File: chap2.html

package info (click to toggle)
gap-ctbllib 1.3.9-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 74,872 kB
  • sloc: xml: 41,268; makefile: 215; javascript: 155
file content (5593 lines) | stat: -rw-r--r-- 535,195 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (CTblLibXpls) - Chapter 2: Using Table Automorphisms for Constructing Character Tables in GAP</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap2"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap1.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap3.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap2_mj.html">[MathJax on]</a></p>
<p><a id="X7B77FD307F0DE563" name="X7B77FD307F0DE563"></a></p>
<div class="ChapSects"><a href="chap2.html#X7B77FD307F0DE563">2 <span class="Heading">Using Table Automorphisms for Constructing Character Tables in <strong class="pkg">GAP</strong></span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X8389AD927B74BA4A">2.1 <span class="Heading">Overview</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X7B6AEBDF7B857E2E">2.2 <span class="Heading">Theoretical Background</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X78EBF9BA7A34A9C2">2.2-1 <span class="Heading">Character Table Automorphisms</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X832525DE7AB34F16">2.2-2 <span class="Heading">Permutation Equivalence of Character Tables</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7906869F7F190E76">2.2-3 <span class="Heading">Class Fusions</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X80C37276851D5E39">2.2-4 <span class="Heading">Constructing Character Tables of Certain Isoclinic Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7AEFFEEC84511FD0">2.2-5 <span class="Heading">Character Tables of Isoclinic Groups of the Structure <span class="SimpleMath">p.G.p</span>
(October 2016)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X78F41D2A78E70BEE">2.2-6 <span class="Heading">Isoclinic Double Covers of Almost Simple Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X834B42A07E98FBC6">2.2-7 <span class="Heading">Characters of Normal Subgroups</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X787F430E7FDB8765">2.3 <span class="Heading">The Constructions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X82E75B6880EC9E6C">2.3-1 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">M.G.A</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7CCABDDE864E6300">2.3-2 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">G.S_3</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7D3EF3BC83BE05CF">2.3-3 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">G.2^2</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X81464C4B8178C85A">2.3-4 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">2^2.G</span>
(August 2005)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X86CF6A607B0827EE">2.3-5 <span class="Heading"><span class="SimpleMath">p</span>-Modular Tables of Extensions by <span class="SimpleMath">p</span>-singular Automorphisms</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X788591D78451C024">2.3-6 <span class="Heading">Character Tables of Subdirect Products of Index Two (July 2007)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X817D2134829FA8FA">2.4 <span class="Heading">Examples for the Type <span class="SimpleMath">M.G.A</span></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7F2DBAB48437052C">2.4-1 <span class="Heading">Character Tables of Dihedral Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7925DBFA7C5986B5">2.4-2 <span class="Heading">An <span class="SimpleMath">M.G.A</span> Type Example with <span class="SimpleMath">M</span> noncentral in <span class="SimpleMath">M.G</span> (May 2004)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7ED45AB379093A70">2.4-3 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">M.G.A</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7A236EDE7A7A28F9">2.4-4 <span class="Heading">More <strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">M.G.A</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X794EC2FD7F69B4E6">2.4-5 <span class="Heading">The Character Tables of <span class="SimpleMath">4_2.L_3(4).2_3</span> and <span class="SimpleMath">12_2.L_3(4).2_3</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7E3E748E85AEDDB3">2.4-6 <span class="Heading">The Character Tables of <span class="SimpleMath">12_1.U_4(3).2_2'</span> and
<span class="SimpleMath">12_2.U_4(3).2_3'</span> (December 2015)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X8379003582D06130">2.4-7 <span class="Heading">Groups of the Structures <span class="SimpleMath">3.U_3(8).3_1</span> and <span class="SimpleMath">3.U_3(8).6</span>
(February 2017)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7B46C77B850D3B4D">2.4-8 <span class="Heading">The Character Table of <span class="SimpleMath">(2^2 × F_4(2)):2 &lt; B</span>
(March 2003)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X8254AA4A843F99BE">2.4-9 <span class="Heading">The Character Table of <span class="SimpleMath">2.(S_3 × Fi_22.2) &lt; 2.B</span> (March 2003)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7AF125168239D208">2.4-10 <span class="Heading">The Character Table of <span class="SimpleMath">(2 × 2.Fi_22):2 &lt; Fi_24</span> (November 2008)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X79C93F7D87D9CF1D">2.4-11 <span class="Heading">The Character Table of <span class="SimpleMath">S_3 × 2.U_4(3).2_2 ≤ 2.Fi_22</span> (September 2002)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X83724BCE86FCD77B">2.4-12 <span class="Heading">The Character Table of <span class="SimpleMath">4.HS.2 ≤ HN.2</span> (May 2002)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7E9A88DA7CBF6426">2.4-13 <span class="Heading">The Character Tables of <span class="SimpleMath">4.A_6.2_3</span>, <span class="SimpleMath">12.A_6.2_3</span>,
and <span class="SimpleMath">4.L_2(25).2_3</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7BD79BA37C3E729B">2.4-14 <span class="Heading">The Character Table of <span class="SimpleMath">4.L_2(49).2_3</span> (December 2020)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X817A961487D2DFD1">2.4-15 <span class="Heading">The Character Table of <span class="SimpleMath">4.L_2(81).2_3</span> (December 2020)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7AF324AF7A54798F">2.4-16 <span class="Heading">The Character Table of <span class="SimpleMath">9.U_3(8).3_3</span> (March 2017)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7E0C603880157C4E">2.4-17 <span class="Heading">Pseudo Character Tables of the Type <span class="SimpleMath">M.G.A</span> (May 2004)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X844185EF7A8F2A99">2.4-18 <span class="Heading">Some Extra-ordinary <span class="SimpleMath">p</span>-Modular Tables of the Type <span class="SimpleMath">M.G.A</span>
(September 2005)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X7F50C782840F06E4">2.5 <span class="Heading">Examples for the Type <span class="SimpleMath">G.S_3</span></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7F0DC29F874AA09F">2.5-1 <span class="Heading">Small Examples</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X80F9BC057980A9E9">2.5-2 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">G.S_3</span></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X7EA489E07D7C7D86">2.6 <span class="Heading">Examples for the Type <span class="SimpleMath">G.2^2</span></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X8054FDE679053B1C">2.6-1 <span class="Heading">The Character Table of <span class="SimpleMath">A_6.2^2</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7FEC3AB081487AF2">2.6-2 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">G.2^2</span> – Easy Cases</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X869B65D3863EDEC3">2.6-3 <span class="Heading">The Character Table of <span class="SimpleMath">S_4(9).2^2</span> (September 2011)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7B38006380618543">2.6-4 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">2.L_3(4).2^2</span>
(June 2010)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X79818ABD7E972370">2.6-5 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">6.L_3(4).2^2</span>
(October 2011)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X878889308653435F">2.6-6 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">2.U_4(3).2^2</span>
(February 2012)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7DC42AE57E9EED4D">2.6-7 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">4_1.L_3(4).2^2</span>
(October 2011)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7E9AF180869B4786">2.6-8 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">4_2.L_3(4).2^2</span>
(October 2011)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7EAF9CD07E536120">2.6-9 <span class="Heading">The Character Table of Aut<span class="SimpleMath">(L_2(81))</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X78AED04685EDCC19">2.6-10 <span class="Heading">The Character Table of <span class="SimpleMath">O_8^+(3).2^2_111</span></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X845BAA2A7FD768B0">2.7 <span class="Heading">Examples for the Type <span class="SimpleMath">2^2.G</span></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X87EEBDB987249117">2.7-1 <span class="Heading">The Character Table of <span class="SimpleMath">2^2.Sz(8)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X83652A0282A64D14">2.7-2 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">2^2.G</span> (September 2005)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7F63DDF77870F967">2.7-3 <span class="Heading">The Character Table of <span class="SimpleMath">2^2.O_8^+(3)</span> (March 2009)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X86A1607787DE6BB9">2.7-4 <span class="Heading">The Character Table of the Schur Cover of <span class="SimpleMath">L_3(4)</span>
(September 2005)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X8711DBB083655A25">2.8 <span class="Heading">Examples of Extensions by <span class="SimpleMath">p</span>-singular Automorphisms</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X81C08739850E4AAE">2.8-1 <span class="Heading">Some <span class="SimpleMath">p</span>-Modular Tables of Groups of the Type <span class="SimpleMath">M.G.A</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7FED618F83ACB7C2">2.8-2 <span class="Heading">Some <span class="SimpleMath">p</span>-Modular Tables of Groups of the Type <span class="SimpleMath">G.S_3</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7EEF6A7F8683177A">2.8-3 <span class="Heading"><span class="SimpleMath">2</span>-Modular Tables of Groups of the Type <span class="SimpleMath">G.2^2</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X875F8DD77C0997FA">2.8-4 <span class="Heading">The <span class="SimpleMath">3</span>-Modular Table of <span class="SimpleMath">U_3(8).3^2</span></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X7A4D6044865E516B">2.9 <span class="Heading">Examples of Subdirect Products of Index Two</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X850FF694801700CF">2.9-1 <span class="Heading">Certain Dihedral Groups as Subdirect Products of Index Two</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X80C5D6FA83D7E2CF">2.9-2 <span class="Heading">The Character Table of <span class="SimpleMath">(D_10 × HN).2 &lt; M</span> (June 2008)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X85EECFD47EC252A2">2.9-3 <span class="Heading">A Counterexample (August 2015)</span></a>
</span>
</div></div>
</div>

<h3>2 <span class="Heading">Using Table Automorphisms for Constructing Character Tables in <strong class="pkg">GAP</strong></span></h3>

<p>Date: June 27th, 2004</p>

<p>This chapter has three aims. First it shows how character table automorphisms can be utilized to construct certain character tables from others using the <strong class="pkg">GAP</strong> system <a href="chapBib.html#biBGAP">[GAP21]</a>; the <strong class="pkg">GAP</strong> functions used for that are part of the <strong class="pkg">GAP</strong> Character Table Library <a href="chapBib.html#biBCTblLib">[Bre24]</a>. Second it documents several constructions of character tables which are contained in the <strong class="pkg">GAP</strong> Character Table Library. Third it serves as a testfile for the involved <strong class="pkg">GAP</strong> functions.</p>

<p><a id="X8389AD927B74BA4A" name="X8389AD927B74BA4A"></a></p>

<h4>2.1 <span class="Heading">Overview</span></h4>

<p>Several types of constructions of character tables of finite groups from known tables of smaller groups are described in Section <a href="chap2.html#X787F430E7FDB8765"><span class="RefLink">2.3</span></a>. Selecting suitable character table automorphisms is an important ingredient of these constructions.</p>

<p>Section <a href="chap2.html#X7B6AEBDF7B857E2E"><span class="RefLink">2.2</span></a> collects the few representation theoretical facts on which these constructions are based.</p>

<p>The remaining sections show examples of the constructions in <strong class="pkg">GAP</strong>. These examples use the <strong class="pkg">GAP</strong> Character Table Library, therefore we load this package first.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "ctbllib", "1.1.4", false );</span>
true
</pre></div>

<p><a id="X7B6AEBDF7B857E2E" name="X7B6AEBDF7B857E2E"></a></p>

<h4>2.2 <span class="Heading">Theoretical Background</span></h4>

<p><a id="X78EBF9BA7A34A9C2" name="X78EBF9BA7A34A9C2"></a></p>

<h5>2.2-1 <span class="Heading">Character Table Automorphisms</span></h5>

<p>Let <span class="SimpleMath">G</span> be a finite group, <span class="SimpleMath">Irr(G)</span> be the matrix of ordinary irreducible characters of <span class="SimpleMath">G</span>, <span class="SimpleMath">Cl(G)</span> be the set of conjugacy classes of elements in <span class="SimpleMath">G</span>, <span class="SimpleMath">g^G</span> the <span class="SimpleMath">G</span>-conjugacy class of <span class="SimpleMath">g ∈ G</span>, and let</p>

<p class="pcenter">pow_p : Cl(G) → Cl(G), g^G ↦ (g^p)^G</p>

<p>be the <span class="SimpleMath">p</span>-th power map, for each prime integer <span class="SimpleMath">p</span>.</p>

<p>A <em>table automorphism</em> of <span class="SimpleMath">G</span> is a permutation <span class="SimpleMath">σ : Cl(G) → Cl(G)</span> with the properties that <span class="SimpleMath">χ ∘ σ ∈ Irr(G)</span> holds for all <span class="SimpleMath">χ ∈ Irr(G)</span> and that <span class="SimpleMath">σ</span> commutes with <span class="SimpleMath">pow_p</span>, for all prime integers <span class="SimpleMath">p</span> that divide the order of <span class="SimpleMath">G</span>. Note that for prime integers <span class="SimpleMath">p</span> that are coprime to the order of <span class="SimpleMath">G</span>, <span class="SimpleMath">pow_p</span> commutes with each <span class="SimpleMath">σ</span> that permutes <span class="SimpleMath">Irr(G)</span>, since <span class="SimpleMath">pow_p</span> acts as a field automorphism on the character values.</p>

<p>In <strong class="pkg">GAP</strong>, a character table covers the irreducible characters –a matrix <span class="SimpleMath">M</span> of character values– as well as the power maps of the underlying group –each power map <span class="SimpleMath">pow_p</span> being represented as a list <span class="SimpleMath">pow_p^'</span> of positive integers denoting the positions of the image classes. The group of table automorphisms of a character table is represented as a permutation group on the column positions of the table; it can be computed with the <strong class="pkg">GAP</strong> function <code class="func">AutomorphismsOfTable</code> (<a href="../../../doc/ref/chap71.html#X7C2753DE8094F4BA"><span class="RefLink">Reference: AutomorphismsOfTable</span></a>).</p>

<p>In the following, we will mainly use that each <em>group automorphism</em> <span class="SimpleMath">σ</span> of <span class="SimpleMath">G</span> induces a table automorphism that maps the class of each element in <span class="SimpleMath">G</span> to the class of its image under <span class="SimpleMath">σ</span>.</p>

<p><a id="X832525DE7AB34F16" name="X832525DE7AB34F16"></a></p>

<h5>2.2-2 <span class="Heading">Permutation Equivalence of Character Tables</span></h5>

<p>Two character tables with matrices <span class="SimpleMath">M_1</span>, <span class="SimpleMath">M_2</span> of irreducibles and <span class="SimpleMath">p</span>-th power maps <span class="SimpleMath">pow_{1,p}</span>, <span class="SimpleMath">pow_{2,p}</span> are <em>permutation equivalent</em> if permutations <span class="SimpleMath">ψ</span> and <span class="SimpleMath">π</span> of row and column positions of the <span class="SimpleMath">M_i</span> exist such that <span class="SimpleMath">[ M_1 ]_{i,j} = [ M_2 ]_{i ψ, j π}</span> holds for all indices <span class="SimpleMath">i</span>, <span class="SimpleMath">j</span>, and such that <span class="SimpleMath">π ⋅ pow_{2,p}^' = pow_{1,p}^' ⋅ π</span> holds for all primes <span class="SimpleMath">p</span> that divide the (common) group order. The first condition is equivalent to the existence of a permutation <span class="SimpleMath">π</span> such that permuting the columns of <span class="SimpleMath">M_1</span> with <span class="SimpleMath">π</span> maps the set of rows of <span class="SimpleMath">M_1</span> to the set of rows of <span class="SimpleMath">M_2</span>.</p>

<p><span class="SimpleMath">π</span> is of course determined only up to table automorphisms of the two character tables, that is, two transforming permutations <span class="SimpleMath">π_1</span>, <span class="SimpleMath">π_2</span> satisfy that <span class="SimpleMath">π_1 ⋅ π_2^-1</span> is a table automorphism of the first table, and <span class="SimpleMath">π_1^-1 ⋅ π_2</span> is a table automorphism of the second.</p>

<p>Clearly two isomorphic groups have permutation equivalent character tables.</p>

<p>The <strong class="pkg">GAP</strong> library function <code class="func">TransformingPermutationsCharacterTables</code> (<a href="../../../doc/ref/chap71.html#X849731AA7EC9FA73"><span class="RefLink">Reference: TransformingPermutationsCharacterTables</span></a>) returns a record that contains transforming permutations of rows and columns if the two argument tables are permutation equivalent, and <code class="keyw">fail</code> otherwise.</p>

<p>In the example sections, the following function for computing representatives from a list of character tables w.r.t. permutation equivalence will be used. More precisely, the input is either a list of character tables or a list of records which have a component <code class="code">table</code> whose value is a character table, and the output is a sublist of the input.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RepresentativesCharacterTables:= function( list )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   local reps, entry, r;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   reps:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   for entry in list do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if ForAll( reps, r -&gt; ( IsCharacterTable( r ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            TransformingPermutationsCharacterTables( entry, r ) = fail )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          or ( IsRecord( r ) and TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                   entry.table, r.table ) = fail ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( reps, entry );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   return reps;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   end;;</span>
</pre></div>

<p><a id="X7906869F7F190E76" name="X7906869F7F190E76"></a></p>

<h5>2.2-3 <span class="Heading">Class Fusions</span></h5>

<p>For two groups <span class="SimpleMath">H</span>, <span class="SimpleMath">G</span> such that <span class="SimpleMath">H</span> is isomorphic with a subgroup of <span class="SimpleMath">G</span>, any embedding <span class="SimpleMath">ι : H → G</span> induces a class function</p>

<p class="pcenter">fus_ι : Cl(H) → Cl(G), h^G ↦ (ι(h))^G</p>

<p>the <em>class fusion</em> of <span class="SimpleMath">H</span> in <span class="SimpleMath">G</span> via <span class="SimpleMath">ι</span>. Analogously, for a normal subgroup <span class="SimpleMath">N</span> of <span class="SimpleMath">G</span>, any epimorphism <span class="SimpleMath">π : G → G/N</span> induces a class function</p>

<p class="pcenter">fus_π : Cl(G) → Cl(G/N), g^G ↦ (π(g))^G</p>

<p>the <em>class fusion</em> of <span class="SimpleMath">G</span> onto <span class="SimpleMath">G/N</span> via <span class="SimpleMath">π</span>.</p>

<p>When one works only with character tables and not with groups, these class fusions are the objects that describe subgroup and factor group relations between character tables. Technically, class fusions are necessary for restricting, inducing, and inflating characters from one character table to another. If one is faced with the problem to compute the class fusion between the character tables of two groups <span class="SimpleMath">H</span> and <span class="SimpleMath">G</span> for which it is known that <span class="SimpleMath">H</span> can be embedded into <span class="SimpleMath">G</span> then one can use character-theoretic necessary conditions, concerning that the restriction of all irreducible characters of <span class="SimpleMath">G</span> to <span class="SimpleMath">H</span> (via the class fusion) must decompose into the irreducible characters of <span class="SimpleMath">H</span>, and that the class fusion must commute with the power maps of <span class="SimpleMath">H</span> and <span class="SimpleMath">G</span>.</p>

<p>With this character-theoretic approach, one can clearly determine possible class fusions only up to character table automorphisms. Note that one can interpret each character table automorphism of <span class="SimpleMath">G</span> as a class fusion from the table of <span class="SimpleMath">G</span> to itself.</p>

<p>If <span class="SimpleMath">N</span> is a normal subgroup in <span class="SimpleMath">G</span> then the class fusion of <span class="SimpleMath">N</span> in <span class="SimpleMath">G</span> determines the orbits of the conjugation action of <span class="SimpleMath">G</span> on the classes of <span class="SimpleMath">N</span>. Often the knowledge of these orbits suffices to identify the subgroup of table automorphisms of <span class="SimpleMath">N</span> that corresponds to this action of <span class="SimpleMath">G</span>; for example, this is always the case if <span class="SimpleMath">N</span> has index <span class="SimpleMath">2</span> in <span class="SimpleMath">G</span>.</p>

<p><strong class="pkg">GAP</strong> library functions for dealing with class fusions, power maps, and character table automorphisms are described in the chapter "Maps Concerning Character Tables" in the <strong class="pkg">GAP</strong> Reference Manual.</p>

<p><a id="X80C37276851D5E39" name="X80C37276851D5E39"></a></p>

<h5>2.2-4 <span class="Heading">Constructing Character Tables of Certain Isoclinic Groups</span></h5>

<p>As is stated in <a href="chapBib.html#biBCCN85">[CCN+85, p. xxiii]</a>, two groups <span class="SimpleMath">G</span>, <span class="SimpleMath">H</span> are called <em>isoclinic</em> if they can be embedded into a group <span class="SimpleMath">K</span> such that <span class="SimpleMath">K</span> is generated by <span class="SimpleMath">Z(K)</span> and <span class="SimpleMath">G</span>, and also by <span class="SimpleMath">Z(K)</span> and <span class="SimpleMath">H</span>. In the following, two special cases of isoclinism will be used, where the character tables of the isoclinic groups are closely related.</p>


<dl>
<dt><strong class="Mark">(1)</strong></dt>
<dd><p><span class="SimpleMath">G ≅ 2 × U</span> for a group <span class="SimpleMath">U</span> that has a central subgroup <span class="SimpleMath">N</span> of order <span class="SimpleMath">2</span>, and <span class="SimpleMath">H</span> is the central product of <span class="SimpleMath">U</span> and a cyclic group of order four. Here we can set <span class="SimpleMath">K = 2 × H</span>.</p>

</dd>
<dt><strong class="Mark">(2)</strong></dt>
<dd><p><span class="SimpleMath">G ≅ 2 × U</span> for a group <span class="SimpleMath">U</span> that has a normal subgroup <span class="SimpleMath">N</span> of index <span class="SimpleMath">2</span>, and <span class="SimpleMath">H</span> is the subdirect product of <span class="SimpleMath">U</span> and a cyclic group of order four, Here we can set <span class="SimpleMath">K = 4 × U</span>.</p>

</dd>
</dl>
<p><center> <img src="ctblcons01.png" alt="two constructions of K"/> </center></p>

<p>Starting from the group <span class="SimpleMath">K</span> containing both <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span>, we first note that each irreducible representation of <span class="SimpleMath">G</span> or <span class="SimpleMath">H</span> extends to <span class="SimpleMath">K</span>. More specifically, if <span class="SimpleMath">ρ_G</span> is an irreducible representation of <span class="SimpleMath">G</span> then we can define an extension <span class="SimpleMath">ρ</span> of <span class="SimpleMath">K</span> by defining it suitably on <span class="SimpleMath">Z(K)</span> and then form <span class="SimpleMath">ρ_H</span>, the restriction of <span class="SimpleMath">ρ</span> to <span class="SimpleMath">H</span>.</p>

<p>In our two cases, we set <span class="SimpleMath">S = G ∩ H</span>, so <span class="SimpleMath">K = S ∪ G ∖ S ∪ H ∖ S ∪ z S</span> holds for some element <span class="SimpleMath">z ∈ Z(K) ∖ ( G ∪ H )</span> of order four, and <span class="SimpleMath">G = S ∪ g S</span> for some <span class="SimpleMath">g ∈ G ∖ S</span>, and <span class="SimpleMath">H = S ∪ h S</span> where <span class="SimpleMath">h = z ⋅ g ∈ H ∖ S</span>. For defining <span class="SimpleMath">ρ_H</span>, it suffices to consider <span class="SimpleMath">ρ(h) = ρ(z) ρ(g)</span>, where <span class="SimpleMath">ρ(z) = ϵ_ρ(z) ⋅ I</span> is a scalar matrix.</p>

<p>As for the character table heads of <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span>, we have <span class="SimpleMath">s^G = s^H</span> and <span class="SimpleMath">z (g ⋅ s)^G = (h ⋅ s)^H</span> for each <span class="SimpleMath">s ∈ S</span>, so this defines a bijection of the conjugacy classes of <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span>. For a prime integer <span class="SimpleMath">p</span>, <span class="SimpleMath">(h ⋅ s)^p = (z ⋅ g ⋅ s)^p = z^p ⋅ (g ⋅ s)^p</span> holds for all <span class="SimpleMath">s ∈ S</span>, so the <span class="SimpleMath">p</span>-th power maps of <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span> are related as follows: Inside <span class="SimpleMath">S</span> they coincide for any <span class="SimpleMath">p</span>. If <span class="SimpleMath">p ≡ 1 mod 4</span> they coincide also outside <span class="SimpleMath">S</span>, if <span class="SimpleMath">p ≡ -1 mod 4</span> the images differ by exchanging the classes of <span class="SimpleMath">(h ⋅ s)^p</span> and <span class="SimpleMath">z^2 ⋅ (h ⋅ s)^p</span> (if these elements lie in different classes), and for <span class="SimpleMath">p = 2</span> the images (which lie inside <span class="SimpleMath">S</span>) differ by exchanging the classes of <span class="SimpleMath">(h ⋅ s)^2</span> and <span class="SimpleMath">z^2 ⋅ (g ⋅ s)^2</span> (if these elements lie in different classes).</p>

