1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (CTblLibXpls) - Chapter 1: Maintenance Issues for the GAP Character Table Library</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap1" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap0_mj.html">[Previous Chapter]</a> <a href="chap2_mj.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap1.html">[MathJax off]</a></p>
<p><a id="X8354C98179CDB193" name="X8354C98179CDB193"></a></p>
<div class="ChapSects"><a href="chap1_mj.html#X8354C98179CDB193">1 <span class="Heading">Maintenance Issues for the <strong class="pkg">GAP</strong> Character Table Library</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1_mj.html#X7ECA800587320C2C">1.1 <span class="Heading">Disproving Possible Character Tables (November 2006)</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X795DCCEA7F4D187A">1.1-1 <span class="Heading">A Perfect Pseudo Character Table (November 2006)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X80F0B4E07B0B2277">1.1-2 <span class="Heading">An Error in the Character Table of <span class="SimpleMath">\(E_6(2)\)</span> (March 2016)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X7D7982CD87413F76">1.1-3 <span class="Heading">An Error in a Power Map of the Character Table of <span class="SimpleMath">\(2.F_4(2).2\)</span> (November 2015)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X836E4B6184F32EF5">1.1-4 <span class="Heading">A Character Table with a Wrong Name (May 2017)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1_mj.html#X8159D79C7F071B33">1.2 <span class="Heading">Some finite factor groups of perfect space groups (February 2014)</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X8710D4947AEB366F">1.2-1 <span class="Heading">Constructing the space groups in question</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X84E7FE70843422B0">1.2-2 <span class="Heading">Constructing the factor groups in question</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X79109A20873E76DA">1.2-3 <span class="Heading">Examples with point group <span class="SimpleMath">\(A_5\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X83523D1E792F9E01">1.2-4 <span class="Heading">Examples with point group <span class="SimpleMath">\(L_3(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X7A01A9BC846BE39A">1.2-5 <span class="Heading">Example with point group SL<span class="SimpleMath">\(_2(7)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X7D3100B58093F37D">1.2-6 <span class="Heading">Example with point group <span class="SimpleMath">\(2^3.L_3(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X80800F3B7D6EF06C">1.2-7 <span class="Heading">Examples with point group <span class="SimpleMath">\(A_6\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X7D43452C79B0EAE1">1.2-8 <span class="Heading">Examples with point group <span class="SimpleMath">\(L_2(8)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X8575CE147A9819BF">1.2-9 <span class="Heading">Example with point group <span class="SimpleMath">\(M_{11}\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X7C0201B77DA1682A">1.2-10 <span class="Heading">Example with point group <span class="SimpleMath">\(U_3(3)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X85D9C329792E58F3">1.2-11 <span class="Heading">Examples with point group <span class="SimpleMath">\(U_4(2)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X8635EE0B78A66120">1.2-12 <span class="Heading">A remark on one of the example groups</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1_mj.html#X8448022280E82C52">1.3 <span class="Heading">Generality problems (December 2004/October 2015)</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X7D1A66C3844D09B1">1.3-1 <span class="Heading">Listing possible generality problems</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X80EB5D827A78975A">1.3-2 <span class="Heading">A generality problem concerning the group <span class="SimpleMath">\(J_3\)</span> (April 2015)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X82C37532783168AA">1.3-3 <span class="Heading">A generality problem concerning the group <span class="SimpleMath">\(HN\)</span> (August 2022)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1_mj.html#X7D8C6D1883C9CECA">1.4 <span class="Heading">Brauer Tables that can be derived from Known Tables</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X7DF018B77E722CA7">1.4-1 <span class="Heading">Brauer Tables via Construction Information</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X795419A287BD228E">1.4-2 <span class="Heading">Liftable Brauer Characters (May 2017)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1_mj.html#X864EFF897A854F89">1.5 <span class="Heading">Information about certain subgroups of the Monster group</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X82C7A03684DD7C6E">1.5-1 <span class="Heading">The Monster group does not contain subgroups of the type <span class="SimpleMath">\(2.U_4(2)\)</span> (August 2023)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X87EC0C48866D1BDE">1.5-2 <span class="Heading">Perfect central extensions of <span class="SimpleMath">\(L_3(4)\)</span> (August 2023)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1_mj.html#X7F605CA28441687F">1.5-3 <span class="Heading">The character table of <span class="SimpleMath">\((2 \times O_8^+(3)).S_4 \leq 2.B\)</span> (October 2023)</span></a>
</span>
</div></div>
</div>
<h3>1 <span class="Heading">Maintenance Issues for the <strong class="pkg">GAP</strong> Character Table Library</span></h3>
<p>This chapter collects examples of computations that arose in the context of maintaining the <strong class="pkg">GAP</strong> Character Table Library. The sections have been added when the issues in question arose; the dates of the additions are shown in the section titles.</p>
<p><a id="X7ECA800587320C2C" name="X7ECA800587320C2C"></a></p>
<h4>1.1 <span class="Heading">Disproving Possible Character Tables (November 2006)</span></h4>
<p>I do not know a necessary and sufficient criterion for checking whether a given matrix together with a list of power maps describes the character table of a finite group. Examples of <em>pseudo character tables</em> (tables which satisfy certain necessary conditions but for which actually no group exists) have been given in <a href="chapBib_mj.html#biBGag86">[Gag86]</a>. Another such example is described in Section <a href="chap2_mj.html#X7E0C603880157C4E"><span class="RefLink">2.4-17</span></a>. The tables in the <strong class="pkg">GAP</strong> Character Table Library satisfy the usual tests. However, there are table candidates for which these tests are not good enough. Another question would be whether a given character table belongs to the group for which it is claimed to belong, see Section <a href="chap1_mj.html#X836E4B6184F32EF5"><span class="RefLink">1.1-4</span></a> for an example.</p>
<p><a id="X795DCCEA7F4D187A" name="X795DCCEA7F4D187A"></a></p>
<h5>1.1-1 <span class="Heading">A Perfect Pseudo Character Table (November 2006)</span></h5>
<p>(This example arose from a discussion with Jack Schmidt.)</p>
<p>Up to version 1.1.3 of the <strong class="pkg">GAP</strong> Character Table Library, the table with identifier <code class="code">"P41/G1/L1/V4/ext2"</code> was not correct. The problem occurs already in the microfiches that are attached to <a href="chapBib_mj.html#biBHP89">[HP89]</a>.</p>
<p>In the following, we show that this table is not the character table of a finite group, using the <strong class="pkg">GAP</strong> library of perfect groups. Currently we do not know how to prove this inconsistency alone from the table.</p>
<p>We start with the construction of the inconsistent table; apart from a little editing, the following input equals the data formerly stored in the file <code class="file">data/ctoholpl.tbl</code> of the <strong class="pkg">GAP</strong> Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl:= rec(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Identifier:= "P41/G1/L1/V4/ext2",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> InfoText:= Concatenation( [</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "origin: Hanrath library,\n",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "structure is 2^7.L2(8),\n",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "characters sorted with permutation (12,14,15,13)(19,20)" ] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> UnderlyingCharacteristic:= 0,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SizesCentralizers:= [64512,1024,1024,64512,64,64,64,64,128,128,64,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 64,128,128,18,18,14,14,14,14,14,14,18,18,18,18,18,18],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ComputedPowerMaps:= [,[1,1,1,1,2,3,3,2,3,2,2,1,3,2,16,16,20,20,22,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 22,18,18,26,26,27,27,23,23],[1,2,3,4,5,6,7,8,9,10,11,12,13,14,4,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 1,21,22,17,18,19,20,16,15,15,16,16,15],,,,[1,2,3,4,5,6,7,8,9,10,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 11,12,13,14,15,16,4,1,4,1,4,1,26,25,28,27,23,24]],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Irr:= 0,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> AutomorphismsOfTable:= Group( [(23,26,27)(24,25,28),(9,13)(10,14),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> (17,19,21)(18,20,22)] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructionInfoCharacterTable:= ["ConstructClifford",[[[1,2,3,4,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 5,6,7,8,9],[1,7,8,3,9,2],[1,4,5,6,2],[1,2,2,2,2,2,2,2]],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [["L2(8)"],["Dihedral",18],["Dihedral",14],["2^3"]],[[[1,2,3,4],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [1,1,1,1],["elab",4,25]],[[1,2,3,4,4,4,4,4,4,4],[2,6,5,2,3,4,5,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 6,7,8],["elab",10,17]],[[1,2],[3,4],[[1,1],[-1,1]]],[[1,3],[4,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 2],[[1,1],[-1,1]]],[[1,3],[5,3],[[1,1],[-1,1]]],[[1,3],[6,4],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [[1,1],[-1,1]]],[[1,2],[7,2],[[1,1],[1,-1]]],[[1,2],[8,3],[[1,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 1],[-1,1]]],[[1,2],[9,5],[[1,1],[1,-1]]]]]],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructClifford( tbl, tbl.ConstructionInfoCharacterTable[2] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConvertToLibraryCharacterTableNC( tbl );;</span>
</pre></div>
<p>Suppose that there is a group <span class="SimpleMath">\(G\)</span>, say, with this table. Then <span class="SimpleMath">\(G\)</span> is perfect since the table has only one linear character.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( LinearCharacters( tbl ) );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPerfectCharacterTable( tbl );</span>
true
</pre></div>
<p>The table satisfies the orthogonality relations, the structure constants are nonnegative integers, and symmetrizations of the irreducibles decompose into the irreducibles, with nonnegative integral coefficients.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsInternallyConsistent( tbl );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">irr:= Irr( tbl );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">test:= Concatenation( List( [ 2 .. 7 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> n -> Symmetrizations( tbl, irr, n ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( test, Set( Tensored( irr, irr ) ) );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fail in Decomposition( irr, test, "nonnegative" );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">if ForAny( Tuples( [ 1 .. NrConjugacyClasses( tbl ) ], 3 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> t -> not ClassMultiplicationCoefficient( tbl, t[1], t[2], t[3] )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> in NonnegativeIntegers ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "contradiction" );</span>
<span class="GAPprompt">></span> <span class="GAPinput">fi;</span>
</pre></div>
<p>The <strong class="pkg">GAP</strong> Library of Perfect Groups contains representatives of the four isomorphism types of perfect groups of order <span class="SimpleMath">\(|G| = 64\,512\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:= Size( tbl );</span>
64512
<span class="GAPprompt">gap></span> <span class="GAPinput">NumberPerfectGroups( n );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">grps:= List( [ 1 .. 4 ], i -> PerfectGroup( IsPermGroup, n, i ) );</span>
[ L2(8) 2^6 E 2^1, L2(8) N 2^6 E 2^1 I, L2(8) N 2^6 E 2^1 II,
L2(8) N 2^6 E 2^1 III ]
</pre></div>
<p>If we believe that the classification of perfect groups of order <span class="SimpleMath">\(|G|\)</span> is correct then all we have to do is to show that none of the character tables of these four groups is equivalent to the given table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls:= List( grps, CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( tbls,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> TransformingPermutationsCharacterTables( x, tbl ) );</span>
[ fail, fail, fail, fail ]
</pre></div>
<p>In fact, already the matrices of irreducible characters of the four groups do not fit to the given table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( tbls,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> t -> TransformingPermutations( Irr( t ), Irr( tbl ) ) );</span>
[ fail, fail, fail, fail ]
</pre></div>
<p>Let us look closer at the tables in question. Each character table of a perfect group of order <span class="SimpleMath">\(64\,512\)</span> has exactly one irreducible character of degree <span class="SimpleMath">\(63\)</span> that takes exactly the values <span class="SimpleMath">\(-1\)</span>, <span class="SimpleMath">\(0\)</span>, <span class="SimpleMath">\(7\)</span>, and <span class="SimpleMath">\(63\)</span>; moreover, the value <span class="SimpleMath">\(7\)</span> occurs in exactly two classes.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">testchars:= List( tbls,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> t -> Filtered( Irr( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x[1] = 63 and Set( x ) = [ -1, 0, 7, 63 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( testchars, Length );</span>
[ 1, 1, 1, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( testchars, l -> Number( l[1], x -> x = 7 ) );</span>
[ 2, 2, 2, 2 ]
</pre></div>
<p>(Another way to state this is that in each of the four tables <span class="SimpleMath">\(t\)</span> in question, there are ten preimage classes of the involution class in the simple factor group <span class="SimpleMath">\(L_2(8)\)</span>, there are eight preimage classes of this class in the factor group <span class="SimpleMath">\(2^6.L_2(8)\)</span>, and that the unique class in which an irreducible degree <span class="SimpleMath">\(63\)</span> character of this factor group takes the value <span class="SimpleMath">\(7\)</span> splits in <span class="SimpleMath">\(t\)</span>.)</p>
<p>In the erroneous table, however, there is only one class with the value <span class="SimpleMath">\(7\)</span> in this character.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">testchars:= List( [ tbl ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> t -> Filtered( Irr( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x[1] = 63 and Set( x ) = [ -1, 0, 7, 63 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( testchars, Length );</span>
[ 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( testchars, l -> Number( l[1], x -> x = 7 ) );</span>
[ 1 ]
</pre></div>
<p>This property can be checked easily for the displayed table stored in fiche <span class="SimpleMath">\(2\)</span>, row <span class="SimpleMath">\(4\)</span>, column <span class="SimpleMath">\(7\)</span> of <a href="chapBib_mj.html#biBHP89">[HP89]</a>, with the name <code class="code">6L1<>Z^7<>L2(8); V4; MOD 2</code>, and it turns out that this table is not correct.</p>
<p>Note that these microfiches contain <em>two</em> tables of order <span class="SimpleMath">\(64\,512\)</span>, and there were <em>three</em> tables of groups of that order in the <strong class="pkg">GAP</strong> Character Table Library that contain <code class="code">origin: Hanrath library</code> in their <code class="func">InfoText</code> (<a href="../../../doc/ref/chap12_mj.html#X871562FD7F982C12"><span class="RefLink">Reference: InfoText</span></a>) value. Besides the incorrect table, these library tables are the character tables of the groups <code class="code">PerfectGroup( 64512, 1 )</code> and <code class="code">PerfectGroup( 64512, 3 )</code>, respectively. (The matrices of irreducible characters of these tables are equivalent.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( [ 1 .. 4 ], i -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( tbls[i],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "P41/G1/L1/V1/ext2" ) ) <> fail );</span>
[ 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( [ 1 .. 4 ], i -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( tbls[i],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "P41/G1/L1/V2/ext2" ) ) <> fail );</span>
[ 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutations( Irr( tbls[1] ), Irr( tbls[3] ) ) <> fail;</span>
true
</pre></div>
<p>Since version 1.2 of the <strong class="pkg">GAP</strong> Character Table Library, the character table with the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70_mj.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) value <code class="code">"P41/G1/L1/V4/ext2"</code> corresponds to the group <code class="code">PerfectGroup( 64512, 4 )</code>. The choice of this group was somewhat arbitrary since the vector system <code class="code">V4</code> seems to be not defined in <a href="chapBib_mj.html#biBHP89">[HP89]</a>; anyhow, this group and the remaining perfect group, <code class="code">PerfectGroup( 64512, 2 )</code>, have equivalent matrices of irreducibles.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( [ 1 .. 4 ], i -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( tbls[i],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "P41/G1/L1/V4/ext2" ) ) <> fail );</span>
[ 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutations( Irr( tbls[2] ), Irr( tbls[4] ) ) <> fail;</span>
true
</pre></div>
<p><a id="X80F0B4E07B0B2277" name="X80F0B4E07B0B2277"></a></p>
<h5>1.1-2 <span class="Heading">An Error in the Character Table of <span class="SimpleMath">\(E_6(2)\)</span> (March 2016)</span></h5>
<p>In March 2016, Bill Unger computed the character table of the simple group <span class="SimpleMath">\(E_6(2)\)</span> with Magma (see <a href="chapBib_mj.html#biBCP96">[CP96]</a>) and compared it with the table that was contained in the <strong class="pkg">GAP</strong> Character Table Library since 2000. It turned out that the two tables did not coincide.</p>
<p>The differences concern irrational character values on classes of element order <span class="SimpleMath">\(91\)</span> and power map values on these classes. (The character values and power maps fit to each other in both tables; thus it may be that the assumption of a wrong power has implied the wrong character values, or vice versa.) Specifically, the <span class="SimpleMath">\(11\)</span>th power map in the <strong class="pkg">GAP</strong> table fixed all elements of order <span class="SimpleMath">\(91\)</span>. Using the smallest matrix representation of <span class="SimpleMath">\(E_6(2)\)</span> over the field with two elements, one can easily find an element <span class="SimpleMath">\(g\)</span> of order <span class="SimpleMath">\(91\)</span>, and show that the characteristic polynomials of <span class="SimpleMath">\(g\)</span> and <span class="SimpleMath">\(g^{11}\)</span> differ. Hence these two elements cannot be conjugate in <span class="SimpleMath">\(E_6(2)\)</span>. In other words, the <strong class="pkg">GAP</strong> table was wrong.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= AtlasGroup( "E6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= PseudoRandom( g ); until Order( x ) = 91;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CharacteristicPolynomial( x ) = CharacteristicPolynomial( x^11 );</span>
false
</pre></div>
<p>The wrong <strong class="pkg">GAP</strong> table has been corrected in version 1.3.0 of the <strong class="pkg">GAP</strong> Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "E6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord91:= Positions( OrdersClassRepresentatives( t ), 91 );</span>
[ 163, 164, 165, 166, 167, 168 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( t, 11 ){ ord91 };</span>
[ 167, 168, 163, 164, 165, 166 ]
</pre></div>
<p><a id="X7D7982CD87413F76" name="X7D7982CD87413F76"></a></p>
<h5>1.1-3 <span class="Heading">An Error in a Power Map of the Character Table of <span class="SimpleMath">\(2.F_4(2).2\)</span> (November 2015)</span></h5>
