1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (CTblLibXpls) - Chapter 11: GAP Computations Concerning Probabilistic Generation of Finite
Simple Groups</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap11" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap10_mj.html">[Previous Chapter]</a> <a href="chapBib_mj.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap11.html">[MathJax off]</a></p>
<p><a id="X7BE9906583D0FCEC" name="X7BE9906583D0FCEC"></a></p>
<div class="ChapSects"><a href="chap11_mj.html#X7BE9906583D0FCEC">11 <span class="Heading"><strong class="pkg">GAP</strong> Computations Concerning Probabilistic Generation of Finite
Simple Groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X8389AD927B74BA4A">11.1 <span class="Heading">Overview</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X7B4649CF7B7CFAA1">11.2 <span class="Heading">Prerequisites</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7B6AEBDF7B857E2E">11.2-1 <span class="Heading">Theoretical Background</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X79D7312484E78274">11.2-2 <span class="Heading">Computational Criteria</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X7B56BE5384BAD54E">11.3 <span class="Heading"><strong class="pkg">GAP</strong> Functions for the Computations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X806328747D1D4ECC">11.3-1 <span class="Heading">General Utilities</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7A221012861440E2">11.3-2 <span class="Heading">Character-Theoretic Computations</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X83DACCF07EF62FAE">11.3-3 <span class="Heading">Computations with Groups</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X7A221012861440E2">11.4 <span class="Heading">Character-Theoretic Computations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X86CE51E180A3D4ED">11.4-1 <span class="Heading">Sporadic Simple Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X84E9D10F80A74A53">11.4-2 <span class="Heading">Automorphism Groups of Sporadic Simple Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X80DA58F187CDCF5F">11.4-3 <span class="Heading">Other Simple Groups – Easy Cases</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7B1E26D586337487">11.4-4 <span class="Heading">Automorphism Groups of other Simple Groups – Easy Cases</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X78B856907ED13545">11.4-5 <span class="Heading"><span class="SimpleMath">\(O_8^-(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X84AB334886DCA746">11.4-6 <span class="Heading"><span class="SimpleMath">\(O_{10}^+(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X84E3E4837BB93977">11.4-7 <span class="Heading"><span class="SimpleMath">\(O_{10}^-(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X8307367E7C7C3BCE">11.4-8 <span class="Heading"><span class="SimpleMath">\(O_{12}^+(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X834FE1B58119A5FF">11.4-9 <span class="Heading"><span class="SimpleMath">\(O_{12}^-(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7C5980A385C088FA">11.4-10 <span class="Heading"><span class="SimpleMath">\(S_6(4)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X829EDF7F7C0BCB8E">11.4-11 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(S_6(5)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X85162B297E4B67EB">11.4-12 <span class="Heading"><span class="SimpleMath">\(S_8(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X8495C2BF7B6EFFEF">11.4-13 <span class="Heading"><span class="SimpleMath">\(U_4(4)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7A3BB5AA83A2BDF3">11.4-14 <span class="Heading"><span class="SimpleMath">\(U_6(2)\)</span></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X8237B8617D6F6027">11.5 <span class="Heading">Computations using Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X815320787B601000">11.5-1 <span class="Heading"><span class="SimpleMath">\(A_{2m+1}\)</span>, <span class="SimpleMath">\(2 \leq m \leq 11\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7B5321337B28100B">11.5-2 <span class="Heading"><span class="SimpleMath">\(A_5\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X82C3B4287B0C7BEE">11.5-3 <span class="Heading"><span class="SimpleMath">\(A_6\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X85B3C7217B105D4D">11.5-4 <span class="Heading"><span class="SimpleMath">\(A_7\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X84EA645A82E2BAFB">11.5-5 <span class="Heading"><span class="SimpleMath">\(L_d(q)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X855460BE787188B9">11.5-6 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(L_d(q)\)</span> with prime <span class="SimpleMath">\(d\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7EA88CEF81962F3F">11.5-7 <span class="Heading">Automorphic Extensions of <span class="SimpleMath">\(L_d(q)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7C8806DB8588BB51">11.5-8 <span class="Heading"><span class="SimpleMath">\(L_3(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7B7061917ED3714D">11.5-9 <span class="Heading"><span class="SimpleMath">\(M_{11}\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X82E0F48A7FF82BB3">11.5-10 <span class="Heading"><span class="SimpleMath">\(M_{12}\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7FF2E8F27FBEB65C">11.5-11 <span class="Heading"><span class="SimpleMath">\(O_7(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7F80F2527C424AA4">11.5-12 <span class="Heading"><span class="SimpleMath">\(O_8^+(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X78F0815B86253A1F">11.5-13 <span class="Heading"><span class="SimpleMath">\(O_8^+(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X85BACC4A83F73392">11.5-14 <span class="Heading"><span class="SimpleMath">\(O^+_8(4)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X86EC26F78609618E">11.5-15 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(O_9(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X8393978A8773997E">11.5-16 <span class="Heading"><span class="SimpleMath">\(O_{10}^-(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7BBBEEEF834F1002">11.5-17 <span class="Heading"><span class="SimpleMath">\(O_{14}^-(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X8477457780B69BC7">11.5-18 <span class="Heading"><span class="SimpleMath">\(O_{12}^+(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X854D85F287767342">11.5-19 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(S_4(8)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X82CFBAF07D3487A0">11.5-20 <span class="Heading"><span class="SimpleMath">\(S_6(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X826658207D9D6570">11.5-21 <span class="Heading"><span class="SimpleMath">\(S_8(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X82A6496887F80843">11.5-22 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(S_{10}(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7A03F8EC839AF0B5">11.5-23 <span class="Heading"><span class="SimpleMath">\(U_4(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7D738BE5804CF22E">11.5-24 <span class="Heading"><span class="SimpleMath">\(U_4(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7D4BC6A38074BF68">11.5-25 <span class="Heading"><span class="SimpleMath">\(U_6(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap11_mj.html#X7A92577A830B5F23">11.5-26 <span class="Heading"><span class="SimpleMath">\(U_8(2)\)</span></span></a>
</span>
</div></div>
</div>
<h3>11 <span class="Heading"><strong class="pkg">GAP</strong> Computations Concerning Probabilistic Generation of Finite
Simple Groups</span></h3>
<p>Date: March 28th, 2012</p>
<p>This is a collection of examples showing how the <strong class="pkg">GAP</strong> system <a href="chapBib_mj.html#biBGAP">[GAP21]</a> can be used to compute information about the probabilistic generation of finite almost simple groups. It includes all examples that were needed for the computational results in <a href="chapBib_mj.html#biBBGK">[BGK08]</a>.</p>
<p>The purpose of this writeup is twofold. On the one hand, the computations are documented this way. On the other hand, the <strong class="pkg">GAP</strong> code shown for the examples can be used as test input for automatic checking of the data and the functions used.</p>
<p>A first version of this document, which was based on <strong class="pkg">GAP</strong> 4.4.10, had been accessible in the web since April 2006 and is available in the arXiv (no. 0710.3267) since October 2007. The differences between that document and the current version are as follows.</p>
<ul>
<li><p>The format of the <strong class="pkg">GAP</strong> output was adjusted to the changed behaviour of <strong class="pkg">GAP</strong> until version 4.10. This affects mainly the way how <strong class="pkg">GAP</strong> records are printed.</p>
</li>
<li><p>Several computations are now easier because more character tables of almost simple groups and maximal subgroups of such groups are available in the <strong class="pkg">GAP</strong> Character Table Library. (The more involved computations from the original version have been kept in the file.)</p>
</li>
<li><p>The computation of all conjugacy classes of a subgroup of <span class="SimpleMath">\(PΩ^+(12,3)\)</span> has been replaced by the computation of the conjugacy classes of elements of prime order in this subgroup.</p>
</li>
<li><p>The irreducible element chosen in the simple group <span class="SimpleMath">\(PΩ^-(10,3)\)</span> has order <span class="SimpleMath">\(61\)</span> not <span class="SimpleMath">\(122\)</span>.</p>
</li>
</ul>
<p><a id="X8389AD927B74BA4A" name="X8389AD927B74BA4A"></a></p>
<h4>11.1 <span class="Heading">Overview</span></h4>
<p>The main purpose of this note is to document the <strong class="pkg">GAP</strong> computations that were carried out in order to obtain the computational results in <a href="chapBib_mj.html#biBBGK">[BGK08]</a>. Table I lists the simple groups among these examples. The first column gives the group names, the second and third columns contain a plus sign <span class="SimpleMath">\(+\)</span> or a minus sign <span class="SimpleMath">\(-\)</span>, depending on whether the quantities <span class="SimpleMath">\(σ(G,s)\)</span> and <span class="SimpleMath">\(P(G,s)\)</span>, respectively, are less than <span class="SimpleMath">\(1/3\)</span>. The fourth column lists the orders of elements <span class="SimpleMath">\(s\)</span> which either prove the <span class="SimpleMath">\(+\)</span> signs or cover most of the cases for proving these signs. The fifth column lists the sections in this note where the example is treated. The rows of the table are ordered alphabetically w.r.t. the group names.</p>
<p>In order to keep this note self-contained, we first describe the theory needed, in Section <a href="chap11_mj.html#X7B4649CF7B7CFAA1"><span class="RefLink">11.2</span></a>. The translation of the relevant formulae into <strong class="pkg">GAP</strong> functions can be found in Section <a href="chap11_mj.html#X7B56BE5384BAD54E"><span class="RefLink">11.3</span></a>. Then Section <a href="chap11_mj.html#X7A221012861440E2"><span class="RefLink">11.4</span></a> describes the computations that only require (ordinary) character tables in the <strong class="pkg">GAP</strong> Character Table Library <a href="chapBib_mj.html#biBCTblLib">[Bre24]</a>. Computations using also the groups are shown in Section <a href="chap11_mj.html#X8237B8617D6F6027"><span class="RefLink">11.5</span></a>. In each of the last two sections, the examples are ordered alphabetically w.r.t. the names of the simple groups.</p>
<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b>Table I: Computations needed in <a href="chapBib_mj.html#biBBGK">[BGK08]</a></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(G\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(σ < \frac{1}{3}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(P < \frac{1}{3}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(|s|\)</span></td>
<td class="tdright">see</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_5\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(5\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7B5321337B28100B"><span class="RefLink">11.5-2</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_6\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(4\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X82C3B4287B0C7BEE"><span class="RefLink">11.5-3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_7\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(7\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X85B3C7217B105D4D"><span class="RefLink">11.5-4</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_8\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(15\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_9\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(9\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{11}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(11\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{13}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(13\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{15}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(15\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{17}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(17\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{19}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(19\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{21}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(21\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(A_{23}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(23\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X815320787B601000"><span class="RefLink">11.5-1</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_3(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(7\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a>,</td>
</tr>
<tr>
<td class="tdleft"> </td>
<td class="tdcenter"> </td>
<td class="tdcenter"> </td>
<td class="tdright"> </td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a>, <a href="chap11_mj.html#X7C8806DB8588BB51"><span class="RefLink">11.5-8</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_3(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(13\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a>,</td>
</tr>
<tr>
<td class="tdleft"> </td>
<td class="tdcenter"> </td>
<td class="tdcenter"> </td>
<td class="tdright"> </td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_3(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(7\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_4(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(20\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_4(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(85\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_6(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(63\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_6(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(182\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_6(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(455\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_6(5)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(1953\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_8(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(255\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(L_{10}(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(1023\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84EA645A82E2BAFB"><span class="RefLink">11.5-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{11}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(11\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7B7061917ED3714D"><span class="RefLink">11.5-9</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M_{12}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdright"><span class="SimpleMath">\(10\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84E9D10F80A74A53"><span class="RefLink">11.4-2</span></a>, <a href="chap11_mj.html#X82E0F48A7FF82BB3"><span class="RefLink">11.5-10</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^+_8(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(15\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7F80F2527C424AA4"><span class="RefLink">11.5-12</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^+_8(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(20\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X78F0815B86253A1F"><span class="RefLink">11.5-13</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^+_8(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(65\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X85BACC4A83F73392"><span class="RefLink">11.5-14</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^+_{10}(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(45\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84AB334886DCA746"><span class="RefLink">11.4-6</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^+_{12}(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(85\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X8307367E7C7C3BCE"><span class="RefLink">11.4-8</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^+_{12}(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(205\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X8477457780B69BC7"><span class="RefLink">11.5-18</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^-_8(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(17\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^-_8(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(41\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X78B856907ED13545"><span class="RefLink">11.4-5</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^-_{10}(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(33\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X84E3E4837BB93977"><span class="RefLink">11.4-7</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^-_{10}(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(122\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X8393978A8773997E"><span class="RefLink">11.5-16</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^-_{12}(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(65\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X834FE1B58119A5FF"><span class="RefLink">11.4-9</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O^-_{14}(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(129\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7BBBEEEF834F1002"><span class="RefLink">11.5-17</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(O_7(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(14\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7FF2E8F27FBEB65C"><span class="RefLink">11.5-11</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_4(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(17\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_6(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(9\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X82CFBAF07D3487A0"><span class="RefLink">11.5-20</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_6(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(14\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_6(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(65\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7C5980A385C088FA"><span class="RefLink">11.4-10</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_8(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(17\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X826658207D9D6570"><span class="RefLink">11.5-21</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S_8(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(41\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X85162B297E4B67EB"><span class="RefLink">11.4-12</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_3(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(6\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_3(5)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(10\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_4(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdright"><span class="SimpleMath">\(9\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7A03F8EC839AF0B5"><span class="RefLink">11.5-23</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_4(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdright"><span class="SimpleMath">\(7\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7D738BE5804CF22E"><span class="RefLink">11.5-24</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_4(4)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(65\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X8495C2BF7B6EFFEF"><span class="RefLink">11.4-13</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_5(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(11\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_6(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(11\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7A3BB5AA83A2BDF3"><span class="RefLink">11.4-14</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_6(3)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(122\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7D4BC6A38074BF68"><span class="RefLink">11.5-25</span></a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(U_8(2)\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
<td class="tdcenter"> </td>
<td class="tdright"><span class="SimpleMath">\(129\)</span></td>
<td class="tdright"><a href="chap11_mj.html#X7A92577A830B5F23"><span class="RefLink">11.5-26</span></a></td>
</tr>
</table><br />
</div>
<p>Contrary to <a href="chapBib_mj.html#biBBGK">[BGK08]</a>, <strong class="pkg">Atlas</strong> notation is used throughout this note, because the identifiers used for character tables in the <strong class="pkg">GAP</strong> Character Table Library follow mainly the <strong class="pkg">Atlas</strong> <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>. For example, we write <span class="SimpleMath">\(L_d(q)\)</span> for <span class="SimpleMath">\(PSL(d,q)\)</span>, <span class="SimpleMath">\(S_d(q)\)</span> for <span class="SimpleMath">\(PSp(d,q)\)</span>, <span class="SimpleMath">\(U_d(q)\)</span> for <span class="SimpleMath">\(PSU(d,q)\)</span>, and <span class="SimpleMath">\(O^+_{2d}(q)\)</span>, <span class="SimpleMath">\(O^-_{2d}(q)\)</span>, <span class="SimpleMath">\(O_{2d+1}(q)\)</span> for <span class="SimpleMath">\(PΩ^+(2d,q)\)</span>, <span class="SimpleMath">\(PΩ^-(2d,q)\)</span>, <span class="SimpleMath">\(PΩ(2d+1,q)\)</span>, respectively.</p>
<p>Furthermore, in the case of classical groups, the character tables of the (almost) <em>simple</em> groups are considered not the tables of the matrix groups (which are in fact often not available in the <strong class="pkg">GAP</strong> Character Table Library). Consequently, also element orders and the description of maximal subgroups refer to the (almost) simple groups not to the matrix groups.</p>
<p>This note contains also several examples that are not needed for the proofs in <a href="chapBib_mj.html#biBBGK">[BGK08]</a>. Besides several small simple groups <span class="SimpleMath">\(G\)</span> whose character table is contained in the <strong class="pkg">GAP</strong> Character Table Library and for which enough information is available for computing <span class="SimpleMath">\(σ(G)\)</span>, in Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, a few such examples appear in individual sections. In the table of contents, the section headers of the latter kind of examples are marked with an asterisk <span class="SimpleMath">\((\ast)\)</span>.</p>
<p>The examples use the <strong class="pkg">GAP</strong> Character Table Library, the <strong class="pkg">GAP</strong> Library of Tables of Marks, and the <strong class="pkg">GAP</strong> interface <a href="chapBib_mj.html#biBAtlasRep">[WPN+22]</a> to the <strong class="pkg">Atlas</strong> of Group Representations <a href="chapBib_mj.html#biBAGRv3">[WWT+]</a>, so we first load these three packages in the required versions. The <strong class="pkg">GAP</strong> output was adjusted to the versions shown below; in older versions, features necessary for the computations may be missing, and it may happen that with newer versions, the behaviour is different.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CompareVersionNumbers( GAPInfo.Version, "4.5.0" );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "ctbllib", "1.2", false );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "tomlib", "1.2", false );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "atlasrep", "1.5", false );</span>
true
</pre></div>
<p>Some of the computations in Section <a href="chap11_mj.html#X8237B8617D6F6027"><span class="RefLink">11.5</span></a> require about <span class="SimpleMath">\(800\)</span> MB of space (on <span class="SimpleMath">\(32\)</span> bit machines). Therefore we check whether <strong class="pkg">GAP</strong> was started with sufficient maximal memory; the command line option for this is <code class="code">-o 800m</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">max:= GAPInfo.CommandLineOptions.o;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">if not ( ( IsSubset( max, "m" ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Int( Filtered( max, IsDigitChar ) ) >= 800 ) or</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ( IsSubset( max, "g" ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Int( Filtered( max, IsDigitChar ) ) >= 1 ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "the maximal allowed memory might be too small\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
</pre></div>
<p>Several computations involve calls to the <strong class="pkg">GAP</strong> function <code class="func">Random</code> (<a href="../../../doc/ref/chap30_mj.html#X7FF906E57D6936F8"><span class="RefLink">Reference: Random</span></a>). In order to make the results of individual examples reproducible, independent of the rest of the computations, we reset the relevant random number generators whenever this is appropriate. For that, we store the initial states in the variable <code class="code">staterandom</code>, and provide a function for resetting the random number generators. (The <code class="func">Random</code> (<a href="../../../doc/ref/chap30_mj.html#X7FF906E57D6936F8"><span class="RefLink">Reference: Random</span></a>) calls in the <strong class="pkg">GAP</strong> library use the two random number generators <code class="func">GlobalRandomSource</code> (<a href="../../../doc/ref/chap14_mj.html#X7AC96008820FAF1F"><span class="RefLink">Reference: GlobalRandomSource</span></a>) and <code class="func">GlobalMersenneTwister</code> (<a href="../../../doc/ref/chap14_mj.html#X7AC96008820FAF1F"><span class="RefLink">Reference: GlobalMersenneTwister</span></a>).)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">staterandom:= [ State( GlobalRandomSource ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> State( GlobalMersenneTwister ) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators:= function()</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Reset( GlobalRandomSource, staterandom[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Reset( GlobalMersenneTwister, staterandom[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p><a id="X7B4649CF7B7CFAA1" name="X7B4649CF7B7CFAA1"></a></p>
<h4>11.2 <span class="Heading">Prerequisites</span></h4>
<p><a id="X7B6AEBDF7B857E2E" name="X7B6AEBDF7B857E2E"></a></p>
<h5>11.2-1 <span class="Heading">Theoretical Background</span></h5>
<p>Let <span class="SimpleMath">\(G\)</span> be a finite group, <span class="SimpleMath">\(S\)</span> the socle of <span class="SimpleMath">\(G\)</span>, and denote by <span class="SimpleMath">\(G^{\times}\)</span> the set of nonidentity elements in <span class="SimpleMath">\(G\)</span>. For <span class="SimpleMath">\(s, g \in G^{\times}\)</span>, let <span class="SimpleMath">\(P( g, s ):= |\{ h \in G; S \nsubseteq \langle s^h, g \rangle \}| / |G|\)</span>, the proportion of elements in the class <span class="SimpleMath">\(s^G\)</span> which fail to generate at least <span class="SimpleMath">\(S\)</span> with <span class="SimpleMath">\(g\)</span>; we set <span class="SimpleMath">\(P( G, s ):= \max\{ P( g, s ); g \in G^{\times} \}\)</span>. We are interested in finding a class <span class="SimpleMath">\(s^G\)</span> of elements in <span class="SimpleMath">\(S\)</span> such that <span class="SimpleMath">\(P( G, s ) < 1/3\)</span> holds.</p>
<p>First consider <span class="SimpleMath">\(g \in S\)</span>, and let <span class="SimpleMath">\(𝕄(S,s)\)</span> denote the set of those maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain <span class="SimpleMath">\(s\)</span>. We have</p>
<p class="center">\[
|\{ h \in S; S \nsubseteq \langle s^h, g \rangle \}|
= |\{ h \in S; \langle s, h g h^{-1} \rangle ≠ S \}| \\
\leq \sum_{M \in 𝕄(S,s)} |\{ h \in S; h g h^{-1} \in M \}|
\]</p>
<p>Since <span class="SimpleMath">\(h g h^{-1} \in M\)</span> holds if and only if the coset <span class="SimpleMath">\(M h\)</span> is fixed by <span class="SimpleMath">\(g\)</span> under the permutation action of <span class="SimpleMath">\(S\)</span> on the right cosets of <span class="SimpleMath">\(M\)</span> in <span class="SimpleMath">\(S\)</span>, we get that <span class="SimpleMath">\(|\{ h \in S; h g h^{-1} \in M \}| = |C_S(g)| \cdot |g^S \cap M| = |M| \cdot 1_M^S(g)\)</span>, where <span class="SimpleMath">\(1_M^S\)</span> is the permutation character of this action, of degree <span class="SimpleMath">\(|S|/|M|\)</span>. Thus</p>
<p class="center">\[
|\{ h \in S; \langle s, h g h^{-1} \rangle ≠ S \}| / |S|
\leq \sum_{M \in 𝕄(S,s)} 1_M^S(g) / 1_M^S(1) .
\]</p>
<p>We abbreviate the right hand side of this inequality by <span class="SimpleMath">\(σ( g, s )\)</span>, set <span class="SimpleMath">\(σ( S, s ):= \max\{ σ( g, s ); g \in S^{\times} \}\)</span>, and choose a transversal <span class="SimpleMath">\(T\)</span> of <span class="SimpleMath">\(S\)</span> in <span class="SimpleMath">\(G\)</span>. Then <span class="SimpleMath">\(P( g, s ) \leq |T|^{-1} \cdot \sum_{t \in T} σ( g^t, s )\)</span> and thus <span class="SimpleMath">\(P( G, s ) \leq σ( S, s )\)</span> holds.</p>
<p>If <span class="SimpleMath">\(S = G\)</span> and if <span class="SimpleMath">\(𝕄(G,s)\)</span> consists of a single maximal subgroup <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(G\)</span> then equality holds, i.e., <span class="SimpleMath">\(P( g, s ) = σ( g, s ) = 1_M^S(g) / 1_M^S(1)\)</span>.</p>
<p>The quantity <span class="SimpleMath">\(1_M^S(g) / 1_M^S(1) = |g^S \cap M| / |g^S|\)</span> is the proportion of fixed points of <span class="SimpleMath">\(g\)</span> in the permutation action of <span class="SimpleMath">\(S\)</span> on the right cosets of its subgroup <span class="SimpleMath">\(M\)</span>. This is called the <em>fixed point ratio</em> of <span class="SimpleMath">\(g\)</span> w. r. t. <span class="SimpleMath">\(S/M\)</span>, and is denoted as <span class="SimpleMath">\(μ(g,S/M)\)</span>.</p>
<p>For a subgroup <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(S\)</span>, the number <span class="SimpleMath">\(n\)</span> of <span class="SimpleMath">\(S\)</span>-conjugates of <span class="SimpleMath">\(M\)</span> containing <span class="SimpleMath">\(s\)</span> is equal to <span class="SimpleMath">\(|M^S| \cdot |s^S \cap M| / |s^S|\)</span>. To see this, consider the set <span class="SimpleMath">\(\{ (s^h, M^k); h, k \in S, s^h \in M^k \}\)</span>, the cardinality of which can be counted either as <span class="SimpleMath">\(|M^S| \cdot |s^S \cap M|\)</span> or as <span class="SimpleMath">\(|s^S| \cdot n\)</span>. So we get <span class="SimpleMath">\(n = |M| \cdot 1_M^S(s) / |N_S(M)|\)</span>.</p>
<p>If <span class="SimpleMath">\(S\)</span> is a finite <em>nonabelian simple</em> group then each maximal subgroup in <span class="SimpleMath">\(S\)</span> is self-normalizing, and we have <span class="SimpleMath">\(n = 1_M^S(s)\)</span> if <span class="SimpleMath">\(M\)</span> is maximal. So we can replace the summation over <span class="SimpleMath">\(𝕄(S,s)\)</span> by one over a set <span class="SimpleMath">\(𝕄/~(S,s)\)</span> of representatives of conjugacy classes of maximal subgroups of <span class="SimpleMath">\(S\)</span>, and get that</p>
<p class="center">\[
σ( g, s ) = \sum_{M \in 𝕄/~(S,s)}
\frac{1_M^S(s) \cdot 1_M^S(g)}{1_M^S(1)}.
\]</p>
<p>Furthermore, we have <span class="SimpleMath">\(|𝕄(S,s)| = \sum_{M \in 𝕄/~(S,s)} 1_M^S(s)\)</span>.</p>
<p>In the following, we will often deal with the quantities <span class="SimpleMath">\(σ(S):= \min\{ σ( S, s ); s \in S^{\times} \}\)</span> and <span class="SimpleMath">\(𝕊/~(S):= \lceil 1 / σ(S) - 1 \rceil\)</span>. These values can be computed easily from the primitive permutation characters of <span class="SimpleMath">\(S\)</span>.</p>
<p>Analogously, we set <span class="SimpleMath">\(P(S):= \min \{ P( S, s ); s \in S^{\times} \}\)</span> and <span class="SimpleMath">\(P(S):= \lceil 1 / P(S) - 1 \rceil\)</span>. Clearly we have <span class="SimpleMath">\(P(S) \leq σ(S)\)</span> and <span class="SimpleMath">\(P(S) \geq 𝕊/~(S)\)</span>.</p>
<p>One interpretation of <span class="SimpleMath">\(P(S)\)</span> is that if this value is at least <span class="SimpleMath">\(k\)</span> then it follows that for any <span class="SimpleMath">\(g_1, g_2, \ldots, g_k \in S^{\times}\)</span>, there is some <span class="SimpleMath">\(s \in S\)</span> such that <span class="SimpleMath">\(S = \langle g_i, s \rangle\)</span>, for <span class="SimpleMath">\(1 \leq i \leq k\)</span>. In this case, <span class="SimpleMath">\(S\)</span> is said to have <em>spread</em> at least <span class="SimpleMath">\(k\)</span>. (Note that the lower bound <span class="SimpleMath">\(𝕊/~(S)\)</span> for <span class="SimpleMath">\(P(S)\)</span> can be computed from the list of primitive permutation characters of <span class="SimpleMath">\(S\)</span>.)</p>
<p>Moreover, <span class="SimpleMath">\(P(S) \geq k\)</span> implies that the element <span class="SimpleMath">\(s\)</span> can be chosen uniformly from a fixed conjugacy class of <span class="SimpleMath">\(S\)</span>. This is called <em>uniform spread</em> at least <span class="SimpleMath">\(k\)</span> in <a href="chapBib_mj.html#biBBGK">[BGK08]</a>.</p>
<p>It is proved in <a href="chapBib_mj.html#biBGK">[GK00]</a> that all finite simple groups have uniform spread at least <span class="SimpleMath">\(1\)</span>, that is, for any element <span class="SimpleMath">\(x \in S^{\times}\)</span>, there is an element <span class="SimpleMath">\(y\)</span> in a prescribed class of <span class="SimpleMath">\(S\)</span> such that <span class="SimpleMath">\(G = \langle x, y \rangle\)</span> holds. In <a href="chapBib_mj.html#biBBGK">[BGK08, Corollary 1.3]</a>, it is shown that all finite simple groups have uniform spread at least <span class="SimpleMath">\(2\)</span>, and the finite simple groups with (uniform) spread exactly <span class="SimpleMath">\(2\)</span> are listed.</p>
<p>Concerning the spread, it should be mentioned that the methods used here and in <a href="chapBib_mj.html#biBBGK">[BGK08]</a> are nonconstructive in the sense that they cannot be used for finding an element <span class="SimpleMath">\(s\)</span> that generates <span class="SimpleMath">\(G\)</span> together with each of the <span class="SimpleMath">\(k\)</span> prescribed elements <span class="SimpleMath">\(g_1, g_2, \ldots, g_k\)</span>.</p>
<p>Now consider <span class="SimpleMath">\(g \in G \setminus S\)</span>. Since <span class="SimpleMath">\(P( g^k, s ) \geq P( g, s )\)</span> for any positive integer <span class="SimpleMath">\(k\)</span>, we can assume that <span class="SimpleMath">\(g\)</span> has prime order <span class="SimpleMath">\(p\)</span>, say. We set <span class="SimpleMath">\(H = \langle S, g \rangle \leq G\)</span>, with <span class="SimpleMath">\([H:S] = p\)</span>, choose a transversal <span class="SimpleMath">\(T\)</span> of <span class="SimpleMath">\(H\)</span> in <span class="SimpleMath">\(G\)</span>, let <span class="SimpleMath">\(𝕄^{\prime}(H,s):= 𝕄(H,s) \setminus \{ S \}\)</span>, and let <span class="SimpleMath">\(𝕄/~^{\prime}(H,s)\)</span> denote a set of representatives of <span class="SimpleMath">\(H\)</span>-conjugacy classes of these groups. As above,</p>
<div class="pcenter"><table class="GAPDocTablenoborder">
<tr>
<td class="tdright"><span class="SimpleMath">\(|\{ h \in H; S \nsubseteq \langle s^h, g \rangle \}| / |H|\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(=\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(|\{ h \in H; \langle s^h, g \rangle ≠ H \}| / |H|\)</span></td>
</tr>
<tr>
<td class="tdright"> </td>
<td class="tdcenter"><span class="SimpleMath">\(\leq\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\sum_{M \in 𝕄^{\prime}(H,s)} |\{ h \in H; h g h^{-1} \in M \}| / |H|\)</span></td>
</tr>
<tr>
<td class="tdright"> </td>
<td class="tdcenter"><span class="SimpleMath">\(=\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\sum_{M \in 𝕄^{\prime}(H,s)} 1_M^H(g) / 1_M^H(1)\)</span></td>
</tr>
<tr>
<td class="tdright"> </td>
<td class="tdcenter"><span class="SimpleMath">\(=\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\sum_{M \in 𝕄/~^{\prime}(H,s)} 1_M^H(g) \cdot 1_M^H(s) / 1_M^H(1)\)</span></td>
</tr>
</table><br />
</div>
<p>(Note that no summand for <span class="SimpleMath">\(M = S\)</span> occurs, so each group in <span class="SimpleMath">\(𝕄/~^{\prime}(H,s)\)</span> is self-normalizing.) We abbreviate the right hand side by <span class="SimpleMath">\(σ(H,g,s)\)</span>, and set <span class="SimpleMath">\(σ^{\prime}( H, s ) = \max\{ σ(H,g,s); g \in H \setminus S, |g| = [H:S] \}\)</span>. Then we get <span class="SimpleMath">\(P( g, s ) \leq |T|^{-1} \cdot \sum_{t \in T} σ(H^t,g^t,s)\)</span> and thus</p>
<p class="center">\[
P( G, s ) \leq \max\{ P( S, s ),
\max\{ σ^{\prime}( H, s );
S \leq H \leq G, [H:S] \textrm{\ prime} \} \} .
\]</p>
<p>For convenience, we set <span class="SimpleMath">\(P^{\prime}(G,s) = \max\{ P(g,s); g \in G \setminus S \}\)</span>.</p>
<p><a id="X79D7312484E78274" name="X79D7312484E78274"></a></p>
<h5>11.2-2 <span class="Heading">Computational Criteria</span></h5>
<p>The following criteria will be used when we have to show the existence or nonexistence of <span class="SimpleMath">\(x_1, x_2, \ldots, x_k\)</span>, and <span class="SimpleMath">\(s \in G\)</span> with the property <span class="SimpleMath">\(\langle x_i, s \rangle = G\)</span> for <span class="SimpleMath">\(1 \leq i \leq k\)</span>. Note that manipulating lists of integers (representing fixed or moved points) is much more efficient than testing whether certain permutations generate a given group.</p>
<p>Lemma:</p>
<p>Let <span class="SimpleMath">\(G\)</span> be a finite group, <span class="SimpleMath">\(s \in G^{\times}\)</span>, and <span class="SimpleMath">\(X = \bigcup_{M \in 𝕄(G,s)} G/M\)</span>. For <span class="SimpleMath">\(x_1, x_2, \ldots, x_k \in G\)</span>, the conjugate <span class="SimpleMath">\(s^{\prime}\)</span> of <span class="SimpleMath">\(s\)</span> satisfies <span class="SimpleMath">\(\langle x_i, s^{\prime} \rangle = G\)</span> for <span class="SimpleMath">\(1 \leq i \leq k\)</span> if and only if <span class="SimpleMath">\(Fix_{X}(s^{\prime}) \cap \bigcup_{i=1}^k Fix_{X}(x_i) = \emptyset\)</span> holds.</p>
<p><em>Proof.</em> If <span class="SimpleMath">\(s^g \in U \leq G\)</span> for some <span class="SimpleMath">\(g \in G\)</span> then <span class="SimpleMath">\(Fix_{X}(U) = \emptyset\)</span> if and only if <span class="SimpleMath">\(U = G\)</span> holds; note that <span class="SimpleMath">\(Fix_{X}(G) = \emptyset\)</span>, and <span class="SimpleMath">\(Fix_{X}(U) = \emptyset\)</span> implies that <span class="SimpleMath">\(U \nsubseteq h^{-1} M h\)</span> holds for all <span class="SimpleMath">\(h \in G\)</span> and <span class="SimpleMath">\(M \in 𝕄(G,s)\)</span>, thus <span class="SimpleMath">\(U = G\)</span>. Applied to <span class="SimpleMath">\(U = \langle x_i, s^{\prime} \rangle\)</span>, we get <span class="SimpleMath">\(\langle x_i, s^{\prime} \rangle = G\)</span> if and only if <span class="SimpleMath">\(Fix_{X}(s^{\prime}) \cap Fix_{X}(x_i) = Fix_{X}(U) = \emptyset\)</span>.</p>
<p>Corollary 1:</p>
<p>If <span class="SimpleMath">\(𝕄(G,s) = \{ M \}\)</span> in the situation of the above Lemma then there is a conjugate <span class="SimpleMath">\(s^{\prime}\)</span> of <span class="SimpleMath">\(s\)</span> that satisfies <span class="SimpleMath">\(\langle x_i, s^{\prime} \rangle = G\)</span> for <span class="SimpleMath">\(1 \leq i \leq k\)</span> if and only if <span class="SimpleMath">\(\bigcup_{i=1}^k Fix_{X}(x_i) ≠ X\)</span>.</p>
<p>Corollary 2:</p>
<p>Let <span class="SimpleMath">\(G\)</span> be a finite simple group and let <span class="SimpleMath">\(X\)</span> be a <span class="SimpleMath">\(G\)</span>-set such that each <span class="SimpleMath">\(g \in G\)</span> fixes at least one point in <span class="SimpleMath">\(X\)</span> but that <span class="SimpleMath">\(Fix_{X}(G) = \emptyset\)</span> holds. If <span class="SimpleMath">\(x_1, x_2, \ldots x_k\)</span> are elements in <span class="SimpleMath">\(G\)</span> such that <span class="SimpleMath">\(\bigcup_{i=1}^k Fix_{X}(x_i) = X\)</span> holds then for each <span class="SimpleMath">\(s \in G\)</span> there is at least one <span class="SimpleMath">\(i\)</span> with <span class="SimpleMath">\(\langle x_i, s \rangle ≠ G\)</span>.</p>
<p><a id="X7B56BE5384BAD54E" name="X7B56BE5384BAD54E"></a></p>
<h4>11.3 <span class="Heading"><strong class="pkg">GAP</strong> Functions for the Computations</span></h4>
<p>After the introduction of general utilities in Section <a href="chap11_mj.html#X806328747D1D4ECC"><span class="RefLink">11.3-1</span></a>, we distinguish two different tasks. Section <a href="chap11_mj.html#X7A221012861440E2"><span class="RefLink">11.3-2</span></a> introduces functions that will be used in the following to compute <span class="SimpleMath">\(σ(g,s)\)</span> with character-theoretic methods. Functions for computing <span class="SimpleMath">\(P(g,s)\)</span> or an upper bound for this value will be introduced in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>
<p>The <strong class="pkg">GAP</strong> functions shown in this section are collected in the file <code class="file">tst/probgen.g</code> that is distributed with the <strong class="pkg">GAP</strong> Character Table Library, see <span class="URL"><a href="http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib">http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib</a></span>.</p>
<p>The functions have been designed for the examples in the later sections, they could be generalized and optimized for other examples. It is not our aim to provide a package for this functionality.</p>
<p><a id="X806328747D1D4ECC" name="X806328747D1D4ECC"></a></p>
<h5>11.3-1 <span class="Heading">General Utilities</span></h5>
<p>Let <code class="code">list</code> be a dense list and <code class="code">prop</code> be a unary function that returns <code class="keyw">true</code> or <code class="keyw">false</code> when applied to the entries of <code class="code">list</code>. <code class="code">PositionsProperty</code> returns the set of positions in <code class="code">list</code> for which <code class="keyw">true</code> is returned.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">if not IsBound( PositionsProperty ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PositionsProperty:= function( list, prop )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return Filtered( [ 1 .. Length( list ) ], i -> prop( list[i] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
</pre></div>
<p>The following two functions implement loops over ordered triples (and quadruples, respectively) in a Cartesian product. A prescribed function <code class="code">prop</code> is subsequently applied to the triples (quadruples), and if the result of this call is <code class="keyw">true</code> then this triple (quadruple) is returned immediately; if none of the calls to <code class="code">prop</code> yields <code class="keyw">true</code> then <code class="keyw">fail</code> is returned.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "TripleWithProperty", function( threelists, prop )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local i, j, k, test;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in threelists[1] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for j in threelists[2] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for k in threelists[3] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> test:= [ i, j, k ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if prop( test ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return test;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "QuadrupleWithProperty", function( fourlists, prop )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local i, j, k, l, test;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in fourlists[1] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for j in fourlists[2] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for k in fourlists[3] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for l in fourlists[4] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> test:= [ i, j, k, l ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if prop( test ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return test;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>Of course one could do better by considering <em>un</em>ordered <span class="SimpleMath">\(n\)</span>-tuples when several of the argument lists are equal, and in practice, backtrack searches would often allow one to prune parts of the search tree in early stages. However, the above loops are not time critical in the examples presented here, so the possible improvements are not worth the effort for our purposes.</p>
<p>The function <code class="code">PrintFormattedArray</code> prints the matrix <code class="code">array</code> in a columnwise formatted way. (The only diference to the <strong class="pkg">GAP</strong> library function <code class="func">PrintArray</code> (<a href="../../../doc/ref/chap24_mj.html#X7DEBC9967DFDFC18"><span class="RefLink">Reference: PrintArray</span></a>) is that <code class="code">PrintFormattedArray</code> chooses each column width according to the entries only in this column not w.r.t. the whole matrix.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "PrintFormattedArray", function( array )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local colwidths, n, row;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> array:= List( array, row -> List( row, String ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> colwidths:= List( TransposedMat( array ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> col -> Maximum( List( col, Length ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> n:= Length( array[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for row in List( array, row -> List( [ 1 .. n ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> String( row[i], colwidths[i] ) ) ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( " ", JoinStringsWithSeparator( row, " " ), "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>Finally, <code class="code">CleanWorkspace</code> is a utility for reducing the space needed. This is achieved by unbinding those user variables that are not write protected and are not mentioned in the list <code class="code">NeededVariables</code> of variable names that are bound now, and by flushing the caches of tables of marks and character tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "NeededVariables", NamesUserGVars() );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "CleanWorkspace", function()</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local name, record;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> for name in Difference( NamesUserGVars(), NeededVariables ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsReadOnlyGlobal( name ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> UnbindGlobal( name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for record in [ LIBTOMKNOWN, LIBTABLE ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for name in RecNames( record.LOADSTATUS ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( record.LOADSTATUS.( name ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( record.( name ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>The function <code class="code">PossiblePermutationCharacters</code> takes two ordinary character tables <code class="code">sub</code> and <code class="code">tbl</code>, computes the possible class fusions from <code class="code">sub</code> to <code class="code">tbl</code>, then induces the trivial character of <code class="code">sub</code> to <code class="code">tbl</code>, w.r.t. these fusions, and returns the set of these class functions. (So if <code class="code">sub</code> and <code class="code">tbl</code> are the character tables of groups <span class="SimpleMath">\(H\)</span> and <span class="SimpleMath">\(G\)</span>, respectively, where <span class="SimpleMath">\(H\)</span> is a subgroup of <span class="SimpleMath">\(G\)</span>, then the result contains the permutation character <span class="SimpleMath">\(1_H^G\)</span>.)</p>
<p>Note that the columns of the character tables in the <strong class="pkg">GAP</strong> Character Table Library are not explicitly associated with particular conjugacy classes of the corresponding groups, so from the character tables, we can compute only <em>possible</em> class fusions, i.e., maps between the columns of two tables that satisfy certain necessary conditions, see the section about the function <code class="code">PossibleClassFusions</code> in the <strong class="pkg">GAP</strong> Reference Manual for details. There is no problem if the permutation character is uniquely determined by the character tables, in all other cases we give ad hoc arguments for resolving the ambiguities.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">if not IsBound( PossiblePermutationCharacters ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> BindGlobal( "PossiblePermutationCharacters", function( sub, tbl )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local fus, triv;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> fus:= PossibleClassFusions( sub, tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if fus = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> triv:= [ TrivialCharacter( sub ) ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return Set(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> List( fus, map -> Induced( sub, tbl, triv, map )[1] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
</pre></div>
<p><a id="X7A221012861440E2" name="X7A221012861440E2"></a></p>
<h5>11.3-2 <span class="Heading">Character-Theoretic Computations</span></h5>
<p>We want to use the <strong class="pkg">GAP</strong> libraries of character tables and of tables of marks, and proceed in three steps.</p>
<p>First we extract the primitive permutation characters from the library information if this is available; for that, we write the function <code class="code">PrimitivePermutationCharacters</code>. Then the result can be used as the input for the function <code class="code">ApproxP</code>, which computes the values <span class="SimpleMath">\(σ( g, s )\)</span>. Finally, the functions <code class="code">ProbGenInfoSimple</code> and <code class="code">ProbGenInfoAlmostSimple</code> compute <span class="SimpleMath">\(𝕊/~( G )\)</span>.</p>
<p>For a group <span class="SimpleMath">\(G\)</span> whose character table <span class="SimpleMath">\(T\)</span> is contained in the <strong class="pkg">GAP</strong> character table library, the complete set of primitive permutation characters can be easily computed if the character tables of all maximal subgroups and their class fusions into <span class="SimpleMath">\(T\)</span> are known (in this case, we check whether the attribute <code class="func">Maxes</code> (<a href="..//doc/chap3_mj.html#X8150E63F7DBDF252"><span class="RefLink">CTblLib: Maxes</span></a>) of <span class="SimpleMath">\(T\)</span> is bound) or if the table of marks of <span class="SimpleMath">\(G\)</span> and the class fusion from <span class="SimpleMath">\(T\)</span> into this table of marks are known (in this case, we check whether the attribute <code class="func">FusionToTom</code> (<a href="..//doc/chap3_mj.html#X7B1AAED68753B1BE"><span class="RefLink">CTblLib: FusionToTom</span></a>) of <span class="SimpleMath">\(T\)</span> is bound). If the attribute <code class="func">UnderlyingGroup</code> (<a href="../../../doc/ref/chap70_mj.html#X81E41D3880FA6C4C"><span class="RefLink">Reference: UnderlyingGroup for tables of marks</span></a>) of <span class="SimpleMath">\(T\)</span> is bound then this group can be used to compute the primitive permutation characters. The latter happens if <span class="SimpleMath">\(T\)</span> was computed from the group object in <strong class="pkg">GAP</strong>; for tables in the <strong class="pkg">GAP</strong> character table library, this is not the case by default.</p>
<p>The <strong class="pkg">GAP</strong> function <code class="code">PrimitivePermutationCharacters</code> tries to compute the primitive permutation characters of a group using this information; it returns the required list of characters if this can be computed this way, otherwise <code class="keyw">fail</code> is returned. (For convenience, we use the <strong class="pkg">GAP</strong> mechanism of <em>attributes</em> in order to store the permutation characters in the character table object once they have been computed.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">DeclareAttribute( "PrimitivePermutationCharacters", IsCharacterTable );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">InstallOtherMethod( PrimitivePermutationCharacters,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ IsCharacterTable ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> function( tbl )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local maxes, tom, G;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> if HasMaxes( tbl ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxes:= List( Maxes( tbl ), CharacterTable );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAll( maxes, s -> GetFusionMap( s, tbl ) <> fail ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return List( maxes, subtbl -> TrivialCharacter( subtbl )^tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif HasFusionToTom( tbl ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tom:= TableOfMarks( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxes:= MaximalSubgroupsTom( tom );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return PermCharsTom( tbl, tom ){ maxes[1] };</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif HasUnderlyingGroup( tbl ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> G:= UnderlyingGroup( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return List( MaximalSubgroupClassReps( G ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> M -> TrivialCharacter( M )^tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>The function <code class="code">ApproxP</code> takes a list <code class="code">primitives</code> of primitive permutation characters of a group <span class="SimpleMath">\(G\)</span>, say, and the position <code class="code">spos</code> of the class <span class="SimpleMath">\(s^G\)</span> in the character table of <span class="SimpleMath">\(G\)</span>.</p>
<p>Assume that the elements in <code class="code">primitives</code> have the form <span class="SimpleMath">\(1_M^G\)</span>, for suitable maximal subgroups <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(G\)</span>, and let <span class="SimpleMath">\(𝕄/~\)</span> be the set of these groups <span class="SimpleMath">\(M\)</span>. <code class="code">ApproxP</code> returns the class function <span class="SimpleMath">\(\psi\)</span> of <span class="SimpleMath">\(G\)</span> that is defined by <span class="SimpleMath">\(\psi(1) = 0\)</span> and</p>
<p class="center">\[
\psi(g) = \sum_{M \in 𝕄/~}
\frac{1_M^G(s) \cdot 1_M^G(g)}{1_M^G(1)}
\]</p>
<p>otherwise.</p>
<p>If <code class="code">primitives</code> contains all those primitive permutation characters <span class="SimpleMath">\(1_M^G\)</span> of <span class="SimpleMath">\(G\)</span> (with multiplicity according to the number of conjugacy classes of these maximal subgroups) that do not vanish at <span class="SimpleMath">\(s\)</span>, and if all these <span class="SimpleMath">\(M\)</span> are self-normalizing in <span class="SimpleMath">\(G\)</span> –this holds for example if <span class="SimpleMath">\(G\)</span> is a finite simple group– then <span class="SimpleMath">\(\psi(g) = σ( g, s )\)</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "ApproxP", function( primitives, spos )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local sum;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> sum:= ShallowCopy( Sum( List( primitives,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pi -> pi[ spos ] * pi / pi[1] ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sum[1]:= 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return sum;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>Note that for computations with permutation characters, it would make the functions more complicated (and not more efficient) if we would consider only elements <span class="SimpleMath">\(g\)</span> of prime order, and only one representative of Galois conjugate classes.</p>
<p>The next functions needed in this context compute <span class="SimpleMath">\(σ(S)\)</span> and <span class="SimpleMath">\(𝕊/~( S )\)</span>, for a simple group <span class="SimpleMath">\(S\)</span>, and <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> for an almost simple group <span class="SimpleMath">\(G\)</span> with socle <span class="SimpleMath">\(S\)</span>, respectively.</p>