<p>Let <span class="SimpleMath">ρ</span> be an irreducible representation of <span class="SimpleMath">K</span>. Then <span class="SimpleMath">ρ_G</span> and <span class="SimpleMath">ρ_H</span> are related as follows: <span class="SimpleMath">ρ_G(s) = ρ_H(s)</span> and <span class="SimpleMath">ρ(z) ⋅ ρ_G(g ⋅ s) = ρ_H(h ⋅ s)</span> for all <span class="SimpleMath">s ∈ S</span>. If <span class="SimpleMath">χ_G</span> and <span class="SimpleMath">χ_H</span> are the characters afforded by <span class="SimpleMath">ρ_G</span> and <span class="SimpleMath">ρ_H</span>, respectively, then <span class="SimpleMath">χ_G(s) = χ_H(s)</span> and <span class="SimpleMath">ϵ_ρ(z) ⋅ χ_G(g ⋅ s) = χ_H(h ⋅ s)</span> hold for all <span class="SimpleMath">s ∈ S</span>. In the case <span class="SimpleMath">χ_G(z^2) = χ(1)</span> we have <span class="SimpleMath">ϵ_ρ(z) = ± 1</span>, and both cases actually occur if one considers all irreducible representations of <span class="SimpleMath">K</span>. In the case <span class="SimpleMath">χ_G(z^2) = - χ(1)</span> we have <span class="SimpleMath">ϵ_ρ(z) = ± i</span>, and again both cases occur. So we obtain the irreducible characters of <span class="SimpleMath">H</span> from those of <span class="SimpleMath">G</span> by multiplying the values outside <span class="SimpleMath">S</span> in all those characters by <span class="SimpleMath">i</span> that do not have <span class="SimpleMath">z^2</span> in their kernels.</p>

<p>In <strong class="pkg">GAP</strong>, the function <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) can be used for computing the character table of <span class="SimpleMath">H</span> from that of <span class="SimpleMath">G</span>, and vice versa. (Note that in the above two cases, also the groups <span class="SimpleMath">U</span> and <span class="SimpleMath">H</span> are isoclinic by definition, but <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) does not transfer the character table of <span class="SimpleMath">U</span> to that of <span class="SimpleMath">H</span>.)</p>

<p>One could construct the character tables mentioned above by forming the character tables of certain factor groups or normal subgroups of direct products. However, the construction via <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) has the advantage that the result stores from which sources it arose, and this information can be used to derive also the Brauer character tables, provided that the Brauer character tables of the source tables are known.</p>

<p><a id="X7AEFFEEC84511FD0" name="X7AEFFEEC84511FD0"></a></p>

<h5>2.2-5 <span class="Heading">Character Tables of Isoclinic Groups of the Structure <span class="SimpleMath">p.G.p</span>
(October 2016)</span></h5>

<p>Since the release of <strong class="pkg">GAP</strong> 4.11, <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) admits the construction of the character tables of the isoclinic variants of groups of the structure <span class="SimpleMath">p.G.p</span>, also for odd primes <span class="SimpleMath">p</span>.</p>

<p>This feature will be used in the construction of the character table of <span class="SimpleMath">9.U_3(8).3_3</span>, in order to construct the table of the subgroup <span class="SimpleMath">3.(3 × U_3(8))</span> and of the factor group <span class="SimpleMath">(3 × U_3(8)).3_3</span>, see Section <a href="chap2.html#X7AF324AF7A54798F"><span class="RefLink">2.4-16</span></a>. These constructions are a straightforward generalization of those described in detail in Section <a href="chap2.html#X80C37276851D5E39"><span class="RefLink">2.2-4</span></a>.</p>

<p>There are several examples of <strong class="pkg">Atlas</strong> groups of the structure <span class="SimpleMath">3.G.3</span>. The character table of one such group is shown in the <strong class="pkg">Atlas</strong>, the tables of their isoclinic variants can now be obtained from <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>).</p>

<p>For example, the group GL<span class="SimpleMath">(3,4)</span> has the structure <span class="SimpleMath">3.L_3(4).3</span>. There are three pairwise nonisomorphic isoclinic variants of groups of this structure.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "3.L3(4).3" );</span>
CharacterTable( "3.L3(4).3" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso1:= CharacterTableIsoclinic( t );</span>
CharacterTable( "Isoclinic(3.L3(4).3,1)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso2:= CharacterTableIsoclinic( t, rec( k:= 2 ) );</span>
CharacterTable( "Isoclinic(3.L3(4).3,2)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( t, iso1 );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( t, iso2 );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( iso1, iso2 );</span>
fail
</pre></div>

<p>The character table of GL<span class="SimpleMath">(3,4)</span> is in fact the one which is shown in the <strong class="pkg">Atlas</strong>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( GL( 3, 4 ) ) ) );</span>
true
</pre></div>

<p><a id="X78F41D2A78E70BEE" name="X78F41D2A78E70BEE"></a></p>

<h5>2.2-6 <span class="Heading">Isoclinic Double Covers of Almost Simple Groups</span></h5>

<p>The function <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) can also be used to switch between the character tables of double covers of groups of the type <span class="SimpleMath">G.2</span>, where <span class="SimpleMath">G</span> is a perfect group, see <a href="chapBib.html#biBCCN85">[CCN+85, Section 6.7]</a>. Typical examples are the double covers of symmetric groups.</p>

<p>Note that these double covers may be isomorphic. This happens for <span class="SimpleMath">2.S_6</span>. More generally, this happens for all semilinear groups <span class="SimpleMath">Σ</span>L<span class="SimpleMath">(2,p^2)</span>, for odd primes <span class="SimpleMath">p</span>. The smallest examples are <span class="SimpleMath">Σ</span>L<span class="SimpleMath">(2,9) = 2.A_6.2_1</span> and <span class="SimpleMath">Σ</span>L<span class="SimpleMath">(2,25) = 2.L_2(25).2_2</span>. This implies that the character table and its isoclinic variant are permutation isomorphic.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "2.A6.2_1" );</span>
CharacterTable( "2.A6.2_1" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTableIsoclinic( t ) );</span>
rec( columns := (4,6)(5,7)(11,12)(14,16)(15,17), 
  group := Group([ (16,17), (14,15) ]), 
  rows := (3,5)(4,6)(10,11)(12,15,13,14) )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "2.L2(25).2_2" );</span>
CharacterTable( "2.L2(25).2_2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTableIsoclinic( t ) );</span>
rec( columns := (7,9)(8,10)(20,21)(23,24)(25,27)(26,28), 
  group := &lt;permutation group with 4 generators&gt;, 
  rows := (3,5)(4,6)(14,15)(16,17)(19,22,20,21) )
</pre></div>

<p>For groups of the type <span class="SimpleMath">4.G.2</span>, two different situations can occur. Either the distinguished central cyclic subgroup of order four in <span class="SimpleMath">4.G</span> is inverted by the elements in <span class="SimpleMath">4.G.2 ∖ 4.G</span>, or this subgroup is central in <span class="SimpleMath">4.G.2</span>. In the first case, calling <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) with the character table of <span class="SimpleMath">4.G.2</span> yields a character table with the same set of irreducibles, only the <span class="SimpleMath">2</span>-power map will in general differ from that of the input table. In the second case, the one argument version of <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) returns a permutation isomorphic table. By supplying additional arguments, there is a chance to construct tables of different groups.</p>

<p>We demonstrate this phenomenon with the various groups of the structure <span class="SimpleMath">4.L_3(4).2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbls:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for m in [ "4_1", "4_2" ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for a in [ "2_1", "2_2", "2_3" ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( tbls, CharacterTable( Concatenation( m, ".L3(4).", a ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbls;</span>
[ CharacterTable( "4_1.L3(4).2_1" ), CharacterTable( "4_1.L3(4).2_2" )
    , CharacterTable( "4_1.L3(4).2_3" ), 
  CharacterTable( "4_2.L3(4).2_1" ), CharacterTable( "4_2.L3(4).2_2" )
    , CharacterTable( "4_2.L3(4).2_3" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">case1:= Filtered( tbls, t -&gt; Size( ClassPositionsOfCentre( t ) ) = 2 );</span>
[ CharacterTable( "4_1.L3(4).2_1" ), CharacterTable( "4_1.L3(4).2_2" )
    , CharacterTable( "4_2.L3(4).2_1" ), 
  CharacterTable( "4_2.L3(4).2_3" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">case2:= Filtered( tbls, t -&gt; Size( ClassPositionsOfCentre( t ) ) = 4 );</span>
[ CharacterTable( "4_1.L3(4).2_3" ), 
  CharacterTable( "4_2.L3(4).2_2" ) ]
</pre></div>

<p>The centres of the groups <span class="SimpleMath">4_1.L_3(4).2_1</span>, <span class="SimpleMath">4_1.L_3(4).2_2</span>, <span class="SimpleMath">4_2.L_3(4).2_1</span>, and <span class="SimpleMath">4_2.L_3(4).2_3</span> have order two, that is, these groups belong to the first case. Each of these groups is not permutation equivalent to its isoclinic variant but has the same irreducible characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">isos1:= List( case1, CharacterTableIsoclinic );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ 1 .. 4 ], i -&gt; Irr( case1[i] ) = Irr( isos1[i] ) );</span>
[ true, true, true, true ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ 1 .. 4 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     i -&gt; TransformingPermutationsCharacterTables( case1[i], isos1[i] ) );</span>
[ fail, fail, fail, fail ]
</pre></div>

<p>The groups <span class="SimpleMath">4_1.L_3(4).2_3</span> and <span class="SimpleMath">4_2.L_3(4).2_2</span> belong to the second case because their centres have order four.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">isos2:= List( case2, CharacterTableIsoclinic );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ 1, 2 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     i -&gt; TransformingPermutationsCharacterTables( case2[i], isos2[i] ) );</span>
[ rec( columns := (26,27,28,29)(30,31,32,33)(38,39,40,41)(42,43,44,45)
        , group := &lt;permutation group with 5 generators&gt;, 
      rows := (16,17)(18,19)(20,21)(22,23)(28,29)(32,33)(36,37)(40,
        41) ), 
  rec( columns := (28,29,30,31)(32,33)(34,35,36,37)(38,39,40,41)(42,
        43,44,45)(46,47,48,49), group := &lt;permutation group with 
        3 generators&gt;, rows := (15,16)(17,18)(20,21)(22,23)(24,25)(26,
        27)(28,29)(34,35)(38,39)(42,43)(46,47) ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">isos3:= List( case2, t -&gt; CharacterTableIsoclinic( t,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                               ClassPositionsOfCentre( t ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ 1, 2 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     i -&gt; TransformingPermutationsCharacterTables( case2[i], isos3[i] ) );</span>
[ fail, fail ]
</pre></div>

<p><a id="X834B42A07E98FBC6" name="X834B42A07E98FBC6"></a></p>

<h5>2.2-7 <span class="Heading">Characters of Normal Subgroups</span></h5>

<p>Let <span class="SimpleMath">G</span> be a group and <span class="SimpleMath">N</span> be a normal subgroup of <span class="SimpleMath">G</span>. We will need the following well-known facts about the relation between the irreducible characters of <span class="SimpleMath">G</span> and <span class="SimpleMath">N</span>.</p>

<p>For an irreducible (Brauer) character <span class="SimpleMath">χ</span> of <span class="SimpleMath">N</span> and <span class="SimpleMath">g ∈ G</span>, we define <span class="SimpleMath">χ^g</span> by <span class="SimpleMath">χ^g(n) = χ(n^g)</span> for all <span class="SimpleMath">n ∈ N</span>, and set <span class="SimpleMath">I_G(χ) = { g ∈ G; χ^g = χ }</span> (see <a href="chapBib.html#biBFeit82">[Fei82, p. 86]</a>).</p>

<p>If <span class="SimpleMath">I_G(χ) = N</span> then the induced character <span class="SimpleMath">χ^G</span> is an irreducible (Brauer) character of <span class="SimpleMath">G</span> (see <a href="chapBib.html#biBFeit82">[Fei82, Lemma III 2.11]</a> or <a href="chapBib.html#biBNav98">[Nav98, Theorem 8.9]</a> or <a href="chapBib.html#biBLP10">[LP10, Corollary 4.3.8]</a>).</p>

<p>If <span class="SimpleMath">G/N</span> is cyclic and if <span class="SimpleMath">I_G(χ) = G</span> then <span class="SimpleMath">χ = ψ_N</span> for an irreducible (Brauer) character <span class="SimpleMath">ψ</span> of <span class="SimpleMath">G</span>, and each irreducible (Brauer) character <span class="SimpleMath">θ</span> with the property <span class="SimpleMath">χ = θ_N</span> is of the form <span class="SimpleMath">θ = ψ ⋅ ϵ</span>, where <span class="SimpleMath">ϵ</span> is an irreducible (Brauer) character of <span class="SimpleMath">G/N</span> (see <a href="chapBib.html#biBFeit82">[Fei82, Theorem III 2.14]</a> or <a href="chapBib.html#biBNav98">[Nav98, Theorem 8.12]</a> or <a href="chapBib.html#biBLP10">[LP10, Theorem 3.6.13]</a>).</p>

<p>Clifford's theorem (<a href="chapBib.html#biBFeit82">[Fei82, Theorem III 2.12]</a> or <a href="chapBib.html#biBNav98">[Nav98, Corollary 8.7]</a> or <a href="chapBib.html#biBLP10">[LP10, Theorem 3.6.2]</a>) states that the restriction of an irreducible (Brauer) character of <span class="SimpleMath">G</span> to <span class="SimpleMath">N</span> has the form <span class="SimpleMath">e ∑_i=1^t φ_i</span> for a positive integer <span class="SimpleMath">e</span> and irreducible (Brauer) characters <span class="SimpleMath">φ_i</span> of <span class="SimpleMath">N</span>, where <span class="SimpleMath">t</span> is the index of <span class="SimpleMath">I_G(φ_1)</span> in <span class="SimpleMath">G</span>.</p>

<p>Now assume that <span class="SimpleMath">G</span> is a normal subgroup in a larger group <span class="SimpleMath">H</span>, that <span class="SimpleMath">G/N</span> is an abelian chief factor of <span class="SimpleMath">H</span> and that <span class="SimpleMath">ψ</span> is an ordinary irreducible character of <span class="SimpleMath">G</span> such that <span class="SimpleMath">I_H(ψ) = H</span>. Then either <span class="SimpleMath">t = 1</span> and <span class="SimpleMath">e^2</span> is one of <span class="SimpleMath">1</span>, <span class="SimpleMath">|G/N|</span>, or <span class="SimpleMath">t = |G/N|</span> and <span class="SimpleMath">e = 1</span> (see <a href="chapBib.html#biBIsa76">[Isa76, Theorem 6.18]</a>).</p>

<p><a id="X787F430E7FDB8765" name="X787F430E7FDB8765"></a></p>

<h4>2.3 <span class="Heading">The Constructions</span></h4>

<p><a id="X82E75B6880EC9E6C" name="X82E75B6880EC9E6C"></a></p>

<h5>2.3-1 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">M.G.A</span></span></h5>

<p>(This kind of table construction is described in <a href="chapBib.html#biBBre11">[Bre11]</a>.)</p>

<p>Let <span class="SimpleMath">N</span> denote a downward extension of the finite group <span class="SimpleMath">G</span> by a finite group <span class="SimpleMath">M</span>, let <span class="SimpleMath">H</span> denote an automorphic (upward) extension of <span class="SimpleMath">N</span> by a finite cyclic group <span class="SimpleMath">A</span> such that <span class="SimpleMath">M</span> is normal in <span class="SimpleMath">H</span>, and set <span class="SimpleMath">F = H / M</span>. We consider the situation that each irreducible character of <span class="SimpleMath">N</span> that does not contain <span class="SimpleMath">M</span> in its kernel induces irreducibly to <span class="SimpleMath">H</span>. Equivalently, the action of <span class="SimpleMath">A = ⟨ a ⟩</span> on the characters of <span class="SimpleMath">N</span>, via <span class="SimpleMath">χ ↦ χ^a</span>, has only orbits of length exactly <span class="SimpleMath">|A|</span> on the set <span class="SimpleMath">{ χ ∈ Irr(N); M ⊈ ker(χ) }</span>.</p>

<p><center> <img src="ctblcons02.png" alt="groups of the structure M.G.A"/> </center></p>

<p>This occurs for example if <span class="SimpleMath">M</span> is central in <span class="SimpleMath">N</span> and <span class="SimpleMath">A</span> acts fixed-point freely on <span class="SimpleMath">M</span>, we have <span class="SimpleMath">|M| ≡ 1 mod |A|</span> in this case. If <span class="SimpleMath">M</span> has prime order then it is sufficient that <span class="SimpleMath">A</span> does not centralize <span class="SimpleMath">M</span>.</p>

<p>The ordinary (or <span class="SimpleMath">p</span>-modular) irreducible characters of <span class="SimpleMath">H</span> are then given by the ordinary (or <span class="SimpleMath">p</span>-modular) irreducible characters of <span class="SimpleMath">F</span> and <span class="SimpleMath">N</span>, the class fusions from the table of <span class="SimpleMath">N</span> onto the table of <span class="SimpleMath">G</span> and from the table of <span class="SimpleMath">G</span> into that of <span class="SimpleMath">F</span>, and the permutation <span class="SimpleMath">π</span> that is induced by the action of <span class="SimpleMath">A</span> on the conjugacy classes of <span class="SimpleMath">N</span>.</p>

<p>In general, the action of <span class="SimpleMath">A</span> on the classes of <span class="SimpleMath">M</span> is not the right thing to look at, one really must consider the action on the relevant characters of <span class="SimpleMath">M.G</span>. For example, take <span class="SimpleMath">H</span> the quaternion group or the dihedral group of order eight, <span class="SimpleMath">N</span> a cyclic subgroup of index two, and <span class="SimpleMath">M</span> the centre of <span class="SimpleMath">H</span>; here <span class="SimpleMath">A</span> acts trivially on <span class="SimpleMath">M</span>, but the relevant fact is that the action of <span class="SimpleMath">A</span> swaps those two irreducible characters of <span class="SimpleMath">N</span> that take the value <span class="SimpleMath">-1</span> on the involution in <span class="SimpleMath">M</span> –these are the faithful irreducible characters of <span class="SimpleMath">N</span>.</p>

<p>If the orders of <span class="SimpleMath">M</span> and <span class="SimpleMath">A</span> are coprime then also the power maps of <span class="SimpleMath">H</span> can be computed from the above data. For each prime <span class="SimpleMath">p</span> that divides the orders of both <span class="SimpleMath">M</span> and <span class="SimpleMath">A</span>, the <span class="SimpleMath">p</span>-th power map is in general not uniquely determined by these input data. In this case, we can compute the (finitely many) candidates for the character table of <span class="SimpleMath">H</span> that are described by these data. One possible reason for ambiguities is the existence of several isoclinic but nonisomorphic groups that can arise from the input tables (cf. Section <a href="chap2.html#X80C37276851D5E39"><span class="RefLink">2.2-4</span></a>, see Section <a href="chap2.html#X83724BCE86FCD77B"><span class="RefLink">2.4-12</span></a> for an example).</p>

<p>With the <strong class="pkg">GAP</strong> function <code class="func">PossibleActionsForTypeMGA</code> (<a href="..//doc/chap5.html#X7899AA12836EEF8F"><span class="RefLink">CTblLib: PossibleActionsForTypeMGA</span></a>), one can compute the possible orbit structures induced by <span class="SimpleMath">G.A</span> on the classes of <span class="SimpleMath">M.G</span>, and <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) computes the possible ordinary character tables for a given orbit structure. For constructing the <span class="SimpleMath">p</span>-modular Brauer table of a group <span class="SimpleMath">H</span> of the structure <span class="SimpleMath">M.G.A</span>, the <strong class="pkg">GAP</strong> function <code class="func">BrauerTableOfTypeMGA</code> (<a href="..//doc/chap5.html#X83BE977185ADC24B"><span class="RefLink">CTblLib: BrauerTableOfTypeMGA</span></a>) takes the ordinary character table of <span class="SimpleMath">H</span> and the <span class="SimpleMath">p</span>-modular tables of the subgroup <span class="SimpleMath">M.G</span> and the factor group <span class="SimpleMath">G.A</span> as its input. The <span class="SimpleMath">p</span>-modular table of <span class="SimpleMath">G</span> is not explicitly needed in the construction, it is implicitly given by the class fusions from <span class="SimpleMath">M.G</span> into <span class="SimpleMath">M.G.A</span> and from <span class="SimpleMath">M.G.A</span> onto <span class="SimpleMath">G.A</span>; these class fusions must of course be available.</p>

<p>The <strong class="pkg">GAP</strong> Character Table Library contains many tables of groups of the structure <span class="SimpleMath">M.G.A</span> as described above, which are encoded by references to the tables of the groups <span class="SimpleMath">M.G</span> and <span class="SimpleMath">G.A</span>, plus the fusion and action information. This reduces the space needed for storing these character tables.</p>

<p>For examples, see Section <a href="chap2.html#X817D2134829FA8FA"><span class="RefLink">2.4</span></a>.</p>

<p><a id="X7CCABDDE864E6300" name="X7CCABDDE864E6300"></a></p>

<h5>2.3-2 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">G.S_3</span></span></h5>

<p>Let <span class="SimpleMath">G</span> be a finite group, and <span class="SimpleMath">H</span> be an upward extension of <span class="SimpleMath">G</span> such that the factor group <span class="SimpleMath">H / G</span> is a Frobenius group <span class="SimpleMath">F = K C</span> with abelian kernel <span class="SimpleMath">K</span> and cyclic complement <span class="SimpleMath">C</span> of prime order <span class="SimpleMath">c</span>. (Typical cases for <span class="SimpleMath">F</span> are the symmetric group <span class="SimpleMath">S_3</span> on three points and the alternating group <span class="SimpleMath">A_4</span> on four points.) Let <span class="SimpleMath">N</span> and <span class="SimpleMath">U</span> denote the preimages of <span class="SimpleMath">K</span> and <span class="SimpleMath">C</span> under the natural epimorphism from <span class="SimpleMath">H</span> onto <span class="SimpleMath">F</span>.</p>

<p><center> <img src="ctblcons03.png" alt="Groups of the structure G.3.2"/> </center></p>

<p>For certain isomorphism types of <span class="SimpleMath">F</span>, the ordinary (or <span class="SimpleMath">p</span>-modular) character table of <span class="SimpleMath">H</span> can be computed from the ordinary (or <span class="SimpleMath">p</span>-modular) character tables of <span class="SimpleMath">G</span>, <span class="SimpleMath">U</span>, and <span class="SimpleMath">N</span>, the class fusions from the table of <span class="SimpleMath">G</span> into those of <span class="SimpleMath">U</span> and <span class="SimpleMath">N</span>, and the permutation <span class="SimpleMath">π</span> induced by <span class="SimpleMath">H</span> on the conjugacy classes of <span class="SimpleMath">N</span>. This holds for example for <span class="SimpleMath">F = S_3</span> and in the ordinary case also for <span class="SimpleMath">F = A_4</span>.</p>

<p>Each class of <span class="SimpleMath">H</span> is either a union of <span class="SimpleMath">π</span>-orbits or an <span class="SimpleMath">H</span>-class of <span class="SimpleMath">U ∖ G</span>; the latter classes are in bijection with the <span class="SimpleMath">U</span>-classes of <span class="SimpleMath">U ∖ G</span>, they are just <span class="SimpleMath">|K|</span> times larger since the <span class="SimpleMath">|K|</span> conjugates of <span class="SimpleMath">U</span> in <span class="SimpleMath">H</span> are fused. The power maps of <span class="SimpleMath">H</span> are uniquely determined from the power maps of <span class="SimpleMath">U</span> and <span class="SimpleMath">N</span>, because each element in <span class="SimpleMath">F</span> lies in <span class="SimpleMath">K</span> or in an <span class="SimpleMath">F</span>-conjugate of <span class="SimpleMath">C</span>.</p>

<p>Concerning the computation of the ordinary irreducible characters of <span class="SimpleMath">H</span>, we could induce the irreducible characters of <span class="SimpleMath">U</span> and <span class="SimpleMath">N</span> to <span class="SimpleMath">H</span>, and then take the union of the irreducible characters among those and the irreducible differences of those. (For the case <span class="SimpleMath">F = S_3</span>, this approach has been described in the Appendix of <a href="chapBib.html#biBHL94">[HL94]</a>.)</p>

<p>The <strong class="pkg">GAP</strong> function <code class="func">CharacterTableOfTypeGS3</code> (<a href="..//doc/chap5.html#X7E06095E7CB3316D"><span class="RefLink">CTblLib: CharacterTableOfTypeGS3</span></a>) proceeds in a different way, which is suitable also for the construction of <span class="SimpleMath">p</span>-modular character tables of <span class="SimpleMath">H</span>.</p>

<p>By the facts listed in Section <a href="chap2.html#X834B42A07E98FBC6"><span class="RefLink">2.2-7</span></a>, for an irreducible (Brauer) character <span class="SimpleMath">χ</span> of <span class="SimpleMath">N</span>, we have <span class="SimpleMath">I_H(χ)</span> equal to either <span class="SimpleMath">N</span> or <span class="SimpleMath">H</span>. In the former case, <span class="SimpleMath">χ</span> induces irreducibly to <span class="SimpleMath">H</span>. In the latter case, there are extensions <span class="SimpleMath">ψ^(i)</span>, <span class="SimpleMath">1 ≤ i ≤ |C|</span> (or <span class="SimpleMath">|C|_p^'</span>), to <span class="SimpleMath">H</span>, and we have the following possibilities, depending on the restriction <span class="SimpleMath">χ_G</span>.</p>