<p>As a part of the computations for <a href="chapBib_mj.html#biBBMO17">[BMO17]</a>, the character table of the group <span class="SimpleMath">\(2.F_4(2).2\)</span> was computed automatically from a representation of the group, using Magma (see <a href="chapBib_mj.html#biBCP96">[CP96]</a>). It turned out that the <span class="SimpleMath">\(2\)</span>-nd power map that had been stored on the library character table of <span class="SimpleMath">\(2.F_4(2).2\)</span> had been wrong.</p>
<p>In fact, this was the one and only case of a power map for an <strong class="pkg">Atlas</strong> group which was not determined by the character table, and the <code class="func">InfoText</code> (<a href="../../../doc/ref/chap12_mj.html#X871562FD7F982C12"><span class="RefLink">Reference: InfoText</span></a>) value of the character table had mentioned the two alternatives.</p>
<p>Note that the ambiguity is not present in the table of the factor group <span class="SimpleMath">\(F_4(2).2\)</span>, and only four faithful irreducible characters of <span class="SimpleMath">\(2.F_4(2).2\)</span> distinguish the four relevant conjugacy classes.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "2.F4(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= CharacterTable( "F4(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">map:= PowerMap( t, 2 );</span>
[ 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 11, 11, 3, 3, 3, 5, 5, 5, 3, 6, 6, 5,
5, 7, 7, 5, 8, 7, 29, 29, 9, 9, 9, 9, 11, 11, 9, 9, 9, 9, 11, 11,
43, 43, 20, 20, 20, 14, 14, 13, 13, 20, 21, 24, 28, 28, 57, 57, 29,
29, 29, 29, 33, 33, 35, 37, 37, 37, 37, 33, 33, 37, 37, 35, 41, 41,
42, 42, 79, 79, 43, 43, 83, 83, 45, 45, 47, 47, 53, 53, 91, 91, 57,
57, 61, 61, 61, 98, 98, 70, 70, 63, 63, 81, 81, 83, 83, 1, 6, 7,
11, 16, 17, 24, 24, 21, 27, 27, 25, 26, 29, 41, 53, 53, 53, 46, 56,
56, 56, 56, 62, 75, 75, 78, 78, 77, 77, 79, 79, 86, 86, 85, 85, 88,
88, 88, 88, 95, 95, 96, 96 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionSublist( map, [ 86, 86, 85, 85 ] );</span>
140
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t ){ [ 140 .. 143 ] };</span>
[ 32, 32, 32, 32 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesCentralizers( t ){ [ 140 .. 143 ] };</span>
[ 64, 64, 64, 64 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( t, f ){ [ 140 ..143 ] };</span>
[ 86, 86, 87, 87 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( f, 2 ){ [ 86, 87 ] };</span>
[ 50, 50 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pos:= PositionsProperty( Irr( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x[1] <> x[2] and Length( Set( x{ [ 140 .. 143 ] } ) ) > 1 );</span>
[ 144, 145, 146, 147 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( pos, i -> Irr(t)[i]{ [ 140 .. 143 ] } );</span>
[ [ 2*E(16)-2*E(16)^7, -2*E(16)+2*E(16)^7, 2*E(16)^3-2*E(16)^5,
-2*E(16)^3+2*E(16)^5 ],
[ -2*E(16)+2*E(16)^7, 2*E(16)-2*E(16)^7, -2*E(16)^3+2*E(16)^5,
2*E(16)^3-2*E(16)^5 ],
[ -2*E(16)^3+2*E(16)^5, 2*E(16)^3-2*E(16)^5, 2*E(16)-2*E(16)^7,
-2*E(16)+2*E(16)^7 ],
[ 2*E(16)^3-2*E(16)^5, -2*E(16)^3+2*E(16)^5, -2*E(16)+2*E(16)^7,
2*E(16)-2*E(16)^7 ] ]
</pre></div>
<p>I had not found a suitable subgroup of <span class="SimpleMath">\(2.F_4(2).2\)</span> whose character table could be used to decide the question which of the two alternatives is the correct one.</p>
<p><a id="X836E4B6184F32EF5" name="X836E4B6184F32EF5"></a></p>
<h5>1.1-4 <span class="Heading">A Character Table with a Wrong Name (May 2017)</span></h5>
<p>(This example is much older.)</p>
<p>The character table that is shown in <a href="chapBib_mj.html#biBOst86">[Ost86, p. 126 f.]</a> is claimed to be the table of a Sylow <span class="SimpleMath">\(2\)</span> subgroup <span class="SimpleMath">\(P\)</span> of the sporadic simple Lyons group <span class="SimpleMath">\(Ly\)</span>. This table had been contained in the character table library of the <strong class="pkg">CAS</strong> system (see <a href="chapBib_mj.html#biBNPP84">[NPP84]</a>), which was one of the predecessors of <strong class="pkg">GAP</strong>.</p>
<p>It is easy to see that no subgroup of <span class="SimpleMath">\(Ly\)</span> can have this character table. Namely, the group of that table contains elements of order eight with centralizer order <span class="SimpleMath">\(2^6\)</span>, and this does not occur in <span class="SimpleMath">\(Ly\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl:= CharacterTable( "Ly" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orders:= OrdersClassRepresentatives( tbl );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">order8:= Filtered( [ 1 .. Length( orders ) ], x -> orders[x] = 8 );</span>
[ 12, 13 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesCentralizers( tbl ){ order8 } / 2^6;</span>
[ 15/2, 3/2 ]
</pre></div>
<p>The table of <span class="SimpleMath">\(P\)</span> has been computed in <a href="chapBib_mj.html#biBBre91">[Bre91]</a> with character theoretic methods. Nowadays it would be no problem to take a permutation representation of <span class="SimpleMath">\(Ly\)</span>, to compute its Sylow <span class="SimpleMath">\(2\)</span> subgroup, and use this group to compute its character table. However, the task is even easier if we assume that <span class="SimpleMath">\(Ly\)</span> has a subgroup of the structure <span class="SimpleMath">\(3.McL.2\)</span>. This subgroup is of odd index, hence it contains a conjugate of <span class="SimpleMath">\(P\)</span>. Clearly the Sylow <span class="SimpleMath">\(2\)</span> subgroups in the factor group <span class="SimpleMath">\(McL.2\)</span> are isomorphic with <span class="SimpleMath">\(P\)</span>. Thus we can start with a rather small permutation representation.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= AtlasGroup( "McL.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NrMovedPoints( g );</span>
275
<span class="GAPprompt">gap></span> <span class="GAPinput">syl:= SylowSubgroup( g, 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pc:= Image( IsomorphismPcGroup( syl ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( pc );;</span>
</pre></div>
<p>The character table coincides with the one which is stored in the Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "LyN2" ) ) );</span>
true
</pre></div>
<p><a id="X8159D79C7F071B33" name="X8159D79C7F071B33"></a></p>
<h4>1.2 <span class="Heading">Some finite factor groups of perfect space groups (February 2014)</span></h4>
<p>If one wants to find a group to which a given character table from the <strong class="pkg">GAP</strong> Character Table Library belongs, one can try the function <code class="func">GroupInfoForCharacterTable</code> (<a href="..//doc/chap3_mj.html#X78DCD38B7D96D8A4"><span class="RefLink">CTblLib: GroupInfoForCharacterTable</span></a>). For a long time, this was not successful in the case of <span class="SimpleMath">\(16\)</span> character tables that had been computed by W. Hanrath (see Section "Ordinary and Brauer Tables in the <strong class="pkg">GAP</strong> Character Table Library" in the <strong class="pkg">CTblLib</strong> manual).</p>
<p>Using the information from <a href="chapBib_mj.html#biBHP89">[HP89]</a>, it is straightforward to construct such groups as factor groups of infinite groups. Since version 1.3.0 of the <strong class="pkg">CTblLib</strong> package, calling <code class="func">GroupInfoForCharacterTable</code> (<a href="..//doc/chap3_mj.html#X78DCD38B7D96D8A4"><span class="RefLink">CTblLib: GroupInfoForCharacterTable</span></a>) for the <span class="SimpleMath">\(16\)</span> library tables in question yields nonempty lists and thus allows one to access the results of these constructions, via the function <code class="code">CTblLib.FactorGroupOfPerfectSpaceGroup</code>. This is an undocumented auxiliary function that becomes available automatically when <code class="func">GroupInfoForCharacterTable</code> (<a href="..//doc/chap3_mj.html#X78DCD38B7D96D8A4"><span class="RefLink">CTblLib: GroupInfoForCharacterTable</span></a>) has been called for the first time.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupInfoForCharacterTable( "A5" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsBound( CTblLib.FactorGroupOfPerfectSpaceGroup );</span>
true
</pre></div>
<p>Below we list the <span class="SimpleMath">\(16\)</span> group constructions. In each case, an epimorphism from the space group in question is defined by mapping the generators returned by by the function <code class="code">generatorsOfPerfectSpaceGroup</code> defined below to the generators stored in the attribute <code class="func">GeneratorsOfGroup</code> (<a href="../../../doc/ref/chap39_mj.html#X79C44528864044C5"><span class="RefLink">Reference: GeneratorsOfGroup</span></a>) of the group returned by <code class="code">CTblLib.FactorGroupOfPerfectSpaceGroup</code>.</p>
<p><a id="X8710D4947AEB366F" name="X8710D4947AEB366F"></a></p>
<h5>1.2-1 <span class="Heading">Constructing the space groups in question</span></h5>
<p>In <a href="chapBib_mj.html#biBHP89">[HP89]</a>, a space group <span class="SimpleMath">\(S\)</span> is described as a subgroup <span class="SimpleMath">\(\{ M(g, t); g \in P, t \in T \}\)</span> of GL<span class="SimpleMath">\((d+1, ℤ)\)</span>, where</p>
<p><div class="pcenter"><table> <tr> <td class="tdright"><span class="SimpleMath">M(g, t)</span></td> <td class="tdcenter"><span class="SimpleMath"> = </span></td> <td class="tdleft"> <table class="GAPDocTable"> <tr> <td class="tdright"><span class="SimpleMath">g</span></td> <td class="tdright"><span class="SimpleMath">0</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">V(g)+t</span></td> <td class="tdright"><span class="SimpleMath">1</span></td> </tr> </table> </td> </tr> </table> </div></p>
<p>the <em>point group</em> <span class="SimpleMath">\(P\)</span> of <span class="SimpleMath">\(S\)</span> is a finite subgroup of GL<span class="SimpleMath">\((d, ℤ)\)</span>, the <em>translation lattice</em> <span class="SimpleMath">\(T\)</span> of <span class="SimpleMath">\(S\)</span> is a sublattice of <span class="SimpleMath">\(ℤ^d\)</span>, and the <em>vector system</em> <span class="SimpleMath">\(V\)</span> of <span class="SimpleMath">\(S\)</span> is a map from <span class="SimpleMath">\(P\)</span> to <span class="SimpleMath">\(ℤ^d\)</span>. Note that <span class="SimpleMath">\(V\)</span> maps the identity matrix <span class="SimpleMath">\(I \in\)</span> GL<span class="SimpleMath">\((d, ℤ)\)</span> to the zero vector, and <span class="SimpleMath">\(M(T):= \{ M(I, t); t \in T \}\)</span> is a normal subgroup of <span class="SimpleMath">\(S\)</span> that is isomorphic with <span class="SimpleMath">\(T\)</span>. More generally, <span class="SimpleMath">\(M(n T)\)</span> is a normal subgroup of <span class="SimpleMath">\(S\)</span>, for any positive integer <span class="SimpleMath">\(n\)</span>.</p>
<p>Specifically, <span class="SimpleMath">\(P\)</span> is given by generators <span class="SimpleMath">\(g_1, g_2, \ldots, g_k\)</span>, <span class="SimpleMath">\(T\)</span> is given by a <span class="SimpleMath">\(ℤ\)</span>-basis <span class="SimpleMath">\(B = \{ b_1, b_2, \ldots, b_d \}\)</span> of <span class="SimpleMath">\(T\)</span>, and <span class="SimpleMath">\(V\)</span> is given by the vectors <span class="SimpleMath">\(V(g_1), V(g_2), \ldots, V(g_k)\)</span>.</p>
<p>In the examples below, the matrix representation of <span class="SimpleMath">\(P\)</span> is irreducible, so we need just the following <span class="SimpleMath">\(k+1\)</span> elements to generate <span class="SimpleMath">\(S\)</span>:</p>
<p><div class="pcenter"> <table> <tr> <td class="tdleft"> <table class="GAPDocTable"> <tr> <td class="tdright"><span class="SimpleMath">g_1</span></td> <td class="tdright"><span class="SimpleMath">0</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">V(g_1)</span></td> <td class="tdright"><span class="SimpleMath">1</span></td> </tr> </table> <td class="tdleft"> , </td> </td> <td class="tdleft"> <table class="GAPDocTable"> <tr> <td class="tdright"><span class="SimpleMath">g_2</span></td> <td class="tdright"><span class="SimpleMath">0</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">V(g_2)</span></td> <td class="tdright"><span class="SimpleMath">1</span></td> </tr> </table> </td> <td class="tdleft"> , ..., </td> <td class="tdleft"> <table class="GAPDocTable"> <tr> <td class="tdright"><span class="SimpleMath">g_k</span></td> <td class="tdright"><span class="SimpleMath">0</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">V(g_k)</span></td> <td class="tdright"><span class="SimpleMath">1</span></td> </tr> </table> </td> <td class="tdleft"> , </td> <td class="tdleft"> <table class="GAPDocTable"> <tr> <td class="tdright"><span class="SimpleMath">I</span></td> <td class="tdright"><span class="SimpleMath">0</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">b_1</span></td> <td class="tdright"><span class="SimpleMath">1</span></td> </tr> </table> </td> <td class="tdleft"> . </td> </tr> </table> </div></p>
<p>These generators are returned by the function <code class="code">generatorsOfPerfectSpaceGroup</code>, when the inputs are <span class="SimpleMath">\([ g_1, g_2, \ldots, g_k ]\)</span>, <span class="SimpleMath">\([ V(g_1), V(g_2), \ldots, V(g_k) ]\)</span>, and <span class="SimpleMath">\(b_1\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">generatorsOfPerfectSpaceGroup:= function( Pgens, V, t )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local d, result, i, m;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> d:= Length( Pgens[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. Length( Pgens ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> m:= IdentityMat( d+1 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> m{ [ 1 .. d ] }{ [ 1 .. d ] }:= Pgens[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> m[ d+1 ]{ [ 1 .. d ] }:= V[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result[i]:= m;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> m:= IdentityMat( d+1 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> m[ d+1 ]{ [ 1 .. d ] }:= t;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( result, m );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return result;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p><a id="X84E7FE70843422B0" name="X84E7FE70843422B0"></a></p>
<h5>1.2-2 <span class="Heading">Constructing the factor groups in question</span></h5>
<p>The space group <span class="SimpleMath">\(S\)</span> acts on <span class="SimpleMath">\(ℤ^d\)</span>, via <span class="SimpleMath">\(v \cdot M(g, t) = v g + V(g) + t\)</span>. A (not necessarily faithful) representation of <span class="SimpleMath">\(S/M(n T)\)</span> can be obtained from the corresponding action of <span class="SimpleMath">\(S\)</span> on <span class="SimpleMath">\(ℤ^d/(n ℤ^d)\)</span>, that is, by reducing the vectors modulo <span class="SimpleMath">\(n\)</span>. For the <strong class="pkg">GAP</strong> computations, we work instead with vectors of length <span class="SimpleMath">\(d+1\)</span>, extending each vector in <span class="SimpleMath">\(ℤ^d\)</span> by <span class="SimpleMath">\(1\)</span> in the last position, and acting on these vectors by right multiplicaton with elements of <span class="SimpleMath">\(S\)</span>. Multiplication followed by reduction modulo <span class="SimpleMath">\(n\)</span> is implemented by the action function returned by <code class="code">multiplicationModulo</code> when this is called with argument <span class="SimpleMath">\(n\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">multiplicationModulo:= n -> function( v, g )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return List( v * g, x -> x mod n ); end;;</span>
</pre></div>
<p>In some of the examples, the representation of <span class="SimpleMath">\(P\)</span> given in <a href="chapBib_mj.html#biBHP89">[HP89]</a> is the action on the factor of a permutation module modulo its trivial submodule. For that, we provide the function <code class="code">deletedPermutationMat</code>, cf. <a href="chapBib_mj.html#biBHP89">[HP89, p. 269]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">deletedPermutationMat:= function( pi, n )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local mat, j, i;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mat:= PermutationMat( pi, n );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mat:= mat{ [ 1 .. n-1 ] }{ [ 1 .. n-1 ] };</span>
<span class="GAPprompt">></span> <span class="GAPinput"> j:= n ^ pi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if j <> n then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. n-1 ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mat[i][j]:= -1;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return mat;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>After constructing permutation generators for the example groups, we verify that the groups fit to the character tables from the <strong class="pkg">GAP</strong> Character Table Library and to the permutation generators stored for the construction of the group via <code class="code">CTblLib.FactorGroupOfPerfectSpaceGroup</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup:= function( gens, id )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local sm, act, stored, hom;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sm:= SmallerDegreePermutationRepresentation( Group( gens ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> gens:= List( gens, x -> x^sm );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> act:= Images( sm );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsRecord( TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( act ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( id ) ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return "wrong character table";</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GroupInfoForCharacterTable( id );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> stored:= CTblLib.FactorGroupOfPerfectSpaceGroup( id );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> hom:= GroupHomomorphismByImages( stored, act,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GeneratorsOfGroup( stored ), gens );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if hom = fail or not IsBijective( hom ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return "wrong group";</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return true;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p><a id="X79109A20873E76DA" name="X79109A20873E76DA"></a></p>
<h5>1.2-3 <span class="Heading">Examples with point group <span class="SimpleMath">\(A_5\)</span></span></h5>
<p>There are two examples with <span class="SimpleMath">\(d = 5\)</span>. The generators of the point group are as follows (see <a href="chapBib_mj.html#biBHP89">[HP89, p. 272]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:= deletedPermutationMat( (1,3)(2,4), 6 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= deletedPermutationMat( (1,2,3)(4,5,6), 6 );;</span>
</pre></div>
<p>In both cases, the vector system is <span class="SimpleMath">\(V_2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= [ [ 2, 2, 0, 0, 1 ], 0 * b[1] ];;</span>
</pre></div>
<p>In the first example, the translation lattice is the sublattice <span class="SimpleMath">\(L = 2 L_1\)</span> of the full lattice <span class="SimpleMath">\(L_1 = ℤ^d\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 2, 0, 0, 0, 0 ];;</span>
</pre></div>
<p>The library character table with identifier <code class="code">"P1/G2/L1/V2/ext4"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(4 L)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(8\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, [ 1, 0, 0, 0, 0, 1 ], fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P1/G2/L1/V2/ext4" );</span>
true
</pre></div>
<p>In the second example, the translation lattice is the sublattice <span class="SimpleMath">\(2 L_2\)</span> of <span class="SimpleMath">\(ℤ^d\)</span> where <span class="SimpleMath">\(L_2\)</span> has the following basis.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">bas:= [ [-1,-1, 1, 1, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1, 1,-1, 1, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 1, 1,-1,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 1,-1,-1, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1, 1, 1,-1, 1 ] ];;</span>
</pre></div>
<p>For the sake of simplicity, we rewrite the action of the point group to one on <span class="SimpleMath">\(L_2\)</span>, and we adjust also the vector system.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= Basis( Rationals^Length( bas ), bas );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">abas:= List( bas, x -> Coefficients( B, x * a ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bbas:= List( bas, x -> Coefficients( B, x * b ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">vbas:= List( v, x -> Coefficients( B, x ) );</span>
[ [ 3/2, 1, 2, 3/2, -1 ], [ 0, 0, 0, 0, 0 ] ]
</pre></div>
<p>In order to work with integral matrices (which is necessary because <code class="code">multiplicationModulo</code> uses <strong class="pkg">GAP</strong>'s <code class="code">mod</code> operator), we double both the vector system and the translation lattice.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">vbas:= vbas * 2;</span>