<p><code class="code">ProbGenInfoSimple</code> takes the character table <code class="code">tbl</code> of <span class="SimpleMath">\(S\)</span> as its argument. If the full list of primitive permutation characters of <span class="SimpleMath">\(S\)</span> cannot be computed with <code class="code">PrimitivePermutationCharacters</code> then the function returns <code class="keyw">fail</code>. Otherwise <code class="code">ProbGenInfoSimple</code> returns a list containing the identifier of the table, the value <span class="SimpleMath">\(σ(S)\)</span>, the integer <span class="SimpleMath">\(𝕊/~( S )\)</span>, a list of <strong class="pkg">Atlas</strong> names of representatives of Galois families of those classes of elements <span class="SimpleMath">\(s\)</span> for which <span class="SimpleMath">\(σ(S) = σ( S, s )\)</span> holds, and the list of the corresponding cardinalities <span class="SimpleMath">\(|𝕄(S,s)|\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "ProbGenInfoSimple", function( tbl )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local prim, max, min, bound, s;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> prim:= PrimitivePermutationCharacters( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if prim = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> max:= List( [ 1 .. NrConjugacyClasses( tbl ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> Maximum( ApproxP( prim, i ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> min:= Minimum( max );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> bound:= Inverse( min );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsInt( bound ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> bound:= bound - 1;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> bound:= Int( bound );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s:= PositionsProperty( max, x -> x = min );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s:= List( Set( s, i -> ClassOrbit( tbl, i ) ), i -> i[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [ Identifier( tbl ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> min,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> bound,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> AtlasClassNames( tbl ){ s },</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Sum( List( prim, pi -> pi{ s } ) ) ];</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p><code class="code">ProbGenInfoAlmostSimple</code> takes the character tables <code class="code">tblS</code> and <code class="code">tblG</code> of <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(G\)</span>, and a list <code class="code">sposS</code> of class positions (w.r.t. <code class="code">tblS</code>) as its arguments. It is assumed that <span class="SimpleMath">\(S\)</span> is simple and has prime index in <span class="SimpleMath">\(G\)</span>. If <code class="code">PrimitivePermutationCharacters</code> can compute the full list of primitive permutation characters of <span class="SimpleMath">\(G\)</span> then the function returns a list containing the identifier of <code class="code">tblG</code>, the maximum <span class="SimpleMath">\(m\)</span> of <span class="SimpleMath">\(σ^{\prime}( G, s )\)</span>, for <span class="SimpleMath">\(s\)</span> in the classes described by <code class="code">sposS</code>, a list of <strong class="pkg">Atlas</strong> names (in <span class="SimpleMath">\(G\)</span>) of the classes of elements <span class="SimpleMath">\(s\)</span> for which this maximum is attained, and the list of the corresponding cardinalities <span class="SimpleMath">\(|𝕄^{\prime}(G,s)|\)</span>. When <code class="code">PrimitivePermutationCharacters</code> returns <code class="keyw">fail</code>, also <code class="code">ProbGenInfoAlmostSimple</code> returns <code class="keyw">fail</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "ProbGenInfoAlmostSimple", function( tblS, tblG, sposS )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local p, fus, inv, prim, sposG, outer, approx, l, max, min,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s, cards, i, names;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> p:= Size( tblG ) / Size( tblS );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsPrimeInt( p )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> or Length( ClassPositionsOfNormalSubgroups( tblG ) ) <> 3 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fus:= GetFusionMap( tblS, tblG );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if fus = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> inv:= InverseMap( fus );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> prim:= PrimitivePermutationCharacters( tblG );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if prim = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sposG:= Set( fus{ sposS } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> outer:= Difference( PositionsProperty(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> OrdersClassRepresentatives( tblG ), IsPrimeInt ), fus );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> approx:= List( sposG, i -> ApproxP( prim, i ){ outer } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsEmpty( outer ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> max:= List( approx, x -> 0 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> max:= List( approx, Maximum );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> min:= Minimum( max);</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s:= sposG{ PositionsProperty( max, x -> x = min ) };</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cards:= List( prim, pi -> pi{ s } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. Length( prim ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Omit the character that is induced from the simple group.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAll( prim[i], x -> x = 0 or x = prim[i][1] ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cards[i]:= 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> names:= AtlasClassNames( tblG ){ s };</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Perform( names, ConvertToStringRep );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [ Identifier( tblG ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> min,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> names,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Sum( cards ) ];</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>The next function computes <span class="SimpleMath">\(σ(G,s)\)</span> from the character table <code class="code">tbl</code> of a simple or almost simple group <span class="SimpleMath">\(G\)</span>, the name <code class="code">sname</code> of the class of <span class="SimpleMath">\(s\)</span> in this table, the list <code class="code">maxes</code> of the character tables of all subgroups <span class="SimpleMath">\(M\)</span> with <span class="SimpleMath">\(M \in 𝕄(G,s)\)</span>, and the list <code class="code">numpermchars</code> of the numbers of possible permutation characters induced from <code class="code">maxes</code>. If the string <code class="code">"outer"</code> is given as an optional argument then <span class="SimpleMath">\(G\)</span> is assumed to be an automorphic extension of a simple group <span class="SimpleMath">\(S\)</span>, with <span class="SimpleMath">\([G:S]\)</span> a prime, and <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> is returned. In both situations, the result is <code class="keyw">fail</code> if the numbers of possible permutation characters induced from <code class="code">maxes</code> do not coincide with the numbers prescribed in <code class="code">numpermchars</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "SigmaFromMaxes", function( arg )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local t, sname, maxes, numpermchars, prim, spos, outer;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> t:= arg[1];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sname:= arg[2];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxes:= arg[3];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> numpermchars:= arg[4];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> prim:= List( maxes, s -> PossiblePermutationCharacters( s, t ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> spos:= Position( AtlasClassNames( t ), sname );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAny( [ 1 .. Length( maxes ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> Length( prim[i] ) <> numpermchars[i] ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif Length( arg ) = 5 and arg[5] = "outer" then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> outer:= Difference(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PositionsProperty( OrdersClassRepresentatives( t ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return Maximum( ApproxP( Concatenation( prim ), spos ){ outer } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return Maximum( ApproxP( Concatenation( prim ), spos ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>The following function allows us to extract information about <span class="SimpleMath">\(𝕄(G,s)\)</span> from the character table <code class="code">tbl</code> of <span class="SimpleMath">\(G\)</span> and a list <code class="code">snames</code> of class positions of <span class="SimpleMath">\(s\)</span>. If <code class="code">Maxes( tbl )</code> is stored then the names of the character tables of the subgroups in <span class="SimpleMath">\(𝕄(G,s)\)</span> and the number of conjugates are printed, otherwise <code class="keyw">fail</code> is printed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "DisplayProbGenMaxesInfo", function( tbl, snames )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local mx, prim, i, spos, nonz, indent, j;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not HasMaxes( tbl ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( Identifier( tbl ), ": fail\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> mx:= List( Maxes( tbl ), CharacterTable );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> prim:= List( mx, s -> TrivialCharacter( s )^tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Assert( 1, SortedList( prim ) =</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SortedList( PrimitivePermutationCharacters( tbl ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. Length( prim ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Deal with the case that the subgroup is normal.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAll( prim[i], x -> x = 0 or x = prim[i][1] ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> prim[i]:= prim[i] / prim[i][1];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> spos:= List( snames,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nam -> Position( AtlasClassNames( tbl ), nam ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nonz:= List( spos, x -> PositionsProperty( prim, pi -> pi[x] <> 0 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. Length( spos ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( Identifier( tbl ), ", ", snames[i], ": " );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> indent:= ListWithIdenticalEntries(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Length( Identifier( tbl ) ) + Length( snames[i] ) + 4, ' ' );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsEmpty( nonz[i] ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( Identifier( mx[ nonz[i][1] ] ), " (",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> prim[ nonz[i][1] ][ spos[i] ], ")\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for j in [ 2 .. Length( nonz[i] ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( indent, Identifier( mx[ nonz[i][j] ] ), " (",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> prim[ nonz[i][j] ][ spos[i] ], ")\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p><a id="X83DACCF07EF62FAE" name="X83DACCF07EF62FAE"></a></p>
<h5>11.3-3 <span class="Heading">Computations with Groups</span></h5>
<p>Here, the task is to compute <span class="SimpleMath">\(P(g,s)\)</span> or <span class="SimpleMath">\(P(G,s)\)</span> using explicit computations with <span class="SimpleMath">\(G\)</span>, where the character-theoretic bounds are not sufficient.</p>
<p>We start with small utilities that make the examples shorter.</p>
<p>For a finite solvable group <code class="code">G</code>, the function <code class="code">PcConjugacyClassReps</code> returns a list of representatives of the conjugacy classes of <code class="code">G</code>, which are computed using a polycyclic presentation for <code class="code">G</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "PcConjugacyClassReps", function( G )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local iso;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> iso:= IsomorphismPcGroup( G );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return List( ConjugacyClasses( Image( iso ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> c -> PreImagesRepresentative( iso, Representative( c ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>For a finite group <code class="code">G</code>, a list <code class="code">primes</code> of prime integers, and a normal subgroup <code class="code">N</code> of <code class="code">G</code>, the function <code class="code">ClassesOfPrimeOrder</code> returns a list of those conjugacy classes of <code class="code">G</code> that are not contained in <code class="code">N</code> and whose elements' orders occur in <code class="code">primes</code>.</p>
<p>For each prime <span class="SimpleMath">\(p\)</span> in <code class="code">primes</code>, first class representatives of order <span class="SimpleMath">\(p\)</span> in a Sylow <span class="SimpleMath">\(p\)</span> subgroup of <code class="code">G</code> are computed, then the representatives in <code class="code">N</code> are discarded, and then representatives w. r. t. conjugacy in <code class="code">G</code> are computed.</p>
<p>(Note that this approach may be inappropriate for example if a large elementary abelian Sylow <span class="SimpleMath">\(p\)</span> subgroup occurs, and if the conjugacy tests in <code class="code">G</code> are expensive, see Section <a href="chap11_mj.html#X85BACC4A83F73392"><span class="RefLink">11.5-14</span></a>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "ClassesOfPrimeOrder", function( G, primes, N )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local ccl, p, syl, Greps, reps, r, cr;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> ccl:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in primes do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> syl:= SylowSubgroup( G, p );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Greps:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps:= Filtered( PcConjugacyClassReps( syl ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r -> Order( r ) = p and not r in N );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for r in reps do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cr:= ConjugacyClass( G, r );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAll( Greps, c -> c <> cr ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( Greps, cr );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( ccl, Greps );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return ccl;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>The function <code class="code">IsGeneratorsOfTransPermGroup</code> takes a <em>transitive</em> permutation group <code class="code">G</code> and a list <code class="code">list</code> of elements in <code class="code">G</code>, and returns <code class="keyw">true</code> if the elements in <code class="code">list</code> generate <code class="code">G</code>, and <code class="keyw">false</code> otherwise. The main point is that the return value <code class="keyw">true</code> requires the group generated by <code class="code">list</code> to be transitive, and the check for transitivity is much cheaper than the test whether this group is equal to <code class="code">G</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">if not IsBound( IsGeneratorsOfTransPermGroup) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> BindGlobal( "IsGeneratorsOfTransPermGroup", function( G, list )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local S;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsTransitive( G ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "<G> must be transitive on its moved points" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> S:= SubgroupNC( G, list );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return IsTransitive( S, MovedPoints( G ) ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Size( S ) = Size( G );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
</pre></div>
<p><code class="code">RatioOfNongenerationTransPermGroup</code> takes a <em>transitive</em> permutation group <code class="code">G</code> and two elements <code class="code">g</code> and <code class="code">s</code> of <code class="code">G</code>, and returns the proportion <span class="SimpleMath">\(P(g,s)\)</span>. (The function tests the (non)generation only for representatives of <span class="SimpleMath">\(C_G(g)\)</span>-<span class="SimpleMath">\(C_G(s)\)</span>-double cosets. Note that for <span class="SimpleMath">\(c_1 \in C_G(g)\)</span>, <span class="SimpleMath">\(c_2 \in C_G(s)\)</span>, and a representative <span class="SimpleMath">\(r \in G\)</span>, we have <span class="SimpleMath">\(\langle g^{c_1 r c_2}, s \rangle = \langle g^r, s \rangle^{c_2}\)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "RatioOfNongenerationTransPermGroup", function( G, g, s )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local nongen, pair;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsTransitive( G ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "<G> must be transitive on its moved points" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nongen:= 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for pair in DoubleCosetRepsAndSizes( G, Centralizer( G, g ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Centralizer( G, s ) ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsGeneratorsOfTransPermGroup( G, [ s, g^pair[1] ] ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nongen:= nongen + pair[2];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return nongen / Size( G );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>Let <span class="SimpleMath">\(G\)</span> be a group, and let <code class="code">groups</code> be a list <span class="SimpleMath">\([ G_1, G_2, \ldots, G_n ]\)</span> of permutation groups such that <span class="SimpleMath">\(G_i\)</span> describes the action of <span class="SimpleMath">\(G\)</span> on a set <span class="SimpleMath">\(\Omega_i\)</span>, say. Moreover, we require that for <span class="SimpleMath">\(1 \leq i, j \leq n\)</span>, mapping the <code class="code">GeneratorsOfGroup</code> list of <span class="SimpleMath">\(G_i\)</span> to that of <span class="SimpleMath">\(G_j\)</span> defines an isomorphism. <code class="code">DiagonalProductOfPermGroups</code> takes <code class="code">groups</code> as its argument, and returns the action of <span class="SimpleMath">\(G\)</span> on the disjoint union of <span class="SimpleMath">\(\Omega_1, \Omega_2, \ldots, \Omega_n\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "DiagonalProductOfPermGroups", function( groups )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local prodgens, deg, i, gens, D, pi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> prodgens:= GeneratorsOfGroup( groups[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> deg:= NrMovedPoints( prodgens );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 2 .. Length( groups ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> gens:= GeneratorsOfGroup( groups[i] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> D:= MovedPoints( gens );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pi:= MappingPermListList( D, [ deg+1 .. deg+Length( D ) ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> deg:= deg + Length( D );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> prodgens:= List( [ 1 .. Length( prodgens ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> prodgens[i] * gens[i]^pi );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return Group( prodgens );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>The following two functions are used to reduce checks of generation to class representatives of maximal order. Note that if <span class="SimpleMath">\(\langle s, g \rangle\)</span> is a proper subgroup of <span class="SimpleMath">\(G\)</span> then also <span class="SimpleMath">\(\langle s^k, g \rangle\)</span> is a proper subgroup of <span class="SimpleMath">\(G\)</span>, so we need not check powers <span class="SimpleMath">\(s^k\)</span> different from <span class="SimpleMath">\(s\)</span> in this situation.</p>
<p>For an ordinary character table <code class="code">tbl</code>, the function <code class="code">RepresentativesMaximallyCyclicSubgroups</code> returns a list of class positions, containing one class of generators for each class of maximally cyclic subgroups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "RepresentativesMaximallyCyclicSubgroups", function( tbl )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local n, result, orders, p, pmap, i, j;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Initialize.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> n:= NrConjugacyClasses( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result:= BlistList( [ 1 .. n ], [ 1 .. n ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Omit powers of smaller order.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> orders:= OrdersClassRepresentatives( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in PrimeDivisors( Size( tbl ) ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pmap:= PowerMap( tbl, p );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. n ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if orders[ pmap[i] ] < orders[i] then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result[ pmap[i] ]:= false;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Omit Galois conjugates.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. n ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if result[i] then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for j in ClassOrbit( tbl, i ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if i <> j then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result[j]:= false;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Return the result.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return ListBlist( [ 1 .. n ], result );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>Let <code class="code">G</code> be a finite group, <code class="code">tbl</code> be the ordinary character table of <code class="code">G</code>, and <code class="code">cols</code> be a list of class positions in <code class="code">tbl</code>, for example the list returned by <code class="code">RepresentativesMaximallyCyclicSubgroups</code>. The function <code class="code">ClassesPerhapsCorrespondingToTableColumns</code> returns the sublist of those conjugacy classes of <code class="code">G</code> for which the corresponding column in <code class="code">tbl</code> can be contained in <code class="code">cols</code>, according to element order and class size.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "ClassesPerhapsCorrespondingToTableColumns",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> function( G, tbl, cols )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local orders, classes, invariants;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> orders:= OrdersClassRepresentatives( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> classes:= SizesConjugacyClasses( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> invariants:= List( cols, i -> [ orders[i], classes[i] ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return Filtered( ConjugacyClasses( G ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> c -> [ Order( Representative( c ) ), Size(c) ] in invariants );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>The next function computes, for a finite group <span class="SimpleMath">\(G\)</span> and subgroups <span class="SimpleMath">\(M_1, M_2, \ldots, M_n\)</span> of <span class="SimpleMath">\(G\)</span>, an upper bound for <span class="SimpleMath">\(\max \{ \sum_{i=1}^n μ(g,G/M_i); g \in G \setminus Z(G) \}\)</span>. So if the <span class="SimpleMath">\(M_i\)</span> are the groups in <span class="SimpleMath">\(𝕄(G,s)\)</span>, for some <span class="SimpleMath">\(s \in G^{\times}\)</span>, then we get an upper bound for <span class="SimpleMath">\(σ(G,s)\)</span>.</p>
<p>The idea is that for <span class="SimpleMath">\(M \leq G\)</span> and <span class="SimpleMath">\(g \in G\)</span> of order <span class="SimpleMath">\(p\)</span>, we have</p>
<p class="center">\[
μ(g,G/M) = |g^G \cap M| / |g^G|
\leq \sum_{h \in C} |h^M| / |g^G|
= \sum_{h \in C} |h^M| \cdot |C_G(g)| / |G| ,
\]</p>
<p>where <span class="SimpleMath">\(C\)</span> is a set of class representatives <span class="SimpleMath">\(h \in M\)</span> of all those classes that satisfy <span class="SimpleMath">\(|h| = p\)</span> and <span class="SimpleMath">\(|C_G(h)| = |C_G(g)|\)</span>, and in the case that <span class="SimpleMath">\(G\)</span> is a permutation group additionally that <span class="SimpleMath">\(h\)</span> and <span class="SimpleMath">\(g\)</span> move the same number of points. (Note that it is enough to consider elements of <em>prime</em> order.)</p>
<p>For computing the maximum of the rightmost term in this inequality, for <span class="SimpleMath">\(g \in G \setminus Z(G)\)</span>, we need not determine the <span class="SimpleMath">\(G\)</span>-conjugacy of class representatives in <span class="SimpleMath">\(M\)</span>. Of course we pay the price that the result may be larger than the leftmost term. However, if the maximal sum is in fact taken only over a single class representative, we are sure that equality holds. Thus we return a list of length two, containing the maximum of the right hand side of the above inequality and a Boolean value indicating whether this is equal to <span class="SimpleMath">\(\max \{ μ(g,G/M); g \in G \setminus Z(G) \}\)</span> or just an upper bound.</p>
<p>The arguments for <code class="code">UpperBoundFixedPointRatios</code> are the group <code class="code">G</code>, a list <code class="code">maxesclasses</code> such that the <span class="SimpleMath">\(i\)</span>-th entry is a list of conjugacy classes of <span class="SimpleMath">\(M_i\)</span>, which covers all classes of prime element order in <span class="SimpleMath">\(M_i\)</span>, and either <code class="keyw">true</code> or <code class="keyw">false</code>, where <code class="keyw">true</code> means that the <em>exact</em> value of <span class="SimpleMath">\(σ(G,s)\)</span> is computed, not just an upper bound; this can be much more expensive because of the conjugacy tests in <span class="SimpleMath">\(G\)</span> that may be necessary. (We try to reduce the number of conjugacy tests in this case, the second half of the code is not completely straightforward. The special treatment of conjugacy checks for elements with the same sets of fixed points is essential in the computation of <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> for <span class="SimpleMath">\(G = PGL(6,4)\)</span>; the critical input line is <code class="code">ApproxPForOuterClassesInGL( 6, 4 )</code>, see Section <a href="chap11_mj.html#X7EA88CEF81962F3F"><span class="RefLink">11.5-7</span></a>. Currently the standard <strong class="pkg">GAP</strong> conjugacy test for an element of order three and its inverse in <span class="SimpleMath">\(G \setminus G^{\prime}\)</span> requires hours of CPU time, whereas the check for existence of a conjugating element in the stabilizer of the common set of fixed points of the two elements is almost free of charge.)</p>
<p><code class="code">UpperBoundFixedPointRatios</code> can be used to compute <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> in the case that <span class="SimpleMath">\(G\)</span> is an automorphic extension of a simple group <span class="SimpleMath">\(S\)</span>, with <span class="SimpleMath">\([G:S] = p\)</span> a prime; if <span class="SimpleMath">\(𝕄^{\prime}(G,s) = \{ M_1, M_2, \ldots, M_n \}\)</span> then the <span class="SimpleMath">\(i\)</span>-th entry of <code class="code">maxesclasses</code> must contain only the classes of element order <span class="SimpleMath">\(p\)</span> in <span class="SimpleMath">\(M_i \setminus (M_i \cap S)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "UpperBoundFixedPointRatios",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> function( G, maxesclasses, truetest )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local myIsConjugate, invs, info, c, r, o, inv, pos, sums, max, maxpos,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxlen, reps, split, i, found, j;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> myIsConjugate:= function( G, x, y )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local movx, movy;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> movx:= MovedPoints( x );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> movy:= MovedPoints( y );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if movx = movy then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> G:= Stabilizer( G, movx, OnSets );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return IsConjugate( G, x, y );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> invs:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> info:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # First distribute the classes according to invariants.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for c in Concatenation( maxesclasses ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r:= Representative( c );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> o:= Order( r );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Take only prime order representatives.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsPrimeInt( o ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> inv:= [ o, Size( Centralizer( G, r ) ) ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Omit classes that are central in `G'.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if inv[2] <> Size( G ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsPerm( r ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( inv, NrMovedPoints( r ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pos:= First( [ 1 .. Length( invs ) ], i -> inv = invs[i] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if pos = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # This class is not `G'-conjugate to any of the previous ones.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( invs, inv );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( info, [ [ r, Size( c ) * inv[2] ] ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # This class may be conjugate to an earlier one.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( info[ pos ], [ r, Size( c ) * inv[2] ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> if info = [] then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [ 0, true ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute the contributions of the classes with the same invariants.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sums:= List( info, x -> Sum( List( x, y -> y[2] ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> max:= Maximum( sums );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxpos:= Filtered( [ 1 .. Length( info ) ], i -> sums[i] = max );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxlen:= List( maxpos, i -> Length( info[i] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Split the sets with the same invariants if necessary</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # and if we want to compute the exact value.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if truetest and not 1 in maxlen then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Make one conjugacy test.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pos:= Position( maxlen, Minimum( maxlen ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps:= info[ maxpos[ pos ] ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if myIsConjugate( G, reps[1][1], reps[2][1] ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Fuse the two classes.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps[1][2]:= reps[1][2] + reps[2][2];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps[2]:= reps[ Length( reps ) ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( reps[ Length( reps ) ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Split the list. This may require additional conjugacy tests.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( info[ maxpos[ pos ] ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> split:= [ reps[1], reps[2] ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 3 .. Length( reps ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> found:= false;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for j in split do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if myIsConjugate( G, reps[i][1], j[1] ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> j[2]:= reps[i][2] + j[2];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> found:= true;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> break;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not found then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( split, reps[i] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> info:= Compacted( Concatenation( info,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> List( split, x -> [ x ] ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until 1 in maxlen or not truetest;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [ max / Size( G ), 1 in maxlen ];</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>Suppose that <span class="SimpleMath">\(C_1, C_2, C_3\)</span> are conjugacy classes in <span class="SimpleMath">\(G\)</span>, and that we have to prove, for each <span class="SimpleMath">\((x_1, x_2, x_3) \in C_1 \times C_2 \times C_3\)</span>, the existence of an element <span class="SimpleMath">\(s\)</span> in a prescribed class <span class="SimpleMath">\(C\)</span> of <span class="SimpleMath">\(G\)</span> such that <span class="SimpleMath">\(\langle x_1, s \rangle = \langle x_2, s \rangle = \langle x_2, s \rangle = G\)</span> holds.</p>
<p>We have to check only representatives under the conjugation action of <span class="SimpleMath">\(G\)</span> on <span class="SimpleMath">\(C_1 \times C_2 \times C_3\)</span>. For each representative, we try a prescribed number of random elements in <span class="SimpleMath">\(C\)</span>. If this is successful then we are done. The following two functions implement this idea.</p>
<p>For a group <span class="SimpleMath">\(G\)</span> and a list <span class="SimpleMath">\([ g_1, g_2, \ldots, g_n ]\)</span> of elements in <span class="SimpleMath">\(G\)</span>, <code class="code">OrbitRepresentativesProductOfClasses</code> returns a list <span class="SimpleMath">\(R(G, g_1, g_2, \ldots, g_n)\)</span> of representatives of <span class="SimpleMath">\(G\)</span>-orbits on the Cartesian product <span class="SimpleMath">\(g_1^G \times g_2^G \times \cdots \times g_n^G\)</span>.</p>
<p>The idea behind this function is to choose <span class="SimpleMath">\(R(G, g_1) = \{ ( g_1 ) \}\)</span> in the case <span class="SimpleMath">\(n = 1\)</span>, and, for <span class="SimpleMath">\(n > 1\)</span>,</p>
<p class="center">\[
R(G, g_1, g_2, \ldots, g_n) = \{ (h_1, h_2, \ldots, h_n) \mid
(h_1, h_2, \ldots, h_{n-1}) \in R(G, g_1, g_2, \ldots, g_{n-1}), \\
h_n = g_n^d, \textrm{\ for\ } d \in D \} ,
\]</p>
<p>where <span class="SimpleMath">\(D\)</span> is a set of representatives of double cosets <span class="SimpleMath">\(C_G(g_n) \setminus G / \cap_{i=1}^{n-1} C_G(h_i)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "OrbitRepresentativesProductOfClasses",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> function( G, classreps )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local cents, n, orbreps;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> cents:= List( classreps, x -> Centralizer( G, x ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> n:= Length( classreps );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> orbreps:= function( reps, intersect, pos )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if pos > n then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [ reps ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return Concatenation( List(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> DoubleCosetRepsAndSizes( G, cents[ pos ], intersect ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r -> orbreps( Concatenation( reps, [ classreps[ pos ]^r[1] ] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Intersection( intersect, cents[ pos ]^r[1] ), pos+1 ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return orbreps( [ classreps[1] ], cents[1], 2 );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>The function <code class="code">RandomCheckUniformSpread</code> takes a transitive permutation group <span class="SimpleMath">\(G\)</span>, a list of class representatives <span class="SimpleMath">\(g_i \in G\)</span>, an element <span class="SimpleMath">\(s \in G\)</span>, and a positive integer <span class="SimpleMath">\(N\)</span>. The return value is <code class="keyw">true</code> if for each representative of <span class="SimpleMath">\(G\)</span>-orbits on the product of the classes <span class="SimpleMath">\(g_i^G\)</span>, a good conjugate of <span class="SimpleMath">\(s\)</span> is found in at most <span class="SimpleMath">\(N\)</span> random tests.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "RandomCheckUniformSpread", function( G, classreps, s, try )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local elms, found, i, conj;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsTransitive( G, MovedPoints( G ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "<G> must be transitive on its moved points" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute orbit representatives of G on the direct product,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # and try to find a good conjugate of s for each representative.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for elms in OrbitRepresentativesProductOfClasses( G, classreps ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> found:= false;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. try ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> conj:= s^Random( G );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAll( elms,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> IsGeneratorsOfTransPermGroup( G, [ x, conj ] ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> found:= true;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> break;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not found then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return elms;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return true;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>Of course this approach is not suitable for <em>dis</em>proving the existence of <span class="SimpleMath">\(s\)</span>, but it is much cheaper than an exhaustive search in the class <span class="SimpleMath">\(C\)</span>. (Typically, <span class="SimpleMath">\(|C|\)</span> is large whereas the <span class="SimpleMath">\(|C_i|\)</span> are small.)</p>
<p>The following function can be used to verify that a given <span class="SimpleMath">\(n\)</span>-tuple <span class="SimpleMath">\((x_1, x_2, \ldots, x_n)\)</span> of elements in a group <span class="SimpleMath">\(G\)</span> has the property that for all elements <span class="SimpleMath">\(g \in G\)</span>, at least one <span class="SimpleMath">\(x_i\)</span> satisfies <span class="SimpleMath">\(\langle x_i, g \rangle\)</span>. The arguments are a transitive permutation group <span class="SimpleMath">\(G\)</span>, a list of class representatives in <span class="SimpleMath">\(G\)</span>, and the <span class="SimpleMath">\(n\)</span>-tuple in question. The return value is a conjugate <span class="SimpleMath">\(g\)</span> of the given representatives that has the property if such an element exists, and <code class="keyw">fail</code> otherwise.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "CommonGeneratorWithGivenElements",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> function( G, classreps, tuple )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local inter, rep, repcen, pair;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsTransitive( G, MovedPoints( G ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "<G> must be transitive on its moved points" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> inter:= Intersection( List( tuple, x -> Centralizer( G, x ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for rep in classreps do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> repcen:= Centralizer( G, rep );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for pair in DoubleCosetRepsAndSizes( G, repcen, inter ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAll( tuple,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> IsGeneratorsOfTransPermGroup( G, [ x, rep^pair[1] ] ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return rep;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p><a id="X7A221012861440E2" name="X7A221012861440E2"></a></p>
<h4>11.4 <span class="Heading">Character-Theoretic Computations</span></h4>
<p>In this section, we apply the functions introduced in Section <a href="chap11_mj.html#X7A221012861440E2"><span class="RefLink">11.3-2</span></a> to the character tables of simple groups that are available in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<p>Our first examples are the sporadic simple groups, in Section <a href="chap11_mj.html#X86CE51E180A3D4ED"><span class="RefLink">11.4-1</span></a>, then their automorphism groups are considered in Section <a href="chap11_mj.html#X84E9D10F80A74A53"><span class="RefLink">11.4-2</span></a>.</p>
<p>Then we consider those other simple groups for which <strong class="pkg">GAP</strong> provides enough information for automatically computing an upper bound on <span class="SimpleMath">\(σ(G,s)\)</span> –see Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>– and their automorphic extensions –see Section <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a>.</p>
<p>After that, individual groups are considered.</p>
<p><a id="X86CE51E180A3D4ED" name="X86CE51E180A3D4ED"></a></p>
<h5>11.4-1 <span class="Heading">Sporadic Simple Groups</span></h5>
<p>The <strong class="pkg">GAP</strong> Character Table Library contains the tables of maximal subgroups of all sporadic simple groups except <span class="SimpleMath">\(B\)</span> and <span class="SimpleMath">\(M\)</span>, so all primitive permutation characters can be computed via the function <code class="code">PrimitivePermutationCharacters</code> for <span class="SimpleMath">\(24\)</span> of the <span class="SimpleMath">\(26\)</span> sporadic simple groups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sporinfo:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spornames:= AllCharacterTableNames( IsSporadicSimple, true,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsDuplicateTable, false );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for tbl in List( spornames, CharacterTable ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> info:= ProbGenInfoSimple( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if info <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( sporinfo, info );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p>We show the result as a formatted table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrintFormattedArray( sporinfo );</span>
Co1 421/1545600 3671 [ "35A" ] [ 4 ]
Co2 1/270 269 [ "23A" ] [ 1 ]
Co3 64/6325 98 [ "21A" ] [ 4 ]
F3+ 1/269631216855 269631216854 [ "29A" ] [ 1 ]
Fi22 43/585 13 [ "16A" ] [ 7 ]
Fi23 2651/2416635 911 [ "23A" ] [ 2 ]
HN 4/34375 8593 [ "19A" ] [ 1 ]
HS 64/1155 18 [ "15A" ] [ 2 ]
He 3/595 198 [ "14C" ] [ 3 ]
J1 1/77 76 [ "19A" ] [ 1 ]
J2 5/28 5 [ "10C" ] [ 3 ]
J3 2/153 76 [ "19A" ] [ 2 ]
J4 1/1647124116 1647124115 [ "29A" ] [ 1 ]
Ly 1/35049375 35049374 [ "37A" ] [ 1 ]
M11 1/3 2 [ "11A" ] [ 1 ]
M12 1/3 2 [ "10A" ] [ 3 ]
M22 1/21 20 [ "11A" ] [ 1 ]
M23 1/8064 8063 [ "23A" ] [ 1 ]
M24 108/1265 11 [ "21A" ] [ 2 ]
McL 317/22275 70 [ "15A", "30A" ] [ 3, 3 ]
ON 10/30723 3072 [ "31A" ] [ 2 ]
Ru 1/2880 2879 [ "29A" ] [ 1 ]
Suz 141/5720 40 [ "14A" ] [ 3 ]
Th 2/267995 133997 [ "27A", "27B" ] [ 2, 2 ]
</pre></div>
<p>We see that in all these cases, <span class="SimpleMath">\(σ(G) < 1/2\)</span> and thus <span class="SimpleMath">\(P( G ) \geq 2\)</span>, and all sporadic simple groups <span class="SimpleMath">\(G\)</span> except <span class="SimpleMath">\(G = M_{11}\)</span> and <span class="SimpleMath">\(G = M_{12}\)</span> satisfy <span class="SimpleMath">\(σ(G) < 1/3\)</span>. See <a href="chap11_mj.html#X7B7061917ED3714D"><span class="RefLink">11.5-9</span></a> and <a href="chap11_mj.html#X82E0F48A7FF82BB3"><span class="RefLink">11.5-10</span></a> for a proof that also these two groups have uniform spread at least three.</p>
<p>The structures and multiplicities of the maximal subgroups containing <span class="SimpleMath">\(s\)</span> are as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for entry in sporinfo do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> DisplayProbGenMaxesInfo( CharacterTable( entry[1] ), entry[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
Co1, 35A: (A5xJ2):2 (1)
(A6xU3(3)):2 (2)
(A7xL2(7)):2 (1)
Co2, 23A: M23 (1)
Co3, 21A: U3(5).3.2 (2)
L3(4).D12 (1)
s3xpsl(2,8).3 (1)
F3+, 29A: 29:14 (1)
Fi22, 16A: 2^10:m22 (1)
(2x2^(1+8)):U4(2):2 (1)
2F4(2)' (4)
2^(5+8):(S3xA6) (1)
Fi23, 23A: 2..11.m23 (1)
L2(23) (1)
HN, 19A: U3(8).3_1 (1)
HS, 15A: A8.2 (1)
5:4xa5 (1)
He, 14C: 2^1+6.psl(3,2) (1)
7^2:2psl(2,7) (1)
7^(1+2):(S3x3) (1)
J1, 19A: 19:6 (1)
J2, 10C: 2^1+4b:a5 (1)
a5xd10 (1)
5^2:D12 (1)
J3, 19A: L2(19) (1)
J3M3 (1)
J4, 29A: frob (1)
Ly, 37A: 37:18 (1)
M11, 11A: L2(11) (1)
M12, 10A: A6.2^2 (1)
M12M4 (1)
2xS5 (1)
M22, 11A: L2(11) (1)
M23, 23A: 23:11 (1)
M24, 21A: L3(4).3.2_2 (1)
2^6:(psl(3,2)xs3) (1)
McL, 15A: 3^(1+4):2S5 (1)
2.A8 (1)
5^(1+2):3:8 (1)
McL, 30A: 3^(1+4):2S5 (1)
2.A8 (1)
5^(1+2):3:8 (1)
ON, 31A: L2(31) (1)
ONM8 (1)
Ru, 29A: L2(29) (1)
Suz, 14A: J2.2 (2)
(a4xpsl(3,4)):2 (1)
Th, 27A: ThN3B (1)
ThM7 (1)
Th, 27B: ThN3B (1)
ThM7 (1)
</pre></div>
<p>For the remaining two sporadic simple groups, <span class="SimpleMath">\(B\)</span> and <span class="SimpleMath">\(M\)</span>, we choose suitable elements <span class="SimpleMath">\(s\)</span>. If <span class="SimpleMath">\(G = B\)</span> and <span class="SimpleMath">\(s \in G\)</span> is of order <span class="SimpleMath">\(47\)</span> then, by <a href="chapBib_mj.html#biBWil99">[Wil99]</a>, <span class="SimpleMath">\(𝕄(G,s) = \{ 47:23 \}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "B" ), "47A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "47:23" ) ], [ 1 ] );</span>
1/174702778623598780219392000000
</pre></div>
<p>If <span class="SimpleMath">\(G = M\)</span> and <span class="SimpleMath">\(s \in G\)</span> is of order <span class="SimpleMath">\(59\)</span> then, by <a href="chapBib_mj.html#biBHW04">[HW04]</a>, <span class="SimpleMath">\(𝕄(G,s) = \{ L_2(59) \}\)</span>. In this case, the permutation character is not uniquely determined by the character tables, but all possibilities lead to the same value for <span class="SimpleMath">\(σ(G)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "L2(59)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( pi );</span>
5
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 59 );</span>
152
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( pi, x -> Maximum( ApproxP( [ x ], spos ) ) );</span>
[ 1/3385007637938037777290625 ]
</pre></div>
<p>Essentially the same approach is taken in <a href="chapBib_mj.html#biBGM01">[GM01]</a>. However, there <span class="SimpleMath">\(s\)</span> is restricted to classes of prime order. Thus the results in the above table are better for <span class="SimpleMath">\(J_2\)</span>, <span class="SimpleMath">\(HS\)</span>, <span class="SimpleMath">\(M_{24}\)</span>, <span class="SimpleMath">\(McL\)</span>, <span class="SimpleMath">\(He\)</span>, <span class="SimpleMath">\(Suz\)</span>, <span class="SimpleMath">\(Co_3\)</span>, <span class="SimpleMath">\(Fi_{22}\)</span>, <span class="SimpleMath">\(Ly\)</span>, <span class="SimpleMath">\(Th\)</span>, <span class="SimpleMath">\(Co_1\)</span>, and <span class="SimpleMath">\(J_4\)</span>. Besides that, the value <span class="SimpleMath">\(10\,999\)</span> claimed in <a href="chapBib_mj.html#biBGM01">[GM01]</a> for <span class="SimpleMath">\(𝕊/~( HN )\)</span> is not correct.</p>
<p><a id="X84E9D10F80A74A53" name="X84E9D10F80A74A53"></a></p>
<h5>11.4-2 <span class="Heading">Automorphism Groups of Sporadic Simple Groups</span></h5>
<p>Next we consider the automorphism groups of the sporadic simple groups. There are exactly <span class="SimpleMath">\(12\)</span> cases where nontrivial outer automorphisms exist, and then the simple group <span class="SimpleMath">\(S\)</span> has index <span class="SimpleMath">\(2\)</span> in its automorphism group <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sporautnames:= AllCharacterTableNames( IsSporadicSimple, true,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsDuplicateTable, false,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> OfThose, AutomorphismGroup );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sporautnames:= Difference( sporautnames, spornames );</span>
[ "F3+.2", "Fi22.2", "HN.2", "HS.2", "He.2", "J2.2", "J3.2", "M12.2",
"M22.2", "McL.2", "ON.2", "Suz.2" ]
</pre></div>
<p>First we compute the values <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span>, for the same <span class="SimpleMath">\(s \in S\)</span> that were chosen for the simple group <span class="SimpleMath">\(S\)</span> in Section <a href="chap11_mj.html#X86CE51E180A3D4ED"><span class="RefLink">11.4-1</span></a>.</p>
<p>For six of the groups <span class="SimpleMath">\(G\)</span> in question, the character tables of all maximal subgroups are available in the <strong class="pkg">GAP</strong> Character Table Library. In these cases, the values <span class="SimpleMath">\(σ^{\prime}( G, s )\)</span> can be computed using <code class="code">ProbGenInfoAlmostSimple</code>.</p>
<p><em>(The above statement can meanwhile be replaced by the statement that the character tables of all maximal subgroups are available for all twelve groups. We show the table results for all these groups but keep the individual computations from the original computations.)</em></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sporautinfo:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fails:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for name in sporautnames do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tbl:= CharacterTable( name{ [ 1 .. Position( name, '.' ) - 1 ] } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblG:= CharacterTable( name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> info:= ProbGenInfoSimple( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> info:= ProbGenInfoAlmostSimple( tbl, tblG,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> List( info[4], x -> Position( AtlasClassNames( tbl ), x ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if info = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( fails, name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( sporautinfo, info );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrintFormattedArray( sporautinfo );</span>
F3+.2 0 [ "29AB" ] [ 1 ]
Fi22.2 251/3861 [ "16AB" ] [ 7 ]
HN.2 1/6875 [ "19AB" ] [ 1 ]
HS.2 36/275 [ "15A" ] [ 2 ]
He.2 37/9520 [ "14CD" ] [ 3 ]
J2.2 1/15 [ "10CD" ] [ 3 ]
J3.2 1/1080 [ "19AB" ] [ 1 ]
M12.2 4/99 [ "10A" ] [ 1 ]
M22.2 1/21 [ "11AB" ] [ 1 ]
McL.2 1/63 [ "15AB", "30AB" ] [ 3, 3 ]
ON.2 1/84672 [ "31AB" ] [ 1 ]
Suz.2 661/46332 [ "14A" ] [ 3 ]
</pre></div>
<p>Note that for <span class="SimpleMath">\(S = McL\)</span>, the bound <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> for <span class="SimpleMath">\(G = S.2\)</span> (in the second column) is worse than the bound for the simple group <span class="SimpleMath">\(S\)</span>.</p>
<p>The structures and multiplicities of the maximal subgroups containing <span class="SimpleMath">\(s\)</span> are as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for entry in sporautinfo do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> DisplayProbGenMaxesInfo( CharacterTable( entry[1] ), entry[3] );</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
F3+.2, 29AB: F3+ (1)
frob (1)
Fi22.2, 16AB: Fi22 (1)
Fi22.2M4 (1)
(2x2^(1+8)):(U4(2):2x2) (1)
2F4(2)'.2 (4)
2^(5+8):(S3xS6) (1)
HN.2, 19AB: HN (1)
U3(8).6 (1)
HS.2, 15A: HS (1)
S8x2 (1)
5:4xS5 (1)
He.2, 14CD: He (1)
2^(1+6)_+.L3(2).2 (1)
7^2:2.L2(7).2 (1)
7^(1+2):(S3x6) (1)
J2.2, 10CD: J2 (1)
2^(1+4).S5 (1)
(A5xD10).2 (1)
5^2:(4xS3) (1)
J3.2, 19AB: J3 (1)
19:18 (1)
M12.2, 10A: M12 (1)
(2^2xA5):2 (1)
M22.2, 11AB: M22 (1)
L2(11).2 (1)
McL.2, 15AB: McL (1)
3^(1+4):4S5 (1)
Isoclinic(2.A8.2) (1)
5^(1+2):(24:2) (1)
McL.2, 30AB: McL (1)
3^(1+4):4S5 (1)
Isoclinic(2.A8.2) (1)
5^(1+2):(24:2) (1)
ON.2, 31AB: ON (1)
31:30 (1)
Suz.2, 14A: Suz (1)
J2.2x2 (2)
(A4xL3(4):2_3):2 (1)
</pre></div>
<p>Note that the maximal subgroups <span class="SimpleMath">\(L_2(19)\)</span> of <span class="SimpleMath">\(J_3\)</span> do not extend to <span class="SimpleMath">\(J_3.2\)</span> and that a class of maximal subgroups of the type <span class="SimpleMath">\(19:18\)</span> appears in <span class="SimpleMath">\(J_3.2\)</span> whose intersection with <span class="SimpleMath">\(J_3\)</span> is not maximal in <span class="SimpleMath">\(J_3\)</span>. Similarly, the maximal subgroups <span class="SimpleMath">\(A_6.2^2\)</span> of <span class="SimpleMath">\(M_{12}\)</span> do not extend to <span class="SimpleMath">\(M_{12}.2\)</span>.</p>
<p>For the other six groups, we use individual computations.</p>
<p>In the case <span class="SimpleMath">\(S = Fi_{24}^{\prime}\)</span>, the unique maximal subgroup <span class="SimpleMath">\(29:14\)</span> that contains an element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(29\)</span> extends to a group of the type <span class="SimpleMath">\(29:28\)</span> in <span class="SimpleMath">\(Fi_{24}\)</span>, which is a nonsplit extension of <span class="SimpleMath">\(29:14\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "Fi24'.2" ), "29AB",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "29:28" ) ], [ 1 ], "outer" );</span>
0
</pre></div>
<p>In the case <span class="SimpleMath">\(S = Fi_{22}\)</span>, there are four classes of maximal subgroups that contain <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(16\)</span>. They extend to <span class="SimpleMath">\(G = Fi_{22}.2\)</span>, and none of the <em>novelties</em> in <span class="SimpleMath">\(G\)</span> (i. e., subgroups of <span class="SimpleMath">\(G\)</span> that are maximal in <span class="SimpleMath">\(G\)</span> but whose intersections with <span class="SimpleMath">\(S\)</span> are not maximal in <span class="SimpleMath">\(S\)</span>) contains <span class="SimpleMath">\(s\)</span>, cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 163]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">16 in OrdersClassRepresentatives( CharacterTable( "U4(2).2" ) );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">16 in OrdersClassRepresentatives( CharacterTable( "G2(3).2" ) );</span>
false
</pre></div>
<p>The character tables of three of the four extensions are available in the <strong class="pkg">GAP</strong> Character Table Library. The permutation character on the cosets of the fourth extension can be obtained as the extension of the permutation character of <span class="SimpleMath">\(S\)</span> on the cosets of its maximal subgroup of the type <span class="SimpleMath">\(2^{5+8}:(S_3 \times A_6)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "Fi22.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= List( [ "Fi22.2M4", "(2x2^(1+8)):(U4(2):2x2)", "2F4(2)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> n -> PossiblePermutationCharacters( CharacterTable( n ), t2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "Fi22" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2^(5+8):(S3xA6)" ), t );</span>
[ Character( CharacterTable( "Fi22" ),
[ 3648645, 56133, 10629, 2245, 567, 729, 405, 81, 549, 165, 133,
37, 69, 20, 27, 81, 9, 39, 81, 19, 1, 13, 33, 13, 1, 0, 13, 13,
5, 1, 0, 0, 0, 8, 4, 0, 0, 9, 3, 15, 3, 1, 1, 1, 1, 3, 3, 1, 0,
0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">torso:= CompositionMaps( pi[1], InverseMap( GetFusionMap( t, t2 ) ) );</span>
[ 3648645, 56133, 10629, 2245, 567, 729, 405, 81, 549, 165, 133, 37,
69, 20, 27, 81, 9, 39, 81, 19, 1, 13, 33, 13, 1, 0, 13, 13, 5, 1,
0, 0, 0, 8, 4, 0, 9, 3, 15, 3, 1, 1, 1, 3, 3, 1, 0, 0, 2, 1, 0, 0,
0, 0, 0, 0, 1, 1, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= PermChars( t2, rec( torso:= torso ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Add( prim, ext );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= Concatenation( prim );; Length( prim );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t2 ), 16 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( prim, x -> x[ spos ] );</span>
[ 1, 1, 4, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">sigma:= ApproxP( prim, spos );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( sigma{ Difference( PositionsProperty(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
251/3861
</pre></div>
<p>In the case <span class="SimpleMath">\(S = HN\)</span>, the unique maximal subgroup <span class="SimpleMath">\(U_3(8).3\)</span> that contains the fixed element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(19\)</span> extends to a group of the type <span class="SimpleMath">\(U_3(8).6\)</span> in <span class="SimpleMath">\(HN.2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "HN.2" ), "19AB",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "U3(8).6" ) ], [ 1 ], "outer" );</span>
1/6875
</pre></div>
<p>In the case <span class="SimpleMath">\(S = HS\)</span>, there are two classes of maximal subgroups that contain <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>. They extend to <span class="SimpleMath">\(G = HS.2\)</span>, and none of the novelties in <span class="SimpleMath">\(G\)</span> contains <span class="SimpleMath">\(s\)</span> (cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 80]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "HS.2" ), "15A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "S8x2" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "5:4" ) * CharacterTable( "A5.2" ) ], [ 1, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "outer" );</span>
36/275
</pre></div>