<p>If <span class="SimpleMath">χ_G = e φ</span>, for an irreducible character <span class="SimpleMath">φ</span> of <span class="SimpleMath">G</span>, then <span class="SimpleMath">I_U(φ) = U</span> holds, hence the <span class="SimpleMath">ψ^(i)_U</span> are <span class="SimpleMath">|C|</span> (or <span class="SimpleMath">|C|_p^'</span>) extensions of <span class="SimpleMath">χ_G</span> to <span class="SimpleMath">U</span>. Moreover, we have either <span class="SimpleMath">e = 1</span> or <span class="SimpleMath">e^2 = |K|</span>. In the case <span class="SimpleMath">e = 1</span>, this determines the values of the <span class="SimpleMath">ψ^(i)</span> on the classes of <span class="SimpleMath">U</span> outside <span class="SimpleMath">G</span>. In the case <span class="SimpleMath">e ≠ 1</span>, we have the problem to combine <span class="SimpleMath">e</span> extensions of <span class="SimpleMath">φ</span> to a character of <span class="SimpleMath">U</span> that extends to <span class="SimpleMath">H</span>.</p>

<p>(One additional piece of information in the case of ordinary character tables is that the norm of this linear combination equals <span class="SimpleMath">1 + (|K|-1)/|C|</span>, which determines the <span class="SimpleMath">ψ^(i)_U</span> if <span class="SimpleMath">F = A_4 ≅ 2^2:3</span> or <span class="SimpleMath">F = 2^3:7</span> holds; in the former case, the sum of each two out of the three different extensions of <span class="SimpleMath">φ</span> extends to <span class="SimpleMath">U</span>; in the latter case, the sum of all different extensions plus one of the extensions extends. Note that for <span class="SimpleMath">F = S_3</span>, the case <span class="SimpleMath">e ≠ 1</span> does not occur.)</p>

<p>The remaining case is that <span class="SimpleMath">χ_G</span> is not a multiple of an irreducible character of <span class="SimpleMath">G</span>. Then <span class="SimpleMath">χ_G = φ_1 + φ_2 + ... + φ_|K|</span>, for pairwise different irreducible characters <span class="SimpleMath">φ_i</span>, <span class="SimpleMath">1 ≤ i ≤ |K|</span>, of <span class="SimpleMath">G</span> with the property <span class="SimpleMath">φ_i^N = χ</span>. The action of <span class="SimpleMath">U</span> on <span class="SimpleMath">G</span> fixes at least one of the <span class="SimpleMath">φ_i</span>, since <span class="SimpleMath">|K| ≡ 1 mod |C|</span>. Without loss of generality, let <span class="SimpleMath">I_U(φ_1) = U</span>, and let <span class="SimpleMath">φ_1^(i)</span>, <span class="SimpleMath">1 ≤ i ≤ |C|</span>, be the extensions of <span class="SimpleMath">φ_1</span> to <span class="SimpleMath">U</span>. (In fact exactly <span class="SimpleMath">φ_1</span> is fixed by <span class="SimpleMath">U</span> since otherwise <span class="SimpleMath">k ∈ K</span> would exist with <span class="SimpleMath">φ_1^k ≠ φ_1</span> and such that also <span class="SimpleMath">φ_1^k</span> would be invariant in <span class="SimpleMath">U</span>; but then <span class="SimpleMath">φ_1</span> would be invariant under both <span class="SimpleMath">C</span> and <span class="SimpleMath">C^k</span>, which generate <span class="SimpleMath">F</span>. So each of the <span class="SimpleMath">|K|</span> constituents is invariant in exactly one of the <span class="SimpleMath">|K|</span> subgroups of type <span class="SimpleMath">U</span> above <span class="SimpleMath">G</span>.)</p>

<p>Then <span class="SimpleMath">((φ_1^(i))^H)_N = φ_1^N = χ</span>, hence the values of <span class="SimpleMath">ψ^(i)</span> on the classes of <span class="SimpleMath">U ∖ G</span> are given by those of <span class="SimpleMath">(φ_1^(i))^H</span>. (These are exactly the values of <span class="SimpleMath">φ_1^(i)</span>. So in both cases, we take the values of <span class="SimpleMath">χ</span> on <span class="SimpleMath">N</span>, and on the classes of <span class="SimpleMath">U ∖ G</span> the values of the extensions of the unique extendible constituent of <span class="SimpleMath">χ_G</span>.)</p>

<p>For examples, see Section <a href="chap2.html#X7F50C782840F06E4"><span class="RefLink">2.5</span></a>.</p>

<p><a id="X7D3EF3BC83BE05CF" name="X7D3EF3BC83BE05CF"></a></p>

<h5>2.3-3 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">G.2^2</span></span></h5>

<p>Let <span class="SimpleMath">G</span> be a finite group, and <span class="SimpleMath">H</span> be an upward extension of <span class="SimpleMath">G</span> such that the factor group <span class="SimpleMath">H / G</span> is a Klein four group. We assume that the ordinary character tables of <span class="SimpleMath">G</span> and of the three index two subgroups <span class="SimpleMath">U_1</span>, <span class="SimpleMath">U_2</span>, and <span class="SimpleMath">U_3</span> (of the structures <span class="SimpleMath">G.2_1</span>, <span class="SimpleMath">G.2_2</span>, and <span class="SimpleMath">G.2_3</span>, respectively) of <span class="SimpleMath">H</span> above <span class="SimpleMath">G</span> are known, as well as the class fusions of <span class="SimpleMath">G</span> into these groups. The idea behind the method that is described in this section is that in this situation, there are only few possibilities for the ordinary character table of <span class="SimpleMath">H</span>.</p>

<p><center> <img src="ctblcons04.png" alt="groups of the structure G.V4"/> </center></p>

<p>Namely, the action of <span class="SimpleMath">H</span> on the classes of <span class="SimpleMath">G.2_i</span> is given by a table automorphism <span class="SimpleMath">π_i</span> of <span class="SimpleMath">G.2_i</span>, and <span class="SimpleMath">H</span> realizes compatible choices of such automorphisms <span class="SimpleMath">π_1</span>, <span class="SimpleMath">π_2</span>, <span class="SimpleMath">π_3</span> in the sense that the orbits of all three <span class="SimpleMath">π_i</span> on the classes of <span class="SimpleMath">G</span> inside the groups <span class="SimpleMath">G.2_i</span> coincide. Furthermore, if <span class="SimpleMath">G.2_i</span> has <span class="SimpleMath">n_i</span> conjugacy classes then an action <span class="SimpleMath">π_i</span> that is a product of <span class="SimpleMath">f_i</span> disjoint transpositions leads to a character table candidate for <span class="SimpleMath">G.2^2</span> that has <span class="SimpleMath">2 n_i - 3 f_i</span> classes, so also the <span class="SimpleMath">f_i</span> must be compatible.</p>

<p>Taking the "inner" classes, i.e., the orbit sums of the classes inside <span class="SimpleMath">G</span> under the <span class="SimpleMath">π_i</span>, plus the union of the <span class="SimpleMath">π_i</span>-orbits of the classes of <span class="SimpleMath">G.2_i ∖ G</span> gives a possibility for the classes of <span class="SimpleMath">H</span>. Furthermore, the power maps of the groups <span class="SimpleMath">G.2_i</span> determine the power maps of the candidate table constructed this way.</p>

<p>Concerning the computation of the irreducible characters of <span class="SimpleMath">H</span>, we consider also the case of <span class="SimpleMath">p</span>-modular characters tables, where we assume that the ordinary character table of <span class="SimpleMath">H</span> is already known and the only task is to compute the irreducible <span class="SimpleMath">p</span>-modular Brauer characters.</p>

<p>Let <span class="SimpleMath">χ</span> be an irreducible (<span class="SimpleMath">p</span>-modular Brauer) character of <span class="SimpleMath">G</span>. By the facts that are listed in Section <a href="chap2.html#X834B42A07E98FBC6"><span class="RefLink">2.2-7</span></a>, there are three possibilities.</p>


<dl>
<dt><strong class="Mark">1.</strong></dt>
<dd><p><span class="SimpleMath">I_H(χ) = G</span>; then <span class="SimpleMath">χ^H</span> is irreducible.</p>

</dd>
<dt><strong class="Mark">2.</strong></dt>
<dd><p><span class="SimpleMath">I_H(χ) = G.2_i</span> for <span class="SimpleMath">i</span> one of <span class="SimpleMath">1</span>, <span class="SimpleMath">2</span>, <span class="SimpleMath">3</span>; then <span class="SimpleMath">I_G.2_i(χ) = G.2_i</span> for this <span class="SimpleMath">i</span>, so <span class="SimpleMath">χ</span> extends to <span class="SimpleMath">G.2_i</span>; none of these extensions extends to <span class="SimpleMath">H</span> (because otherwise <span class="SimpleMath">χ</span> would be invariant in <span class="SimpleMath">H</span>), so they induce irreducible characters of <span class="SimpleMath">H</span>.</p>

</dd>
<dt><strong class="Mark">3.</strong></dt>
<dd><p><span class="SimpleMath">I_H(χ) = H</span>; then <span class="SimpleMath">χ</span> extends to each of the three groups <span class="SimpleMath">G.2_i</span>, and either all these extensions induce the same character of <span class="SimpleMath">H</span> (which vanishes on <span class="SimpleMath">H ∖ G</span>) or they are invariant in <span class="SimpleMath">H</span> and thus extend to <span class="SimpleMath">H</span>.</p>

</dd>
</dl>
<p>In the latter part of case 3. (except if <span class="SimpleMath">p = 2</span>), the problem is to combine the values of six irreducible characters of the groups <span class="SimpleMath">G.2_i</span> to four characters of <span class="SimpleMath">H</span>. This yields essentially two choices, and we try to exclude one possibility by forming scalar products with the <span class="SimpleMath">2</span>-nd symmetrizations of the known irreducibles. If several possibilities remain then we get several possible tables.</p>

<p>So we end up with a list of possible character tables of <span class="SimpleMath">H</span>. The first step is to specify a list of possible triples <span class="SimpleMath">(π_1, π_2, π_3)</span>, using the table automorphisms of the groups <span class="SimpleMath">G.2_i</span>; this can be done using the <strong class="pkg">GAP</strong> function <code class="func">PossibleActionsForTypeGV4</code> (<a href="..//doc/chap5.html#X7CCD5A2979883144"><span class="RefLink">CTblLib: PossibleActionsForTypeGV4</span></a>). Then the <strong class="pkg">GAP</strong> function <code class="func">PossibleCharacterTablesOfTypeGV4</code> (<a href="..//doc/chap5.html#X7CACDDED7A8C1CF9"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeGV4</span></a>) can be used for computing the character table candidates for each given triple of permutations; it may of course happen that some triples of automorphisms are excluded in this second step.</p>

<p>For examples, see Section <a href="chap2.html#X7EA489E07D7C7D86"><span class="RefLink">2.6</span></a>.</p>

<p><a id="X81464C4B8178C85A" name="X81464C4B8178C85A"></a></p>

<h5>2.3-4 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">2^2.G</span>
(August 2005)</span></h5>

<p>Let <span class="SimpleMath">G</span> be a finite group, and <span class="SimpleMath">H</span> be a central extension of <span class="SimpleMath">G</span> by a Klein four group <span class="SimpleMath">Z = ⟨ z_1, z_2 ⟩</span>; set <span class="SimpleMath">z_3 = z_1 z_2</span> and <span class="SimpleMath">Z_i = ⟨ z_i ⟩</span>, for <span class="SimpleMath">1 ≤ i ≤ 3</span>. We assume that the ordinary character tables of the three factor groups <span class="SimpleMath">2_i.G = H / Z_i</span> of <span class="SimpleMath">H</span> are known, as well as the class fusions from these groups to <span class="SimpleMath">G</span>. The idea behind the method described in this section is that in this situation, there are only few possibilities for the ordinary character table of <span class="SimpleMath">H</span>.</p>

<p><center> <img src="ctblcons05.png" alt="groups of the structure V4.G"/> </center></p>

<p>Namely, the irreducible (<span class="SimpleMath">p</span>-modular) characters of <span class="SimpleMath">H</span> are exactly the inflations of the irreducible (<span class="SimpleMath">p</span>-modular) characters of the three factor groups <span class="SimpleMath">H / Z_i</span>. (Note that for any noncyclic central subgroup <span class="SimpleMath">C</span> of <span class="SimpleMath">H</span> and any <span class="SimpleMath">χ ∈ Irr(H)</span>, we have <span class="SimpleMath">|ker(χ) ∩ C| &gt; 1</span>. To see this, let <span class="SimpleMath">N = ker(χ)</span>. Then clearly <span class="SimpleMath">|N| &gt; 1</span>, and <span class="SimpleMath">χ</span> can be regarded as a faithful irreducible character of <span class="SimpleMath">H/N</span>. If <span class="SimpleMath">N ∩ C</span> would be trivial then <span class="SimpleMath">N C / N ≅ C</span> would be a noncyclic central subgroup of <span class="SimpleMath">H/N</span>. This cannot happen by <a href="chapBib.html#biBIsa76">[Isa76, Thm. 2.32 (a)]</a>, so the statement can be regarded as an obvious refinement of this theorem.) So all we have to construct is the character table head of <span class="SimpleMath">H</span> –classes and power maps– and the factor fusions from <span class="SimpleMath">H</span> to these groups.</p>

<p>For fixed <span class="SimpleMath">h ∈ H</span>, we consider the question in which <span class="SimpleMath">H</span>-classes the elements <span class="SimpleMath">h</span>, <span class="SimpleMath">h z_1</span>, <span class="SimpleMath">h z_2</span>, and <span class="SimpleMath">h z_3</span> lie. There are three possibilities.</p>

<ol>
<li><p>The four elements are all conjugate in <span class="SimpleMath">H</span>. Then in each of the three groups <span class="SimpleMath">H/Z_i</span>, the two preimages of <span class="SimpleMath">h Z ∈ H/Z</span> are conjugate.</p>

</li>
<li><p>We are not in case 1. but two of the four elements are conjugate in <span class="SimpleMath">H</span>, i. e., <span class="SimpleMath">g^-1 h g = h z_i</span> for some <span class="SimpleMath">g ∈ H</span> and some <span class="SimpleMath">i</span>; then <span class="SimpleMath">g^-1 h z_j g = h z_i z_j</span> for each <span class="SimpleMath">j</span>, so the four elements lie in exactly two <span class="SimpleMath">H</span>-classes. This implies that for <span class="SimpleMath">i ≠ j</span>, the elements <span class="SimpleMath">h</span> and <span class="SimpleMath">h z_j</span> are not <span class="SimpleMath">H</span>-conjugate, so <span class="SimpleMath">h Z_i</span> is not conjugate to <span class="SimpleMath">h z_j Z_i</span> in <span class="SimpleMath">H/Z_i</span> and <span class="SimpleMath">h Z_j</span> is conjugate to <span class="SimpleMath">h z_i Z_j</span> in <span class="SimpleMath">H/Z_j</span>.</p>

</li>
<li><p>The four elements are pairwise nonconjugate in <span class="SimpleMath">H</span>. Then in each of the three groups <span class="SimpleMath">H/Z_i</span>, the two preimages of <span class="SimpleMath">h Z ∈ H/Z</span> are nonconjugate.</p>

</li>
</ol>
<p>We observe that the question which case actually applies for <span class="SimpleMath">h ∈ H</span> can be decided from the three factor fusions from <span class="SimpleMath">H/Z_i</span> to <span class="SimpleMath">G</span>. So we attempt to construct the table head of <span class="SimpleMath">H</span> and the three factor fusions from <span class="SimpleMath">H</span> to the groups <span class="SimpleMath">H/Z_i</span>, as follows. Each class <span class="SimpleMath">g^G</span> of <span class="SimpleMath">G</span> yields either one or two or four preimage classes in <span class="SimpleMath">H</span>.</p>

<p>In case 1., we get one preimage class in <span class="SimpleMath">H</span>, and have no choice for the factor fusions.</p>

<p>In case 2., we get two preimage classes, there is exactly one group <span class="SimpleMath">H/Z_i</span> in which <span class="SimpleMath">g^G</span> has two preimage classes –which are in bijection with the two preimage classes of <span class="SimpleMath">H</span>– and for the other two groups <span class="SimpleMath">H/Z_j</span>, the factor fusions from <span class="SimpleMath">H</span> map the two classes of <span class="SimpleMath">H</span> to the unique preimage class of <span class="SimpleMath">g^G</span>. (In the following picture, this is shown for <span class="SimpleMath">i = 1</span>.)</p>

<p><center> <img src="ctblcons06.png" alt="Two preimages for a class"/> </center></p>

<p>In case 3., the three factor fusions are in general not uniquely determined: We get four classes, which are defined as two pairs of preimages of the two preimages of <span class="SimpleMath">g^G</span> in <span class="SimpleMath">H/Z_1</span> and in <span class="SimpleMath">H/Z_2</span> –so we choose the relevant images in the two factor fusions to <span class="SimpleMath">H/Z_1</span> and <span class="SimpleMath">H/Z_2</span>, respectively. Note that the class of <span class="SimpleMath">h</span> in <span class="SimpleMath">H</span> is the unique class that maps to the class of <span class="SimpleMath">h Z_1</span> in <span class="SimpleMath">H/Z_1</span> and to the class of <span class="SimpleMath">h Z_2</span> in <span class="SimpleMath">H/Z_2</span>, and so on, and we define four classes of <span class="SimpleMath">H</span> via the four possible combinations of image classes in <span class="SimpleMath">H/Z_1</span> and <span class="SimpleMath">H/Z_2</span> (see the picture below).</p>

<p><center> <img src="ctblcons07.png" alt="Four preimages for a class (part 1)"/> </center></p>

<p>Due to the fact that in general we do not know which of the two preimage classes of <span class="SimpleMath">g^G</span> in <span class="SimpleMath">H/Z_3</span> is the class of <span class="SimpleMath">h Z_3</span>, there are in general the following <em>two</em> possibilities for the fusion from <span class="SimpleMath">H</span> to <span class="SimpleMath">H/Z_3</span>.</p>

<p><center> <img src="ctblcons08.png" alt="Four preimages for a class (part 2)"/> </center></p>

<p>This means that we can inflate the irreducible characters of <span class="SimpleMath">H/Z_1</span> and of <span class="SimpleMath">H/Z_2</span> to <span class="SimpleMath">H</span> but that for the inflations of those irreducible characters of <span class="SimpleMath">H/Z_3</span> to <span class="SimpleMath">H</span> that are not characters of <span class="SimpleMath">G</span>, the values on classes where case 3. applies are determined only up to sign.</p>

<p>The <strong class="pkg">GAP</strong> function <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>) computes the candidates for the table of <span class="SimpleMath">H</span> from the tables of the groups <span class="SimpleMath">H/Z_i</span> by setting up the character table head of <span class="SimpleMath">H</span> using the class fusions from <span class="SimpleMath">H/Z_1</span> and <span class="SimpleMath">H/Z_2</span> to <span class="SimpleMath">G</span>, and then forming the possible class fusions from <span class="SimpleMath">H</span> to <span class="SimpleMath">H/Z_3</span>.</p>

<p>If case 3. applies for a class <span class="SimpleMath">g^G</span> with <span class="SimpleMath">g</span> of <em>odd</em> element order then exactly one preimage class in <span class="SimpleMath">H</span> has odd element order, and we can identify this class in the groups <span class="SimpleMath">H/Z_i</span>, which resolves the ambiguity in this situation. More generally, if <span class="SimpleMath">g = k^2</span> holds for some <span class="SimpleMath">k ∈ G</span> then all preimages of <span class="SimpleMath">k^G</span> in <span class="SimpleMath">H</span> square to the same class of <span class="SimpleMath">H</span>, so again this class can be identified. In fact <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>) checks whether the <span class="SimpleMath">p</span>-th power maps of the candidate table for <span class="SimpleMath">H</span> and the <span class="SimpleMath">p</span>-th power map of <span class="SimpleMath">H/Z_3</span> together with the fusion candidate form a commutative diagram.</p>

<p>An additional criterion used by <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>) is given by the property that the product of two characters inflated from <span class="SimpleMath">H/Z_1</span> and <span class="SimpleMath">H/Z_2</span>, respectively, that are not characters of <span class="SimpleMath">G</span> is a character of <span class="SimpleMath">H</span> that contains <span class="SimpleMath">Z_3</span> in its kernel, so it is checked whether the scalar products of these characters with all characters that are inflated from <span class="SimpleMath">H/Z_3</span> via the candidate fusion are nonnegative integers.</p>

<p>Once the fusions from <span class="SimpleMath">H</span> to the groups <span class="SimpleMath">H/Z_i</span> are known, the computation of the irreducible <span class="SimpleMath">p</span>-modular characters of <span class="SimpleMath">H</span> from those of the groups <span class="SimpleMath">H/Z_i</span> is straightforward.</p>

<p>The only open question is why this construction is described in this note. That is, how is it related to table automorphisms?</p>

<p>The answer is that in several interesting cases, the three subgroups <span class="SimpleMath">Z_1</span>, <span class="SimpleMath">Z_2</span>, <span class="SimpleMath">Z_3</span> are conjugate under an order three automorphism <span class="SimpleMath">σ</span>, say, of <span class="SimpleMath">H</span>. In this situation, the three factor groups <span class="SimpleMath">2_i.G = H/Z_i</span> are isomorphic, and we can describe the input tables and fusions by the character table of <span class="SimpleMath">2_1.G</span>, the factor fusion from this group to <span class="SimpleMath">G</span>, and the automorphism <span class="SimpleMath">σ'</span> of <span class="SimpleMath">G</span> that is induced by <span class="SimpleMath">σ</span>. Assume that <span class="SimpleMath">σ(Z_1) = Z_2</span> holds, and choose <span class="SimpleMath">h ∈ H</span>. Then <span class="SimpleMath">σ(h Z_1) = σ(h) Z_2</span> is mapped to <span class="SimpleMath">σ(h) Z = σ'(h Z)</span> under the factor fusion from <span class="SimpleMath">2_2.G</span> to <span class="SimpleMath">G</span>. Let us start with the character table of <span class="SimpleMath">2_1.G</span>, and fix the class fusion to the character table of <span class="SimpleMath">G</span>. We may choose the identity map as isomorphism from the table of <span class="SimpleMath">2_1.G</span> to the tables of <span class="SimpleMath">2_2.G</span> and <span class="SimpleMath">2_3.G</span>, which implies that the class of <span class="SimpleMath">h Z_1</span> is identified with the class of <span class="SimpleMath">h Z_2</span> and in turn the class fusion from the table of <span class="SimpleMath">2_2.G</span> to that of <span class="SimpleMath">G</span> can be chosen as the class fusion from the table of <span class="SimpleMath">2_1.G</span> followed by the permutation of classes of <span class="SimpleMath">G</span> induced by <span class="SimpleMath">σ'</span>; analogously, the fusion from the table of <span class="SimpleMath">2_3.G</span> is obtained by applying this permutation twice to the class fusion from the table of <span class="SimpleMath">2_1.G</span>.</p>

<p>For examples, see Section <a href="chap2.html#X845BAA2A7FD768B0"><span class="RefLink">2.7</span></a>.</p>

<p><a id="X86CF6A607B0827EE" name="X86CF6A607B0827EE"></a></p>

<h5>2.3-5 <span class="Heading"><span class="SimpleMath">p</span>-Modular Tables of Extensions by <span class="SimpleMath">p</span>-singular Automorphisms</span></h5>

<p>Let <span class="SimpleMath">G</span> be a finite group, and <span class="SimpleMath">H</span> be an upward extension of <span class="SimpleMath">G</span> by an automorphism of prime order <span class="SimpleMath">p</span>, say. <span class="SimpleMath">H</span> induces a table automorphism of the <span class="SimpleMath">p</span>-modular character table of <span class="SimpleMath">G</span>; let <span class="SimpleMath">π</span> denote the corresponding permutation of classes of <span class="SimpleMath">G</span>. The columns of the <span class="SimpleMath">p</span>-modular character table of <span class="SimpleMath">H</span> are given by the orbits of <span class="SimpleMath">π</span>, and the irreducible Brauer characters of <span class="SimpleMath">H</span> are exactly the orbit sums of <span class="SimpleMath">π</span> on the irreducible Brauer characters of <span class="SimpleMath">G</span>.</p>

<p>Note that for computing the <span class="SimpleMath">p</span>-modular character table of <span class="SimpleMath">H</span> from that of <span class="SimpleMath">G</span>, it is sufficient to know the orbits of <span class="SimpleMath">π</span> and not <span class="SimpleMath">π</span> itself. Also the ordinary character table of <span class="SimpleMath">H</span> is not needed, but since <strong class="pkg">GAP</strong> stores Brauer character tables relative to their ordinary tables, we are interested mainly in cases where the ordinary character tables of <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span> and the <span class="SimpleMath">p</span>-modular character table of <span class="SimpleMath">G</span> are known. Assuming that the class fusion between the ordinary tables of <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span> is stored on the table of <span class="SimpleMath">G</span>, the orbits of the action of <span class="SimpleMath">H</span> on the <span class="SimpleMath">p</span>-regular classes of <span class="SimpleMath">G</span> can be read off from it.</p>