[ [ 3, 2, 4, 3, -2 ], [ 0, 0, 0, 0, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= 2 * t;</span>
[ 4, 0, 0, 0, 0 ]
</pre></div>
<p>The library character table with identifier <code class="code">"P1/G2/L2/V2/ext4"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(8 L_2)\)</span>; since we have doubled the lattice, we compute the action on an orbit modulo <span class="SimpleMath">\(16\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ abas, bbas ], vbas, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 16 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, [ 0, 0, 0, 0, 0, 1 ], fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P1/G2/L2/V2/ext4" );</span>
true
</pre></div>
<p><a id="X83523D1E792F9E01" name="X83523D1E792F9E01"></a></p>
<h5>1.2-4 <span class="Heading">Examples with point group <span class="SimpleMath">\(L_3(2)\)</span></span></h5>
<p>There are three examples with <span class="SimpleMath">\(d = 6\)</span> and one example with <span class="SimpleMath">\(d = 8\)</span>. The generators of the point group for the first three examples are as follows (see <a href="chapBib_mj.html#biBHP89">[HP89, p. 290]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:= [ [ 0, 1, 0, 1, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0, 1, 1, 1, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1,-1,-1,-1, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0,-1,-1,-1,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 1, 1, 1, 0, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1, 0, 1, 0 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= [ [-1, 0, 0, 0, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0,-1, 0,-1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 1, 1, 1, 1, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1,-1,-1, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0, 0, 0, 0, 0 ] ];;</span>
</pre></div>
<p>The first vector system is the trivial vector system <span class="SimpleMath">\(V_1\)</span> (that is, the space group <span class="SimpleMath">\(S\)</span> is a split extension of the point group and the translation lattice), and the translation lattice is the full lattice <span class="SimpleMath">\(L_1 = ℤ^d\)</span>.</p>
<p>The library character table with identifier <code class="code">"P11/G1/L1/V1/ext4"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(4 L_1)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(4\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= List( [ 1, 2 ], i -> 0 * a[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 1, 0, 0, 0, 0, 0 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">seed:= [ 1, 0, 0, 0, 0, 0, 1 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, seed, fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P11/G1/L1/V1/ext4" );</span>
true
</pre></div>
<p>The second vector system is <span class="SimpleMath">\(V_2\)</span>, and the translation lattice is <span class="SimpleMath">\(2 L_1\)</span>.</p>
<p>The library character table with identifier <code class="code">"P11/G1/L1/V2/ext4"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(8 L_1)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(8\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= [ [ 1, 0, 1, 0, 0, 0 ], 0 * a[1] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 2, 0, 0, 0, 0, 0 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 1 ], fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P11/G1/L1/V2/ext4" );</span>
true
</pre></div>
<p>The third vector system is <span class="SimpleMath">\(V_3\)</span>, and the translation lattice is <span class="SimpleMath">\(2 L_1\)</span>.</p>
<p>The library character table with identifier <code class="code">"P11/G1/L1/V3/ext4"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(8 L_1)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(8\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= [ [ 0, 1, 0, 0, 1, 0 ], 0 * a[1] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 2, 0, 0, 0, 0, 0 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 1 ], fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P11/G1/L1/V3/ext4" );</span>
true
</pre></div>
<p>The generators of the point group for the fourth example are as follows (see <a href="chapBib_mj.html#biBHP89">[HP89, p. 293]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:= [ [ 1, 0, 0, 1, 0,-1, 0, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0,-1, 1, 0,-1, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0, 0, 1, 0,-1, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0,-1, 0,-1, 0, 1, 1,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0,-1, 1, 1,-1, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1,-1,-1, 0, 0, 0, 1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0,-1, 1, 0,-1, 1, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0,-1, 0, 0, 0, 0, 0 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= [ [ 1, 0,-2, 0, 1,-1, 1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0,-1, 0, 0, 0, 0, 1,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0,-1, 0, 1,-1, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1,-1, 1,-1,-1, 2, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0,-1, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0,-1, 0,-1,-1, 1, 1,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1,-1, 0, 0, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0, 0, 0, 0, 0, 0, 0 ] ];;</span>
</pre></div>
<p>The vector system is the trivial vector system <span class="SimpleMath">\(V_1\)</span>, and the translation lattice is the full lattice <span class="SimpleMath">\(L_1 = ℤ^d\)</span>.</p>
<p>The library character table with identifier <code class="code">"P11/G4/L1/V1/ext3"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(3 L_1)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= List( [ 1, 2 ], i -> 0 * a[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 1, 0, 0, 0, 0, 0, 0, 0 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">seed:= [ 1, 0, 0, 0, 0, 0, 0, 0, 1 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, seed, fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P11/G4/L1/V1/ext3" );</span>
true
</pre></div>
<p><a id="X7A01A9BC846BE39A" name="X7A01A9BC846BE39A"></a></p>
<h5>1.2-5 <span class="Heading">Example with point group SL<span class="SimpleMath">\(_2(7)\)</span></span></h5>
<p>There is one example with <span class="SimpleMath">\(d = 8\)</span>. The generators of the point group are as follows (see <a href="chapBib_mj.html#biBHP89">[HP89, p. 295]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:= KroneckerProduct( IdentityMat( 4 ), [ [ 0, 1 ], [ -1, 0 ] ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= [ [ 0,-1, 0, 0, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1, 0, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1, 0, 0, 0, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0,-1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0,-1, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 1, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 1, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0, 0, 1 ] ];;</span>
</pre></div>
<p>The vector system is the trivial vector system <span class="SimpleMath">\(V_1\)</span>, and the translation lattice is the sublattice <span class="SimpleMath">\(L_2\)</span> of <span class="SimpleMath">\(ℤ^d\)</span> that has the following basis, which is called <span class="SimpleMath">\(B(2,8)\)</span> in <a href="chapBib_mj.html#biBHP89">[HP89, p. 269]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">bas:= [ [ 1, 1, 0, 0, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 1, 1, 0, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1, 1, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 1, 1, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 1, 1, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 1, 1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0, 1, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0,-1, 1 ] ];;</span>
</pre></div>
<p>For the sake of simplicity, we rewrite the action to one on <span class="SimpleMath">\(L_2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= Basis( Rationals^Length( bas ), bas );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">abas:= List( bas, x -> Coefficients( B, x * a ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bbas:= List( bas, x -> Coefficients( B, x * b ) );;</span>
</pre></div>
<p>The library character table with identifier <code class="code">"P12/G1/L2/V1/ext2"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(2 L_2)\)</span>. The action on an orbit modulo <span class="SimpleMath">\(2\)</span> is not faithful, its kernel contains the centre of SL<span class="SimpleMath">\((2,7)\)</span>. We can compute a faithful representation by acting on pairs: One entry is the usual vector and the other entry carries the action of the point group.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= List( [ 1, 2 ], i -> 0 * a[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 1, 0, 0, 0, 0, 0, 0, 0 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ abas, bbas ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">funpairs:= function( pair, g )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [ fun( pair[1], g ), pair[2] * g ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">seed:= [ [ 1, 0, 0, 0, 0, 0, 0, 0, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0, 0, 0, 0, 0, 0, 0, 0 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, seed, funpairs );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, funpairs ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P12/G1/L2/V1/ext2" );</span>
true
</pre></div>
<p><a id="X7D3100B58093F37D" name="X7D3100B58093F37D"></a></p>
<h5>1.2-6 <span class="Heading">Example with point group <span class="SimpleMath">\(2^3.L_3(2)\)</span></span></h5>
<p>There is one example with <span class="SimpleMath">\(d = 7\)</span>. The generators of the point group are as follows (see <a href="chapBib_mj.html#biBHP89">[HP89, p. 297]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:= PermutationMat( (2,4)(5,7), 7 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= PermutationMat( (1,3,2)(4,6,5), 7 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:= DiagonalMat( [ -1, -1, 1, 1, -1, -1, 1 ] );;</span>
</pre></div>
<p>The vector system is the trivial vector system <span class="SimpleMath">\(V_1\)</span>, and the translation lattice is the sublattice <span class="SimpleMath">\(L_2\)</span> of <span class="SimpleMath">\(ℤ^d\)</span> that has the following basis, which is called <span class="SimpleMath">\(B(2,7)\)</span> in <a href="chapBib_mj.html#biBHP89">[HP89, p. 269]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">bas:= [ [ 1, 1, 0, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 1, 1, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1, 1, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 1, 1, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 1, 1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 1, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0,-1, 1 ] ];;</span>
</pre></div>
<p>For the sake of simplicity, we rewrite the action to one on <span class="SimpleMath">\(L_2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= Basis( Rationals^Length( bas ), bas );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">abas:= List( bas, x -> Coefficients( B, x * a ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bbas:= List( bas, x -> Coefficients( B, x * b ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cbas:= List( bas, x -> Coefficients( B, x * c ) );;</span>
</pre></div>
<p>The library character table with identifier <code class="code">"P13/G1/L2/V1/ext2"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(2 L_2)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= List( [ 1 .. 3 ], i -> 0 * a[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 1, 0, 0, 0, 0, 0, 0 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ abas,bbas,cbas ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 0, 1 ], fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">act:= Action( g, orb, fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P13/G1/L2/V1/ext2" );</span>
true
</pre></div>
<p><a id="X80800F3B7D6EF06C" name="X80800F3B7D6EF06C"></a></p>
<h5>1.2-7 <span class="Heading">Examples with point group <span class="SimpleMath">\(A_6\)</span></span></h5>
<p>There are two examples with <span class="SimpleMath">\(d = 10\)</span>. In both cases, the generators of the point group are as follows (see <a href="chapBib_mj.html#biBHP89">[HP89, p. 307]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= [ [ 0,-1, 0, 0, 0, 0, 0, 0, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0,-1, 0, 0, 0, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:= [ [ 0, 0, 0, 0, 0, 0, 0,-1, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0, 0,-1, 1,-1 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0,-1, 1, 0,-1, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0,-1, 1, 0, 0, 0, 0,-1, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0, 0, 0, 0,-1 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 1,-1, 0, 0, 1 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1,-1, 0, 0, 0, 0, 0, 1 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1, 0, 1, 0, 0,-1, 0, 0, 0, 0 ] ];;</span>
</pre></div>
<p>In both examples, the vector system is the trivial vector system <span class="SimpleMath">\(V_1\)</span>, and the translation lattices are the lattices <span class="SimpleMath">\(L_2\)</span> and <span class="SimpleMath">\(L_5\)</span>, respectively, which have the following bases.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">bas2:= [ [ 0, 1,-1, 0, 0, 0, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1,-1, 0, 0, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 1,-1, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 1,-1, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 1, 0,-1, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0, 0, 1,-1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0, 0, 0, 1,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 1, 0, 0, 0, 0, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 1, 0, 0, 0, 0, 0, 1, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bas5:= [ [ 0,-1, 1, 1,-1, 1, 1,-1,-1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0,-1,-1,-1, 1, 1,-1,-1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 1, 1,-1, 1, 1,-1, 0, 1, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 1, 0,-1, 0,-1, 1,-1, 1,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1, 0,-1, 1, 1, 0,-1,-1, 1,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 1,-1, 1, 1,-1, 1, 1, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1,-1, 1, 1, 0,-1,-1,-1,-1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1,-1, 0,-1, 1,-1, 1, 1, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1, 1,-1, 1,-1, 0,-1, 1, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1,-1,-1, 1, 1, 1, 0, 0,-1,-1 ] ];;</span>
</pre></div>
<p>For the sake of simplicity, we rewrite the action to actions on <span class="SimpleMath">\(L_2\)</span> and <span class="SimpleMath">\(L_5\)</span>, respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">B2:= Basis( Rationals^Length( bas2 ), bas2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bbas2:= List( bas2, x -> Coefficients( B2, x * b ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cbas2:= List( bas2, x -> Coefficients( B2, x * c ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B5:= Basis( Rationals^Length( bas5 ), bas5 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bbas5:= List( bas5, x -> Coefficients( B5, x * b ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cbas5:= List( bas5, x -> Coefficients( B5, x * c ) );;</span>
</pre></div>
<p>The library character table with identifier <code class="code">"P21/G3/L2/V1/ext2"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(2 L_2)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= List( [ 1, 2 ], i -> 0 * bbas2[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ bbas2, cbas2 ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">seed:= [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, seed, fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P21/G3/L2/V1/ext2" );</span>
true
</pre></div>
<p>The library character table with identifier <code class="code">"P21/G3/L5/V1/ext2"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(2 L_5)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ bbas5, cbas5 ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, seed, fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P21/G3/L5/V1/ext2" );</span>
true
</pre></div>
<p><a id="X7D43452C79B0EAE1" name="X7D43452C79B0EAE1"></a></p>
<h5>1.2-8 <span class="Heading">Examples with point group <span class="SimpleMath">\(L_2(8)\)</span></span></h5>
<p>There are two examples with <span class="SimpleMath">\(d = 7\)</span>. In both cases, the generators of the point group are as follows (see <a href="chapBib_mj.html#biBHP89">[HP89, p. 327]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:= [ [ 0,-1, 0, 1, 0,-1, 1],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0,-1, 0, 1,-1, 0],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0,-1, 1, 0, 0],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0,-1, 0, 0, 0],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1,-1, 0, 0, 0],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0,-1, 1, 0,-1, 0, 0],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1,-1, 0, 1, 0,-1, 0] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= [ [-1, 0, 1, 0,-1, 1, 0],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0,-1, 0, 1,-1, 0, 0],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0,-1, 1, 0, 0, 0],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0,-1, 0, 0, 0, 0],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 1,-1, 0, 0, 0, 0],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1, 1, 0,-1, 0, 0, 0],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1, 0, 1, 0,-1, 0, 1] ];;</span>
</pre></div>
<p>In both examples, the vector system is <span class="SimpleMath">\(V_2\)</span>. The translation lattice in the first example is the lattice <span class="SimpleMath">\(L = 3 ℤ^d\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= [ [ 2, 1, 0, 0, 0, 1, 4 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 2, 0, 0, 0, 0, 0, 0 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 3, 0, 0, 0, 0, 0, 0 ];;</span>
</pre></div>
<p>The library character table with identifier <code class="code">"P41/G1/L1/V3/ext3"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(3 L)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(9\)</span>.</p>
<p>The orbits in this action are quite long. we choose a seed vector from the fixed space of an element of order <span class="SimpleMath">\(7\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">aa:= sgens[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bb:= sgens[2];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elm:= aa*bb;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Order( elm );</span>
7
<span class="GAPprompt">gap></span> <span class="GAPinput">fixed:= NullspaceMat( elm - aa^0 );</span>
[ [ 1, 1, 1, 1, 1, 1, 1, 0 ], [ -4, 1, 1, -5, -5, 2, 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 9 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">seed:= fun( fixed[2], aa^0 );</span>
[ 5, 1, 1, 4, 4, 2, 0, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, seed, fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P41/G1/L1/V3/ext3" );</span>
true
</pre></div>
<p>The translation lattice in the second example is the lattice <span class="SimpleMath">\(L = 6 ℤ^d\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 6, 0, 0, 0, 0, 0, 0 ];;</span>
</pre></div>
<p>The library character table with identifier <code class="code">"P41/G1/L1/V4/ext3"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(6 L)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(18\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 18 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">seed:= fun( fixed[2], aa^0 );</span>
[ 14, 1, 1, 13, 13, 2, 0, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, seed, fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P41/G1/L1/V4/ext3" );</span>
true
</pre></div>
<p><a id="X8575CE147A9819BF" name="X8575CE147A9819BF"></a></p>
<h5>1.2-9 <span class="Heading">Example with point group <span class="SimpleMath">\(M_{11}\)</span></span></h5>
<p>There is one example with <span class="SimpleMath">\(d = 10\)</span>. The generators of the point group are as follows (see <a href="chapBib_mj.html#biBHP89">[HP89, p. 334]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:= deletedPermutationMat( (1,9)(3,5)(7,11)(8,10), 11 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= deletedPermutationMat( (1,4,3,2)(5,8,7,6), 11 );;</span>
</pre></div>
