p>As for the preimage of the <span class="SimpleMath">\(A_7\)</span> type subgroups, we first observe that the double cover of <span class="SimpleMath">\(A_7\)</span> cannot be a subgroup of the double cover of <span class="SimpleMath">\(S\)</span>, so the preimage of <span class="SimpleMath">\(A_7\)</span> in the double cover of <span class="SimpleMath">\(U_4(3)\)</span> is a direct product <span class="SimpleMath">\(2 \times A_7\)</span>. The group <span class="SimpleMath">\(SU(4,3)\)</span> does not contain <span class="SimpleMath">\(A_7\)</span> type subgroups, thus the <span class="SimpleMath">\(A_7\)</span> type subgroups in <span class="SimpleMath">\(2.U_4(3)\)</span> lift to double covers of <span class="SimpleMath">\(A_7\)</span> in <span class="SimpleMath">\(SU(4,3)\)</span>. This proves the claimed structure.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2t:= CharacterTable( "2.U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "2.A7" ), 2t ) );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "A7" ), 4t ) );</span>
0
</pre></div>

<p>For statement (f), we consider automorphic extensions of <span class="SimpleMath">\(S\)</span>. The bound for <span class="SimpleMath">\(S.2_3\)</span> has been computed in Section <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a>. That for <span class="SimpleMath">\(S.2_2\)</span> can be computed form the fact that the classes of maximal subgroups of <span class="SimpleMath">\(S.2_2\)</span> containing <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span> are <span class="SimpleMath">\(S\)</span>, one class of <span class="SimpleMath">\(U_3(3).2\)</span> type subgroups, and two classes of <span class="SimpleMath">\(S_7\)</span> type subgroups which induce the same permutation character (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 52]</a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "U4(3).2_2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi1:= PossiblePermutationCharacters( CharacterTable( "U3(3).2" ), t2 );</span>
[ Character( CharacterTable( "U4(3).2_2" ),
  [ 540, 12, 54, 0, 0, 9, 8, 0, 0, 6, 0, 0, 1, 2, 0, 0, 0, 2, 0, 24, 
      4, 0, 0, 0, 0, 0, 0, 3, 2, 0, 4, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi2:= PossiblePermutationCharacters( CharacterTable( "A7.2" ), t2 );</span>
[ Character( CharacterTable( "U4(3).2_2" ),
  [ 1296, 48, 0, 27, 0, 9, 0, 4, 1, 0, 3, 0, 1, 0, 0, 0, 0, 0, 216, 
      24, 0, 4, 0, 0, 0, 9, 0, 3, 0, 1, 0, 1, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">prim:= Concatenation( pi1, pi2, pi2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">outer:= Difference(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ClassPositionsOfDerivedSubgroup( t2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t2 ), 7 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( ApproxP( prim, spos ){ outer } );</span>
1/3
</pre></div>

<p>Finally, Section <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a> shows that the character tables are not sufficient for what we need, so we compute the exact proportion of nongeneration for <span class="SimpleMath">\(U_4(3).2_1 \cong SO^-(6,3)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">matgrp:= SO( -1, 6, 3 );</span>
SO(-1,6,3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( matgrp, NormedRowVectors( GF(3)^6 ), OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 126, 126, 112 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:= Action( matgrp, orbs[3], OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat s:= Random( G );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Order( s ) = 7;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     repeat 2B:= Random( G ); until Order( 2B ) mod 2 = 0;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     2B:= 2B^( Order( 2B ) / 2 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     c:= Centralizer( G, 2B );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Size( c ) = 12096;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( G, 2B, s );</span>
13/27
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     repeat 2C:= Random( G ); until Order( 2C ) mod 2 = 0;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     2C:= 2C^( Order( 2C ) / 2 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     c:= Centralizer( G, 2C );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Size( c ) = 1440;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( G, 2C, s );</span>
0
</pre></div>

<p><a id="X7D4BC6A38074BF68" name="X7D4BC6A38074BF68"></a></p>

<h5>11.5-25 <span class="Heading"><span class="SimpleMath">\(U_6(3)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = U_6(3) = PSU(6,3)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(1 \perp 5\)</span> (i. e., the preimage of <span class="SimpleMath">\(s\)</span> in <span class="SimpleMath">\(2.S = SU(6,3)\)</span> decomposes the natural <span class="SimpleMath">\(6\)</span>-dimensional module for <span class="SimpleMath">\(2.S\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(1\)</span> and <span class="SimpleMath">\(5\)</span>, respectively) and of order <span class="SimpleMath">\((3^5 + 1)/2 = 122\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(2 \times U_5(3)\)</span>, which lifts to a subgroup of the type <span class="SimpleMath">\(4 \times U_5(3) = GU(5,3)\)</span> in <span class="SimpleMath">\(2.S\)</span>. (The preimage of <span class="SimpleMath">\(s\)</span> in <span class="SimpleMath">\(2.S\)</span> has order <span class="SimpleMath">\(3^5 + 1 = 244\)</span>.)</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 353/3\,159\)</span>.</p>