<p>The <strong class="pkg">GAP</strong> function <code class="func">IBrOfExtensionBySingularAutomorphism</code> (<a href="..//doc/chap5.html#X7AF3EA6C783FCFF9"><span class="RefLink">CTblLib: IBrOfExtensionBySingularAutomorphism</span></a>) can be used to compute the <span class="SimpleMath">p</span>-modular irreducibles of <span class="SimpleMath">H</span>.</p>

<p>For examples, see Section <a href="chap2.html#X8711DBB083655A25"><span class="RefLink">2.8</span></a>.</p>

<p><a id="X788591D78451C024" name="X788591D78451C024"></a></p>

<h5>2.3-6 <span class="Heading">Character Tables of Subdirect Products of Index Two (July 2007)</span></h5>

<p>Let <span class="SimpleMath">C_2</span> denote the cyclic group of order two, let <span class="SimpleMath">G_1</span>, <span class="SimpleMath">G_2</span> be two finite groups, and for <span class="SimpleMath">i ∈ { 1, 2 }</span>, let <span class="SimpleMath">φ_i: G_i → C_2</span> be an epimorphism with kernel <span class="SimpleMath">H_i</span>. Let <span class="SimpleMath">G</span> be the subdirect product (pullback) of <span class="SimpleMath">G_1</span> and <span class="SimpleMath">G_2</span> w.r.t. the epimorphisms <span class="SimpleMath">φ_i</span>, i.e.,</p>

<p class="pcenter">G = { (g_1, g_2) ∈ G_1 × G_2; φ_1(g_1) = φ_2(g_2) } .</p>

<p>The group <span class="SimpleMath">G</span> has index two in the direct product <span class="SimpleMath">G_1 × G_2</span>, and <span class="SimpleMath">G</span> contains <span class="SimpleMath">H_1 × H_2</span> as a subgroup of index two.</p>

<p>In the following, we describe how the ordinary (or <span class="SimpleMath">p</span>-modular) character table of <span class="SimpleMath">G</span> can be computed from the ordinary (or <span class="SimpleMath">p</span>-modular) character tables of the groups <span class="SimpleMath">G_i</span> and <span class="SimpleMath">H_i</span>, and the class fusions from <span class="SimpleMath">H_i</span> to <span class="SimpleMath">G_i</span>.</p>

<p>(For the case that one of the groups <span class="SimpleMath">G_i</span> is a cyclic group of order four, an alternative way to construct the character table of <span class="SimpleMath">G</span> is described in Section <a href="chap2.html#X80C37276851D5E39"><span class="RefLink">2.2-4</span></a>. For the case that one of the groups <span class="SimpleMath">G_i</span> acts fixed point freely on the nontrivial irreducible characters of <span class="SimpleMath">H_i</span>, an alternative construction is described in Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>.)</p>

<p><center> <img src="ctblcons09.png" alt="Subdirect products of index two"/> </center></p>

<p>Each conjugacy class of <span class="SimpleMath">G</span> is either contained in <span class="SimpleMath">H_1 × H_2</span> or not. In the former case, let <span class="SimpleMath">h_i ∈ H_i</span> and <span class="SimpleMath">g_i ∈ G_i ∖ H_i</span>; in particular, <span class="SimpleMath">(g_1, g_2) ∈ G</span> because both <span class="SimpleMath">φ_1(g_1)</span> and <span class="SimpleMath">φ_2(g_2)</span> are not the identity. There are four possibilities.</p>


<dl>
<dt><strong class="Mark">1.</strong></dt>
<dd><p>If <span class="SimpleMath">h_1^{H_1} = h_1^{G_1}</span> and <span class="SimpleMath">h_2^{H_2} = h_2^{G_2}</span> then <span class="SimpleMath">(h_1, h_2)^{H_1 × H_2} = (h_1, h_2)^{G_1 × G_2}</span> holds, hence this class is equal to <span class="SimpleMath">(h_1, h_2)^G</span>.</p>

</dd>
<dt><strong class="Mark">2.</strong></dt>
<dd><p>If <span class="SimpleMath">h_1^{H_1} ≠ h_1^{G_1}</span> and <span class="SimpleMath">h_2^{H_2} ≠ h_2^{G_2}</span> then the four <span class="SimpleMath">H_1 × H_2</span>-classes with the representatives <span class="SimpleMath">(h_1, h_2)</span>, <span class="SimpleMath">(h_1^{g_1}, h_2)</span>, <span class="SimpleMath">(h_1, h_2^{g_2})</span>, and <span class="SimpleMath">(h_1^{g_1}, h_2^{g_2})</span> fall into two <span class="SimpleMath">G</span>-classes, where <span class="SimpleMath">(h_1, h_2)</span> is <span class="SimpleMath">G</span>-conjugate with <span class="SimpleMath">(h_1^{g_1}, h_2^{g_2})</span>, and <span class="SimpleMath">(h_1^{g_1}, h_2)</span> is <span class="SimpleMath">G</span>-conjugate with <span class="SimpleMath">(h_1, h_2^{g_2})</span>.</p>

</dd>
<dt><strong class="Mark">3.</strong></dt>
<dd><p>If <span class="SimpleMath">h_1^{H_1} = h_1^{G_1}</span> and <span class="SimpleMath">h_2^{H_2} ≠ h_2^{G_2}</span> then the two <span class="SimpleMath">H_1 × H_2</span>-classes with the representatives <span class="SimpleMath">(h_1, h_2)</span> and <span class="SimpleMath">(h_1, h_2^{g_2})</span> fuse in <span class="SimpleMath">G</span>; note that there is <span class="SimpleMath">tildeg_1 ∈ C_{G_1}(h_1) ∖ H_1</span>, so <span class="SimpleMath">(tildeg_1, g_2) ∈ G</span> holds.</p>

</dd>
<dt><strong class="Mark">4.</strong></dt>
<dd><p>The case of <span class="SimpleMath">h_1^{H_1} ≠ h_1^{G_1}</span> and <span class="SimpleMath">h_2^{H_2} = h_2^{G_2}</span> is analogous to case 3.</p>

</dd>
</dl>
<p>It remains to deal with the <span class="SimpleMath">G</span>-classes that are not contained in <span class="SimpleMath">H_1 × H_2</span>. Each such class is in fact a conjugacy class of <span class="SimpleMath">G_1 × G_2</span>. Note that two elements <span class="SimpleMath">g_1, g_2 ∈ G_1 ∖ H_1</span> are <span class="SimpleMath">G_1</span>-conjugate if and only if they are <span class="SimpleMath">H_1</span>-conjugate. (If <span class="SimpleMath">g_1^x = g_2</span> for <span class="SimpleMath">x ∈ G_1 ∖ H_1</span> then <span class="SimpleMath">g_1^{g_1 x} = g_2</span> holds, and <span class="SimpleMath">g_1 x ∈ H_1</span>.) This implies <span class="SimpleMath">(g_1, g_2)^{G_1 × G_2} = (g_1, g_2)^{H_1 × H_2}</span>, and thus this class is equal to <span class="SimpleMath">(g_1, g_2)^G</span>.</p>

<p>The (ordinary or <span class="SimpleMath">p</span>-modular) irreducible characters of <span class="SimpleMath">G</span> are given by the restrictions <span class="SimpleMath">χ_G</span> of all those irreducible characters <span class="SimpleMath">χ</span> of <span class="SimpleMath">G_1 × G_2</span> whose restriction to <span class="SimpleMath">H_1 × H_2</span> is irreducible, plus the induced characters <span class="SimpleMath">φ^G</span>, where <span class="SimpleMath">φ</span> runs over all those irreducible characters of <span class="SimpleMath">H_1 × H_2</span> that do not occur as restrictions of characters of <span class="SimpleMath">G_1 × G_2</span>.</p>

<p>In other words, no irreducible character of <span class="SimpleMath">H_1 × H_2</span> has inertia subgroup <span class="SimpleMath">G</span> inside <span class="SimpleMath">G_1 × G_2</span>. This can be seen as follows. Let <span class="SimpleMath">φ</span> be an irreducible character of <span class="SimpleMath">H_1 × H_2</span>. Then <span class="SimpleMath">φ = φ_1 ⋅ φ_2</span>, where <span class="SimpleMath">φ_1</span>, <span class="SimpleMath">φ_2</span> are irreducible characters of <span class="SimpleMath">H_1 × H_2</span> with the properties that <span class="SimpleMath">H_2 ⊆ ker(φ_1)</span> and <span class="SimpleMath">H_1 ⊆ ker(φ_2)</span>. Sloppy speaking, <span class="SimpleMath">φ_i</span> is an irreducible character of <span class="SimpleMath">H_i</span>.</p>

<p>There are four possibilities.</p>

<ol>
<li><p>If <span class="SimpleMath">φ_1</span> extends to <span class="SimpleMath">G_1</span> and <span class="SimpleMath">φ_2</span> extends to <span class="SimpleMath">G_2</span> then <span class="SimpleMath">φ</span> extends to <span class="SimpleMath">G</span>, so <span class="SimpleMath">φ</span> has inertia subgroup <span class="SimpleMath">G_1 × G_2</span>.</p>

</li>
<li><p>If <span class="SimpleMath">φ_1</span> does not extend to <span class="SimpleMath">G_1</span> and <span class="SimpleMath">φ_2</span> does not extend to <span class="SimpleMath">G_2</span> then <span class="SimpleMath">φ^{G_1 × G_2}</span> is irreducible, so <span class="SimpleMath">φ</span> has inertia subgroup <span class="SimpleMath">H_1 × H_2</span>.</p>

</li>
<li><p>If <span class="SimpleMath">φ_1</span> extends to <span class="SimpleMath">G_1</span> and <span class="SimpleMath">φ_2</span> does not extend to <span class="SimpleMath">G_2</span> then <span class="SimpleMath">φ</span> extends to <span class="SimpleMath">G_1 × H_2</span> but not to <span class="SimpleMath">G_1 × G_2</span>, so <span class="SimpleMath">φ</span> has inertia subgroup <span class="SimpleMath">G_1 × H_2</span>.</p>

</li>
<li><p>The case that <span class="SimpleMath">φ_1</span> does not extend to <span class="SimpleMath">G_1</span> and <span class="SimpleMath">φ_2</span> extends to <span class="SimpleMath">G_2</span> is analogous to case 3, <span class="SimpleMath">φ</span> has inertia subgroup <span class="SimpleMath">H_1 × G_2</span>.</p>

</li>
</ol>
<p>For examples, see Section <a href="chap2.html#X7A4D6044865E516B"><span class="RefLink">2.9</span></a>.</p>

<p><a id="X817D2134829FA8FA" name="X817D2134829FA8FA"></a></p>

<h4>2.4 <span class="Heading">Examples for the Type <span class="SimpleMath">M.G.A</span></span></h4>

<p><a id="X7F2DBAB48437052C" name="X7F2DBAB48437052C"></a></p>

<h5>2.4-1 <span class="Heading">Character Tables of Dihedral Groups</span></h5>

<p>Let <span class="SimpleMath">n = 2^k ⋅ m</span> where <span class="SimpleMath">k</span> is a nonnegative integer and <span class="SimpleMath">m</span> is an odd integer, and consider the dihedral group <span class="SimpleMath">D_2n</span> of order <span class="SimpleMath">2n</span>. Let <span class="SimpleMath">N</span> denote the derived subgroup of <span class="SimpleMath">D_2n</span>.</p>

<p>If <span class="SimpleMath">k = 0</span> then <span class="SimpleMath">D_2n</span> has the structure <span class="SimpleMath">M.G.A</span>, with <span class="SimpleMath">M = N</span> and <span class="SimpleMath">G</span> the trivial group, and <span class="SimpleMath">A</span> a cyclic group of order two that inverts each element of <span class="SimpleMath">N</span> and hence acts fixed-point freely on <span class="SimpleMath">N</span>. The smallest nontrivial example is of course that of <span class="SimpleMath">D_6 ≅ S_3</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG:= CharacterTable( "Cyclic", 3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "Cyclic", 1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblMG, [ 1, 1, 1 ], tblG );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblG, [ 1 ], tblGA );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= Elements( AutomorphismsOfTable( tblMG ) );</span>
[ (), (2,3) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= [ [ 1 ], [ 2, 3 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">new:= PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, orbs,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             "S3" );</span>
[ rec( MGfusMGA := [ 1, 2, 2 ], table := CharacterTable( "S3" ) ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( new[1].table );</span>
S3

     2  1  .  1
     3  1  1  .

       1a 3a 2a
    2P 1a 3a 1a
    3P 1a 1a 2a

X.1     1  1  1
X.2     1  1 -1
X.3     2 -1  .
</pre></div>

<p>If <span class="SimpleMath">k &gt; 0</span> then <span class="SimpleMath">D_2n</span> has the structure <span class="SimpleMath">M.G.A</span>, with <span class="SimpleMath">M = N</span> and <span class="SimpleMath">G</span> a cyclic group of order two such that <span class="SimpleMath">M.G</span> is cyclic, and <span class="SimpleMath">A</span> is a cyclic group of order two that inverts each element of <span class="SimpleMath">M.G</span> and hence acts fixed-point freely on <span class="SimpleMath">M.G</span>. The smallest nontrivial example is of course that of <span class="SimpleMath">D_8</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG:= CharacterTable( "Cyclic", 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA:= CharacterTable( "2^2" );;           </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( tblMG );</span>
[ 1, 4, 2, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblMG, [ 1, 2, 1, 2 ], tblG ); </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblG, [ 1, 2 ], tblGA );      </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= Elements( AutomorphismsOfTable( tblMG ) );</span>
[ (), (2,4) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= Orbits( Group( elms[2] ), [ 1 ..4 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">new:= PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, orbs,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             "order8" );</span>
[ rec( MGfusMGA := [ 1, 2, 3, 2 ], 
      table := CharacterTable( "order8" ) ), 
  rec( MGfusMGA := [ 1, 2, 3, 2 ], 
      table := CharacterTable( "order8" ) ) ]
</pre></div>

<p>Here we get two possible tables, which are the character tables of the dihedral and the quaternion group of order eight, respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( new, x -&gt; OrdersClassRepresentatives( x.table ) );</span>
[ [ 1, 4, 2, 2, 2 ], [ 1, 4, 2, 4, 4 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( new[1].table );</span>
order8

     2  3  2  3  2  2

       1a 4a 2a 2b 2c
    2P 1a 2a 1a 1a 1a

X.1     1  1  1  1  1
X.2     1  1  1 -1 -1
X.3     1 -1  1  1 -1
X.4     1 -1  1 -1  1
X.5     2  . -2  .  .
</pre></div>

<p>For each <span class="SimpleMath">k &gt; 1</span> and <span class="SimpleMath">m = 1</span>, we get two possible tables this way, that of the dihedral group of order <span class="SimpleMath">2^k+1</span> and that of the generalized quaternion group of order <span class="SimpleMath">2^k+1</span>.</p>

<p><a id="X7925DBFA7C5986B5" name="X7925DBFA7C5986B5"></a></p>

<h5>2.4-2 <span class="Heading">An <span class="SimpleMath">M.G.A</span> Type Example with <span class="SimpleMath">M</span> noncentral in <span class="SimpleMath">M.G</span> (May 2004)</span></h5>

<p>The Sylow <span class="SimpleMath">7</span> normalizer in the symmetric group <span class="SimpleMath">S_12</span> has the structure <span class="SimpleMath">7:6 × S_5</span>, its intersection <span class="SimpleMath">N</span> with the alternating group <span class="SimpleMath">A_12</span> is of index two, it has the structure <span class="SimpleMath">(7:3 × A_5):2</span>.</p>

<p>Let <span class="SimpleMath">M</span> denote the normal subgroup of order <span class="SimpleMath">7</span> in <span class="SimpleMath">N</span>, let <span class="SimpleMath">G</span> denote the normal subgroup of the type <span class="SimpleMath">3 × A_5</span> in <span class="SimpleMath">F = N/M ≅ 3 × S_5</span>, and <span class="SimpleMath">A = F/G</span>, the cyclic group of order two. Then <span class="SimpleMath">N</span> has the structure <span class="SimpleMath">M.G.A</span>, where <span class="SimpleMath">A</span> acts fixed-point freely on the irreducible characters of <span class="SimpleMath">M.G = 7:3 × A_5</span> that do not contain <span class="SimpleMath">M</span> in their kernels, hence the character table of <span class="SimpleMath">N</span> is determined by the character tables of <span class="SimpleMath">M.G</span> and <span class="SimpleMath">F</span>, and the action of <span class="SimpleMath">A</span> on <span class="SimpleMath">M.G</span>.</p>

<p>Note that in this example, the group <span class="SimpleMath">M</span> is not central in <span class="SimpleMath">M.G</span>, unlike in most of our examples.</p>

<p><center> <img src="ctblcons10.png" alt="The structure of (7:3 x A_5):2)"/> </center></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG:= CharacterTable( "7:3" ) * CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= ClassPositionsOfNormalSubgroups( tblMG );</span>
[ [ 1 ], [ 1, 6 .. 11 ], [ 1 .. 5 ], [ 1, 6 .. 21 ], [ 1 .. 15 ], 
  [ 1 .. 25 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( nsg, x -&gt; Sum( SizesConjugacyClasses( tblMG ){ x } ) );</span>
[ 1, 7, 60, 21, 420, 1260 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= tblMG / nsg[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA:= CharacterTable( "Cyclic", 3 ) * CharacterTable( "A5.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GfusGA:= PossibleClassFusions( tblG, tblGA );</span>
[ [ 1, 2, 3, 4, 4, 8, 9, 10, 11, 11, 15, 16, 17, 18, 18 ], 
  [ 1, 2, 3, 4, 4, 15, 16, 17, 18, 18, 8, 9, 10, 11, 11 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= RepresentativesFusions( Group(()), GfusGA, tblGA );</span>
[ [ 1, 2, 3, 4, 4, 8, 9, 10, 11, 11, 15, 16, 17, 18, 18 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblG, reps[1], tblGA );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">acts:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA );</span>
[ [ [ 1 ], [ 2 ], [ 3 ], [ 4, 5 ], [ 6, 11 ], [ 7, 12 ], [ 8, 13 ], 
      [ 9, 15 ], [ 10, 14 ], [ 16 ], [ 17 ], [ 18 ], [ 19, 20 ], 
      [ 21 ], [ 22 ], [ 23 ], [ 24, 25 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              acts[1], "A12N7" );</span>
[ rec( 
      MGfusMGA := [ 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 5, 6, 7, 9, 8, 10, 
          11, 12, 13, 13, 14, 15, 16, 17, 17 ], 
      table := CharacterTable( "A12N7" ) ) ]
</pre></div>

<p>Let us compare the result table with the table of the Sylow <span class="SimpleMath">7</span> normalizer in <span class="SimpleMath">A_12</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= AlternatingGroup( 12 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               CharacterTable( Normalizer( g, SylowSubgroup( g, 7 ) ) ) ) );</span>
true
</pre></div>

<p>Since July 2007, an alternative way to construct the character table of <span class="SimpleMath">N</span> from other character tables is to exploit its structure as a subdirect product of index two in the group <span class="SimpleMath">7:6 × S_5</span>, see Section <a href="chap2.html#X788591D78451C024"><span class="RefLink">2.3-6</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblh1:= CharacterTable( "7:3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblg1:= CharacterTable( "7:6" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblh2:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblg2:= CharacterTable( "A5.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">subdir:= CharacterTableOfIndexTwoSubdirectProduct( tblh1, tblg1,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                tblh2, tblg2, "(7:3xA5).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               subdir.table ) );</span>
true
</pre></div>

<p>For storing the table of <span class="SimpleMath">N</span> in the <strong class="pkg">GAP</strong> Character Table Library, the construction as a subdirect product is more suitable, since the "auxiliary table" of the direct product <span class="SimpleMath">7:3 × A_5</span> need not be stored in the library.</p>

<p><a id="X7ED45AB379093A70" name="X7ED45AB379093A70"></a></p>

<h5>2.4-3 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">M.G.A</span></span></h5>

<p>We show the construction of some character tables of groups of the type <span class="SimpleMath">M.G.A</span> that are contained in the <strong class="pkg">GAP</strong> Character Table Library. Each entry in the following input list contains the names of the library character tables of <span class="SimpleMath">M.G</span>, <span class="SimpleMath">G</span>, <span class="SimpleMath">G.A</span>, and <span class="SimpleMath">M.G.A</span>.</p>

<p>First we consider the situation where <span class="SimpleMath">G</span> is a simple group or a central extension of a simple group whose character table is shown in the <strong class="pkg">Atlas</strong>, and <span class="SimpleMath">M</span> and <span class="SimpleMath">A</span> are cyclic groups such that <span class="SimpleMath">M</span> is central in <span class="SimpleMath">M.G</span>.</p>

<p>In the following cases, the character tables are uniquely determined by the input tables. Note that in each of these cases, <span class="SimpleMath">|A|</span> and <span class="SimpleMath">|M|</span> are coprime.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">listMGA:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.A6",        "A6",        "A6.2_1",        "3.A6.2_1"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.A6",        "A6",        "A6.2_2",        "3.A6.2_2"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6.A6",        "2.A6",      "2.A6.2_1",      "6.A6.2_1"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6.A6",        "2.A6",      "2.A6.2_2",      "6.A6.2_2"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.A7",        "A7",        "A7.2",          "3.A7.2"         ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6.A7",        "2.A7",      "2.A7.2",        "6.A7.2"         ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.L3(4)",     "L3(4)",     "L3(4).2_2",     "3.L3(4).2_2"    ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.L3(4)",     "L3(4)",     "L3(4).2_3",     "3.L3(4).2_3"    ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6.L3(4)",     "2.L3(4)",   "2.L3(4).2_2",   "6.L3(4).2_2"    ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6.L3(4)",     "2.L3(4)",   "2.L3(4).2_3",   "6.L3(4).2_3"    ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12_1.L3(4)",  "4_1.L3(4)", "4_1.L3(4).2_2", "12_1.L3(4).2_2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12_1.L3(4)",  "4_1.L3(4)", "4_1.L3(4).2_3", "12_1.L3(4).2_3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12_2.L3(4)",  "4_2.L3(4)", "4_2.L3(4).2_2", "12_2.L3(4).2_2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12_2.L3(4)",  "4_2.L3(4)", "4_2.L3(4).2_3", "12_2.L3(4).2_3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.U3(5)",     "U3(5)",     "U3(5).2",       "3.U3(5).2"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.M22",       "M22",       "M22.2",         "3.M22.2"        ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6.M22",       "2.M22",     "2.M22.2",       "6.M22.2"        ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12.M22",      "4.M22",     "4.M22.2",       "12.M22.2"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.L3(7)",     "L3(7)",     "L3(7).2",       "3.L3(7).2"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3_1.U4(3)",   "U4(3)",     "U4(3).2_1",     "3_1.U4(3).2_1"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3_1.U4(3)",   "U4(3)",     "U4(3).2_2'",    "3_1.U4(3).2_2'" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3_2.U4(3)",   "U4(3)",     "U4(3).2_1",     "3_2.U4(3).2_1"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3_2.U4(3)",   "U4(3)",     "U4(3).2_3'",    "3_2.U4(3).2_3'" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6_1.U4(3)",   "2.U4(3)",   "2.U4(3).2_1",   "6_1.U4(3).2_1"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6_1.U4(3)",   "2.U4(3)",   "2.U4(3).2_2'",  "6_1.U4(3).2_2'" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6_2.U4(3)",   "2.U4(3)",   "2.U4(3).2_1",   "6_2.U4(3).2_1"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6_2.U4(3)",   "2.U4(3)",   "2.U4(3).2_3'",  "6_2.U4(3).2_3'" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12_1.U4(3)",  "4.U4(3)",   "4.U4(3).2_1",   "12_1.U4(3).2_1" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12_2.U4(3)",  "4.U4(3)",   "4.U4(3).2_1",   "12_2.U4(3).2_1" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.G2(3)",     "G2(3)",     "G2(3).2",       "3.G2(3).2"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.U3(8)",     "U3(8)",     "U3(8).2",       "3.U3(8).2"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.U3(8).3_1", "U3(8).3_1", "U3(8).6",       "3.U3(8).6"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.J3",        "J3",        "J3.2",          "3.J3.2"         ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.U3(11)",    "U3(11)",    "U3(11).2",      "3.U3(11).2"     ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.McL",       "McL",       "McL.2",         "3.McL.2"        ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.O7(3)",     "O7(3)",     "O7(3).2",       "3.O7(3).2"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6.O7(3)",     "2.O7(3)",   "2.O7(3).2",     "6.O7(3).2"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.U6(2)",     "U6(2)",     "U6(2).2",       "3.U6(2).2"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6.U6(2)",     "2.U6(2)",   "2.U6(2).2",     "6.U6(2).2"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.Suz",       "Suz",       "Suz.2",         "3.Suz.2"        ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6.Suz",       "2.Suz",     "2.Suz.2",       "6.Suz.2"        ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.ON",        "ON",        "ON.2",          "3.ON.2"         ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.Fi22",      "Fi22",      "Fi22.2",        "3.Fi22.2"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6.Fi22",      "2.Fi22",    "2.Fi22.2",      "6.Fi22.2"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.2E6(2)",    "2E6(2)",    "2E6(2).2",      "3.2E6(2).2"     ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "6.2E6(2)",    "2.2E6(2)",  "2.2E6(2).2",    "6.2E6(2).2"     ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.F3+",       "F3+",       "F3+.2",         "3.F3+.2"        ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">];;</span>
</pre></div>