<p>The vector system is <span class="SimpleMath">\(V_2\)</span>, and the translation lattice is <span class="SimpleMath">\(L = 2 ℤ^d\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= [ 0 * a[1],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];;</span>
</pre></div>
<p>The library character table with identifier <code class="code">"P48/G1/L1/V2/ext2"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(2 L)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(4\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ], fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P48/G1/L1/V2/ext2" );</span>
true
</pre></div>
<p><a id="X7C0201B77DA1682A" name="X7C0201B77DA1682A"></a></p>
<h5>1.2-10 <span class="Heading">Example with point group <span class="SimpleMath">\(U_3(3)\)</span></span></h5>
<p>There is one example with <span class="SimpleMath">\(d = 7\)</span>. The generators of the point group are as follows (see <a href="chapBib_mj.html#biBHP89">[HP89, p. 335]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:= [ [ 0, 0,-1, 1, 0,-1, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0,-1, 1, 1,-1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 1,-1, 0, 1, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 1, 0,-1, 1, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1, 1, 1,-1, 0, 1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1, 0, 1,-1, 0, 0, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 0, 1 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= [ [ 0, 0, 0, 0, 0, 0, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0,-1, 1, 0,-1, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0,-1, 1, 1,-1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 1,-1, 0, 1, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 1, 0,-1, 1, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1, 1, 1,-1, 0, 1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [-1, 0, 1,-1, 0, 0, 1 ] ];;</span>
</pre></div>
<p>The vector system is <span class="SimpleMath">\(V_2\)</span>, and the translation lattice is <span class="SimpleMath">\(L = 3 ℤ^d\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= [ [ 2, 1, 0, 0, 2, 1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 0 * b[1] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 3, 0, 0, 0, 0, 0, 0 ];;</span>
</pre></div>
<p>The library character table with identifier <code class="code">"P49/G1/L1/V2/ext3"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(3 L)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(9\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 9 );;</span>
</pre></div>
<p>The orbits in this action are quite long. we choose a seed vector from the fixed space of an element of order <span class="SimpleMath">\(12\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">aa:= sgens[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bb:= sgens[2];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elm:= aa*bb^4;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Order( elm );</span>
12
<span class="GAPprompt">gap></span> <span class="GAPinput">fixed:= NullspaceMat( elm - aa^0 );</span>
[ [ -1, -1, 1, 1, -1, -1, 1, 0 ], [ 0, -3, 1, 1, -1, -2, 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">seed:= fun( fixed[2], aa^0 );</span>
[ 0, 6, 1, 1, 8, 7, 0, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, seed, fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P49/G1/L1/V2/ext3" );</span>
true
</pre></div>
<p><a id="X85D9C329792E58F3" name="X85D9C329792E58F3"></a></p>
<h5>1.2-11 <span class="Heading">Examples with point group <span class="SimpleMath">\(U_4(2)\)</span></span></h5>
<p>There are two examples with <span class="SimpleMath">\(d = 6\)</span>. In both cases, the generators of the point group are as follows (see <a href="chapBib_mj.html#biBHP89">[HP89, p. 336]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:= [ [ 0, 1, 0,-1,-1, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0,-1, 0, 1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0,-1, 0, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0,-1, 0, 0, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0, 0, 1 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= [ [ 0,-1, 0, 1, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 1, 0,-1,-1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1, 1, 0,-1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 0,-1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 1, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0, 0, 0, 0, 0 ] ];;</span>
</pre></div>
<p>In both examples, the vector system is the trivial vector system <span class="SimpleMath">\(V_1\)</span>, and the translation lattice is the full lattice <span class="SimpleMath">\(L_1 = ℤ^d\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= List( [ 1, 2 ], i -> 0 * a[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= [ 1, 0, 0, 0, 0, 0 ];;</span>
</pre></div>
<p>The library character table with identifier <code class="code">"P50/G1/L1/V1/ext3"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(3 L_1)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 1 ], fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P50/G1/L1/V1/ext3" );</span>
true
</pre></div>
<p>The library character table with identifier <code class="code">"P50/G1/L1/V1/ext4"</code> belongs to the factor group of <span class="SimpleMath">\(S\)</span> modulo the normal subgroup <span class="SimpleMath">\(M(4 L_1)\)</span>, so we compute the action on an orbit modulo <span class="SimpleMath">\(4\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( sgens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fun:= multiplicationModulo( 4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 1 ], fun );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">verifyFactorGroup( permgens, "P50/G1/L1/V1/ext4" );</span>
true
</pre></div>
<p><a id="X8635EE0B78A66120" name="X8635EE0B78A66120"></a></p>
<h5>1.2-12 <span class="Heading">A remark on one of the example groups</span></h5>
<p>The (perfect) character table with identifier <code class="code">"P1/G2/L2/V2/ext4"</code> has the property that its character degrees are exactly the divisors of <span class="SimpleMath">\(60\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">degrees:= CharacterDegrees( CharacterTable( "P1/G2/L2/V2/ext4" ) );</span>
[ [ 1, 1 ], [ 2, 2 ], [ 3, 2 ], [ 4, 2 ], [ 5, 1 ], [ 6, 5 ],
[ 10, 4 ], [ 12, 4 ], [ 15, 20 ], [ 20, 2 ], [ 30, 29 ], [ 60, 8 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( degrees, x -> x[1] ) = DivisorsInt( 60 );</span>
true
</pre></div>
<p>There are nilpotent groups with the same set of character degrees, for example the direct product of four extraspecial groups of the orders <span class="SimpleMath">\(2^3\)</span>, <span class="SimpleMath">\(2^3\)</span>, <span class="SimpleMath">\(3^3\)</span>, and <span class="SimpleMath">\(5^3\)</span>, respectively. This phenomenon has been described in <a href="chapBib_mj.html#biBNR14">[NR14]</a>.</p>
<p><a id="X8448022280E82C52" name="X8448022280E82C52"></a></p>
<h4>1.3 <span class="Heading">Generality problems (December 2004/October 2015)</span></h4>
<p>The term "generality problem" is used for problems concerning consistent choices of conjugacy classes of Brauer tables for the same group, in different characteristics. The definition and some examples are given in <a href="chapBib_mj.html#biBJLPW95">[JLPW95, p. x]</a>.</p>
<p>Section <a href="chap1_mj.html#X7D1A66C3844D09B1"><span class="RefLink">1.3-1</span></a> shows how to detect generality problems and lists the known generality problems, and Section <a href="chap1_mj.html#X80EB5D827A78975A"><span class="RefLink">1.3-2</span></a> gives an example that actually arose.</p>
<p><a id="X7D1A66C3844D09B1" name="X7D1A66C3844D09B1"></a></p>
<h5>1.3-1 <span class="Heading">Listing possible generality problems</span></h5>
<p>We use the following idea for finding character tables which may involve generality problems. (The functions shown in this section are based on <strong class="pkg">GAP</strong> 3 code that was originally written by Jürgen Müller.)</p>
<p>If the <span class="SimpleMath">\(p\)</span>-modular Brauer table <span class="SimpleMath">\(mtbl\)</span>, say, of a group contributes to a generality problem then some choice of conjugacy classes is necessary in order to write down this table, in the sense that some symmetry of the corresponding ordinary table <span class="SimpleMath">\(tbl\)</span>, say, is broken in <span class="SimpleMath">\(mtbl\)</span>. This situation can be detected as follows. We assume that the class fusion from <span class="SimpleMath">\(mtbl\)</span> to <span class="SimpleMath">\(tbl\)</span> has been fixed. All possible class fusions are obtained as the orbit of this class fusion under the actions of table automorphisms of <span class="SimpleMath">\(tbl\)</span>, via mapping the images of the class fusion (with the function <code class="func">OnTuples</code> (<a href="../../../doc/ref/chap41_mj.html#X832CC5F87EEA4A7E"><span class="RefLink">Reference: OnTuples</span></a>)), and of the table automorphisms of <span class="SimpleMath">\(mtbl\)</span>, via permuting the preimages. The case of broken symmetries occurs if and only if this orbit splits into several orbits when only the action of the table automorphisms of <span class="SimpleMath">\(mtbl\)</span> is considered. Equivalently, symmetries are broken if and only if the orbit under table automorphisms of <span class="SimpleMath">\(mtbl\)</span> is not closed under the action of table automorphisms of <span class="SimpleMath">\(tbl\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BrokenSymmetries:= function( ordtbl, modtbl )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local taut, maut, triv, fus, orb;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> taut:= AutomorphismsOfTable( ordtbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maut:= AutomorphismsOfTable( modtbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> triv:= TrivialSubgroup( taut );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fus:= GetFusionMap( modtbl, ordtbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> orb:= MakeImmutable( Set( OrbitFusions( maut, fus, triv ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return ForAny( GeneratorsOfGroup( taut ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> ForAny( orb,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fus -> not OnTuples( fus, x ) in orb ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p><em>Remark:</em> (Thanks to Klaus Lux for discussions on this topic.)</p>
<ul>
<li><p>It may happen that some symmetry <span class="SimpleMath">\(\sigma_m\)</span> of a Brauer table does not belong to a symmetry <span class="SimpleMath">\(\sigma_o\)</span> of the corresponding ordinary table, in the sense that permuting the preimage classes of a fusion <span class="SimpleMath">\(f\)</span> between the two tables with <span class="SimpleMath">\(\sigma_m\)</span> and permuting the image classes with <span class="SimpleMath">\(\sigma_o\)</span> yields <span class="SimpleMath">\(f\)</span>.</p>
<p>For example, consider the group <span class="SimpleMath">\(G = 2.A_6.2_1\)</span>, the double cover of the symmetric group <span class="SimpleMath">\(S_6\)</span> on six points. The <span class="SimpleMath">\(2\)</span>-modular Brauer table of <span class="SimpleMath">\(G\)</span>, which is essentially equal to that of <span class="SimpleMath">\(S_6\)</span>, has a table automorphism group order two, and the nonidentity element in it swaps the two classes of element order three. The automorphism group of the ordinary character table of <span class="SimpleMath">\(G\)</span>, however, fixes the two classes of element order three; note that exactly one of these classes possesses square roots in the "outer half" <span class="SimpleMath">\(G \setminus G'\)</span>.</p>
<p>Thus it is not sufficient to compare the orbit of the fixed class fusion under the automorphisms of the ordinary table with the orbit of the same fusion under the automorphisms of the Brauer table.</p>
</li>
</ul>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "2.A6.2_1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= t mod 2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( m, t );</span>
[ 1, 4, 6, 9 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AutomorphismsOfTable( t );</span>
Group([ (16,17), (14,15), (14,15)(16,17) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">AutomorphismsOfTable( m );</span>
Group([ (2,3) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( m );</span>
2.A6.2_1mod2
2 5 2 2 1
3 2 2 2 .
5 1 . . 1
1a 3a 3b 5a
2P 1a 3a 3b 5a
3P 1a 1a 1a 5a
5P 1a 3a 3b 1a
X.1 1 1 1 1
X.2 4 1 -2 -1
X.3 4 -2 1 -1
X.4 16 -2 -2 1
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( t );</span>
2.A6.2_1
2 5 5 4 2 2 2 2 3 1 1 4 4 3 2 2 2 2
3 2 2 . 2 2 2 2 . . . 1 1 . 1 1 1 1
5 1 1 . . . . . . 1 1 . . . . . . .
1a 2a 4a 3a 6a 3b 6b 8a 5a 10a 2b 4b 8b 6c 6d 12a 12b
2P 1a 1a 2a 3a 3a 3b 3b 4a 5a 5a 1a 2a 4a 3a 3a 6b 6b
3P 1a 2a 4a 1a 2a 1a 2a 8a 5a 10a 2b 4b 8b 2b 2b 4b 4b
5P 1a 2a 4a 3a 6a 3b 6b 8a 1a 2a 2b 4b 8b 6d 6c 12b 12a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
X.3 5 5 1 2 2 -1 -1 -1 . . 3 -1 1 . . -1 -1
X.4 5 5 1 2 2 -1 -1 -1 . . -3 1 -1 . . 1 1
X.5 5 5 1 -1 -1 2 2 -1 . . -1 3 1 -1 -1 . .
X.6 5 5 1 -1 -1 2 2 -1 . . 1 -3 -1 1 1 . .
X.7 16 16 . -2 -2 -2 -2 . 1 1 . . . . . . .
X.8 9 9 1 . . . . 1 -1 -1 3 3 -1 . . . .
X.9 9 9 1 . . . . 1 -1 -1 -3 -3 1 . . . .
X.10 10 10 -2 1 1 1 1 . . . 2 -2 . -1 -1 1 1
X.11 10 10 -2 1 1 1 1 . . . -2 2 . 1 1 -1 -1
X.12 4 -4 . -2 2 1 -1 . -1 1 . . . . . B -B
X.13 4 -4 . -2 2 1 -1 . -1 1 . . . . . -B B
X.14 4 -4 . 1 -1 -2 2 . -1 1 . . . A -A . .
X.15 4 -4 . 1 -1 -2 2 . -1 1 . . . -A A . .
X.16 16 -16 . -2 2 -2 2 . 1 -1 . . . . . . .
X.17 20 -20 . 2 -2 2 -2 . . . . . . . . . .
A = E(3)-E(3)^2
= Sqrt(-3) = i3
B = -E(12)^7+E(12)^11
= Sqrt(3) = r3
</pre></div>
<p>When considering several characteristics in parallel, one argues as follows. The possible class fusions from a Brauer table <span class="SimpleMath">\(mtbl\)</span> to its ordinary table <span class="SimpleMath">\(tbl\)</span> are given by the orbit of a fixed class fusion under the action of the table automorphisms of <span class="SimpleMath">\(tbl\)</span>. If there are several orbits under the action of the automorphisms of <span class="SimpleMath">\(mtbl\)</span> then we choose one orbit. Due to this choice, only those table automorphisms of <span class="SimpleMath">\(tbl\)</span> are admissible for other characteristics that stabilize the chosen orbit. For the second characteristic, we take again the set of all class fusions from the Brauer table to <span class="SimpleMath">\(tbl\)</span>, and split it into orbits under the table automorphisms of the Brauer table. Now there are two possibilities. Either the action of the admissible subgroup of automorphisms of <span class="SimpleMath">\(tbl\)</span> joins these orbits into one orbit or not. In the former case, we choose again one of the orbits, replace the group of admissible automorphisms of <span class="SimpleMath">\(tbl\)</span> by the stabilizer of this orbit, and proceed with the next characteristic. In the latter case, we have found a generality problem, since we are not free to choose an arbitrary class fusion from the set of possibilities.</p>
<p>The following function returns the set of primes which may be involved in generality problems for the given ordinary character table. Note that the procedure sketched above does not tell which characteristics are actually involved or which classes are affected by the choices; for example, we could argue that one is always free to choose a fusion for the first characteristics, and that only the other ones cause problems. We return <em>all</em> those primes <span class="SimpleMath">\(p\)</span> for which broken symmetries between the <span class="SimpleMath">\(p\)</span>-modular table and the ordinary table have been detected.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrimesOfGeneralityProblems:= function( ordtbl )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local consider, p, modtbl, taut, triv, admiss, fusion, maut,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> allfusions, orbits, orbit, reps;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Find the primes for which symmetries are broken.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> consider:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in Filtered( PrimeDivisors( Size( ordtbl ) ), IsPrimeInt ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtbl:= ordtbl mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modtbl <> fail and BrokenSymmetries( ordtbl, modtbl ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( consider, p );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute the choices and detect generality problems.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> taut:= AutomorphismsOfTable( ordtbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> triv:= TrivialSubgroup( taut );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> admiss:= taut;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in consider do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtbl:= ordtbl mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fusion:= GetFusionMap( modtbl, ordtbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maut:= AutomorphismsOfTable( modtbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # - We need not apply the action of 'maut' here,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # since 'maut' will later be used to get representatives.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # - We need not apply all elements in 'taut' but only</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # representatives of left cosets of 'admiss' in 'taut',</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # since 'admiss' will later be used to get representatives.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # allfusions:= OrbitFusions( maut, fusion, taut );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> allfusions:= Set( RightTransversal( taut, admiss ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> OnTuples( fusion, x^-1 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # For computing representatives, 'RepresentativesFusions' is not</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # suitable because 'allfusions' is in generally not closed</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # under the actions.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # reps:= RepresentativesFusions( maut, allfusions, admiss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> orbits:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> while not IsEmpty( allfusions ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> orbit:= OrbitFusions( maut, allfusions[1], admiss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( orbits, orbit );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SubtractSet( allfusions, orbit );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps:= List( orbits, x -> x[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( reps ) = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Reduce the symmetries that are still available.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> admiss:= Stabilizer( admiss,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Set( OrbitFusions( maut, fusion, triv ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> OnSetsTuples );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # We have found a generality problem.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return consider;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # There is no generality problem for this table.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [];</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>Let us look at a small example, the <span class="SimpleMath">\(5\)</span>-modular character table of the group <span class="SimpleMath">\(2.A_5.2\)</span>. The irreducible characters of degree <span class="SimpleMath">\(2\)</span> have the values <span class="SimpleMath">\(\pm \sqrt{{-2}}\)</span> on the classes <code class="code">8a</code> and <code class="code">8b</code>, and the values <span class="SimpleMath">\(\pm \sqrt{{-3}}\)</span> on the classes <code class="code">6b</code> and <code class="code">6c</code>. When we define which of the two classes of element order <span class="SimpleMath">\(8\)</span> is called <code class="code">8a</code>, this will also define which class is called <code class="code">6b</code>. The ordinary character table does not relate the two pairs of classes, there are table automorphisms which interchange each pair independently. This symmetry is thus broken in the <span class="SimpleMath">\(5\)</span>-modular character table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "2.A5.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= t mod 5;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( m );</span>
2.A5.2mod5
2 4 4 3 2 2 2 3 3 2 2
3 1 1 . 1 1 1 . . 1 1
5 1 1 . . . . . . . .