<p>In the case <span class="SimpleMath">\(S = He\)</span>, there are three classes of maximal subgroups that contain <span class="SimpleMath">\(s\)</span> in the class <code class="code">14C</code>. They extend to <span class="SimpleMath">\(G = He.2\)</span>, and none of the novelties in <span class="SimpleMath">\(G\)</span> contains <span class="SimpleMath">\(s\)</span> (cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 104]</a>). We compute the extensions of the corresponding primitive permutation characters of <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "He" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "He.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( AtlasClassNames( t ), "14C" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= Filtered( prim, x -> x[ spos ] <> 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">map:= InverseMap( GetFusionMap( t, t2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">torso:= List( prim, pi -> CompositionMaps( pi, map ) );</span>
[ [ 187425, 945, 449, 0, 21, 21, 25, 25, 0, 0, 5, 0, 0, 7, 1, 0, 0,
1, 0, 1, 0, 0, 0, 0, 0, 0 ],
[ 244800, 0, 64, 0, 84, 0, 0, 16, 0, 0, 4, 24, 45, 3, 4, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0 ],
[ 652800, 0, 512, 120, 72, 0, 0, 0, 0, 0, 8, 8, 22, 1, 0, 0, 0, 0,
0, 1, 0, 0, 1, 1, 2, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= List( torso, x -> PermChars( t2, rec( torso:= x ) ) );</span>
[ [ Character( CharacterTable( "He.2" ),
[ 187425, 945, 449, 0, 21, 21, 25, 25, 0, 0, 5, 0, 0, 7, 1, 0,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 315, 15, 0, 0, 3, 7, 7, 3, 0,
0, 0, 1, 1, 0, 1, 1, 0, 0, 0 ] ) ],
[ Character( CharacterTable( "He.2" ),
[ 244800, 0, 64, 0, 84, 0, 0, 16, 0, 0, 4, 24, 45, 3, 4, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 360, 0, 0, 0, 6, 0, 0, 0, 0, 0,
3, 2, 2, 0, 0, 0, 0, 0, 0 ] ) ],
[ Character( CharacterTable( "He.2" ),
[ 652800, 0, 512, 120, 72, 0, 0, 0, 0, 0, 8, 8, 22, 1, 0, 0, 0,
0, 0, 1, 0, 0, 1, 1, 2, 0, 480, 0, 120, 0, 12, 0, 0, 0, 0,
0, 4, 0, 0, 0, 0, 0, 0, 1, 1 ] ) ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( AtlasClassNames( t2 ), "14CD" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sigma:= ApproxP( Concatenation( ext ), spos );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( sigma{ Difference( PositionsProperty(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
37/9520
</pre></div>
<p>In the case <span class="SimpleMath">\(S = O'N\)</span>, the two classes of maximal subgroups of the type <span class="SimpleMath">\(L_2(31)\)</span> do not extend to <span class="SimpleMath">\(G = O'N.2\)</span>, and a class of novelties of the structure <span class="SimpleMath">\(31:30\)</span> appears (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 132]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "ON.2" ), "31AB",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "P:Q", [ 31, 30 ] ) ], [ 1 ], "outer" );</span>
1/84672
</pre></div>
<p>Now we consider also <span class="SimpleMath">\(σ(G,\hat{s})\)</span>, for suitable <span class="SimpleMath">\(\hat{s} \in G \setminus S\)</span>; this yields lower bounds for the spread of the nonsimple groups <span class="SimpleMath">\(G\)</span>. (These results are shown in the last two columns of <a href="chapBib_mj.html#biBBGK">[BGK08, Table 9]</a>.)</p>
<p>As above, we use the known character tables of the maximal subgroups in order to compute the optimal choice for <span class="SimpleMath">\(\hat{s} \in G \setminus S\)</span>. (We may use the function <code class="code">ProbGenInfoSimple</code> although the groups are not simple; all we need is that the relevant maximal subgroups are self-normalizing.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sporautinfo2:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for name in List( sporautinfo, x -> x[1] ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( sporautinfo2, ProbGenInfoSimple( CharacterTable( name ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrintFormattedArray( sporautinfo2 );</span>
F3+.2 19/5684 299 [ "42E" ] [ 10 ]
Fi22.2 1165/20592 17 [ "24G" ] [ 3 ]
HN.2 1/1425 1424 [ "24B" ] [ 4 ]
HS.2 21/550 26 [ "20C" ] [ 4 ]
He.2 33/4165 126 [ "24A" ] [ 2 ]
J2.2 1/15 14 [ "14A" ] [ 1 ]
J3.2 77/10260 133 [ "34A" ] [ 1 ]
M12.2 113/495 4 [ "12B" ] [ 3 ]
M22.2 8/33 4 [ "10A" ] [ 4 ]
McL.2 1/135 134 [ "22A" ] [ 1 ]
ON.2 61/109368 1792 [ "22A", "38A" ] [ 1, 1 ]
Suz.2 1/351 350 [ "28A" ] [ 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">for entry in sporautinfo2 do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> DisplayProbGenMaxesInfo( CharacterTable( entry[1] ), entry[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
F3+.2, 42E: 2^12.M24 (2)
2^2.U6(2):S3x2 (1)
2^(3+12).(L3(2)xS6) (2)
(S3xS3xG2(3)):2 (1)
S6xL2(8):3 (1)
7:6xS7 (1)
7^(1+2)_+:(6xS3).2 (2)
Fi22.2, 24G: Fi22.2M4 (1)
2^(5+8):(S3xS6) (1)
3^5:(2xU4(2).2) (1)
HN.2, 24B: 2^(1+8)_+.(A5xA5).2^2 (1)
5^2.5.5^2.4S5 (2)
HN.2M13 (1)
HS.2, 20C: (2xA6.2^2).2 (1)
HS.2N5 (2)
5:4xS5 (1)
He.2, 24A: 2^(1+6)_+.L3(2).2 (1)
S4xL3(2).2 (1)
J2.2, 14A: L3(2).2x2 (1)
J3.2, 34A: L2(17)x2 (1)
M12.2, 12B: L2(11).2 (1)
2^3.(S4x2) (1)
3^(1+2):D8 (1)
M22.2, 10A: M22.2M4 (1)
A6.2^2 (1)
L2(11).2 (2)
McL.2, 22A: 2xM11 (1)
ON.2, 22A: J1x2 (1)
ON.2, 38A: J1x2 (1)
Suz.2, 28A: (A4xL3(4):2_3):2 (1)
</pre></div>
<p>In the other six cases, we do not have the complete lists of primitive permutation characters, so we choose a suitable element <span class="SimpleMath">\(\hat{s}\)</span> for each group. It is sufficient to prescribe <span class="SimpleMath">\(|\hat{s}|\)</span>, as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sporautchoices:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "Fi22", "Fi22.2", 42 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "Fi24'", "Fi24'.2", 46 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "He", "He.2", 42 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "HN", "HN.2", 44 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "HS", "HS.2", 30 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "ON", "ON.2", 38 ], ];;</span>
</pre></div>
<p>First we list the maximal subgroups of the corresponding simple groups that contain the square of <span class="SimpleMath">\(\hat{s}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for triple in sporautchoices do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tbl:= CharacterTable( triple[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tbl2:= CharacterTable( triple[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> spos2:= PowerMap( tbl2, 2,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Position( OrdersClassRepresentatives( tbl2 ), triple[3] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> spos:= Position( GetFusionMap( tbl, tbl2 ), spos2 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> DisplayProbGenMaxesInfo( tbl, AtlasClassNames( tbl ){ [ spos ] } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
Fi22, 21A: O8+(2).3.2 (1)
S3xU4(3).2_2 (1)
A10.2 (1)
A10.2 (1)
F3+, 23A: Fi23 (1)
F3+M7 (1)
He, 21B: 3.A7.2 (1)
7^(1+2):(S3x3) (1)
7:3xpsl(3,2) (2)
HN, 22A: 2.HS.2 (1)
HS, 15A: A8.2 (1)
5:4xa5 (1)
ON, 19B: L3(7).2 (1)
ONM2 (1)
J1 (1)
</pre></div>
<p>According to <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>, exactly the following maximal subgroups of the simple group <span class="SimpleMath">\(S\)</span> in the above list do <em>not</em> extend to <span class="SimpleMath">\(Aut(S)\)</span>: The two <span class="SimpleMath">\(S_{10}\)</span> type subgroups of <span class="SimpleMath">\(Fi_{22}\)</span> and the two <span class="SimpleMath">\(L_3(7).2\)</span> type subgroups of <span class="SimpleMath">\(O'N\)</span>.</p>
<p>Furthermore, the following maximal subgroups of <span class="SimpleMath">\(Aut(S)\)</span> with the property that the intersection with <span class="SimpleMath">\(S\)</span> is not maximal in <span class="SimpleMath">\(S\)</span> have to be considered whether they contain <span class="SimpleMath">\(s^{\prime}\)</span>: <span class="SimpleMath">\(G_2(3).2\)</span> and <span class="SimpleMath">\(3^5:(2 \times U_4(2).2)\)</span> in <span class="SimpleMath">\(Fi_{22}.2\)</span>. (Note that the order of the <span class="SimpleMath">\(7^{1+2}_+:(3 \times D_{16})\)</span> type subgroup in <span class="SimpleMath">\(O'N.2\)</span> is obviously not divisible by <span class="SimpleMath">\(19\)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">42 in OrdersClassRepresentatives( CharacterTable( "G2(3).2" ) );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( CharacterTable( "U4(2)" ) ) mod 7 = 0;</span>
false
</pre></div>
<p>So we take the extensions of the above maximal subgroups, as described in <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "Fi22.2" ), "42A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "O8+(2).3.2" ) * CharacterTable( "Cyclic", 2 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "S3" ) * CharacterTable( "U4(3).(2^2)_{122}" ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 1 ] );</span>
163/1170
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "Fi24'.2" ), "46A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "Fi23" ) * CharacterTable( "Cyclic", 2 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2^12.M24" ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 1 ] );</span>
566/5481
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "He.2" ), "42A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "3.A7.2" ) * CharacterTable( "Cyclic", 2 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "7^(1+2):(S3x6)" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "7:6" ) * CharacterTable( "L3(2)" ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 1, 1 ] );</span>
1/119
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "HN.2" ), "44A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "4.HS.2" ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1 ] );</span>
997/192375
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "HS.2" ), "30A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "S8" ) * CharacterTable( "C2" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "5:4" ) * CharacterTable( "S5" ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 1 ] );</span>
36/275
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "ON.2" ), "38A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "J1" ) * CharacterTable( "C2" ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1 ] );</span>
61/109368
</pre></div>
<p><a id="X80DA58F187CDCF5F" name="X80DA58F187CDCF5F"></a></p>
<h5>11.4-3 <span class="Heading">Other Simple Groups – Easy Cases</span></h5>
<p>We are interested in simple groups <span class="SimpleMath">\(G\)</span> for which <code class="code">ProbGenInfoSimple</code> does not guarantee <span class="SimpleMath">\(𝕊/~(G) \geq 3\)</span>. So we examine the remaining tables of simple groups in the <strong class="pkg">GAP</strong> Character Table Library, and distinguish the following three cases: Either <code class="code">ProbGenInfoSimple</code> yields the lower bound at least three, or a smaller bound, or the computation of a lower bound fails because not enough information is available to compute the primitive permutation characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= AllCharacterTableNames( IsSimple, true, IsAbelian, false,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsDuplicateTable, false );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= Difference( names, spornames );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fails:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">lessthan3:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">atleast3:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for name in names do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tbl:= CharacterTable( name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> info:= ProbGenInfoSimple( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if info = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( fails, name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif info[3] < 3 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( lessthan3, info );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( atleast3, info );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p>For the following simple groups, (currently) not enough information is available in the <strong class="pkg">GAP</strong> Character Table Library and in the <strong class="pkg">GAP</strong> Library of Tables of Marks, for computing a lower bound for <span class="SimpleMath">\(σ(G)\)</span>. Some of these groups will be dealt with in later sections, and for the other groups, the bounds derived with theoretical arguments in <a href="chapBib_mj.html#biBBGK">[BGK08]</a> are sufficient, so we need no <strong class="pkg">GAP</strong> computations for them.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fails;</span>
[ "2E6(2)", "2F4(8)", "3D4(3)", "3D4(4)", "A14", "A15", "A16", "A17",
"A18", "A19", "E6(2)", "L4(4)", "L4(5)", "L4(9)", "L5(3)", "L8(2)",
"O10+(2)", "O10+(3)", "O10-(2)", "O10-(3)", "O12+(2)", "O12+(3)",
"O12-(2)", "O12-(3)", "O7(5)", "O8+(7)", "O8-(3)", "O9(3)",
"R(27)", "S10(2)", "S12(2)", "S4(7)", "S4(8)", "S4(9)", "S6(4)",
"S6(5)", "S8(3)", "U4(4)", "U4(5)", "U5(3)", "U5(4)", "U6(4)",
"U7(2)" ]
</pre></div>
<p>The following simple groups appear in <a href="chapBib_mj.html#biBBGK">[BGK08, Table 1–6]</a>. More detailed computations can be found in the sections <a href="chap11_mj.html#X7B5321337B28100B"><span class="RefLink">11.5-2</span></a>, <a href="chap11_mj.html#X82C3B4287B0C7BEE"><span class="RefLink">11.5-3</span></a>, <a href="chap11_mj.html#X85B3C7217B105D4D"><span class="RefLink">11.5-4</span></a>, <a href="chap11_mj.html#X7F80F2527C424AA4"><span class="RefLink">11.5-12</span></a>, <a href="chap11_mj.html#X78F0815B86253A1F"><span class="RefLink">11.5-13</span></a>, <a href="chap11_mj.html#X82CFBAF07D3487A0"><span class="RefLink">11.5-20</span></a>, <a href="chap11_mj.html#X7A03F8EC839AF0B5"><span class="RefLink">11.5-23</span></a>, <a href="chap11_mj.html#X7D738BE5804CF22E"><span class="RefLink">11.5-24</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrintFormattedArray( lessthan3 );</span>
A5 1/3 2 [ "5A" ] [ 1 ]
A6 2/3 1 [ "5A" ] [ 2 ]
A7 2/5 2 [ "7A" ] [ 2 ]
O7(3) 199/351 1 [ "14A" ] [ 3 ]
O8+(2) 334/315 0 [ "15A", "15B", "15C" ] [ 7, 7, 7 ]
O8+(3) 863/1820 2 [ "20A", "20B", "20C" ] [ 8, 8, 8 ]
S6(2) 4/7 1 [ "9A" ] [ 4 ]
S8(2) 8/15 1 [ "17A" ] [ 3 ]
U4(2) 21/40 1 [ "12A" ] [ 2 ]
U4(3) 53/135 2 [ "7A" ] [ 7 ]
</pre></div>
<p>For the following simple groups <span class="SimpleMath">\(G\)</span>, the inequality <span class="SimpleMath">\(σ(G) < 1/3\)</span> follows from the loop above. The columns show the name of <span class="SimpleMath">\(G\)</span>, the values <span class="SimpleMath">\(σ(G)\)</span> and <span class="SimpleMath">\(𝕊/~(G)\)</span>, the class names of <span class="SimpleMath">\(s\)</span> for which these values are attained, and <span class="SimpleMath">\(|𝕄(G,s)|\)</span>.</p>
<p>(We increase the line length for this table. Even with this width, the entry for the group <span class="SimpleMath">\(L_7(2)\)</span> would not fit on one screen line, we show it separately below.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">oldsize:= SizeScreen();;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SizeScreen( [ 80 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrintFormattedArray( Filtered( atleast3, l -> l[1] <> "L7(2)" ) );</span>
2F4(2)' 118/1755 14 [ "16A" ] [ 2 ]
3D4(2) 1/5292 5291 [ "13A" ] [ 1 ]
A10 3/10 3 [ "21A" ] [ 1 ]
A11 2/105 52 [ "11A" ] [ 2 ]
A12 2/9 4 [ "35A" ] [ 1 ]
A13 4/1155 288 [ "13A" ] [ 5 ]
A8 3/14 4 [ "15A" ] [ 1 ]
A9 9/35 3 [ "9A", "9B" ] [ 4, 4 ]
F4(2) 9/595 66 [ "13A" ] [ 5 ]
G2(3) 1/7 6 [ "13A" ] [ 3 ]
G2(4) 1/21 20 [ "13A" ] [ 2 ]
G2(5) 1/31 30 [ "7A", "21A" ] [ 10, 1 ]
L2(101) 1/101 100 [ "51A", "17A" ] [ 1, 1 ]
L2(103) 53/5253 99 [ "52A", "26A", "13A" ] [ 1, 1, 1 ]
L2(107) 55/5671 103 [ "54A", "27A", "18A", "9A", "6A" ] [ 1, 1, 1, 1, 1 ]
L2(109) 1/109 108 [ "55A", "11A" ] [ 1, 1 ]
L2(11) 7/55 7 [ "6A" ] [ 1 ]
L2(113) 1/113 112 [ "57A", "19A" ] [ 1, 1 ]
L2(121) 1/121 120 [ "61A" ] [ 1 ]
L2(125) 1/125 124 [ "63A", "21A", "9A", "7A" ] [ 1, 1, 1, 1 ]
L2(13) 1/13 12 [ "7A" ] [ 1 ]
L2(16) 1/15 14 [ "17A" ] [ 1 ]
L2(17) 1/17 16 [ "9A" ] [ 1 ]
L2(19) 11/171 15 [ "10A" ] [ 1 ]
L2(23) 13/253 19 [ "6A", "12A" ] [ 1, 1 ]
L2(25) 1/25 24 [ "13A" ] [ 1 ]
L2(27) 5/117 23 [ "7A", "14A" ] [ 1, 1 ]
L2(29) 1/29 28 [ "15A" ] [ 1 ]
L2(31) 17/465 27 [ "8A", "16A" ] [ 1, 1 ]
L2(32) 1/31 30 [ "3A", "11A", "33A" ] [ 1, 1, 1 ]
L2(37) 1/37 36 [ "19A" ] [ 1 ]
L2(41) 1/41 40 [ "21A", "7A" ] [ 1, 1 ]
L2(43) 23/903 39 [ "22A", "11A" ] [ 1, 1 ]
L2(47) 25/1081 43 [ "24A", "12A", "8A", "6A" ] [ 1, 1, 1, 1 ]
L2(49) 1/49 48 [ "25A" ] [ 1 ]
L2(53) 1/53 52 [ "27A", "9A" ] [ 1, 1 ]
L2(59) 31/1711 55 [ "30A", "15A", "10A", "6A" ] [ 1, 1, 1, 1 ]
L2(61) 1/61 60 [ "31A" ] [ 1 ]
L2(64) 1/63 62 [ "65A", "13A" ] [ 1, 1 ]
L2(67) 35/2211 63 [ "34A", "17A" ] [ 1, 1 ]
L2(71) 37/2485 67 [ "36A", "18A", "12A", "9A", "6A" ] [ 1, 1, 1, 1, 1 ]
L2(73) 1/73 72 [ "37A" ] [ 1 ]
L2(79) 41/3081 75 [ "40A", "20A", "10A", "8A" ] [ 1, 1, 1, 1 ]
L2(8) 1/7 6 [ "3A", "9A" ] [ 1, 1 ]
L2(81) 1/81 80 [ "41A" ] [ 1 ]
L2(83) 43/3403 79 [ "42A", "21A", "14A", "7A", "6A" ] [ 1, 1, 1, 1, 1 ]
L2(89) 1/89 88 [ "45A", "15A", "9A" ] [ 1, 1, 1 ]
L2(97) 1/97 96 [ "49A", "7A" ] [ 1, 1 ]
L3(11) 1/6655 6654 [ "19A", "133A" ] [ 1, 1 ]
L3(2) 1/4 3 [ "7A" ] [ 1 ]
L3(3) 1/24 23 [ "13A" ] [ 1 ]
L3(4) 1/5 4 [ "7A" ] [ 3 ]
L3(5) 1/250 249 [ "31A" ] [ 1 ]
L3(7) 1/1372 1371 [ "19A" ] [ 1 ]
L3(8) 1/1792 1791 [ "73A" ] [ 1 ]
L3(9) 1/2880 2879 [ "91A" ] [ 1 ]
L4(3) 53/1053 19 [ "20A" ] [ 1 ]
L5(2) 1/5376 5375 [ "31A" ] [ 1 ]
L6(2) 365/55552 152 [ "21A", "63A" ] [ 2, 2 ]
O8-(2) 1/63 62 [ "17A" ] [ 1 ]
S4(4) 4/15 3 [ "17A" ] [ 2 ]
S4(5) 1/5 4 [ "13A" ] [ 1 ]
S6(3) 1/117 116 [ "14A" ] [ 2 ]
Sz(32) 1/1271 1270 [ "5A", "25A" ] [ 1, 1 ]
Sz(8) 1/91 90 [ "5A" ] [ 1 ]
U3(11) 1/6655 6654 [ "37A" ] [ 1 ]
U3(3) 16/63 3 [ "6A", "12A" ] [ 2, 2 ]
U3(4) 1/160 159 [ "13A" ] [ 1 ]
U3(5) 46/525 11 [ "10A" ] [ 2 ]
U3(7) 1/1372 1371 [ "43A" ] [ 1 ]
U3(8) 1/1792 1791 [ "19A" ] [ 1 ]
U3(9) 1/3600 3599 [ "73A" ] [ 1 ]
U5(2) 1/54 53 [ "11A" ] [ 1 ]
U6(2) 5/21 4 [ "11A" ] [ 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SizeScreen( oldsize );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">First( atleast3, l -> l[1] = "L7(2)" );</span>
[ "L7(2)", 1/4388290560, 4388290559, [ "127A" ], [ 1 ] ]
</pre></div>
<p>It should be mentioned that <a href="chapBib_mj.html#biBBW1">[BW75]</a> states the following lower bounds for the uniform spread of the groups <span class="SimpleMath">\(L_2(q)\)</span>.</p>
<div class="pcenter"><table class="GAPDocTable">
<tr>
<td class="tdleft"><span class="SimpleMath">\(q-2\)</span></td>
<td class="tdleft">if <span class="SimpleMath">\(4 \leq q\)</span> is even,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q-1\)</span></td>
<td class="tdleft">if <span class="SimpleMath">\(11 \leq q \equiv 1 \pmod{4}\)</span>,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q-4\)</span></td>
<td class="tdleft">if <span class="SimpleMath">\(11 \leq q \equiv -1 \pmod{4}\)</span>.</td>
</tr>
</table><br />
</div>
<p>These bounds appear in the third column of the above table. Furthermore, <a href="chapBib_mj.html#biBBW1">[BW75]</a> states that the (uniform) spread of alternating groups of even degree at least <span class="SimpleMath">\(8\)</span> is exactly <span class="SimpleMath">\(4\)</span>.</p>
<p>For the sake of completeness, Table II gives an overview of the sets <span class="SimpleMath">\(𝕄(G,s)\)</span> for those cases in the above list that are needed in <a href="chapBib_mj.html#biBBGK">[BGK08]</a> but that do not require a further discussion here. The structure of the maximal subgroups and the order of <span class="SimpleMath">\(s\)</span> in the table refer to the matrix groups not to the simple groups. The number of the subgroups has been shown above, the structure follows from <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>.</p>
<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b>Table II: Maximal subgroups/></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(G\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(𝕄(G,s)\)</span></td>
<td class="tdright"><span class="SimpleMath">\(|s|\)</span></td>
<td class="tdright">see <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(SL(3,4) = 3.L_3(4)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3 \times L_3(2), 3 \times L_3(2), 3 \times L_3(2)\)</span></td>
<td class="tdright"><span class="SimpleMath">\(21\)</span></td>
<td class="tdright">p. 23</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(\Omega^-(8,2) = O^-_8(2)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\Omega^-(4,4).2 = L_2(16).2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(17\)</span></td>
<td class="tdright">p. 89</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Sp(4,4) = S_4(4)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\Omega^-(4,4).2 = L_2(16).2, Sp(2,16).2 = L_2(16).2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(17\)</span></td>
<td class="tdright">p. 44</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(Sp(6,3) = 2.S_6(3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\((4 \times U_3(3)).2, Sp(2,17).3 = 2.L_2(27).3\)</span></td>
<td class="tdright"><span class="SimpleMath">\(28\)</span></td>
<td class="tdright">p. 113</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(SU(3,3) = U_3(3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3^{1+2}_+:8, GU(2,3) = 4.S_4\)</span></td>
<td class="tdright"><span class="SimpleMath">\(6\)</span></td>
<td class="tdright">p. 14</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(SU(3,5) = 3.U_3(5)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3 \times 5^{1+2}_+:8, GU(2,5) = 3 \times 2S_5\)</span></td>
<td class="tdright"><span class="SimpleMath">\(30\)</span></td>
<td class="tdright">p. 34</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(SU(5,2) = U_5(2)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(L_2(11)\)</span></td>
<td class="tdright"><span class="SimpleMath">\(11\)</span></td>
<td class="tdright">p. 73</td>
</tr>
</table><br />
</div>
<p><a id="X7B1E26D586337487" name="X7B1E26D586337487"></a></p>
<h5>11.4-4 <span class="Heading">Automorphism Groups of other Simple Groups – Easy Cases</span></h5>
<p>We deal with automorphic extensions of those simple groups that are listed in Table I and that have been treated successfully in Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>
<p>For the following groups, <code class="code">ProbGenInfoAlmostSimple</code> can be used because <strong class="pkg">GAP</strong> can compute their primitive permutation characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">list:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "A5", "A5.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "A6", "A6.2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "A6", "A6.2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "A6", "A6.2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "A7", "A7.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "A8", "A8.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "A9", "A9.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "A11", "A11.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "L3(2)", "L3(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "L3(3)", "L3(3).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "L3(4)", "L3(4).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "L3(4)", "L3(4).2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "L3(4)", "L3(4).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "L3(4)", "L3(4).3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "S4(4)", "S4(4).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "U3(3)", "U3(3).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "U3(5)", "U3(5).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "U3(5)", "U3(5).3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "U4(2)", "U4(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "U4(3)", "U4(3).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "U4(3)", "U4(3).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">autinfo:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fails:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for pair in list do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tbl:= CharacterTable( pair[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblG:= CharacterTable( pair[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> info:= ProbGenInfoSimple( tbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> spos:= List( info[4], x -> Position( AtlasClassNames( tbl ), x ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( autinfo, ProbGenInfoAlmostSimple( tbl, tblG, spos ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrintFormattedArray( autinfo );</span>
A5.2 0 [ "5AB" ] [ 1 ]
A6.2_1 2/3 [ "5AB" ] [ 2 ]
A6.2_2 1/6 [ "5A" ] [ 1 ]
A6.2_3 0 [ "5AB" ] [ 1 ]
A7.2 1/15 [ "7AB" ] [ 1 ]
A8.2 13/28 [ "15AB" ] [ 1 ]
A9.2 1/4 [ "9AB" ] [ 1 ]
A11.2 1/945 [ "11AB" ] [ 1 ]
L3(2).2 1/4 [ "7AB" ] [ 1 ]
L3(3).2 1/18 [ "13AB" ] [ 1 ]
L3(4).2_1 3/10 [ "7AB" ] [ 3 ]
L3(4).2_2 11/60 [ "7A" ] [ 1 ]
L3(4).2_3 1/12 [ "7AB" ] [ 1 ]
L3(4).3 1/64 [ "7A" ] [ 1 ]
S4(4).2 0 [ "17AB" ] [ 2 ]
U3(3).2 2/7 [ "6A", "12AB" ] [ 2, 2 ]
U3(5).2 2/21 [ "10A" ] [ 2 ]
U3(5).3 46/525 [ "10A" ] [ 2 ]
U4(2).2 16/45 [ "12AB" ] [ 2 ]
U4(3).2_1 76/135 [ "7A" ] [ 3 ]
U4(3).2_3 31/162 [ "7AB" ] [ 3 ]
</pre></div>
<p>We see that from this list, the two groups <span class="SimpleMath">\(A_6.2_1 = S_6\)</span> and <span class="SimpleMath">\(U_4(3).2_1\)</span> require further computations (see Sections <a href="chap11_mj.html#X82C3B4287B0C7BEE"><span class="RefLink">11.5-3</span></a> and <a href="chap11_mj.html#X7D738BE5804CF22E"><span class="RefLink">11.5-24</span></a>, respectively) because the bound in the second column is larger than <span class="SimpleMath">\(1/2\)</span>.</p>
<p>Also <span class="SimpleMath">\(U_4(2)\)</span> is not done by the above, because in <a href="chapBib_mj.html#biBBGK">[BGK08, Table 4]</a>, an element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span> is chosen for the simple group, see Section <a href="chap11_mj.html#X7A03F8EC839AF0B5"><span class="RefLink">11.5-23</span></a>.</p>
<p>Finally, we deal with automorphic extensions of the groups <span class="SimpleMath">\(L_4(3)\)</span>, <span class="SimpleMath">\(O_8^-(2)\)</span>, <span class="SimpleMath">\(S_6(3)\)</span>, and <span class="SimpleMath">\(U_5(2)\)</span>.</p>
<p>For <span class="SimpleMath">\(S = L_4(3)\)</span> and <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(20\)</span>, we have <span class="SimpleMath">\(𝕄(S,s) = \{ (4 \times A_6):2 \}\)</span>, the subgroup has index <span class="SimpleMath">\(2\,106\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 69]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "L4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( AtlasClassNames( t ), "20A" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= Filtered( prim, x -> x[ spos ] <> 0 );</span>
[ Character( CharacterTable( "L4(3)" ),
[ 2106, 106, 42, 0, 27, 27, 0, 46, 6, 6, 1, 7, 7, 0, 3, 3, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 0, 1, 1 ] ) ]
</pre></div>
<p>For the three automorphic extensions of the structure <span class="SimpleMath">\(G = S.2\)</span>, we compute the extensions of the permutation character, and the bounds <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for name in [ "L4(3).2_1", "L4(3).2_2", "L4(3).2_3" ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> t2:= CharacterTable( name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map:= InverseMap( GetFusionMap( t, t2 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> torso:= List( prim, pi -> CompositionMaps( pi, map ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ext:= Concatenation( List( torso,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> PermChars( t2, rec( torso:= x ) ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sigma:= ApproxP( ext, Position( OrdersClassRepresentatives( t2 ), 20 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> max:= Maximum( sigma{ Difference( PositionsProperty(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( name, ":\n", ext, "\n", max, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
L4(3).2_1:
[ Character( CharacterTable( "L4(3).2_1" ),
[ 2106, 106, 42, 0, 27, 0, 46, 6, 6, 1, 7, 0, 3, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 1, 0, 4, 0, 0, 6, 6, 6, 6, 2, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1 ] ) ]
0
L4(3).2_2:
[ Character( CharacterTable( "L4(3).2_2" ),
[ 2106, 106, 42, 0, 27, 27, 0, 46, 6, 6, 1, 7, 7, 0, 3, 3, 0, 0,
0, 1, 1, 1, 0, 0, 0, 1, 306, 306, 42, 6, 10, 10, 0, 0, 15, 15,
3, 3, 3, 3, 0, 0, 1, 1, 0, 1, 1, 0, 0 ] ) ]
17/117
L4(3).2_3:
[ Character( CharacterTable( "L4(3).2_3" ),
[ 2106, 106, 42, 0, 27, 0, 46, 6, 6, 1, 7, 0, 3, 0, 0, 1, 1, 0,
0, 0, 1, 36, 0, 0, 6, 6, 2, 2, 2, 1, 1, 0, 0, 0 ] ) ]
2/117
</pre></div>
<p>For <span class="SimpleMath">\(S = O_8^-(2)\)</span> and <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(17\)</span>, we have <span class="SimpleMath">\(𝕄(S,s) = \{ L_2(16).2 \}\)</span>, the subgroup extends to <span class="SimpleMath">\(L_2(16).4\)</span> in <span class="SimpleMath">\(S.2\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 89]</a>. This is a non-split extension, so <span class="SimpleMath">\(σ^{\prime}(S.2,s) = 0\)</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "O8-(2).2" ), "17AB",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "L2(16).4" ) ], [ 1 ], "outer" );</span>
0
</pre></div>
<p>For <span class="SimpleMath">\(S = S_6(3)\)</span> and <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\(14\)</span>, we have <span class="SimpleMath">\(𝕄(S,s) = \{ (2 \times U_3(3)).2, L_2(27).3 \}\)</span>. In <span class="SimpleMath">\(G = S.2\)</span>, the subgroups extend to <span class="SimpleMath">\((4 \times U_3(3)).2\)</span> and <span class="SimpleMath">\(L_2(27).6\)</span>, respectively, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 113]</a>. In order to show that <span class="SimpleMath">\(σ^{\prime}(G,s) = 7/3240\)</span> holds, we compute the primitive permutation characters of <span class="SimpleMath">\(S\)</span> (cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>) and the unique extensions to <span class="SimpleMath">\(G\)</span> of those which are nonzero on <span class="SimpleMath">\(s\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "S6(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "S6(3).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( AtlasClassNames( t ), "14A" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= Filtered( prim, x -> x[ spos ] <> 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">map:= InverseMap( GetFusionMap( t, t2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">torso:= List( prim, pi -> CompositionMaps( pi, map ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= List( torso, pi -> PermChars( t2, rec( torso:= pi ) ) );</span>
[ [ Character( CharacterTable( "S6(3).2" ),
[ 155520, 0, 288, 0, 0, 0, 216, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 144, 288, 0, 0, 0,
6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,
0 ] ) ],
[ Character( CharacterTable( "S6(3).2" ),
[ 189540, 1620, 568, 0, 486, 0, 0, 27, 540, 84, 24, 0, 0, 0, 0,
0, 54, 0, 0, 10, 0, 7, 1, 6, 6, 0, 0, 0, 0, 0, 0, 18, 0, 0,
0, 6, 12, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 234, 64,
30, 8, 0, 3, 90, 6, 0, 4, 10, 6, 0, 2, 1, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0 ] ) ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( AtlasClassNames( t2 ), "14A" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sigma:= ApproxP( Concatenation( ext ), spos );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( sigma{ Difference(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
7/3240
</pre></div>
<p>For <span class="SimpleMath">\(S = U_5(2)\)</span> and <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(11\)</span>, we have <span class="SimpleMath">\(𝕄(S,s) = \{ L_2(11) \}\)</span>, the subgroup extends to <span class="SimpleMath">\(L_2(11).2\)</span> in <span class="SimpleMath">\(S.2\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 73]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "U5(2).2" ), "11AB",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "L2(11).2" ) ], [ 1 ], "outer" );</span>
1/288
</pre></div>
<p>Here we clean the workspace for the first time. This may save more than <span class="SimpleMath">\(100\)</span> megabytes, due to the fact that the caches for tables of marks and character tables are flushed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>
<p><a id="X78B856907ED13545" name="X78B856907ED13545"></a></p>
<h5>11.4-5 <span class="Heading"><span class="SimpleMath">\(O_8^-(3)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = O_8^-(3) = \Omega^-(8,3)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(41\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(L_2(81).2_1 = \Omega^-(4,9).2\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/567\)</span>.</p>
</dd>
</dl>
<p>The only maximal subgroups of <span class="SimpleMath">\(S\)</span> containing elements of order <span class="SimpleMath">\(41\)</span> have the type <span class="SimpleMath">\(L_2(81).2_1\)</span>, and there is one class of these subgroups, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 141]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "O8-(3)" ), "41A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "L2(81).2_1" ) ], [ 1 ] );</span>
1/567
</pre></div>
<p><a id="X84AB334886DCA746" name="X84AB334886DCA746"></a></p>
<h5>11.4-6 <span class="Heading"><span class="SimpleMath">\(O_{10}^+(2)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = O_{10}^+(2) = \Omega^+(10,2)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>Ford<span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(45\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\((A_5 \times U_4(2)).2 = (\Omega^-(4,2) \times \Omega^-(6,2)).2\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 43/4\,216\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s\)</span> as in (a), the maximal subgroup in (a) extends to <span class="SimpleMath">\(S_5 \times U_4(2).2\)</span> in <span class="SimpleMath">\(G = Aut(S) = S.2\)</span>, and <span class="SimpleMath">\(σ^{\prime}(G,s) = 23/248\)</span>.</p>
</dd>
</dl>
<p>The only maximal subgroups of <span class="SimpleMath">\(S\)</span> containing elements of order <span class="SimpleMath">\(45\)</span> are one class of groups <span class="SimpleMath">\(H = (A_5 \times U_4(2)):2\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 146]</a>. (Note that none of the groups <span class="SimpleMath">\(S_8(2)\)</span>, <span class="SimpleMath">\(O_8^+(2)\)</span>, <span class="SimpleMath">\(L_5(2)\)</span>, <span class="SimpleMath">\(O_8^-(2)\)</span>, and <span class="SimpleMath">\(A_8\)</span> contains elements of order <span class="SimpleMath">\(45\)</span>.) <span class="SimpleMath">\(H\)</span> extends to subgroups of the type <span class="SimpleMath">\(H.2 = S_5 \times U_4(2):2\)</span> in <span class="SimpleMath">\(G\)</span>, so we can compute <span class="SimpleMath">\(1_H^S = (1_{H.2}^G)_S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAny( [ "S8(2)", "O8+(2)", "L5(2)", "O8-(2)", "A8" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> 45 in OrdersClassRepresentatives( CharacterTable( x ) ) );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "O10+(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "O10+(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s2:= CharacterTable( "A5.2" ) * CharacterTable( "U4(2).2" );</span>
CharacterTable( "A5.2xU4(2).2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s2, t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t2 ), 45 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( pi, spos );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( approx{ ClassPositionsOfDerivedSubgroup( t2 ) } );</span>
43/4216
</pre></div>
<p>Statement (c) follows from considering the outer classes of prime element order.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( approx{ Difference(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
23/248
</pre></div>
<p>Alternatively, we can use <code class="code">SigmaFromMaxes</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( t2, "45AB", [ s2 ], [ 1 ], "outer" );</span>
23/248
</pre></div>
<p><a id="X84E3E4837BB93977" name="X84E3E4837BB93977"></a></p>
<h5>11.4-7 <span class="Heading"><span class="SimpleMath">\(O_{10}^-(2)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = O_{10}^-(2) = \Omega^-(10,2)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(33\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(3 \times U_5(2) = GU(5,2)\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/119\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s\)</span> as in (a), the maximal subgroup in (a) extends to <span class="SimpleMath">\((3 \times U_5(2)).2\)</span> in <span class="SimpleMath">\(G\)</span>, and <span class="SimpleMath">\(σ^{\prime}(G,s) = 1/595\)</span>.</p>
</dd>
</dl>
<p>The only maximal subgroups of <span class="SimpleMath">\(S\)</span> containing elements of order <span class="SimpleMath">\(11\)</span> have the types <span class="SimpleMath">\(A_{12}\)</span> and <span class="SimpleMath">\(3 \times U_5(2)\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 147]</a>. So <span class="SimpleMath">\(3 \times U_5(2)\)</span> is the unique class of subgroups containing elements of order <span class="SimpleMath">\(33\)</span>. This shows statement (a), and statement (b) follows using <code class="code">SigmaFromMaxes</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "O10-(2)" ), "33A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "Cyclic", 3 ) * CharacterTable( "U5(2)" ) ], [ 1 ] );</span>
1/119
</pre></div>
<p>The structure of the maximal subgroup of <span class="SimpleMath">\(G\)</span> follows from <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 147]</a>. We create its character table with a generic construction that is based on the fact that the outer automorphism acts nontrivially on the two direct factors; this determines the character table uniquely. (See <a href="chapBib_mj.html#biBAuto">[Brec]</a> for details.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "U5(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG:= CharacterTable( "Cyclic", 3 ) * tblG;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA:= CharacterTable( "U5(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">acts:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= Concatenation( List( acts, pi -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, pi,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "(3xU5(2)).2" ) ) );</span>
[ rec(
MGfusMGA := [ 1, 2, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 12,
13, 13, 14, 14, 15, 15, 16, 17, 17, 18, 18, 19, 20, 21, 21,
22, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29,
30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 31, 32, 33, 35, 34, 37, 36, 38, 39, 40, 41,
42, 43, 45, 44, 47, 46, 49, 48, 51, 50, 52, 54, 53, 56, 55,
57, 58, 60, 59, 62, 61, 64, 63, 66, 65, 68, 67, 69, 71, 70,
73, 72, 75, 74, 77, 76 ],
table := CharacterTable( "(3xU5(2)).2" ) ) ]
</pre></div>
<p>Now statement (c) follows using <code class="code">SigmaFromMaxes</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "O10-(2).2" ), "33AB",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ poss[1].table ], [ 1 ], "outer" );</span>
1/595
</pre></div>
<p><a id="X8307367E7C7C3BCE" name="X8307367E7C7C3BCE"></a></p>
<h5>11.4-8 <span class="Heading"><span class="SimpleMath">\(O_{12}^+(2)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = O_{12}^+(2) = \Omega^+(12,2)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(4^- \perp 8^-\)</span> (i. e., <span class="SimpleMath">\(s\)</span> decomposes the natural <span class="SimpleMath">\(12\)</span>-dimensional module for <span class="SimpleMath">\(GO^+_{12}(2) = S.2\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(4\)</span> and <span class="SimpleMath">\(8\)</span>, respectively) and of order <span class="SimpleMath">\(85\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(G_8 = (\Omega^-(4,2) \times \Omega^-(8,2)).2\)</span> and two groups of the type <span class="SimpleMath">\(L_4(4).2^2 = \Omega^+(6,4).2^2\)</span> that are conjugate in <span class="SimpleMath">\(G = Aut(S) = S.2 = SO^+(12,2)\)</span> but <em>not</em> conjugate in <span class="SimpleMath">\(S\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 7\,675/1\,031\,184\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(σ^{\prime}(G,s) = 73/1\,008\)</span>.</p>
</dd>
</dl>
<p>The element <span class="SimpleMath">\(s\)</span> is a ppd<span class="SimpleMath">\((12,2;8)\)</span>-element in the sense of <a href="chapBib_mj.html#biBGPPS">[GPPS99]</a>, so the maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain <span class="SimpleMath">\(s\)</span> are among the nine cases (2.1)–(2.9) listed in this paper; in the notation of this paper, we have <span class="SimpleMath">\(q = 2\)</span>, <span class="SimpleMath">\(d = 12\)</span>, <span class="SimpleMath">\(e = 8\)</span>, and <span class="SimpleMath">\(r = 17\)</span>. Case (2.1) does not occur for orthogonal groups and <span class="SimpleMath">\(q = 2\)</span>, according to <a href="chapBib_mj.html#biBKlL90">[KL90]</a>; case (2.2) contributes a unique maximal subgroup, the stabilizer <span class="SimpleMath">\(G_8\)</span> of the orthogonal decomposition; the cases (2.3), (2.4) (a), (2.5), and (2.6) (a) do not occur because <span class="SimpleMath">\(r ≠ e+1\)</span> in our situation; case (2.4) (b) describes extension field type subgroups that are contained in <span class="SimpleMath">\(ΓL(6,4)\)</span>, which yields the candidates <span class="SimpleMath">\(GU(6,2).2 \cong 3.U_6(2).S_3\)</span> –but <span class="SimpleMath">\(3.U_6(2).3\)</span> does not contain elements of order <span class="SimpleMath">\(85\)</span>– and <span class="SimpleMath">\(\Omega^+(6,4).2^2 \cong L_4(4).2^2\)</span> (two classes by <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.14]</a>); the cases (2.6) (b)–(c) and (2.8) do not occur because they require <span class="SimpleMath">\(d \leq 8\)</span>; case (2.7) does not occur because <a href="chapBib_mj.html#biBGPPS">[GPPS99, Table 5]</a> contains no entry for <span class="SimpleMath">\(r = 2e+1 = 17\)</span>; finally, case (2.9) does not occur because it requires <span class="SimpleMath">\(e \in \{ d-1, d \}\)</span> in the case <span class="SimpleMath">\(r = 2e+1\)</span>.</p>
<p>So we need the permutation characters of the actions on the cosets of <span class="SimpleMath">\(L_4(4).2^2\)</span> (two classes) and <span class="SimpleMath">\(G_8\)</span>. According to <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.1.6]</a>, <span class="SimpleMath">\(G_8\)</span> has the structure <span class="SimpleMath">\((\Omega^-(4,2) \times \Omega^-(8,2)).2\)</span>.</p>
<p>Newer versions of the <strong class="pkg">GAP</strong> Character Table Library contain the character table of <span class="SimpleMath">\(S\)</span>, but it is still easier to work with the table of <span class="SimpleMath">\(G\)</span>, which was already available at the times when the first version of these examples was created.</p>
<p>The two classes of <span class="SimpleMath">\(L_4(4).2^2\)</span> type subgroups in <span class="SimpleMath">\(S\)</span> are fused in <span class="SimpleMath">\(G\)</span>. This can be seen from the fact that inducing the trivial character of a subgroup <span class="SimpleMath">\(H_1 = L_4(4).2^2\)</span> of <span class="SimpleMath">\(S\)</span> to <span class="SimpleMath">\(G\)</span> yields a character <span class="SimpleMath">\(\psi\)</span> whose values are not all even; note that if <span class="SimpleMath">\(H_1\)</span> would extend in <span class="SimpleMath">\(G\)</span> to a subgroup of twice the size of <span class="SimpleMath">\(H_1\)</span> then <span class="SimpleMath">\(\psi\)</span> would be induced from a degree two character of this subgroup whose values are all even, and induction preserves this property.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "O12+(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">h1:= CharacterTable( "L4(4).2^2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">psi:= PossiblePermutationCharacters( h1, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( psi );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAny( psi[1], IsOddInt );</span>
true
</pre></div>
<p>The fixed element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(85\)</span> is contained in a member of each of the two conjugacy classes of the type <span class="SimpleMath">\(L_4(4).2^2\)</span> in <span class="SimpleMath">\(S\)</span>, since <span class="SimpleMath">\(S\)</span> contains only one class of subgroups of the order <span class="SimpleMath">\(85\)</span>; note that the order of the Sylow <span class="SimpleMath">\(17\)</span> centralizer (in both <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(G\)</span>) is not divisible by <span class="SimpleMath">\(25\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesCentralizers( t ){ PositionsProperty(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> OrdersClassRepresentatives( t ), x -> x = 17 ) } / 25;</span>
[ 408/5, 408/5 ]
</pre></div>
<p>This implies that the restriction of <span class="SimpleMath">\(\psi\)</span> to <span class="SimpleMath">\(S\)</span> is the sum <span class="SimpleMath">\(\psi_S = \pi_1 + \pi_2\)</span>, say, of the first two interesting permutation characters of <span class="SimpleMath">\(S\)</span>.</p>
<p>The subgroup <span class="SimpleMath">\(G_8\)</span> of <span class="SimpleMath">\(S\)</span> extends to a group of the structure <span class="SimpleMath">\(H_2 = \Omega^-(4,2).2 \times \Omega^-(8,2).2\)</span> in <span class="SimpleMath">\(G\)</span>, inducing the trivial characters of <span class="SimpleMath">\(H_2\)</span> to <span class="SimpleMath">\(G\)</span> yields a permutation character <span class="SimpleMath">\(\varphi\)</span> of <span class="SimpleMath">\(G\)</span> whose restriction to <span class="SimpleMath">\(S\)</span> is the third permutation character <span class="SimpleMath">\(\varphi_S = \pi_3\)</span>, say.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">h2:= CharacterTable( "S5" ) * CharacterTable( "O8-(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phi:= PossiblePermutationCharacters( h2, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( phi );</span>
1
</pre></div>
<p>We have <span class="SimpleMath">\(\pi_1(1) = \pi_2(1)\)</span> and <span class="SimpleMath">\(\pi_1(s) = \pi_2(s)\)</span>, the latter again because <span class="SimpleMath">\(S\)</span> contains only one class of subgroups of order <span class="SimpleMath">\(85\)</span>.</p>
<p>Now statement (a) follows from the fact that <span class="SimpleMath">\(\pi_i(s) = 1\)</span> holds for <span class="SimpleMath">\(1 \leq i \leq 3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= Concatenation( psi, phi );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 85 );</span>
213
<span class="GAPprompt">gap></span> <span class="GAPinput">List( prim, x -> x[ spos ] );</span>
[ 2, 1 ]
</pre></div>
<p>For statement (b), we compute <span class="SimpleMath">\(σ(S,s)\)</span>. Note that we have to consider only classes inside <span class="SimpleMath">\(S = G^{\prime}\)</span>, and that</p>
<p class="center">\[
σ( g, s )
= \sum_{i=1}^3 \frac{\pi_i(s) \cdot \pi_i(g)}{\pi_i(1)}
= \frac{\psi(s) \cdot \psi(g)}{\psi(1)}
+ \frac{\varphi(s) \cdot \varphi(g)}{\varphi(1)}
\]</p>
<p>holds for <span class="SimpleMath">\(g \in S^{\times}\)</span>, so the characters <span class="SimpleMath">\(\psi\)</span> and <span class="SimpleMath">\(\varphi\)</span> are sufficient.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( prim, spos );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( approx{ ClassPositionsOfDerivedSubgroup( t ) } );</span>
7675/1031184
</pre></div>
<p>Statement (c) follows from considering the outer involution classes. Note that by <a href="chapBib_mj.html#biBBGK">[BGK08, Remark after Proposition 5.14]</a>, only the subgroup <span class="SimpleMath">\(H_2\)</span> need to be considered, no novelties appear.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( approx{ Difference(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PositionsProperty( OrdersClassRepresentatives( t ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t ) ) } );</span>
73/1008
</pre></div>
<p><a id="X834FE1B58119A5FF" name="X834FE1B58119A5FF"></a></p>
<h5>11.4-9 <span class="Heading"><span class="SimpleMath">\(O_{12}^-(2)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = O_{12}^-(2) = \Omega^-(12,2)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\(2^6+1 = 65\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two groups of the types <span class="SimpleMath">\(U_4(4).2 = \Omega^-(6,4).2\)</span> and <span class="SimpleMath">\(L_2(64).3 = \Omega^-(4,8).3\)</span>, respectively.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/1\,023\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(σ^{\prime}(Aut(S),s) = 1/347\,820\)</span>.</p>
</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of extension field subgroups, which have the structures <span class="SimpleMath">\(U_4(4).2\)</span> and <span class="SimpleMath">\(L_2(64).3\)</span>, respectively, and by <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.16]</a>, there is just one class of each of these types.</p>
<p>Newer versions of the <strong class="pkg">GAP</strong> Character Table Library contain the character table of <span class="SimpleMath">\(S\)</span>, but using this table for the computations is not easier than using the table of <span class="SimpleMath">\(G = Aut(S) = O_{12}^-(2).2\)</span>, which was already available at the times when the first version of these examples was created. So we compute the permutation characters <span class="SimpleMath">\(\pi_1, \pi_2\)</span> of the extensions of the groups in <span class="SimpleMath">\(𝕄(S,s)\)</span> to <span class="SimpleMath">\(G\)</span> –these maximal subgroups have the structures <span class="SimpleMath">\(U_4(4).4\)</span> and <span class="SimpleMath">\(L_2(64).6\)</span>, respectively– and compute the fixed point ratios of the restrictions to <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "O12-(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s1:= CharacterTable( "U4(4).4" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi1:= PossiblePermutationCharacters( s1, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s2:= CharacterTable( "L2(64).6" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi2:= PossiblePermutationCharacters( s2, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= Concatenation( pi1, pi2 );; Length( prim );</span>
2
</pre></div>
<p>Now statement (a) follows from the fact that <span class="SimpleMath">\(\pi_1(s) = \pi_2(s) = 1\)</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 65 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( prim, x -> x[ spos ] );</span>
[ 1, 1 ]
</pre></div>
<p>For statement (b), we compute <span class="SimpleMath">\(σ(S,s)\)</span>; note that we have to consider only classes inside <span class="SimpleMath">\(S = G^{\prime}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( prim, spos );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( approx{ ClassPositionsOfDerivedSubgroup( t ) } );</span>
1/1023
</pre></div>
<p>Statement (c) follows from the values on the outer involution classes.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( approx{ Difference(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PositionsProperty( OrdersClassRepresentatives( t ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t ) ) } );</span>
1/347820
</pre></div>
<p><a id="X7C5980A385C088FA" name="X7C5980A385C088FA"></a></p>
<h5>11.4-10 <span class="Heading"><span class="SimpleMath">\(S_6(4)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = S_6(4) = Sp(6,4)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\(65\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two groups of the types <span class="SimpleMath">\(U_4(4).2 = \Omega^-(6,4).2\)</span> and <span class="SimpleMath">\(L_2(64).3 = Sp(2,64).3\)</span>, respectively.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 16/63\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(σ^{\prime}(Aut(S),s) = 0\)</span>.</p>
</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, the element <span class="SimpleMath">\(s\)</span> is contained in maximal subgroups of the given types, and by <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.10, 4.8.6]</a>, there is exactly one class of these subgroups.</p>
<p>The character tables of these two subgroups are currently not contained in the <strong class="pkg">GAP</strong> Character Table Library. We compute the permutation character induced from the first subgroup as the unique character of the right degree that is combinatorially possible (cf. <a href="chapBib_mj.html#biBBP98copy">[BP98]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "S6(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">degree:= Size( t ) / ( 2 * Size( CharacterTable( "U4(4)" ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi1:= PermChars( t, rec( torso:= [ degree ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( pi1 );</span>
1
</pre></div>
<p>The index of the second subgroup is too large for this simpleminded approach; therefore, we first restrict the set of possible irreducible constituents of the permutation character to those of <span class="SimpleMath">\(1_H^G\)</span>, where <span class="SimpleMath">\(H\)</span> is the derived subgroup of <span class="SimpleMath">\(L_2(64).3\)</span>, for which the character table is available.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CharacterTable( "L2(64).3" ); CharacterTable( "U4(4).2" );</span>
fail
fail
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "L2(64)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">subpi:= PossiblePermutationCharacters( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( subpi );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">scp:= MatScalarProducts( t, Irr( t ), subpi );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nonzero:= PositionsProperty( scp[1], x -> x <> 0 );</span>
[ 1, 11, 13, 14, 17, 18, 32, 33, 56, 58, 59, 73, 74, 77, 78, 79, 80,
93, 95, 96, 103, 116, 117, 119, 120 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">const:= RationalizedMat( Irr( t ){ nonzero } );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">degree:= Size( t ) / ( 3 * Size( s ) );</span>
5222400
<span class="GAPprompt">gap></span> <span class="GAPinput">pi2:= PermChars( t, rec( torso:= [ degree ], chars:= const ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( pi2 );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= Concatenation( pi1, pi2 );;</span>
</pre></div>
<p>Now statement (a) follows from the fact that <span class="SimpleMath">\(\pi_1(s) = \pi_2(s) = 1\)</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 65 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( prim, x -> x[ spos ] );</span>
[ 1, 1 ]
</pre></div>
<p>For statement (b), we compute <span class="SimpleMath">\(σ(G,s)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( ApproxP( prim, spos ) );</span>
16/63
</pre></div>
<p>In order to prove statement (c), we have to consider only the extensions of the above permutation characters of <span class="SimpleMath">\(S\)</span> to <span class="SimpleMath">\(Aut(S) \cong S.2\)</span> (cf. <a href="chapBib_mj.html#biBBGK">[BGK08, Section 2.2]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "S6(4).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfust2:= GetFusionMap( t, t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= List( prim, x -> CompositionMaps( x, InverseMap( tfust2 ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= List( cand, pi -> PermChars( t2, rec( torso:= pi ) ) );</span>
[ [ Character( CharacterTable( "S6(4).2" ),
[ 2016, 512, 96, 128, 32, 120, 0, 6, 16, 40, 24, 0, 8, 136, 1,
6, 6, 1, 32, 0, 8, 6, 2, 0, 2, 0, 0, 4, 0, 16, 32, 1, 8, 2,
6, 2, 1, 2, 4, 0, 0, 1, 6, 0, 1, 10, 0, 1, 1, 0, 10, 10, 4,
0, 1, 0, 2, 0, 2, 1, 2, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0,
0, 0, 0, 32, 0, 0, 8, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 8, 0,
0, 0, 2, 2, 0, 2, 2, 0, 2, 2, 2, 0, 0 ] ) ],
[ Character( CharacterTable( "S6(4).2" ),
[ 5222400, 0, 0, 0, 1280, 0, 960, 120, 0, 0, 0, 0, 0, 0, 1600,
0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 15, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
0, 0, 960, 0, 0, 0, 16, 0, 24, 12, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 4, 1, 0, 0, 3, 0, 0, 0, 0, 0 ] ) ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">spos2:= Position( OrdersClassRepresentatives( t2 ), 65 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sigma:= ApproxP( Concatenation( ext ), spos2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( approx{ Difference(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
0
</pre></div>
<p>For the simple group, we can <em>alternatively</em> consider a reducible element <span class="SimpleMath">\(s: 2 \perp 4\)</span> of order <span class="SimpleMath">\(85\)</span>, which is a multiple of the primitive prime divisor <span class="SimpleMath">\(r = 17\)</span> of <span class="SimpleMath">\(4^4-1\)</span>. So we have <span class="SimpleMath">\(e = 4\)</span>, <span class="SimpleMath">\(d = 6\)</span>, and <span class="SimpleMath">\(q = 4\)</span>, in the terminology of <a href="chapBib_mj.html#biBGPPS">[GPPS99]</a>. Then <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two groups, of the types <span class="SimpleMath">\(\Omega^+(6,4).2 \cong L_4(4).2_2\)</span> and <span class="SimpleMath">\(Sp(2,4) \times Sp(4,4)\)</span>. This can be shown by checking <a href="chapBib_mj.html#biBGPPS">[GPPS99, Ex. 2.1–2.9]</a>. Ex. 2.1 yields the candidates <span class="SimpleMath">\(\Omega^{\pm}(6,4).2\)</span>, but only <span class="SimpleMath">\(\Omega^+(6,4).2\)</span> contains elements of order <span class="SimpleMath">\(85\)</span>. Ex. 2.2 yields the stabilizer of a two-dimensional subspace, which has the structure <span class="SimpleMath">\(Sp(2,4) \times Sp(4,4)\)</span>, by <a href="chapBib_mj.html#biBKlL90">[KL90]</a>. All other cases except Ex. 2.4 (b) are excluded by the fact that <span class="SimpleMath">\(r = 4e+1\)</span>, and Ex. 2.4 (b) does not apply because <span class="SimpleMath">\(d/\gcd(d,e)\)</span> is odd.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "S6(4)" ), "85A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "L4(4).2_2" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "A5" ) * CharacterTable( "S4(4)" ) ], [ 1, 1 ] );</span>
142/455
</pre></div>