<p>(We need not consider groups <span class="SimpleMath">3.U_3(8).6'</span> and <span class="SimpleMath">3.U_3(8).6'</span>, see Section <a href="chap2.html#X8379003582D06130"><span class="RefLink">2.4-7</span></a>.)</p>

<p>Note that the groups of the types <span class="SimpleMath">12_1.L_3(4).2_1</span> and <span class="SimpleMath">12_2.L_3(4).2_1</span> have central subgroups of order six, so we cannot choose <span class="SimpleMath">G</span> equal to <span class="SimpleMath">4_1.L_3(4)</span> and <span class="SimpleMath">4_2.L_3(4)</span>, respectively, in these cases. See Section <a href="chap2.html#X7A236EDE7A7A28F9"><span class="RefLink">2.4-4</span></a> for the construction of these tables.</p>

<p>Also in the following cases, <span class="SimpleMath">|A|</span> and <span class="SimpleMath">|M|</span> are coprime, we have <span class="SimpleMath">|M| = 3</span> and <span class="SimpleMath">|A| = 2</span>. The group <span class="SimpleMath">M.G</span> has a central subgroup of the type <span class="SimpleMath">2^2 × 3</span>, and <span class="SimpleMath">A</span> acts on this group by inverting the elements in the subgroup of order <span class="SimpleMath">3</span> and by swapping two involutions in the Klein four group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( listMGA, [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "(2^2x3).L3(4)",  "2^2.L3(4)",   "2^2.L3(4).2_2", "(2^2x3).L3(4).2_2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "(2^2x3).L3(4)",  "2^2.L3(4)",   "2^2.L3(4).2_3", "(2^2x3).L3(4).2_3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "(2^2x3).U6(2)",  "2^2.U6(2)",   "2^2.U6(2).2",   "(2^2x3).U6(2).2"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "(2^2x3).2E6(2)", "2^2.2E6(2)",  "2^2.2E6(2).2",  "(2^2x3).2E6(2).2"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">] );</span>
</pre></div>

<p>Additionally, there are a few cases where <span class="SimpleMath">A</span> has order two, and <span class="SimpleMath">G.A</span> has a factor group of the type <span class="SimpleMath">2^2</span>, and a few cases where <span class="SimpleMath">M</span> has the type <span class="SimpleMath">2^2</span> and <span class="SimpleMath">A</span> is of order three and acts transitively on the involutions in <span class="SimpleMath">M</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( listMGA, [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.A6.2_3",       "A6.2_3",    "A6.2^2",      "3.A6.2^2"          ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.L3(4).2_1",    "L3(4).2_1", "L3(4).2^2",   "3.L3(4).2^2"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3_1.U4(3).2_2",  "U4(3).2_2", "U4(3).(2^2)_{122}",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                            "3_1.U4(3).(2^2)_{122}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3_2.U4(3).2_3",  "U4(3).2_3", "U4(3).(2^2)_{133}",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                            "3_2.U4(3).(2^2)_{133}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3^2.U4(3).2_3'", "3_2.U4(3).2_3'", "3_2.U4(3).(2^2)_{133}",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                            "3^2.U4(3).(2^2)_{133}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.L3(4)",      "L3(4)",     "L3(4).3",     "2^2.L3(4).3"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "(2^2x3).L3(4)",  "3.L3(4)",   "3.L3(4).3",   "(2^2x3).L3(4).3"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.L3(4).2_1",  "L3(4).2_1", "L3(4).6",     "2^2.L3(4).6"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.Sz(8)",      "Sz(8)",     "Sz(8).3",     "2^2.Sz(8).3"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.U6(2)",      "U6(2)",     "U6(2).3",     "2^2.U6(2).3"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "(2^2x3).U6(2)",  "3.U6(2)",   "3.U6(2).3",   "(2^2x3).U6(2).3"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.O8+(2)",     "O8+(2)",    "O8+(2).3",    "2^2.O8+(2).3"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.O8+(3)",     "O8+(3)",    "O8+(3).3",    "2^2.O8+(3).3"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.2E6(2)",     "2E6(2)",    "2E6(2).3",    "2^2.2E6(2).3"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">] );</span>
</pre></div>

<p>The constructions of the character tables of groups of the types <span class="SimpleMath">4_2.L_3(4).2_3</span>, <span class="SimpleMath">12_2.L_3(4).2_3</span>, <span class="SimpleMath">12_1.U_4(3).2_2'</span> and <span class="SimpleMath">12_2.U_4(3).2_3'</span> is described in Section <a href="chap2.html#X794EC2FD7F69B4E6"><span class="RefLink">2.4-5</span></a> and <a href="chap2.html#X7E3E748E85AEDDB3"><span class="RefLink">2.4-6</span></a>, in these cases the <strong class="pkg">GAP</strong> functions return several possible tables.</p>

<p>The construction of the various character table of groups of the types <span class="SimpleMath">4_1.L_3(4).2^2</span> and <span class="SimpleMath">4_2.L_3(4).2^2</span> are described in Section <a href="chap2.html#X7DC42AE57E9EED4D"><span class="RefLink">2.6-7</span></a>.</p>

<p>The following function takes the ordinary character tables of the groups <span class="SimpleMath">M.G</span>, <span class="SimpleMath">G</span>, and <span class="SimpleMath">G.A</span>, a string to be used as the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) value of the character table of <span class="SimpleMath">M.G.A</span>, and the character table of <span class="SimpleMath">M.G.A</span> that is contained in the <strong class="pkg">GAP</strong> Character Table Library; the function first computes the possible actions of <span class="SimpleMath">G.A</span> on the classes of <span class="SimpleMath">M.G</span>, using the function <code class="func">PossibleActionsForTypeMGA</code> (<a href="..//doc/chap5.html#X7899AA12836EEF8F"><span class="RefLink">CTblLib: PossibleActionsForTypeMGA</span></a>), then computes the union of possible character tables for these actions, and then representatives up to permutation equivalence; if there is only one solution then the result table is compared with the library table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstructOrdinaryMGATable:= function( tblMG, tblG, tblGA, name, lib )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     local acts, poss, trans;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     acts:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= Concatenation( List( acts, pi -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, pi,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    name ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= RepresentativesCharacterTables( poss );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if Length( poss ) = 1 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       # Compare the computed table with the library table.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if not IsCharacterTable( lib ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         List( poss, x -&gt; AutomorphismsOfTable( x.table ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#I  no library table for ", name, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         trans:= TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if not IsRecord( trans ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed table and library table for ", name,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         # Compare the computed fusion with the stored one.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if OnTuples( poss[1].MGfusMGA, trans.columns )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                &lt;&gt; GetFusionMap( tblMG, lib ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed and stored fusion for ", name,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     elif Length( poss ) = 0 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#E  no solution for ", name, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#E  ", Length( poss ), " possibilities for ", name, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     return poss;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   end;;</span>
</pre></div>

<p>The following function takes the ordinary character tables of the groups <span class="SimpleMath">M.G</span>, <span class="SimpleMath">G.A</span>, and <span class="SimpleMath">M.G.A</span>, and tries to construct the <span class="SimpleMath">p</span>-modular character tables of <span class="SimpleMath">M.G.A</span> from the <span class="SimpleMath">p</span>-modular character tables of the first two of these tables, for all prime divisors <span class="SimpleMath">p</span> of the order of <span class="SimpleMath">M.G.A</span>. Note that the tables of <span class="SimpleMath">G</span> are not needed in the construction, only the class fusions from <span class="SimpleMath">M.G</span> to <span class="SimpleMath">M.G.A</span> and from <span class="SimpleMath">M.G.A</span> to <span class="SimpleMath">G.A</span> must be stored.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstructModularMGATables:= function( tblMG, tblGA, ordtblMGA )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   local name, poss, p, modtblMG, modtblGA, modtblMGA, modlib, trans;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   name:= Identifier( ordtblMGA );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   poss:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   for p in PrimeDivisors( Size( ordtblMGA ) ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modtblMG := tblMG mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modtblGA := tblGA mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if ForAll( [ modtblMG, modtblGA ], IsCharacterTable ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modtblMGA:= BrauerTableOfTypeMGA( modtblMG, modtblGA, ordtblMGA );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( poss, modtblMGA );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modlib:= ordtblMGA mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if IsCharacterTable( modlib ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         trans:= TransformingPermutationsCharacterTables( modtblMGA.table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     modlib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if not IsRecord( trans ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed table and library table for ", name,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " mod ", p, " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         AutomorphismsOfTable( modtblMGA.table );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#I  no library table for ", name, " mod ", p, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  not all input tables for ", name, " mod ", p,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              " available\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   return poss;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   end;;</span>
</pre></div>

<p>Now we run the constructions for the cases in the list. Note that in order to avoid conflicts of the class fusions that arise in the construction with the class fusions that are already stored on the library tables, we choose identifiers for the result tables that are different from the identifiers of the library tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for  input in listMGA do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblMG := CharacterTable( input[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblG  := CharacterTable( input[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblGA := CharacterTable( input[3] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     name  := Concatenation( "new", input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib   := CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if 1 &lt;&gt; Length( poss ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  ", Length( poss ), " possibilities for ", name, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     elif lib = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  no library table for ", input[4], "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       ConstructModularMGATables( tblMG, tblGA, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#I  not all input tables for 3.2E6(2).2 mod 2 available
#I  not all input tables for 3.2E6(2).2 mod 3 available
#I  not all input tables for 3.2E6(2).2 mod 5 available
#I  not all input tables for 3.2E6(2).2 mod 7 available
#I  not all input tables for 3.2E6(2).2 mod 11 available
#I  not all input tables for 3.2E6(2).2 mod 13 available
#I  not all input tables for 3.2E6(2).2 mod 17 available
#I  not all input tables for 3.2E6(2).2 mod 19 available
#I  not all input tables for 6.2E6(2).2 mod 2 available
#I  not all input tables for 6.2E6(2).2 mod 3 available
#I  not all input tables for 6.2E6(2).2 mod 5 available
#I  not all input tables for 6.2E6(2).2 mod 7 available
#I  not all input tables for 6.2E6(2).2 mod 11 available
#I  not all input tables for 6.2E6(2).2 mod 13 available
#I  not all input tables for 6.2E6(2).2 mod 17 available
#I  not all input tables for 6.2E6(2).2 mod 19 available
#I  not all input tables for 3.F3+.2 mod 2 available
#I  not all input tables for 3.F3+.2 mod 3 available
#I  not all input tables for 3.F3+.2 mod 5 available
#I  not all input tables for 3.F3+.2 mod 7 available
#I  not all input tables for 3.F3+.2 mod 13 available
#I  not all input tables for 3.F3+.2 mod 17 available
#I  not all input tables for 3.F3+.2 mod 29 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 2 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 3 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 5 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 7 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 11 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 13 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 17 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 19 available
#I  not all input tables for 3^2.U4(3).(2^2)_{133} mod 2 available
#I  not all input tables for 3^2.U4(3).(2^2)_{133} mod 5 available
#I  not all input tables for 3^2.U4(3).(2^2)_{133} mod 7 available
#I  not all input tables for 2^2.O8+(3).3 mod 5 available
#I  not all input tables for 2^2.O8+(3).3 mod 7 available
#I  not all input tables for 2^2.O8+(3).3 mod 13 available
#I  not all input tables for 2^2.2E6(2).3 mod 2 available
#I  not all input tables for 2^2.2E6(2).3 mod 3 available
#I  not all input tables for 2^2.2E6(2).3 mod 5 available
#I  not all input tables for 2^2.2E6(2).3 mod 7 available
#I  not all input tables for 2^2.2E6(2).3 mod 11 available
#I  not all input tables for 2^2.2E6(2).3 mod 13 available
#I  not all input tables for 2^2.2E6(2).3 mod 17 available
#I  not all input tables for 2^2.2E6(2).3 mod 19 available
</pre></div>

<p>We do not get any unexpected output, so the character tables in question are determined by the inputs.</p>

<p>Alternative constructions of the character tables of <span class="SimpleMath">3.A_6.2^2</span>, <span class="SimpleMath">3.L_3(4).2^2</span>, and <span class="SimpleMath">3_2.U_4(3).(2^2)_133</span> can be found in Section <a href="chap2.html#X7FEC3AB081487AF2"><span class="RefLink">2.6-2</span></a>.</p>

<p><a id="X7A236EDE7A7A28F9" name="X7A236EDE7A7A28F9"></a></p>

<h5>2.4-4 <span class="Heading">More <strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">M.G.A</span></span></h5>

<p>In the following situations, we have <span class="SimpleMath">|A| = 2</span>, and <span class="SimpleMath">|M|</span> is a multiple of <span class="SimpleMath">2</span>. The result turns out to be unique up to isoclinism, see Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>.</p>

<p>First, there are some cases where the centre of <span class="SimpleMath">M.G</span> is a cyclic group of order four, and <span class="SimpleMath">|M| = 2</span> holds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">listMGA2:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "4_1.L3(4)",  "2.L3(4)",   "2.L3(4).2_1",   "4_1.L3(4).2_1"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "4_1.L3(4)",  "2.L3(4)",   "2.L3(4).2_2",   "4_1.L3(4).2_2"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "4_2.L3(4)",  "2.L3(4)",   "2.L3(4).2_1",   "4_2.L3(4).2_1"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "4.M22",      "2.M22",     "2.M22.2",       "4.M22.2"        ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "4.U4(3)",    "2.U4(3)",   "2.U4(3).2_2",   "4.U4(3).2_2"    ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "4.U4(3)",    "2.U4(3)",   "2.U4(3).2_3",   "4.U4(3).2_3"    ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">];;</span>
</pre></div>

<p>Note that the groups <span class="SimpleMath">4_1.L3(4).2_3</span> and <span class="SimpleMath">4_2.L3(4).2_2</span> and their isoclinic variants have centres of order four, so they do not appear here. The construction of the character table of <span class="SimpleMath">4_2.L_3(4).2_3</span> is more involved, it is described in Section <a href="chap2.html#X794EC2FD7F69B4E6"><span class="RefLink">2.4-5</span></a>.</p>

<p>Also in the following cases, we have <span class="SimpleMath">|M| = 2</span>, but the situation is different because <span class="SimpleMath">M.G</span> has a central subgroup of the type <span class="SimpleMath">2^2</span> containing a unique subgroup of order <span class="SimpleMath">2</span> that is central in <span class="SimpleMath">M.G.A</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( listMGA2, [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.L3(4)",     "2.L3(4)",     "2.L3(4).2_2",         "2^2.L3(4).2_2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.L3(4)",     "2.L3(4)",     "2.L3(4).2_3",         "2^2.L3(4).2_3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{123}", "2^2.L3(4).2^2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.O8+(2)",    "2.O8+(2)",    "2.O8+(2).2",          "2^2.O8+(2).2"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.U6(2)",     "2.U6(2)",     "2.U6(2).2",           "2^2.U6(2).2"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.2E6(2)",    "2.2E6(2)",    "2.2E6(2).2",          "2^2.2E6(2).2"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">] );</span>
</pre></div>

<p>Next there are two constructions for <span class="SimpleMath">G = 6.L_3(4)</span>, with <span class="SimpleMath">|M| = 12</span> and <span class="SimpleMath">|A| = 2</span>. Note that the groups <span class="SimpleMath">12_1.L3(4).2_1</span> and <span class="SimpleMath">12_2.L3(4).2_1</span> have central subgroups of the order six, so we cannot use the factor groups <span class="SimpleMath">4_1.L3(4).2_1</span> and <span class="SimpleMath">4_2.L3(4).2_1</span>, respectively, for the constructions.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( listMGA2, [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12_1.L3(4)", "6.L3(4)", "6.L3(4).2_1", "12_1.L3(4).2_1" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12_2.L3(4)", "6.L3(4)", "6.L3(4).2_1", "12_2.L3(4).2_1" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">] );</span>
</pre></div>

<p>Next there are alternative constructions for tables which have been constructed in Section <a href="chap2.html#X7ED45AB379093A70"><span class="RefLink">2.4-3</span></a>. There we had viewed the groups of the structure <span class="SimpleMath">12.S.2</span>, for a simple group <span class="SimpleMath">S</span>, as <span class="SimpleMath">3.G.2</span> with <span class="SimpleMath">G = 4.S</span>. Here we view these groups as <span class="SimpleMath">2.G.2</span> with <span class="SimpleMath">G = 6.S</span>, which means that we do not prescribe the <span class="SimpleMath">4.S.2</span> type factor group. So it is not surprising that we get more than one solution, and that the computation of the <span class="SimpleMath">2</span>-power map of <span class="SimpleMath">12.S.2</span> is more involved. Note that the construction of the character table of <span class="SimpleMath">12_2.L_3(4).2_3</span> is more involved, it is described in Section <a href="chap2.html#X794EC2FD7F69B4E6"><span class="RefLink">2.4-5</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( listMGA2, [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12.M22",     "6.M22",     "6.M22.2",       "12.M22.2"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12_1.L3(4)", "6.L3(4)",   "6.L3(4).2_2",   "12_1.L3(4).2_2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12_1.U4(3)", "6_1.U4(3)", "6_1.U4(3).2_2", "12_1.U4(3).2_2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "12_2.U4(3)", "6_2.U4(3)", "6_2.U4(3).2_3", "12_2.U4(3).2_3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">] );</span>
</pre></div>

<p>Finally, there are alternative constructions for the cases where the group <span class="SimpleMath">M.G</span> has a central subgroup of the type <span class="SimpleMath">2^2 × 3</span>, and <span class="SimpleMath">A</span> acts on this group by inverting the elements in the subgroup of order <span class="SimpleMath">3</span> and by swapping two involutions in the Klein four group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( listMGA2, [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "(2^2x3).L3(4)",  "6.L3(4)",   "6.L3(4).2_2", "(2^2x3).L3(4).2_2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "(2^2x3).L3(4)",  "6.L3(4)",   "6.L3(4).2_3", "(2^2x3).L3(4).2_3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "(2^2x3).U6(2)",  "6.U6(2)",   "6.U6(2).2",   "(2^2x3).U6(2).2"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "(2^2x3).2E6(2)", "6.2E6(2)",  "6.2E6(2).2",  "(2^2x3).2E6(2).2"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">] );</span>
</pre></div>

<p>Now we run the constructions for the cases in the list.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for  input in listMGA2 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblMG := CharacterTable( input[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblG  := CharacterTable( input[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblGA := CharacterTable( input[3] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     name  := Concatenation( "new", input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib   := CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if Length( poss ) = 2 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       iso:= CharacterTableIsoclinic( poss[1].table );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if IsRecord( TransformingPermutationsCharacterTables( poss[2].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                        iso ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Unbind( poss[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     elif Length( poss ) = 1 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  unique up to permutation equivalence: ", name, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if 1 &lt;&gt; Length( poss ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  ", Length( poss ), " possibilities for ", name, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     elif lib = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  no library table for ", input[4], "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       ConstructModularMGATables( tblMG, tblGA, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#E  2 possibilities for new4_1.L3(4).2_1
#E  2 possibilities for new4_1.L3(4).2_2
#E  2 possibilities for new4_2.L3(4).2_1
#E  2 possibilities for new4.M22.2
#E  2 possibilities for new4.U4(3).2_2
#E  2 possibilities for new4.U4(3).2_3
#I  unique up to permutation equivalence: new2^2.L3(4).2_2
#I  unique up to permutation equivalence: new2^2.L3(4).2_3
#I  unique up to permutation equivalence: new2^2.L3(4).2^2
#I  unique up to permutation equivalence: new2^2.O8+(2).2
#I  unique up to permutation equivalence: new2^2.U6(2).2
#I  unique up to permutation equivalence: new2^2.2E6(2).2
#I  not all input tables for 2^2.2E6(2).2 mod 2 available
#I  not all input tables for 2^2.2E6(2).2 mod 3 available
#I  not all input tables for 2^2.2E6(2).2 mod 5 available
#I  not all input tables for 2^2.2E6(2).2 mod 7 available
#E  2 possibilities for new12_1.L3(4).2_1
#E  2 possibilities for new12_2.L3(4).2_1
#E  2 possibilities for new12.M22.2
#E  2 possibilities for new12_1.L3(4).2_2
#E  2 possibilities for new12_1.U4(3).2_2
#E  2 possibilities for new12_2.U4(3).2_3
#I  unique up to permutation equivalence: new(2^2x3).L3(4).2_2
#I  unique up to permutation equivalence: new(2^2x3).L3(4).2_3
#I  unique up to permutation equivalence: new(2^2x3).U6(2).2
#I  unique up to permutation equivalence: new(2^2x3).2E6(2).2
#I  not all input tables for (2^2x3).2E6(2).2 mod 2 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 3 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 5 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 7 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 11 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 13 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 17 available
#I  not all input tables for (2^2x3).2E6(2).2 mod 19 available
</pre></div>

<p>Again, we do not get any unexpected output, so the character tables in question are determined up to isoclinism by the inputs.</p>

<p><a id="X794EC2FD7F69B4E6" name="X794EC2FD7F69B4E6"></a></p>

<h5>2.4-5 <span class="Heading">The Character Tables of <span class="SimpleMath">4_2.L_3(4).2_3</span> and <span class="SimpleMath">12_2.L_3(4).2_3</span></span></h5>

<p>In the construction of the character table of <span class="SimpleMath">M.G.A = 4_2.L_3(4).2_3</span> from the tables of <span class="SimpleMath">M.G = 4_2.L_3(4)</span> and <span class="SimpleMath">G.A = 2.L_3(4).2_3</span>, the action of <span class="SimpleMath">A</span> on the classes of <span class="SimpleMath">M.G</span> is uniquely determined, but we get four possible character tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG := CharacterTable( "4_2.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG  := CharacterTable( "2.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA := CharacterTable( "2.L3(4).2_3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">name  := "new4_2.L3(4).2_3";;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib   := CharacterTable( "4_2.L3(4).2_3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss  := ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );</span>
#E  4 possibilities for new4_2.L3(4).2_3
[ rec( 
      MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12, 
          12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22, 
          21, 20 ], table := CharacterTable( "new4_2.L3(4).2_3" ) ), 
  rec( 
      MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12, 
          12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22, 
          21, 20 ], table := CharacterTable( "new4_2.L3(4).2_3" ) ), 
  rec( 
      MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12, 
          12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22, 
          21, 20 ], table := CharacterTable( "new4_2.L3(4).2_3" ) ), 
  rec( 
      MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12, 
          12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22, 
          21, 20 ], table := CharacterTable( "new4_2.L3(4).2_3" ) ) ]
</pre></div>

<p>The centre of <span class="SimpleMath">4_2.L_3(4)</span> is inverted by the action of the outer automorphism, so the existence of <em>two</em> possible tables can be expected because two isoclinic groups of the type <span class="SimpleMath">4_2.L_3(4).2_3</span> exist, see Section <a href="chap2.html#X78F41D2A78E70BEE"><span class="RefLink">2.2-6</span></a>.</p>

<p>Indeed the result consists of two pairs of isoclinic tables, so we have to decide which pair of tables belongs to the groups of the type <span class="SimpleMath">4_2.L_3(4).2_3</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTableIsoclinic( poss[4].table ) ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[2].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTableIsoclinic( poss[3].table ) ) );</span>
true
</pre></div>

<p>The possible tables differ only w.r.t. the <span class="SimpleMath">2</span>-power map and perhaps the element orders. The <strong class="pkg">Atlas</strong> prints the table of the split extension of <span class="SimpleMath">M.G</span>, this table is one of the first two possibilities.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( poss, x -&gt; PowerMap( x.table, 2 ) );</span>
[ [ 1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19, 
      21, 19, 21, 1, 1, 6, 6, 9, 9, 11, 11, 16, 16, 13, 13 ], 
  [ 1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19, 
      21, 19, 21, 1, 1, 6, 6, 11, 11, 9, 9, 16, 16, 13, 13 ], 
  [ 1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19, 
      21, 19, 21, 3, 3, 8, 8, 9, 9, 11, 11, 18, 18, 15, 15 ], 
  [ 1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19, 
      21, 19, 21, 3, 3, 8, 8, 11, 11, 9, 9, 18, 18, 15, 15 ] ]
</pre></div>