1a 2a 4a 3a 6a 2b 8a 8b 6b 6c
2P 1a 1a 2a 3a 3a 1a 4a 4a 3a 3a
3P 1a 2a 4a 1a 2a 2b 8a 8b 2b 2b
5P 1a 2a 4a 3a 6a 2b 8b 8a 6c 6b
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 -1 -1 -1 -1 -1
X.3 3 3 -1 . . 1 -1 -1 -2 -2
X.4 3 3 -1 . . -1 1 1 2 2
X.5 5 5 1 -1 -1 1 -1 -1 1 1
X.6 5 5 1 -1 -1 -1 1 1 -1 -1
X.7 2 -2 . -1 1 . A -A B -B
X.8 2 -2 . -1 1 . -A A -B B
X.9 4 -4 . 1 -1 . . . B -B
X.10 4 -4 . 1 -1 . . . -B B
A = E(8)+E(8)^3
= Sqrt(-2) = i2
B = E(3)-E(3)^2
= Sqrt(-3) = i3
<span class="GAPprompt">gap></span> <span class="GAPinput">AutomorphismsOfTable( t );</span>
Group([ (11,12), (9,10) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">AutomorphismsOfTable( m );</span>
Group([ (7,8)(9,10) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( m, t );</span>
[ 1, 2, 3, 4, 5, 8, 9, 10, 11, 12 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">BrokenSymmetries( t, m );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">BrokenSymmetries( t, t mod 2 );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">BrokenSymmetries( t, t mod 3 );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">PrimesOfGeneralityProblems( t );</span>
[ ]
</pre></div>
<p>Since no symmetry is broken in the <span class="SimpleMath">\(2\)</span>- and <span class="SimpleMath">\(3\)</span>-modular character tables of <span class="SimpleMath">\(G\)</span>, there is no generality problem in this case.</p>
<p>For an example of a generality problem, we look at the smallest Janko group <span class="SimpleMath">\(J_1\)</span>. As is mentioned in <a href="chapBib_mj.html#biBJLPW95">[JLPW95, p. x]</a>, the unique irreducible <span class="SimpleMath">\(11\)</span>-modular Brauer character of degree <span class="SimpleMath">\(7\)</span> distinguishes the two (algebraically conjugate) classes of element order <span class="SimpleMath">\(5\)</span>. Since also the unique irreducible <span class="SimpleMath">\(19\)</span>-modular Brauer character of degree <span class="SimpleMath">\(22\)</span> distinguishes these classes, we have to choose these classes consistently.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "J1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= t mod 11;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( m, rec( chars:= Filtered( Irr( m ), x -> x[1] = 7 ) ) );</span>
J1mod11
2 3 3 1 1 1 1 . 1 1 . . . . .
3 1 1 1 1 1 1 . . . 1 1 . . .
5 1 1 1 1 1 . . 1 1 1 1 . . .
7 1 . . . . . 1 . . . . . . .
11 1 . . . . . . . . . . . . .
19 1 . . . . . . . . . . 1 1 1
1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 19a 19b 19c
2P 1a 1a 3a 5b 5a 3a 7a 5b 5a 15b 15a 19b 19c 19a
3P 1a 2a 1a 5b 5a 2a 7a 10b 10a 5b 5a 19b 19c 19a
5P 1a 2a 3a 1a 1a 6a 7a 2a 2a 3a 3a 19b 19c 19a
7P 1a 2a 3a 5b 5a 6a 1a 10b 10a 15b 15a 19a 19b 19c
11P 1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 19a 19b 19c
19P 1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 1a 1a 1a
Y.1 7 -1 1 A *A -1 . B *B C *C D E F
A = E(5)+E(5)^4
= (-1+Sqrt(5))/2 = b5
B = -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4
= (3+Sqrt(5))/2 = 2+b5
C = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5
D = -E(19)-E(19)^2-E(19)^3-E(19)^5-E(19)^7-E(19)^8-E(19)^11-E(19)^12-E\
(19)^14-E(19)^16-E(19)^17-E(19)^18
E = -E(19)^2-E(19)^3-E(19)^4-E(19)^5-E(19)^6-E(19)^9-E(19)^10-E(19)^13\
-E(19)^14-E(19)^15-E(19)^16-E(19)^17
F = -E(19)-E(19)^4-E(19)^6-E(19)^7-E(19)^8-E(19)^9-E(19)^10-E(19)^11-E\
(19)^12-E(19)^13-E(19)^15-E(19)^18
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= t mod 19;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( m, rec( chars:= Filtered( Irr( m ), x -> x[1] = 22 ) ) );</span>
J1mod19
2 3 3 1 1 1 1 . 1 1 . . .
3 1 1 1 1 1 1 . . . . 1 1
5 1 1 1 1 1 . . 1 1 . 1 1
7 1 . . . . . 1 . . . . .
11 1 . . . . . . . . 1 . .
19 1 . . . . . . . . . . .
1a 2a 3a 5a 5b 6a 7a 10a 10b 11a 15a 15b
2P 1a 1a 3a 5b 5a 3a 7a 5b 5a 11a 15b 15a
3P 1a 2a 1a 5b 5a 2a 7a 10b 10a 11a 5b 5a
5P 1a 2a 3a 1a 1a 6a 7a 2a 2a 11a 3a 3a
7P 1a 2a 3a 5b 5a 6a 1a 10b 10a 11a 15b 15a
11P 1a 2a 3a 5a 5b 6a 7a 10a 10b 1a 15a 15b
19P 1a 2a 3a 5a 5b 6a 7a 10a 10b 11a 15a 15b
Y.1 22 -2 1 A *A 1 1 -A -*A . B *B
A = E(5)+E(5)^4
= (-1+Sqrt(5))/2 = b5
B = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5
</pre></div>
<p>Note that the degree <span class="SimpleMath">\(7\)</span> character above also distinguishes the three classes of element order <span class="SimpleMath">\(19\)</span>, and the same holds for the unique irreducible degree <span class="SimpleMath">\(31\)</span> character from characteristic <span class="SimpleMath">\(7\)</span>. Thus also the prime <span class="SimpleMath">\(7\)</span> occurs in the list of candidates for generality problems.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrimesOfGeneralityProblems( t );</span>
[ 7, 11, 19 ]
</pre></div>
<p>Finally, we list the candidates for generality problems from <strong class="pkg">GAP</strong>'s Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">list:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">isGeneralityProblem:= function( ordtbl )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local res;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> res:= PrimesOfGeneralityProblems( ordtbl );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if res = [] then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return false;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( list, [ Identifier( ordtbl ), res ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return true;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AllCharacterTableNames( IsDuplicateTable, false,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> isGeneralityProblem, true );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrintArray( SortedList( list ) );</span>
[ [ (2.A4x2.G2(4)).2, [ 2, 5, 7, 13 ] ],
[ (2^2x3).L3(4).2_1, [ 5, 7 ] ],
[ (2x12).L3(4), [ 2, 3, 7 ] ],
[ (4^2x3).L3(4), [ 2, 3, 7 ] ],
[ (7:3xHe):2, [ 5, 7, 17 ] ],
[ (A5xA12):2, [ 2, 3 ] ],
[ (D10xHN).2, [ 2, 3, 5, 7, 11, 19 ] ],
[ (S3x2.Fi22).2, [ 3, 11, 13 ] ],
[ 12.M22, [ 2, 5, 7, 11 ] ],
[ 12.M22.2, [ 2, 5, 7, 11 ] ],
[ 12_1.L3(4).2_1, [ 5, 7 ] ],
[ 12_2.L3(4), [ 2, 3, 7 ] ],
[ 12_2.L3(4).2_1, [ 3, 5, 7 ] ],
[ 12_2.L3(4).2_2, [ 2, 3, 7 ] ],
[ 12_2.L3(4).2_3, [ 2, 3, 7 ] ],
[ 2.(A4xG2(4)).2, [ 2, 5, 7, 13 ] ],
[ 2.2E6(2), [ 13, 19 ] ],
[ 2.2E6(2).2, [ 13, 19 ] ],
[ 2.A10, [ 5, 7 ] ],
[ 2.A11, [ 3, 5, 7 ] ],
[ 2.A11.2, [ 5, 7, 11 ] ],
[ 2.A12, [ 2, 3, 5, 7 ] ],
[ 2.A12.2, [ 5, 7, 11 ] ],
[ 2.A13, [ 2, 3, 5, 7, 11 ] ],
[ 2.A13.2, [ 5, 7, 13 ] ],
[ 2.Alt(14), [ 2, 3, 5, 7 ] ],
[ 2.Alt(15), [ 2, 5, 7 ] ],
[ 2.Alt(16), [ 2, 3, 5, 7 ] ],
[ 2.Alt(17), [ 2, 3, 5, 7 ] ],
[ 2.Alt(18), [ 2, 3, 5, 7 ] ],
[ 2.B, [ 17, 23 ] ],
[ 2.F4(2), [ 2, 7, 13, 17 ] ],
[ 2.Fi22.2, [ 11, 13 ] ],
[ 2.G2(4), [ 2, 7 ] ],
[ 2.G2(4).2, [ 5, 7, 13 ] ],
[ 2.HS, [ 3, 5, 7, 11 ] ],
[ 2.HS.2, [ 3, 11 ] ],
[ 2.L3(4).2_1, [ 5, 7 ] ],
[ 2.Ru, [ 5, 7, 13, 29 ] ],
[ 2.Suz, [ 2, 5, 11 ] ],
[ 2.Suz.2, [ 3, 7, 13 ] ],
[ 2.Sym(15), [ 3, 5, 7 ] ],
[ 2.Sym(16), [ 3, 5, 7 ] ],
[ 2.Sym(17), [ 3, 5, 7 ] ],
[ 2.Sym(18), [ 5, 7 ] ],
[ 2.Sz(8), [ 2, 5, 13 ] ],
[ 2^2.2E6(2), [ 13, 19 ] ],
[ 2^2.2E6(2).2, [ 13, 19 ] ],
[ 2^2.Fi22.2, [ 3, 11, 13 ] ],
[ 2^2.L3(4).2^2, [ 5, 7 ] ],
[ 2^2.L3(4).2_1, [ 5, 7 ] ],
[ 2^2.Sz(8), [ 2, 5, 13 ] ],
[ 2x2.F4(2), [ 2, 7, 13, 17 ] ],
[ 2x3.Fi22, [ 2, 3, 5 ] ],
[ 2x6.Fi22, [ 2, 3, 5 ] ],
[ 2x6.M22, [ 2, 5, 11 ] ],
[ 2xFi22.2, [ 11, 13 ] ],
[ 2xFi23, [ 3, 17, 23 ] ],
[ 3.Fi22, [ 2, 3, 5 ] ],
[ 3.Fi22.2, [ 2, 5, 11, 13 ] ],
[ 3.J3, [ 2, 17, 19 ] ],
[ 3.J3.2, [ 2, 5, 17, 19 ] ],
[ 3.L3(4).2_3, [ 2, 3, 7 ] ],
[ 3.L3(4).3.2_3, [ 2, 3, 7 ] ],
[ 3.L3(7).2, [ 3, 7, 19 ] ],
[ 3.L3(7).S3, [ 3, 7, 19 ] ],
[ 3.McL, [ 2, 5, 11 ] ],
[ 3.McL.2, [ 2, 3, 5, 11 ] ],
[ 3.ON, [ 3, 7, 11, 19, 31 ] ],
[ 3.ON.2, [ 3, 5, 7, 11, 19, 31 ] ],
[ 3.Suz.2, [ 2, 3, 13 ] ],
[ 3x2.F4(2), [ 2, 7, 13, 17 ] ],
[ 3x2.Fi22.2, [ 11, 13 ] ],
[ 3x2.G2(4), [ 2, 7 ] ],
[ 3xFi23, [ 3, 17, 23 ] ],
[ 3xJ1, [ 7, 11, 19 ] ],
[ 3xL3(7).2, [ 3, 7, 19 ] ],
[ 4.HS.2, [ 5, 7, 11 ] ],
[ 4.M22, [ 5, 7 ] ],
[ 4_1.L3(4).2_1, [ 5, 7 ] ],
[ 4_2.L3(4).2_1, [ 3, 5, 7 ] ],
[ 6.Fi22, [ 2, 3, 5 ] ],
[ 6.Fi22.2, [ 2, 5, 11, 13 ] ],
[ 6.L3(4).2_1, [ 5, 7 ] ],
[ 6.M22, [ 2, 5, 11 ] ],
[ 6.O7(3), [ 3, 5, 13 ] ],
[ 6.O7(3).2, [ 3, 5, 13 ] ],
[ 6.Suz, [ 2, 5, 11 ] ],
[ 6.Suz.2, [ 2, 3, 5, 7, 13 ] ],
[ 6x2.F4(2), [ 2, 7, 13, 17 ] ],
[ A12, [ 2, 3 ] ],
[ A14, [ 2, 5, 7 ] ],
[ A17, [ 2, 7 ] ],
[ A18, [ 2, 3, 5, 7 ] ],
[ B, [ 13, 17, 23, 31 ] ],
[ F3+, [ 17, 23, 29 ] ],
[ F3+.2, [ 17, 23, 29 ] ],
[ Fi22.2, [ 11, 13 ] ],
[ Fi23, [ 3, 17, 23 ] ],
[ HN, [ 2, 3, 11, 19 ] ],
[ HN.2, [ 5, 7, 11, 19 ] ],
[ He, [ 5, 17 ] ],
[ He.2, [ 5, 7, 17 ] ],
[ Isoclinic(12.M22.2), [ 2, 5, 7, 11 ] ],
[ Isoclinic(2.A11.2), [ 5, 7, 11 ] ],
[ Isoclinic(2.A12.2), [ 5, 7, 11 ] ],
[ Isoclinic(2.A13.2), [ 5, 7, 13 ] ],
[ Isoclinic(2.Fi22.2), [ 11, 13 ] ],
[ Isoclinic(2.G2(4).2), [ 5, 7, 13 ] ],
[ Isoclinic(2.HS.2), [ 3, 11 ] ],
[ Isoclinic(2.HSx2), [ 3, 5, 7, 11 ] ],
[ Isoclinic(2.L3(4).2_1), [ 5, 7 ] ],
[ Isoclinic(2.Suz.2), [ 3, 7, 13 ] ],
[ Isoclinic(4_1.L3(4).2_1), [ 5, 7 ] ],
[ Isoclinic(4_2.L3(4).2_1), [ 3, 5, 7 ] ],
[ Isoclinic(6.Fi22.2), [ 2, 5, 11, 13 ] ],
[ Isoclinic(6.L3(4).2_1), [ 5, 7 ] ],
[ Isoclinic(6.Suz.2), [ 2, 3, 5, 7, 13 ] ],
[ J1, [ 7, 11, 19 ] ],
[ J1x2, [ 7, 11, 19 ] ],
[ J3, [ 2, 17, 19 ] ],
[ J3.2, [ 2, 5, 17, 19 ] ],
[ L3(4).2_3, [ 3, 7 ] ],
[ L3(4).3.2_3, [ 2, 3, 7 ] ],
[ L3(7).2, [ 3, 7, 19 ] ],
[ L3(7).S3, [ 3, 7, 19 ] ],
[ L3(9).2_1, [ 3, 7, 13 ] ],
[ L5(2).2, [ 2, 7, 31 ] ],
[ Ly, [ 7, 37, 67 ] ],
[ M23, [ 2, 3, 23 ] ],
[ ON, [ 3, 7, 11, 19, 31 ] ],
[ ON.2, [ 3, 5, 7, 11, 19, 31 ] ],
[ Ru, [ 5, 7, 13, 29 ] ],
[ S3xFi22.2, [ 11, 13 ] ],
[ Suz.2, [ 3, 13 ] ] ]
</pre></div>
<p>Note that this list may become longer as new Brauer tables become available. (For example, the prime <span class="SimpleMath">\(2\)</span> was added to the entries for extensions of <span class="SimpleMath">\(F_4(2)\)</span> when the <span class="SimpleMath">\(2\)</span>-modular table of <span class="SimpleMath">\(F_4(2)\)</span> became available.)</p>
<p><a id="X80EB5D827A78975A" name="X80EB5D827A78975A"></a></p>
<h5>1.3-2 <span class="Heading">A generality problem concerning the group <span class="SimpleMath">\(J_3\)</span> (April 2015)</span></h5>
<p><a name="generality_problem_J3">In March 2015,</a> Klaus Lux reported an inconsistency in the character data of <strong class="pkg">GAP</strong>:</p>
<p>The sporadic simple Janko group <span class="SimpleMath">\(J_3\)</span> has a unique <span class="SimpleMath">\(19\)</span>-modular irreducible Brauer character of degree <span class="SimpleMath">\(110\)</span>. In the character table that is printed in the <strong class="pkg">Atlas</strong> of Brauer characters <a href="chapBib_mj.html#biBJLPW95">[JLPW95, p. 219]</a>, the Brauer character value on the class <code class="code">17A</code> is <span class="SimpleMath">\(b_{17}\)</span>. The <strong class="pkg">Atlas</strong> of Group Representations <a href="chapBib_mj.html#biBAGRv3">[WWT+]</a> provides a straight line program for computing class representatives of <span class="SimpleMath">\(J_3\)</span>. If we compute the Brauer character value in question, we do not get <span class="SimpleMath">\(b_{17}\)</span> but its algebraic conjugate, <span class="SimpleMath">\(-1-b_{17}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "J3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= t mod 19;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= Filtered( Irr( m ), x -> x[1] = 110 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( cand );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">slp:= AtlasProgram( "J3", "classes" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">17a:= Position( slp.outputs, "17A" );</span>
18
<span class="GAPprompt">gap></span> <span class="GAPinput">info:= OneAtlasGeneratingSetInfo( "J3", Characteristic, 19,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Dimension, 110 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:= AtlasGenerators( info );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= ResultOfStraightLineProgram( slp.program,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> gens.generators );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Quadratic( BrauerCharacterValue( reps[ 17a ] ) );</span>
rec( ATLAS := "-1-b17", a := -1, b := -1, d := 2,
display := "(-1-Sqrt(17))/2", root := 17 )
</pre></div>
<p>How shall we resolve this inconsistency, by replacing the straight line program or by swapping the classes <code class="code">17A</code> and <code class="code">17B</code> in the character table? Before we decide this, we look at related information.</p>
<p>The following table lists the <span class="SimpleMath">\(p\)</span>-modular irreducible characters of <span class="SimpleMath">\(J_3\)</span>, according to <a href="chapBib_mj.html#biBJLPW95">[JLPW95]</a>, that can be used to define which of the two classes of element order <span class="SimpleMath">\(17\)</span> shall be called <code class="code">17A</code>; a <span class="SimpleMath">\(+\)</span> sign in the last column of the table indicates that the representation is available in the <strong class="pkg">Atlas</strong> of Group Representations.</p>
<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b>Representations of <span class="SimpleMath">\(J_3\)</span> that may define <code class="code">17A</code></caption>
<tr>
<td class="tdright"><span class="SimpleMath">\(p\)</span></td>
<td class="tdright"><span class="SimpleMath">\(\varphi(1)\)</span></td>
<td class="tdright"><span class="SimpleMath">\(\varphi(\)</span><code class="code">17A</code><span class="SimpleMath">\()\)</span></td>
<td class="tdright"><span class="SimpleMath">\(\varphi(\)</span><code class="code">17B</code><span class="SimpleMath">\()\)</span></td>
<td class="tdcenter"><strong class="pkg">Atlas</strong>?</td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">\(2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(78\)</span></td>
<td class="tdright"><span class="SimpleMath">\(1-b_{17}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(2+b_{17}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">\(2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(80\)</span></td>
<td class="tdright"><span class="SimpleMath">\(3-b_{17}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(4+b_{17}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">\(2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(244\)</span></td>
<td class="tdright"><span class="SimpleMath">\(b_{17}-2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(-3-b_{17}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">\(2\)</span></td>
<td class="tdright"><span class="SimpleMath">\(966\)</span></td>
<td class="tdright"><span class="SimpleMath">\(r_{17}-3\)</span></td>
<td class="tdright"><span class="SimpleMath">\(-3-r_{17}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">\(19\)</span></td>
<td class="tdright"><span class="SimpleMath">\(110\)</span></td>
<td class="tdright"><span class="SimpleMath">\(b_{17}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(-1-b_{17}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">\(19\)</span></td>
<td class="tdright"><span class="SimpleMath">\(214\)</span></td>
<td class="tdright"><span class="SimpleMath">\(1-b_{17}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(2+b_{17}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">\(19\)</span></td>
<td class="tdright"><span class="SimpleMath">\(706\)</span></td>
<td class="tdright"><span class="SimpleMath">\(-b_{17}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(1+b_{17}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(+\)</span></td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">\(19\)</span></td>
<td class="tdright"><span class="SimpleMath">\(1214\)</span></td>
<td class="tdright"><span class="SimpleMath">\(-1+b_{17}\)</span></td>
<td class="tdright"><span class="SimpleMath">\(-2-b_{17}\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(-\)</span></td>
</tr>
</table><br />
</div>