<p>This bound is not as good as the one obtained from the irreducible element of order <span class="SimpleMath">\(65\)</span> used above.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">16/63 < 142/455;</span>
true
</pre></div>
<p><a id="X829EDF7F7C0BCB8E" name="X829EDF7F7C0BCB8E"></a></p>
<h5>11.4-11 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(S_6(5)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = S_6(5) = PSp(6,5)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(2 \perp 4\)</span> (i. e., the preimage of <span class="SimpleMath">\(s\)</span> in <span class="SimpleMath">\(Sp(6,5) = 2.G\)</span> decomposes the natural <span class="SimpleMath">\(6\)</span>-dimensional module for <span class="SimpleMath">\(Sp(6,5)\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(2\)</span> and <span class="SimpleMath">\(4\)</span>, respectively) and of order <span class="SimpleMath">\(78\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(G_2 = 2.(PSp(2,5) \times PSp(4,5))\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 9/217\)</span>.</p>
</dd>
</dl>
<p>The order of <span class="SimpleMath">\(s\)</span> is a multiple of the primitive prime divisor <span class="SimpleMath">\(r = 13\)</span> of <span class="SimpleMath">\(5^4-1\)</span>, so we have <span class="SimpleMath">\(e = 4\)</span>, <span class="SimpleMath">\(d = 6\)</span>, and <span class="SimpleMath">\(q = 5\)</span>, in the terminology of <a href="chapBib_mj.html#biBGPPS">[GPPS99]</a>. We check <a href="chapBib_mj.html#biBGPPS">[GPPS99, Ex. 2.1–2.9]</a>. Ex. 2.1 does not apply because the classes <span class="SimpleMath">\(C_5\)</span> and <span class="SimpleMath">\(C_8\)</span> are empty by <a href="chapBib_mj.html#biBKlL90">[KL90, Table 3.5.C]</a>, Ex. 2.2 yields exactly the stabilizer <span class="SimpleMath">\(G_2\)</span> of a <span class="SimpleMath">\(2\)</span>-dimensional subspace, Ex. 2.4 (b) does not apply because <span class="SimpleMath">\(d/\gcd(d,e)\)</span> is odd, and all other cases are excluded by the fact that <span class="SimpleMath">\(r = 3e+1\)</span>.</p>
<p>The group <span class="SimpleMath">\(G_2\)</span> has the structure <span class="SimpleMath">\(2.(PSp(2,5) \times PSp(4,5))\)</span>, which is a central product of <span class="SimpleMath">\(Sp(2,5) \cong 2.A_5\)</span> and <span class="SimpleMath">\(Sp(4,5) = 2.S_4(5)\)</span> (see <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.1.3]</a>). The character table of <span class="SimpleMath">\(G_2\)</span> can be derived from that of the direct product of <span class="SimpleMath">\(2.A_5\)</span> and <span class="SimpleMath">\(2.S_4(5)\)</span>, by factoring out the diagonal central subgroup of order two.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "S6(5)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s1:= CharacterTable( "2.A5" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s2:= CharacterTable( "2.S4(5)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">dp:= s1 * s2;</span>
CharacterTable( "2.A5x2.S4(5)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">c:= Difference( ClassPositionsOfCentre( dp ), Union(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GetFusionMap( s1, dp ), GetFusionMap( s2, dp ) ) );</span>
[ 62 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= dp / c;</span>
CharacterTable( "2.A5x2.S4(5)/[ 1, 62 ]" )
</pre></div>
<p>Now we compute <span class="SimpleMath">\(σ(S,s)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( t, "78A", [ s ], [ 1 ] );</span>
9/217
</pre></div>
<p><a id="X85162B297E4B67EB" name="X85162B297E4B67EB"></a></p>
<h5>11.4-12 <span class="Heading"><span class="SimpleMath">\(S_8(3)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = S_8(3) = PSp(8,3)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\(41\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(S_4(9).2 = PSp(4,9).2\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/546\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>The preimage of <span class="SimpleMath">\(s\)</span> in the matrix group <span class="SimpleMath">\(2.S_8(3) = Sp(8,3)\)</span> can be chosen of order <span class="SimpleMath">\(82\)</span>, and the preimage of <span class="SimpleMath">\(M\)</span> is <span class="SimpleMath">\(2.S_4(9).2 = Sp(4,9).2\)</span>.</p>
</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, the only maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain irreducible elements of order <span class="SimpleMath">\((3^4+1)/2 = 41\)</span> are of extension field type, and by <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.10]</a>, these groups have the structure <span class="SimpleMath">\(S_4(9).2\)</span> and there is exactly one class of these groups.</p>
<p>The group <span class="SimpleMath">\(U = S_4(9)\)</span> has three nontrivial outer automorphisms, the character table of the subgroup <span class="SimpleMath">\(U.2\)</span> in question has the identifier <code class="code">"S4(9).2_1"</code>, which follows from the fact that the extensions of <span class="SimpleMath">\(U\)</span> by the other two outer automorphisms do not admit a class fusion into <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "S8(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= List( [ "S4(9).2_1", "S4(9).2_2", "S4(9).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name -> PossiblePermutationCharacters(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( name ), t ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( pi, Length );</span>
[ 1, 0, 0 ]
</pre></div>
<p>Now statement (a) follows from the fact that <span class="SimpleMath">\((1_{U.2})^S(s) = 1\)</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 41 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi[1][1][ spos ];</span>
1
</pre></div>
<p>Now we compute <span class="SimpleMath">\(σ(S,s)\)</span> in order to show statement (b).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( ApproxP( pi[1], spos ) );</span>
1/546
</pre></div>
<p>Statement (c) is clear from the description of extension field type subgroups in <a href="chapBib_mj.html#biBKlL90">[KL90]</a>.</p>
<p><a id="X8495C2BF7B6EFFEF" name="X8495C2BF7B6EFFEF"></a></p>
<h5>11.4-13 <span class="Heading"><span class="SimpleMath">\(U_4(4)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = U_4(4) = SU(4,4)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(1 \perp 3\)</span> (i. e., <span class="SimpleMath">\(s\)</span> decomposes the natural <span class="SimpleMath">\(4\)</span>-dimensional module for <span class="SimpleMath">\(SU(4,4)\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(1\)</span> and <span class="SimpleMath">\(3\)</span>, respectively) and of order <span class="SimpleMath">\(4^3+1 = 65\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(G_1 = 5 \times U_3(4) = GU(3,4)\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 209/3\,264\)</span>.</p>
</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBMSW94">[MSW94]</a>, the only maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain <span class="SimpleMath">\(s\)</span> are one class of stabilizers <span class="SimpleMath">\(H \cong 5 \times U_3(4)\)</span> of this decomposition, and clearly there is only one such group containing <span class="SimpleMath">\(s\)</span>.</p>
<p>Note that <span class="SimpleMath">\(H\)</span> has index <span class="SimpleMath">\(3\,264\)</span> in <span class="SimpleMath">\(S\)</span>, since <span class="SimpleMath">\(S\)</span> has two orbits on the <span class="SimpleMath">\(1\)</span>-dimensional subspaces, of lengths <span class="SimpleMath">\(1\,105\)</span> and <span class="SimpleMath">\(3\,264\)</span>, respectively, and elements of order <span class="SimpleMath">\(13 = 65/5\)</span> lie in the stabilizers of points in the latter orbit.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= SU(4,4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( g, NormedRowVectors( GF(16)^4 ), OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orblen:= List( orbs, Length );</span>
[ 1105, 3264 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orblen, x -> x mod 13 );</span>
[ 0, 1 ]
</pre></div>
<p>We compute the permutation character <span class="SimpleMath">\(1_{G_1}^S\)</span>; there is exactly one combinatorially possible permutation character of degree <span class="SimpleMath">\(3\,264\)</span> (cf. <a href="chapBib_mj.html#biBBP98copy">[BP98]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "U4(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermChars( t, rec( torso:= [ orblen[2] ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( pi );</span>
1
</pre></div>
<p>Now we compute <span class="SimpleMath">\(σ(S,s)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 65 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( ApproxP( pi, spos ) );</span>
209/3264
</pre></div>
<p><a id="X7A3BB5AA83A2BDF3" name="X7A3BB5AA83A2BDF3"></a></p>
<h5>11.4-14 <span class="Heading"><span class="SimpleMath">\(U_6(2)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = U_6(2) = PSU(6,2)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(11\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(U_5(2) = SU(5,2)\)</span> and three groups of the type <span class="SimpleMath">\(M_{22}\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 5/21\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>The preimage of <span class="SimpleMath">\(s\)</span> in the matrix group <span class="SimpleMath">\(SU(6,2) = 3.U_6(2)\)</span> can be chosen of order <span class="SimpleMath">\(33\)</span>, and the preimages of the groups in <span class="SimpleMath">\(𝕄(S,s)\)</span> have the structures <span class="SimpleMath">\(3 \times U_5(2) \cong GU(5,2)\)</span> and <span class="SimpleMath">\(3.M_{22}\)</span>, respectively.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>With <span class="SimpleMath">\(s\)</span> as in (a), the automorphic extensions <span class="SimpleMath">\(S.2\)</span>, <span class="SimpleMath">\(S.3\)</span> of <span class="SimpleMath">\(S\)</span> satisfy <span class="SimpleMath">\(σ^{\prime}(S.2,s) = 5/96\)</span> and <span class="SimpleMath">\(σ^{\prime}(S.3,s) = 59/224\)</span>.</p>
</dd>
</dl>
<p>According to the list of maximal subgroups of <span class="SimpleMath">\(S\)</span> in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 115]</a>, <span class="SimpleMath">\(s\)</span> is contained exactly in maximal subgroups of the types <span class="SimpleMath">\(U_5(2)\)</span> (one class) and <span class="SimpleMath">\(M_{22}\)</span> (three classes).</p>
<p>The permutation character of the action on the cosets of <span class="SimpleMath">\(U_5(2)\)</span> type subgroups is uniquely determined by the character tables. We get three possibilities for the permutation character on the cosets of <span class="SimpleMath">\(M_{22}\)</span> type subgroups; they correspond to the three classes of such subgroups, because each of these classes contains elements in exactly one of the conjugacy classes <code class="code">4C</code>, <code class="code">4D</code>, and <code class="code">4E</code> of elements in <span class="SimpleMath">\(S\)</span>, and these classes are fused under the outer automorphism of <span class="SimpleMath">\(S\)</span> of order three.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "U6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s1:= CharacterTable( "U5(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi1:= PossiblePermutationCharacters( s1, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( pi1 );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">s2:= CharacterTable( "M22" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi2:= PossiblePermutationCharacters( s2, t );</span>
[ Character( CharacterTable( "U6(2)" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 0, 48, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "U6(2)" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "U6(2)" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">imgs:= Set( pi2, x -> Position( x, 48 ) );</span>
[ 10, 11, 12 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t ){ imgs };</span>
[ "4C", "4D", "4E" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( t, CharacterTable( "U6(2).3" ) ){ imgs };</span>
[ 10, 10, 10 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= Concatenation( pi1, pi2 );;</span>
</pre></div>
<p>Now statement (a) follows from the fact that the permutation characters have the value <span class="SimpleMath">\(1\)</span> on <span class="SimpleMath">\(s\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 11 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( prim, x -> x[ spos ] );</span>
[ 1, 1, 1, 1 ]
</pre></div>
<p>For statement (b), we compute <span class="SimpleMath">\(σ(S,s)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( ApproxP( prim, spos ) );</span>
5/21
</pre></div>
<p>Statement (c) follows from <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>, plus the information that <span class="SimpleMath">\(3.U_6(2)\)</span> does not contain groups of the structure <span class="SimpleMath">\(3 \times M_{22}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "Cyclic", 3 ) * CharacterTable( "M22" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "3.U6(2)" ) );</span>
[ ]
</pre></div>
<p>For statement (d), we need that the relevant maximal subgroups of <span class="SimpleMath">\(S.2\)</span> are <span class="SimpleMath">\(U_5(2).2\)</span> and one subgroup <span class="SimpleMath">\(M_{22}.2\)</span>, and that the relevant maximal subgroup of <span class="SimpleMath">\(S.3\)</span> is <span class="SimpleMath">\(U_5(2) \times 3\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 115]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "U6(2).2" ), "11AB",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "U5(2).2" ), CharacterTable( "M22.2" ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 1 ], "outer" );</span>
5/96
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "U6(2).3" ), "11A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "U5(2)" ) * CharacterTable( "Cyclic", 3 ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1 ], "outer" );</span>
59/224
</pre></div>
<p><a id="X8237B8617D6F6027" name="X8237B8617D6F6027"></a></p>
<h4>11.5 <span class="Heading">Computations using Groups</span></h4>
<p>Before we start the computations using groups, we clean the workspace.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>
<p><a id="X815320787B601000" name="X815320787B601000"></a></p>
<h5>11.5-1 <span class="Heading"><span class="SimpleMath">\(A_{2m+1}\)</span>, <span class="SimpleMath">\(2 \leq m \leq 11\)</span></span></h5>
<p>For alternating groups of odd degree <span class="SimpleMath">\(n = 2m+1\)</span>, we choose <span class="SimpleMath">\(s\)</span> to be an <span class="SimpleMath">\(n\)</span>-cycle. The interesting cases in <a href="chapBib_mj.html#biBBGK">[BGK08, Proposition 6.7]</a> are <span class="SimpleMath">\(5 \leq n \leq 23\)</span>.</p>
<p>In each case, we compute representatives of the maximal subgroups of <span class="SimpleMath">\(A_n\)</span>, consider only those that contain an <span class="SimpleMath">\(n\)</span>-cycle, and then compute the permutation characters. Additionally, we show also the names that are used for the subgroups in the <strong class="pkg">GAP</strong> Library of Transitive Groups, see <a href="chapBib_mj.html#biBHulpkeTG">[Hul05]</a> and the documentation of this library in the <strong class="pkg">GAP</strong> Reference Manual.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrimitivesInfoForOddDegreeAlternatingGroup:= function( n )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local G, max, cycle, spos, prim, nonz;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> G:= AlternatingGroup( n );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute representatives of the classes of maximal subgroups.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> max:= MaximalSubgroupClassReps( G );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Omit subgroups that cannot contain an `n'-cycle.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> max:= Filtered( max, m -> IsTransitive( m, [ 1 .. n ] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute the permutation characters.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cycle:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cycle[ n-1 ]:= 1;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> spos:= PositionProperty( ConjugacyClasses( CharacterTable( G ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> c -> CycleStructurePerm( Representative( c ) ) = cycle );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> prim:= List( max, m -> TrivialCharacter( m )^G );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nonz:= PositionsProperty( prim, x -> x[ spos ] <> 0 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute the subgroup names and the multiplicities.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return rec( spos := spos,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> prim := prim{ nonz },</span>
<span class="GAPprompt">></span> <span class="GAPinput"> grps := List( max{ nonz },</span>
<span class="GAPprompt">></span> <span class="GAPinput"> m -> TransitiveGroup( n,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransitiveIdentification( m ) ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mult := List( prim{ nonz }, x -> x[ spos ] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>The sets <span class="SimpleMath">\(𝕄/~(s)\)</span> and the values <span class="SimpleMath">\(σ(A_n,s)\)</span> are as follows. For each degree in question, the first list shows names for representatives of the conjugacy classes of maximal subgroups containing a fixed <span class="SimpleMath">\(n\)</span>-cycle, and the second list shows the number of conjugates in each class.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [ 5, 7 .. 23 ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> prim:= PrimitivesInfoForOddDegreeAlternatingGroup( n );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> bound:= Maximum( ApproxP( prim.prim, prim.spos ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( n, ": ", prim.grps, ", ", prim.mult, ", ", bound, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
5: [ D(5) = 5:2 ], [ 1 ], 1/3
7: [ L(7) = L(3,2), L(7) = L(3,2) ], [ 1, 1 ], 2/5
9: [ 1/2[S(3)^3]S(3), L(9):3=P|L(2,8) ], [ 1, 3 ], 9/35
11: [ M(11), M(11) ], [ 1, 1 ], 2/105
13: [ F_78(13)=13:6, L(13)=PSL(3,3), L(13)=PSL(3,3) ], [ 1, 2, 2 ], 4/
1155
15: [ 1/2[S(3)^5]S(5), 1/2[S(5)^3]S(3), L(15)=A_8(15)=PSL(4,2),
L(15)=A_8(15)=PSL(4,2) ], [ 1, 1, 1, 1 ], 29/273
17: [ L(17):4=PYL(2,16), L(17):4=PYL(2,16) ], [ 1, 1 ], 2/135135
19: [ F_171(19)=19:9 ], [ 1 ], 1/6098892800
21: [ t21n150, t21n161, t21n91 ], [ 1, 1, 2 ], 29/285
23: [ M(23), M(23) ], [ 1, 1 ], 2/130945815
</pre></div>
<p>In the above output, a subgroup printed as <code class="code">1/2[S(</code><span class="SimpleMath">\(n_1\)</span><code class="code">)^</code><span class="SimpleMath">\(n_2\)</span><code class="code">]S(</code><span class="SimpleMath">\(n_2\)</span><code class="code">)</code>, <code class="code">1/2[S(</code><span class="SimpleMath">\(n_1\)</span><code class="code">)^</code><span class="SimpleMath">\(n_2\)</span><code class="code">]S(</code><span class="SimpleMath">\(n_2\)</span><code class="code">)</code>, where <span class="SimpleMath">\(n = n_1 n_2\)</span> holds, denotes the intersection of <span class="SimpleMath">\(A_n\)</span> with the wreath product <span class="SimpleMath">\(S_{n_1} \wr S_{n_2} \leq S_n\)</span>. (Note that the <strong class="pkg">Atlas</strong> denotes the subgroup <code class="code">1/2[S(3)^3]S(3)</code> of <span class="SimpleMath">\(A_9\)</span> as <span class="SimpleMath">\(3^3:S_4\)</span>.) The groups printed as <code class="code">P|L(2,8)</code> and <code class="code">PYL(2,16)</code> denote <span class="SimpleMath">\(PΓL(2,8)\)</span> and <span class="SimpleMath">\(PΓL(2,16)\)</span>, respectively. And the three subgroups of <span class="SimpleMath">\(A_{21}\)</span> have the structures <span class="SimpleMath">\((S_3 \wr S_7) \cap A_{21}\)</span>, <span class="SimpleMath">\((S_7 \wr S_3) \cap A_{21}\)</span>, and <span class="SimpleMath">\(PGL(3,4)\)</span>, respectively.</p>
<p>Note that <span class="SimpleMath">\(A_9\)</span> contains two conjugacy classes of maximal subgroups of the type <span class="SimpleMath">\(PΓL(2,8) \cong L_2(8):3\)</span>, and that each <span class="SimpleMath">\(9\)</span>-cycle in <span class="SimpleMath">\(A_9\)</span> is contained in exactly three <em>conjugate</em> subgroups of this type. For <span class="SimpleMath">\(n \in \{ 13, 15, 17 \}\)</span>, <span class="SimpleMath">\(A_n\)</span> contains two conjugacy classes of isomorphic maximal subgroups of linear type, and each <span class="SimpleMath">\(n\)</span>-cycle is contained in subgroups from each class. Finally, <span class="SimpleMath">\(A_{21}\)</span> contains only one class of maximal subgroups of linear type.</p>
<p>For the two groups <span class="SimpleMath">\(A_5\)</span> and <span class="SimpleMath">\(A_7\)</span>, the values computed above are not sufficient. See Section <a href="chap11_mj.html#X7B5321337B28100B"><span class="RefLink">11.5-2</span></a> and <a href="chap11_mj.html#X85B3C7217B105D4D"><span class="RefLink">11.5-4</span></a> for a further treatment.</p>
<p>The above computations look like a brute-force approach, but note that the computation of the maximal subgroups of alternating and symmetric groups in <strong class="pkg">GAP</strong> uses the classification of these subgroups, and also the conjugacy classes of elements in alternating and symmetric groups can be computed cheaply.</p>
<p>Alternative (character-theoretic) computations for <span class="SimpleMath">\(n \in \{ 5, 7, 9, 11, 13 \}\)</span> were shown in Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>. (A hand calculation for the case <span class="SimpleMath">\(n = 19\)</span> can be found in <a href="chapBib_mj.html#biBBW1">[BW75]</a>.)</p>
<p><a id="X7B5321337B28100B" name="X7B5321337B28100B"></a></p>
<h5>11.5-2 <span class="Heading"><span class="SimpleMath">\(A_5\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = A_5\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 1/3\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(5\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(D_{10}\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 1/3\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>Each element in <span class="SimpleMath">\(S\)</span> together with one of <span class="SimpleMath">\((1,2)(3,4)\)</span>, <span class="SimpleMath">\((1,3)(2,4)\)</span>, <span class="SimpleMath">\((1,4)(2,3)\)</span> generates a proper subgroup of <span class="SimpleMath">\(S\)</span>.</p>
</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p>Both the spread and the uniform spread of <span class="SimpleMath">\(S\)</span> is exactly two (see <a href="chapBib_mj.html#biBBW1">[BW75]</a>), with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>.</p>
</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "A5", 1/3, 2, [ "5A" ], [ 1 ] ]
</pre></div>
<p>Statement (b) can be read off from the primitive permutation characters, and the fact that the unique class of maximal subgroups that contain elements of order <span class="SimpleMath">\(5\)</span> consists of groups of the structure <span class="SimpleMath">\(D_{10}\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 2]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 5, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PrimitivePermutationCharacters( t );</span>
[ Character( CharacterTable( "A5" ), [ 5, 1, 2, 0, 0 ] ),
Character( CharacterTable( "A5" ), [ 6, 2, 0, 1, 1 ] ),
Character( CharacterTable( "A5" ), [ 10, 2, 1, 0, 0 ] ) ]
</pre></div>
<p>For statement (c), we compute that for all nonidentity elements <span class="SimpleMath">\(s \in S\)</span> and involutions <span class="SimpleMath">\(g \in S\)</span>, <span class="SimpleMath">\(P(g,s) \geq 1/3\)</span> holds, with equality if and only if <span class="SimpleMath">\(s\)</span> has order <span class="SimpleMath">\(5\)</span>. We actually compute, for class representatives <span class="SimpleMath">\(s\)</span>, the proportion of involutions <span class="SimpleMath">\(g\)</span> such that <span class="SimpleMath">\(\langle g, s \rangle ≠ S\)</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= AlternatingGroup( 5 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= g.1^2 * g.2;</span>
(1,4)(2,5)
<span class="GAPprompt">gap></span> <span class="GAPinput">cclreps:= List( ConjugacyClasses( g ), Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortParallel( List( cclreps, Order ), cclreps );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( cclreps, Order );</span>
[ 1, 2, 3, 5, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( ConjugacyClass( g, inv ) );</span>
15
<span class="GAPprompt">gap></span> <span class="GAPinput">prop:= List( cclreps,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r -> RatioOfNongenerationTransPermGroup( g, inv, r ) );</span>
[ 1, 1, 3/5, 1/3, 1/3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Minimum( prop );</span>
1/3
</pre></div>
<p>Statement (d) follows by explicit computations.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">triple:= [ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CommonGeneratorWithGivenElements( g, cclreps, triple );</span>
fail
</pre></div>
<p>As for statement (e), we know from (a) that the uniform spread of <span class="SimpleMath">\(S\)</span> is at least two, and from (d) that the spread is less than three.</p>
<p><a id="X82C3B4287B0C7BEE" name="X82C3B4287B0C7BEE"></a></p>
<h5>11.5-3 <span class="Heading"><span class="SimpleMath">\(A_6\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = A_6\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 2/3\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two nonconjugate groups of the type <span class="SimpleMath">\(A_5\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 5/9\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>Each element in <span class="SimpleMath">\(S\)</span> together with one of <span class="SimpleMath">\((1,2)(3,4)\)</span>, <span class="SimpleMath">\((1,3)(2,4)\)</span>, <span class="SimpleMath">\((1,4)(2,3)\)</span> generates a proper subgroup of <span class="SimpleMath">\(S\)</span>.</p>
</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p>Both the spread and the uniform spread of <span class="SimpleMath">\(S\)</span> is exactly two (see <a href="chapBib_mj.html#biBBW1">[BW75]</a>), with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(4\)</span>.</p>
</dd>
<dt><strong class="Mark">(f)</strong></dt>
<dd><p>For <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y \in S_6^{\times}\)</span>, there is <span class="SimpleMath">\(s \in S_6\)</span> such that <span class="SimpleMath">\(S \subseteq \langle x, s \rangle \cap \langle y, s \rangle\)</span>. It is <em>not</em> possible to find <span class="SimpleMath">\(s \in S\)</span> with this property, or <span class="SimpleMath">\(s\)</span> in a prescribed conjugacy class of <span class="SimpleMath">\(S_6\)</span>.</p>
</dd>
<dt><strong class="Mark">(g)</strong></dt>
<dd><p><span class="SimpleMath">\(σ( PGL(2,9) ) = 1/6\)</span> and <span class="SimpleMath">\(σ( M_{10} ) = 1/9\)</span>, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(10\)</span> and <span class="SimpleMath">\(8\)</span>, respectively.</p>
</dd>
</dl>
<p>(Note that in this example, the optimal choice of <span class="SimpleMath">\(s\)</span> for <span class="SimpleMath">\(P(S)\)</span> cannot be used to obtain the result on the exact spread.)</p>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "A6" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "A6", 2/3, 1, [ "5A" ], [ 2 ] ]
</pre></div>
<p>Statement (b) can be read off from the permutation characters, and the fact that the two classes of maximal subgroups that contain elements of order <span class="SimpleMath">\(5\)</span> consist of groups of the structure <span class="SimpleMath">\(A_5\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 4]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 3, 4, 5, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );</span>
[ Character( CharacterTable( "A6" ), [ 6, 2, 3, 0, 0, 1, 1 ] ),
Character( CharacterTable( "A6" ), [ 6, 2, 0, 3, 0, 1, 1 ] ),
Character( CharacterTable( "A6" ), [ 10, 2, 1, 1, 2, 0, 0 ] ),
Character( CharacterTable( "A6" ), [ 15, 3, 3, 0, 1, 0, 0 ] ),
Character( CharacterTable( "A6" ), [ 15, 3, 0, 3, 1, 0, 0 ] ) ]
</pre></div>
<p>For statement (c), we first compute that for all nonidentity elements <span class="SimpleMath">\(s \in S\)</span> and involutions <span class="SimpleMath">\(g \in S\)</span>, <span class="SimpleMath">\(P(g,s) \geq 5/9\)</span> holds, with equality if and only if <span class="SimpleMath">\(s\)</span> has order <span class="SimpleMath">\(5\)</span>. We actually compute, for class representatives <span class="SimpleMath">\(s\)</span>, the proportion of involutions <span class="SimpleMath">\(g\)</span> such that <span class="SimpleMath">\(\langle g, s \rangle ≠ S\)</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:= AlternatingGroup( 6 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= (S.1*S.2)^2;</span>
(1,3)(2,5)
<span class="GAPprompt">gap></span> <span class="GAPinput">cclreps:= List( ConjugacyClasses( S ), Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortParallel( List( cclreps, Order ), cclreps );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( cclreps, Order );</span>
[ 1, 2, 3, 3, 4, 5, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">C:= ConjugacyClass( S, inv );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( C );</span>
45
<span class="GAPprompt">gap></span> <span class="GAPinput">prop:= List( cclreps,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r -> RatioOfNongenerationTransPermGroup( S, inv, r ) );</span>
[ 1, 1, 1, 1, 29/45, 5/9, 5/9 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Minimum( prop );</span>
5/9
</pre></div>
<p>Now statement (c) follows from the fact that for <span class="SimpleMath">\(g \in S\)</span> of order larger than two, <span class="SimpleMath">\(σ(S,g) \leq 1/2 < 5/9\)</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxP( prim, 6 );</span>
[ 0, 2/3, 1/2, 1/2, 0, 1/3, 1/3 ]
</pre></div>
<p>Statement (d) follows by explicit computations.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">triple:= [ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CommonGeneratorWithGivenElements( S, cclreps, triple );</span>
fail
</pre></div>
<p>An alternative triple to that in statement (d) is the one given in <a href="chapBib_mj.html#biBBW1">[BW75]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">triple:= [ (1,3)(2,4), (1,5)(2,6), (3,6)(4,5) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CommonGeneratorWithGivenElements( S, cclreps, triple );</span>
fail
</pre></div>
<p>Of course we can also construct such a triple, as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">TripleWithProperty( [ [ inv ], C, C ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> l -> ForAll( S, elm -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> ForAny( l, x -> not IsGeneratorsOfTransPermGroup( S, [ elm, x ] ) ) ) );</span>
[ (1,3)(2,5), (1,3)(2,6), (1,3)(2,4) ]
</pre></div>
<p>For statement (e), we use the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= (1,2,3,4)(5,6);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= Filtered( cclreps, x -> Order( x ) > 1 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for pair in UnorderedTuples( reps, 2 ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if RandomCheckUniformSpread( S, pair, s, 40 ) <> true then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E nongeneration!\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p>We get no output, so a suitable element of order <span class="SimpleMath">\(4\)</span> works in all cases. Note that we cannot use an element of order <span class="SimpleMath">\(5\)</span>, because it fixes a point in the natural permutation representation, and we may take <span class="SimpleMath">\(x_1 = (1,2,3)\)</span> and <span class="SimpleMath">\(x_2 = (4,5,6)\)</span>. With this argument, only elements of order <span class="SimpleMath">\(4\)</span> and double <span class="SimpleMath">\(3\)</span>-cycles are possible choices for <span class="SimpleMath">\(s\)</span>, and the latter are excluded by the fact that an outer automorphism maps the class of double <span class="SimpleMath">\(s\)</span>-cycles in <span class="SimpleMath">\(A_6\)</span> to the class of <span class="SimpleMath">\(3\)</span>-cycles. So no element in <span class="SimpleMath">\(A_6\)</span> of order different from <span class="SimpleMath">\(4\)</span> works.</p>
<p>Next we show statement (f). Already in <span class="SimpleMath">\(A_6.2_1 = S_6\)</span>, elements <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(4\)</span> do in general not work because they do not generate with transpositions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= SymmetricGroup( 6 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( G, s, (1,2) );</span>
1
</pre></div>
<p>Also, choosing <span class="SimpleMath">\(s\)</span> from a prescribed conjugacy class of <span class="SimpleMath">\(S_6\)</span> (that is, also <span class="SimpleMath">\(s\)</span> outside <span class="SimpleMath">\(A_6\)</span> is allowed) with the property that <span class="SimpleMath">\(A_6 \subseteq \langle x, s \rangle \cap \langle y, s \rangle\)</span> is not possible. Note that only <span class="SimpleMath">\(6\)</span>-cycles are possible for <span class="SimpleMath">\(s\)</span> if <span class="SimpleMath">\(x\)</span> and <span class="SimpleMath">\(y\)</span> are commuting transpositions, and –applying the outer automorphism– no <span class="SimpleMath">\(6\)</span>-cycle works for two commuting fixed-point free involutions. (The group is small enough for a brute force test.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">goods:= Filtered( Elements( G ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s -> IsGeneratorsOfTransPermGroup( G, [ s, (1,2) ] ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsGeneratorsOfTransPermGroup( G, [ s, (3,4) ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Collected( List( goods, CycleStructurePerm ) );</span>
[ [ [ ,,,, 1 ], 24 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">goods:= Filtered( Elements( G ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s -> IsGeneratorsOfTransPermGroup( G, [ s, (1,2)(3,4)(5,6) ] ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsGeneratorsOfTransPermGroup( G, [ s, (1,3)(2,4)(5,6) ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Collected( List( goods, CycleStructurePerm ) );</span>
[ [ [ 1, 1 ], 24 ] ]
</pre></div>
<p>However, for each pair of nonidentity element <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y \in S_6\)</span>, there is <span class="SimpleMath">\(s \in S_6\)</span> such that <span class="SimpleMath">\(\langle x, s \rangle\)</span> and <span class="SimpleMath">\(\langle y, s \rangle\)</span> both contain <span class="SimpleMath">\(A_6\)</span>. (If <span class="SimpleMath">\(s\)</span> works for the pair <span class="SimpleMath">\((x,y)\)</span> then <span class="SimpleMath">\(s^g\)</span> works for <span class="SimpleMath">\((x^g,y^g)\)</span>, so it is sufficient to consider only orbit representatives <span class="SimpleMath">\((x,y)\)</span> under the conjugation action of <span class="SimpleMath">\(G\)</span> on pairs. Thus we check conjugacy class representatives <span class="SimpleMath">\(x\)</span> and, for fixed <span class="SimpleMath">\(x\)</span>, representatives of orbits of <span class="SimpleMath">\(C_G(x)\)</span> on the classes <span class="SimpleMath">\(y^G\)</span>, i. e., representatives of <span class="SimpleMath">\(C_G(y)\)</span>-<span class="SimpleMath">\(C_G(x)\)</span>-double cosets in <span class="SimpleMath">\(G\)</span>. Moreover, clearly we can restrict the checks to elements <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> of prime order.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Sgens:= GeneratorsOfGroup( S );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">primord:= Filtered( List( ConjugacyClasses( G ), Representative ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> IsPrimeInt( Order( x ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for x in primord do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for y in primord do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for pair in DoubleCosetRepsAndSizes( G, Centralizer( G, y ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Centralizer( G, x ) ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not ForAny( G, s -> IsSubset( Group( x,s ), S ) and </span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsSubset( Group( y^pair[1], s ), S ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( [ x, y ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p>In other words, the spread of <span class="SimpleMath">\(S_6\)</span> is <span class="SimpleMath">\(2\)</span> but the uniform spread of <span class="SimpleMath">\(S_6\)</span> is not <span class="SimpleMath">\(2\)</span> but only <span class="SimpleMath">\(1\)</span>.</p>
<p>We cannot always find <span class="SimpleMath">\(s \in A_6\)</span> with the required property: If <span class="SimpleMath">\(x\)</span> is a transposition then any <span class="SimpleMath">\(s\)</span> with <span class="SimpleMath">\(S \subseteq\langle x, s \rangle\)</span> must be a <span class="SimpleMath">\(5\)</span>-cycle.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( S, s -> IsSubset( Group( (1,2), s ), S ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Collected( List( filt, Order ) );</span>
[ [ 5, 48 ] ]
</pre></div>
<p>Moreover, clearly such <span class="SimpleMath">\(s\)</span> fixes one of the moved points of <span class="SimpleMath">\(x\)</span>, so we may prescribe a transposition <span class="SimpleMath">\(y ≠ x\)</span> that commutes with <span class="SimpleMath">\(x\)</span>, it satisfies <span class="SimpleMath">\(S \nsubseteq\langle y, s \rangle\)</span>.</p>
<p>For the other two automorphic extensions <span class="SimpleMath">\(A_6.2_2 = PGL(2,9)\)</span> and <span class="SimpleMath">\(A_6.2_3 = M_{10}\)</span>, we compute the character-theoretic bounds <span class="SimpleMath">\(σ(A_6.2_2) = 1/6\)</span> and <span class="SimpleMath">\(σ(A_6.2_3) = 1/9\)</span>, which shows statement (g).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( CharacterTable( "A6.2_2" ) );</span>
[ "A6.2_2", 1/6, 5, [ "10A" ], [ 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( CharacterTable( "A6.2_3" ) );</span>
[ "A6.2_3", 1/9, 8, [ "8C" ], [ 1 ] ]
</pre></div>
<p>Note that <span class="SimpleMath">\(σ^{\prime}( PGL(2,9), s ) = 1/6\)</span>, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(5\)</span>, and <span class="SimpleMath">\(σ^{\prime}( M_{10}, s ) = 0\)</span> for any <span class="SimpleMath">\(s \in A_6\)</span> since <span class="SimpleMath">\(M_{10}\)</span> is a non-split extension of <span class="SimpleMath">\(A_6\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "A6" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "A6.2_2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= PositionsProperty( OrdersClassRepresentatives( t ), x -> x = 5 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoAlmostSimple( t, t2, spos );</span>
[ "A6.2_2", 1/6, [ "5A", "5B" ], [ 1, 1 ] ]
</pre></div>
<p><a id="X85B3C7217B105D4D" name="X85B3C7217B105D4D"></a></p>
<h5>11.5-4 <span class="Heading"><span class="SimpleMath">\(A_7\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = A_7\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 2/5\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two nonconjugate subgroups of the type <span class="SimpleMath">\(L_2(7)\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 2/5\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is exactly three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>
</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "A7" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "A7", 2/5, 2, [ "7A" ], [ 2 ] ]
</pre></div>
<p>Statement (b) can be read off from the permutation characters, and the fact that the two classes of maximal subgroups that contain elements of order <span class="SimpleMath">\(7\)</span> consist of groups of the structure <span class="SimpleMath">\(L_2(7)\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 10]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 3, 4, 5, 6, 7, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );</span>
[ Character( CharacterTable( "A7" ), [ 7, 3, 4, 1, 1, 2, 0, 0, 0 ] ),
Character( CharacterTable( "A7" ), [ 15, 3, 0, 3, 1, 0, 0, 1, 1 ] ),
Character( CharacterTable( "A7" ), [ 15, 3, 0, 3, 1, 0, 0, 1, 1 ] ),
Character( CharacterTable( "A7" ), [ 21, 5, 6, 0, 1, 1, 2, 0, 0 ] ),
Character( CharacterTable( "A7" ), [ 35, 7, 5, 2, 1, 0, 1, 0, 0 ] )
]
</pre></div>
<p>For statement (c), we compute that for all nonidentity elements <span class="SimpleMath">\(s \in S\)</span> and involutions <span class="SimpleMath">\(g \in S\)</span>, <span class="SimpleMath">\(P(g,s) \geq 2/5\)</span> holds, with equality if and only if <span class="SimpleMath">\(s\)</span> has order <span class="SimpleMath">\(7\)</span>. We actually compute, for class representatives <span class="SimpleMath">\(s\)</span>, the proportion of involutions <span class="SimpleMath">\(g\)</span> such that <span class="SimpleMath">\(\langle g, s \rangle ≠ S\)</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= AlternatingGroup( 7 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= (g.1^3*g.2)^3;</span>
(2,6)(3,7)
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= List( ConjugacyClasses( g ), Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortParallel( List( ccl, Order ), ccl );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ccl, Order );</span>
[ 1, 2, 3, 3, 4, 5, 6, 7, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( ConjugacyClass( g, inv ) );</span>
105
<span class="GAPprompt">gap></span> <span class="GAPinput">prop:= List( ccl, r -> RatioOfNongenerationTransPermGroup( g, inv, r ) );</span>
[ 1, 1, 1, 1, 89/105, 17/21, 19/35, 2/5, 2/5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Minimum( prop );</span>
2/5
</pre></div>
<p>For statement (d), we use the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>. By the character-theoretic bounds, it suffices to consider triples of elements in the classes <code class="code">2A</code> or <code class="code">3B</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 3, 4, 5, 6, 7, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 7 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesCentralizers( t );</span>
[ 2520, 24, 36, 9, 4, 5, 12, 7, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxP( prim, spos );</span>
[ 0, 2/5, 0, 2/5, 2/15, 0, 0, 2/15, 2/15 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= (1,2,3,4,5,6,7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3B:= (1,2,3)(4,5,6);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C3B:= ConjugacyClass( g, 3B );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( C3B );</span>
280
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for triple in UnorderedTuples( [ inv, 3B ], 3 ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if RandomCheckUniformSpread( g, triple, s, 80 ) <> true then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E nongeneration!\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p>We get no output, so the uniform spread of <span class="SimpleMath">\(S\)</span> is at least three.</p>
<p>Alternatively, we can use the lemma from Section <a href="chap11_mj.html#X79D7312484E78274"><span class="RefLink">11.2-2</span></a>; this approach is technically more involved but faster. We work with the diagonal product of the two degree <span class="SimpleMath">\(15\)</span> representations of <span class="SimpleMath">\(S\)</span>, which is constructed from the information stored in the <strong class="pkg">GAP</strong> Library of Tables of Marks.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tom:= TableOfMarks( "A7" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">a7:= UnderlyingGroup( tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tommaxes:= MaximalSubgroupsTom( tom );</span>
[ [ 39, 38, 37, 36, 35 ], [ 7, 15, 15, 21, 35 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">index15:= List( tommaxes[1]{ [ 2, 3 ] },</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> RepresentativeTom( tom, i ) );</span>
[ Group([ (1,3)(2,7), (1,5,7)(3,4,6) ]),
Group([ (1,4)(2,3), (2,4,6)(3,5,7) ]) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">deg15:= List( index15, s -> RightTransversal( a7, s ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= List( deg15, l -> Action( a7, l, OnRight ) );</span>
[ Group([ (1,5,7)(2,9,10)(3,11,4)(6,12,8)(13,14,15), (1,8,15,5,12)
(2,13,11,3,10)(4,14,9,7,6) ]),
Group([ (1,2,3)(4,6,5)(7,8,9)(10,12,11)(13,15,14), (1,12,3,13,10)
(2,9,15,4,11)(5,6,14,7,8) ]) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= DiagonalProductOfPermGroups( reps );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 7;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NrMovedPoints( s );</span>
28
<span class="GAPprompt">gap></span> <span class="GAPinput">mpg:= MovedPoints( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fixs:= Difference( mpg, MovedPoints( s ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb_s:= Orbit( g, fixs, OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( orb_s );</span>
120
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesCentralizers( t );</span>
[ 2520, 24, 36, 9, 4, 5, 12, 7, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat 2a:= Random( g ); until Order( 2a ) = 2;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat 3b:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( 3b ) = 3 and Size( Centralizer( g, 3b ) ) = 9;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb2a:= Orbit( g, Difference( mpg, MovedPoints( 2a ) ), OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb3b:= Orbit( g, Difference( mpg, MovedPoints( 3b ) ), OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb2aor3b:= Union( orb2a, orb3b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">TripleWithProperty( [ [ orb2a[1], orb3b[1] ], orb2aor3b, orb2aor3b ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> l -> ForAll( orb_s,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> f -> not IsEmpty( Intersection( Union( l ), f ) ) ) );</span>
fail
</pre></div>
<p>It remains to show that for any choice of <span class="SimpleMath">\(s \in S\)</span>, a quadruple of elements in <span class="SimpleMath">\(S^{\times}\)</span> exists such that <span class="SimpleMath">\(s\)</span> generates a proper subgroup of <span class="SimpleMath">\(S\)</span> together with at least one of these elements.</p>
<p>First we observe (without using <strong class="pkg">GAP</strong>) that there is a pair of <span class="SimpleMath">\(3\)</span>-cycles whose fixed points cover the seven points of the natural permutation representation. This implies the statement for all elements <span class="SimpleMath">\(s \in S\)</span> that fix a point in this representation. So it remains to consider elements <span class="SimpleMath">\(s\)</span> of the orders six and seven.</p>
<p>For the order seven element, the above setup and the lemma from Section <a href="chap11_mj.html#X79D7312484E78274"><span class="RefLink">11.2-2</span></a> can be used.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">QuadrupleWithProperty( [ [ orb2a[1] ], orb2a, orb2a, orb2a ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> l -> ForAll( orb_s,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> f -> not IsEmpty( Intersection( Union( l ), f ) ) ) );</span>
[ [ 2, 5, 12, 18, 19, 26 ], [ 7, 8, 9, 16, 21, 25 ],
[ 1, 6, 10, 17, 20, 27 ], [ 13, 14, 15, 28, 29, 30 ] ]
</pre></div>
<p>For the order six element, we use the diagonal product of the primitive permutation representations of the degrees <span class="SimpleMath">\(21\)</span> and <span class="SimpleMath">\(35\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">has6A:= List( tommaxes[1]{ [ 4, 5 ] },</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> RepresentativeTom( tom, i ) );</span>
[ Group([ (1,2)(3,7), (2,6,5,4)(3,7) ]),
Group([ (2,3)(5,7), (1,2)(4,5,6,7), (2,3)(5,6) ]) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">trans:= List( has6A, s -> RightTransversal( a7, s ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= List( trans, l -> Action( a7, l, OnRight ) );</span>
[ Group([ (1,16,12)(2,17,13)(3,18,11)(4,19,14)(15,20,21), (1,4,7,9,10)
(2,5,8,3,6)(11,12,15,14,13)(16,20,19,17,18) ]),
Group([ (2,16,6)(3,17,7)(4,18,8)(5,19,9)(10,20,26)(11,21,27)
(12,22,28)(13,23,29)(14,24,30)(15,25,31), (1,2,3,4,5)
(6,10,13,15,9)(7,11,14,8,12)(16,20,23,25,19)(17,21,24,18,22)
(26,32,35,31,28)(27,33,29,34,30) ]) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= DiagonalProductOfPermGroups( reps );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 6;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NrMovedPoints( s );</span>
53
<span class="GAPprompt">gap></span> <span class="GAPinput">mpg:= MovedPoints( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fixs:= Difference( mpg, MovedPoints( s ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb_s:= Orbit( g, fixs, OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( orb_s );</span>
105
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat 3a:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( 3a ) = 3 and Size( Centralizer( g, 3a ) ) = 36;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb3a:= Orbit( g, Difference( mpg, MovedPoints( 3a ) ), OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( orb3a );</span>
35
<span class="GAPprompt">gap></span> <span class="GAPinput">TripleWithProperty( [ [ orb3a[1] ], orb3a, orb3a ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> l -> ForAll( orb_s,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> f -> not IsEmpty( Intersection( Union( l ), f ) ) ) );</span>
[ [ 1, 4, 6, 12, 14, 15, 34, 37, 40, 43, 49 ],
[ 1, 4, 6, 16, 19, 20, 27, 30, 33, 44, 49 ],
[ 2, 3, 4, 5, 7, 9, 26, 47, 48, 50, 53 ] ]
</pre></div>
<p>So we have found not only a quadruple but even a triple of <span class="SimpleMath">\(3\)</span>-cycles that excludes candidates <span class="SimpleMath">\(s\)</span> of order six.</p>
<p><a id="X84EA645A82E2BAFB" name="X84EA645A82E2BAFB"></a></p>
<h5>11.5-5 <span class="Heading"><span class="SimpleMath">\(L_d(q)\)</span></span></h5>
<p>In the treatment of small dimensional linear groups <span class="SimpleMath">\(S = SL(d,q)\)</span>, <a href="chapBib_mj.html#biBBGK">[BGK08]</a> uses a Singer element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\((q^d-1)/(q-1)\)</span>. (So the order of the corresponding element in <span class="SimpleMath">\(PSL(d,q) = (q^d-1)/[(q-1) \gcd(d,q-1)]\)</span>.) By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of extension field type subgroups, except in the cases <span class="SimpleMath">\(d = 2\)</span>, <span class="SimpleMath">\(q \in \{ 2, 5, 7, 9 \}\)</span>, and <span class="SimpleMath">\((d,q) = (3,4)\)</span>. These subgroups have the structure <span class="SimpleMath">\(GL(d/p,q^p):\alpha_q \cap S\)</span>, for prime divisors <span class="SimpleMath">\(p\)</span> of <span class="SimpleMath">\(d\)</span>, where <span class="SimpleMath">\(\alpha_q\)</span> denotes the Frobenius automorphism that acts on matrices by raising each entry to the <span class="SimpleMath">\(q\)</span>-th power. (If <span class="SimpleMath">\(q\)</span> is a prime then we have <span class="SimpleMath">\(GL(d/p,q^p):\alpha_q = ΓL(d/p,q^p)\)</span>.) Since <span class="SimpleMath">\(s\)</span> acts irreducibly, it is contained in at most one conjugate of each class of extension field type subgroups (cf. <a href="chapBib_mj.html#biBBGK">[BGK08, Lemma 2.12]</a>).</p>
<p>First we write a <strong class="pkg">GAP</strong> function <code class="code">RelativeSigmaL</code> that takes a positive integer <span class="SimpleMath">\(d\)</span> and a basis <span class="SimpleMath">\(B\)</span> of the field extension of degree <span class="SimpleMath">\(n\)</span> over the field with <span class="SimpleMath">\(q\)</span> elements, and returns the group <span class="SimpleMath">\(GL(d,q^n):\alpha_q\)</span>, as a subgroup of <span class="SimpleMath">\(GL(dn,q)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">RelativeSigmaL:= function( d, B )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local n, F, q, glgens, diag, pi, frob, i;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> n:= Length( B );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> F:= LeftActingDomain( UnderlyingLeftModule( B ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> q:= Size( F );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Create the generating matrices inside the linear subgroup.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> glgens:= List( GeneratorsOfGroup( SL( d, q^n ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> m -> BlownUpMat( B, m ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Create the matrix of a diagonal part that maps to determinant 1.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> diag:= IdentityMat( d*n, F );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> diag{ [ 1 .. n ] }{ [ 1 .. n ] }:= BlownUpMat( B, [ [ Z(q^n)^(q-1) ] ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( glgens, diag );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Create the matrix that realizes the Frobenius action,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # and adjust the determinant.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pi:= List( B, b -> Coefficients( B, b^q ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> frob:= NullMat( d*n, d*n, F );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 0 .. d-1 ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> frob{ [ 1 .. n ] + i*n }{ [ 1 .. n ] + i*n }:= pi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> diag:= IdentityMat( d*n, F );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> diag{ [ 1 .. n ] }{ [ 1 .. n ] }:= BlownUpMat( B, [ [ Z(q^n) ] ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> diag:= diag^LogFFE( Inverse( Determinant( frob ) ), Determinant( diag ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Return the result.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return Group( Concatenation( glgens, [ diag * frob ] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>The next function computes <span class="SimpleMath">\(σ(SL(d,q),s)\)</span>, by computing the sum of <span class="SimpleMath">\(μ(g,S/(GL(d/p,q^p):\alpha_q \cap S))\)</span>, for prime divisors <span class="SimpleMath">\(p\)</span> of <span class="SimpleMath">\(d\)</span>, and taking the maximum over <span class="SimpleMath">\(g \in S^{\times}\)</span>. The computations take place in a permutation representation of <span class="SimpleMath">\(PSL(d,q)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForSL:= function( d, q )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local G, epi, PG, primes, maxes, names, ccl;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Check whether this is an admissible case (see [Be00]).</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ( d = 2 and q in [ 2, 5, 7, 9 ] ) or ( d = 3 and q = 4 ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Create the group SL(d,q), and the map to PSL(d,q).</span>
<span class="GAPprompt">></span> <span class="GAPinput"> G:= SL( d, q );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> epi:= ActionHomomorphism( G, NormedRowVectors( GF(q)^d ), OnLines );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PG:= ImagesSource( epi );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Create the subgroups corresponding to the prime divisors of `d'.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> primes:= PrimeDivisors( d );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxes:= List( primes, p -> RelativeSigmaL( d/p,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Basis( AsField( GF(q), GF(q^p) ) ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> names:= List( primes, p -> Concatenation( "GL(", String( d/p ), ",",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> String( q^p ), ").", String( p ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if 2 < q then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> names:= List( names, name -> Concatenation( name, " cap G" ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute the conjugacy classes of prime order elements in the maxes.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # (In order to avoid computing all conjugacy classes of these subgroups,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # we work in Sylow subgroups.)</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ccl:= List( List( maxes, x -> ImagesSet( epi, x ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> M -> ClassesOfPrimeOrder( M, PrimeDivisors( Size( M ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> TrivialSubgroup( M ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [ names, UpperBoundFixedPointRatios( PG, ccl, true )[1] ];</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>We apply this function to the cases that are interesting in <a href="chapBib_mj.html#biBBGK">[BGK08, Section 5.12]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pairs:= [ [ 3, 2 ], [ 3, 3 ], [ 4, 2 ], [ 4, 3 ], [ 4, 4 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 6, 2 ], [ 6, 3 ], [ 6, 4 ], [ 6, 5 ], [ 8, 2 ], [ 10, 2 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">array:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for pair in pairs do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> d:= pair[1]; q:= pair[2];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> approx:= ApproxPForSL( d, q );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( array, [ Concatenation( "SL(", String(d), ",", String(q), ")" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> (q^d-1)/(q-1),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> approx[1], approx[2] ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">oldsize:= SizeScreen();;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SizeScreen( [ 80 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrintFormattedArray( array );</span>
SL(3,2) 7 [ "GL(1,8).3" ] 1/4
SL(3,3) 13 [ "GL(1,27).3 cap G" ] 1/24
SL(4,2) 15 [ "GL(2,4).2" ] 3/14
SL(4,3) 40 [ "GL(2,9).2 cap G" ] 53/1053
SL(4,4) 85 [ "GL(2,16).2 cap G" ] 1/108
SL(6,2) 63 [ "GL(3,4).2", "GL(2,8).3" ] 365/55552
SL(6,3) 364 [ "GL(3,9).2 cap G", "GL(2,27).3 cap G" ] 22843/123845436