<p>The <span class="SimpleMath">2</span>-power map is not determined by the irreducible characters (and by the <span class="SimpleMath">2</span>-power map of the factor group <span class="SimpleMath">2.L_3(4).2_3</span>). We determine this map using the embedding of <span class="SimpleMath">4_2.L_3(4).2_3</span> into <span class="SimpleMath">4.U_4(3).2_3</span>. Note that <span class="SimpleMath">L_3(4).2_3</span> is a maximal subgroup of <span class="SimpleMath">U_4(3).2_3</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 52]</a>), and that the subgroup <span class="SimpleMath">L_3(4)</span> of <span class="SimpleMath">U_4(3)</span> lifts to <span class="SimpleMath">4_2.L_3(4)</span> in <span class="SimpleMath">4.U_4(3)</span> because no embedding of <span class="SimpleMath">L_3(4)</span>, <span class="SimpleMath">2.L_3(4)</span>, or <span class="SimpleMath">4_1.L_3(4)</span> into <span class="SimpleMath">4.U_4(3)</span> is possible.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossiblePowerMaps( poss[1].table, 2 );</span>
[ [ 1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19, 
      21, 19, 21, 1, 1, 6, 6, 11, 11, 9, 9, 16, 16, 13, 13 ], 
  [ 1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19, 
      21, 19, 21, 1, 1, 6, 6, 9, 9, 11, 11, 16, 16, 13, 13 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "4.U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ "L3(4)", "2.L3(4)", "4_1.L3(4)", "4_2.L3(4)" ], name -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Length( PossibleClassFusions( CharacterTable( name ), t ) ) );</span>
[ 0, 0, 0, 4 ]
</pre></div>

<p>So the split extension <span class="SimpleMath">4_2.L_3(4).2_3</span> of <span class="SimpleMath">4_2.L_3(4)</span> is a subgroup of the split extension <span class="SimpleMath">4.U_4(3).2_3</span> of <span class="SimpleMath">4.U_4(3)</span>, and only one of the two possible tables of <span class="SimpleMath">4_2.L_3(4).2_3</span> admits a class fusion into the <strong class="pkg">Atlas</strong> table of <span class="SimpleMath">4.U_3(4).2_3</span>; the construction of the latter table is shown in Section <a href="chap2.html#X7ED45AB379093A70"><span class="RefLink">2.4-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "4.U4(3).2_3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( poss, x -&gt; Length( PossibleClassFusions( x.table, t2 ) ) );</span>
[ 0, 16, 0, 0 ]
</pre></div>

<p>I do not know a character theoretic argument that would disprove the existence of a group whose character table is the other candidate (or its isoclinic variant). For example, the table passes the tests from Section <a href="chap2.html#X7E0C603880157C4E"><span class="RefLink">2.4-17</span></a>.</p>

<p>(It is straightforward to compute all extensions of <span class="SimpleMath">4_2.L_3(4)</span> by an automorphism of order two. The extensions with <span class="SimpleMath">34</span> conjugacy classes belong to the second candidate and its isoclinic variant.)</p>

<p>The correct table is the one that is contained in the <strong class="pkg">GAP</strong> Character Table Library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[2].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 lib ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstructModularMGATables( tblMG, tblGA, lib );;</span>
</pre></div>

<p>In the construction of the character table of <span class="SimpleMath">12_2.L_3(4).2_3</span>, the same ambiguity arises. We resolve it using the fact that <span class="SimpleMath">4_2.L_3(4).2_3</span> occurs as a factor group, modulo the unique normal subgroup of order three.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG := CharacterTable( "12_2.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG  := CharacterTable( "6.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA := CharacterTable( "6.L3(4).2_3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">name  := "new12_2.L3(4).2_3";;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib   := CharacterTable( "12_2.L3(4).2_3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss  := ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );;</span>
#E  4 possibilities for new12_2.L3(4).2_3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= ClassPositionsOfNormalSubgroups( poss[1].table );</span>
[ [ 1 ], [ 1, 5 ], [ 1, 7 ], [ 1, 4 .. 7 ], [ 1, 3 .. 7 ], 
  [ 1 .. 7 ], [ 1 .. 50 ], [ 1 .. 62 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( nsg, x -&gt; Sum( SizesConjugacyClasses( poss[1].table ){ x } ) );</span>
[ 1, 3, 2, 4, 6, 12, 241920, 483840 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">factlib:= CharacterTable( "4_2.L3(4).2_3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( poss, x -&gt; IsRecord( TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                        x.table / [ 1, 5 ], factlib ) ) );</span>
[ false, true, false, false ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[2].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 lib ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstructModularMGATables( tblMG, tblGA, lib );;</span>
</pre></div>

<p><a id="X7E3E748E85AEDDB3" name="X7E3E748E85AEDDB3"></a></p>

<h5>2.4-6 <span class="Heading">The Character Tables of <span class="SimpleMath">12_1.U_4(3).2_2'</span> and
<span class="SimpleMath">12_2.U_4(3).2_3'</span> (December 2015)</span></h5>

<p>In the construction of the character table of <span class="SimpleMath">M.G.A = 12_1.U_4(3).2_2'</span> from the tables of <span class="SimpleMath">M.G = 12_1.U_4(3)</span> and <span class="SimpleMath">G.A = 2.U_4(3).2_2'</span>, the action of <span class="SimpleMath">A</span> on the classes of <span class="SimpleMath">M.G</span> is uniquely determined, but we get two possible character tables.</p>

<p>(Note that the groups <span class="SimpleMath">2.U_4(3).2_2</span> and <span class="SimpleMath">2.U_4(3).2_2'</span> are isomorphic, but we have to take the latter one because the stored factor fusion from <span class="SimpleMath">12_1.U_4(3)</span> to <span class="SimpleMath">2.U_4(3)</span> must be combined with the class fusion from <span class="SimpleMath">2.U_4(3)</span> to <span class="SimpleMath">2.U_4(3).2_2'</span>; using the library table of <span class="SimpleMath">2.U_4(3).2_2</span> would be technically more involved.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG := CharacterTable( "12_1.U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG  := CharacterTable( "2.U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA := CharacterTable( "2.U4(3).2_2'" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">name  := "new12_1.U4(3).2_2'";;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib   := CharacterTable( "12_1.U4(3).2_2'" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss  := ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );;</span>
#E  2 possibilities for new12_1.U4(3).2_2'
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstructModularMGATables( tblMG, tblGA, lib );;</span>
</pre></div>

<p>This is not surprising, the two tables involve the two isoclinic variants of <span class="SimpleMath">4.U_4(3).2_2'</span> (which is isomorphic with <span class="SimpleMath">4.U_4(3).2_2</span>) as tables of factor groups. The irreducible characters of the two tables are equal, only the <span class="SimpleMath">2</span>-power map and the element orders are different.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Irr( poss[1].table ) = Irr( poss[2].table );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= CharacterTableIsoclinic( poss[1].table );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( iso, poss[2].table );</span>
rec( columns := (), group := &lt;permutation group with 5 generators&gt;, 
  rows := () )
</pre></div>

<p>The same phenomenon occurs in the construction of the character table of <span class="SimpleMath">M.G.A = 12_2.U_4(3).2_3'</span> from the tables of <span class="SimpleMath">M.G = 12_2.U_4(3)</span> and <span class="SimpleMath">G.A = 2.U_4(3).2_3'</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG := CharacterTable( "12_2.U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG  := CharacterTable( "2.U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA := CharacterTable( "2.U4(3).2_3'" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">name  := "new12_2.U4(3).2_3'";;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib   := CharacterTable( "12_2.U4(3).2_3'" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss  := ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );;</span>
#E  2 possibilities for new12_2.U4(3).2_3'
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstructModularMGATables( tblMG, tblGA, lib );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= CharacterTableIsoclinic( poss[1].table );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( iso, poss[2].table );</span>
rec( columns := (), group := &lt;permutation group with 8 generators&gt;, 
  rows := () )
</pre></div>

<p><a id="X8379003582D06130" name="X8379003582D06130"></a></p>

<h5>2.4-7 <span class="Heading">Groups of the Structures <span class="SimpleMath">3.U_3(8).3_1</span> and <span class="SimpleMath">3.U_3(8).6</span>
(February 2017)</span></h5>

<p>The list of Improvements to the <strong class="pkg">Atlas</strong> of Finite Groups <a href="chapBib.html#biBBN95">[BN95]</a> states the following, concerning the group <span class="SimpleMath">G = U_3(8)</span>.</p>

<p>"There is a unique group of type <span class="SimpleMath">3.G.6</span> which contains the group of type <span class="SimpleMath">3.G.3</span> shown. But the (unique) groups of type <span class="SimpleMath">3.G.6'</span> and <span class="SimpleMath">3.G.6''</span> contain not this <span class="SimpleMath">3.G.3</span> but its <em>isoclines</em>."</p>

<p>In this section we will show that this statement is not correct, in the sense that the three isoclinic variants of groups of the structure <span class="SimpleMath">3.U_3(8).3_1</span> are in fact isomorphic.</p>

<p>As a consequence, there is a unique group of the structure <span class="SimpleMath">3.U_3(8).6</span>, up to isomorphism. Note that otherwise the strange situation of nonisomorphic groups <span class="SimpleMath">3.G.6</span>, <span class="SimpleMath">3.G.6'</span>, and <span class="SimpleMath">3.G.6''</span> would happen, which would be also not isoclinic because their centres are trivial.</p>

<p>A group of the structure <span class="SimpleMath">3.U_3(8).3_1</span> can be obtained as the semidirect product <span class="SimpleMath">G</span>, say, of the group SU<span class="SimpleMath">(3,8)</span> with the automorphism of the field with <span class="SimpleMath">64</span> elements that raises each field element to its fourth power. Note that the semidirect product of SU<span class="SimpleMath">(3,8)</span> with the field automorphism that squares each field element yields a group of the structure <span class="SimpleMath">3.U_3(8).6</span>.</p>

<p>First we create a permutation representation of <span class="SimpleMath">G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= SU(3,8);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= GeneratorsOfGroup( s );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">imgs1:= List( gens, m -&gt; List( m, v -&gt; List( v, x -&gt; x^4 ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">imgs2:= List( gens, m -&gt; List( m, v -&gt; List( v, x -&gt; x^16 ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:= GF(64);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats:= List( gens, m -&gt; IdentityMat( 9, f ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [ 1 .. Length( gens ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     mats[i]{ [ 1 .. 3 ] }{ [ 1 .. 3 ] }:= gens[i];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     mats[i]{ [ 4 .. 6 ] }{ [ 4 .. 6 ] }:= imgs1[i];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     mats[i]{ [ 7 .. 9 ] }{ [ 7 .. 9 ] }:= imgs2[i];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fieldaut:= NullMat( 9, 9, f );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fieldaut{ [ 4 .. 6 ] }{ [ 1 .. 3 ] }:= IdentityMat( 3, f );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fieldaut{ [ 7 .. 9 ] }{ [ 4 .. 6 ] }:= IdentityMat( 3, f );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fieldaut{ [ 1 .. 3 ] }{ [ 7 .. 9 ] }:= IdentityMat( 3, f );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v:= [ 1, 0, 0, 1, 0, 0, 1, 0, 0 ] * One( f );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Group( Concatenation( mats, [ fieldaut ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= Orbit( g, v );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( orb );</span>
32319
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">act:= Action( g, orb );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( act ) = 3 * Size( s );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sm:= SmallerDegreePermutationRepresentation( act );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints( Image( sm ) );</span>
4617
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Image( sm );;</span>
</pre></div>

<p>The next step is the construction of the central product of <span class="SimpleMath">G</span> and a cyclic group of order nine, of the structure <span class="SimpleMath">3.(3 × U_3(8).3_1)</span>. We could try to create the factor group of <span class="SimpleMath">9 × 3.U_3(8).3_1</span> modulo a diagonal subgroup of order three, by just applying the <code class="code">/</code> operation. Since <strong class="pkg">GAP</strong> would need too much time for that, and since we know better in which situation we are, we create the desired action directly on suitable sets on pairs.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c:= CyclicGroup( IsPermGroup, 9 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dp:= DirectProduct( g, c );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">u:= Image( Embedding( dp, 1 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c:= Image( Embedding( dp, 2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c3:= c.1^3;</span>
(4618,4621,4624)(4619,4622,4625)(4620,4623,4626)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">z:= Centre( u );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( z );  Length( GeneratorsOfGroup( z ) );</span>
3
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">diag:= Subgroup( dp, [ c3 * z.1 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= Orbit( dp, [ 1, 4618 ], OnPairs );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( orb );</span>
41553
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= Set( orb );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= List( OrbitsDomain( diag, orb, OnSets ), Set );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( orbs );</span>
13851
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cp:= Action( dp, orbs, OnSetsSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( cp );</span>
148925952
</pre></div>

<p>The three isoclinic variants of the structure <span class="SimpleMath">3.U_3(8).3_1</span> appear as subgroups of index three in this central product. (The fourth subgroup of index three is of course a central product of the structure <span class="SimpleMath">3.(3 × U_3(8))</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der:= DerivedSubgroup( cp );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Index( cp, der );</span>
9
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inter:= IntermediateSubgroups( cp, der ).subgroups;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">z:= Centre( cp );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( z );</span>
9
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inter:= Filtered( inter, x -&gt; not IsSubset( x, z ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( inter, Size );</span>
[ 49641984, 49641984, 49641984 ]
</pre></div>

<p>Finally, we check that the three groups are isomorphic.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsomorphismGroups( inter[1], inter[2] ) &lt;&gt; fail;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsomorphismGroups( inter[1], inter[3] ) &lt;&gt; fail;</span>
true
</pre></div>

<p><em>Remark:</em></p>

<p>An indication that the groups might be isomorphic is the fact that their character tables are equivalent, which can be shown much easier, as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t1:= CharacterTable( "3.U3(8).3_1" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTableIsoclinic( t1, rec( k:= 1 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t3:= CharacterTableIsoclinic( t1, rec( k:= 2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( t1, t2 ) &lt;&gt; fail;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( t1, t3 ) &lt;&gt; fail;</span>
true
</pre></div>

<p><a id="X7B46C77B850D3B4D" name="X7B46C77B850D3B4D"></a></p>

<h5>2.4-8 <span class="Heading">The Character Table of <span class="SimpleMath">(2^2 × F_4(2)):2 &lt; B</span>
(March 2003)</span></h5>

<p>The sporadic simple group <span class="SimpleMath">B</span> contains a maximal subgroup <span class="SimpleMath">overlineN</span> of the type <span class="SimpleMath">(2^2 × F_4(2)):2</span>, which is the normalizer of a <code class="code">2C</code> element <span class="SimpleMath">overlinex</span> in <span class="SimpleMath">B</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 217]</a>).</p>

<p>We will see below that the normal Klein four group <span class="SimpleMath">V</span> in <span class="SimpleMath">overlineN</span> contains two <code class="code">2A</code> elements in <span class="SimpleMath">B</span>. The <code class="code">2A</code> centralizer in <span class="SimpleMath">B</span>, a group of the structure <span class="SimpleMath">2.^2E_6(2).2</span>, contains maximal subgroups of the type <span class="SimpleMath">2^2 × F_4(2)</span>. So the two <code class="code">2A</code> type subgroups <span class="SimpleMath">C_1</span>, <span class="SimpleMath">C_2</span> in <span class="SimpleMath">V</span> are conjugate in <span class="SimpleMath">overlineN</span>, and <span class="SimpleMath">Z = ⟨ x ⟩</span> is the centre of <span class="SimpleMath">overlineN</span>.</p>

<p><center> <img src="ctblcons11.png" alt="The structure of (2^2 x F_4(2)):2)"/> </center></p>

<p>We start with computing the class fusion of the <span class="SimpleMath">2^2 × F_4(2)</span> type subgroup <span class="SimpleMath">U</span> of <span class="SimpleMath">overlineN</span> into <span class="SimpleMath">B</span>; in order to speed this up, we first compute the class fusion of the <span class="SimpleMath">F_4(2)</span> subgroup of <span class="SimpleMath">U</span> into <span class="SimpleMath">B</span> (which is unique), and use it and the stored embedding into <span class="SimpleMath">U</span> for prescribing an approximation of the desired class fusion. Additionally, we prescribe (without loss of generality) that the <em>first</em> involution class in <span class="SimpleMath">V</span> is mapped to the class <code class="code">2C</code> of <span class="SimpleMath">B</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f42:= CharacterTable( "F4(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v4:= CharacterTable( "2^2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dp:= v4 * f42;</span>
CharacterTable( "V4xF4(2)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f42fusb:= PossibleClassFusions( f42, b );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( f42fusb );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f42fusdp:= GetFusionMap( f42, dp );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">comp:= CompositionMaps( f42fusb[1], InverseMap( f42fusdp ) );</span>
[ 1, 3, 3, 3, 5, 6, 6, 7, 9, 9, 9, 9, 14, 14, 13, 13, 10, 14, 14, 12, 
  14, 17, 15, 18, 22, 22, 22, 22, 26, 26, 22, 22, 27, 27, 28, 31, 31, 
  39, 39, 36, 36, 33, 33, 39, 39, 35, 41, 42, 47, 47, 49, 49, 49, 58, 
  58, 56, 56, 66, 66, 66, 66, 58, 58, 66, 66, 69, 69, 60, 72, 72, 75, 
  79, 79, 81, 81, 85, 86, 83, 83, 91, 91, 94, 94, 104, 104, 109, 109, 
  116, 116, 114, 114, 132, 132, 140, 140 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v4fusdp:= GetFusionMap( v4, dp );</span>
[ 1, 96 .. 286 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">comp[ v4fusdp[2] ]:= 4;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dpfusb:= PossibleClassFusions( dp, b, rec( fusionmap:= comp ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( dpfusb );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Set( dpfusb, x -&gt; x{ v4fusdp } );</span>
[ [ 1, 4, 2, 2 ] ]
</pre></div>

<p>As announced above, we see that <span class="SimpleMath">V</span> contains two <code class="code">2A</code> involutions.</p>

<p>Set <span class="SimpleMath">G = U / Z</span>, <span class="SimpleMath">M.G = U</span>, and <span class="SimpleMath">G.A = overlineN / Z</span>. The latter group is the direct product of <span class="SimpleMath">F_4(2).2</span> and a cyclic group of order <span class="SimpleMath">2</span>. Next we compute the class fusion from <span class="SimpleMath">G</span> into <span class="SimpleMath">G.A</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= dp / v4fusdp{ [ 1, 2 ] };;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG:= dp;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA:= c2 * CharacterTable( "F4(2).2" );</span>
CharacterTable( "C2xF4(2).2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GfusGA:= PossibleClassFusions( tblG, tblGA );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( GfusGA );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesFusions( tblG, GfusGA, tblGA ) );</span>
1
</pre></div>

<p>In principle, we have to be careful which of these equivalent maps we choose, since the underlying symmetries may be broken in the central extension <span class="SimpleMath">M.G → G</span>, for which we choose the default factor fusion.</p>

<p>However, in this situation the fusion <span class="SimpleMath">G</span> into <span class="SimpleMath">G.A</span> is unique already up to table automorphisms of the table of <span class="SimpleMath">G.A</span>, so we are free to choose one map.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesFusions( Group( () ), GfusGA, tblGA ) );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblG, GfusGA[1], tblGA );</span>
</pre></div>

<p>The tables involved determine the character table of <span class="SimpleMath">M.G.A ≅ overlineN</span> uniquely.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( elms );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, elms[1],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              "(2^2xF4(2)):2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMGA:= poss[1].table;;</span>
</pre></div>

<p>Finally, we compare the table we constructed with the one that is contained in the <strong class="pkg">GAP</strong> Character Table Library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tblMGA,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( "(2^2xF4(2)):2" ) ) );</span>
true
</pre></div>

<p><a id="X8254AA4A843F99BE" name="X8254AA4A843F99BE"></a></p>

<h5>2.4-9 <span class="Heading">The Character Table of <span class="SimpleMath">2.(S_3 × Fi_22.2) &lt; 2.B</span> (March 2003)</span></h5>

<p>The sporadic simple group <span class="SimpleMath">B</span> contains a maximal subgroup <span class="SimpleMath">overlineM</span> of type <span class="SimpleMath">S_3 × Fi_22.2</span>. In order to compute the character table of its preimage <span class="SimpleMath">M</span> in the Schur cover <span class="SimpleMath">2.B</span>, we first analyse the structure of <span class="SimpleMath">M</span> and then describe the construction of the character table from known character tables.</p>

<p>Let <span class="SimpleMath">Z</span> denote the centre of <span class="SimpleMath">2.B</span>. We start with <span class="SimpleMath">overlineM = M/Z</span>. Its class fusion into <span class="SimpleMath">B</span> is uniquely determined by the character tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s3:= CharacterTable( "Dihedral", 6 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fi222:= CharacterTable( "Fi22.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMbar:= s3 * fi222;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Mbarfusb:= PossibleClassFusions( tblMbar, b );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( Mbarfusb );</span>
1
</pre></div>

<p>The subgroup of type <span class="SimpleMath">Fi_22</span> lifts to the double cover <span class="SimpleMath">2.Fi_22</span> (that is, a group that is <em>not</em> a direct product <span class="SimpleMath">2 × Fi_22</span>) in <span class="SimpleMath">2.B</span> since <span class="SimpleMath">2.B</span> admits no class fusion from <span class="SimpleMath">Fi_22</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2b:= CharacterTable( "2.B" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossibleClassFusions( CharacterTable( "Fi22" ), 2b );</span>
[  ]
</pre></div>

<p>So the preimage of <span class="SimpleMath">Fi_22.2</span> is one of the two nonisomorphic but isoclinic groups of type <span class="SimpleMath">2.Fi_22.2</span>, and we have to decide which one really occurs. For that, we consider the subgroup of type <span class="SimpleMath">3 × Fi_22.2</span> in <span class="SimpleMath">B</span>, which is a <code class="code">3A</code> centralizer in <span class="SimpleMath">B</span>. Its preimage has the structure <span class="SimpleMath">3 × 2.Fi_22.2</span> because the preimage of the central group of order <span class="SimpleMath">3</span> is a cyclic group of order <span class="SimpleMath">6</span> and thus contains a normal complement of the <span class="SimpleMath">2.Fi_22</span> type subgroup. And a class fusion into <span class="SimpleMath">2.B</span> is possible only from the direct product containing the <span class="SimpleMath">2.Fi_22.2</span> group that is printed in the <strong class="pkg">Atlas</strong>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c3:= CharacterTable( "Cyclic", 3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2fi222:= CharacterTable( "2.Fi22.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossibleClassFusions( c3 * CharacterTableIsoclinic( 2fi222 ), 2b );</span>
[  ]
</pre></div>

<p>Next we note that the involutions in the normal subgroup <span class="SimpleMath">overlineS</span> of type <span class="SimpleMath">S_3</span> in <span class="SimpleMath">overlineM</span> lift to involutions in <span class="SimpleMath">2.B</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s3inMbar:= GetFusionMap( s3, tblMbar );</span>
[ 1, 113 .. 225 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s3inb:= Mbarfusb[1]{ s3inMbar };</span>
[ 1, 6, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2bfusb:= GetFusionMap( 2b, b );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2s3in2B:= InverseMap( 2bfusb ){ s3inb };</span>
[ [ 1, 2 ], [ 8, 9 ], 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CompositionMaps( OrdersClassRepresentatives( 2b ), 2s3in2B );</span>
[ [ 1, 2 ], [ 3, 6 ], 2 ]
</pre></div>

<p>Thus the preimage <span class="SimpleMath">S</span> of <span class="SimpleMath">overlineS</span> contains elements of order <span class="SimpleMath">6</span> but no elements of order <span class="SimpleMath">4</span>, which implies that <span class="SimpleMath">S</span> is a direct product <span class="SimpleMath">2 × S_3</span>.</p>

<p>The two complements <span class="SimpleMath">C_1</span>, <span class="SimpleMath">C_2</span> of <span class="SimpleMath">Z</span> in <span class="SimpleMath">S</span> are normal in the preimage <span class="SimpleMath">N</span> of <span class="SimpleMath">overlineN = S_3 × Fi_22</span>, which is thus of type <span class="SimpleMath">S_3 × 2.Fi_22</span>. However, they are conjugate under the action of <span class="SimpleMath">2.Fi_22.2</span>, as no class fusion from <span class="SimpleMath">S_3 × 2.Fi_22.2</span> into <span class="SimpleMath">2.B</span> is possible.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossibleClassFusions( s3 * 2fi222, 2b );</span>
[  ]
</pre></div>

<p>(More specifically, the classes of element order <span class="SimpleMath">36</span> in <span class="SimpleMath">2.Fi_22.2</span> have centralizer orders <span class="SimpleMath">36</span> and <span class="SimpleMath">72</span>, so their centralizer orders in <span class="SimpleMath">S_3 × 2.Fi_22.2</span> are <span class="SimpleMath">216</span> and <span class="SimpleMath">432</span>; but the centralizers of order <span class="SimpleMath">36</span> elements in <span class="SimpleMath">2.B</span> have centralizer order at most <span class="SimpleMath">216</span>.)</p>

<p>Now let us see how the character table of <span class="SimpleMath">M</span> can be constructed.</p>