<p>Note that the irreducible Brauer characters in characteristic <span class="SimpleMath">\(3\)</span> and <span class="SimpleMath">\(5\)</span> that distinguish the two classes <code class="code">17A</code> and <code class="code">17B</code> occur in pairs of Galois conjugate characters.</p>
<p>The following computations show that the given straight line program is compatible with the four characters in characteristic <span class="SimpleMath">\(2\)</span> but is not compatible with the three available characters in characteristic <span class="SimpleMath">\(19\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">table:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for pair in [ [ 2, [ 78, 80, 244, 966 ] ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 19, [ 110, 214, 706 ] ] ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> p:= pair[1];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for d in pair[2] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> info:= OneAtlasGeneratingSetInfo( "J3", Characteristic, p,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Dimension, d );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> gens:= AtlasGenerators( info );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps:= ResultOfStraightLineProgram( slp.program,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> gens.generators );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> val:= BrauerCharacterValue( reps[ 17a ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( table, [ p, d, Quadratic( val ).ATLAS,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Quadratic( StarCyc( val ) ).ATLAS ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrintArray( table );</span>
[ [ 2, 78, 1-b17, 2+b17 ],
[ 2, 80, 3-b17, 4+b17 ],
[ 2, 244, -2+b17, -3-b17 ],
[ 2, 966, -3+r17, -3-r17 ],
[ 19, 110, -1-b17, b17 ],
[ 19, 214, 2+b17, 1-b17 ],
[ 19, 706, 1+b17, -b17 ] ]
</pre></div>
<p>We see that the problem is an inconsistency between the <span class="SimpleMath">\(2\)</span>-modular and the <span class="SimpleMath">\(19\)</span>-modular character table of <span class="SimpleMath">\(J_3\)</span> in <a href="chapBib_mj.html#biBJLPW95">[JLPW95]</a>. In particular, changing the straight line program would not help to resolve the problem.</p>
<p>How shall we proceed in order to fix the problem? We can decide to keep the <span class="SimpleMath">\(19\)</span>-modular table of <span class="SimpleMath">\(J_3\)</span>, and to swap the two classes of element order <span class="SimpleMath">\(17\)</span> in the <span class="SimpleMath">\(2\)</span>-modular table; then also the straight line program has to be changed, and the classes of element orders <span class="SimpleMath">\(17\)</span> and <span class="SimpleMath">\(51\)</span> in the <span class="SimpleMath">\(2\)</span>-modular character table of the triple cover <span class="SimpleMath">\(3.J_3\)</span> of <span class="SimpleMath">\(J_3\)</span> have to be adjusted. Alternatively, we can keep the <span class="SimpleMath">\(2\)</span>-modular table of <span class="SimpleMath">\(J_3\)</span> and the straight line program, and adjust the conjugacy classes of element orders divisible by <span class="SimpleMath">\(17\)</span> in the <span class="SimpleMath">\(19\)</span>-modular character tables of <span class="SimpleMath">\(J_3\)</span>, <span class="SimpleMath">\(3.J_3\)</span>, <span class="SimpleMath">\(J_3.2\)</span>, and <span class="SimpleMath">\(3.J_3.2\)</span>.</p>
<p>We decide to change the <span class="SimpleMath">\(19\)</span>-modular character tables. Note that these character tables —or equivalently, the corresponding Brauer trees— have been described in <a href="chapBib_mj.html#biBHL89">[HL89]</a>, where explicit choices are mentioned that lead to the shown Brauer trees. Questions about the consistency with Brauer tables in other characteristic had not been an issue in this book. (Only the consistency of the Brauer trees among the <span class="SimpleMath">\(19\)</span>-blocks of <span class="SimpleMath">\(3.J_3\)</span> is mentioned.) In fact, the book mentions that the <span class="SimpleMath">\(19\)</span>-modular Brauer trees for <span class="SimpleMath">\(J_3\)</span> had been computed already by W. Feit. The inconsistency of Brauer character tables in different characteristic has apparently been overlooked when the data for <a href="chapBib_mj.html#biBJLPW95">[JLPW95]</a> have been put together, and had not been detected until now.</p>
<p><em>Remarks:</em></p>
<ul>
<li><p>Such a change of a Brauer table can in general affect the class fusions from and to this table. Note that Brauer tables may impose conditions on the choice of the fusion among possible fusions that are equivalent w. r. t. the table automorphisms of the ordinary table. In this particular case, in fact no class fusion had to be changed, see the sections <a href="chap9_mj.html#X7ACC7F588213D5D5"><span class="RefLink">9.6-1</span></a> and Section <a href="chap9_mj.html#X7DED4C437D479226"><span class="RefLink">9.6-3</span></a>.</p>
</li>
<li><p>The change of the character tables affects the decomposition matrices. Thus the PDF files containing the <span class="SimpleMath">\(19\)</span>-modular decomposition matrices had to be updated, see <span class="URL"><a href="http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/dec/tex/J3/index.html">http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/dec/tex/J3/index.html</a></span>.</p>
</li>
<li><p>Jürgen Müller has checked that the conjugacy classes of all Brauer tables of <span class="SimpleMath">\(J_3\)</span>, <span class="SimpleMath">\(3.J_3\)</span>, <span class="SimpleMath">\(J_3.2\)</span>, <span class="SimpleMath">\(3.J_3.2\)</span> are consistent after the fix described above.</p>
</li>
</ul>
<p><a id="X82C37532783168AA" name="X82C37532783168AA"></a></p>
<h5>1.3-3 <span class="Heading">A generality problem concerning the group <span class="SimpleMath">\(HN\)</span> (August 2022)</span></h5>
<p>The classes <code class="code">20A</code>, <code class="code">20B</code> of the Harada-Norton group <span class="SimpleMath">\(HN\)</span> in the <span class="SimpleMath">\(11\)</span>- and <span class="SimpleMath">\(19\)</span>-modular character tables are determined by unique Brauer characters that have different values on these classes. Once we have <em>defined</em> these classes in one characteristic, the two Brauer characters tell us how to <em>choose</em> them consistently in the other characteristic. Thus the question is whether the two Brauer tables are consistent w.r.t. this property or not.</p>
<p>(Note that this question can be answered independently of all other questions of this kind for <span class="SimpleMath">\(HN\)</span>, because the permutation that swaps exactly the classes <code class="code">20A</code> and <code class="code">20B</code> is a table automorphism of the ordinary character table of <span class="SimpleMath">\(HN\)</span>.)</p>
<p>We start with the ordinary character table of <span class="SimpleMath">\(HN\)</span>. There are exactly two ordinary irreducible characters that take different values on the classes <code class="code">20A</code>, <code class="code">20B</code>, these are <span class="SimpleMath">\(\chi_{51}\)</span> and <span class="SimpleMath">\(\chi_{52}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "HN" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos20:= Positions( OrdersClassRepresentatives( t ), 20 );</span>
[ 39, 40, 41, 42, 43 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">diff:= Filtered( Irr( t ), x -> x[39] <> x[40] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( diff, x -> Position( Irr( t ), x ) );</span>
[ 51, 52 ]
</pre></div>
<p>These values are irrational and lie in the field that is generated by the square root of <span class="SimpleMath">\(5\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( diff, x -> List( x{ [ 1, 39, 40 ] },</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CTblLib.StringOfAtlasIrrationality ) );</span>
[ [ "5103000", "2r5+1", "-2r5+1" ], [ "5103000", "-2r5+1", "2r5+1" ] ]
</pre></div>
<p>In each of the characteristics <span class="SimpleMath">\(p \in \{ 11, 19 \}\)</span>, the <span class="SimpleMath">\(p\)</span>-modular reductions of <span class="SimpleMath">\(\chi_{51}\)</span> and <span class="SimpleMath">\(\chi_{52}\)</span> decompose differently into irreducibles. Note that the Galois automorphism of the ordinary character table that maps <span class="SimpleMath">\(\sqrt{5}\)</span> to <span class="SimpleMath">\(-\sqrt{5}\)</span> does not live in the <span class="SimpleMath">\(11\)</span>- and <span class="SimpleMath">\(19\)</span>-modular Brauer tables.</p>
<p>For <span class="SimpleMath">\(p = 11\)</span>, the reduction of <span class="SimpleMath">\(\chi_{51}\)</span> is <span class="SimpleMath">\(\varphi_{40} + \varphi_{48}\)</span>, with <span class="SimpleMath">\(\varphi_{40}(1) = 1\,575\,176\)</span> and <span class="SimpleMath">\(\varphi_{48}(1) = 3\,527\,824\)</span>, and the reduction of <span class="SimpleMath">\(\chi_{52}\)</span> is <span class="SimpleMath">\(\varphi_{39} + \varphi_{49}\)</span>, with <span class="SimpleMath">\(\varphi_{39}(1) = 1\,361\,919\)</span> and <span class="SimpleMath">\(\varphi_{49}(1) = 3\,741\,081\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t11:= t mod 11;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rest11:= RestrictedClassFunctions( diff, t11 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">dec11:= Decomposition( Irr( t11 ), rest11, "nonnegative" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( dec11, Set );</span>
[ [ 0, 1 ], [ 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( dec11, x -> Positions( x, 1 ) );</span>
[ [ 40, 48 ], [ 39, 49 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( Irr( t11 ){ [ 40, 48 ] }, x -> x[1] );</span>
[ 1575176, 3527824 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( Irr( t11 ){ [ 39, 49 ] }, x -> x[1] );</span>
[ 1361919, 3741081 ]
</pre></div>
<p>For <span class="SimpleMath">\(p = 19\)</span>, the reduction of <span class="SimpleMath">\(\chi_{51}\)</span> is <span class="SimpleMath">\(\varphi_{42} + \varphi_{45}\)</span>, with <span class="SimpleMath">\(\varphi_{42}(1) = 2\,125\,925\)</span> and <span class="SimpleMath">\(\varphi_{45}(1) = 2\,977\,075\)</span>, and the reduction of <span class="SimpleMath">\(\chi_{52}\)</span> is <span class="SimpleMath">\(\varphi_{33} + \varphi_{48}\)</span>, with <span class="SimpleMath">\(\varphi_{33}(1) = 1\,197\,330\)</span> and <span class="SimpleMath">\(\varphi_{48}(1) = 3\,905\,670\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t19:= t mod 19;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rest19:= RestrictedClassFunctions( diff, t19 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">dec19:= Decomposition( Irr( t19 ), rest19, "nonnegative" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( dec19, Set );</span>
[ [ 0, 1 ], [ 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( dec19, x -> Positions( x, 1 ) );</span>
[ [ 42, 45 ], [ 33, 48 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( Irr( t19 ){ [ 42, 45 ] }, x -> x[1] );</span>
[ 2125925, 2977075 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( Irr( t19 ){ [ 33, 48 ] }, x -> x[1] );</span>
[ 1197330, 3905670 ]
</pre></div>
<p>The Frobenius-Schur indicators of all involved <span class="SimpleMath">\(p\)</span>-modular constituents are <span class="SimpleMath">\(+\)</span>. This implies that <span class="SimpleMath">\(\chi_{51}\)</span> reduces orthogonally stably modulo <span class="SimpleMath">\(11\)</span> but not orthogonally stably modulo <span class="SimpleMath">\(19\)</span>, whereas <span class="SimpleMath">\(\chi_{52}\)</span> reduces orthogonally stably modulo <span class="SimpleMath">\(19\)</span> but not orthogonally stably modulo <span class="SimpleMath">\(11\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Indicator( t11, 2 ){ [ 39, 40, 48, 49 ] };</span>
[ 1, 1, 1, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Indicator( t19, 2 ){ [ 33, 42, 45, 48 ] };</span>
[ 1, 1, 1, 1 ]
</pre></div>
<p>In version up to 1.3.4 of the character table library, this condition was not satisfied: The reduction of <span class="SimpleMath">\(\chi_{51}\)</span> modulo both <span class="SimpleMath">\(11\)</span> and <span class="SimpleMath">\(19\)</span> was orthogonally stable, and the reduction of <span class="SimpleMath">\(\chi_{52}\)</span> modulo both <span class="SimpleMath">\(11\)</span> and <span class="SimpleMath">\(19\)</span> was not orthogonally stable. However, this cannot happen, due to theoretical results about orthogonal discriminants of the involved characters. Thus we have found a way to decide the consistency of the classes <code class="code">20A</code> and <code class="code">20B</code> in characteristics <span class="SimpleMath">\(11\)</span> and <span class="SimpleMath">\(19\)</span>: Either the <span class="SimpleMath">\(11\)</span>-modular character table or the <span class="SimpleMath">\(19\)</span>-modular character table of <span class="SimpleMath">\(HN\)</span> had to be changed for version 1.3.5, by swapping the classes <code class="code">20A</code> and <code class="code">20B</code>.</p>
<p>We decided to change the <span class="SimpleMath">\(11\)</span>-modular table, because there are no other generality problems for <span class="SimpleMath">\(HN\)</span> involving the <span class="SimpleMath">\(19\)</span>-modular table, and hence we are sure that this table will not need to be changed because of new solutions to generality problems.</p>
<p>For <span class="SimpleMath">\(HN.2\)</span>, the situation is similar. There are additionally two classes of element order <span class="SimpleMath">\(40\)</span> that have to be swapped if <code class="code">20A</code> and <code class="code">20B</code> get swapped. Thus we have to change the <span class="SimpleMath">\(11\)</span>-modular table of <span class="SimpleMath">\(HN.2\)</span> accordingly.</p>
<p>Changes of this kind may affect also derived character tables in the library. In this case, the <span class="SimpleMath">\(11\)</span>-modular table with identifier <code class="code">"(D10xHN).2"</code> was changed as well. Note that this table is not stored explicitly in the data files, it gets constructed from ordinary and modular library tables via <code class="func">ConstructIndexTwoSubdirectProduct</code> (<a href="..//doc/chap5_mj.html#X8714D24B802DA949"><span class="RefLink">CTblLib: ConstructIndexTwoSubdirectProduct</span></a>).</p>
<p><a id="X7D8C6D1883C9CECA" name="X7D8C6D1883C9CECA"></a></p>
<h4>1.4 <span class="Heading">Brauer Tables that can be derived from Known Tables</span></h4>
<p>In a few situations, one can derive the <span class="SimpleMath">\(p\)</span>-modular Brauer character table of a group from known character theoretic information.</p>
<p>For quite some time, a method is available in <strong class="pkg">GAP</strong> that computes the Brauer characters of <span class="SimpleMath">\(p\)</span>-solvable groups (see <a href="../../../doc/ref/chap71_mj.html#X8476B25A79D7A7FC"><span class="RefLink">Reference: BrauerTable</span></a> and <a href="../../../doc/ref/chap71_mj.html#X7A0CBD1884276882"><span class="RefLink">Reference: IsPSolubleCharacterTable</span></a>).</p>
<p>The following sections list other situations where Brauer tables can be computed by <strong class="pkg">GAP</strong>.</p>
<p><a id="X7DF018B77E722CA7" name="X7DF018B77E722CA7"></a></p>
<h5>1.4-1 <span class="Heading">Brauer Tables via Construction Information</span></h5>
<p>If a given ordinary character table <span class="SimpleMath">\(t\)</span>, say, has been constructed from other ordinary character tables then <strong class="pkg">GAP</strong> may be able to create the <span class="SimpleMath">\(p\)</span>-modular Brauer table of <span class="SimpleMath">\(t\)</span> from the <span class="SimpleMath">\(p\)</span>-modular Brauer tables of the "ingredients". This happens currently in the following cases.</p>
<ul>