SL(6,4) 1365 [ "GL(3,16).2 cap G", "GL(2,64).3 cap G" ] 1/85932
SL(6,5) 3906 [ "GL(3,25).2 cap G", "GL(2,125).3 cap G" ] 1/484220
SL(8,2) 255 [ "GL(4,4).2" ] 1/7874
SL(10,2) 1023 [ "GL(5,4).2", "GL(2,32).5" ] 1/129794
<span class="GAPprompt">gap></span> <span class="GAPinput">SizeScreen( oldsize );;</span>
</pre></div>
<p>The only missing case for <a href="chapBib_mj.html#biBBGK">[BGK08]</a> is <span class="SimpleMath">\(S = L_3(4)\)</span>, for which <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of three groups of the type <span class="SimpleMath">\(L_3(2)\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 23]</a>). The group <span class="SimpleMath">\(L_3(4)\)</span> has been considered already in Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>, where <span class="SimpleMath">\(σ(S,s) = 1/5\)</span> has been proved. Also the cases <span class="SimpleMath">\(SL(3,3)\)</span>, <span class="SimpleMath">\(SL(4,2) \cong A_8\)</span>, and <span class="SimpleMath">\(SL(4,3)\)</span> have been handled there.</p>
<p>An alternative character-theoretic proof for <span class="SimpleMath">\(S = L_6(2)\)</span> looks as follows. In this case, the subgroups in <span class="SimpleMath">\(𝕄(S,s)\)</span> have the types <span class="SimpleMath">\(ΓL(3,4) \cong GL(3,4).2 \cong 3.L_3(4).3.2_2\)</span> and <span class="SimpleMath">\(ΓL(2,8) \cong GL(2,8).3 \cong (7 \times L_2(8)).3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "L6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s1:= CharacterTable( "3.L3(4).3.2_2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s2:= CharacterTable( "(7xL2(8)).3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( t, "63A", [ s1, s2 ], [ 1, 1 ] );</span>
365/55552
</pre></div>
<p><a id="X855460BE787188B9" name="X855460BE787188B9"></a></p>
<h5>11.5-6 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(L_d(q)\)</span> with prime <span class="SimpleMath">\(d\)</span></span></h5>
<p>For <span class="SimpleMath">\(S = SL(d,q)\)</span> with <em>prime</em> dimension <span class="SimpleMath">\(d\)</span>, and <span class="SimpleMath">\(s \in S\)</span> a Singer cycle, we have <span class="SimpleMath">\(𝕄(S,s) = \{ M \}\)</span>, where <span class="SimpleMath">\(M = N_S(\langle s \rangle) \cong ΓL(1,q^d) \cap S\)</span>. So</p>
<p class="center">\[
σ(g,s) = μ(g,S/M) = |g^S \cap M|/|g^S|
< |M|/|g^S| \leq (q^d-1) \cdot d/|g^S|
\]</p>
<p>holds for any <span class="SimpleMath">\(g \in S \setminus Z(S)\)</span>, which implies <span class="SimpleMath">\(σ( S, s ) < \max\{ (q^d-1) \cdot d/|g^S|; g \in S \setminus Z(S) \}\)</span>. The right hand side of this inequality is returned by the following function. In <a href="chapBib_mj.html#biBBGK">[BGK08, Lemma 3.8]</a>, the global upper bound <span class="SimpleMath">\(1/q^d\)</span> is derived for primes <span class="SimpleMath">\(d \geq 5\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperBoundForSL:= function( d, q )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local G, Msize, ccl;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsPrimeInt( d ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "<d> must be a prime" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> G:= SL( d, q );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Msize:= (q^d-1) * d;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ccl:= Filtered( ConjugacyClasses( G ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> c -> Msize mod Order( Representative( c ) ) = 0</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and Size( c ) <> 1 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return Msize / Minimum( List( ccl, Size ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>The interesting values are <span class="SimpleMath">\((d,q)\)</span> with <span class="SimpleMath">\(d \in \{ 5, 7, 11 \}\)</span> and <span class="SimpleMath">\(q \in \{ 2, 3, 4 \}\)</span>, and perhaps also <span class="SimpleMath">\((d,q) \in \{ (3,2), (3,3) \}\)</span>. (Here we exclude <span class="SimpleMath">\(SL(11,4)\)</span> because writing down the conjugacy classes of this group would exceed the permitted memory.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">NrConjugacyClasses( SL(11,4) );</span>
1397660
<span class="GAPprompt">gap></span> <span class="GAPinput">pairs:= [ [ 3, 2 ], [ 3, 3 ], [ 5, 2 ], [ 5, 3 ], [ 5, 4 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 7, 2 ], [ 7, 3 ], [ 7, 4 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 11, 2 ], [ 11, 3 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">array:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for pair in pairs do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> d:= pair[1]; q:= pair[2];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> approx:= UpperBoundForSL( d, q );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( array, [ Concatenation( "SL(", String(d), ",", String(q), ")" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> (q^d-1)/(q-1),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> approx ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrintFormattedArray( array );</span>
SL(3,2) 7 7/8
SL(3,3) 13 3/4
SL(5,2) 31 31/64512
SL(5,3) 121 10/81
SL(5,4) 341 15/256
SL(7,2) 127 7/9142272
SL(7,3) 1093 14/729
SL(7,4) 5461 21/4096
SL(11,2) 2047 2047/34112245508649716682268134604800
SL(11,3) 88573 22/59049
</pre></div>
<p>The exact values are clearly better than the above bounds. We compute them for <span class="SimpleMath">\(L_5(2)\)</span> and <span class="SimpleMath">\(L_7(2)\)</span>. In the latter case, the class fusion of the <span class="SimpleMath">\(127:7\)</span> type subgroup <span class="SimpleMath">\(M\)</span> is not uniquely determined by the character tables; here we use the additional information that the elements of order <span class="SimpleMath">\(7\)</span> in <span class="SimpleMath">\(M\)</span> have centralizer order <span class="SimpleMath">\(49\)</span> in <span class="SimpleMath">\(L_7(2)\)</span>. (See Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a> for the examples with <span class="SimpleMath">\(d = 3\)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( CharacterTable( "L5(2)" ), "31A",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ CharacterTable( "31:5" ) ], [ 1 ] );</span>
1/5376
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "L7(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "P:Q", [ 127, 7 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( pi );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">ord7:= PositionsProperty( OrdersClassRepresentatives( t ), x -> x = 7 );</span>
[ 38, 45, 76, 77, 83 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">sizes:= SizesCentralizers( t ){ ord7 };</span>
[ 141120, 141120, 3528, 3528, 49 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( pi, x -> x[83] );</span>
[ 42, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 127 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( ApproxP( pi{ [ 1 ] }, spos ) );</span>
1/4388290560
</pre></div>
<p><a id="X7EA88CEF81962F3F" name="X7EA88CEF81962F3F"></a></p>
<h5>11.5-7 <span class="Heading">Automorphic Extensions of <span class="SimpleMath">\(L_d(q)\)</span></span></h5>
<p>For the following values of <span class="SimpleMath">\(d\)</span> and <span class="SimpleMath">\(q\)</span>, automorphic extensions <span class="SimpleMath">\(G\)</span> of <span class="SimpleMath">\(L_d(q)\)</span> had to be checked for <a href="chapBib_mj.html#biBBGK">[BGK08, Section 5.12]</a>.</p>
<p class="center">\[
(d,q) \in \{ (3,4), (6,2), (6,3), (6,4), (6,5), (10,2) \}
\]</p>
<p>The first case has been treated in Section <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a>. For the other cases, we compute <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> below.</p>
<p>In any case, the extension by a <em>graph</em> automorphism occurs, which can be described by mapping each matrix in <span class="SimpleMath">\(SL(d,q)\)</span> to its inverse transpose. If <span class="SimpleMath">\(q > 2\)</span>, also extensions by <em>diagonal</em> automorphisms occur, which are induced by conjugation with elements in <span class="SimpleMath">\(GL(d,q)\)</span>. If <span class="SimpleMath">\(q\)</span> is nonprime then also extensions by <em>field</em> automorphisms occur, which can be described by powering the matrix entries by roots of <span class="SimpleMath">\(q\)</span>. Finally, products (of prime order) of these three kinds of automorphisms have to be considered.</p>
<p>We start with the extension <span class="SimpleMath">\(G\)</span> of <span class="SimpleMath">\(S = SL(d,q)\)</span> by a graph automorphism. <span class="SimpleMath">\(G\)</span> can be embedded into <span class="SimpleMath">\(GL(2d,q)\)</span> by representing the matrix <span class="SimpleMath">\(A \in S\)</span> as a block diagonal matrix with diagonal blocks equal to <span class="SimpleMath">\(A\)</span> and <span class="SimpleMath">\(A^{-tr}\)</span>, and representing the graph automorphism by a permutation matrix that interchanges the two blocks. In order to construct the field extension type subgroups of <span class="SimpleMath">\(G\)</span>, we have to choose the basis of the field extension in such a way that the subgroup is normalized by the permutation matrix; a sufficient condition is that the matrices of the <span class="SimpleMath">\(𝔽_q\)</span>-linear mappings induced by the basis elements are symmetric.</p>
<p>(We do not give a function that computes a basis with this property from the parameters <span class="SimpleMath">\(d\)</span> and <span class="SimpleMath">\(q\)</span>. Instead, we only write down the bases that we will need.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SymmetricBasis:= function( q, n )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local vectors, B, issymmetric;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> if q = 2 and n = 2 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> vectors:= [ Z(2)^0, Z(2^2) ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif q = 2 and n = 3 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> vectors:= [ Z(2)^0, Z(2^3), Z(2^3)^5 ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif q = 2 and n = 5 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> vectors:= [ Z(2)^0, Z(2^5), Z(2^5)^4, Z(2^5)^25, Z(2^5)^26 ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif q = 3 and n = 2 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> vectors:= [ Z(3)^0, Z(3^2) ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif q = 3 and n = 3 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> vectors:= [ Z(3)^0, Z(3^3)^2, Z(3^3)^7 ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif q = 4 and n = 2 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> vectors:= [ Z(2)^0, Z(2^4)^3 ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif q = 4 and n = 3 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> vectors:= [ Z(2)^0, Z(2^3), Z(2^3)^5 ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif q = 5 and n = 2 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> vectors:= [ Z(5)^0, Z(5^2)^2 ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif q = 5 and n = 3 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> vectors:= [ Z(5)^0, Z(5^3)^9, Z(5^3)^27 ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "sorry, no basis for <q> and <n> stored" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> B:= Basis( AsField( GF(q), GF(q^n) ), vectors );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Check that the basis really has the required property.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> issymmetric:= M -> M = TransposedMat( M );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not ForAll( B, b -> issymmetric( BlownUpMat( B, [ [ b ] ] ) ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "wrong basis!" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Return the result.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return B;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>In later examples, we will need similar embeddings of matrices. Therefore, we provide a more general function <code class="code">EmbeddedMatrix</code> that takes a field <code class="code">F</code>, a matrix <code class="code">mat</code>, and a function <code class="code">func</code>, and returns a block diagonal matrix over <code class="code">F</code> whose diagonal blocks are <code class="code">mat</code> and <code class="code">func( mat )</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BindGlobal( "EmbeddedMatrix", function( F, mat, func )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local d, result;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> d:= Length( mat );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result:= NullMat( 2*d, 2*d, F );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result{ [ 1 .. d ] }{ [ 1 .. d ] }:= mat;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result{ [ d+1 .. 2*d ] }{ [ d+1 .. 2*d ] }:= func( mat );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return result;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end );</span>
</pre></div>
<p>The following function is similar to <code class="code">ApproxPForSL</code>, the differences are that the group <span class="SimpleMath">\(G\)</span> in question is not <span class="SimpleMath">\(SL(d,q)\)</span> but the extension of this group by a graph automorphism, and that <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span> is computed not <span class="SimpleMath">\(σ(G,s)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut:= function( d, q )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local embedG, swap, G, orb, epi, PG, Gprime, primes, maxes, ccl, names;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Check whether this is an admissible case (see [Be00],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # note that a graph automorphism exists only for `d > 2').</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if d = 2 or ( d = 3 and q = 4 ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Provide a function that constructs a block diagonal matrix.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> embedG:= mat -> EmbeddedMatrix( GF( q ), mat,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> M -> TransposedMat( M^-1 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Create the matrix that exchanges the two blocks.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> swap:= NullMat( 2*d, 2*d, GF(q) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> swap{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> swap{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Create the group SL(d,q).2, and the map to the projective group.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> G:= ClosureGroupDefault( Group( List( GeneratorsOfGroup( SL( d, q ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> embedG ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> swap );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> orb:= Orbit( G, One( G )[1], OnLines );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> epi:= ActionHomomorphism( G, orb, OnLines );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PG:= ImagesSource( epi );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Gprime:= DerivedSubgroup( PG );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Create the subgroups corresponding to the prime divisors of `d'.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> primes:= PrimeDivisors( d );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxes:= List( primes,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> p -> ClosureGroupDefault( Group( List( GeneratorsOfGroup(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> RelativeSigmaL( d/p, SymmetricBasis( q, p ) ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> embedG ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> swap ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute conjugacy classes of outer involutions in the maxes.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # (In order to avoid computing all conjugacy classes of these subgroups,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # we work in the Sylow $2$ subgroups.)</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxes:= List( maxes, M -> ImagesSet( epi, M ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ccl:= List( maxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> names:= List( primes, p -> Concatenation( "GL(", String( d/p ), ",",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> String( q^p ), ").", String( p ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [ names, UpperBoundFixedPointRatios( PG, ccl, true )[1] ];</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>And these are the results for the groups we are interested in (and others).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 4, 3 );</span>
[ [ "GL(2,9).2" ], 17/117 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 4, 4 );</span>
[ [ "GL(2,16).2" ], 73/1008 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 6, 2 );</span>
[ [ "GL(3,4).2", "GL(2,8).3" ], 41/1984 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 6, 3 );</span>
[ [ "GL(3,9).2", "GL(2,27).3" ], 541/352836 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 6, 4 );</span>
[ [ "GL(3,16).2", "GL(2,64).3" ], 3265/12570624 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 6, 5 );</span>
[ [ "GL(3,25).2", "GL(2,125).3" ], 13001/195250000 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 8, 2 );</span>
[ [ "GL(4,4).2" ], 367/1007872 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInExtensionOfSLByGraphAut( 10, 2 );</span>
[ [ "GL(5,4).2", "GL(2,32).5" ], 609281/476346056704 ]
</pre></div>
<p>Now we consider diagonal automorphisms. We modify the approach for <span class="SimpleMath">\(SL(d,q)\)</span> by constructing the field extension type subgroups of <span class="SimpleMath">\(GL(d,q) \ldots\)</span></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">RelativeGammaL:= function( d, B )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local n, F, q, diag;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> n:= Length( B );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> F:= LeftActingDomain( UnderlyingLeftModule( B ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> q:= Size( F );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> diag:= IdentityMat( d * n, F );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> diag{[ 1 .. n ]}{[ 1 .. n ]}:= BlownUpMat( B, [ [ Z(q^n) ] ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return ClosureGroup( RelativeSigmaL( d, B ), diag );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p><span class="SimpleMath">\(\ldots\)</span> and counting the elements of prime order outside the simple group.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInGL:= function( d, q )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local G, epi, PG, Gprime, primes, maxes, names;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Check whether this is an admissible case (see [Be00]).</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ( d = 2 and q in [ 2, 5, 7, 9 ] ) or ( d = 3 and q = 4 ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Create the group GL(d,q), and the map to PGL(d,q).</span>
<span class="GAPprompt">></span> <span class="GAPinput"> G:= GL( d, q );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> epi:= ActionHomomorphism( G, NormedRowVectors( GF(q)^d ), OnLines );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PG:= ImagesSource( epi );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Gprime:= ImagesSet( epi, SL( d, q ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Create the subgroups corresponding to the prime divisors of `d'.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> primes:= PrimeDivisors( d );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxes:= List( primes, p -> RelativeGammaL( d/p,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Basis( AsField( GF(q), GF(q^p) ) ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxes:= List( maxes, M -> ImagesSet( epi, M ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> names:= List( primes, p -> Concatenation( "M(", String( d/p ), ",",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> String( q^p ), ")" ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [ names,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> UpperBoundFixedPointRatios( PG, List( maxes,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> M -> ClassesOfPrimeOrder( M,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PrimeDivisors( Index( PG, Gprime ) ), Gprime ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> true )[1] ];</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>Here are the required results.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInGL( 6, 3 );</span>
[ [ "M(3,9)", "M(2,27)" ], 41/882090 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInGL( 4, 3 );</span>
[ [ "M(2,9)" ], 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInGL( 6, 4 );</span>
[ [ "M(3,16)", "M(2,64)" ], 1/87296 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ApproxPForOuterClassesInGL( 6, 5 );</span>
[ [ "M(3,25)", "M(2,125)" ], 821563/756593750000 ]
</pre></div>
<p>(Note that the extension field type subgroup in <span class="SimpleMath">\(PGL(4,3) = L_4(3).2_1\)</span> is a <em>non-split</em> extension of its intersection with <span class="SimpleMath">\(L_4(3)\)</span>, hence the zero value.)</p>
<p>Concerning extensions by Frobenius automorphisms, only the case <span class="SimpleMath">\((d,q) = (6,4)\)</span> is interesting in <a href="chapBib_mj.html#biBBGK">[BGK08]</a>. In fact, we would not need to compute anything for the extension <span class="SimpleMath">\(G\)</span> of <span class="SimpleMath">\(S = SL(6,4)\)</span> by the Frobenius map that squares each matrix entry. This is because <span class="SimpleMath">\(𝕄^{\prime}(G,s)\)</span> consists of the normalizers of the two subgroups of the types <span class="SimpleMath">\(SL(3,16)\)</span> and <span class="SimpleMath">\(SL(2,64)\)</span>, and the former maximal subgroup is a <em>non-split</em> extension of its intersection with <span class="SimpleMath">\(S\)</span>, so only one maximal subgroup can contribute to <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span>, which is thus smaller than <span class="SimpleMath">\(1/2\)</span>, by <a href="chapBib_mj.html#biBBGK">[BGK08, Prop. 2.6]</a>.</p>
<p>However, it is easy enough to compute the exact value of <span class="SimpleMath">\(σ^{\prime}(G,s)\)</span>. We work with the projective action of <span class="SimpleMath">\(S\)</span> on its natural module, and compute the permutation induced by the Frobenius map as the Frobenius action on the normed row vectors.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">matgrp:= SL(6,4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">dom:= NormedRowVectors( GF(4)^6 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Gprime:= Action( matgrp, dom, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermList( List( dom, v -> Position( dom, List( v, x -> x^2 ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= ClosureGroup( Gprime, pi );;</span>
</pre></div>
<p>Then we compute the maximal subgroups, the classes of outer involutions, and the bound, similar to the situation with graph automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( [ 2, 3 ], p -> Normalizer( G,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Action( RelativeSigmaL( 6/p,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Basis( AsField( GF(4), GF(4^p) ) ) ), dom, OnLines ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= List( maxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ccl, Length );</span>
[ 0, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperBoundFixedPointRatios( G, ccl, true );</span>
[ 1/34467840, true ]
</pre></div>
<p>For <span class="SimpleMath">\((d,q) = (6,4)\)</span>, we have to consider also the extension <span class="SimpleMath">\(G\)</span> of <span class="SimpleMath">\(S = SL(6,4)\)</span> by the product <span class="SimpleMath">\(\alpha\)</span> of the Frobenius map and the graph automorphism. We use the same approach as for the graph automorphism, i. e., we embed <span class="SimpleMath">\(SL(6,4)\)</span> into a <span class="SimpleMath">\(12\)</span>-dimensional group of <span class="SimpleMath">\(6 \times 6\)</span> block matrices, where the second block is the image of the first block under <span class="SimpleMath">\(\alpha\)</span>, and describe <span class="SimpleMath">\(\alpha\)</span> by the transposition of the two blocks.</p>
<p>First we construct the projective actions of <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(G\)</span> on an orbit of <span class="SimpleMath">\(1\)</span>-spaces.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">embedFG:= function( F, mat )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return EmbeddedMatrix( F, mat,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> M -> List( TransposedMat( M^-1 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> row -> List( row, x -> x^2 ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">d:= 6;; q:= 4;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">alpha:= NullMat( 2*d, 2*d, GF(q) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">alpha{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">alpha{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Gprime:= Group( List( GeneratorsOfGroup( SL(d,q) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mat -> embedFG( GF(q), mat ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= ClosureGroupDefault( Gprime, alpha );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( G, One( G )[1], OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= Action( G, orb, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Gprime:= Action( Gprime, orb, OnLines );;</span>
</pre></div>
<p>Next we construct the maximal subgroups, the classes of outer involutions, and the bound.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( PrimeDivisors( d ), p -> Group( List( GeneratorsOfGroup(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> RelativeSigmaL( d/p, Basis( AsField( GF(q), GF(q^p) ) ) ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mat -> embedFG( GF(q), mat ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( maxes, x -> Action( x, orb, OnLines ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( maxes, x -> Normalizer( G, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= List( maxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ccl, Length );</span>
[ 0, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperBoundFixedPointRatios( G, ccl, true );</span>
[ 1/10792960, true ]
</pre></div>
<p>The only missing cases are the extensions of <span class="SimpleMath">\(SL(6,3)\)</span> and <span class="SimpleMath">\(SL(6,5)\)</span> by the involutory outer automorphism that acts as the product of a diagonal and a graph automorphism.</p>
<p>In the case <span class="SimpleMath">\(S = SL(6,3)\)</span>, we can directly write down the extension <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">d:= 6;; q:= 3;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">diag:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">diag[1][1]:= Z(q);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">embedDG:= mat -> EmbeddedMatrix( GF(q), mat,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> M -> TransposedMat( M^-1 )^diag );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Gprime:= Group( List( GeneratorsOfGroup( SL(d,q) ), embedDG ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">alpha:= NullMat( 2*d, 2*d, GF(q) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">alpha{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">alpha{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= ClosureGroupDefault( Gprime, alpha );;</span>
</pre></div>
<p>The maximal subgroups are constructed as the normalizers in <span class="SimpleMath">\(G\)</span> of the extension field type subgroups in <span class="SimpleMath">\(S\)</span>. We work with a permutation representation of <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( PrimeDivisors( d ), p -> Group( List( GeneratorsOfGroup(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> RelativeSigmaL( d/p, Basis( AsField( GF(q), GF(q^p) ) ) ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> embedDG ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( G, One( G )[1], OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= Action( G, orb, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Gprime:= Action( Gprime, orb, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( maxes, M -> Normalizer( G, Action( M, orb, OnLines ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= List( maxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ccl, Length );</span>
[ 1, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperBoundFixedPointRatios( G, ccl, true );</span>
[ 25/352836, true ]
</pre></div>
<p>For <span class="SimpleMath">\(S = SL(6,5)\)</span>, this approach does not work because we cannot realize the diagonal involution by an involutory matrix. Instead, we consider the extension of <span class="SimpleMath">\(GL(6,5) \cong 2.(2 \times L_6(5)).2\)</span> by the graph automorphism <span class="SimpleMath">\(\alpha\)</span>, which can be embedded into <span class="SimpleMath">\(GL(12,5)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">d:= 6;; q:= 5;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">embedG:= mat -> EmbeddedMatrix( GF(q),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mat, M -> TransposedMat( M^-1 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Gprime:= Group( List( GeneratorsOfGroup( SL(d,q) ), embedG ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( PrimeDivisors( d ), p -> Group( List( GeneratorsOfGroup(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> RelativeSigmaL( d/p, Basis( AsField( GF(q), GF(q^p) ) ) ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> embedG ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">diag:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">diag[1][1]:= Z(q);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">diag:= embedG( diag );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">alpha:= NullMat( 2*d, 2*d, GF(q) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">alpha{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">alpha{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= ClosureGroupDefault( Gprime, alpha * diag );;</span>
</pre></div>
<p>Now we switch to the permutation action of this group on the <span class="SimpleMath">\(1\)</span>-dimensional subspaces, thus factoring out the cyclic normal subgroup of order four. In this action, the involutory diagonal automorphism is represented by an involution, and we can proceed as above.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( G, One( G )[1], OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Gprime:= Action( Gprime, orb, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= Action( G, orb, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( maxes, M -> Action( M, orb, OnLines ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">extmaxes:= List( maxes, M -> Normalizer( G, M ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= List( extmaxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ccl, Length );</span>
[ 2, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperBoundFixedPointRatios( G, ccl, true );</span>
[ 3863/6052750000, true ]
</pre></div>
<p>In the same way, we can recheck the values for the extensions of <span class="SimpleMath">\(SL(6,5)\)</span> by the diagonal or by the graph automorphism.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">diag:= Permutation( diag, orb, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= ClosureGroupDefault( Gprime, diag );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">extmaxes:= List( maxes, M -> Normalizer( G, M ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= List( extmaxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ccl, Length );</span>
[ 3, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperBoundFixedPointRatios( G, ccl, true );</span>
[ 821563/756593750000, true ]
<span class="GAPprompt">gap></span> <span class="GAPinput">alpha:= Permutation( alpha, orb, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= ClosureGroupDefault( Gprime, alpha );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">extmaxes:= List( maxes, M -> Normalizer( G, M ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= List( extmaxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ccl, Length );</span>
[ 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperBoundFixedPointRatios( G, ccl, true );</span>
[ 13001/195250000, true ]
</pre></div>
<p>gap> t2:= CharacterTable( "L6(2).2" );; gap> map:= InverseMap( GetFusionMap( t, t2 ) );; gap> torso:= List( Concatenation( prim ), pi -> CompositionMaps( pi, map ) );; gap> ext:= List( torso, x -> PermChars( t2, rec( torso:= x ) ) ); [ [ Character( CharacterTable( "L6(2).2" ), [ 55552, 0, 128, 256, 337, 112, 22, 0, 0, 16, 0, 16, 2, 17, 0, 0, 8, 2, 4, 28, 0, 0, 0, 4, 1, 0, 1, 0, 0, 4, 0, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1120, 192, 32, 0, 0, 40, 13, 0, 4, 6, 0, 4, 4, 4, 0, 2, 8, 5, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0 ] ) ], [ Character( CharacterTable( "L6(2).2" ), [ 1904640, 0, 0, 512, 960, 0, 120, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 73, 24, 3, 0, 0, 15, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 960, 960, 0, 0, 0, 0, 24, 0, 12, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0 ] ) ] ] gap> sigma:= ApproxP( Concatenation( ext ), > Position( OrdersClassRepresentatives( t2 ), 63 ) );; gap> Maximum( sigma{ Difference( PositionsProperty( > OrdersClassRepresentatives( t2 ), IsPrimeInt ), > ClassPositionsOfDerivedSubgroup( t2 ) ) } ); 41/1984 --></p>
<p><a id="X7C8806DB8588BB51" name="X7C8806DB8588BB51"></a></p>
<h5>11.5-8 <span class="Heading"><span class="SimpleMath">\(L_3(2)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = L_3(2) = SL(3,2)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 1/4\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(7:3\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 1/4\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at exactly three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>, and the spread of <span class="SimpleMath">\(S\)</span> is exactly four. (This had been left open in <a href="chapBib_mj.html#biBBW1">[BW75]</a>.)</p>
</dd>
</dl>
<p>(Note that in this example, the spread and the uniform spread differ.)</p>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "L3(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "L3(2)", 1/4, 3, [ "7A" ], [ 1 ] ]
</pre></div>
<p>Statement (b) can be read off from the permutation characters, and the fact that the unique class of maximal subgroups that contain elements of order <span class="SimpleMath">\(7\)</span> consists of groups of the structure <span class="SimpleMath">\(7:3\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 3]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 4, 7, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PrimitivePermutationCharacters( t );</span>
[ Character( CharacterTable( "L3(2)" ), [ 7, 3, 1, 1, 0, 0 ] ),
Character( CharacterTable( "L3(2)" ), [ 7, 3, 1, 1, 0, 0 ] ),
Character( CharacterTable( "L3(2)" ), [ 8, 0, 2, 0, 1, 1 ] ) ]
</pre></div>
<p>For the other statements, we will use the primitive permutation representations on <span class="SimpleMath">\(7\)</span> and <span class="SimpleMath">\(8\)</span> points of <span class="SimpleMath">\(S\)</span> (computed from the <strong class="pkg">GAP</strong> Library of Tables of Marks), and their diagonal products of the degrees <span class="SimpleMath">\(14\)</span> and <span class="SimpleMath">\(15\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tom:= TableOfMarks( "L3(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= UnderlyingGroup( tom );</span>
Group([ (2,4)(5,7), (1,2,3)(4,5,6) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= MaximalSubgroupsTom( tom );</span>
[ [ 14, 13, 12 ], [ 7, 7, 8 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( mx[1], i -> RepresentativeTom( tom, i ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr:= List( maxes, s -> RightTransversal( g, s ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">acts:= List( tr, x -> Action( g, x, OnRight ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g7:= acts[1];</span>
Group([ (3,4)(6,7), (1,3,2)(4,6,5) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">g8:= acts[3];</span>
Group([ (1,6)(2,5)(3,8)(4,7), (1,7,3)(2,5,8) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">g14:= DiagonalProductOfPermGroups( acts{ [ 1, 2 ] } );</span>
Group([ (3,4)(6,7)(11,13)(12,14), (1,3,2)(4,6,5)(8,11,9)(10,12,13) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">g15:= DiagonalProductOfPermGroups( acts{ [ 2, 3 ] } );</span>
Group([ (4,6)(5,7)(8,13)(9,12)(10,15)(11,14), (1,4,2)(3,5,6)(8,14,10)
(9,12,15) ])
</pre></div>
<p>First we compute that for all nonidentity elements <span class="SimpleMath">\(s \in S\)</span> and order three elements <span class="SimpleMath">\(g \in S\)</span>, <span class="SimpleMath">\(P(g,s) \geq 1/4\)</span> holds, with equality if and only if <span class="SimpleMath">\(s\)</span> has order <span class="SimpleMath">\(7\)</span>; this implies statement (c). We actually compute, for class representatives <span class="SimpleMath">\(s\)</span>, the proportion of order three elements <span class="SimpleMath">\(g\)</span> such that <span class="SimpleMath">\(\langle g, s \rangle ≠ S\)</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= List( ConjugacyClasses( g7 ), Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortParallel( List( ccl, Order ), ccl );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ccl, Order );</span>
[ 1, 2, 3, 4, 7, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( ConjugacyClass( g7, ccl[3] ) );</span>
56
<span class="GAPprompt">gap></span> <span class="GAPinput">prop:= List( ccl,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r -> RatioOfNongenerationTransPermGroup( g7, ccl[3], r ) );</span>
[ 1, 5/7, 19/28, 2/7, 1/4, 1/4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Minimum( prop );</span>
1/4
</pre></div>
<p>Now we show that the uniform spread of <span class="SimpleMath">\(S\)</span> is less than four. In any of the primitive permutation representations of degree seven, we find three involutions whose sets of fixed points cover the seven points. The elements <span class="SimpleMath">\(s\)</span> of order different from <span class="SimpleMath">\(7\)</span> in <span class="SimpleMath">\(S\)</span> fix a point in this representation, so each such <span class="SimpleMath">\(s\)</span> generates a proper subgroup of <span class="SimpleMath">\(S\)</span> together with one of the three involutions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= g7.1;</span>
(3,4)(6,7)
<span class="GAPprompt">gap></span> <span class="GAPinput">fix:= Difference( MovedPoints( g7 ), MovedPoints( x ) );</span>
[ 1, 2, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g7, fix, OnSets );</span>
[ [ 1, 2, 5 ], [ 1, 3, 4 ], [ 2, 3, 6 ], [ 2, 4, 7 ], [ 1, 6, 7 ],
[ 3, 5, 7 ], [ 4, 5, 6 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Union( orb{ [ 1, 2, 5 ] } ) = [ 1 .. 7 ];</span>
true
</pre></div>
<p>So we still have to exclude elements <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>. In the primitive permutation representation of <span class="SimpleMath">\(S\)</span> on eight points, we find four elements of order three whose sets of fixed points cover the set of all points that are moved by <span class="SimpleMath">\(S\)</span>, so with each element of order seven in <span class="SimpleMath">\(S\)</span>, one of them generates an intransitive group.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">three:= g8.2;</span>
(1,7,3)(2,5,8)
<span class="GAPprompt">gap></span> <span class="GAPinput">fix:= Difference( MovedPoints( g8 ), MovedPoints( three ) );</span>
[ 4, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g8, fix, OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">QuadrupleWithProperty( [ [ fix ], orb, orb, orb ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> list -> Union( list ) = [ 1 .. 8 ] );</span>
[ [ 4, 6 ], [ 1, 7 ], [ 3, 8 ], [ 2, 5 ] ]
</pre></div>
<p>Together with statement (a), this proves that the uniform spread of <span class="SimpleMath">\(S\)</span> is exactly three, with <span class="SimpleMath">\(s\)</span> of order seven.</p>
<p>Each element of <span class="SimpleMath">\(S\)</span> fixes a point in the permutation representation on <span class="SimpleMath">\(15\)</span> points. So for proving that the spread of <span class="SimpleMath">\(S\)</span> is less than five, it is sufficient to find a quintuple of elements whose sets of fixed points cover all <span class="SimpleMath">\(15\)</span> points. (From the permutation characters it is clear that four of these elements must have order three, and the fifth must be an involution.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= g15.1;</span>
(4,6)(5,7)(8,13)(9,12)(10,15)(11,14)
<span class="GAPprompt">gap></span> <span class="GAPinput">fixx:= Difference( MovedPoints( g15 ), MovedPoints( x ) );</span>
[ 1, 2, 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orbx:= Orbit( g15, fixx, OnSets );</span>
[ [ 1, 2, 3 ], [ 1, 4, 5 ], [ 1, 6, 7 ], [ 2, 4, 6 ], [ 3, 4, 7 ],
[ 3, 5, 6 ], [ 2, 5, 7 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">y:= g15.2;</span>
(1,4,2)(3,5,6)(8,14,10)(9,12,15)
<span class="GAPprompt">gap></span> <span class="GAPinput">fixy:= Difference( MovedPoints( g15 ), MovedPoints( y ) );</span>
[ 7, 11, 13 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orby:= Orbit( g15, fixy, OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">QuadrupleWithProperty( [ [ fixy ], orby, orby, orby ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> l -> Difference( [ 1 .. 15 ], Union( l ) ) in orbx );</span>
[ [ 7, 11, 13 ], [ 5, 8, 14 ], [ 1, 10, 15 ], [ 3, 9, 12 ] ]
</pre></div>
<p>It remains to show that the spread of <span class="SimpleMath">\(S\)</span> is (at least) four. By the consideration of permutation characters, we know that we can find a suitable order seven element for all quadruples in question except perhaps quadruples of order three elements. We show that for each such case, we can choose <span class="SimpleMath">\(s\)</span> of order four. Since <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two subgroups of the type <span class="SimpleMath">\(S_4\)</span>, we work with the representation on <span class="SimpleMath">\(14\)</span> points.)</p>
<p>First we compute <span class="SimpleMath">\(s\)</span> and the <span class="SimpleMath">\(S\)</span>-orbit of its fixed points, and the <span class="SimpleMath">\(S\)</span>-orbit of the fixed points of an element <span class="SimpleMath">\(x\)</span> of order three. Then we prove that for each quadruple of conjugates of <span class="SimpleMath">\(x\)</span>, the union of their fixed points intersects the fixed points of at least one conjugate of <span class="SimpleMath">\(s\)</span> trivially.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g14 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 4;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s;</span>
(1,3)(2,6,7,5)(9,11,10,12)(13,14)
<span class="GAPprompt">gap></span> <span class="GAPinput">fixs:= Difference( MovedPoints( g14 ), MovedPoints( s ) );</span>
[ 4, 8 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= Orbit( g14, fixs, OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( orbs );</span>
21
<span class="GAPprompt">gap></span> <span class="GAPinput">three:= g14.2;</span>
(1,3,2)(4,6,5)(8,11,9)(10,12,13)
<span class="GAPprompt">gap></span> <span class="GAPinput">fix:= Difference( MovedPoints( g14 ), MovedPoints( three ) );</span>
[ 7, 14 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g14, fix, OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( orb );</span>
28
<span class="GAPprompt">gap></span> <span class="GAPinput">QuadrupleWithProperty( [ [ fix ], orb, orb, orb ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> l -> ForAll( orbs, o -> not IsEmpty( Intersection( o,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Union( l ) ) ) ) );</span>
fail
</pre></div>
<p>By the lemma from Section <a href="chap11_mj.html#X79D7312484E78274"><span class="RefLink">11.2-2</span></a>, we are done.</p>
<p><a id="X7B7061917ED3714D" name="X7B7061917ED3714D"></a></p>
<h5>11.5-9 <span class="Heading"><span class="SimpleMath">\(M_{11}\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = M_{11}\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 1/3\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(11\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(11\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(L_2(11)\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 1/3\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(11\)</span>.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>Both the uniform spread and the spread of <span class="SimpleMath">\(S\)</span> is exactly three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(11\)</span>.</p>
</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X86CE51E180A3D4ED"><span class="RefLink">11.4-1</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "M11" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "M11", 1/3, 2, [ "11A" ], [ 1 ] ]
</pre></div>
<p>Statement (b) can be read off from the permutation characters, and the fact that the unique class of maximal subgroups that contain elements of order <span class="SimpleMath">\(11\)</span> consists of groups of the structure <span class="SimpleMath">\(L_2(11)\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 18]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 4, 5, 6, 8, 8, 11, 11 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PrimitivePermutationCharacters( t );</span>
[ Character( CharacterTable( "M11" ),
[ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ),
Character( CharacterTable( "M11" ),
[ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ),
Character( CharacterTable( "M11" ),
[ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ),
Character( CharacterTable( "M11" ),
[ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ),
Character( CharacterTable( "M11" ),
[ 165, 13, 3, 1, 0, 1, 1, 1, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Maxes( t );</span>
[ "A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4" ]
</pre></div>
<p>For the other statements, we will use the primitive permutation representations of <span class="SimpleMath">\(S\)</span> on <span class="SimpleMath">\(11\)</span> and <span class="SimpleMath">\(12\)</span> points (which are fetched from the <strong class="pkg">Atlas</strong> of Group Representations <a href="chapBib_mj.html#biBAGRv3">[WWT+]</a>), and their diagonal product.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens11:= OneAtlasGeneratingSet( "M11", NrMovedPoints, 11 );</span>
rec( charactername := "1a+10a", constituents := [ 1, 2 ],
contents := "core",
generators := [ (2,10)(4,11)(5,7)(8,9), (1,4,3,8)(2,5,6,9) ],
groupname := "M11", id := "",
identifier := [ "M11", [ "M11G1-p11B0.m1", "M11G1-p11B0.m2" ], 1,
11 ], isPrimitive := true, maxnr := 1, p := 11, rankAction := 2,
repname := "M11G1-p11B0", repnr := 1, size := 7920,
stabilizer := "A6.2_3", standardization := 1, transitivity := 4,
type := "perm" )
<span class="GAPprompt">gap></span> <span class="GAPinput">g11:= GroupWithGenerators( gens11.generators );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens12:= OneAtlasGeneratingSet( "M11", NrMovedPoints, 12 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g12:= GroupWithGenerators( gens12.generators );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g23:= DiagonalProductOfPermGroups( [ g11, g12 ] );</span>
Group([ (2,10)(4,11)(5,7)(8,9)(12,17)(13,20)(16,18)(19,21), (1,4,3,8)
(2,5,6,9)(12,17,18,15)(13,19)(14,20)(16,22,23,21) ])
</pre></div>
<p>First we compute that for all nonidentity elements <span class="SimpleMath">\(s \in S\)</span> and involutions <span class="SimpleMath">\(g \in S\)</span>, <span class="SimpleMath">\(P(g,s) \geq 1/3\)</span> holds, with equality if and only if <span class="SimpleMath">\(s\)</span> has order <span class="SimpleMath">\(11\)</span>; this implies statement (c). We actually compute, for class representatives <span class="SimpleMath">\(s\)</span>, the proportion of involutions <span class="SimpleMath">\(g\)</span> such that <span class="SimpleMath">\(\langle g, s \rangle ≠ S\)</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= g11.1;</span>
(2,10)(4,11)(5,7)(8,9)
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= List( ConjugacyClasses( g11 ), Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortParallel( List( ccl, Order ), ccl );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ccl, Order );</span>
[ 1, 2, 3, 4, 5, 6, 8, 8, 11, 11 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( ConjugacyClass( g11, inv ) );</span>
165
<span class="GAPprompt">gap></span> <span class="GAPinput">prop:= List( ccl,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r -> RatioOfNongenerationTransPermGroup( g11, inv, r ) );</span>
[ 1, 1, 1, 149/165, 25/33, 31/55, 23/55, 23/55, 1/3, 1/3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Minimum( prop );</span>
1/3
</pre></div>
<p>For the first part of statement (d), we have to deal only with the case of triples of involutions.</p>
<p>The <span class="SimpleMath">\(11\)</span>-cycle <span class="SimpleMath">\(s\)</span> is contained in exactly one maximal subgroup of <span class="SimpleMath">\(S\)</span>, of index <span class="SimpleMath">\(12\)</span>. By Corollary 1 in Section <a href="chap11_mj.html#X79D7312484E78274"><span class="RefLink">11.2-2</span></a>, it is enough to show that in the primitive degree <span class="SimpleMath">\(12\)</span> representation of <span class="SimpleMath">\(S\)</span>, the fixed points of no triple <span class="SimpleMath">\((x_1, x_2, x_3)\)</span> of involutions in <span class="SimpleMath">\(S\)</span> can cover all twelve points; equivalenly (considering complements), we show that there is no triple such that the intersection of the sets of <em>moved</em> points is empty.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= g12.1;</span>
(1,6)(2,9)(5,7)(8,10)
<span class="GAPprompt">gap></span> <span class="GAPinput">moved:= MovedPoints( inv );</span>
[ 1, 2, 5, 6, 7, 8, 9, 10 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orb12:= Orbit( g12, moved, OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( orb12 );</span>
165
<span class="GAPprompt">gap></span> <span class="GAPinput">TripleWithProperty( [ orb12{[1]}, orb12, orb12 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> list -> IsEmpty( Intersection( list ) ) );</span>
fail
</pre></div>
<p>This implies that the uniform spread of <span class="SimpleMath">\(S\)</span> is at least three.</p>
<p>Now we show that there is a quadruple consisting of one element of order three and three involutions whose fixed points cover all points in the degree <span class="SimpleMath">\(23\)</span> representation constructed above; since the permutation character of this representation is strictly positive, this implies that <span class="SimpleMath">\(S\)</span> does not have spread four, by Corollary 2 in Section <a href="chap11_mj.html#X79D7312484E78274"><span class="RefLink">11.2-2</span></a>, and we have proved statement (d).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= g23.1;</span>
(2,10)(4,11)(5,7)(8,9)(12,17)(13,20)(16,18)(19,21)
<span class="GAPprompt">gap></span> <span class="GAPinput">moved:= MovedPoints( inv );</span>
[ 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orb23:= Orbit( g23, moved, OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">three:= ( g23.1*g23.2^2 )^2;</span>
(2,6,10)(4,8,7)(5,9,11)(12,17,23)(15,18,16)(19,21,22)
<span class="GAPprompt">gap></span> <span class="GAPinput">movedthree:= MovedPoints( three );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">QuadrupleWithProperty( [ [ movedthree ], orb23, orb23, orb23 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> list -> IsEmpty( Intersection( list ) ) );</span>
[ [ 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23 ],
[ 1, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21 ],
[ 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 18, 19, 20, 23 ],
[ 1, 2, 3, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 22, 23 ] ]
</pre></div>
<p><a id="X82E0F48A7FF82BB3" name="X82E0F48A7FF82BB3"></a></p>
<h5>11.5-10 <span class="Heading"><span class="SimpleMath">\(M_{12}\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = M_{12}\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 1/3\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(10\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(10\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two nonconjugate subgroups of the type <span class="SimpleMath">\(A_6.2^2\)</span>, and one group of the type <span class="SimpleMath">\(2 \times S_5\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 31/99\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(10\)</span>.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(10\)</span>.</p>
</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p><span class="SimpleMath">\(σ^{\prime}(Aut(S), s) = 4/99\)</span>.</p>
</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X86CE51E180A3D4ED"><span class="RefLink">11.4-1</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "M12" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "M12", 1/3, 2, [ "10A" ], [ 3 ] ]
</pre></div>
<p>Statement (b) can be read off from the permutation characters, and the fact that the only classes of maximal subgroups that contain elements of order <span class="SimpleMath">\(10\)</span> consist of groups of the structures <span class="SimpleMath">\(A_6.2^2\)</span> (two classes) and <span class="SimpleMath">\(2 \times S_5\)</span> (one class), see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 33]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 10 );</span>
13
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( prim, x -> x{ [ 1, spos ] } );</span>
[ [ 12, 0 ], [ 12, 0 ], [ 66, 1 ], [ 66, 1 ], [ 144, 0 ], [ 220, 0 ],
[ 220, 0 ], [ 396, 1 ], [ 495, 0 ], [ 495, 0 ], [ 1320, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Maxes( t );</span>
[ "M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7",
"2xS5", "M8.S4", "4^2:D12", "A4xS3" ]
</pre></div>
<p>For statement (c) (which implies statement (d)), we use the primitive permutation representation on <span class="SimpleMath">\(12\)</span> points.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= MathieuGroup( 12 );</span>
Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6), (1,12)(2,11)
(3,6)(4,8)(5,9)(7,10) ])
</pre></div>
<p>First we show that for <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(10\)</span>, <span class="SimpleMath">\(P(S,s) = 31/99\)</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( prim, spos );</span>
[ 0, 3/11, 1/3, 1/11, 1/132, 13/99, 13/99, 13/396, 1/132, 1/33, 1/33,
1/33, 13/396, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">2B:= g.2^2;</span>
(3,11)(4,5)(6,10)(7,8)
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( ConjugacyClass( g, 2B ) );</span>
495
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 10;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prop:= RatioOfNongenerationTransPermGroup( g, 2B, s );</span>
31/99
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( approx, x -> x >= prop );</span>
[ 1/3 ]
</pre></div>
<p>Next we show that for <span class="SimpleMath">\(s\)</span> of order different from <span class="SimpleMath">\(10\)</span>, <span class="SimpleMath">\(P(g,s)\)</span> is larger than <span class="SimpleMath">\(31/99\)</span> for suitable <span class="SimpleMath">\(g \in S^{\times}\)</span>. Except for <span class="SimpleMath">\(s\)</span> in the class <code class="code">6A</code> (which fixes no point in the degree <span class="SimpleMath">\(12\)</span> representation), it suffices to consider <span class="SimpleMath">\(g\)</span> in the class <code class="code">2B</code> (with four fixed points).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= g.2^2;</span>
(3,11)(4,5)(6,10)(7,8)
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= List( ConjugacyClasses( g ), Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortParallel( List( ccl, Order ), ccl );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prop:= List( ccl, r -> RatioOfNongenerationTransPermGroup( g, x, r ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortedList( prop );</span>
[ 7/55, 31/99, 5/9, 5/9, 39/55, 383/495, 383/495, 43/55, 29/33, 1, 1,
1, 1, 1, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">bad:= Filtered( prop, x -> x < 31/99 );</span>
[ 7/55 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pos:= Position( prop, bad[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">[ Order( ccl[ pos ] ), NrMovedPoints( ccl[ pos ] ) ];</span>
[ 6, 12 ]
</pre></div>
<p>In the remaining case, we choose <span class="SimpleMath">\(g\)</span> in the class <code class="code">2A</code> (which is fixed point free).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= g.3;</span>
(1,12)(2,11)(3,6)(4,8)(5,9)(7,10)
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= ccl[ pos ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prop:= RatioOfNongenerationTransPermGroup( g, x, s );</span>
17/33
<span class="GAPprompt">gap></span> <span class="GAPinput">prop > 31/99;</span>
true
</pre></div>
<p>Statement (e) has been shown already in Section <a href="chap11_mj.html#X84E9D10F80A74A53"><span class="RefLink">11.4-2</span></a>.</p>
<p><a id="X7FF2E8F27FBEB65C" name="X7FF2E8F27FBEB65C"></a></p>
<h5>11.5-11 <span class="Heading"><span class="SimpleMath">\(O_7(3)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = O_7(3)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 199/351\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(14\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(14\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(2.U_4(3).2_2 = \Omega^-(6,3).2\)</span> and two nonconjugate groups of the type <span class="SimpleMath">\(S_9\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 155/351\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(14\)</span>.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(14\)</span>.</p>
</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p><span class="SimpleMath">\(σ^{\prime}(Aut(S), s) = 1/3\)</span>.</p>
</dd>
</dl>