<p>Let <span class="SimpleMath">Y</span> denote the normal subgroup of order <span class="SimpleMath">3</span> in <span class="SimpleMath">M</span>, and <span class="SimpleMath">U</span> its centralizer in <span class="SimpleMath">M</span>, which has index <span class="SimpleMath">2</span> in <span class="SimpleMath">M</span>. Then the character table of <span class="SimpleMath">M</span> is determined by the tables of <span class="SimpleMath">M/Y</span>, <span class="SimpleMath">U</span>, <span class="SimpleMath">U/Y ≅ 2.Fi_22.2</span>, and the action of <span class="SimpleMath">M</span> on the classes of <span class="SimpleMath">U</span>.</p>

<p>As for <span class="SimpleMath">M/Y</span>, consider the normal subgroup <span class="SimpleMath">N = N_M(C_1)</span> of index <span class="SimpleMath">2</span> in <span class="SimpleMath">M</span>. In particular, <span class="SimpleMath">S/Y</span> is central in <span class="SimpleMath">N/Y</span> but not in <span class="SimpleMath">M/Y</span>, so the character table of <span class="SimpleMath">M/Y</span> is determined by the tables of <span class="SimpleMath">M/(YZ)</span>, <span class="SimpleMath">N/Y ≅ 2 × 2.Fi_22</span>, <span class="SimpleMath">N/(YZ) ≅ 2 × Fi_22</span>, and the action of <span class="SimpleMath">M/Y</span> on the classes of <span class="SimpleMath">N/Y</span>.</p>

<p>Thus we proceed in two steps, starting with the computation of the character table of <span class="SimpleMath">M/Y</span>, for which we choose the name according to the structure <span class="SimpleMath">2^2.Fi_22.2</span>.</p>

<p><center> <img src="ctblcons12.png" alt="The structure of 2.(S_3 x Fi_22.2)"/> </center></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2fi22:= CharacterTable( "2.Fi22" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblNmodY:= c2 * 2fi22;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">centre:= GetFusionMap( 2fi22, tblNmodY ){</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                ClassPositionsOfCentre( 2fi22 ) };</span>
[ 1, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblNmod6:= tblNmodY / centre;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMmod6:= c2 * fi222;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( tblNmod6, tblMmod6 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( fus );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblNmod6, fus[1], tblMmod6 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblNmodY, tblNmod6, tblMmod6 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( elms );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeMGA( tblNmodY, tblNmod6, tblMmod6,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              elms[1], "2^2.Fi22.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMmodY:= poss[1].table;</span>
CharacterTable( "2^2.Fi22.2" )
</pre></div>

<p>So we found a unique solution for the character table of <span class="SimpleMath">M/Y</span>. Now we compute the table of <span class="SimpleMath">M</span>. For that, we have to specify the class fusion of <span class="SimpleMath">U/Y</span> into <span class="SimpleMath">M/Y</span>; it is unique up to table automorphisms of <span class="SimpleMath">M/Y</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblU:= c3 * 2fi222;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblUmodY:= tblU / GetFusionMap( c3, tblU );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( tblUmodY, tblMmodY );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesFusions( Group( () ), fus, tblMmodY ) );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblUmodY, fus[1], tblMmodY );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblU, tblUmodY, tblMmodY );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( elms );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeMGA( tblU, tblUmodY, tblMmodY,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              elms[1], "(S3x2.Fi22).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblM:= poss[1].table;</span>
CharacterTable( "(S3x2.Fi22).2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mfus2b:= PossibleClassFusions( tblM, 2b );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesFusions( tblM, mfus2b, 2b ) );</span>
1
</pre></div>

<p>We did not construct <span class="SimpleMath">M</span> as a central extension of <span class="SimpleMath">overlineM</span>, so we verify that the tables fit together; note that this way we get also the class fusion from <span class="SimpleMath">M</span> onto <span class="SimpleMath">overlineM</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Irr( tblM / ClassPositionsOfCentre( tblM ) ) = Irr( tblMbar );</span>
true
</pre></div>

<p>Finally, we compare the table we constructed with the one that is contained in the <strong class="pkg">GAP</strong> Character Table Library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tblM,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( "(S3x2.Fi22).2" ) ) );</span>
true
</pre></div>

<p><a id="X7AF125168239D208" name="X7AF125168239D208"></a></p>

<h5>2.4-10 <span class="Heading">The Character Table of <span class="SimpleMath">(2 × 2.Fi_22):2 &lt; Fi_24</span> (November 2008)</span></h5>

<p>The automorphism group <span class="SimpleMath">Fi_24</span> of the sporadic simple group <span class="SimpleMath">Fi_24^'</span> contains a maximal subgroup <span class="SimpleMath">N</span> of the type <span class="SimpleMath">(2 × 2.Fi_22):2</span>, whose intersection with <span class="SimpleMath">Fi_24^'</span> is <span class="SimpleMath">2.Fi_22.2</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 207]</a>).</p>

<p>The normal Klein four group <span class="SimpleMath">V</span> in <span class="SimpleMath">N</span> contains two <code class="code">2C</code> elements in <span class="SimpleMath">Fi_24</span>, because the <code class="code">2C</code> centralizer in <span class="SimpleMath">Fi_24</span>, a group of the structure <span class="SimpleMath">2 × Fi_23</span>, contains maximal subgroups of the type <span class="SimpleMath">2 × 2.Fi_22</span>, and so the two <code class="code">2C</code> type subgroups <span class="SimpleMath">C_1</span>, <span class="SimpleMath">C_2</span> in <span class="SimpleMath">V</span> are conjugate in <span class="SimpleMath">N</span>, and <span class="SimpleMath">Z = Z(N)</span> is the centre of <span class="SimpleMath">N ∩ Fi_24^'</span>.</p>

<p><center> <img src="ctblcons13.png" alt="The structure of (2 x 2.Fi_22):2"/> </center></p>

<p>With <span class="SimpleMath">U = C_N(C_1)</span>, a group of the type <span class="SimpleMath">2 × 2.Fi_22</span>, we set <span class="SimpleMath">G = U / Z</span>, <span class="SimpleMath">M.G = U</span>, and <span class="SimpleMath">G.A = N / Z</span>. The latter group is the direct product of <span class="SimpleMath">Fi_22.2</span> and a cyclic group of order <span class="SimpleMath">2</span>.</p>

<p>This is exactly the situation of the construction of the character table of the group that is called <span class="SimpleMath">2^2.Fi_22.2</span> in Section <a href="chap2.html#X8254AA4A843F99BE"><span class="RefLink">2.4-9</span></a>, where this group occurs as "<span class="SimpleMath">M/Y</span>". Since the character table is uniquely determined by the input data, it is the table we are interested in here.</p>

<p>So all we have to do is to compute the class fusion from this table into that of <span class="SimpleMath">Fi_24</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fi24:= CharacterTable( "Fi24" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "2^2.Fi22.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( t, fi24 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( fus );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesFusions( t, fus, fi24 ) );</span>
1
</pre></div>

<p>(It should be noted that we did not need the character table of the <span class="SimpleMath">2.Fi_22.2</span> type subgroup of <span class="SimpleMath">N</span> in the above construction, only the tables of <span class="SimpleMath">2.Fi_22</span> and <span class="SimpleMath">Fi_22.2</span> were used.)</p>

<p>The fact that the character table of a factor of a subgroup of <span class="SimpleMath">2.B</span> occurs as the character table of a subgroup of <span class="SimpleMath">Fi_24</span> is not a coincidence. In fact, the groups <span class="SimpleMath">3.Fi_24</span> and <span class="SimpleMath">2.B</span> are subgroups of the Monster group <span class="SimpleMath">M</span>, and the subgroup <span class="SimpleMath">U = 2.(S_3 × Fi_22.2)</span> of <span class="SimpleMath">2.B</span> normalizes an element of order three. The full normalizer of this element in <span class="SimpleMath">M</span> is <span class="SimpleMath">3.Fi_24</span>, which means that we have established <span class="SimpleMath">U</span> as a (maximal) subgroup of <span class="SimpleMath">3.Fi_24</span>. Note that we have constructed the character table of <span class="SimpleMath">U</span> in Section <a href="chap2.html#X8254AA4A843F99BE"><span class="RefLink">2.4-9</span></a>.</p>

<p>Let us compute the class fusion of <span class="SimpleMath">U</span> into <span class="SimpleMath">3.Fi_24</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "(S3x2.Fi22).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3fi24:= CharacterTable( "3.Fi24" );;                        </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( t, 3fi24 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( fus );</span>
16
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesFusions( t, fus, 3fi24 ) );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( t, 3fi24 ) in fus; </span>
true
</pre></div>

<p>Moreover, <span class="SimpleMath">U</span> turns out to be the full normalizer of a <code class="code">6A</code> element in <span class="SimpleMath">M</span>,</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tfusm:= PossibleClassFusions( t, m );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( tfusm );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesFusions( t, tfusm, m ) );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = 6 );</span>
[ [ 1, 2, 142, 143 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Set( tfusm, x -&gt; x{ nsg[1] } );</span>
[ [ 1, 2, 4, 13 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( t ){ nsg[1] };</span>
[ 1, 2, 3, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerMap( m, -1 )[13];</span>
13
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( t ) = 2 * SizesCentralizers( m )[13];</span>
true
</pre></div>

<p>(Thus <span class="SimpleMath">U</span> is also the full normalizer of an element of order six in <span class="SimpleMath">2.B</span> and in <span class="SimpleMath">3.Fi_24</span>.)</p>

<p><a id="X79C93F7D87D9CF1D" name="X79C93F7D87D9CF1D"></a></p>

<h5>2.4-11 <span class="Heading">The Character Table of <span class="SimpleMath">S_3 × 2.U_4(3).2_2 ≤ 2.Fi_22</span> (September 2002)</span></h5>

<p>The sporadic simple Fischer group <span class="SimpleMath">Fi_22</span> contains a maximal subgroup <span class="SimpleMath">overlineM</span> of type <span class="SimpleMath">S_3 × U_4(3).2_2</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 163]</a>). We claim that the preimage <span class="SimpleMath">M</span> of <span class="SimpleMath">overlineM</span> in the central extension <span class="SimpleMath">2.Fi_22</span> has the structure <span class="SimpleMath">S_3 × 2.U_4(3).2_2</span>, where the factor of type <span class="SimpleMath">2.U_4(3).2_2</span> is the one printed in the <strong class="pkg">Atlas</strong>.</p>

<p>For that, we first note that the normal subgroup <span class="SimpleMath">overlineS</span> of type <span class="SimpleMath">S_3</span> in <span class="SimpleMath">overlineM</span> lifts to a group <span class="SimpleMath">S</span> which has the structure <span class="SimpleMath">2 × S_3</span>. This follows from the fact that all involutions in <span class="SimpleMath">Fi_22</span> lift to involutions in <span class="SimpleMath">2.Fi_22</span> or, equivalently, the central involution in <span class="SimpleMath">2.Fi_22</span> is not a square. <center> <img src="ctblcons14.png" alt="The structure of S_3 x 2.U_4(3).2_2"/> </center></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2Fi22:= CharacterTable( "2.Fi22" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassPositionsOfCentre( 2Fi22 );</span>
[ 1, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2 in PowerMap( 2Fi22, 2 );</span>
false
</pre></div>

<p>Second, the normal subgroup <span class="SimpleMath">overlineU ≅ U_4(3).2_2</span> of <span class="SimpleMath">Fi_22</span> lifts to a nonsplit extension <span class="SimpleMath">U</span> in <span class="SimpleMath">2.Fi_22</span>, since <span class="SimpleMath">2.Fi_22</span> contains no <span class="SimpleMath">U_4(3)</span> type subgroup. Furthermore, <span class="SimpleMath">U</span> is the <span class="SimpleMath">2.U_4(3).2_2</span> type group printed in the <strong class="pkg">Atlas</strong> because the isoclinic variant does not admit a class fusion into <span class="SimpleMath">2.Fi_22</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossibleClassFusions( CharacterTable( "U4(3)" ), 2Fi22 );</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblU:= CharacterTable( "2.U4(3).2_2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= CharacterTableIsoclinic( tblU );</span>
CharacterTable( "Isoclinic(2.U4(3).2_2)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossibleClassFusions( iso, 2Fi22 );                      </span>
[  ]
</pre></div>

<p>Now there are just two possibilities. Either the two <span class="SimpleMath">S_3</span> type subgroups in <span class="SimpleMath">S</span> are normal in <span class="SimpleMath">M</span> (and thus <span class="SimpleMath">M</span> is the direct product of any such <span class="SimpleMath">S_3</span> with the preimage of the <span class="SimpleMath">U_4(3).2_2</span> type subgroup), or they are conjugate in <span class="SimpleMath">M</span>.</p>

<p>Suppose we are in the latter situation, let <span class="SimpleMath">z</span> be a generator of the centre of <span class="SimpleMath">2.Fi_22</span>, and let <span class="SimpleMath">τ</span>, <span class="SimpleMath">σ</span> be an involution and an order three element respectively, in one of the <span class="SimpleMath">S_3</span> type subgroups.</p>

<p>Each element <span class="SimpleMath">g ∈ U ∖ U^'</span> conjugates <span class="SimpleMath">τ</span> to an involution in the other <span class="SimpleMath">S_3</span> type subgroup of <span class="SimpleMath">S</span>, so <span class="SimpleMath">g^-1 τ g = τ σ^i z</span> for some <span class="SimpleMath">i ∈ { 0, 1, 2 }</span>. Furthermore, it is possible to choose <span class="SimpleMath">g</span> as an involution.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">derpos:= ClassPositionsOfDerivedSubgroup( tblU );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">outer:= Difference( [ 1 .. NrConjugacyClasses( tblU ) ], derpos );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2 in OrdersClassRepresentatives( tblU ){ outer };</span>
true
</pre></div>

<p>With this choice, <span class="SimpleMath">(g τ)^2 = τ σ^i z τ = σ^-i z</span> holds, which means that <span class="SimpleMath">(g τ)^3</span> squares to <span class="SimpleMath">z</span>. As we have seen above, this is impossible, hence <span class="SimpleMath">M</span> is a direct product, as claimed.</p>

<p>The class fusion of <span class="SimpleMath">M</span> into <span class="SimpleMath">2.Fi_22</span> is determined by the character tables, up to table automorphisms.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblM:= CharacterTable( "Dihedral", 6 ) * tblU;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( tblM, 2Fi22 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesFusions( tblM, fus, 2Fi22 ) );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tblM,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( "2.Fi22M8" ) ) );</span>
true
</pre></div>

<p><a id="X83724BCE86FCD77B" name="X83724BCE86FCD77B"></a></p>

<h5>2.4-12 <span class="Heading">The Character Table of <span class="SimpleMath">4.HS.2 ≤ HN.2</span> (May 2002)</span></h5>

<p>The maximal subgroup <span class="SimpleMath">U</span> of type <span class="SimpleMath">2.HS.2</span> in the sporadic simple group <span class="SimpleMath">HN</span> extends to a group <span class="SimpleMath">N</span> of structure <span class="SimpleMath">4.HS.2</span> in the automorphism group <span class="SimpleMath">HN.2</span> of <span class="SimpleMath">HN</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 166]</a>).</p>

<p><span class="SimpleMath">N</span> is the normalizer of a <code class="code">4D</code> element <span class="SimpleMath">g ∈ HN.2 ∖ HN</span>. The centralizer <span class="SimpleMath">C</span> of <span class="SimpleMath">g</span> is of type <span class="SimpleMath">4.HS</span>, which is the central product of <span class="SimpleMath">2.HS</span> and the cyclic group <span class="SimpleMath">⟨ g ⟩</span> of order <span class="SimpleMath">4</span>. We have <span class="SimpleMath">Z = Z(N) = ⟨ g^2 ⟩</span>. Since <span class="SimpleMath">U/Z ≅ HS.2</span> is a complement of <span class="SimpleMath">⟨ g ⟩ / Z</span> in <span class="SimpleMath">N/Z</span>, the factor group <span class="SimpleMath">N/Z</span> is a direct product of <span class="SimpleMath">HS.2</span> and a cyclic group of order <span class="SimpleMath">2</span>.</p>

<p><center> <img src="ctblcons15.png" alt="The structure of 4.HS.2"/> </center></p>

<p>Thus <span class="SimpleMath">N</span> has the structure <span class="SimpleMath">2.G.2</span>, the normal subgroup <span class="SimpleMath">2.G</span> being <span class="SimpleMath">C</span>, the factor group <span class="SimpleMath">G.2</span> being <span class="SimpleMath">2 × HS.2</span>, and <span class="SimpleMath">G</span> being <span class="SimpleMath">2 × HS</span>. Each element in <span class="SimpleMath">N ∖ C</span> inverts <span class="SimpleMath">g</span>, so <span class="SimpleMath">N</span> acts fixed point freely on the faithful irreducible characters of <span class="SimpleMath">C</span>. Hence we can use <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) for constructing the character table of <span class="SimpleMath">N</span> from the tables of <span class="SimpleMath">C</span> and <span class="SimpleMath">N/Z</span> and the action of <span class="SimpleMath">N</span> on the classes of <span class="SimpleMath">C</span>.</p>

<p>We start with the table of the central product <span class="SimpleMath">C</span>. It can be viewed as an isoclinic table of the direct product of <span class="SimpleMath">2.HS</span> and a cyclic group of order <span class="SimpleMath">2</span>, see <a href="chap2.html#X80C37276851D5E39"><span class="RefLink">2.2-4</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblC:= CharacterTableIsoclinic( CharacterTable( "2.HS" ) * c2 );;</span>
</pre></div>

<p>The table of <span class="SimpleMath">G</span> is given as that of the factor group by the unique normal subgroup of <span class="SimpleMath">C</span> that consists of two conjugacy classes.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord2:= Filtered( ClassPositionsOfNormalSubgroups( tblC ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; Length( x ) = 2 );</span>
[ [ 1, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblCbar:= tblC / ord2[1];;</span>
</pre></div>

<p>Finally, we construct the table of the extension <span class="SimpleMath">G.2</span> and the class fusion of <span class="SimpleMath">G</span> into this table (which is uniquely determined by the character tables).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblNbar:= CharacterTable( "HS.2" ) * c2;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( tblCbar, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 
      19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 29, 30, 31, 32, 
      33, 34, 35, 36, 35, 36, 37, 38, 39, 40, 41, 42, 41, 42 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblCbar, fus[1], tblNbar );</span>
</pre></div>

<p>Now we compute the table automorphisms of the table of <span class="SimpleMath">C</span> that are compatible with the extension <span class="SimpleMath">N</span>; we get two solutions.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblCbar, tblNbar );</span>
[ [ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6, 8 ], [ 7 ], [ 9 ], [ 10 ], 
      [ 11 ], [ 12, 14 ], [ 13 ], [ 15 ], [ 16, 18 ], [ 17 ], [ 19 ], 
      [ 20 ], [ 21 ], [ 22 ], [ 23 ], [ 24, 26 ], [ 25 ], [ 27 ], 
      [ 28, 30 ], [ 29 ], [ 31 ], [ 32, 34 ], [ 33 ], [ 35 ], 
      [ 36, 38 ], [ 37 ], [ 39 ], [ 40, 42 ], [ 41 ], [ 43 ], 
      [ 44, 46 ], [ 45 ], [ 47 ], [ 48, 50 ], [ 49 ], [ 51, 53 ], 
      [ 52, 54 ], [ 55 ], [ 56, 58 ], [ 57 ], [ 59 ], [ 60 ], 
      [ 61, 65 ], [ 62, 68 ], [ 63, 67 ], [ 64, 66 ], [ 69 ], 
      [ 70, 72 ], [ 71 ], [ 73 ], [ 74, 76 ], [ 75 ], [ 77, 81 ], 
      [ 78, 84 ], [ 79, 83 ], [ 80, 82 ] ], 
  [ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6, 8 ], [ 7 ], [ 9 ], [ 10 ], 
      [ 11 ], [ 12, 14 ], [ 13 ], [ 15, 17 ], [ 16 ], [ 18 ], [ 19 ], 
      [ 20 ], [ 21 ], [ 22 ], [ 23 ], [ 24, 26 ], [ 25 ], [ 27 ], 
      [ 28, 30 ], [ 29 ], [ 31 ], [ 32, 34 ], [ 33 ], [ 35, 37 ], 
      [ 36 ], [ 38 ], [ 39 ], [ 40, 42 ], [ 41 ], [ 43 ], [ 44, 46 ], 
      [ 45 ], [ 47, 49 ], [ 48 ], [ 50 ], [ 51, 53 ], [ 52, 54 ], 
      [ 55 ], [ 56, 58 ], [ 57 ], [ 59 ], [ 60 ], [ 61, 65 ], 
      [ 62, 68 ], [ 63, 67 ], [ 64, 66 ], [ 69, 71 ], [ 70 ], [ 72 ], 
      [ 73 ], [ 74, 76 ], [ 75 ], [ 77, 83 ], [ 78, 82 ], [ 79, 81 ], 
      [ 80, 84 ] ] ]
</pre></div>

<p>We compute the possible character tables arising from these two actions.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= List( elms, pi -&gt; PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                tblC, tblCbar, tblNbar, pi, "4.HS.2" ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( poss, Length );</span>
[ 0, 2 ]
</pre></div>

<p>So one of the two table automorphisms turned out to be impossible; the reason is that the corresponding "character table" would not admit a <span class="SimpleMath">2</span>-power map. (Alternatively, we could exclude this action on <span class="SimpleMath">C</span> by the fact that it is not compatible with the action of <span class="SimpleMath">2.HS.2</span> on its subgroup <span class="SimpleMath">2.HS</span>, which occurs here as the restriction of the action of <span class="SimpleMath">N</span> on <span class="SimpleMath">C</span> to that of <span class="SimpleMath">U</span> on <span class="SimpleMath">C ∩ U</span>.)</p>

<p>The other table automorphism leads to two possible character tables. This is not surprising since <span class="SimpleMath">N</span> contains a subgroup of type <span class="SimpleMath">2.HS.2</span>, and the above setup does not determine which of the two isoclinism types of this group occurs. Let us look at the possible class fusions from these tables into that of <span class="SimpleMath">HN.2</span>:</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= poss[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hn2:= CharacterTable( "HN.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">possfus:= List( result, r -&gt; PossibleClassFusions( r.table, hn2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( possfus, Length );</span>
[ 32, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RepresentativesFusions( result[1].table, possfus[1], hn2 );</span>
[ [ 1, 46, 2, 2, 47, 3, 7, 45, 4, 58, 13, 6, 46, 47, 6, 47, 7, 48, 
      10, 62, 20, 9, 63, 21, 12, 64, 24, 27, 49, 50, 13, 59, 14, 16, 
      70, 30, 18, 53, 52, 17, 54, 20, 65, 22, 36, 56, 26, 76, 39, 77, 
      28, 59, 58, 31, 78, 41, 34, 62, 35, 65, 2, 45, 3, 45, 6, 48, 7, 
      47, 17, 54, 13, 49, 13, 50, 14, 50, 18, 53, 18, 52, 21, 56, 25, 
      57, 27, 59, 30, 60, 44, 72, 34, 66, 35, 66, 41, 71 ] ]
</pre></div>

<p>Only one of the candidates admits an embedding, and the class fusion is unique up to table automorphisms. So we are done.</p>

<p>Finally, we compare the table we have constructed with the one that is contained in the <strong class="pkg">GAP</strong> Character Table Library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">libtbl:= CharacterTable( "4.HS.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( result[1].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 libtbl ) );</span>
true
</pre></div>

<p>(The following paragraphs have been added in May 2006.)</p>

<p>The Brauer tables of <span class="SimpleMath">N = 2.G.2</span> can be constructed as in Section <a href="chap2.html#X7ED45AB379093A70"><span class="RefLink">2.4-3</span></a>. Note that the Brauer tables of <span class="SimpleMath">C = 2.G</span> and of <span class="SimpleMath">N / Z = G.2</span> are automatically available because the ordinary tables constructed above arose as a direct product and as an isoclinic table of a direct product, and the <strong class="pkg">GAP</strong> Character Table Library contains the Brauer tables of the direct factors involved.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblC, result[1].MGfusMGA, result[1].table );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( PrimeDivisors( Size( result[1].table ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           p -&gt; IsRecord( TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    BrauerTableOfTypeMGA( tblC mod p, tblNbar mod p,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                        result[1].table ).table, libtbl mod p ) ) );</span>
true
</pre></div>

<p>Here it is advantageous that the Brauer table of <span class="SimpleMath">C / Z = G</span> is not needed in the construction, since <strong class="pkg">GAP</strong> does not know how to compute the <span class="SimpleMath">p</span>-modular table of the ordinary table of <span class="SimpleMath">G</span> constructed above. Of course we have <span class="SimpleMath">G ≅ 2 × HS</span>, and the <span class="SimpleMath">p</span>-modular table of <span class="SimpleMath">HS</span> is known, but in the construction of the table of <span class="SimpleMath">G</span> as a factor of the table of <span class="SimpleMath">2.G</span>, the information is missing that the nonsolvable simple direct factor of <span class="SimpleMath">2.G</span> corresponds to the library table of <span class="SimpleMath">HS</span>.</p>