<li><p><span class="SimpleMath">\(t\)</span> has been constructed with <code class="func">CharacterTableDirectProduct</code> (<a href="../../../doc/ref/chap71_mj.html#X7BE1572D7BBC6AC8"><span class="RefLink">Reference: CharacterTableDirectProduct</span></a>), and <strong class="pkg">GAP</strong> can compute the <span class="SimpleMath">\(p\)</span>-modular Brauer tables of the direct factors.</p>
</li>
<li><p><span class="SimpleMath">\(t\)</span> has been constructed with <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71_mj.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>), and <strong class="pkg">GAP</strong> can compute the <span class="SimpleMath">\(p\)</span>-modular Brauer table of the table that is stored in <span class="SimpleMath">\(t\)</span> as the value of the attribute <code class="func">SourceOfIsoclinicTable</code> (<a href="../../../doc/ref/chap71_mj.html#X85BE46F784B83938"><span class="RefLink">Reference: SourceOfIsoclinicTable</span></a>).</p>
</li>
<li><p><span class="SimpleMath">\(t\)</span> has the attribute <code class="func">ConstructionInfoCharacterTable</code> (<a href="..//doc/chap3_mj.html#X851118377D1D6EC9"><span class="RefLink">CTblLib: ConstructionInfoCharacterTable</span></a>) set, the first entry of this list <span class="SimpleMath">\(l\)</span>, say, is one of the strings <code class="code">"ConstructGS3"</code> (see <a href="chap2_mj.html#X7CCABDDE864E6300"><span class="RefLink">2.3-2</span></a>), <code class="code">"ConstructIndexTwoSubdirectProduct"</code> (see <a href="chap2_mj.html#X788591D78451C024"><span class="RefLink">2.3-6</span></a>), <code class="code">"ConstructMGA"</code> (see <a href="chap2_mj.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>), <code class="code">"ConstructPermuted"</code>, <code class="code">"ConstructV4G"</code> (see <a href="chap2_mj.html#X81464C4B8178C85A"><span class="RefLink">2.3-4</span></a>), and <strong class="pkg">GAP</strong> can construct the <span class="SimpleMath">\(p\)</span>-modular Brauer table(s) of the relevant ordinary character table(s), which are library tables whose names occur in <span class="SimpleMath">\(l\)</span>.</p>
</li>
</ul>
<p><a id="X795419A287BD228E" name="X795419A287BD228E"></a></p>
<h5>1.4-2 <span class="Heading">Liftable Brauer Characters (May 2017)</span></h5>
<p>Let <span class="SimpleMath">\(B\)</span> be a <span class="SimpleMath">\(p\)</span>-block of cyclic defect for the finite group <span class="SimpleMath">\(G\)</span>. It can be read off from the set Irr<span class="SimpleMath">\((B)\)</span> of ordinary irreducible characters of <span class="SimpleMath">\(B\)</span> whether all irreducible Brauer characters in <span class="SimpleMath">\(B\)</span> are restrictions of ordinary characters to the <span class="SimpleMath">\(p\)</span>-regular classes of <span class="SimpleMath">\(G\)</span>, as follows.</p>
<p>If <span class="SimpleMath">\(B\)</span> has only one irreducible Brauer character then all ordinary characters in <span class="SimpleMath">\(B\)</span> restrict to this Brauer character. So let us assume that <span class="SimpleMath">\(B\)</span> contains at least two irreducible Brauer characters, and consider the set <span class="SimpleMath">\(S\)</span>, say, of restrictions of Irr<span class="SimpleMath">\((B)\)</span> to the <span class="SimpleMath">\(p\)</span>-regular classes of <span class="SimpleMath">\(G\)</span>.</p>
<p>The block <span class="SimpleMath">\(B\)</span> contains exactly <span class="SimpleMath">\(|S| - 1\)</span> irreducible Brauer characters, and the decomposition of the characters in <span class="SimpleMath">\(S\)</span> into these Brauer characters is described by an <span class="SimpleMath">\(|S|\)</span> by <span class="SimpleMath">\(|S| - 1\)</span> matrix <span class="SimpleMath">\(M\)</span>, say, whose entries are zero and one, such that exactly two nonzero entries occur in each column. (See for example <a href="chapBib_mj.html#biBHL89">[HL89, Theorem 2.1.5]</a>, which refers to <a href="chapBib_mj.html#biBDad66">[Dad66]</a>.)</p>
<p>If all irreducible Brauer characters of <span class="SimpleMath">\(B\)</span> occur in <span class="SimpleMath">\(S\)</span> then the matrix <span class="SimpleMath">\(M\)</span> contains <span class="SimpleMath">\(|S| - 1\)</span> rows that contain exactly one nonzero entry, hence the remaining row consists only of <span class="SimpleMath">\(1\)</span>s. This means that the element of largest degree in <span class="SimpleMath">\(S\)</span> is equal to the sum of all other elements in <span class="SimpleMath">\(S\)</span>. Conversely, if the element of largest degree in <span class="SimpleMath">\(S\)</span> is equal to the sum of all other elements in <span class="SimpleMath">\(S\)</span> then the matrix <span class="SimpleMath">\(M\)</span> has the structure as stated above, hence all irreducible Brauer characters of <span class="SimpleMath">\(B\)</span> occur in <span class="SimpleMath">\(S\)</span>.</p>
<p>Alternatively, one could state that all irreducible Brauer characters of <span class="SimpleMath">\(B\)</span> are restricted ordinary characters if and only if the Brauer tree of <span class="SimpleMath">\(B\)</span> is a <em>star</em> (see <a href="chapBib_mj.html#biBHL89">[HL89, p. 2]</a>. If <span class="SimpleMath">\(B\)</span> contains at least two irreducible Brauer characters then this happens if and only if one of the types <span class="SimpleMath">\(\times\)</span> or <span class="SimpleMath">\(\circ\)</span> occurs for exactly one node in the Brauer graph of <span class="SimpleMath">\(B\)</span>, see <a href="chapBib_mj.html#biBHL89">[HL89, Lemma 2.1.13]</a>, and the distribution to types is determined by Irr<span class="SimpleMath">\((B)\)</span>.</p>
<p>The default method for <code class="func">BrauerTableOp</code> (<a href="../../../doc/ref/chap71_mj.html#X8476B25A79D7A7FC"><span class="RefLink">Reference: BrauerTableOp</span></a>) that is contained in the <strong class="pkg">GAP</strong> library has been extended in version 4.11 such that it checks whether the Sylow <span class="SimpleMath">\(p\)</span>-subgroups of the given group <span class="SimpleMath">\(G\)</span> are cyclic and, if yes, whether all <span class="SimpleMath">\(p\)</span>-blocks of <span class="SimpleMath">\(G\)</span> have the property discussed above. (This feature arose from a discussion with Klaus Lux.)</p>
<p>Examples where this method is successful for all blocks are the <span class="SimpleMath">\(p\)</span>-modular character tables of the groups PSL<span class="SimpleMath">\((2, q)\)</span>, where <span class="SimpleMath">\(p\)</span> is odd and does not divide <span class="SimpleMath">\(q\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( PSL( 2, 11 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">modt:= t mod 5;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">modt <> fail;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">InfoText( modt );</span>
"computed using that all Brauer characters lift to char. zero"
</pre></div>
<p>Another such example is the <span class="SimpleMath">\(5\)</span>-modular table of the Mathieu group <span class="SimpleMath">\(M_{11}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">lib:= CharacterTable( "M11" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fromgroup:= CharacterTable( MathieuGroup( 11 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">DecompositionMatrix( lib mod 5 );</span>
[ [ 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0, 0 ], [ 1, 0, 0, 0, 1, 1, 1, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fromgroup mod 5 <> fail;</span>
true
</pre></div>
<p>There are cases where all Brauer characters of a block lift to characteristic zero but the defect group of the block is not cyclic, thus the method cannot be used. An example is the <span class="SimpleMath">\(2\)</span>-modular table of the Mathieu group <span class="SimpleMath">\(M_{11}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">DecompositionMatrix( lib mod 2 );</span>
[ [ 1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ],
[ 0, 1, 0, 0, 0 ], [ 1, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ],
[ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ], [ 1, 0, 0, 0, 1 ],
[ 1, 1, 0, 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fromgroup mod 2;</span>
fail
</pre></div>
<p><a id="X864EFF897A854F89" name="X864EFF897A854F89"></a></p>
<h4>1.5 <span class="Heading">Information about certain subgroups of the Monster group</span></h4>
<p><a id="X82C7A03684DD7C6E" name="X82C7A03684DD7C6E"></a></p>
<h5>1.5-1 <span class="Heading">The Monster group does not contain subgroups of the type <span class="SimpleMath">\(2.U_4(2)\)</span> (August 2023)</span></h5>
<p>In the context of a question about decomposition numbers of the sporadic simple Monster group <span class="SimpleMath">\(𝕄\)</span>, Benjamin Sambale was interested in possible embeddings of certain groups <span class="SimpleMath">\(G\)</span> into <span class="SimpleMath">\(𝕄\)</span> such that the decomposition matrices of <span class="SimpleMath">\(G\)</span> are known. For a given <span class="SimpleMath">\(G\)</span>, the first steps were to compute the possible class fusions of <span class="SimpleMath">\(G\)</span> in <span class="SimpleMath">\(𝕄\)</span> and then to check whether the corresponding embeddings would be interesting.</p>
<p>Apparently, calling <code class="func">PossibleClassFusions</code> (<a href="../../../doc/ref/chap73_mj.html#X7883271F7F26356E"><span class="RefLink">Reference: PossibleClassFusions</span></a>) with its default parameters often runs very long and requires a lot of space when <span class="SimpleMath">\(G\)</span> is a small group such as <span class="SimpleMath">\(2.U_4(2)\)</span>. We can do better by calling the function with the parameter <code class="code">decompose:= false</code>. This has the effect that one criterion is omitted that checks the decomposability of restricted characters of <span class="SimpleMath">\(𝕄\)</span> as an integral linear combination of characters of the subgroup. As a rule of thumb, if the number of classes of the subgroup is small compared to the number of classes of the group and if the result consists of many candidates then it might be faster to omit the decomposability criterion.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "2.U4(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfusm:= PossibleClassFusions( s, m, rec( decompose:= false ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( sfusm );</span>
2332
</pre></div>
<p>Looking at the (many) candidates, we see that all map the central involution of <span class="SimpleMath">\(2.U_4(2)\)</span> to the class <code class="code">2B</code> of <span class="SimpleMath">\(𝕄\)</span>, thus any subgroup of the type <span class="SimpleMath">\(2.U_4(2)\)</span> lies inside the <code class="code">2B</code> normalizer in <span class="SimpleMath">\(𝕄\)</span>. We compute the possible class fusions into this subgroup.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( List( sfusm, x -> x[2] ) );</span>
[ 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "MN2B" );</span>
CharacterTable( "2^1+24.Co1" )
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t, rec( decompose:= false ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( sfust );</span>
0
</pre></div>
<p>Thus we have shown that <span class="SimpleMath">\(𝕄\)</span> does not contain subgroups of the type <span class="SimpleMath">\(2.U_4(2)\)</span>.</p>
<p><a id="X87EC0C48866D1BDE" name="X87EC0C48866D1BDE"></a></p>
<h5>1.5-2 <span class="Heading">Perfect central extensions of <span class="SimpleMath">\(L_3(4)\)</span> (August 2023)</span></h5>
<p>There was <span class="URL"><a href="https://mathoverflow.net/questions/450255">the question in MathOverflow</a></span> which perfect central extensions of the simple group <span class="SimpleMath">\(G = L_3(4)\)</span> are subgroups of the sporadic simple Monster group <span class="SimpleMath">\(𝕄\)</span>.</p>
<p>First we get the list of perfect central extensions of <span class="SimpleMath">\(G\)</span> (asuming that their character tables are contained in the character table library).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">simp:= CharacterTable( "L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">extnames:= AllCharacterTableNames( Identifier,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> EndsWith(x, "L3(4)" ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= List( extnames, CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= Filtered( ext, x -> Length( ClassPositionsOfCentre( x ) ) =</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Size( x ) / Size( simp ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortBy( ext, Size );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= List( ext, Identifier );</span>
[ "L3(4)", "2.L3(4)", "3.L3(4)", "2^2.L3(4)", "4_1.L3(4)",
"4_2.L3(4)", "6.L3(4)", "(2x4).L3(4)", "(2^2x3).L3(4)",
"12_1.L3(4)", "12_2.L3(4)", "4^2.L3(4)", "(2x12).L3(4)",
"(4^2x3).L3(4)" ]
</pre></div>
<p>The fact that <span class="SimpleMath">\(G\)</span> is <em>not</em> isomorphic to a subgroup of <span class="SimpleMath">\(𝕄\)</span> is shown in <a href="chapBib_mj.html#biBHW08">[HW08]</a> (at the end of this paper).</p>
<p>And the following embeddings of central extensions of <span class="SimpleMath">\(G\)</span> in <span class="SimpleMath">\(𝕄\)</span> can be established using known subgroups of <span class="SimpleMath">\(𝕄\)</span>.</p>
<ul>
<li><p><span class="SimpleMath">\(2.G < 2.U_4(3) < 2^2.U_6(2) < Fi_{23} < 3.Fi_{24}' < 𝕄\)</span>.</p>
</li>
<li><p><span class="SimpleMath">\(2^2.G < He < 3.Fi_{24}' < 𝕄\)</span>.</p>
</li>
<li><p><span class="SimpleMath">\(6.G < 2.G_2(4) < 6.Suz < 3^{1+12}_+.2Suz < 𝕄\)</span>.</p>
</li>
</ul>
<p>Note that <span class="SimpleMath">\(G\)</span> is a subgroup of <span class="SimpleMath">\(U_4(3)\)</span> but not of <span class="SimpleMath">\(2.U_4(3)\)</span>, <span class="SimpleMath">\(3.G\)</span> is a subgroup of <span class="SimpleMath">\(G_2(4)\)</span> but not of <span class="SimpleMath">\(2.G_2(4)\)</span>, and <span class="SimpleMath">\(G_2(4)\)</span> is a subgroup of <span class="SimpleMath">\(Suz\)</span> but not of <span class="SimpleMath">\(2.Suz\)</span>. The positive statements follow from <a href="chapBib_mj.html#biBCCN85">[CCN+85, pp. 52, 97, 131]</a> and the negative ones from the following computations.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "L3(4)" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2.U4(3)" ) ) );</span>
0
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "3.L3(4)" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2.G2(4)" ) ) );</span>
0
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "G2(4)" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2.Suz" ) ) );</span>
0
</pre></div>
<p>The group <span class="SimpleMath">\(3.G\)</span> centralizes an element of order three. If <span class="SimpleMath">\(3.G\)</span> is a subgroup of <span class="SimpleMath">\(𝕄\)</span> then it is contained in a <code class="code">3A</code> centralizer (of the structure <span class="SimpleMath">\(3.Fi_{24}'\)</span>), a <code class="code">3B</code> centralizer (of the structure <span class="SimpleMath">\(3^{1+12}_+.2Suz\)</span>) or a <code class="code">3C</code> centralizer (of the structure <span class="SimpleMath">\(3 \times Th\)</span>). Clearly the case <span class="SimpleMath">\(3C\)</span> cannot occur, and <code class="code">3B</code> is excluded by the fact that no class fusion between <span class="SimpleMath">\(3.G\)</span> and the <span class="SimpleMath">\(3B\)</span> normalizer <span class="SimpleMath">\(3^{1+12}_+.2Suz.2\)</span> is possible.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "MN3B" );</span>
CharacterTable( "3^(1+12).2.Suz.2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( "3.L3(4)" ), t ) );</span>
0
</pre></div>