<p>Currently <strong class="pkg">GAP</strong> provides neither the table of marks of <span class="SimpleMath">\(S\)</span> nor all character tables of its maximal subgroups. First we compute those primitive permutation characters of <span class="SimpleMath">\(S\)</span> that have the degrees <span class="SimpleMath">\(351\)</span> (point stabilizer <span class="SimpleMath">\(2.U_4(3).2_2\)</span>), <span class="SimpleMath">\(364\)</span> (point stabilizer <span class="SimpleMath">\(3^5:U_4(2).2\)</span>), <span class="SimpleMath">\(378\)</span> (point stabilizer <span class="SimpleMath">\(L_4(3).2_2\)</span>), <span class="SimpleMath">\(1\,080\)</span> (point stabilizer <span class="SimpleMath">\(G_2(3)\)</span>, two classes), <span class="SimpleMath">\(1\,120\)</span> (point stabilizer <span class="SimpleMath">\(3^{3+3}:L_3(3)\)</span>), <span class="SimpleMath">\(3\,159\)</span> (point stabilizer <span class="SimpleMath">\(S_6(2)\)</span>, two classes), <span class="SimpleMath">\(12\,636\)</span> (point stabilizer <span class="SimpleMath">\(S_9\)</span>, two classes), <span class="SimpleMath">\(22\,113\)</span> (point stabilizer <span class="SimpleMath">\((2^2 \times U_4(2)).2\)</span>, which extends to <span class="SimpleMath">\(D_8 \times U_4(2).2\)</span> in <span class="SimpleMath">\(O_7(3).2\)</span>), and <span class="SimpleMath">\(28\,431\)</span> (point stabilizer <span class="SimpleMath">\(2^6:A_7\)</span>).</p>
<p>(So we ignore the primitive permutation characters of the degrees <span class="SimpleMath">\(3\,640\)</span>, <span class="SimpleMath">\(265\,356\)</span>, and <span class="SimpleMath">\(331\,695\)</span>. Note that the orders of the corresponding subgroups are not divisible by <span class="SimpleMath">\(7\)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "O7(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">someprim:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2.U4(3).2_2" ), t );; Length( pi );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermChars( t, rec( torso:= [ 364 ] ) );; Length( pi );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "L4(3).2_2" ), t );; Length( pi );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters( CharacterTable( "G2(3)" ), t );</span>
[ Character( CharacterTable( "O7(3)" ),
[ 1080, 0, 0, 24, 108, 0, 0, 0, 27, 18, 9, 0, 12, 4, 0, 0, 0, 0, 0,
0, 0, 0, 12, 0, 0, 0, 0, 0, 3, 6, 0, 3, 2, 2, 2, 0, 0, 0, 3, 0,
0, 0, 0, 0, 0, 4, 0, 3, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ] ),
Character( CharacterTable( "O7(3)" ),
[ 1080, 0, 0, 24, 108, 0, 0, 27, 0, 18, 9, 0, 12, 4, 0, 0, 0, 0, 0,
0, 0, 0, 12, 0, 0, 0, 0, 3, 0, 0, 6, 3, 2, 2, 2, 0, 0, 3, 0, 0,
0, 0, 0, 0, 0, 4, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermChars( t, rec( torso:= [ 1120 ] ) );; Length( pi );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters( CharacterTable( "S6(2)" ), t );</span>
[ Character( CharacterTable( "O7(3)" ),
[ 3159, 567, 135, 39, 0, 81, 0, 0, 27, 27, 0, 15, 3, 3, 7, 4, 0,
27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 0, 3, 9, 3, 0, 2, 1, 1, 0, 0, 0,
3, 0, 2, 0, 0, 0, 3, 0, 0, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] ),
Character( CharacterTable( "O7(3)" ),
[ 3159, 567, 135, 39, 0, 81, 0, 27, 0, 27, 0, 15, 3, 3, 7, 4, 0,
27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 3, 0, 3, 9, 0, 2, 1, 1, 0, 0, 3,
0, 0, 2, 0, 0, 0, 3, 0, 3, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters( CharacterTable( "S9" ), t );</span>
[ Character( CharacterTable( "O7(3)" ),
[ 12636, 1296, 216, 84, 0, 81, 0, 0, 108, 27, 0, 6, 0, 12, 10, 1,
0, 27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 0, 12, 9, 3, 0, 1, 0, 2, 0,
0, 0, 3, 1, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0,
1 ] ), Character( CharacterTable( "O7(3)" ),
[ 12636, 1296, 216, 84, 0, 81, 0, 108, 0, 27, 0, 6, 0, 12, 10, 1,
0, 27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 12, 0, 3, 9, 0, 1, 0, 2, 0,
0, 3, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0,
1 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "O7(3).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s2:= CharacterTable( "Dihedral", 8 ) * CharacterTable( "U4(2).2" );</span>
CharacterTable( "Dihedral(8)xU4(2).2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s2, t2 );; Length( pi );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= RestrictedClassFunctions( pi, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2^6:A7" ), t );; Length( pi );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( someprim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( someprim, x -> x[1] );</span>
[ 351, 364, 378, 1080, 1080, 1120, 3159, 3159, 12636, 12636, 22113,
28431 ]
</pre></div>
<p>Note that in the three cases where two possible permutation characters were found, there are in fact two classes of subgroups that induce different permutation characters. For the subgroups of the types <span class="SimpleMath">\(G_2(3)\)</span> and <span class="SimpleMath">\(S_6(2)\)</span>, this is stated in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 109]</a>, and for the subgroups of the type <span class="SimpleMath">\(S_9\)</span>, this follows from the fact that each <span class="SimpleMath">\(S_9\)</span> type subgroup in <span class="SimpleMath">\(S\)</span> contains elements in exactly one of the classes <code class="code">3D</code> or <code class="code">3E</code>, and these two classes are fused by the outer automorphism of <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cl:= PositionsProperty( AtlasClassNames( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x in [ "3D", "3E" ] );</span>
[ 8, 9 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( Filtered( someprim, x -> x[1] = 12636 ), pi -> pi{ cl } );</span>
[ [ 0, 108 ], [ 108, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( t, t2 ){ cl };</span>
[ 8, 8 ]
</pre></div>
<p>Now we compute the lower bounds for <span class="SimpleMath">\(σ( S, s^{\prime} )\)</span> that are given by the sublist <code class="code">someprim</code> of the primitive permutation characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 14 );</span>
52
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( ApproxP( someprim, spos ) );</span>
199/351
</pre></div>
<p>This shows that <span class="SimpleMath">\(σ( S, s ) = 199/351\)</span> holds. For statement (a), we have to show that choosing <span class="SimpleMath">\(s^{\prime}\)</span> from another class than <code class="code">14A</code> yields a larger value for <span class="SimpleMath">\(σ( S, s^{\prime} )\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= List( [ 1 .. NrConjugacyClasses( t ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> Maximum( ApproxP( someprim, i ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( approx, x -> x <= 199/351 );</span>
[ 52 ]
</pre></div>
<p>Statement (b) can be read off from the permutation characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos:= PositionsProperty( someprim, x -> x[ spos ] <> 0 );</span>
[ 1, 9, 10 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( someprim{ pos }, x -> x{ [ 1, spos ] } );</span>
[ [ 351, 1 ], [ 12636, 1 ], [ 12636, 1 ] ]
</pre></div>
<p>For statement (c), we first compute <span class="SimpleMath">\(P(g, s)\)</span> for <span class="SimpleMath">\(g\)</span> in the class <code class="code">2A</code>, via explicit computations with the group. For dealing with this case, we first construct a faithful permutation representation of <span class="SimpleMath">\(O_7(3)\)</span> from the natural matrix representation of <span class="SimpleMath">\(SO(7,3)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">so73:= SpecialOrthogonalGroup( 7, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">o73:= DerivedSubgroup( so73 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( o73, Elements( GF(3)^7 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( orbs, Length );</span>
[ 1, 702, 728, 756 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Action( o73, First( orbs, x -> Length( x ) = 702 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( g ) = Size( t );</span>
true
</pre></div>
<p>A <code class="code">2A</code> element <span class="SimpleMath">\(g\)</span> can be found as the <span class="SimpleMath">\(7\)</span>-th power of any element of order <span class="SimpleMath">\(14\)</span> in <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 14;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2A:= s^7;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bad:= RatioOfNongenerationTransPermGroup( g, 2A, s );</span>
155/351
<span class="GAPprompt">gap></span> <span class="GAPinput">bad > 1/3;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( someprim, spos );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( approx, x -> x >= 1/3 );</span>
[ 2 ]
</pre></div>
<p>This shows that <span class="SimpleMath">\(P(g,s) = 155/351 > 1/3\)</span>. Since <span class="SimpleMath">\(σ( g, s ) < 1/3\)</span> for all nonidentity <span class="SimpleMath">\(g\)</span> not in the class <code class="code">2A</code>, we have <span class="SimpleMath">\(P( S, s ) = 155/351\)</span>. For statement (c), it remains to show that <span class="SimpleMath">\(P( S, s^{\prime} )\)</span> is larger than <span class="SimpleMath">\(155/351\)</span> whenever <span class="SimpleMath">\(s^{\prime}\)</span> is not of order <span class="SimpleMath">\(14\)</span>. First we compute <span class="SimpleMath">\(P( g, s^{\prime} )\)</span>, for <span class="SimpleMath">\(g\)</span> in the class <code class="code">2A</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">consider:= RepresentativesMaximallyCyclicSubgroups( t );</span>
[ 18, 19, 25, 26, 27, 30, 31, 32, 34, 35, 38, 39, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( consider );</span>
28
<span class="GAPprompt">gap></span> <span class="GAPinput">consider:= ClassesPerhapsCorrespondingToTableColumns( g, t, consider );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( consider );</span>
31
<span class="GAPprompt">gap></span> <span class="GAPinput">consider:= List( consider, Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortParallel( List( consider, Order ), consider );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">app2A:= List( consider, c -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> RatioOfNongenerationTransPermGroup( g, 2A, c ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortedList( app2A );</span>
[ 1/3, 1/3, 155/351, 191/351, 67/117, 23/39, 23/39, 85/117, 10/13,
10/13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">test:= PositionsProperty( app2A, x -> x <= 155/351 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( test, i -> Order( consider[i] ) );</span>
[ 13, 13, 14 ]
</pre></div>
<p>We see that only for <span class="SimpleMath">\(s^{\prime}\)</span> in one of the two (algebraically conjugate) classes of element order <span class="SimpleMath">\(13\)</span>, <span class="SimpleMath">\(P( S, s^{\prime} )\)</span> has a chance to be smaller than <span class="SimpleMath">\(155/351\)</span>. This possibility is now excluded by counting elements in the class <code class="code">3A</code> that do not generate <span class="SimpleMath">\(S\)</span> together with <span class="SimpleMath">\(s^{\prime}\)</span> of order <span class="SimpleMath">\(13\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">C3A:= First( ConjugacyClasses( g ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> c -> Order( Representative( c ) ) = 3 and Size( c ) = 7280 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat ss:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( ss ) = 13;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bad:= RatioOfNongenerationTransPermGroup( g, Representative( C3A ), ss );</span>
17/35
<span class="GAPprompt">gap></span> <span class="GAPinput">bad > 155/351;</span>
true
</pre></div>
<p>Now we show statement (d): For each triple <span class="SimpleMath">\((x_1, x_2, x_3)\)</span> of nonidentity elements in <span class="SimpleMath">\(S\)</span>, there is an element <span class="SimpleMath">\(s\)</span> in the class <code class="code">14A</code> such that <span class="SimpleMath">\(\langle x_i, s \rangle = S\)</span> holds for <span class="SimpleMath">\(1 \leq i \leq 3\)</span>. We can read off from the character-theoretic data that only those triples have to be checked for which at least two elements are contained in the class <code class="code">2A</code>, and the third element lies in one of the classes <code class="code">2A</code>, <code class="code">2B</code>, <code class="code">3B</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( someprim, spos );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">max:= Maximum( approx{ [ 3 .. Length( approx ) ] } );</span>
59/351
<span class="GAPprompt">gap></span> <span class="GAPinput">155 + 2*59 < 351;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">third:= PositionsProperty( approx, x -> 2 * 155/351 + x >= 1 );</span>
[ 2, 3, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassNames( t ){ third };</span>
[ "2a", "2b", "3b" ]
</pre></div>
<p>We can find elements in the classes <code class="code">2B</code> and <code class="code">3B</code> as powers of arbitrary elements of the orders <span class="SimpleMath">\(20\)</span> and <span class="SimpleMath">\(15\)</span>, respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord20:= PositionsProperty( OrdersClassRepresentatives( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x = 20 );</span>
[ 58 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( t, 10 ){ ord20 };</span>
[ 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) = 20;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2B:= x^10;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C2B:= ConjugacyClass( g, 2B );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord15:= PositionsProperty( OrdersClassRepresentatives( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x = 15 );</span>
[ 53 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( t, 10 ){ ord15 };</span>
[ 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) = 15;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3B:= x^5;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C3B:= ConjugacyClass( g, 3B );;</span>
</pre></div>
<p>The existence of <span class="SimpleMath">\(s\)</span> can be shown with the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 14;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 2A, 2A, 2A ], s, 50 );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 2B, 2A, 2A ], s, 50 );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 3B, 2A, 2A ], s, 50 );</span>
true
</pre></div>
<p>Finally, we show statement (e). Let <span class="SimpleMath">\(G = Aut(S) = S.2\)</span>. By <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 109]</a>, <span class="SimpleMath">\(𝕄^{\prime}(G,s)\)</span> consists of the extension of the <span class="SimpleMath">\(2.U_4(3).2_1\)</span> type subgroup. We compute the extension of the permutation character.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= someprim{ [ 1 ] };</span>
[ Character( CharacterTable( "O7(3)" ),
[ 351, 127, 47, 15, 27, 45, 36, 0, 0, 9, 0, 15, 3, 3, 7, 6, 19, 19,
10, 11, 12, 8, 3, 5, 3, 6, 1, 0, 0, 3, 3, 0, 1, 1, 1, 6, 3, 0,
0, 2, 2, 0, 3, 0, 3, 3, 0, 0, 1, 0, 0, 1, 0, 4, 4, 1, 2, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( AtlasClassNames( t ), "14A" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "O7(3).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">map:= InverseMap( GetFusionMap( t, t2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">torso:= List( prim, pi -> CompositionMaps( pi, map ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= List( torso, x -> PermChars( t2, rec( torso:= x ) ) );</span>
[ [ Character( CharacterTable( "O7(3).2" ),
[ 351, 127, 47, 15, 27, 45, 36, 0, 9, 0, 15, 3, 3, 7, 6, 19,
19, 10, 11, 12, 8, 3, 5, 3, 6, 1, 0, 3, 0, 1, 1, 1, 6, 3,
0, 2, 2, 0, 3, 0, 3, 3, 0, 1, 0, 0, 1, 0, 4, 1, 2, 0, 117,
37, 21, 45, 1, 13, 5, 1, 9, 9, 18, 15, 1, 7, 9, 6, 4, 0, 3,
0, 3, 3, 6, 2, 2, 9, 6, 1, 3, 1, 4, 1, 2, 1, 1, 0, 3, 1, 0,
0, 0, 0, 1, 1, 0, 0 ] ) ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( Concatenation( ext ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Position( AtlasClassNames( t2 ), "14A" ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( approx{ Difference(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t2 ) ) } );</span>
1/3
</pre></div>
<p><a id="X7F80F2527C424AA4" name="X7F80F2527C424AA4"></a></p>
<h5>11.5-12 <span class="Heading"><span class="SimpleMath">\(O_8^+(2)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = O_8^+(2) = \Omega^+(8,2)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 334/315\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(15\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(S_6(2)\)</span>, two conjugate groups of the type <span class="SimpleMath">\(2^6:A_8\)</span>, two conjugate groups of the type <span class="SimpleMath">\(A_9\)</span>, and one group of each of the types <span class="SimpleMath">\((3 \times U_4(2)):2 = (3 \times \Omega^-(6,2)):2\)</span> and <span class="SimpleMath">\((A_5 \times A_5):2^2 = (\Omega^-(4,2) \times \Omega^-(4,2)):2^2\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 29/42\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>Let <span class="SimpleMath">\(x, y \in S\)</span> such that <span class="SimpleMath">\(x, y, x y\)</span> lie in the unique involution class of length <span class="SimpleMath">\(1\,575\)</span> of <span class="SimpleMath">\(S\)</span>. (This is the class <code class="code">2A</code>.) Then each element in <span class="SimpleMath">\(S\)</span> together with one of <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span>, <span class="SimpleMath">\(x y\)</span> generates a proper subgroup of <span class="SimpleMath">\(S\)</span>.</p>
</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p>Both the spread and the uniform spread of <span class="SimpleMath">\(S\)</span> is exactly two, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>.</p>
</dd>
<dt><strong class="Mark">(f)</strong></dt>
<dd><p>For each choice of <span class="SimpleMath">\(s \in S\)</span>, there is an extension <span class="SimpleMath">\(S.2\)</span> such that for any element <span class="SimpleMath">\(g\)</span> in the (outer) class <code class="code">2F</code>, <span class="SimpleMath">\(\langle s, g \rangle\)</span> does not contain <span class="SimpleMath">\(S\)</span>.</p>
</dd>
<dt><strong class="Mark">(g)</strong></dt>
<dd><p>For an element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span> in <span class="SimpleMath">\(S\)</span>, either <span class="SimpleMath">\(S\)</span> is the only maximal subgroup of <span class="SimpleMath">\(S.2\)</span> that contains <span class="SimpleMath">\(s\)</span>, or the maximal subgroups of <span class="SimpleMath">\(S.2\)</span> that contain <span class="SimpleMath">\(s\)</span> are <span class="SimpleMath">\(S\)</span> and the extensions of the subgroups listed in statement (b); these groups have the structures <span class="SimpleMath">\(S_6(2) \times 2\)</span>, <span class="SimpleMath">\(2^6:S_8\)</span> (twice), <span class="SimpleMath">\(S_9\)</span> (twice), <span class="SimpleMath">\(S_3 \times U_4(2).2\)</span>, and <span class="SimpleMath">\(S_5 \wr 2\)</span>.</p>
</dd>
<dt><strong class="Mark">(h)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(15\)</span> and arbitrary <span class="SimpleMath">\(g \in S.3 \setminus S\)</span>, we have <span class="SimpleMath">\(\langle s, g \rangle = S.3\)</span>.</p>
</dd>
<dt><strong class="Mark">(i)</strong></dt>
<dd><p>If <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> are nonidentity elements in <span class="SimpleMath">\(Aut(S)\)</span> then there is an element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span> in <span class="SimpleMath">\(S\)</span> such that <span class="SimpleMath">\(S \subseteq \langle x, s \rangle \cap \langle y, s \rangle\)</span>.</p>
</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "O8+(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "O8+(2)", 334/315, 0, [ "15A", "15B", "15C" ], [ 7, 7, 7 ] ]
</pre></div>
<p>Statement (b) can be read off from the permutation characters, and the fact that the only classes of maximal subgroups that contain elements of order <span class="SimpleMath">\(15\)</span> consist of groups of the structures as claimed, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 15 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( Filtered( prim, x -> x[ spos ] <> 0 ), l -> l{ [ 1, spos ] } );</span>
[ [ 120, 1 ], [ 135, 2 ], [ 960, 2 ], [ 1120, 1 ], [ 12096, 1 ] ]
</pre></div>
<p>For the remaining statements, we take a primitive permutation representation on <span class="SimpleMath">\(120\)</span> points, and assume that the permutation character is <code class="code">1a+35a+84a</code>. (See <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85]</a>, note that the three classes of maximal subgroups of index <span class="SimpleMath">\(120\)</span> in <span class="SimpleMath">\(S\)</span> are conjugate under triality.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">matgroup:= DerivedSubgroup( GeneralOrthogonalGroup( 1, 8, 2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">points:= NormedRowVectors( GF(2)^8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( matgroup, points );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 135, 120 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Action( matgroup, orbs[2] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( g );</span>
174182400
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= Sum( Irr( t ){ [ 1, 3, 7 ] } );</span>
Character( CharacterTable( "O8+(2)" ),
[ 120, 24, 32, 0, 0, 8, 36, 0, 0, 3, 6, 12, 4, 8, 0, 0, 0, 10, 0, 0,
12, 0, 0, 8, 0, 0, 3, 6, 0, 0, 2, 0, 0, 2, 1, 2, 2, 3, 0, 0, 2, 0,
0, 0, 0, 0, 3, 2, 0, 0, 1, 0, 0 ] )
</pre></div>
<p>In order to show statement (c), we first observe that for <span class="SimpleMath">\(s\)</span> in the class <code class="code">15A</code> and <span class="SimpleMath">\(g\)</span> <em>not</em> in one of the classes <code class="code">2A</code>, <code class="code">2B</code>, <code class="code">3A</code>, <span class="SimpleMath">\(σ(g,s) < 1/3\)</span> holds, and for the exceptional three classes, we have <span class="SimpleMath">\(σ(g,s) > 1/2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( prim, spos );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">testpos:= PositionsProperty( approx, x -> x >= 1/3 );</span>
[ 2, 3, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t ){ testpos };</span>
[ "2A", "2B", "3A" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">approx{ testpos };</span>
[ 254/315, 334/315, 1093/1120 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( approx{ testpos }, x -> x > 1/2 );</span>
true
</pre></div>
<p>Now we compute the values <span class="SimpleMath">\(P(g,s)\)</span>, for <span class="SimpleMath">\(s\)</span> in the class <code class="code">15A</code> and <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code>, <code class="code">2B</code>, <code class="code">3A</code>.</p>
<p>By our choice of the character of the permutation representation we use, the class <code class="code">15A</code> is determined as the unique class of element order <span class="SimpleMath">\(15\)</span> with one fixed point. (Note that the three classes of element order <span class="SimpleMath">\(15\)</span> in <span class="SimpleMath">\(S\)</span> are conjugate under triality.) A <code class="code">2A</code> element can be found as the fourth power of any element of order <span class="SimpleMath">\(8\)</span> in <span class="SimpleMath">\(S\)</span>, a <code class="code">3A</code> element can be found as the fifth power of a <code class="code">15A</code> element, and a <code class="code">2B</code> element can be found as the sixth power of an element of order <span class="SimpleMath">\(12\)</span>, with <span class="SimpleMath">\(32\)</span> fixed points.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 15 and NrMovedPoints( g ) = 1 + NrMovedPoints( s );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3A:= s^5;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g ); until Order( x ) = 8;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2A:= x^4;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g ); until Order( x ) = 12 and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> NrMovedPoints( g ) = 32 + NrMovedPoints( x^6 );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2B:= x^6;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prop15A:= List( [ 2A, 2B, 3A ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> RatioOfNongenerationTransPermGroup( g, x, s ) );</span>
[ 23/35, 29/42, 149/224 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( prop15A );</span>
29/42
</pre></div>
<p>This means that for <span class="SimpleMath">\(s\)</span> in the class <code class="code">15A</code>, we have <span class="SimpleMath">\(P( S, s ) = 29/42\)</span>, and the same holds for all <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span> since the three classes of element order <span class="SimpleMath">\(15\)</span> are conjugate under triality. Now we show that for <span class="SimpleMath">\(s\)</span> of order different from <span class="SimpleMath">\(15\)</span>, the value <span class="SimpleMath">\(P(g,s)\)</span> is larger than <span class="SimpleMath">\(29/42\)</span>, for <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code>, <code class="code">2B</code>, <code class="code">3A</code>, or their images under triality. This implies statement (c).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">test:= List( [ 2A, 2B, 3A ], x -> ConjugacyClass( g, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= ConjugacyClasses( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">consider:= Filtered( ccl, c -> Size( c ) in List( test, Size ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( consider );</span>
7
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( ccl, c -> ForAll( consider, cc -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> RatioOfNongenerationTransPermGroup( g, Representative( cc ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Representative( c ) ) <= 29/42 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( filt );</span>
3
<span class="GAPprompt">gap></span> <span class="GAPinput">List( filt, c -> Order( Representative( c ) ) );</span>
[ 15, 15, 15 ]
</pre></div>
<p>Now we show statement (d). First we observe that all those Klein four groups in <span class="SimpleMath">\(S\)</span> whose involutions lie in the class <code class="code">2A</code> are conjugate in <span class="SimpleMath">\(S\)</span>. Note that this is the unique class of length <span class="SimpleMath">\(1\,575\)</span> in <span class="SimpleMath">\(S\)</span>, and also the unique class whose elements have <span class="SimpleMath">\(24\)</span> fixed points in the degree <span class="SimpleMath">\(120\)</span> permutation representation.</p>
<p>For that, we use the character table of <span class="SimpleMath">\(S\)</span> to read off that <span class="SimpleMath">\(S\)</span> contains exactly <span class="SimpleMath">\(14\,175\)</span> such subgroups, and we use the group to compute one such subgroup and its normalizer of index <span class="SimpleMath">\(14\,175\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesConjugacyClasses( t );</span>
[ 1, 1575, 3780, 3780, 3780, 56700, 2240, 2240, 2240, 89600, 268800,
37800, 340200, 907200, 907200, 907200, 2721600, 580608, 580608,
580608, 100800, 100800, 100800, 604800, 604800, 604800, 806400,
806400, 806400, 806400, 2419200, 2419200, 2419200, 7257600,
24883200, 5443200, 5443200, 6451200, 6451200, 6451200, 8709120,
8709120, 8709120, 1209600, 1209600, 1209600, 4838400, 7257600,
7257600, 7257600, 11612160, 11612160, 11612160 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">NrPolyhedralSubgroups( t, 2, 2, 2 );</span>
rec( number := 14175, type := "V4" )
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) mod 2 = 0</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and NrMovedPoints( x^( Order(x)/2 ) ) = 120 - 24;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= x^( Order(x)/2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat y:= x^Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until NrMovedPoints( x*y ) = 120 - 24;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">v4:= SubgroupNC( g, [ x, y ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:= Normalizer( g, v4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Index( g, n );</span>
14175
</pre></div>
<p>We verify that the triple has the required property.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxorder:= RepresentativesMaximallyCyclicSubgroups( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxorderreps:= List( ClassesPerhapsCorrespondingToTableColumns( g, t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxorder ), Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( maxorderreps );</span>
28
<span class="GAPprompt">gap></span> <span class="GAPinput">CommonGeneratorWithGivenElements( g, maxorderreps, [ x, y, x*y ] );</span>
fail
</pre></div>
<p>For the simple group <span class="SimpleMath">\(S\)</span>, it remains to show statement (e). We want to show that for any choice of two nonidentity elements <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> in <span class="SimpleMath">\(S\)</span>, there is an element <span class="SimpleMath">\(s\)</span> in the class <code class="code">15A</code> such that <span class="SimpleMath">\(\langle s, x \rangle = \langle s, y \rangle = S\)</span> holds. Only <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> in the classes given by the list <code class="code">testpos</code> must be considered, by the estimates <span class="SimpleMath">\(σ(g,s)\)</span>.</p>
<p>We replace the values <span class="SimpleMath">\(σ(g,s)\)</span> by the exact values <span class="SimpleMath">\(P(g,s)\)</span>, for <span class="SimpleMath">\(g\)</span> in one of these three classes. Each of the three classes is determined by its element order and its number of fixed points.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= List( ccl, Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bading:= List( testpos, i -> Filtered( reps,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r -> Order( r ) = OrdersClassRepresentatives( t )[i] and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> NrMovedPoints( r ) = 120 - pi[i] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( bading, Length );</span>
[ 1, 1, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">bading:= List( bading, x -> x[1] );;</span>
</pre></div>
<p>For each pair <span class="SimpleMath">\((C_1, C_2)\)</span> of classes represented by this list, we have to show that for any choice of elements <span class="SimpleMath">\(x \in C_1\)</span>, <span class="SimpleMath">\(y \in C_2\)</span> there is <span class="SimpleMath">\(s\)</span> in the class <code class="code">15A</code> such that <span class="SimpleMath">\(\langle s, x \rangle = \langle s, y \rangle = S\)</span> holds. This is done with the random approach that is described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for pair in UnorderedTuples( bading, 2 ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> test:= RandomCheckUniformSpread( g, pair, s, 80 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if test <> true then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( test );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p>We get no error message, so statement (e) holds.</p>
<p>Now we turn to the automorphic extensions of <span class="SimpleMath">\(S\)</span>. First we compute a permutation representation of <span class="SimpleMath">\(SO^+(8,2) \cong S.2\)</span> and an element <span class="SimpleMath">\(g\)</span> in the class <code class="code">2F</code>, which is the unique conjugacy class of size <span class="SimpleMath">\(120\)</span> in <span class="SimpleMath">\(S.2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">matgrp:= SO(1,8,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g2:= Image( IsomorphismPermGroup( matgrp ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsTransitive( g2, MovedPoints( g2 ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g2 ); until Order( x ) = 14;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2F:= x^7;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( ConjugacyClass( g2, 2F ) );</span>
120
</pre></div>
<p>Only for <span class="SimpleMath">\(s\)</span> in six conjugacy classes of <span class="SimpleMath">\(S\)</span>, there is a nonzero probability to have <span class="SimpleMath">\(S.2 = \langle g, s \rangle\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">der:= DerivedSubgroup( g2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cclreps:= List( ConjugacyClasses( der ), Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nongen:= List( cclreps,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> RatioOfNongenerationTransPermGroup( g2, 2F, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">goodpos:= PositionsProperty( nongen, x -> x < 1 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invariants:= List( goodpos, i -> [ Order( cclreps[i] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Size( Centralizer( g2, cclreps[i] ) ), nongen[i] ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortedList( invariants );</span>
[ [ 10, 20, 1/3 ], [ 10, 20, 1/3 ], [ 12, 24, 2/5 ], [ 12, 24, 2/5 ],
[ 15, 15, 0 ], [ 15, 15, 0 ] ]
</pre></div>
<p><span class="SimpleMath">\(S\)</span> contains three classes of element order <span class="SimpleMath">\(10\)</span>, which are conjugate in <span class="SimpleMath">\(S.3\)</span>. For a fixed extension of the type <span class="SimpleMath">\(S.2\)</span>, the element <span class="SimpleMath">\(s\)</span> can be chosen only in two of these three classes, which means that there is another group of the type <span class="SimpleMath">\(S.2\)</span> (more precisely, another subgroup of index three in <span class="SimpleMath">\(S.S_3\)</span>) in which this choice of <span class="SimpleMath">\(s\)</span> is not suitable –note that the general aim is to find <span class="SimpleMath">\(s \in S\)</span> uniformly for all automorphic extensions of <span class="SimpleMath">\(S\)</span>. Analogous statements hold for the other possibilities for <span class="SimpleMath">\(s\)</span>, so statement (f) follows.</p>
<p>Statement (g) follows from the list of maximal subgroups in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85]</a>.</p>
<p>Statement (h) follows from the fact that <span class="SimpleMath">\(S\)</span> is the only maximal subgroup of <span class="SimpleMath">\(S.3\)</span> that contains elements of order <span class="SimpleMath">\(15\)</span>, according to the list of maximal subgroups in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85]</a>. Alternatively, if we do not want to assume this information, we can use explicit computations, as follows. All we have to check is that any element in the classes <code class="code">3F</code> and <code class="code">3G</code> generates <span class="SimpleMath">\(S.3\)</span> together with a fixed element of order <span class="SimpleMath">\(15\)</span> in <span class="SimpleMath">\(S\)</span>.</p>
<p>We compute a permutation representation of <span class="SimpleMath">\(S.3\)</span> as the derived subgroup of a subgroup of the type <span class="SimpleMath">\(S.S_3\)</span> inside the sporadic simple Fischer group <span class="SimpleMath">\(Fi_{22}\)</span>; these subgroups lie in the fourth class of maximal subgroups of <span class="SimpleMath">\(Fi_{22}\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 163]</a>. An element in the class <code class="code">3F</code> of <span class="SimpleMath">\(S.3\)</span> can be found as a power of an order <span class="SimpleMath">\(21\)</span> element, and an element in the class <code class="code">3G</code> can be found as the fourth power of a <code class="code">12P</code> element.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">aut:= Group( AtlasGenerators( "Fi22", 1, 4 ).generators );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( aut ) = 6 * Size( t );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">g3:= DerivedSubgroup( aut );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( g3, MovedPoints( g3 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 3150, 360 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">g3:= Action( g3, orbs[2] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g3 ); until Order( s ) = 15;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g3 ); until Order( x ) = 21;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3F:= x^7;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( g3, 3F, s );</span>
0
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g3 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) = 12 and Size( Centralizer( g3, x^4 ) ) = 648;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3G:= x^4;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( g3, 3G, s );</span>
0
</pre></div>
<p>Finally, consider statement (i). It implies that <a href="chapBib_mj.html#biBBGK">[BGK08, Corollary 1.5]</a> holds for <span class="SimpleMath">\(\Omega^+(8,2)\)</span>, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>. Note that by part (f), <span class="SimpleMath">\(s\)</span> <em>cannot be chosen in a prescribed conjugacy class</em> of <span class="SimpleMath">\(S\)</span> that is independent of the elements <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span>.</p>
<p>If <span class="SimpleMath">\(x\)</span> and <span class="SimpleMath">\(y\)</span> lie in <span class="SimpleMath">\(S\)</span> then statement (i) follows from part (e), and by part (g), the case that <span class="SimpleMath">\(x\)</span> or <span class="SimpleMath">\(y\)</span> lie in <span class="SimpleMath">\(S.3 \setminus S\)</span> is also not a problem. We now show that also <span class="SimpleMath">\(x\)</span> or <span class="SimpleMath">\(y\)</span> in <span class="SimpleMath">\(S.2 \setminus S\)</span> is not a problem. Here we have to deal with the cases that <span class="SimpleMath">\(x\)</span> and <span class="SimpleMath">\(y\)</span> lie in the same subgroup of index <span class="SimpleMath">\(3\)</span> in <span class="SimpleMath">\(Aut(S)\)</span> or in different such subgroups. Actually we show that for each index <span class="SimpleMath">\(3\)</span> subgroup <span class="SimpleMath">\(H = S.2 < Aut(S)\)</span>, we can choose <span class="SimpleMath">\(s\)</span> from two of the three classes of element order <span class="SimpleMath">\(15\)</span> in <span class="SimpleMath">\(S\)</span> such that <span class="SimpleMath">\(S\)</span> is the only maximal subgroup of <span class="SimpleMath">\(H\)</span> that contains <span class="SimpleMath">\(s\)</span>, and thus <span class="SimpleMath">\(\langle x, s \rangle\)</span> contains <span class="SimpleMath">\(H\)</span>, for any choice of <span class="SimpleMath">\(x \in H \setminus S\)</span>.</p>
<p>For that, we note that no novelty in <span class="SimpleMath">\(S.2\)</span> contains elements of order <span class="SimpleMath">\(15\)</span>, so all maximal subgroups of <span class="SimpleMath">\(S.2\)</span> that contain such elements –besides <span class="SimpleMath">\(S\)</span>– have one of the indices <span class="SimpleMath">\(120, 135, 960, 1120\)</span>, or <span class="SimpleMath">\(12096\)</span>, and point stabilizers of the types <span class="SimpleMath">\(S_6(2) \times 2\)</span>, <span class="SimpleMath">\(2^6:S_8\)</span>, <span class="SimpleMath">\(S_9\)</span>, <span class="SimpleMath">\(S_3 \times U_4(2):2\)</span>, or <span class="SimpleMath">\(S_5 \wr 2\)</span>. We compute the corresponding permutation characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "O8+(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "S6(2)" ) * CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s, t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= pi;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermChars( t2, rec( torso:= [ 135 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( prim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters( CharacterTable( "A9.2" ), t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( prim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "Dihedral(6)" ) * CharacterTable( "U4(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s, t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( prim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTableWreathSymmetric( CharacterTable( "S5" ), 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PossiblePermutationCharacters( s, t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( prim, pi );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( prim );</span>
5
<span class="GAPprompt">gap></span> <span class="GAPinput">ord15:= PositionsProperty( OrdersClassRepresentatives( t2 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x = 15 );</span>
[ 39, 40 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( prim, pi -> pi{ ord15 } );</span>
[ [ 1, 0 ], [ 2, 0 ], [ 2, 0 ], [ 1, 0 ], [ 1, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ord15, i -> Maximum( ApproxP( prim, i ) ) );</span>
[ 307/120, 0 ]
</pre></div>
<p>Here it is appropriate to clean the workspace again.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>
<p><a id="X78F0815B86253A1F" name="X78F0815B86253A1F"></a></p>
<h5>11.5-13 <span class="Heading"><span class="SimpleMath">\(O_8^+(3)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = O_8^+(3)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 863/1820\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(20\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(20\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two nonconjugate groups of the type <span class="SimpleMath">\(O_7(3) = \Omega(7,3)\)</span>, two conjugate subgroups of the type <span class="SimpleMath">\(3^6:L_4(3)\)</span>, two nonconjugate subgroups of the type <span class="SimpleMath">\((A_4 \times U_4(2)):2\)</span>, and one subgroup of each of the types <span class="SimpleMath">\(2.U_4(3).(2^2)_{122}\)</span> and <span class="SimpleMath">\((A_6 \times A_6):2^2\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 194/455\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(20\)</span>.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(20\)</span>.</p>
</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p>The preimage of <span class="SimpleMath">\(s\)</span> in the matrix group <span class="SimpleMath">\(2.S = \Omega^+(8,3)\)</span> can be chosen of order <span class="SimpleMath">\(40\)</span>, and then the maximal subgroups of <span class="SimpleMath">\(2.S\)</span> containing <span class="SimpleMath">\(s\)</span> have the structures <span class="SimpleMath">\(2.O_7(3)\)</span>, <span class="SimpleMath">\(3^6:2.L_4(3)\)</span>, <span class="SimpleMath">\(4.U_4(3).2^2 = SU(4,3).2^2\)</span>, <span class="SimpleMath">\(2.(A_4 \times U_4(2)).2 = 2.(PSp(2,3) \otimes PSp(4,3)).2\)</span>, and <span class="SimpleMath">\(2.(A_6 \times A_6):2^2 = 2.(\Omega^-(4,3) \times \Omega^-(4,3)):2^2\)</span>, respectively.</p>
</dd>
<dt><strong class="Mark">(f)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(20\)</span>, we have <span class="SimpleMath">\(P^{\prime}(S.2_1, s) \in \{ 83/567, 574/1215 \}\)</span>, <span class="SimpleMath">\(P^{\prime}(S.2_2, s) \in \{ 0, 1 \}\)</span> (depending on the choice of <span class="SimpleMath">\(s\)</span>), and <span class="SimpleMath">\(σ^{\prime}(S.3, s) = 0\)</span>.</p>
<p>Furthermore, for any choice of <span class="SimpleMath">\(s^{\prime} \in S\)</span>, we have <span class="SimpleMath">\(σ^{\prime}(S.2_2, s^{\prime}) = 1\)</span> for some group <span class="SimpleMath">\(S.2_2\)</span>. However, if it is allowed to choose <span class="SimpleMath">\(s\)</span> from an <span class="SimpleMath">\(Aut(S)\)</span>-class of elements of order <span class="SimpleMath">\(20\)</span> (and not from a fixed <span class="SimpleMath">\(S\)</span>-class) then we can achieve <span class="SimpleMath">\(σ(g,s) = 0\)</span> for any given <span class="SimpleMath">\(g \in S.2_2 \setminus S\)</span>.</p>
</dd>
<dt><strong class="Mark">(g)</strong></dt>
<dd><p>The maximal subgroups of <span class="SimpleMath">\(S.2_1\)</span> that contain an element of order <span class="SimpleMath">\(20\)</span> are either <span class="SimpleMath">\(S\)</span> and the extensions of the subgroups listed in statement (b) or they are <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(L_4(3).2^2\)</span>, <span class="SimpleMath">\(3^6:L_4(3).2\)</span> (twice), <span class="SimpleMath">\(2.U_4(3).(2^2)_{122}.2\)</span>, and <span class="SimpleMath">\((A_6 \times A_6):2^2.2\)</span>.</p>
<p>In the former case, the groups have the structures <span class="SimpleMath">\(O_7(3):2\)</span> (twice), <span class="SimpleMath">\(3^6:(L_4(3) \times 2)\)</span> (twice), <span class="SimpleMath">\(S_4 \times U_4(2).2\)</span> (twice), <span class="SimpleMath">\(2.U_4(3).(2^2)_{122}.2\)</span>, and <span class="SimpleMath">\((A_6 \times A_6):2^2 \times 2\)</span>.</p>
</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "O8+(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "O8+(3)", 863/1820, 2, [ "20A", "20B", "20C" ], [ 8, 8, 8 ] ]
</pre></div>
<p>Also statement (b) follows from the information provided by the character table of <span class="SimpleMath">\(S\)</span> (cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord:= OrdersClassRepresentatives( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( ord, 20 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= PositionsProperty( prim, x -> x[ spos ] <> 0 );</span>
[ 1, 2, 7, 15, 18, 19, 24 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Maxes( t ){ filt };</span>
[ "O7(3)", "O8+(3)M2", "3^6:L4(3)", "2.U4(3).(2^2)_{122}",
"(A4xU4(2)):2", "O8+(3)M19", "(A6xA6):2^2" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">prim{ filt }{ [ 1, spos ] };</span>
[ [ 1080, 1 ], [ 1080, 1 ], [ 1120, 2 ], [ 189540, 1 ],
[ 7960680, 1 ], [ 7960680, 1 ], [ 9552816, 1 ] ]
</pre></div>
<p>For statement (c), we first show that <span class="SimpleMath">\(P(S,s) = 194/455\)</span> holds. Since this value is larger than <span class="SimpleMath">\(1/3\)</span>, we have to inspect only those classes <span class="SimpleMath">\(g^S\)</span> for which <span class="SimpleMath">\(σ(g,s) \geq 1/3\)</span> holds,</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord:= OrdersClassRepresentatives( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord20:= PositionsProperty( ord, x -> x = 20 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in ord20 do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> approx:= ApproxP( prim, i );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( cand, PositionsProperty( approx, x -> x >= 1/3 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand;</span>
[ [ 2, 6, 7, 10 ], [ 3, 6, 8, 11 ], [ 4, 6, 9, 12 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t ){ cand[1] };</span>
[ "2A", "3A", "3B", "3E" ]
</pre></div>
<p>The three possibilities form one orbit under the outer automorphism group of <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t3:= CharacterTable( "O8+(3).3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfust3:= GetFusionMap( t, t3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( cand, x -> tfust3{ x } );</span>
[ [ 2, 4, 5, 6 ], [ 2, 4, 5, 6 ], [ 2, 4, 5, 6 ] ]
</pre></div>
<p>By symmetry, we may consider only the first possibility, and assume that <span class="SimpleMath">\(s\)</span> is in the class <code class="code">20A</code>.</p>
<p>We work with a permutation representation of degree <span class="SimpleMath">\(1\,080\)</span>, and assume that the permutation character is <code class="code">1a+260a+819a</code>. (Note that all permutation characters of <span class="SimpleMath">\(S\)</span> of degree <span class="SimpleMath">\(1\,080\)</span> are conjugate under <span class="SimpleMath">\(Aut(S)\)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Action( SO(1,8,3), NormedRowVectors( GF(3)^8 ), OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( g );</span>
9904359628800
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= DerivedSubgroup( g );; Size( g );</span>
4952179814400
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( g, MovedPoints( g ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 1080, 1080, 1120 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Action( g, orbs[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionProperty( Irr( t ), chi -> chi[1] = 819 );</span>
9
<span class="GAPprompt">gap></span> <span class="GAPinput">permchar:= Sum( Irr( t ){ [ 1, 2, 9 ] } );</span>
Character( CharacterTable( "O8+(3)" ),
[ 1080, 128, 0, 0, 24, 108, 135, 0, 0, 108, 0, 0, 27, 27, 0, 0, 18,
9, 12, 16, 0, 0, 4, 15, 0, 0, 20, 0, 0, 12, 11, 0, 0, 20, 0, 0, 15,
0, 0, 12, 0, 0, 2, 0, 0, 3, 3, 0, 0, 6, 6, 0, 0, 3, 2, 2, 2, 18, 0,
0, 9, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 3, 0, 0, 12, 0, 0, 3, 0, 0, 0,
0, 0, 4, 3, 3, 0, 0, 1, 0, 0, 4, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 3,
0, 0, 2, 0, 0, 5, 0, 0, 1, 0, 0 ] )
</pre></div>
<p>Now we show that for <span class="SimpleMath">\(s\)</span> in the class <code class="code">20A</code> (which fixes one point), the proportion of nongenerating elements <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code>, <code class="code">3A</code>, <code class="code">3B</code>, <code class="code">3E</code> has the maximum <span class="SimpleMath">\(194/455\)</span>, which is attained exactly for <code class="code">3A</code>. (We find a <code class="code">2A</code> element as a power of <span class="SimpleMath">\(s\)</span>, a <code class="code">3A</code> element as a power of any element of order <span class="SimpleMath">\(18\)</span>, a <code class="code">3B</code> and a <code class="code">3E</code> element as elements with <span class="SimpleMath">\(135\)</span> and <span class="SimpleMath">\(108\)</span> fixed points, respectively, which occur as powers of suitable elements of order <span class="SimpleMath">\(15\)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">permchar{ ord20 };</span>
[ 1, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t )[ PowerMap( t, 10 )[ ord20[1] ] ];</span>
"2A"
<span class="GAPprompt">gap></span> <span class="GAPinput">ord18:= PositionsProperty( ord, x -> x = 18 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( AtlasClassNames( t ){ PowerMap( t, 6 ){ ord18 } } );</span>
[ "3A" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ord15:= PositionsProperty( ord, x -> x = 15 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( t, 5 ){ ord15 };</span>
[ 7, 8, 9, 10, 11, 12 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t ){ [ 7 .. 12 ] };</span>
[ "3B", "3C", "3D", "3E", "3F", "3G" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">permchar{ [ 7 .. 12 ] };</span>
[ 135, 0, 0, 108, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">mp:= NrMovedPoints( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat 20A:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( 20A ) = 20 and mp - NrMovedPoints( 20A ) = 1;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2A:= 20A^10;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g ); until Order( x ) = 18;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3A:= x^6;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) = 15 and mp - NrMovedPoints( x^5 ) = 135;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3B:= x^5;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) = 15 and mp - NrMovedPoints( x^5 ) = 108;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3E:= x^5;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nongen:= List( [ 2A, 3A, 3B, 3E ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> c -> RatioOfNongenerationTransPermGroup( g, c, 20A ) );</span>
[ 3901/9477, 194/455, 451/1092, 451/1092 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( nongen );</span>
194/455
</pre></div>
<p>Next we compute the values <span class="SimpleMath">\(P(g,s)\)</span>, for <span class="SimpleMath">\(g\)</span> is in the class <code class="code">3A</code> and certain elements <span class="SimpleMath">\(s\)</span>. It is enough to consider representatives <span class="SimpleMath">\(s\)</span> of maximally cyclic subgroups in <span class="SimpleMath">\(S\)</span>, but here we can do better, as follows. Since <code class="code">3A</code> is the unique class of length <span class="SimpleMath">\(72\,800\)</span>, it is fixed under <span class="SimpleMath">\(Aut(S)\)</span>, so it is enough to consider one element <span class="SimpleMath">\(s\)</span> from each <span class="SimpleMath">\(Aut(S)\)</span>-orbit on the classes of <span class="SimpleMath">\(S\)</span>. We use the class fusion between the character tables of <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(Aut(S)\)</span> for computing orbit representatives.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxorder:= RepresentativesMaximallyCyclicSubgroups( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( maxorder );</span>
57
<span class="GAPprompt">gap></span> <span class="GAPinput">autt:= CharacterTable( "O8+(3).S4" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( t, autt );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbreps:= Set( fus, map -> Set( ProjectionMap( map ) ) );</span>
[ [ 1, 2, 5, 6, 7, 13, 17, 18, 19, 20, 23, 24, 27, 30, 31, 37, 43,
46, 50, 54, 55, 56, 57, 58, 64, 68, 72, 75, 78, 84, 85, 89, 95,
96, 97, 100, 106, 112 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">totest:= Intersection( maxorder, orbreps[1] );</span>
[ 43, 50, 54, 56, 57, 64, 68, 75, 78, 84, 85, 89, 95, 97, 100, 106,
112 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( totest );</span>
17
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t ){ totest };</span>
[ "6Q", "6X", "6B1", "8A", "8B", "9G", "9K", "12A", "12D", "12J",
"12K", "12O", "13A", "14A", "15A", "18A", "20A" ]
</pre></div>
<p>This means that we have to test one element of each of the element orders <span class="SimpleMath">\(13\)</span>, <span class="SimpleMath">\(14\)</span>, <span class="SimpleMath">\(15\)</span>, and <span class="SimpleMath">\(18\)</span> (note that we know already a bound for elements of order <span class="SimpleMath">\(20\)</span>), plus certain elements of the orders <span class="SimpleMath">\(6\)</span>, <span class="SimpleMath">\(8\)</span>, <span class="SimpleMath">\(9\)</span>, and <span class="SimpleMath">\(12\)</span> which can be identified by their centralizer orders and (for elements of order <span class="SimpleMath">\(6\)</span> and <span class="SimpleMath">\(8\)</span>) perhaps the centralizer orders of some powers.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">elementstotest:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for elord in [ 13, 14, 15, 18 ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = elord;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( elementstotest, s );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p>The next elements to be tested are in the classes <code class="code">6B1</code> (centralizer order <span class="SimpleMath">\(162\)</span>), in one of <code class="code">9G</code>–<code class="code">9J</code> (centralizer order <span class="SimpleMath">\(729\)</span>), in one of <code class="code">9K</code>–<code class="code">9N</code> (centralizer order <span class="SimpleMath">\(81\)</span>), in one of <code class="code">12A</code>–<code class="code">12C</code> (centralizer order <span class="SimpleMath">\(1\,728\)</span>), in one of <code class="code">12D</code>–<code class="code">12I</code> (centralizer order <span class="SimpleMath">\(432\)</span>), in <code class="code">12J</code> (centralizer order <span class="SimpleMath">\(192\)</span>), in one of <code class="code">12K</code>–<code class="code">12N</code> (centralizer order <span class="SimpleMath">\(108\)</span>), and in one of <code class="code">12O</code>–<code class="code">12T</code> (centralizer order <span class="SimpleMath">\(72\)</span>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ordcent:= [ [ 6, 162 ], [ 9, 729 ], [ 9, 81 ], [ 12, 1728 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 12, 432 ], [ 12, 192 ], [ 12, 108 ], [ 12, 72 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cents:= SizesCentralizers( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for pair in ordcent do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( pair, ": ", AtlasClassNames( t ){</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Filtered( [ 1 .. Length( ord ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> ord[i] = pair[1] and cents[i] = pair[2] ) }, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = pair[1] and Size( Centralizer( g, s ) ) = pair[2];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( elementstotest, s );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
[ 6, 162 ]: [ "6B1" ]
[ 9, 729 ]: [ "9G", "9H", "9I", "9J" ]
[ 9, 81 ]: [ "9K", "9L", "9M", "9N" ]
[ 12, 1728 ]: [ "12A", "12B", "12C" ]
[ 12, 432 ]: [ "12D", "12E", "12F", "12G", "12H", "12I" ]
[ 12, 192 ]: [ "12J" ]
[ 12, 108 ]: [ "12K", "12L", "12M", "12N" ]
[ 12, 72 ]: [ "12O", "12P", "12Q", "12R", "12S", "12T" ]
</pre></div>
<p>The next elements to be tested are in one of the classes <code class="code">6Q</code>–<code class="code">6S</code> (centralizer order <span class="SimpleMath">\(648\)</span>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t ){ Filtered( [ 1 .. Length( ord ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> cents[i] = 648 and cents[ PowerMap( t, 2 )[i] ] = 52488</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and cents[ PowerMap( t, 3 )[i] ] = 26127360 ) };</span>
[ "6Q", "6R", "6S" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 6 and Size( Centralizer( g, s ) ) = 648</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and Size( Centralizer( g, s^2 ) ) = 52488</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and Size( Centralizer( g, s^3 ) ) = 26127360;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Add( elementstotest, s );</span>
</pre></div>
<p>The next elements to be tested are in the class <code class="code">6X</code>–<code class="code">6A1</code> (centralizer order <span class="SimpleMath">\(648\)</span>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t ){ Filtered( [ 1 .. Length( ord ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> cents[i] = 648 and cents[ PowerMap( t, 2 )[i] ] = 52488</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and cents[ PowerMap( t, 3 )[i] ] = 331776 ) };</span>