</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBMSW94">[MSW94]</a>, the only maximal subgroup of <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(s\)</span> is the stabilizer <span class="SimpleMath">\(H \cong 2 \times U_5(3)\)</span> of the orthogonal decomposition. This proves statement (a).</p>

<p>The character table of <span class="SimpleMath">\(S\)</span> is currently not available in the <strong class="pkg">GAP</strong> Character Table Library. We consider the permutation action of <span class="SimpleMath">\(S\)</span> on the orbit of the stabilized <span class="SimpleMath">\(1\)</span>-space. So <span class="SimpleMath">\(M\)</span> can be taken as a point stabilizer in this action.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterTable( "U6(3)" );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= SU(6,3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( g, NormedRowVectors( GF(9)^6 ), OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 22204, 44226 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= PseudoRandom( g ); until Order( x ) = 244;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, o -&gt; Number( o, v -&gt; OnLines( v, x ) = v ) );</span>
[ 0, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Action( g, orbs[2], OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:= Stabilizer( g, 1 );;</span>
</pre></div>

<p>Then we compute a list of elements in <span class="SimpleMath">\(M\)</span> that covers the conjugacy classes of prime element order, from which the numbers of fixed points and thus <span class="SimpleMath">\(\max\{ μ( S/M, g ); g \in M^{\times} \} = σ( S, s )\)</span> can be derived. This way we avoid completely to check the <span class="SimpleMath">\(S\)</span>-conjugacy of elements (class representatives of Sylow subgroups in <span class="SimpleMath">\(M\)</span>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for p in PrimeDivisors( Size( M ) ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     syl:= SylowSubgroup( M, p );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Append( elms, Filtered( PcConjugacyClassReps( syl ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                             r -&gt; Order( r ) = p ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">1 - Minimum( List( elms, NrMovedPoints ) ) / Length( orbs[2] );</span>
353/3159
</pre></div>

<p><a id="X7A92577A830B5F23" name="X7A92577A830B5F23"></a></p>

<h5>11.5-26 <span class="Heading"><span class="SimpleMath">\(U_8(2)\)</span></span></h5>

<p>We show that <span class="SimpleMath">\(S = U_8(2) = SU(8,2)\)</span> satisfies the following.</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(1 \perp 7\)</span> (i. e., <span class="SimpleMath">\(s\)</span> decomposes the natural <span class="SimpleMath">\(8\)</span>-dimensional module for <span class="SimpleMath">\(S\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(1\)</span> and <span class="SimpleMath">\(7\)</span>, respectively) and of order <span class="SimpleMath">\(2^7 + 1 = 129\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(3 \times U_7(2) = GU(7,2)\)</span>.</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 2\,753/10\,880\)</span>.</p>

</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBMSW94">[MSW94]</a>, the only maximal subgroup of <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(s\)</span> is the stabilizer <span class="SimpleMath">\(M \cong GU(7,2)\)</span> of the orthogonal decomposition. This proves statement (a).</p>

<p>The character table of <span class="SimpleMath">\(S\)</span> is currently not available in the <strong class="pkg">GAP</strong> Character Table Library. We proceed exactly as in Section <a href="chap11_mj.html#X7D4BC6A38074BF68"><span class="RefLink">11.5-25</span></a> in order to prove statement (b).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterTable( "U8(2)" );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= SU(8,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( g, NormedRowVectors( GF(4)^8 ), OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 10965, 10880 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= PseudoRandom( g ); until Order( x ) = 129;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, o -&gt; Number( o, v -&gt; OnLines( v, x ) = v ) );</span>
[ 0, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Action( g, orbs[2], OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:= Stabilizer( g, 1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for p in PrimeDivisors( Size( M ) ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     syl:= SylowSubgroup( M, p );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Append( elms, Filtered( PcConjugacyClassReps( syl ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                             r -&gt; Order( r ) = p ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( elms );</span>
611
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">1 - Minimum( List( elms, NrMovedPoints ) ) / Length( orbs[2] );</span>
2753/10880
</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap10_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chapBib_mj.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>