<p>If <span class="SimpleMath">\(3.G\)</span> is contained in the <code class="code">3A</code> centralizer then this embedding induces one of <span class="SimpleMath">\(G\)</span> into some maximal subgroup of <span class="SimpleMath">\(Fi_{24}'\)</span>. Using the known character tables of these maximal subgroups in GAP's character table library, one shows that only <span class="SimpleMath">\(Fi_{23}\)</span> admits a class fusion, but this subgroup lifts to <span class="SimpleMath">\(3 \times Fi_{23}\)</span> in <span class="SimpleMath">\(3.Fi_{24}'\)</span> and thus cannot lead to a subgroup of type <span class="SimpleMath">\(3.G\)</span>..</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= List( Maxes( CharacterTable( "Fi24'" ) ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( mx, x -> Length( PossibleClassFusions( s, x ) ) > 0 );</span>
[ CharacterTable( "Fi23" ) ]
</pre></div>
<p>The other candidates <span class="SimpleMath">\(m.G\)</span> contain at least one central involution. If <span class="SimpleMath">\(m.G\)</span> is a subgroup of <span class="SimpleMath">\(𝕄\)</span> then it is contained in a <code class="code">2A</code> centralizer (of the structure <span class="SimpleMath">\(2.B\)</span>) or a <code class="code">2B</code> centralizer (of the structure <code class="code">2^{1+24}_+.Co_1</code>). Again we use <code class="func">PossibleClassFusions</code> (<a href="../../../doc/ref/chap73_mj.html#X7883271F7F26356E"><span class="RefLink">Reference: PossibleClassFusions</span></a>) to list all candidates for the class fusion, but here we prescribe the central involution of the <code class="code">2A</code> or <code class="code">2B</code> centralizer as an image of one central involution in <span class="SimpleMath">\(m.G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">done:= [ "L3(4)", "2.L3(4)", "3.L3(4)", "2^2.L3(4)", "6.L3(4)" ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= Filtered( names, x -> not x in done );</span>
[ "4_1.L3(4)", "4_2.L3(4)", "(2x4).L3(4)", "(2^2x3).L3(4)",
"12_1.L3(4)", "12_2.L3(4)", "4^2.L3(4)", "(2x12).L3(4)",
"(4^2x3).L3(4)" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">invcent:= List( [ "MN2A", "MN2B" ], CharacterTable );</span>
[ CharacterTable( "2.B" ), CharacterTable( "2^1+24.Co1" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( invcent, x -> ClassPositionsOfCentre( x ) = [ 1, 2 ] );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ords:= "dummy";; # Avoid a message about an unbound variable ...</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for name in names do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s:= CharacterTable( name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ords:= OrdersClassRepresentatives( s );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> invpos:= Filtered( ClassPositionsOfCentre( s ), i -> ords[i] = 2 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in invpos do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for t in invcent do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> init:= InitFusion( s, t );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if init = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> continue;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> init[i]:= 2;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fus:= PossibleClassFusions( s, t, rec( fusionmap:= init,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> decompose:= false ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if fus <> [] then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( cand, [ s, t, i, fus ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( cand, x -> x{ [ 1 .. 3 ] } );</span>
[ [ CharacterTable( "4_1.L3(4)" ), CharacterTable( "2^1+24.Co1" ), 3 ]
, [ CharacterTable( "(2x4).L3(4)" ), CharacterTable( "2.B" ), 2 ],
[ CharacterTable( "(2x4).L3(4)" ), CharacterTable( "2.B" ), 3 ] ]
</pre></div>
<p>(Note that we have called <code class="func">PossibleClassFusions</code> (<a href="../../../doc/ref/chap73_mj.html#X7883271F7F26356E"><span class="RefLink">Reference: PossibleClassFusions</span></a>) with the option <code class="code">decompose:= false</code>, in order to save space and time. See Section <a href="chap1_mj.html#X82C7A03684DD7C6E"><span class="RefLink">1.5-1</span></a> for more details.)</p>
<p>Concerning the candidate <span class="SimpleMath">\((2 \times 4).G\)</span>, we see that only fusions are possible for which the central involution in question is mapped to a <code class="code">2A</code> element of <span class="SimpleMath">\(𝕄\)</span>. Since we get candidates only for two out of the three central involutions, we see that <span class="SimpleMath">\((2 \times 4).G\)</span> does not embed into <span class="SimpleMath">\(𝕄\)</span>.</p>
<p>Thus it turns out that exactly one group <span class="SimpleMath">\(m.G\)</span> cannot be excluded this way. Namely, these character-theoretical criteria leave the possibility that <span class="SimpleMath">\(4_1.G\)</span> may occur as a subgroup of <span class="SimpleMath">\(2^{1+24}_+.Co_1\)</span>.</p>
<p>Moreover, we see that if this happens then the centre <span class="SimpleMath">\(C\)</span> of <span class="SimpleMath">\(4_1.G\)</span> lies inside the normal subgroup <span class="SimpleMath">\(N = 2^{1+24}_+\)</span>. The centralizer of <span class="SimpleMath">\(C\)</span> in <span class="SimpleMath">\(N\)</span> has order <span class="SimpleMath">\(2^{24}\)</span>, and the centralizer of <span class="SimpleMath">\(C\)</span> in <span class="SimpleMath">\(2^{1+24}_+.Co_1\)</span> has order <span class="SimpleMath">\(2^{24} \cdot |Co_3|\)</span>. We see that <span class="SimpleMath">\(4_1.G\)</span>, if it exists as a subgroup of <span class="SimpleMath">\(2^{1+24}_+.Co_1\)</span>, must lie inside the subgroup <span class="SimpleMath">\([2^{24}].Co_3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= cand[1][1];</span>
CharacterTable( "4_1.L3(4)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= cand[1][2];</span>
CharacterTable( "2^1+24.Co1" )
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= cand[1][4];</span>
[ [ 1, 5, 2, 5, 9, 8, 23, 27, 24, 27, 49, 49, 50, 50, 70, 74, 71, 74,
70, 74, 71, 74, 114, 119, 115, 119, 114, 119, 115, 119 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassPositionsOfCentre( s );</span>
[ 1, 2, 3, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">5 in ClassPositionsOfPCore( t, 2 );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">siz:= SizesCentralizers( t )[5] / 2^24;</span>
495766656000
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= Filtered( List( Maxes( CharacterTable( "Co1" ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Size( x ) mod siz = 0 );</span>
[ CharacterTable( "Co3" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( mx[1] ) = siz;</span>
true
</pre></div>
<p>I do not see a character-theoretic argument that could disprove the existence of such an <span class="SimpleMath">\(4_1.G\)</span> type subgroup.</p>
<p><a id="X7F605CA28441687F" name="X7F605CA28441687F"></a></p>
<h5>1.5-3 <span class="Heading">The character table of <span class="SimpleMath">\((2 \times O_8^+(3)).S_4 \leq 2.B\)</span> (October 2023)</span></h5>
<p>Consider a maximal subgroup <span class="SimpleMath">\(H\)</span> of type <span class="SimpleMath">\((3^2:2 \times O_8^+(3)).S_4\)</span> in the sporadic simple Monster group. The character table of <span class="SimpleMath">\(H\)</span> has been contributed by Tim Burness. We can view <span class="SimpleMath">\(H\)</span> as <span class="SimpleMath">\(O_8^+(3).(3^2:2S_4) = O_8^+(3).F\)</span>. The character table of <span class="SimpleMath">\(H\)</span> determines that of <span class="SimpleMath">\(F\)</span>, and this table determines the isomorphism type of <span class="SimpleMath">\(F\)</span> as <code class="code">SmallGroup( 432, 734 )</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblH:= CharacterTable( "(3^2:2xO8+(3)).S4" );</span>
CharacterTable( "(3^2:2xO8+(3)).S4" )
<span class="GAPprompt">gap></span> <span class="GAPinput">N:= ClassPositionsOfSolvableResiduum( tblH );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblF:= tblH / N;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( tblF );</span>
432
<span class="GAPprompt">gap></span> <span class="GAPinput">known:= NamesOfEquivalentLibraryCharacterTables( tblF );</span>
[ "3^2.2.S4", "M12M7" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( GroupInfoForCharacterTable( known[1] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x[1] = "SmallGroup" );</span>
[ [ "SmallGroup", [ 432, 734 ] ] ]
</pre></div>
<p>(Note that the precomputed <code class="func">GroupInfoForCharacterTable</code> (<a href="..//doc/chap3_mj.html#X78DCD38B7D96D8A4"><span class="RefLink">CTblLib: GroupInfoForCharacterTable</span></a>) information about <strong class="pkg">GAP</strong> library character tables means that exactly one isomorphism type of groups fits to the character table of <span class="SimpleMath">\(F\)</span>.)</p>
<p>We compute that <span class="SimpleMath">\(O_3(F) \cong 3^2\)</span> has complements in <span class="SimpleMath">\(F\)</span>, thus <span class="SimpleMath">\(H\)</span> has a subgroup <span class="SimpleMath">\(V\)</span> of the type <span class="SimpleMath">\(O_8^+(3).2S_4\)</span>, which is a complement of <span class="SimpleMath">\(O_3(H)\)</span> in <span class="SimpleMath">\(H\)</span>, thus <span class="SimpleMath">\(V\)</span> is isomorphic with <span class="SimpleMath">\(H / O_3(H)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= SmallGroup( 432, 734 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:= PCore( G, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( ComplementClassesRepresentatives( G, P ) );</span>
1
</pre></div>
<p>We can derive the character table of <span class="SimpleMath">\(V\)</span> from that of <span class="SimpleMath">\(H\)</span>, and compute that the group structure of <span class="SimpleMath">\(V\)</span> is <span class="SimpleMath">\((2 \times O_8^+(3)).S_4\)</span>. For that, we consider the element orders of the unique normal subgroup of order <span class="SimpleMath">\(2 |O_8^+(3)|\)</span> in <span class="SimpleMath">\(V\)</span>. If this normal subgroup would not be isomorphic with <span class="SimpleMath">\(2 \times O_8^+(3)\)</span> then it would have one of the structures <span class="SimpleMath">\(O_8^+(3).2_1\)</span> or <span class="SimpleMath">\(O_8^+(3).2_2\)</span>, but then it would contain elements of the orders <span class="SimpleMath">\(24\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblV:= tblH / ClassPositionsOfPCore( tblH, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord:= 2 * Size( tblH ) / Size( tblF );</span>
9904359628800
<span class="GAPprompt">gap></span> <span class="GAPinput">classes:= SizesConjugacyClasses( tblV );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2N:= Filtered( ClassPositionsOfNormalSubgroups( tblV ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> l -> Sum( classes{ l } ) = ord );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( 2N );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( OrdersClassRepresentatives( tblV ){ 2N[1] } );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 26, 30 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( OrdersClassRepresentatives( CharacterTable( "O8+(3)" ) ) );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( OrdersClassRepresentatives( CharacterTable( "O8+(3).2_1" ) ) );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 24, 26, 28,
30, 36, 40 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( OrdersClassRepresentatives( CharacterTable( "O8+(3).2_2" ) ) );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 24, 26, 28,
30, 36 ]
</pre></div>
<p>The class fusion of <span class="SimpleMath">\(V\)</span> into the Monster group shows that <span class="SimpleMath">\(V\)</span> centralizes a <code class="code">2A</code> element in the Monster, hence <span class="SimpleMath">\(V\)</span> is a subgroup of a maximal subgroup of the type <span class="SimpleMath">\(2.B\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblM:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">VfusM:= PossibleClassFusions( tblV, tblM );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( VfusM );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">ZV:= ClassPositionsOfCentre( tblV );</span>
[ 1, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( List( VfusM, l -> l{ ZV } ) );</span>
[ [ 1, 2 ] ]
</pre></div>
<p>From the list of maximal subgroups of <span class="SimpleMath">\(B\)</span>, we see that either <span class="SimpleMath">\(V\)</span> is contained in the preimage of <span class="SimpleMath">\(Fi_{23}\)</span> under the natural epimorphism from <span class="SimpleMath">\(2.B\)</span> to <span class="SimpleMath">\(B\)</span>, or <span class="SimpleMath">\(V\)</span> is equal to the preimage of <span class="SimpleMath">\(O_8^+(3).S_4\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblB:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mxB:= List( Maxes( tblB ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= Filtered( mxB, s -> Size( s ) mod ( Size( tblV ) / 2 ) = 0 );</span>
[ CharacterTable( "Fi23" ), CharacterTable( "O8+(3).S4" ) ]
</pre></div>
<p>The former possibility is excluded from the fact that the factor of <span class="SimpleMath">\(V\)</span> by its center does not admit a class fusion into <span class="SimpleMath">\(Fi_{23}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( tblV / ZV, CharacterTable( "Fi23" ) ) );</span>
0
</pre></div>
<p>We conclude that <span class="SimpleMath">\(V\)</span> is a maximal subgroup of <span class="SimpleMath">\(2.B\)</span>.</p>
<p>Thus we have used the character table of <span class="SimpleMath">\(H\)</span> to construct the character table of a maximal subgroup of <span class="SimpleMath">\(2.B\)</span>, with very little effort.</p>
<p>This table is meanwhile available in the table library, with the identifier <code class="code">"(2xO8+(3)).S4"</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">lib:= CharacterTable( "(2xO8+(3)).S4" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( tblV, lib ) <> fail;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Irr( lib ) = Irr( tblV );</span>
true
</pre></div>
<p>In order to add the table to the library, we have to provide also the class fusions from <span class="SimpleMath">\(V\)</span> to <span class="SimpleMath">\(2.B\)</span>, to the maximal subgroup <span class="SimpleMath">\((2 \times O_8^+(3)).S_4\)</span> of <span class="SimpleMath">\(B\)</span>, and to the maximal subgroup <span class="SimpleMath">\((3^2:2 \times O_8^+(3)).S_4\)</span> of <span class="SimpleMath">\(M\)</span>, such that the compositions of fusions from <span class="SimpleMath">\(V\)</span> to <span class="SimpleMath">\(B\)</span> via <span class="SimpleMath">\(O_8^+(3).S_4\)</span> and <span class="SimpleMath">\(2.B\)</span> are compatible, <span class="SimpleMath">\(\ldots\)</span></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblU:= CharacterTable( "O8+(3).S4" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl2B:= CharacterTable( "2.B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CompositionMaps( GetFusionMap( tblU, tblB ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GetFusionMap( lib, tblU ) ) =</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( GetFusionMap( tbl2B, tblB ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GetFusionMap( lib, tbl2B ) );</span>
true
</pre></div>
<p><span class="SimpleMath">\(\ldots\)</span> and that the compositions of fusions from <span class="SimpleMath">\(V\)</span> to <span class="SimpleMath">\(M\)</span> via <span class="SimpleMath">\((3^2:2 \times O_8^+(3)).S_4\)</span> and <span class="SimpleMath">\(2.B\)</span> are compatible.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblH:= CharacterTable( "(3^2:2xO8+(3)).S4" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CompositionMaps( GetFusionMap( tblH, tblM ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GetFusionMap( lib, tblH ) ) =</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( GetFusionMap( tbl2B, tblM ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GetFusionMap( lib, tbl2B ) );</span>
true
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap0_mj.html">[Previous Chapter]</a> <a href="chap2_mj.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|