[ "6X", "6Y", "6Z", "6A1" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 6 and Size( Centralizer( g, s ) ) = 648</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and Size( Centralizer( g, s^2 ) ) = 52488</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and Size( Centralizer( g, s^3 ) ) = 331776;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Add( elementstotest, s );</span>
</pre></div>
<p>Finally, we add elements from the classes <code class="code">8A</code> and <code class="code">8B</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t ){ Filtered( [ 1 .. Length( ord ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> ord[i] = 8 and cents[ PowerMap( t, 2 )[i] ] = 13824 ) };</span>
[ "8A" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 8 and Size( Centralizer( g, s^2 ) ) = 13824;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Add( elementstotest, s );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t ){ Filtered( [ 1 .. Length( ord ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> ord[i] = 8 and cents[ PowerMap( t, 2 )[i] ] = 1536 ) };</span>
[ "8B" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 8 and Size( Centralizer( g, s^2 ) ) = 1536;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Add( elementstotest, s );</span>
</pre></div>
<p>Now we compute the ratios. It turns out that from these candidates, only elements <span class="SimpleMath">\(s\)</span> of the orders <span class="SimpleMath">\(14\)</span> and <span class="SimpleMath">\(15\)</span> satisfy <span class="SimpleMath">\(P(g,s) < 194/455\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">nongen:= List( elementstotest,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s -> RatioOfNongenerationTransPermGroup( g, 3A, s ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">smaller:= PositionsProperty( nongen, x -> x < 194/455 );</span>
[ 2, 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">nongen{ smaller };</span>
[ 127/325, 1453/3640 ]
</pre></div>
<p>So the only candidates for <span class="SimpleMath">\(s\)</span> that may be better than order <span class="SimpleMath">\(20\)</span> elements are elements of order <span class="SimpleMath">\(14\)</span> or <span class="SimpleMath">\(15\)</span>. In order to exclude these two possibilities, we compute <span class="SimpleMath">\(P(g,s)\)</span> for <span class="SimpleMath">\(s\)</span> in the class <code class="code">14A</code> and <span class="SimpleMath">\(g = s^7\)</span> in the class <code class="code">2A</code>, and for <span class="SimpleMath">\(s\)</span> in the class <code class="code">15A</code> and <span class="SimpleMath">\(g\)</span> in the class <code class="code">2A</code>, which yields values that are larger than <span class="SimpleMath">\(194/455\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 14 and NrMovedPoints( s ) = 1078;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2A:= s^7;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nongen:= RatioOfNongenerationTransPermGroup( g, 2A, s );</span>
1573/3645
<span class="GAPprompt">gap></span> <span class="GAPinput">nongen > 194/455;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 15 and NrMovedPoints( s ) = 1080 - 3;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nongen:= RatioOfNongenerationTransPermGroup( g, 2A, s );</span>
490/1053
<span class="GAPprompt">gap></span> <span class="GAPinput">nongen > 194/455;</span>
true
</pre></div>
<p>For statement (d), we show that for each triple of elements in the union of the classes <code class="code">2A</code>, <code class="code">3A</code>, <code class="code">3B</code>, <code class="code">3E</code> there is an element in the class <code class="code">20A</code> that generates <span class="SimpleMath">\(S\)</span> together with each element of the triple.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for tup in UnorderedTuples( [ 2A, 3A, 3B, 3E ], 3 ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cl:= ShallowCopy( tup );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> test:= RandomCheckUniformSpread( g, cl, 20A, 100 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if test <> true then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( test );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p>We get no error message, so statement (d) is true.</p>
<p>For statement (e), first we show that <span class="SimpleMath">\(2.S = \Omega^+(8,3)\)</span> contains elements of order <span class="SimpleMath">\(40\)</span> but <span class="SimpleMath">\(S\)</span> does not.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">der:= DerivedSubgroup( SO(1,8,3) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= PseudoRandom( der ); until Order( x ) = 40;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">40 in ord;</span>
false
</pre></div>
<p>Thus elements of order <span class="SimpleMath">\(40\)</span> must arise as preimages of order <span class="SimpleMath">\(20\)</span> elements under the natural epimorphism from <span class="SimpleMath">\(2.S\)</span> to <span class="SimpleMath">\(S\)</span>, which means that we may choose an order <span class="SimpleMath">\(40\)</span> preimage <span class="SimpleMath">\(\hat{s}\)</span> of <span class="SimpleMath">\(s\)</span>. Then <span class="SimpleMath">\(𝕄(2.S, \hat{s})\)</span> consists of central extensions of the subgroups listed in statement (b). The perfect subgroups <span class="SimpleMath">\(O_7(3)\)</span>, <span class="SimpleMath">\(L_4(3)\)</span>, <span class="SimpleMath">\(2.U_4(3)\)</span>, and <span class="SimpleMath">\(U_4(2)\)</span> of these groups must lift to their Schur double covers in <span class="SimpleMath">\(2.S\)</span> because otherwise the preimages would not contain elements of order <span class="SimpleMath">\(40\)</span>.</p>
<p>Next we consider the preimage of the subgroup <span class="SimpleMath">\(U = (A_4 \times U_4(2)).2\)</span> of <span class="SimpleMath">\(S\)</span>. We show that the preimages of the two direct factors <span class="SimpleMath">\(A_4\)</span> and <span class="SimpleMath">\(U_4(2)\)</span> in <span class="SimpleMath">\(U^{\prime} = A_4 \times U_4(2)\)</span> are Schur covers. For <span class="SimpleMath">\(A_4\)</span>, this follows from the fact that the preimage of <span class="SimpleMath">\(U^{\prime}\)</span> must contain elements of order <span class="SimpleMath">\(20\)</span>, and that <span class="SimpleMath">\(U_4(2)\)</span> does not contain elements of order <span class="SimpleMath">\(10\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u42:= CharacterTable( "U4(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( OrdersClassRepresentatives( u42 ), x -> x mod 5 = 0 );</span>
[ 5 ]
</pre></div>
<p>In order to show that the <span class="SimpleMath">\(U_4(2)\)</span> type subgroup of <span class="SimpleMath">\(U^{\prime}\)</span> lifts to its double cover in <span class="SimpleMath">\(2.S\)</span>, we note that the class <code class="code">2B</code> of <span class="SimpleMath">\(U_4(2)\)</span> lifts to a class of elements of order four in the double cover <span class="SimpleMath">\(2.U_4(2)\)</span>, and that the corresponding class of elements in <span class="SimpleMath">\(U\)</span> is <span class="SimpleMath">\(S\)</span>-conjugate to the class of involutions in the direct factor <span class="SimpleMath">\(A_4\)</span> (which is the unique class of length three in <span class="SimpleMath">\(U\)</span>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( Maxes( t )[18] );</span>
CharacterTable( "(A4xU4(2)):2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">2u42:= CharacterTable( "2.U4(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( 2u42 )[4];</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( 2u42, u42 )[4];</span>
3
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( u42 )[3];</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">List( PossibleClassFusions( u42, u ), x -> x[3] );</span>
[ 8 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( SizesConjugacyClasses( u ), x -> x = 3 );</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( PossibleClassFusions( u, t ), x -> x[2] = x[8] );</span>
true
</pre></div>
<p>The last subgroup for which the structure of the preimage has to be shown is <span class="SimpleMath">\(U = (A_6 \times A_6):2^2\)</span>. We claim that each of the <span class="SimpleMath">\(A_6\)</span> type subgroups in the derived subgroup <span class="SimpleMath">\(U^{\prime} = A_6 \times A_6\)</span> lifts to its double cover in <span class="SimpleMath">\(2.S\)</span>. Since all elements of order <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(U\)</span> lie in <span class="SimpleMath">\(U^{\prime}\)</span>, at least one of the two direct factors must lift to its double cover, in order to give rise to an order <span class="SimpleMath">\(40\)</span> element in <span class="SimpleMath">\(U\)</span>. In fact both factors lift to the double cover since the two direct factors are interchanged by conjugation in <span class="SimpleMath">\(U\)</span>; the latter follows form tha fact that <span class="SimpleMath">\(U\)</span> has no normal subgroup of type <span class="SimpleMath">\(A_6\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( Maxes( t )[24] );</span>
CharacterTable( "(A6xA6):2^2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassPositionsOfDerivedSubgroup( u );</span>
[ 1 .. 22 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( OrdersClassRepresentatives( u ), x -> x = 20 );</span>
[ 8 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ClassPositionsOfNormalSubgroups( u ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( u ){ x } ) );</span>
[ 1, 129600, 259200, 259200, 259200, 518400 ]
</pre></div>
<p>So statement (e) holds.</p>
<p>For statement (f), we have to consider the upward extensions <span class="SimpleMath">\(S.2_1\)</span>, <span class="SimpleMath">\(S.2_2\)</span>, and <span class="SimpleMath">\(S.3\)</span>.</p>
<p>First we look at <span class="SimpleMath">\(S.2_1\)</span>, an extension by an outer automorphism that acts as a double transposition in the outer automorphism group <span class="SimpleMath">\(S_4\)</span>. Note that the symmetry between the three classes of element oder <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span> is broken in <span class="SimpleMath">\(S.2_1\)</span>, two of these classes have square roots in <span class="SimpleMath">\(S.2_1\)</span>, the third has not.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "O8+(3).2_1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord20:= PositionsProperty( OrdersClassRepresentatives( t2 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x = 20 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord20:= Intersection( ord20, ClassPositionsOfDerivedSubgroup( t2 ) );</span>
[ 84, 85, 86 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ord20, x -> x in PowerMap( t2, 2 ) );</span>
[ false, true, true ]
</pre></div>
<p>Changing the viewpoint, we see that for each class of element order <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span>, there is a group of the type <span class="SimpleMath">\(S.2_1\)</span> in which the elements in this class do not have square roots, and there are groups of this type in which these elements have square roots. So we have to deal with two different cases, and we do this by first collecting the permutation characters induced from <em>all</em> maximal subgroups of <span class="SimpleMath">\(S.2_1\)</span> (other than <span class="SimpleMath">\(S\)</span>) that contain elements of order <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span>, and then considering <span class="SimpleMath">\(s\)</span> in each of these classes of <span class="SimpleMath">\(S\)</span>.</p>
<p>We fix an embedding of <span class="SimpleMath">\(S\)</span> into <span class="SimpleMath">\(S.2_1\)</span> in which the elements in the class <code class="code">20A</code> do not have square roots. This situation is given for the stored class fusion between the tables in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfust2:= GetFusionMap( t, t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfust2{ PositionsProperty( OrdersClassRepresentatives( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x = 20 ) };</span>
[ 84, 85, 86 ]
</pre></div>
<p>The six different actions of <span class="SimpleMath">\(S\)</span> on the cosets of <span class="SimpleMath">\(O_7(3)\)</span> type subgroups induce pairwise different permutation characters that form an orbit under the action of <span class="SimpleMath">\(Aut(S)\)</span>. Four of these characters cannot extend to <span class="SimpleMath">\(S.2_1\)</span>, the other two extend to permutation characters of <span class="SimpleMath">\(S.2_1\)</span> on the cosets of <span class="SimpleMath">\(O_7(3).2\)</span> type subgroups; these subgroups contain <code class="code">20A</code> elements.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">primt2:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossiblePermutationCharacters( CharacterTable( "O7(3)" ), t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invfus:= InverseMap( tfust2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( poss, pi -> ForAll( CompositionMaps( pi, invfus ), IsInt ) );</span>
[ false, false, false, false, true, true ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PossiblePermutationCharacters(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "O7(3)" ) * CharacterTable( "Cyclic", 2 ), t2 );</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= PossiblePermutationCharacters( CharacterTable( "O7(3).2" ), t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ext, pi -> pi{ ord20 } );</span>
[ [ 1, 0, 0 ], [ 1, 0, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>
<p>The novelties in <span class="SimpleMath">\(S.2_1\)</span> that arise from <span class="SimpleMath">\(O_7(3)\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> have the structure <span class="SimpleMath">\(L_4(3).2^2\)</span>. These subgroups contain elements in the classes <code class="code">20B</code> and <code class="code">20C</code> of <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= PossiblePermutationCharacters( CharacterTable( "L4(3).2^2" ), t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ext, pi -> pi{ ord20 } );</span>
[ [ 0, 0, 1 ], [ 0, 1, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>
<p>Note that from the possible permutation characters of <span class="SimpleMath">\(S.2_1\)</span> on the cosets of <span class="SimpleMath">\(L_4(3):2 \times 2\)</span> type subgroups, we see that such subgroups must contain <code class="code">20A</code> elements, i. e., all such subgroups of <span class="SimpleMath">\(S.2_1\)</span> lie inside <span class="SimpleMath">\(O_7(3).2\)</span> type subgroups. This means that the structure description of these novelties in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a> is not correct. The correct structure is <span class="SimpleMath">\(L_4(3).2^2\)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( PossiblePermutationCharacters( CharacterTable( "L4(3).2_2" ) *</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "Cyclic", 2 ), t2 ), pi -> pi{ ord20 } );</span>
[ [ 1, 0, 0 ] ]
</pre></div>
<p>All <span class="SimpleMath">\(3^6:L_4(3)\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> extend to <span class="SimpleMath">\(S.2_1\)</span>. We compute these permutation characters as the possible permutation characters of the right degree.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= PermChars( t2, rec( torso:= [ 1120 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ext, pi -> pi{ ord20 } );</span>
[ [ 2, 0, 0 ], [ 0, 0, 2 ], [ 0, 2, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>
<p>Also all <span class="SimpleMath">\(2.U_4(3).2^2\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> extend to <span class="SimpleMath">\(S.2_1\)</span>. We compute the permutation characters as the extensions of the corresponding permutation characters of <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( prim, x -> x[1] = 189540 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= List( filt, x -> CompositionMaps( x, invfus ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= Concatenation( List( cand,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pi -> PermChars( t2, rec( torso:= pi ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ext, x -> x{ ord20 } );</span>
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>
<p>The extensions of <span class="SimpleMath">\((A_4 \times U_4(2)):2\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> to <span class="SimpleMath">\(S.2_1\)</span> have the type <span class="SimpleMath">\(S_4 \times U_4(2):2\)</span>, they contain <code class="code">20A</code> elements.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= PossiblePermutationCharacters( CharacterTable( "Symmetric", 4 ) *</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "U4(2).2" ), t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ext, x -> x{ ord20 } );</span>
[ [ 1, 0, 0 ], [ 1, 0, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>
<p>All <span class="SimpleMath">\((A_6 \times A_6):2^2\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> extend to <span class="SimpleMath">\(S.2_1\)</span>. We compute the permutation characters as the extensions of the corresponding permutation characters of <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( prim, x -> x[1] = 9552816 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= List( filt, x -> CompositionMaps( x, InverseMap( tfust2 ) ));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= Concatenation( List( cand,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pi -> PermChars( t2, rec( torso:= pi ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ext, x -> x{ ord20 } );</span>
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>
<p>We have found all relevant permutation characters of <span class="SimpleMath">\(S.2_1\)</span>. This together with the list in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a> implies statement (g).</p>
<p>Now we compute the bounds <span class="SimpleMath">\(σ^{\prime}(S.2_1, s)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( primt2 );</span>
15
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= List( ord20, x -> ApproxP( primt2, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">outer:= Difference(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( approx, l -> Maximum( l{ outer } ) );</span>
[ 574/1215, 83/567, 83/567 ]
</pre></div>
<p>Next we look at <span class="SimpleMath">\(S.2_2\)</span>, an extension by an outer automorphism that acts as a transposition in the outer automorphism group <span class="SimpleMath">\(S_4\)</span>. Similar to the above situation, the symmetry between the three classes of element oder <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span> is broken also in <span class="SimpleMath">\(S.2_2\)</span>: The first is a conjugacy class of <span class="SimpleMath">\(S.2_2\)</span>, the other two classes are fused in <span class="SimpleMath">\(S.2_2\)</span>,</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "O8+(3).2_2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord20:= PositionsProperty( OrdersClassRepresentatives( t2 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x = 20 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord20:= Intersection( ord20, ClassPositionsOfDerivedSubgroup( t2 ) );</span>
[ 82, 83 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tfust2:= GetFusionMap( t, t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfust2{ PositionsProperty( OrdersClassRepresentatives( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x = 20 ) };</span>
[ 82, 83, 83 ]
</pre></div>
<p>Like in the case <span class="SimpleMath">\(S.2_1\)</span>, we compute the permutation characters induced from <em>all</em> maximal subgroups of <span class="SimpleMath">\(S.2_2\)</span> (other than <span class="SimpleMath">\(S\)</span>) that contain elements of order <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span>.</p>
<p>We fix the embedding of <span class="SimpleMath">\(S\)</span> into <span class="SimpleMath">\(S.2_2\)</span> in which the class <code class="code">20A</code> of <span class="SimpleMath">\(S\)</span> is a class of <span class="SimpleMath">\(S.2_2\)</span>. This situation is given for the stored class fusion between the tables in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<p>Exactly two classes of <span class="SimpleMath">\(O_7(3)\)</span> type subgroups in <span class="SimpleMath">\(S\)</span> extend to <span class="SimpleMath">\(S.2_2\)</span>, these groups contain <code class="code">20A</code> elements.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">primt2:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= PermChars( t2, rec( torso:= [ 1080 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ext, pi -> pi{ ord20 } );</span>
[ [ 1, 0 ], [ 1, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>
<p>Only one class of <span class="SimpleMath">\(3^6:L_4(3)\)</span> type subgroups extends to <span class="SimpleMath">\(S.2_2\)</span>. (Note that we need not consider the novelties of the type <span class="SimpleMath">\(3^{3+6}:(L_3(3) \times 2)\)</span>, because the order of these groups is not divisible by <span class="SimpleMath">\(5\)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= PermChars( t2, rec( torso:= [ 1120 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ext, pi -> pi{ ord20 } );</span>
[ [ 2, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>
<p>Only one class of <span class="SimpleMath">\(2.U_4(3).2^2\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> extends to <span class="SimpleMath">\(S.2_2\)</span>. We compute the permutation character as the extension of the corresponding permutation characters of <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( prim, x -> x[1] = 189540 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= List( filt, x -> CompositionMaps( x, InverseMap( tfust2 ) ));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= Concatenation( List( cand,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pi -> PermChars( t2, rec( torso:= pi ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ext, x -> x{ ord20 } );</span>
[ [ 1, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>
<p>Two classes of <span class="SimpleMath">\((A_4 \times U_4(2)):2\)</span> type subgroups of <span class="SimpleMath">\(S\)</span> extend to <span class="SimpleMath">\(S.2_2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( prim, x -> x[1] = 7960680 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= List( filt, x -> CompositionMaps( x, InverseMap( tfust2 ) ));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= Concatenation( List( cand,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pi -> PermChars( t2, rec( torso:= pi ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ext, x -> x{ ord20 } );</span>
[ [ 1, 0 ], [ 1, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>
<p>Exactly one class of <span class="SimpleMath">\((A_6 \times A_6):2^2\)</span> type subgroups in <span class="SimpleMath">\(S\)</span> extends to <span class="SimpleMath">\(S.2_2\)</span>, and the extensions have the structure <span class="SimpleMath">\(S_6 \wr 2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= PossiblePermutationCharacters( CharacterTableWreathSymmetric(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "S6" ), 2 ), t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ext, x -> x{ ord20 } );</span>
[ [ 1, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( primt2, ext );</span>
</pre></div>
<p>We have found all relevant permutation characters of <span class="SimpleMath">\(S.2_2\)</span>, and compute the bounds <span class="SimpleMath">\(σ^{\prime}(S.2_2, s)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( primt2 );</span>
7
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= List( ord20, x -> ApproxP( primt2, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">outer:= Difference(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( approx, l -> Maximum( l{ outer } ) );</span>
[ 14/9, 0 ]
</pre></div>
<p>This means that there is an extension of the type <span class="SimpleMath">\(S.2_2\)</span> in which <span class="SimpleMath">\(s\)</span> cannot be chosen such that the bound is less than <span class="SimpleMath">\(1/2\)</span>. More precisely, we have <span class="SimpleMath">\(σ(g,s) \geq 1/2\)</span> exactly for <span class="SimpleMath">\(g\)</span> in the unique outer involution class of size <span class="SimpleMath">\(1\,080\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( primt2, ord20[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bad:= Filtered( outer, i -> approx[i] >= 1/2 );</span>
[ 84 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t2 ){ bad };</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesConjugacyClasses( t2 ){ bad };</span>
[ 1080 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Number( SizesConjugacyClasses( t2 ), x -> x = 1080 );</span>
1
</pre></div>
<p>So we compute the proportion of elements in this class that generate <span class="SimpleMath">\(S.2_2\)</span> together with an element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span>. (As above, we have to consider two conjugacy classes.) For that, we first compute a permutation representation of <span class="SimpleMath">\(S.2_2\)</span>, using that <span class="SimpleMath">\(S.2_2\)</span> is isomporphic to the two subgroups of index <span class="SimpleMath">\(2\)</span> in <span class="SimpleMath">\(PGO^+(8,3) = O_8^+(3).2^2_{122}\)</span> that are different from <span class="SimpleMath">\(PSO^+(8,3) = O_8^+(3).2_1\)</span>, cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">go:= GO(1,8,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">so:= SO(1,8,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">outerelm:= First( GeneratorsOfGroup( go ), x -> not x in so );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g2:= ClosureGroup( DerivedSubgroup( so ), outerelm );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( g2 );</span>
19808719257600
<span class="GAPprompt">gap></span> <span class="GAPinput">dom:= NormedRowVectors( GF(3)^8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( g2, dom, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 1080, 1080, 1120 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">act:= Action( g2, orbs[1], OnLines );;</span>
</pre></div>
<p>An involution <span class="SimpleMath">\(g\)</span> can be found as a power of one of the given generators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Order( outerelm );</span>
26
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Permutation( outerelm^13, orbs[1], OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( ConjugacyClass( act, g ) );</span>
1080
</pre></div>
<p>Now we find the candidates for the elements <span class="SimpleMath">\(s\)</span>, and compute their ratios of nongeneration.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord20;</span>
[ 82, 83 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesCentralizers( t2 ){ ord20 };</span>
[ 40, 20 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">der:= DerivedSubgroup( act );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat 20A:= Random( der );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( 20A ) = 20 and Size( Centralizer( act, 20A ) ) = 40;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( act, g, 20A );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat 20BC:= Random( der );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( 20BC ) = 20 and Size( Centralizer( act, 20BC ) ) = 20;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( act, g, 20BC );</span>
0
</pre></div>
<p>This means that for <span class="SimpleMath">\(s\)</span> in one <span class="SimpleMath">\(S\)</span>-class of elements of order <span class="SimpleMath">\(20\)</span>, we have <span class="SimpleMath">\(P^{\prime}(g, s) = 1\)</span>, and <span class="SimpleMath">\(s\)</span> in the other two <span class="SimpleMath">\(S\)</span>-classes of elements of order <span class="SimpleMath">\(20\)</span> generates with any conjugate of <span class="SimpleMath">\(g\)</span>.</p>
<p>Concerning <span class="SimpleMath">\(S.2_2\)</span>, it remains to show that we cannot find a better element than <span class="SimpleMath">\(s\)</span>. For that, we first compute class representatives <span class="SimpleMath">\(s^{\prime}\)</span> in <span class="SimpleMath">\(S\)</span>, w.r.t. conjugacy in <span class="SimpleMath">\(S.2_2\)</span>, and then compute <span class="SimpleMath">\(P^{\prime}( s^{\prime}, g )\)</span>. (It would be enough to check representatives of classes of maximal element order, but computing all classes is easy enough.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= ConjugacyClasses( act );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">der:= DerivedSubgroup( act );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= Filtered( List( ccl, Representative ), x -> x in der );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( reps );</span>
83
<span class="GAPprompt">gap></span> <span class="GAPinput">ratios:= List( reps,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s -> RatioOfNongenerationTransPermGroup( act, g, s ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PositionsProperty( ratios, x -> x < 1 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ratios:= ratios{ cand };;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortParallel( ratios, cand );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ratios;</span>
[ 0, 1/10, 1/10, 16/135, 1/3, 1/3, 11/27, 7/15, 7/15 ]
</pre></div>
<p>For <span class="SimpleMath">\(S.2_2\)</span>, it remains to show that there is no element <span class="SimpleMath">\(s^{\prime} \in S\)</span> such that <span class="SimpleMath">\(P^{\prime}( {s^{\prime}}^x, g ) < 1\)</span> holds for any <span class="SimpleMath">\(x \in Aut(S)\)</span> and <span class="SimpleMath">\(g \in S.2_2\)</span>. So we are done when we can show that each class given by <code class="code">cand</code> is conjugate in <span class="SimpleMath">\(S.3\)</span> to a class outside <code class="code">cand</code>. The classes can be identified by element orders and centralizer orders.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">invs:= List( cand,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> [ Order( reps[x] ), Size( Centralizer( der, reps[x] ) ) ] );</span>
[ [ 20, 20 ], [ 18, 108 ], [ 18, 108 ], [ 14, 28 ], [ 15, 45 ],
[ 15, 45 ], [ 10, 40 ], [ 12, 72 ], [ 12, 72 ] ]
</pre></div>
<p>Namely, <code class="code">cand</code> contains no full <span class="SimpleMath">\(S.3\)</span>-orbit of classes of the element orders <span class="SimpleMath">\(20\)</span>, <span class="SimpleMath">\(18\)</span>, <span class="SimpleMath">\(14\)</span>, <span class="SimpleMath">\(15\)</span>, and <span class="SimpleMath">\(10\)</span>; also, <code class="code">cand</code> does not contain full <span class="SimpleMath">\(S.3\)</span>-orbits on the classes <code class="code">12O</code>–<code class="code">12T</code>.</p>
<p>Finally, we deal with <span class="SimpleMath">\(S.3\)</span>. The fact that no maximal subgroup of <span class="SimpleMath">\(S\)</span> containing an element of order <span class="SimpleMath">\(20\)</span> extends to <span class="SimpleMath">\(S.3\)</span> follows either from the list of maximal subgroups of <span class="SimpleMath">\(S\)</span> in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a> or directly from the permutation characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t3:= CharacterTable( "O8+(3).3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfust3:= GetFusionMap( t, t3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= InverseMap( tfust3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= PositionsProperty( prim, x -> x[ spos ] <> 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( prim{ filt },</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pi -> ForAny( CompositionMaps( pi, inv ), IsList ) );</span>
true
</pre></div>
<p>So we have to consider only the classes of novelties in <span class="SimpleMath">\(S.3\)</span>, but the order of none of these groups is divisible by <span class="SimpleMath">\(20\)</span> –again see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a>). This means that <em>any</em> element in <span class="SimpleMath">\(S.3 \setminus S\)</span> together with an element of order <span class="SimpleMath">\(20\)</span> in <span class="SimpleMath">\(S\)</span> generates <span class="SimpleMath">\(S.3\)</span>. This is in fact stronger than statement (f), which claims this property only for elements of prime order in <span class="SimpleMath">\(S.3 \setminus S\)</span> (and their roots); note that <span class="SimpleMath">\(S.3 \setminus S\)</span> contains elements of the orders <span class="SimpleMath">\(9\)</span> and <span class="SimpleMath">\(27\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">outer:= Difference( [ 1 .. NrConjugacyClasses( t3 ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t3 ) );</span>
[ 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( OrdersClassRepresentatives( t3 ){ outer } );</span>
[ 3, 6, 9, 12, 18, 21, 24, 27, 36, 39 ]
</pre></div>
<p>Before we turn to the next computations, we clean the workspace.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>
<p><a id="X85BACC4A83F73392" name="X85BACC4A83F73392"></a></p>
<h5>11.5-14 <span class="Heading"><span class="SimpleMath">\(O^+_8(4)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = O^+_8(4) = \Omega^+(8,4)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For suitable <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(2^- \perp 6^-\)</span> (i. e., <span class="SimpleMath">\(s\)</span> decomposes the natural <span class="SimpleMath">\(8\)</span>-dimensional module for <span class="SimpleMath">\(S\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(2\)</span> and <span class="SimpleMath">\(6\)</span>, respectively) and of order <span class="SimpleMath">\(65\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of exactly three pairwise nonconjugate subgroups of the type <span class="SimpleMath">\((5 \times O^-_6(4)).2 = (5 \times \Omega^-(6,4)).2\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ( S, s ) \leq 34\,817 / 1\,645\,056\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>In the extensions <span class="SimpleMath">\(S.2_1\)</span> and <span class="SimpleMath">\(S.3\)</span> of <span class="SimpleMath">\(S\)</span> by graph automorphisms, there is at most one maximal subgroup besides <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(s\)</span>. For the extension <span class="SimpleMath">\(S.2_2\)</span> of <span class="SimpleMath">\(S\)</span> by a field automorphism, we have <span class="SimpleMath">\(σ^{\prime}(S.2_2, s) = 0\)</span>. In the extension <span class="SimpleMath">\(S.2_3\)</span> of <span class="SimpleMath">\(S\)</span> by the product of an involutory graph automorphism and a field automorphism, there is a unique maximal subgroup besides <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(s\)</span>.</p>
</dd>
</dl>
<p>A safe source for determining <span class="SimpleMath">\(𝕄(S,s)\)</span> is <a href="chapBib_mj.html#biBKle87">[Kle87]</a>. By inspection of the result matrix in this paper, we get that the only maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain elements of order <span class="SimpleMath">\(65\)</span> occur in the rows 9–14 and 23–25; they have the isomorphism types <span class="SimpleMath">\(S_6(4) = Sp(6,4) \cong O_7(4) = \Omega(7,4)\)</span> and <span class="SimpleMath">\((5 \times O_6^-(4)).2 = (5 \times \Omega^-(6,4)).2\)</span>, respectively, and for each of these, there are three conjugacy classes of subgroups in <span class="SimpleMath">\(S\)</span>, which are conjugate under the triality graph automorphism of <span class="SimpleMath">\(S\)</span>.</p>
<p>We start with the natural matrix representation of <span class="SimpleMath">\(S\)</span>. For convenience, we compute an isomorphic permutation group on <span class="SimpleMath">\(5\,525\)</span> points.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">q:= 4;; n:= 8;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= DerivedSubgroup( SO( 1, n, q ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">points:= NormedRowVectors( GF(q)^n );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( G, points, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 5525, 16320 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:= ActionHomomorphism( G, orbs[1], OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= Image( hom );;</span>
</pre></div>
<p>The group <span class="SimpleMath">\(S\)</span> contains exactly six conjugacy classes of (cyclic) subgroups of order <span class="SimpleMath">\(65\)</span>; this follows from the fact that the centralizer of any Sylow <span class="SimpleMath">\(13\)</span> subgroup in <span class="SimpleMath">\(S\)</span> has the structure <span class="SimpleMath">\(5 \times 5 \times 13\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Collected( Factors( Size( G ) ) );</span>
[ [ 2, 24 ], [ 3, 5 ], [ 5, 4 ], [ 7, 1 ], [ 13, 1 ], [ 17, 2 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( G );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) mod 13 = 0;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= x^( Order( x ) / 13 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:= Centralizer( G, x );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsAbelian( c ); AbelianInvariants( c );</span>
true
[ 5, 5, 13 ]
</pre></div>
<p>The group <span class="SimpleMath">\(S_6(4)\)</span> contains exactly one class of subgroups of order <span class="SimpleMath">\(65\)</span>, since the conjugacy classes of elements of order <span class="SimpleMath">\(65\)</span> in <span class="SimpleMath">\(S_6(4)\)</span> are algebraically conjugate.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "S6(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord65:= PositionsProperty( OrdersClassRepresentatives( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x = 65 );</span>
[ 105, 106, 107, 108, 109, 110, 111, 112 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ord65 = ClassOrbit( t, ord65[1] );</span>
true
</pre></div>
<p>Thus there are at least three classes of order <span class="SimpleMath">\(65\)</span> elements in <span class="SimpleMath">\(S\)</span> that are <em>not</em> contained in <span class="SimpleMath">\(S_6(4)\)</span> type subgroups of <span class="SimpleMath">\(S\)</span>. So we choose such an element <span class="SimpleMath">\(s\)</span>, and have to consider only overgroups of the type <span class="SimpleMath">\((5 \times \Omega^-(6,4)).2\)</span>.</p>
<p>The group <span class="SimpleMath">\(\Omega^-(6,4) \cong U_4(4)\)</span> contains exactly one class of subgroups of order <span class="SimpleMath">\(65\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "U4(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ords:= OrdersClassRepresentatives( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord65:= PositionsProperty( ords, x -> x = 65 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord65 = ClassOrbit( t, ord65[1] );</span>
true
</pre></div>
<p>So <span class="SimpleMath">\(5 \times \Omega^-(6,4)\)</span> contains exactly six such classes. Furthermore, subgroups in different classes are not <span class="SimpleMath">\(S\)</span>-conjugate.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">syl5:= SylowSubgroup( c, 5 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= Filtered( Elements( syl5 ), y -> Order( y ) = 5 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= Set( elms, SmallestGeneratorPerm );; Length( reps );</span>
6
<span class="GAPprompt">gap></span> <span class="GAPinput">reps65:= List( reps, y -> SubgroupNC( G, [ y * x ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pairs:= Combinations( reps65, 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAny( pairs, p -> IsConjugate( G, p[1], p[2] ) );</span>
false
</pre></div>
<p>We consider only subgroups <span class="SimpleMath">\(M \leq S\)</span> in the three <span class="SimpleMath">\(S\)</span>-classes of the type <span class="SimpleMath">\((5 \times \Omega^-(6,4)).2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= List( reps, y -> Normalizer( G, SubgroupNC( G, [ y ] ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= Filtered( cand, y -> Size( y ) = 10 * Size( t ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( cand );</span>
3
</pre></div>
<p>(Note that one of the members in <span class="SimpleMath">\(𝕄(S,s)\)</span> is the stabilizer in <span class="SimpleMath">\(S\)</span> of the orthogonal decomposition <span class="SimpleMath">\(2^- \perp 6^-\)</span>, the other two members are not reducible.)</p>
<p>By the above, the classes of subgroups of order <span class="SimpleMath">\(65\)</span> in each such <span class="SimpleMath">\(M\)</span> are in bijection with the corresponding classes in <span class="SimpleMath">\(S\)</span>. Since <span class="SimpleMath">\(N_S(\langle g \rangle) \subseteq M\)</span> holds for any <span class="SimpleMath">\(g \in M\)</span> of order <span class="SimpleMath">\(65\)</span>, also the conjugacy classes of <em>elements</em> of order <span class="SimpleMath">\(65\)</span> in <span class="SimpleMath">\(M\)</span> are in bijection with those in <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">norms:= List( reps65, y -> Normalizer( G, y ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( norms, y -> ForAll( cand, M -> IsSubset( M, y ) ) );</span>
true
</pre></div>
<p>As a consequence, we have <span class="SimpleMath">\(g^S \cap M = g^M\)</span> and thus <span class="SimpleMath">\(1_M^S(g) = 1\)</span>. This implies statement (a).</p>
<p>In order to show statement (b), we want to use the function <code class="code">UpperBoundFixedPointRatios</code> introduced in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>. For that, we first compute the conjugacy classes of the three class representatives <span class="SimpleMath">\(M\)</span>. (Since the groups have elementary abelian Sylow <span class="SimpleMath">\(5\)</span> subgroups of the order <span class="SimpleMath">\(5^4\)</span>, computing all conjugacy classes appears to be faster than using <code class="code">ClassesOfPrimeOrder</code>.) Then we compute an upper bound for <span class="SimpleMath">\(σ(S,s)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">syl5:= SylowSubgroup( cand[1], 5 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( syl5 ); IsElementaryAbelian( syl5 );</span>
625
true
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperBoundFixedPointRatios( G, List( cand, ConjugacyClasses ), false );</span>
[ 34817/1645056, false ]
</pre></div>
<p><em>Remark:</em></p>
<p>Computing the exact value <span class="SimpleMath">\(σ(S,s)\)</span> in the above setup would require to test the <span class="SimpleMath">\(S\)</span>-conjugacy of certain order <span class="SimpleMath">\(5\)</span> elements in <span class="SimpleMath">\(M\)</span>. With the current <strong class="pkg">GAP</strong> implementation, some of the relevant tests need several hours of CPU time.</p>
<p>An alternative approach would be to compute the permutation action of <span class="SimpleMath">\(S\)</span> on the cosets of <span class="SimpleMath">\(M\)</span>, of degree <span class="SimpleMath">\(6\,580\,224\)</span>, and to count the fixed points of conjugacy class representatives of prime order. The currently available <strong class="pkg">GAP</strong> library methods are not sufficient for computing this in reasonable time. "Ad-hoc code" for this special case works, but it seemed to be not appropriate to include it here.</p>
<p>In the proof of statement (c), again we consult the result matrix in <a href="chapBib_mj.html#biBKle87">[Kle87]</a>. For <span class="SimpleMath">\(S.3\)</span>, the maximal subgroups are in the rows <span class="SimpleMath">\(4\)</span>, <span class="SimpleMath">\(15\)</span>, <span class="SimpleMath">\(22\)</span>, <span class="SimpleMath">\(26\)</span>, and <span class="SimpleMath">\(61\)</span>. Only row <span class="SimpleMath">\(26\)</span> yields subgroups that contain elements <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(65\)</span>, they have the isomorphism type <span class="SimpleMath">\((5 \times GU(3,4)).2 \cong (5^2 \times U_3(4)).2\)</span>. Note that the conjugacy classes of the members in <span class="SimpleMath">\(𝕄(S,s)\)</span> are permuted by the outer automorphism of order <span class="SimpleMath">\(3\)</span>, so none of the subgroups in <span class="SimpleMath">\(𝕄(S,s)\)</span> extends to <span class="SimpleMath">\(S.3\)</span>. By <a href="chapBib_mj.html#biBBGK">[BGK08, Lemma 2.4 (2)]</a>, if there is a maximal subgroup of <span class="SimpleMath">\(S.3\)</span> besides <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(s\)</span> then this subgroup is the normalizer in <span class="SimpleMath">\(S.3\)</span> of the intersection of the three members of <span class="SimpleMath">\(𝕄(S,s)\)</span>, i. e., <span class="SimpleMath">\(s\)</span> is contained in at most one such subgroup.</p>
<p>For <span class="SimpleMath">\(S.2_1\)</span>, only the rows <span class="SimpleMath">\(9\)</span> and <span class="SimpleMath">\(23\)</span> yield maximal subgroups containing elements of order <span class="SimpleMath">\(65\)</span>, and since we had chosen <span class="SimpleMath">\(s\)</span> in such a way that row <span class="SimpleMath">\(9\)</span> was excluded already for the simple group, only extensions of the elements in <span class="SimpleMath">\(𝕄(S,s)\)</span> can appear. Exactly one of these three subgroups of <span class="SimpleMath">\(S\)</span> extends to <span class="SimpleMath">\(S.2_1\)</span>, so again we get just one maximal subgroup of <span class="SimpleMath">\(S.2_1\)</span>, besides <span class="SimpleMath">\(S\)</span>, that contains <span class="SimpleMath">\(s\)</span>.</p>
<p>All subgroups in <span class="SimpleMath">\(𝕄(S,s)\)</span> extend to <span class="SimpleMath">\(S.2_2\)</span>, see <a href="chapBib_mj.html#biBKle87">[Kle87]</a>. We compute the extensions of the above subgroups <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(S\)</span> to <span class="SimpleMath">\(S.2_2\)</span>, by constructing the action of the field automorphism in the permutation representation we used for <span class="SimpleMath">\(S\)</span>. In other words, we compute the projective action of the Frobenius map.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">frob:= PermList( List( orbs[1], v -> Position( orbs[1],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> List( v, x -> x^2 ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G2:= ClosureGroupDefault( G, frob );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand2:= List( cand, M -> Normalizer( G2, M ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= List( cand2,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> M2 -> PcConjugacyClassReps( SylowSubgroup( M2, 2 ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ccl, l -> Number( l, x -> Order( x ) = 2 and not x in G ) );</span>
[ 0, 0, 0 ]
</pre></div>
<p>So in each case, the extension of <span class="SimpleMath">\(M\)</span> to its normalizer in <span class="SimpleMath">\(S.2_2\)</span> is non-split. This implies <span class="SimpleMath">\(σ^{\prime}(S.2_2,s) = 0\)</span>.</p>
<p>Finally, in the extension of <span class="SimpleMath">\(S\)</span> by the product of a graph automorphism and the field automorphism, exactly that member of <span class="SimpleMath">\(𝕄(S,s)\)</span> is invariant that is invariant under the graph automorphism, hence statement (c) holds.</p>
<p>It is again time to clean the workspace.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>
<p><a id="X86EC26F78609618E" name="X86EC26F78609618E"></a></p>
<h5>11.5-15 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(O_9(3)\)</span></span></h5>
<p>The group <span class="SimpleMath">\(S = O_9(3) = \Omega_9(3)\)</span> is the first member in the series dealt with in <a href="chapBib_mj.html#biBBGK">[BGK08, Proposition 5.7]</a>, and serves as an example to illustrate this statement.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(1 \perp 8^-\)</span> (i. e., <span class="SimpleMath">\(s\)</span> decomposes the natural <span class="SimpleMath">\(9\)</span>-dimensional module for <span class="SimpleMath">\(S\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(1\)</span> and <span class="SimpleMath">\(8\)</span>, respectively) and of order <span class="SimpleMath">\((3^4 + 1)/2 = 41\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(O_8^-(3).2_1 = PGO^-(8,3)\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/3\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(41\)</span>.</p>
</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBMSW94">[MSW94]</a>, the only maximal subgroup of <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(s\)</span> is the stabilizer <span class="SimpleMath">\(M\)</span> of the orthogonal decomposition. The group <span class="SimpleMath">\(2 \times O_8^-(3).2_1 = GO^-(8,3)\)</span> embeds naturally into <span class="SimpleMath">\(SO(9,3)\)</span>, its intersection with <span class="SimpleMath">\(S\)</span> is <span class="SimpleMath">\(PGO^-(8,3)\)</span>. This proves statement (a).</p>
<p>The group <span class="SimpleMath">\(M\)</span> is the stabilizer of a <span class="SimpleMath">\(1\)</span>-space, it has index <span class="SimpleMath">\(3\,240\)</span> in <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= SO( 9, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= DerivedSubgroup( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( g );</span>
65784756654489600
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( g, NormedRowVectors( GF(3)^9 ), OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length ) / 41;</span>
[ 3240/41, 81, 80 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( SO( 9, 3 ) ) / Size( GO( -1, 8, 3 ) );</span>
3240
</pre></div>
<p>So we compute the unique transitive permutation character of <span class="SimpleMath">\(S\)</span> that has degree <span class="SimpleMath">\(3\,240\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "O9(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermChars( t, rec( torso:= [ 3240 ] ) );</span>
[ Character( CharacterTable( "O9(3)" ),
[ 3240, 1080, 380, 132, 48, 324, 378, 351, 0, 0, 54, 27, 54, 27, 0,
118, 0, 36, 46, 18, 12, 2, 8, 45, 0, 108, 108, 135, 126, 0, 0,
56, 0, 0, 36, 47, 38, 27, 39, 36, 24, 12, 18, 18, 15, 24, 2,
18, 15, 9, 0, 0, 0, 2, 0, 18, 11, 3, 9, 6, 6, 9, 6, 3, 6, 3, 0,
6, 16, 0, 4, 6, 2, 45, 36, 0, 0, 0, 0, 0, 0, 0, 9, 9, 6, 3, 0,
0, 15, 13, 0, 5, 7, 36, 0, 10, 0, 10, 19, 6, 15, 0, 0, 0, 0,
12, 3, 10, 0, 3, 3, 7, 0, 6, 6, 2, 8, 0, 4, 0, 2, 0, 1, 3, 0,
0, 3, 0, 3, 2, 2, 3, 3, 6, 2, 2, 9, 6, 3, 0, 0, 18, 9, 0, 0,
12, 0, 0, 8, 0, 6, 9, 5, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 2, 1,
3, 3, 1, 0, 0, 4, 1, 0, 0, 1, 0, 3, 3, 1, 1, 2, 2, 0, 0, 1, 3,
4, 0, 1, 2, 0, 0, 1, 0, 4, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1, 1, 1, 1, 0, 0, 1, 1, 1, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 41 );</span>
208
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( pi, spos );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( approx );</span>
1/3
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( approx, x -> x = 1/3 );</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesConjugacyClasses( t )[2];</span>
3321
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t )[2];</span>
2
</pre></div>
<p>We see that <span class="SimpleMath">\(P( S, s ) = σ( S, s ) = 1/3\)</span> holds, and that <span class="SimpleMath">\(σ( g, s )\)</span> attains this maximum only for <span class="SimpleMath">\(g\)</span> in one class of involutions in <span class="SimpleMath">\(S\)</span>; let us call this class <code class="code">2A</code>. (This class consists of the negatives of a class of <em>reflections</em> in <span class="SimpleMath">\(GO(9,3)\)</span>.) This shows statement (b).</p>
<p>In order to show that the uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, it suffices to show that for each triple of <code class="code">2A</code> elements, there is an element <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(41\)</span> in <span class="SimpleMath">\(S\)</span> that generates <span class="SimpleMath">\(S\)</span> with each element of the triple.</p>
<p>We work with the primitive permutation representation of <span class="SimpleMath">\(S\)</span> on <span class="SimpleMath">\(3\,240\)</span> points. In this representation, <span class="SimpleMath">\(s\)</span> fixes exactly one point, and by statement (a), <span class="SimpleMath">\(s\)</span> generates <span class="SimpleMath">\(S\)</span> with <span class="SimpleMath">\(x \in S\)</span> if and only if <span class="SimpleMath">\(x\)</span> moves this point. Since the number of fixed points of each <code class="code">2A</code> involution in <span class="SimpleMath">\(S\)</span> is exactly one third of the moved points of <span class="SimpleMath">\(S\)</span>, it suffices to show that we cannot choose three such involutions with mutually disjoint fixed point sets. And this is shown particularly easily because it will turn out that already for any two different <code class="code">2A</code> involutions, the sets of fixed points of are never disjoint.</p>
<p>First we compute a <code class="code">2A</code> element, which is determined as an involution with exactly <span class="SimpleMath">\(1\,080\)</span> fixed points.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Action( g, orbs[1], OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> repeat x:= Random( g ); ord:= Order( x ); until ord mod 2 = 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> y:= x^(ord/2);</span>
<span class="GAPprompt">></span> <span class="GAPinput">until NrMovedPoints( y ) = 3240 - 1080;</span>
</pre></div>
<p>Next we compute the sets of fixed points of the elements in the class <code class="code">2A</code>, by forming the <span class="SimpleMath">\(S\)</span>-orbit of the set of fixed points of the chosen <code class="code">2A</code> element.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fp:= Difference( MovedPoints( g ), MovedPoints( y ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, fp, OnSets );;</span>
</pre></div>
<p>Finally, we show that for any pair of <code class="code">2A</code> elements, their sets of fixed points intersect nontrivially. (Of course we can fix one of the two elements.) This proves statement (c).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAny( orb, l -> IsEmpty( Intersection( l, fp ) ) );</span>
false
</pre></div>
<p><a id="X8393978A8773997E" name="X8393978A8773997E"></a></p>
<h5>11.5-16 <span class="Heading"><span class="SimpleMath">\(O_{10}^-(3)\)</span></span></h5>
<p>We show that the group <span class="SimpleMath">\(S = O_{10}^-(3) = PΩ^-(10,3)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\((3^5 + 1)/4 = 61\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one subgroup of the type <span class="SimpleMath">\(SU(5,3) \cong U_5(3)\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/1\,066\)</span>.</p>
</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, the maximal subgroups of <span class="SimpleMath">\(S\)</span> containing <span class="SimpleMath">\(s\)</span> are of extension field type, and by <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.18 and 4.3.20]</a>, these groups have the structure <span class="SimpleMath">\(SU(5,3) = U_5(3)\)</span> (which lift to <span class="SimpleMath">\(2 \times U_5(3) < GU(5,3)\)</span> in <span class="SimpleMath">\(\Omega^-(10,3) = 2.S\)</span>) or <span class="SimpleMath">\(\Omega(5,9).2\)</span>, but the order of the latter group is not divisible by <span class="SimpleMath">\(|s|\)</span>. Furthermore, by <a href="chapBib_mj.html#biBBGK">[BGK08, Lemma 2.12 (b)]</a>, <span class="SimpleMath">\(s\)</span> is contained in only one member of the former class.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( GO(5,9) ) / 61;</span>
6886425600/61
</pre></div>
<p><em>When the first version of these computations was written, the character tables of both <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(U_5(3)\)</span> were not contained in the <strong class="pkg">GAP</strong> Character Table Library, so we worked with the groups. Meanwhile the character tables are available, thus we can show also a character theoretic solution.)</em></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "O10-(3)" ); s:= CharacterTable( "U5(3)" );</span>
CharacterTable( "O10-(3)" )
CharacterTable( "U5(3)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">SigmaFromMaxes( t, "61A", [ s ], [ 1 ] );</span>
1/1066
</pre></div>
<p><em>(Now follow the computations with groups.)</em></p>
<p>The first step is the construction of the embedding of <span class="SimpleMath">\(M = SU(5,3)\)</span> into the matrix group <span class="SimpleMath">\(2.S\)</span>, that is, we write the matrix generators of <span class="SimpleMath">\(M\)</span> as linear mappings on the natural module for <span class="SimpleMath">\(2.S\)</span>, and then conjugate them such that the result matrices respect the bilinear form of <span class="SimpleMath">\(2.S\)</span>. For convenience, we choose a basis for the field extension <span class="SimpleMath">\(𝔽_9/𝔽_3\)</span> such that the <span class="SimpleMath">\(𝔽_3\)</span>-linear mapping given by the invariant form of <span class="SimpleMath">\(M\)</span> is invariant under the <span class="SimpleMath">\(𝔽_3\)</span>-linear mappings given by the generators of <span class="SimpleMath">\(M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= SU(5,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">so:= SO(-1,10,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">omega:= DerivedSubgroup( so );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">om:= InvariantBilinearForm( so ).matrix;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( om );</span>
. 1 . . . . . . . .
1 . . . . . . . . .
. . 1 . . . . . . .
. . . 2 . . . . . .
. . . . 2 . . . . .
. . . . . 2 . . . .
. . . . . . 2 . . .
. . . . . . . 2 . .
. . . . . . . . 2 .
. . . . . . . . . 2
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= Basis( GF(9), [ Z(3)^0, Z(3^2)^2 ] );</span>
Basis( GF(3^2), [ Z(3)^0, Z(3^2)^2 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">blow:= List( GeneratorsOfGroup( m ), x -> BlownUpMat( b, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">form:= BlownUpMat( b, InvariantSesquilinearForm( m ).matrix );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( blow, x -> x * form * TransposedMat( x ) = form );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( form );</span>
. . . . . . . . 1 .
. . . . . . . . . 1
. . . . . . 1 . . .
. . . . . . . 1 . .
. . . . 1 . . . . .
. . . . . 1 . . . .
. . 1 . . . . . . .
. . . 1 . . . . . .
1 . . . . . . . . .
. 1 . . . . . . . .
</pre></div>
<p>The matrix <code class="code">om</code> of the invariant bilinear form of <span class="SimpleMath">\(2.S\)</span> is equivalent to the identity matrix <span class="SimpleMath">\(I\)</span>. So we compute matrices <code class="code">T1</code> and <code class="code">T2</code> that transform <code class="code">om</code> and <code class="code">form</code>, respectively, to <span class="SimpleMath">\(\pm I\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T1:= IdentityMat( 10, GF(3) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">T1{[1..3]}{[1..3]}:= [[1,1,0],[1,-1,1],[1,-1,-1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermutationMat( (1,10)(3,8), 10, GF(3) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr:= NullMat( 10,10,GF(3) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr{[1, 2]}{[1, 2]}:= [[1,1],[1,-1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr{[3, 4]}{[3, 4]}:= [[1,1],[1,-1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr{[7, 8]}{[7, 8]}:= [[1,1],[1,-1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr{[9,10]}{[9,10]}:= [[1,1],[1,-1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr{[5, 6]}{[5, 6]}:= [[1,0],[0,1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr2:= IdentityMat( 10,GF(3) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr2{[1,3]}{[1,3]}:= [[-1,1],[1,1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr2{[7,9]}{[7,9]}:= [[-1,1],[1,1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">T2:= tr2 * tr * pi;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:= T1^-1 * T2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblow:= List( blow, x -> D * x * D^-1 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubset( omega, tblow );</span>
true
</pre></div>
<p>Now we switch to a permutation representation of <span class="SimpleMath">\(S\)</span>, and use the embedding of <span class="SimpleMath">\(M\)</span> into <span class="SimpleMath">\(2.S\)</span> to obtain the corresponding subgroup of type <span class="SimpleMath">\(M\)</span> in <span class="SimpleMath">\(S\)</span>. Then we compute an upper bound for <span class="SimpleMath">\(\max\{ μ(g,S/M); g \in S^{\times} \}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( omega, NormedRowVectors( GF(3)^10 ), OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 9882, 9882, 9760 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">permgrp:= Action( omega, orbs[3], OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:= SubgroupNC( permgrp,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> List( tblow, x -> Permutation( x, orbs[3], OnLines ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= ClassesOfPrimeOrder( M, PrimeDivisors( Size( M ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> TrivialSubgroup( M ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperBoundFixedPointRatios( permgrp, [ ccl ], false );</span>
[ 1/1066, true ]
</pre></div>
<p>The entry <code class="keyw">true</code> in the second position of the result indicates that in fact the <em>exact</em> value for the maximum of <span class="SimpleMath">\(μ(g,S/M)\)</span> has been computed. This implies statement (b).</p>
<p>We clean the workspace.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>
<p><a id="X7BBBEEEF834F1002" name="X7BBBEEEF834F1002"></a></p>
<h5>11.5-17 <span class="Heading"><span class="SimpleMath">\(O_{14}^-(2)\)</span></span></h5>
<p>We show that the group <span class="SimpleMath">\(S = O_{14}^-(2) = \Omega^-(14,2)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\(2^7+1 = 129\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one subgroup <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(GU(7,2) \cong 3 \times U_7(2)\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 1/2\,015\)</span>.</p>
</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, any maximal subgroup of <span class="SimpleMath">\(S\)</span> containing <span class="SimpleMath">\(s\)</span> is of extension field type, and by <a href="chapBib_mj.html#biBKlL90">[KL90, Table 3.5.F, Prop. 4.3.18]</a>, these groups have the type <span class="SimpleMath">\(GU(7,2)\)</span>, and there is exactly one class of subgroups of this type. Furthermore, by <a href="chapBib_mj.html#biBBGK">[BGK08, Lemma 2.12 (a)]</a>, <span class="SimpleMath">\(s\)</span> is contained in only one member of this class.</p>
<p>We embed <span class="SimpleMath">\(U_7(2)\)</span> into <span class="SimpleMath">\(S\)</span>, by first replacing each element in <span class="SimpleMath">\(𝔽_4\)</span> by the <span class="SimpleMath">\(2 \times 2\)</span> matrix of the induced <span class="SimpleMath">\(𝔽_2\)</span>-linear mapping w.r.t. a suitable basis, and then conjugating the images of the generators such that the invariant quadratic form of <span class="SimpleMath">\(S\)</span> is respected.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">o:= SO(-1,14,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= SU(7,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= Basis( GF(4) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">blow:= List( GeneratorsOfGroup( g ), x -> BlownUpMat( b, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">form:= NullMat( 14, 14, GF(2) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 1 .. 14 ] do form[i][ 15-i ]:= Z(2); od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( blow, x -> x * form * TransposedMat( x ) = form );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermutationMat( (1,13)(3,11)(5,9), 14, GF(2) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi * form * TransposedMat( pi ) = InvariantBilinearForm( o ).matrix;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">pi2:= PermutationMat( (7,3)(8,4), 14, GF(2) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:= pi2 * pi;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblow:= List( blow, x -> D * x * D^-1 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubset( o, tblow );</span>
true
</pre></div>
<p>Note that the central subgroup of order three in <span class="SimpleMath">\(GU(7,2)\)</span> consists of scalar matrices.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">omega:= DerivedSubgroup( o );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubset( omega, tblow );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">z:= Z(4) * One( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tz:= D * BlownUpMat( b, z ) * D^-1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tz in omega;</span>
true
</pre></div>
<p>Now we switch to a permutation representation of <span class="SimpleMath">\(S\)</span>, and compute the conjugacy classes of prime element order in the subgroup <span class="SimpleMath">\(M\)</span>. The latter is done in two steps, first class representatives of the simple subgroup <span class="SimpleMath">\(U_7(2)\)</span> of <span class="SimpleMath">\(M\)</span> are computed, and then they are multiplied with the scalars in <span class="SimpleMath">\(M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( omega, NormedRowVectors( GF(2)^14 ), OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 8127, 8256 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">omega:= Action( omega, orbs[1], OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:= List( GeneratorsOfGroup( g ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Permutation( D * BlownUpMat( b, x ) * D^-1, orbs[1] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( gens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= ClassesOfPrimeOrder( g, PrimeDivisors( Size( g ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> TrivialSubgroup( g ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tz:= Permutation( tz, orbs[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">primereps:= List( ccl, Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Add( primereps, () );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= Concatenation( List( primereps,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> List( [ 0 .. 2 ], i -> x * tz^i ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">primereps:= Filtered( reps, x -> IsPrimeInt( Order( x ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( primereps );</span>
48
</pre></div>
<p>Finally, we apply <code class="code">UpperBoundFixedPointRatios</code> (see Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>) to compute an upper bound for <span class="SimpleMath">\(μ(g,S/M)\)</span>, for <span class="SimpleMath">\(g \in S^{\times}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:= ClosureGroup( g, tz );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bccl:= List( primereps, x -> ConjugacyClass( M, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperBoundFixedPointRatios( omega, [ bccl ], false );</span>
[ 1/2015, true ]
</pre></div>
<p>Although some of the classes of <span class="SimpleMath">\(M\)</span> in the list <code class="code">bccl</code> may be <span class="SimpleMath">\(S\)</span>-conjugate, the entry <code class="keyw">true</code> in the second position of the result indicates that in fact the <em>exact</em> value for the maximum of <span class="SimpleMath">\(μ(g,S/M)\)</span>, for <span class="SimpleMath">\(g \in S^{\times}\)</span>, has been computed. This implies statement (b).</p>
<p>We clean the workspace.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>
<p><a id="X8477457780B69BC7" name="X8477457780B69BC7"></a></p>
<h5>11.5-18 <span class="Heading"><span class="SimpleMath">\(O_{12}^+(3)\)</span></span></h5>
<p>We show that the group <span class="SimpleMath">\(S = O_{12}^+(3) = PΩ^+(12,3)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(S\)</span> has a maximal subgroup <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(N_S(PΩ^+(6,9))\)</span>, which has the structure <span class="SimpleMath">\(PΩ^+(6,9).[4]\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(μ(g,S/M) \leq 2/88\,209\)</span> holds for all <span class="SimpleMath">\(g \in S^{\times}\)</span>.</p>
</dd>
</dl>
<p>(This result is used in the proof of <a href="chapBib_mj.html#biBBGK">[BGK08, Proposition 5.14]</a>, where it is shown that for <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(205\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one reducible subgroup <span class="SimpleMath">\(G_8\)</span> and at most two extension field type subgroups of the type <span class="SimpleMath">\(N_S(PΩ^+(6,9))\)</span>. By <a href="chapBib_mj.html#biBGK">[GK00, Proposition 3.16]</a>, <span class="SimpleMath">\(μ(g,S/G_8) \leq 19/3^5\)</span> holds for all <span class="SimpleMath">\(g \in S^{\times}\)</span>. This implies <span class="SimpleMath">\(P(g,s) \leq 19/3^5 + 2 \cdot 2/88\,209 = 6\,901/88\,209 < 1/3\)</span>.)</p>
<p>Statement (a) follows from <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.14]</a>.</p>
<p>For statement (b), we embed <span class="SimpleMath">\(GO^+(6,9) \cong \Omega^+(6,9).2^2\)</span> into <span class="SimpleMath">\(SO^+(12,3) = 2.S.2\)</span>, by replacing each element in <span class="SimpleMath">\(𝔽_9\)</span> by the <span class="SimpleMath">\(2 \times 2\)</span> matrix of the induced <span class="SimpleMath">\(𝔽_3\)</span>-linear mapping w.r.t. a suitable basis <span class="SimpleMath">\((b_1, b_2)\)</span>. We choose a basis with the property <span class="SimpleMath">\(b_1 = 1\)</span> and <span class="SimpleMath">\(b_2^2 = 1 + b_2\)</span>, because then the image of a symmetric matrix is again symmetric (so the image of the invariant form is an invariant form for the image of the group), and apply an appropriate transformation to the images of the generators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">so:= SO(+1,12,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( InvariantBilinearForm( so ).matrix );</span>
. 1 . . . . . . . . . .
1 . . . . . . . . . . .
. . 1 . . . . . . . . .
. . . 2 . . . . . . . .
. . . . 2 . . . . . . .
. . . . . 2 . . . . . .
. . . . . . 2 . . . . .
. . . . . . . 2 . . . .
. . . . . . . . 2 . . .
. . . . . . . . . 2 . .
. . . . . . . . . . 2 .
. . . . . . . . . . . 2
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= GO(+1,6,9);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Z(9)^2 = Z(3)^0 + Z(9);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= Basis( GF(9), [ Z(3)^0, Z(9) ] );</span>
Basis( GF(3^2), [ Z(3)^0, Z(3^2) ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">blow:= List( GeneratorsOfGroup( g ), x -> BlownUpMat( b, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= BlownUpMat( b, InvariantBilinearForm( g ).matrix );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( m );</span>
. . 1 . . . . . . . . .
. . . 1 . . . . . . . .
1 . . . . . . . . . . .
. 1 . . . . . . . . . .
. . . . 2 . . . . . . .
. . . . . 2 . . . . . .
. . . . . . 2 . . . . .
. . . . . . . 2 . . . .
. . . . . . . . 2 . . .
. . . . . . . . . 2 . .
. . . . . . . . . . 2 .
. . . . . . . . . . . 2
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermutationMat( (2,3), 12, GF(3) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr:= IdentityMat( 12, GF(3) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr{[3,4]}{[3,4]}:= [[1,-1],[1,1]]*Z(3)^0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:= tr * pi;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D * m * TransposedMat( D ) = InvariantBilinearForm( so ).matrix;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">tblow:= List( blow, x -> D * x * D^-1 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubset( so, tblow );</span>
true
</pre></div>
<p>The image of <span class="SimpleMath">\(GO^+(6,9)\)</span> under the embedding into <span class="SimpleMath">\(SO^+(12,3)\)</span> does not lie in <span class="SimpleMath">\(\Omega^+(12,3) = 2.S\)</span>, so a factor of two is missing in <span class="SimpleMath">\(GO^+(6,9) \cap 2.S\)</span> for getting (the preimage <span class="SimpleMath">\(2.M\)</span> of) the required maximal subgroup <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(S\)</span>. Because of this, and also because currently it is time consuming to compute the derived subgroup of <span class="SimpleMath">\(SO^+(12,3)\)</span>, we work with the upward extension <span class="SimpleMath">\(PSO^+(12,3) = S.2\)</span>. Note that <span class="SimpleMath">\(M\)</span> extends to a maximal subgroup of <span class="SimpleMath">\(S.2\)</span>.</p>
<p>First we factor out the centre of <span class="SimpleMath">\(SO^+(12,3)\)</span>, and switch to a permutation representation of <span class="SimpleMath">\(S.2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( so, NormedRowVectors( GF(3)^12 ), OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 88452, 88452, 88816 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">act:= Action( so, orbs[1], OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetSize( act, Size( so ) / 2 );</span>
</pre></div>
<p>Next we rewrite the matrix generators for <span class="SimpleMath">\(GO^+(6,9)\)</span> accordingly, and compute the normalizer in <span class="SimpleMath">\(S.2\)</span> of the subgroup they generate; this is the maximal subgroup <span class="SimpleMath">\(M.2\)</span> we need.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= SubgroupNC( act,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> List( tblow, x -> Permutation( x, orbs[1], OnLines ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:= Normalizer( act, u );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( n ) / Size( u );</span>
2
</pre></div>
<p>Now we compute class representatives of prime order in <span class="SimpleMath">\(M.2\)</span>, in a smaller faithful permutation representation, and then the desired upper bound for <span class="SimpleMath">\(μ(g, S/M)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">norbs:= OrbitsDomain( n, MovedPoints( n ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( norbs, Length );</span>
[ 58968, 29484 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:= ActionHomomorphism( n, norbs[2] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nact:= Image( hom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( nact ) = Size( n );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= ClassesOfPrimeOrder( nact, PrimeDivisors( Size( nact ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> TrivialSubgroup( nact ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( ccl );</span>
26
<span class="GAPprompt">gap></span> <span class="GAPinput">preim:= List( ccl,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> PreImagesRepresentative( hom, Representative( x ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pccl:= List( preim, x -> ConjugacyClass( n, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 1 .. Length( pccl ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SetSize( pccl[i], Size( ccl[i] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperBoundFixedPointRatios( act, [ pccl ], false );</span>
[ 2/88209, true ]
</pre></div>
<p>Note that we have computed <span class="SimpleMath">\(\max\{ μ(g,S.2/M.2), g \in S.2^{\times} \} \geq \max\{ μ(g,S.2/M.2), g \in S^{\times} \} = \max\{ μ(g,S/M), g \in S^{\times} \}\)</span>.</p>
<p><a id="X854D85F287767342" name="X854D85F287767342"></a></p>
<h5>11.5-19 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(S_4(8)\)</span></span></h5>
<p>We show that the group <span class="SimpleMath">\(S = S_4(8) = Sp(4,8)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> irreducible of order <span class="SimpleMath">\(65\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two nonconjugate subgroups of the type <span class="SimpleMath">\(S_2(64).2 = Sp(2,64).2 \cong L_2(64).2 \cong O_4^-(8).2 = \Omega^-(4,8).2\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 8/63\)</span>.</p>
</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, the only maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain <span class="SimpleMath">\(s\)</span> are <span class="SimpleMath">\(O_4^-(8).2 = SO^-(4,8)\)</span> or of extension field type. By <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.10, 4.8.6]</a>, there is one class of each of these subgroups (which happen to be isomorphic).</p>
<p>These classes of subgroups induce different permutation characters. One argument to see this is that the involutions in the outer half of extension field type subgroup <span class="SimpleMath">\(S_2(64).2 < S_4(8)\)</span> have a two-dimensional fixed space, whereas the outer involutions in <span class="SimpleMath">\(SO^-(4,8)\)</span> have a three-dimensional fixed space.</p>
<p>The former statement can be seen by using a normal basis of the field extension <span class="SimpleMath">\(𝔽_{64}/𝔽_8\)</span>, such that the action of the Frobenius automorphism (which yields a suitable outer involution) is just a double transposition on the basis vectors of the natural module for <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sp:= SP(4,8);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( InvariantBilinearForm( sp ).matrix );</span>
. . . 1
. . 1 .
. 1 . .
1 . . .
<span class="GAPprompt">gap></span> <span class="GAPinput">z:= Z(64);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= AsField( GF(8), GF(64) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> b:= Basis( f, [ z, z^8 ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> z:= z * Z(64);</span>
<span class="GAPprompt">></span> <span class="GAPinput">until b <> fail;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sub:= SP(2,64);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( InvariantBilinearForm( sub ).matrix );</span>
. 1
1 .
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= Group( List( GeneratorsOfGroup( sub ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> BlownUpMat( b, x ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr:= PermutationMat( (3,4), 4, GF(2) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">conj:= ConjugateGroup( ext, tr );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubset( sp, conj );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] * Z(2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv in sp;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">inv in conj;</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( NullspaceMat( inv - inv^0 ) );</span>
2
</pre></div>
<p>The latter statement can be shown by looking at an outer involution in <span class="SimpleMath">\(SO^-(4,8)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">so:= SO(-1,4,8);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">der:= DerivedSubgroup( so );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= First( GeneratorsOfGroup( so ), x -> not x in der );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= x^( Order(x)/2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( NullspaceMat( x - x^0 ) );</span>
3
</pre></div>
<p>The character table of <span class="SimpleMath">\(L_2(64).2\)</span> is currently not available in the <strong class="pkg">GAP</strong> Character Table Library, so we compute the possible permutation characters with a combinatorial approach, and show statement (a).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CharacterTable( "L2(64).2" );</span>
fail
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "S4(8)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">degree:= Size( t ) / ( 2 * Size( SL(2,64) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermChars( t, rec( torso:= [ degree ] ) );</span>
[ Character( CharacterTable( "S4(8)" ),
[ 2016, 0, 256, 32, 0, 36, 0, 8, 1, 0, 4, 0, 0, 0, 28, 28, 28, 0,
0, 0, 0, 0, 0, 36, 36, 36, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0,
4, 4, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1 ] ), Character( CharacterTable( "S4(8)" ),
[ 2016, 256, 0, 32, 36, 0, 0, 8, 1, 4, 0, 28, 28, 28, 0, 0, 0, 0,
0, 0, 36, 36, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 4, 4, 4,
0, 0, 0, 4, 4, 4, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 65 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( pi, x -> x[ spos ] );</span>
[ 1, 1 ]
</pre></div>
<p>Now we compute <span class="SimpleMath">\(σ(S,s)\)</span>, which yields statement (b).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( ApproxP( pi, spos ) );</span>
8/63
</pre></div>
<p>We clean the workspace.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CleanWorkspace();</span>
</pre></div>
<p><a id="X82CFBAF07D3487A0" name="X82CFBAF07D3487A0"></a></p>
<h5>11.5-20 <span class="Heading"><span class="SimpleMath">\(S_6(2)\)</span></span></h5>
<p>We show that the group <span class="SimpleMath">\(S = S_6(2) = Sp(6,2)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 4/7\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(9\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one subgroup of the type <span class="SimpleMath">\(U_4(2).2 = \Omega^-(6,2).2\)</span> and three conjugate subgroups of the type <span class="SimpleMath">\(L_2(8).3 = Sp(2,8).3\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(9\)</span>, and <span class="SimpleMath">\(g \in S^{\times}\)</span>, we have <span class="SimpleMath">\(P(g,s) < 1/3\)</span>, except if <span class="SimpleMath">\(g\)</span> is in one of the classes <code class="code">2A</code> (the transvection class) or <code class="code">3A</code>.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(15\)</span>, and <span class="SimpleMath">\(g \in S^{\times}\)</span>, we have <span class="SimpleMath">\(P(g,s) < 1/3\)</span>, except if <span class="SimpleMath">\(g\)</span> is in one of the classes <code class="code">2A</code> or <code class="code">2B</code>.</p>
</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 11/21\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>.</p>
</dd>
<dt><strong class="Mark">(f)</strong></dt>
<dd><p>For all <span class="SimpleMath">\(s^{\prime} \in S\)</span>, we have <span class="SimpleMath">\(P(g,s^{\prime}) > 1/3\)</span> for <span class="SimpleMath">\(g\)</span> in at least two classes.</p>
</dd>
<dt><strong class="Mark">(g)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least two, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span>.</p>
</dd>
</dl>
<p>(Note that in this example, the optimal choice of <span class="SimpleMath">\(s\)</span> w.r.t. <span class="SimpleMath">\(σ(S,s)\)</span> is not optimal w.r.t. <span class="SimpleMath">\(P(S,s)\)</span>.)</p>
<p>Statement (a) follows from the inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "S6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "S6(2)", 4/7, 1, [ "9A" ], [ 4 ] ]
</pre></div>
<p>Also statement (b) follows from the information provided by the character table of <span class="SimpleMath">\(S\)</span> (cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 46]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord:= OrdersClassRepresentatives( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( ord, 9 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= PositionsProperty( prim, x -> x[ spos ] <> 0 );</span>
[ 1, 8 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Maxes( t ){ filt };</span>
[ "U4(2).2", "L2(8).3" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( prim{ filt }, x -> x[ spos ] );</span>
[ 1, 3 ]
</pre></div>
<p>Now we consider statement (c). For <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span> and <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code>, <code class="code">3A</code>, we observe that <span class="SimpleMath">\(P(g,s) = σ(g,s)\)</span> holds. This is because exactly one maximal subgroup of <span class="SimpleMath">\(S\)</span> contains both <span class="SimpleMath">\(s\)</span> and <span class="SimpleMath">\(g\)</span>. For all other elements <span class="SimpleMath">\(g\)</span>, we have even <span class="SimpleMath">\(σ(g,s) < 1/3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos9:= Position( ord, 9 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx9:= ApproxP( prim, spos9 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt9:= PositionsProperty( approx9, x -> x >= 1/3 );</span>
[ 2, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t ){ filt9 };</span>
[ "2A", "3A" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">approx9{ filt9 };</span>
[ 4/7, 5/14 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( Filtered( prim, x -> x[ spos9 ] <> 0 ), x -> x{ filt9 } );</span>
[ [ 16, 10 ], [ 0, 0 ] ]
</pre></div>
<p>Similarly, statement (d) follows. For <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span> and <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code>, <code class="code">2B</code>, already the degree <span class="SimpleMath">\(36\)</span> permutation character yields <span class="SimpleMath">\(P(g,s) \geq 1/3\)</span>. And for all other elements <span class="SimpleMath">\(g\)</span>, again we have <span class="SimpleMath">\(σ(g,s) < 1/3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos15:= Position( ord, 15 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx15:= ApproxP( prim, spos15 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt15:= PositionsProperty( approx15, x -> x >= 1/3 );</span>
[ 2, 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( ApproxP( prim{ [ 2 ] }, spos15 ), x -> x >= 1/3 );</span>
[ 2, 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t ){ filt15 };</span>
[ "2A", "2B" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">approx15{ filt15 };</span>
[ 46/63, 8/21 ]
</pre></div>
<p>For the remaining statements, we use explicit computations with <span class="SimpleMath">\(S\)</span>, in the transitive degree <span class="SimpleMath">\(63\)</span> permutation representation. We start with a function that computes a transvection in <span class="SimpleMath">\(S_d(2)\)</span>; note that the invariant bilinear form used for symplectic groups in <strong class="pkg">GAP</strong> is described by a matrix with nonzero entries exactly in the positions <span class="SimpleMath">\((i,d+1-i)\)</span>, for <span class="SimpleMath">\(1 \leq i \leq d\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">transvection:= function( d )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local mat;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mat:= IdentityMat( d, Z(2) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mat{ [ 1, d ] }{ [ 1, d ] }:= [ [ 0, 1 ], [ 1, 0 ] ] * Z(2);</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return mat;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>First we compute, for statement (d), the exact values <span class="SimpleMath">\(P(g,s)\)</span> for <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code> or <code class="code">2B</code>, and <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(15\)</span>. Note that the classes <code class="code">2A</code>, <code class="code">2B</code> are the unique classes of the lengths <span class="SimpleMath">\(63\)</span> and <span class="SimpleMath">\(315\)</span>, respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( SizesConjugacyClasses( t ), x -> x in [ 63, 315 ] );</span>
[ 2, 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">d:= 6;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">matgrp:= Sp(d,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:= ActionHomomorphism( matgrp, NormedRowVectors( GF(2)^d ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Image( hom, matgrp );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s15:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s15 ) = 15;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2A:= Image( hom, transvection( d ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( ConjugacyClass( g, 2A ) );</span>
63
<span class="GAPprompt">gap></span> <span class="GAPinput">IsTransitive( g, MovedPoints( g ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( g, 2A, s15 );</span>
11/21
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat 12C:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( 12C ) = 12 and Size( Centralizer( g, 12C ) ) = 12;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2B:= 12C^6;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( ConjugacyClass( g, 2B ) );</span>
315
<span class="GAPprompt">gap></span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( g, 2B, s15 );</span>
8/21
</pre></div>
<p>For statement (e), we compute <span class="SimpleMath">\(P(g, s^{\prime})\)</span>, for a transvection <span class="SimpleMath">\(g\)</span> and class representatives <span class="SimpleMath">\(s^{\prime}\)</span> of <span class="SimpleMath">\(S\)</span>. It turns out that the minimum is <span class="SimpleMath">\(11/21\)</span>, and it is attained for exactly one <span class="SimpleMath">\(s^{\prime}\)</span>; by the above, this element has order <span class="SimpleMath">\(15\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= ConjugacyClasses( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= List( ccl, Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nongen2A:= List( reps,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> RatioOfNongenerationTransPermGroup( g, 2A, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">min:= Minimum( nongen2A );</span>
11/21
<span class="GAPprompt">gap></span> <span class="GAPinput">Number( nongen2A, x -> x = min );</span>
1
</pre></div>
<p>For statement (f), we show that for any choice of <span class="SimpleMath">\(s^{\prime}\)</span>, at least two of the values <span class="SimpleMath">\(P(g,s^{\prime})\)</span>, with <span class="SimpleMath">\(g\)</span> in the classes <code class="code">2A</code>, <code class="code">2B</code>, or <code class="code">3A</code>, are larger than <span class="SimpleMath">\(1/3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">nongen2B:= List( reps,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> RatioOfNongenerationTransPermGroup( g, 2B, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3A:= s15^5;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nongen3A:= List( reps,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> RatioOfNongenerationTransPermGroup( g, 3A, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bad:= List( [ 1 .. NrConjugacyClasses( t ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> Number( [ nongen2A, nongen2B, nongen3A ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x[i] > 1/3 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Minimum( bad );</span>
2
</pre></div>
<p>Finally, for statement (g), we have to consider only the case that the two elements <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> are transvections.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( approx9, x -> x + approx9[2] >= 1 );</span>
[ 2 ]
</pre></div>
<p>We use the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s9:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s9 ) = 9;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 2A, 2A ], s9, 20 );</span>
true
</pre></div>
<p><a id="X826658207D9D6570" name="X826658207D9D6570"></a></p>
<h5>11.5-21 <span class="Heading"><span class="SimpleMath">\(S_8(2)\)</span></span></h5>
<p>We show that the group <span class="SimpleMath">\(S = S_8(2)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(17\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one subgroup of each of the types <span class="SimpleMath">\(O_8^-(2).2 = \Omega^-(8,2).2\)</span>, <span class="SimpleMath">\(S_4(4).2 = Sp(4,4).2\)</span>, and <span class="SimpleMath">\(L_2(17) = PSL(2,17)\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(17\)</span>, and <span class="SimpleMath">\(g \in S^{\times}\)</span>, we have <span class="SimpleMath">\(P(g,s) < 1/3\)</span>, except if <span class="SimpleMath">\(g\)</span> is a transvection.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least two, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(17\)</span>.</p>
</dd>
</dl>
<p>Statement (a) follows from the list of maximal subgroups of <span class="SimpleMath">\(S\)</span> in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 123]</a>, and the fact that <span class="SimpleMath">\(1_H^S(s) = 1\)</span> holds for each <span class="SimpleMath">\(H \in 𝕄(S,s)\)</span>. Note that <span class="SimpleMath">\(17\)</span> divides the indices of the maximal subgroups of the types <span class="SimpleMath">\(O_8^+(2).2\)</span> and <span class="SimpleMath">\(2^7 : S_6(2)\)</span> in <span class="SimpleMath">\(S\)</span>, and obviously <span class="SimpleMath">\(17\)</span> does not divide the orders of the remaining maximal subgroups.</p>
<p>The permutation characters induced from the first two subgroups are uniquely determined by the ordinary character tables. The permutation character induced from the last subgroup is uniquely determined if one considers also the corresponding Brauer tables; the correct class fusion is stored in the <strong class="pkg">GAP</strong> Character Table Library, see <a href="chapBib_mj.html#biBAmbigFus">[Brea]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "S8(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi1:= PossiblePermutationCharacters( CharacterTable( "O8-(2).2" ), t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi2:= PossiblePermutationCharacters( CharacterTable( "S4(4).2" ), t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi3:= [ TrivialCharacter( CharacterTable( "L2(17)" ) )^t ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= Concatenation( pi1, pi2, pi3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( prim );</span>
3
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 17 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( prim, x -> x[ spos ] );</span>
[ 1, 1, 1 ]
</pre></div>
<p>For statement (b), we observe that <span class="SimpleMath">\(σ(g,s) < 1/3\)</span> if <span class="SimpleMath">\(g\)</span> is not a transvection, and that <span class="SimpleMath">\(P(g,s) = σ(g,s)\)</span> for transvections <span class="SimpleMath">\(g\)</span> because exactly one of the three permutation characters is nonzero on both <span class="SimpleMath">\(s\)</span> and the class of transvections.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( prim, spos );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( approx, x -> x >= 1/3 );</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Number( prim, pi -> pi[2] <> 0 and pi[ spos ] <> 0 );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">approx[2];</span>
8/15
</pre></div>
<p>In statement (c), we have to consider only the case that the two elements <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> are transvections.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( approx, x -> x + approx[2] >= 1 );</span>
[ 2 ]
</pre></div>
<p>We use the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">d:= 8;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">matgrp:= Sp(d,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:= ActionHomomorphism( matgrp, NormedRowVectors( GF(2)^d ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= Image( hom, transvection( d ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Image( hom, matgrp );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:= ConjugacyClass( g, x );; Size( C );</span>
255
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 17;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RandomCheckUniformSpread( g, [ x, x ], s, 20 );</span>
true
</pre></div>
<p><a id="X82A6496887F80843" name="X82A6496887F80843"></a></p>
<h5>11.5-22 <span class="Heading"><span class="SimpleMath">\(\ast\)</span> <span class="SimpleMath">\(S_{10}(2)\)</span></span></h5>
<p>We show that the group <span class="SimpleMath">\(S = S_{10}(2)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(33\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one subgroup of each of the types <span class="SimpleMath">\(\Omega^-(10,2).2\)</span> and <span class="SimpleMath">\(L_2(32).5 = Sp(2,32).5\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(33\)</span>, and <span class="SimpleMath">\(g \in S^{\times}\)</span>, we have <span class="SimpleMath">\(P(g,s) < 1/3\)</span>, except if <span class="SimpleMath">\(g\)</span> is a transvection.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least two, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(33\)</span>.</p>
</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBBe00">[Ber00]</a>, the only maximal subgroups of <span class="SimpleMath">\(S\)</span> that contain <span class="SimpleMath">\(s\)</span> have the types stated in (a), and by <a href="chapBib_mj.html#biBKlL90">[KL90, Prop. 4.3.10 and 4.8.6]</a>, there is exactly one class of each of these subgroups.</p>
<p>We compute the values <span class="SimpleMath">\(σ( g, s )\)</span>, for all <span class="SimpleMath">\(g \in S^{\times}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "S10(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi1:= PossiblePermutationCharacters( CharacterTable( "O10-(2).2" ), t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi2:= PossiblePermutationCharacters( CharacterTable( "L2(32).5" ), t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= Concatenation( pi1, pi2 );; Length( prim );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 33 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( prim, spos );;</span>
</pre></div>
<p>For statement (b), we observe that <span class="SimpleMath">\(σ(g,s) < 1/3\)</span> if <span class="SimpleMath">\(g\)</span> is not a transvection, and that <span class="SimpleMath">\(P(g,s) = σ(g,s)\)</span> for transvections <span class="SimpleMath">\(g\)</span> because exactly one of the two permutation characters is nonzero on both <span class="SimpleMath">\(s\)</span> and the class of transvections.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( approx, x -> x >= 1/3 );</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Number( prim, pi -> pi[2] <> 0 and pi[ spos ] <> 0 );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">approx[2];</span>
16/31
</pre></div>
<p>In statement (c), we have to consider only the case that the two elements <span class="SimpleMath">\(x\)</span>, <span class="SimpleMath">\(y\)</span> are transvections. We use the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">d:= 10;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">matgrp:= Sp(d,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:= ActionHomomorphism( matgrp, NormedRowVectors( GF(2)^d ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= Image( hom, transvection( d ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Image( hom, matgrp );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:= ConjugacyClass( g, x );; Size( C );</span>
1023
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 33;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RandomCheckUniformSpread( g, [ x, x ], s, 20 );</span>
true
</pre></div>
<p><a id="X7A03F8EC839AF0B5" name="X7A03F8EC839AF0B5"></a></p>
<h5>11.5-23 <span class="Heading"><span class="SimpleMath">\(U_4(2)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = U_4(2) = SU(4,2) \cong S_4(3) = PSp(4,3)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 21/40\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(12\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(9\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two groups, of the types <span class="SimpleMath">\(3^{1+2}_+ \colon 2A_4 = GU(3,2)\)</span> and <span class="SimpleMath">\(3^3 \colon S_4\)</span>, respectively.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 2/5\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span>.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span>.</p>
</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p><span class="SimpleMath">\(σ^{\prime}(Aut(S),s) = 7/20\)</span>.</p>
</dd>
</dl>
<p>(Note that in this example, the optimal choice of <span class="SimpleMath">\(s\)</span> w.r.t. <span class="SimpleMath">\(σ(S,s)\)</span> is not optimal w.r.t. <span class="SimpleMath">\(P(S,s)\)</span>.)</p>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "U4(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "U4(2)", 21/40, 1, [ "12A" ], [ 2 ] ]
</pre></div>
<p>Statement (b) can be read off from the permutation characters, and the fact that the only classes of maximal subgroups that contain elements of order <span class="SimpleMath">\(9\)</span> consist of groups of the structures <span class="SimpleMath">\(3^{1+2}_+:2A_4\)</span> and <span class="SimpleMath">\(3^3:S_4\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 26]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 9, 9, 12, 12 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );</span>
[ Character( CharacterTable( "U4(2)" ),
[ 27, 3, 7, 0, 0, 9, 0, 3, 1, 2, 0, 0, 3, 3, 0, 1, 0, 0, 0, 0 ] ),
Character( CharacterTable( "U4(2)" ),
[ 36, 12, 8, 0, 0, 6, 3, 0, 2, 1, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0 ] ),
Character( CharacterTable( "U4(2)" ),
[ 40, 8, 0, 13, 13, 4, 4, 4, 0, 0, 5, 5, 2, 2, 2, 0, 1, 1, 1, 1 ] ),
Character( CharacterTable( "U4(2)" ),
[ 40, 16, 4, 4, 4, 1, 7, 0, 2, 0, 4, 4, 1, 1, 1, 1, 1, 1, 0, 0 ] ),
Character( CharacterTable( "U4(2)" ),
[ 45, 13, 5, 9, 9, 6, 3, 1, 1, 0, 1, 1, 4, 4, 1, 2, 0, 0, 1, 1 ] ) ]
</pre></div>
<p>For statement (c), we use a primitive permutation representation on <span class="SimpleMath">\(40\)</span> points that occurs in the natural action of <span class="SimpleMath">\(SU(4,2)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= SU(4,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( g, NormedRowVectors( GF(4)^4 ), OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 45, 40 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Action( g, orbs[2], OnLines );;</span>
</pre></div>
<p>First we show that for <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(9\)</span>, <span class="SimpleMath">\(P(S,s) = 2/5\)</span> holds. For that, we have to consider only <span class="SimpleMath">\(P(g,s)\)</span>, with <span class="SimpleMath">\(g\)</span> in one of the classes <code class="code">2A</code> (of length <span class="SimpleMath">\(45\)</span>) and <code class="code">3A</code> (of length <span class="SimpleMath">\(40\)</span>); since the class <code class="code">3B</code> contains the inverses of the elements in the class <code class="code">3A</code>, we need not test it.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 9 );</span>
17
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( prim, spos );</span>
[ 0, 3/5, 1/10, 17/40, 17/40, 1/8, 11/40, 1/10, 1/20, 0, 9/40, 9/40,
3/40, 3/40, 3/40, 1/40, 1/20, 1/20, 1/40, 1/40 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">badpos:= PositionsProperty( approx, x -> x >= 2/5 );</span>
[ 2, 4, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( t, 2 )[4];</span>
5
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 9, 9, 12, 12 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesConjugacyClasses( t );</span>
[ 1, 45, 270, 40, 40, 240, 480, 540, 3240, 5184, 360, 360, 720, 720,
1440, 2160, 2880, 2880, 2160, 2160 ]
</pre></div>
<p>A representative <span class="SimpleMath">\(g\)</span> of a class of length <span class="SimpleMath">\(40\)</span> can be found as the third power of any order <span class="SimpleMath">\(9\)</span> element.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( t, 3 )[ spos ];</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 9;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( ConjugacyClass( g, s^3 ) );</span>
40
<span class="GAPprompt">gap></span> <span class="GAPinput">prop:= RatioOfNongenerationTransPermGroup( g, s^3, s );</span>
13/40
</pre></div>
<p>Next we examine <span class="SimpleMath">\(g\)</span> in the class <code class="code">2A</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g ); until Order( x ) = 12;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( ConjugacyClass( g, x^6 ) );</span>
45
<span class="GAPprompt">gap></span> <span class="GAPinput">prop:= RatioOfNongenerationTransPermGroup( g, x^6, s );</span>
2/5
</pre></div>
<p>Finally, we compute that for <span class="SimpleMath">\(s\)</span> of order different from <span class="SimpleMath">\(9\)</span> and <span class="SimpleMath">\(g\)</span> in the class <code class="code">2A</code>, <span class="SimpleMath">\(P(g,s)\)</span> is larger than <span class="SimpleMath">\(2/5\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= List( ConjugacyClasses( g ), Representative );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortParallel( List( ccl, Order ), ccl );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( ccl, Order );</span>
[ 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 9, 9, 12, 12 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">prop:= List( ccl, r -> RatioOfNongenerationTransPermGroup( g, x^6, r ) );</span>
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 5/9, 1, 1, 1, 1, 1, 1, 2/5, 2/5, 7/15,
7/15 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Minimum( prop );</span>
2/5
</pre></div>
<p>In order to show statement (d), we have to consider triples <span class="SimpleMath">\((x_1, x_2, x_3)\)</span> with <span class="SimpleMath">\(x_i\)</span> of prime order and <span class="SimpleMath">\(\sum_{i=1}^3 P(x_i,s) \geq 1\)</span>. This means that it suffices to check <span class="SimpleMath">\(x\)</span> in the class <code class="code">2A</code>, <span class="SimpleMath">\(y\)</span> in <code class="code">2A</code><span class="SimpleMath">\( \cup \)</span><code class="code">3A</code>, and <span class="SimpleMath">\(z\)</span> in <code class="code">2A</code><span class="SimpleMath">\( \cup \)</span><code class="code">3A</code><span class="SimpleMath">\( \cup \)</span><code class="code">3D</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx[2]:= 2/5;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx[4]:= 13/40;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">primeord:= PositionsProperty( OrdersClassRepresentatives( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsPrimeInt );</span>
[ 2, 3, 4, 5, 6, 7, 10 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">RemoveSet( primeord, 5 );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">primeord;</span>
[ 2, 3, 4, 6, 7, 10 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">approx{ primeord };</span>
[ 2/5, 1/10, 13/40, 1/8, 11/40, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasClassNames( t ){ primeord };</span>
[ "2A", "2B", "3A", "3C", "3D", "5A" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">triples:= Filtered( UnorderedTuples( primeord, 3 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> t -> Sum( approx{ t } ) >= 1 );</span>
[ [ 2, 2, 2 ], [ 2, 2, 4 ], [ 2, 2, 7 ], [ 2, 4, 4 ], [ 2, 4, 7 ] ]
</pre></div>
<p>We use the random approach described in Section <a href="chap11_mj.html#X83DACCF07EF62FAE"><span class="RefLink">11.3-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat 6E:= Random( g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( 6E ) = 6 and Size( Centralizer( g, 6E ) ) = 18;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2A:= 6E^3;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3A:= s^3;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3D:= 6E^2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 2A, 2A, 2A ], s, 50 );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 2A, 2A, 3A ], s, 50 );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 3D, 2A, 2A ], s, 50 );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 2A, 3A, 3A ], s, 50 );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">RandomCheckUniformSpread( g, [ 3D, 3A, 2A ], s, 50 );</span>
true
</pre></div>
<p>Statement (e) can be proved using <code class="code">ProbGenInfoAlmostSimple</code>, cf. Section <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "U4(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "U4(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= PositionsProperty( OrdersClassRepresentatives( t ), x -> x = 9 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoAlmostSimple( t, t2, spos );</span>
[ "U4(2).2", 7/20, [ "9AB" ], [ 2 ] ]
</pre></div>
<p><a id="X7D738BE5804CF22E" name="X7D738BE5804CF22E"></a></p>
<h5>11.5-24 <span class="Heading"><span class="SimpleMath">\(U_4(3)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = U_4(3) = PSU(4,3)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S) = 53/153\)</span>, and this value is attained exactly for <span class="SimpleMath">\(σ(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of order <span class="SimpleMath">\(7\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of two nonconjugate groups of the type <span class="SimpleMath">\(L_3(4)\)</span>, one group of the type <span class="SimpleMath">\(U_3(3)\)</span>, and four pairwise nonconjugate groups of the type <span class="SimpleMath">\(A_7\)</span>.</p>
</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">\(P(S) = 43/135\)</span>, and this value is attained exactly for <span class="SimpleMath">\(P(S,s)\)</span> with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>
</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p>The uniform spread of <span class="SimpleMath">\(S\)</span> is at least three, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span>.</p>
</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p>The preimage of <span class="SimpleMath">\(s\)</span> in the matrix group <span class="SimpleMath">\(SU(4,3) \cong 4.U_4(3)\)</span> has order <span class="SimpleMath">\(28\)</span>, the preimages of the groups in <span class="SimpleMath">\(𝕄(S,s)\)</span> have the structures <span class="SimpleMath">\(4_2.L_3(4)\)</span>, <span class="SimpleMath">\(4 \times U_3(3) \cong GU(3,3)\)</span>, and <span class="SimpleMath">\(4.A_7\)</span> (the latter being a central product of a cyclic group of order four and <span class="SimpleMath">\(2.A_7\)</span>).</p>
</dd>
<dt><strong class="Mark">(f)</strong></dt>
<dd><p><span class="SimpleMath">\(P^{\prime}(S.2_1,s) = 13/27\)</span>, <span class="SimpleMath">\(σ^{\prime}(S.2_2) = 1/3\)</span>, and <span class="SimpleMath">\(σ^{\prime}(S.2_3) = 31/162\)</span>, with <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span> in each case.</p>
</dd>
</dl>
<p>Statement (a) follows from inspection of the primitive permutation characters, cf. Section <a href="chap11_mj.html#X80DA58F187CDCF5F"><span class="RefLink">11.4-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbGenInfoSimple( t );</span>
[ "U4(3)", 53/135, 2, [ "7A" ], [ 7 ] ]
</pre></div>
<p>Statement (b) can be read off from the permutation characters, and the fact that the only classes of maximal subgroups that contain elements of order <span class="SimpleMath">\(7\)</span> consist of groups of the structures as claimed, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 52]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= PrimitivePermutationCharacters( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t ), 7 );</span>
13
<span class="GAPprompt">gap></span> <span class="GAPinput">List( Filtered( prim, x -> x[ spos ] <> 0 ), l -> l{ [ 1, spos ] } );</span>
[ [ 162, 1 ], [ 162, 1 ], [ 540, 1 ], [ 1296, 1 ], [ 1296, 1 ],
[ 1296, 1 ], [ 1296, 1 ] ]
</pre></div>
<p>In order to show statement (c) (which then implies statement (d)), we use a permutation representation on <span class="SimpleMath">\(112\)</span> points. It corresponds to an orbit of one-dimensional subspaces in the natural module of <span class="SimpleMath">\(\Omega^-(6,3) \cong S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">matgrp:= DerivedSubgroup( SO( -1, 6, 3 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( matgrp, NormedRowVectors( GF(3)^6 ), OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 126, 126, 112 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= Action( matgrp, orbs[3], OnLines );;</span>
</pre></div>
<p>It is sufficient to compute <span class="SimpleMath">\(P(g,s)\)</span>, for involutions <span class="SimpleMath">\(g \in S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= ApproxP( prim, spos );</span>
[ 0, 53/135, 1/10, 1/24, 1/24, 7/45, 4/45, 1/27, 1/36, 1/90, 1/216,
1/216, 7/405, 7/405, 1/270, 0, 0, 0, 0, 1/270 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( approx, x -> x >= 43/135 );</span>
[ 53/135 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t );</span>
[ 1, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 7, 7, 8, 9, 9, 9, 9, 12 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ResetGlobalRandomNumberGenerators();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat g:= Random( G ); until Order(g) = 2;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( G );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order(s) = 7;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bad:= RatioOfNongenerationTransPermGroup( G, g, s );</span>
43/135
<span class="GAPprompt">gap></span> <span class="GAPinput">bad < 1/3;</span>
true
</pre></div>
<p>Statement (e) can be shown easily with character-theoretic methods, as follows. Since <span class="SimpleMath">\(SU(4,3)\)</span> is a Schur cover of <span class="SimpleMath">\(S\)</span> and the groups in <span class="SimpleMath">\(𝕄(S,s)\)</span> are simple, only very few possibilities have to be checked. The Schur multiplier of <span class="SimpleMath">\(U_3(3)\)</span> is trivial (see, e. g., <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 14]</a>), so the preimage in <span class="SimpleMath">\(SU(4,3)\)</span> is a direct product of <span class="SimpleMath">\(U_3(3)\)</span> and the centre of <span class="SimpleMath">\(SU(4,3)\)</span>. Neither <span class="SimpleMath">\(L_3(4)\)</span> nor its double cover <span class="SimpleMath">\(2.L_3(4)\)</span> can be a subgroup of <span class="SimpleMath">\(SU(4,3)\)</span>, so the preimage of <span class="SimpleMath">\(L_3(4)\)</span> must be a Schur cover of <span class="SimpleMath">\(L_3(4)\)</span>, i. e., it must have either the type <span class="SimpleMath">\(4_1.L_3(4)\)</span> or <span class="SimpleMath">\(4_2.L_3(4)\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 23]</a>); only the type <span class="SimpleMath">\(4_2.L_3(4)\)</span> turns out to be possible.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">4t:= CharacterTable( "4.U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "L3(4)" ), 4t ) );</span>
0
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "2.L3(4)" ), 4t ) );</span>
0
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "4_1.L3(4)" ), 4t ) );</span>
0
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "4_2.L3(4)" ), 4t ) );</span>
4
</pre></div>
<p>As for the preimage of the <span class="SimpleMath">\(A_7\)</span> type subgroups, we first observe that the double cover of <span class="SimpleMath">\(A_7\)</span> cannot be a subgroup of the double cover of <span class="SimpleMath">\(S\)</span>, so the preimage of <span class="SimpleMath">\(A_7\)</span> in the double cover of <span class="SimpleMath">\(U_4(3)\)</span> is a direct product <span class="SimpleMath">\(2 \times A_7\)</span>. The group <span class="SimpleMath">\(SU(4,3)\)</span> does not contain <span class="SimpleMath">\(A_7\)</span> type subgroups, thus the <span class="SimpleMath">\(A_7\)</span> type subgroups in <span class="SimpleMath">\(2.U_4(3)\)</span> lift to double covers of <span class="SimpleMath">\(A_7\)</span> in <span class="SimpleMath">\(SU(4,3)\)</span>. This proves the claimed structure.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2t:= CharacterTable( "2.U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "2.A7" ), 2t ) );</span>
0
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "A7" ), 4t ) );</span>
0
</pre></div>
<p>For statement (f), we consider automorphic extensions of <span class="SimpleMath">\(S\)</span>. The bound for <span class="SimpleMath">\(S.2_3\)</span> has been computed in Section <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a>. That for <span class="SimpleMath">\(S.2_2\)</span> can be computed form the fact that the classes of maximal subgroups of <span class="SimpleMath">\(S.2_2\)</span> containing <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(7\)</span> are <span class="SimpleMath">\(S\)</span>, one class of <span class="SimpleMath">\(U_3(3).2\)</span> type subgroups, and two classes of <span class="SimpleMath">\(S_7\)</span> type subgroups which induce the same permutation character (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 52]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "U4(3).2_2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi1:= PossiblePermutationCharacters( CharacterTable( "U3(3).2" ), t2 );</span>
[ Character( CharacterTable( "U4(3).2_2" ),
[ 540, 12, 54, 0, 0, 9, 8, 0, 0, 6, 0, 0, 1, 2, 0, 0, 0, 2, 0, 24,
4, 0, 0, 0, 0, 0, 0, 3, 2, 0, 4, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pi2:= PossiblePermutationCharacters( CharacterTable( "A7.2" ), t2 );</span>
[ Character( CharacterTable( "U4(3).2_2" ),
[ 1296, 48, 0, 27, 0, 9, 0, 4, 1, 0, 3, 0, 1, 0, 0, 0, 0, 0, 216,
24, 0, 4, 0, 0, 0, 9, 0, 3, 0, 1, 0, 1, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">prim:= Concatenation( pi1, pi2, pi2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">outer:= Difference(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfDerivedSubgroup( t2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">spos:= Position( OrdersClassRepresentatives( t2 ), 7 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maximum( ApproxP( prim, spos ){ outer } );</span>
1/3
</pre></div>
<p>Finally, Section <a href="chap11_mj.html#X7B1E26D586337487"><span class="RefLink">11.4-4</span></a> shows that the character tables are not sufficient for what we need, so we compute the exact proportion of nongeneration for <span class="SimpleMath">\(U_4(3).2_1 \cong SO^-(6,3)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">matgrp:= SO( -1, 6, 3 );</span>
SO(-1,6,3)
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( matgrp, NormedRowVectors( GF(3)^6 ), OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 126, 126, 112 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= Action( matgrp, orbs[3], OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat s:= Random( G );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( s ) = 7;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> repeat 2B:= Random( G ); until Order( 2B ) mod 2 = 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 2B:= 2B^( Order( 2B ) / 2 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> c:= Centralizer( G, 2B );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Size( c ) = 12096;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( G, 2B, s );</span>
13/27
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> repeat 2C:= Random( G ); until Order( 2C ) mod 2 = 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 2C:= 2C^( Order( 2C ) / 2 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> c:= Centralizer( G, 2C );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Size( c ) = 1440;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RatioOfNongenerationTransPermGroup( G, 2C, s );</span>
0
</pre></div>
<p><a id="X7D4BC6A38074BF68" name="X7D4BC6A38074BF68"></a></p>
<h5>11.5-25 <span class="Heading"><span class="SimpleMath">\(U_6(3)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = U_6(3) = PSU(6,3)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(1 \perp 5\)</span> (i. e., the preimage of <span class="SimpleMath">\(s\)</span> in <span class="SimpleMath">\(2.S = SU(6,3)\)</span> decomposes the natural <span class="SimpleMath">\(6\)</span>-dimensional module for <span class="SimpleMath">\(2.S\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(1\)</span> and <span class="SimpleMath">\(5\)</span>, respectively) and of order <span class="SimpleMath">\((3^5 + 1)/2 = 122\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(2 \times U_5(3)\)</span>, which lifts to a subgroup of the type <span class="SimpleMath">\(4 \times U_5(3) = GU(5,3)\)</span> in <span class="SimpleMath">\(2.S\)</span>. (The preimage of <span class="SimpleMath">\(s\)</span> in <span class="SimpleMath">\(2.S\)</span> has order <span class="SimpleMath">\(3^5 + 1 = 244\)</span>.)</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 353/3\,159\)</span>.</p>
</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBMSW94">[MSW94]</a>, the only maximal subgroup of <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(s\)</span> is the stabilizer <span class="SimpleMath">\(H \cong 2 \times U_5(3)\)</span> of the orthogonal decomposition. This proves statement (a).</p>
<p>The character table of <span class="SimpleMath">\(S\)</span> is currently not available in the <strong class="pkg">GAP</strong> Character Table Library. We consider the permutation action of <span class="SimpleMath">\(S\)</span> on the orbit of the stabilized <span class="SimpleMath">\(1\)</span>-space. So <span class="SimpleMath">\(M\)</span> can be taken as a point stabilizer in this action.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CharacterTable( "U6(3)" );</span>
fail
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= SU(6,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( g, NormedRowVectors( GF(9)^6 ), OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 22204, 44226 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= PseudoRandom( g ); until Order( x ) = 244;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, o -> Number( o, v -> OnLines( v, x ) = v ) );</span>
[ 0, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Action( g, orbs[2], OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:= Stabilizer( g, 1 );;</span>
</pre></div>
<p>Then we compute a list of elements in <span class="SimpleMath">\(M\)</span> that covers the conjugacy classes of prime element order, from which the numbers of fixed points and thus <span class="SimpleMath">\(\max\{ μ( S/M, g ); g \in M^{\times} \} = σ( S, s )\)</span> can be derived. This way we avoid completely to check the <span class="SimpleMath">\(S\)</span>-conjugacy of elements (class representatives of Sylow subgroups in <span class="SimpleMath">\(M\)</span>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for p in PrimeDivisors( Size( M ) ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> syl:= SylowSubgroup( M, p );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( elms, Filtered( PcConjugacyClassReps( syl ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r -> Order( r ) = p ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">1 - Minimum( List( elms, NrMovedPoints ) ) / Length( orbs[2] );</span>
353/3159
</pre></div>
<p><a id="X7A92577A830B5F23" name="X7A92577A830B5F23"></a></p>
<h5>11.5-26 <span class="Heading"><span class="SimpleMath">\(U_8(2)\)</span></span></h5>
<p>We show that <span class="SimpleMath">\(S = U_8(2) = SU(8,2)\)</span> satisfies the following.</p>
<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p>For <span class="SimpleMath">\(s \in S\)</span> of the type <span class="SimpleMath">\(1 \perp 7\)</span> (i. e., <span class="SimpleMath">\(s\)</span> decomposes the natural <span class="SimpleMath">\(8\)</span>-dimensional module for <span class="SimpleMath">\(S\)</span> into an orthogonal sum of two irreducible modules of the dimensions <span class="SimpleMath">\(1\)</span> and <span class="SimpleMath">\(7\)</span>, respectively) and of order <span class="SimpleMath">\(2^7 + 1 = 129\)</span>, <span class="SimpleMath">\(𝕄(S,s)\)</span> consists of one group of the type <span class="SimpleMath">\(3 \times U_7(2) = GU(7,2)\)</span>.</p>
</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">\(σ(S,s) = 2\,753/10\,880\)</span>.</p>
</dd>
</dl>
<p>By <a href="chapBib_mj.html#biBMSW94">[MSW94]</a>, the only maximal subgroup of <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(s\)</span> is the stabilizer <span class="SimpleMath">\(M \cong GU(7,2)\)</span> of the orthogonal decomposition. This proves statement (a).</p>
<p>The character table of <span class="SimpleMath">\(S\)</span> is currently not available in the <strong class="pkg">GAP</strong> Character Table Library. We proceed exactly as in Section <a href="chap11_mj.html#X7D4BC6A38074BF68"><span class="RefLink">11.5-25</span></a> in order to prove statement (b).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CharacterTable( "U8(2)" );</span>
fail
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= SU(8,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( g, NormedRowVectors( GF(4)^8 ), OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 10965, 10880 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= PseudoRandom( g ); until Order( x ) = 129;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, o -> Number( o, v -> OnLines( v, x ) = v ) );</span>
[ 0, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Action( g, orbs[2], OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:= Stabilizer( g, 1 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for p in PrimeDivisors( Size( M ) ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> syl:= SylowSubgroup( M, p );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( elms, Filtered( PcConjugacyClassReps( syl ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r -> Order( r ) = p ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( elms );</span>
611
<span class="GAPprompt">gap></span> <span class="GAPinput">1 - Minimum( List( elms, NrMovedPoints ) ) / Length( orbs[2] );</span>
2753/10880
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap10_mj.html">[Previous Chapter]</a> <a href="chapBib_mj.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|