<p><a id="X7E9A88DA7CBF6426" name="X7E9A88DA7CBF6426"></a></p>

<h5>2.4-13 <span class="Heading">The Character Tables of <span class="SimpleMath">4.A_6.2_3</span>, <span class="SimpleMath">12.A_6.2_3</span>,
and <span class="SimpleMath">4.L_2(25).2_3</span></span></h5>

<p>For the "broken box" cases in the <strong class="pkg">Atlas</strong> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. xxiv]</a>), the character tables can be constructed with the <span class="SimpleMath">M.G.A</span> construction method from Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>. (The situation with <span class="SimpleMath">9.U_3(8).3_3</span> is more complicated, this group will be considered in Section <a href="chap2.html#X7AF324AF7A54798F"><span class="RefLink">2.4-16</span></a>.)</p>

<p>The group <span class="SimpleMath">N = 4.A_6.2_3</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 5]</a>) can be described as an upward extension of the normal subgroup <span class="SimpleMath">C ≅ 4.A_6</span> –which is a central product of <span class="SimpleMath">U = 2.A_6</span> and a cyclic group <span class="SimpleMath">⟨ g ⟩</span> of order <span class="SimpleMath">4</span>– by a cyclic group of order <span class="SimpleMath">2</span>, such that the factor group of <span class="SimpleMath">N</span> by the central subgroup <span class="SimpleMath">Z = ⟨ g^2 ⟩</span> of order <span class="SimpleMath">2</span> is isomorphic to a subdirect product <span class="SimpleMath">overlineN</span> of <span class="SimpleMath">M_10 = A_6.2_3</span> and a cyclic group of order <span class="SimpleMath">4</span> and that <span class="SimpleMath">N</span> acts nontrivially on its normal subgroup <span class="SimpleMath">⟨ g ⟩</span>.</p>

<p><center> <img src="ctblcons16.png" alt="The structure of 4.A_6.2_3"/> </center></p>

<p>Thus <span class="SimpleMath">N</span> has the structure <span class="SimpleMath">2.G.2</span>, with <span class="SimpleMath">2.G = C</span> and <span class="SimpleMath">G.2 = overlineN</span>. These two groups are isoclinic variants of <span class="SimpleMath">2 × 2.A_6</span> and of <span class="SimpleMath">2 × M_10</span>, respectively. Each element in <span class="SimpleMath">N ∖ C</span> inverts <span class="SimpleMath">g</span>, so it acts fixed point freely on the faithful irreducible characters of <span class="SimpleMath">C</span>. Hence we can use <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) for constructing the character table of <span class="SimpleMath">N</span> from the tables of <span class="SimpleMath">C</span> and <span class="SimpleMath">N/Z</span> and the action of <span class="SimpleMath">N</span> on the classes of <span class="SimpleMath">C</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2a6:= CharacterTable( "2.A6" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblC:= CharacterTableIsoclinic( 2a6 * c2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord2:= Filtered( ClassPositionsOfNormalSubgroups( tblC ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; Length( x ) = 2 );</span>
[ [ 1, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= tblC / ord2[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblNbar:= CharacterTableIsoclinic( CharacterTable( "A6.2_3" ) * c2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( tblG, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 9, 10 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblG, fus[1], tblNbar );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblG, tblNbar );</span>
[ [ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7, 11 ], [ 8, 12 ], 
      [ 9, 13 ], [ 10, 14 ], [ 15, 17 ], [ 16, 18 ], [ 19, 23 ], 
      [ 20, 24 ], [ 21, 25 ], [ 22, 26 ] ], 
  [ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6 ], [ 7, 11 ], [ 8, 14 ], 
      [ 9, 13 ], [ 10, 12 ], [ 15 ], [ 16, 18 ], [ 17 ], [ 19, 23 ], 
      [ 20, 26 ], [ 21, 25 ], [ 22, 24 ] ], 
  [ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6 ], [ 7, 11 ], [ 8, 14 ], 
      [ 9, 13 ], [ 10, 12 ], [ 15, 17 ], [ 16 ], [ 18 ], [ 19, 23 ], 
      [ 20, 26 ], [ 21, 25 ], [ 22, 24 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= List( elms, pi -&gt; PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                tblC, tblG, tblNbar, pi, "4.A6.2_3" ) );</span>
[ [  ], [  ], 
  [ 
      rec( 
          MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 9, 6, 9, 8, 7, 10, 
              11, 10, 12, 13, 14, 15, 16, 13, 16, 15, 14 ], 
          table := CharacterTable( "4.A6.2_3" ) ) ] ]
</pre></div>

<p>So we get a unique solution. It coincides with the character table of <span class="SimpleMath">4.A_6.2_3</span> that is stored in the <strong class="pkg">GAP</strong> Character Table Library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= poss[3][1].table;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( "4.A6.2_3" ) ) );</span>
true
</pre></div>

<p>Note that the first two candidates for the action lead to tables that do not admit a <span class="SimpleMath">2</span>-power map. In fact the <span class="SimpleMath">2</span>-power map of the character table of <span class="SimpleMath">4.A_6.2_3</span> is not uniquely determined by the matrix of character values. However, the <span class="SimpleMath">2</span>-power map is unique up to automorphisms of this matrix; the function <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) takes this into account, and returns only representatives, in this case one table.</p>

<p>As is mentioned in the <strong class="pkg">Atlas</strong> (see <a href="chapBib.html#biBCCN85">[CCN+85, Section 6.7]</a>), the group <span class="SimpleMath">Γ L(2,9)</span> contains subgroups of the structure <span class="SimpleMath">4.A_6.2_3</span>. We can find them as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= GammaL(2,9);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi:= IsomorphismPermGroup( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">img:= Image( phi );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der:= DerivedSubgroup( img );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">derder:= DerivedSubgroup( der );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Index( img, derder );</span>
16
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inter:= Filtered( IntermediateSubgroups( img, derder ).subgroups,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               s -&gt; Size( s ) = 4 * Size( derder ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    IsCyclic( CommutatorFactorGroup( s ) ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    Size( Centre( s ) ) = 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( inter );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( inter, x -&gt; IsConjugate( img, inter[1], x ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( inter[1] ) ) );</span>
true
</pre></div>

<p>The <strong class="pkg">Atlas</strong> states in <a href="chapBib.html#biBCCN85">[CCN+85, Section 6.7]</a> that there is a group of the structure <span class="SimpleMath">2^2.A_6.2_3</span> that is isoclinic with <span class="SimpleMath">4.A_6.2_3</span>. We construct also the character table of the <span class="SimpleMath">2^2.A_6.2_3</span> type group with the <span class="SimpleMath">M.G.A</span> construction method from Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>.</p>

<p>The group <span class="SimpleMath">N = 2^2.A_6.2_3</span> can be described as an upward extension of the normal subgroup <span class="SimpleMath">C ≅ 2 × 2.A_6</span> by a cyclic group of order <span class="SimpleMath">2</span>, such that the factor group of <span class="SimpleMath">N</span> by the central subgroup <span class="SimpleMath">Z</span> of order <span class="SimpleMath">2</span> that is contained in <span class="SimpleMath">U = C' ≅ 2.A_6</span> is isomorphic to a subdirect product <span class="SimpleMath">overlineN</span> of <span class="SimpleMath">M_10 = A_6.2_3</span> and a cyclic group of order <span class="SimpleMath">4</span> and that <span class="SimpleMath">N</span> acts nontrivially on the centre of <span class="SimpleMath">C</span>, which is a Klein four group. <center> <img src="ctblcons17.png" alt="The structure of 2^2.A_6.2_3"/> </center></p>

<p>Thus <span class="SimpleMath">N</span> has the structure <span class="SimpleMath">2.G.2</span>, with <span class="SimpleMath">2.G = C</span> and <span class="SimpleMath">G.2 = overlineN</span>. These latter group is an isoclinic variant of <span class="SimpleMath">2 × M_10</span>, as in the construction of <span class="SimpleMath">4.A_6.2_3</span>. Each element in <span class="SimpleMath">N ∖ C</span> swaps the two involutions in <span class="SimpleMath">Z(C) ∖ Z</span>, so it acts fixed point freely on those irreducible characters of <span class="SimpleMath">C</span> whose kernels do not contain <span class="SimpleMath">Z</span>. Hence we can use <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) for constructing the character table of <span class="SimpleMath">N</span> from the tables of <span class="SimpleMath">C</span> and <span class="SimpleMath">N/Z</span> and the action of <span class="SimpleMath">N</span> on the classes of <span class="SimpleMath">C</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblC:= 2a6 * c2;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">z:= GetFusionMap( 2a6, tblC ){ ClassPositionsOfCentre( 2a6 ) };</span>
[ 1, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= tblC / z;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblNbar:= CharacterTableIsoclinic( CharacterTable( "A6.2_3" ) * c2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( tblG, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 9, 10 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblG, fus[1], tblNbar );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblG, tblNbar );</span>
[ [ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7, 11 ], [ 8, 12 ], 
      [ 9, 13 ], [ 10, 14 ], [ 15, 17 ], [ 16, 18 ], [ 19, 23 ], 
      [ 20, 24 ], [ 21, 25 ], [ 22, 26 ] ], 
  [ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6 ], [ 7, 11 ], [ 8, 14 ], 
      [ 9, 13 ], [ 10, 12 ], [ 15 ], [ 16, 18 ], [ 17 ], [ 19, 23 ], 
      [ 20, 26 ], [ 21, 25 ], [ 22, 24 ] ], 
  [ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6 ], [ 7, 11 ], [ 8, 14 ], 
      [ 9, 13 ], [ 10, 12 ], [ 15, 17 ], [ 16 ], [ 18 ], [ 19, 23 ], 
      [ 20, 26 ], [ 21, 25 ], [ 22, 24 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= List( elms, pi -&gt; PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                tblC, tblG, tblNbar, pi, "2^2.A6.2_3" ) );</span>
[ [  ], [  ], 
  [ 
      rec( 
          MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 9, 6, 9, 8, 7, 10, 
              11, 10, 12, 13, 14, 15, 16, 13, 16, 15, 14 ], 
          table := CharacterTable( "2^2.A6.2_3" ) ) ] ]
</pre></div>

<p>So we get a unique solution.</p>

<p>The group <span class="SimpleMath">N = 12.A_6.2_3</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 5]</a>) can be described as an upward extension of the normal subgroup <span class="SimpleMath">C ≅ 12.A_6</span> –which is a central product of <span class="SimpleMath">U = 6.A_6</span> and a cyclic group <span class="SimpleMath">⟨ g ⟩</span> of order <span class="SimpleMath">4</span>– by a cyclic group of order <span class="SimpleMath">2</span>, such that the factor group of <span class="SimpleMath">N</span> by the central subgroup <span class="SimpleMath">Z = ⟨ g^2 ⟩</span> of order <span class="SimpleMath">2</span> is isomorphic to a subdirect product <span class="SimpleMath">overlineN</span> of <span class="SimpleMath">3.M_10 = 3.A_6.2_3</span> and a cyclic group of order <span class="SimpleMath">4</span> and that <span class="SimpleMath">N</span> acts nontrivially on its normal subgroup <span class="SimpleMath">⟨ g ⟩</span>.</p>

<p>Note that <span class="SimpleMath">N</span> has a central subgroup <span class="SimpleMath">Y</span>, say, of order <span class="SimpleMath">3</span>, so the situation here differs from that for groups of the type <span class="SimpleMath">12.G.2</span> with <span class="SimpleMath">G</span> one of <span class="SimpleMath">L_3(4)</span>, <span class="SimpleMath">U_4(3)</span>, where the action on the normal subgroup of order three is nontrivial.</p>

<p><center> <img src="ctblcons18.png" alt="The structure of 12.A_6.2_3"/> </center></p>

<p>Thus <span class="SimpleMath">N</span> has the structure <span class="SimpleMath">2.G.2</span>, with <span class="SimpleMath">2.G = C</span> and <span class="SimpleMath">G.2 = overlineN</span>. These two groups are isoclinic variants of <span class="SimpleMath">2 × 6.A_6</span> and of <span class="SimpleMath">2 × 3.M_10</span>, respectively. Each element in <span class="SimpleMath">N ∖ C</span> inverts <span class="SimpleMath">g</span>, so it acts fixed point freely on the faithful irreducible characters of <span class="SimpleMath">C</span>. Hence we can use <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) for constructing the character table of <span class="SimpleMath">N</span> from the tables of <span class="SimpleMath">C</span> and <span class="SimpleMath">N/Z</span> and the action of <span class="SimpleMath">N</span> on the classes of <span class="SimpleMath">C</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblC:= CharacterTableIsoclinic( CharacterTable( "6.A6" ) * c2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord2:= Filtered( ClassPositionsOfNormalSubgroups( tblC ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; Length( x ) = 2 );</span>
[ [ 1, 7 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= tblC / ord2[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblNbar:= CharacterTableIsoclinic( CharacterTable( "3.A6.2_3" ) * c2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( tblG, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16, 
      17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 21, 22, 23, 24, 25, 26 ]
    , 
  [ 1, 2, 5, 6, 3, 4, 7, 8, 11, 12, 9, 10, 13, 14, 13, 14, 15, 16, 
      19, 20, 17, 18, 21, 22, 25, 26, 23, 24, 21, 22, 25, 26, 23, 24 
     ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rep:= RepresentativesFusions( Group( () ), fus, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16, 
      17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 21, 22, 23, 24, 25, 26 
     ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblG, rep[1], tblNbar );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblG, tblNbar );</span>
[ [ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ 8 ], [ 9 ], 
      [ 10 ], [ 11 ], [ 12 ], [ 13 ], [ 14 ], [ 15 ], [ 16 ], [ 17 ], 
      [ 18 ], [ 19, 23 ], [ 20, 24 ], [ 21, 25 ], [ 22, 26 ], 
      [ 27, 33 ], [ 28, 34 ], [ 29, 35 ], [ 30, 36 ], [ 31, 37 ], 
      [ 32, 38 ], [ 39, 51 ], [ 40, 52 ], [ 41, 53 ], [ 42, 54 ], 
      [ 43, 55 ], [ 44, 56 ], [ 45, 57 ], [ 46, 58 ], [ 47, 59 ], 
      [ 48, 60 ], [ 49, 61 ], [ 50, 62 ] ], 
  [ [ 1 ], [ 2, 8 ], [ 3 ], [ 4, 10 ], [ 5 ], [ 6, 12 ], [ 7 ], 
      [ 9 ], [ 11 ], [ 13 ], [ 14 ], [ 15 ], [ 16 ], [ 17 ], [ 18 ], 
      [ 19, 23 ], [ 20, 26 ], [ 21, 25 ], [ 22, 24 ], [ 27 ], 
      [ 28, 34 ], [ 29 ], [ 30, 36 ], [ 31 ], [ 32, 38 ], [ 33 ], 
      [ 35 ], [ 37 ], [ 39, 51 ], [ 40, 58 ], [ 41, 53 ], [ 42, 60 ], 
      [ 43, 55 ], [ 44, 62 ], [ 45, 57 ], [ 46, 52 ], [ 47, 59 ], 
      [ 48, 54 ], [ 49, 61 ], [ 50, 56 ] ], 
  [ [ 1 ], [ 2, 8 ], [ 3 ], [ 4, 10 ], [ 5 ], [ 6, 12 ], [ 7 ], 
      [ 9 ], [ 11 ], [ 13 ], [ 14 ], [ 15 ], [ 16 ], [ 17 ], [ 18 ], 
      [ 19, 23 ], [ 20, 26 ], [ 21, 25 ], [ 22, 24 ], [ 27, 33 ], 
      [ 28 ], [ 29, 35 ], [ 30 ], [ 31, 37 ], [ 32 ], [ 34 ], [ 36 ], 
      [ 38 ], [ 39, 51 ], [ 40, 58 ], [ 41, 53 ], [ 42, 60 ], 
      [ 43, 55 ], [ 44, 62 ], [ 45, 57 ], [ 46, 52 ], [ 47, 59 ], 
      [ 48, 54 ], [ 49, 61 ], [ 50, 56 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= List( elms, pi -&gt; PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                tblC, tblG, tblNbar, pi, "12.A6.2_3" ) );</span>
[ [  ], [  ], 
  [ 
      rec( 
          MGfusMGA := [ 1, 2, 3, 4, 5, 6, 7, 2, 8, 4, 9, 6, 10, 11, 12, 
              13, 14, 15, 16, 17, 18, 19, 16, 19, 18, 17, 20, 21, 22, 
              23, 24, 25, 20, 26, 22, 27, 24, 28, 29, 30, 31, 32, 33, 
              34, 35, 36, 37, 38, 39, 40, 29, 36, 31, 38, 33, 40, 35, 
              30, 37, 32, 39, 34 ], 
          table := CharacterTable( "12.A6.2_3" ) ) ] ]
</pre></div>

<p>So we get again a unique solution. It coincides with the character table that is stored in the <strong class="pkg">GAP</strong> Character Table Library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[3][1].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( "12.A6.2_3" ) ) );</span>
true
</pre></div>

<p>The construction of the character table of <span class="SimpleMath">4.L_2(25).2_3</span> is analogous to that of the table of <span class="SimpleMath">4.A_6.2_3</span>. We get a unique table that coincides with the table in the <strong class="pkg">GAP</strong> library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblC:= CharacterTableIsoclinic( CharacterTable( "2.L2(25)" ) * c2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord2:= Filtered( ClassPositionsOfNormalSubgroups( tblC ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; Length( x ) = 2 );</span>
[ [ 1, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= tblC / ord2[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblNbar:= CharacterTableIsoclinic( CharacterTable( "L2(25).2_3" ) * c2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( tblG, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 15, 
      16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20 ], 
  [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 17, 
      18, 17, 18, 19, 20, 19, 20, 15, 16, 15, 16 ], 
  [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 19, 
      20, 19, 20, 15, 16, 15, 16, 17, 18, 17, 18 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rep:= RepresentativesFusions( Group( () ), fus, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 15, 
      16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblG, rep[1], tblNbar );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblG, tblNbar );</span>
[ [ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ 8 ], [ 9 ], 
      [ 10 ], [ 11, 13 ], [ 12, 14 ], [ 15, 19 ], [ 16, 20 ], 
      [ 17, 21 ], [ 18, 22 ], [ 23, 25 ], [ 24, 26 ], [ 27, 33 ], 
      [ 28, 34 ], [ 29, 31 ], [ 30, 32 ], [ 35, 39 ], [ 36, 40 ], 
      [ 37, 41 ], [ 38, 42 ], [ 43, 47 ], [ 44, 48 ], [ 45, 49 ], 
      [ 46, 50 ], [ 51, 55 ], [ 52, 56 ], [ 53, 57 ], [ 54, 58 ] ], 
  [ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6 ], [ 7 ], [ 8, 10 ], [ 9 ], 
      [ 11 ], [ 12, 14 ], [ 13 ], [ 15, 19 ], [ 16, 22 ], [ 17, 21 ], 
      [ 18, 20 ], [ 23, 25 ], [ 24 ], [ 26 ], [ 27, 31 ], [ 28, 34 ], 
      [ 29, 33 ], [ 30, 32 ], [ 35, 39 ], [ 36, 42 ], [ 37, 41 ], 
      [ 38, 40 ], [ 43, 47 ], [ 44, 50 ], [ 45, 49 ], [ 46, 48 ], 
      [ 51, 55 ], [ 52, 58 ], [ 53, 57 ], [ 54, 56 ] ], 
  [ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6 ], [ 7 ], [ 8, 10 ], [ 9 ], 
      [ 11, 13 ], [ 12 ], [ 14 ], [ 15, 19 ], [ 16, 22 ], [ 17, 21 ], 
      [ 18, 20 ], [ 23, 25 ], [ 24 ], [ 26 ], [ 27, 33 ], [ 28, 32 ], 
      [ 29, 31 ], [ 30, 34 ], [ 35, 39 ], [ 36, 42 ], [ 37, 41 ], 
      [ 38, 40 ], [ 43, 47 ], [ 44, 50 ], [ 45, 49 ], [ 46, 48 ], 
      [ 51, 55 ], [ 52, 58 ], [ 53, 57 ], [ 54, 56 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= List( elms, pi -&gt; PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                tblC, tblG, tblNbar, pi, "4.L2(25).2_3" ) );</span>
[ [  ], [  ], 
  [ 
      rec( 
          MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 9, 11, 12, 
              13, 14, 15, 12, 15, 14, 13, 16, 17, 16, 18, 19, 20, 21, 
              22, 21, 20, 19, 22, 23, 24, 25, 26, 23, 26, 25, 24, 27, 
              28, 29, 30, 27, 30, 29, 28, 31, 32, 33, 34, 31, 34, 33, 
              32 ], table := CharacterTable( "4.L2(25).2_3" ) ) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[3][1].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( "4.L2(25).2_3" ) ) );</span>
true
</pre></div>

<p>Note that the group <span class="SimpleMath">Γ L(2,25)</span> does <em>not</em> contain subgroups of the structure <span class="SimpleMath">4.L_2(25).2_3</span>, since <span class="SimpleMath">Γ L(2,25)</span> acts on its subgroup of scalar matrices via mapping each element to its fifth power, thus the central subgroup of order four in GL<span class="SimpleMath">(2,25)</span> is central also in <span class="SimpleMath">Γ L(2,25)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= GammaL(2,25);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi:= IsomorphismPermGroup( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">img:= Image( phi );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der:= DerivedSubgroup( img );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">derder:= DerivedSubgroup( der );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Index( img, derder );</span>
48
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inter:= Filtered( IntermediateSubgroups( img, derder ).subgroups,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               s -&gt; Size( s ) = 4 * Size( derder ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    IsCyclic( CommutatorFactorGroup( s ) ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    Size( Centre( s ) ) = 2 );</span>
[  ]
</pre></div>

<p>In order to construct a representation of a group of the structure <span class="SimpleMath">4.L_2(25).2_3</span>, we can use the function <code class="code">CyclicExtensions</code> from the <strong class="pkg">GAP</strong> package <strong class="pkg">GrpConst</strong>. We start from the index two subgroup <span class="SimpleMath">4.L_2(25)</span>, which is a central product of <span class="SimpleMath">SL(2,25)</span> and a cyclic group of order four, and find exactly one upwards extension by a cyclic group of order two, up to isomorphism, with the required properties.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c:= Centralizer( img, derder );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( c );  IsCyclic( c );</span>
24
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cgen:= MinimalGeneratingSet( c );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">four:= cgen[1]^6;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= ClosureGroup( derder, four );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "GrpConst", false );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= Filtered( CyclicExtensions( s, 2 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; Size( Centre( x ) ) = 2 and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   IsCyclic( CommutatorFactorGroup( x ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( filt );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsomorphismGroups( filt[1], filt[2] ) &lt;&gt; fail;</span>
true
</pre></div>

<p>The character table of this group coincides with the library table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( CharacterTable( filt[1] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "4.L2(25).2_3" ) ) &lt;&gt; fail;</span>
true
</pre></div>

<p><a id="X7BD79BA37C3E729B" name="X7BD79BA37C3E729B"></a></p>

<h5>2.4-14 <span class="Heading">The Character Table of <span class="SimpleMath">4.L_2(49).2_3</span> (December 2020)</span></h5>

<p>The character tables of the simple group <span class="SimpleMath">L_2(49)</span> and of its extensions do not appear in the <strong class="pkg">Atlas</strong> of Finite Groups <a href="chapBib.html#biBCCN85">[CCN+85]</a>, but they may be regarded as <strong class="pkg">Atlas</strong> tables because a data file in the format used to produce the <strong class="pkg">Atlas</strong> has been available for a long time, as is stated in <a href="chapBib.html#biBJLPW95">[JLPW95, Appendix 2]</a>.</p>

<p>Analogous to <span class="SimpleMath">L_2(9) ≅ A_6</span> and <span class="SimpleMath">L_2(25)</span>, see Section <a href="chap2.html#X7E9A88DA7CBF6426"><span class="RefLink">2.4-13</span></a>, the <strong class="pkg">Atlas</strong> map for <span class="SimpleMath">G = L_2(49)</span> shows a "broken box", since there is no group of the form <span class="SimpleMath">2.G.2_3</span>, and a group of the structure <span class="SimpleMath">4.G.2_3</span> can be considered instead, which has a normal subgroup isomorphic with <span class="SimpleMath">2.(2 × G)</span> and a factor group isomorphic with <span class="SimpleMath">(2 × G).2_3</span>, see Section <a href="chap2.html#X7E9A88DA7CBF6426"><span class="RefLink">2.4-13</span></a>. Having its character table available has the effect that the functions <code class="func">DisplayAtlasMap</code> (<a href="..//doc/chap3.html#X875A6BB485A49976"><span class="RefLink">CTblLib: DisplayAtlasMap for the name of a simple group</span></a>) and <code class="func">BrowseAtlasTable</code> (<a href="..//doc/chap3.html#X79DC72707B08A701"><span class="RefLink">CTblLib: BrowseAtlasTable</span></a>) work with input <code class="code">"L2(49)"</code>.</p>

<p>We construct the character table of <span class="SimpleMath">4.L_2(49).2_3</span> in the same way as for the extensions of <span class="SimpleMath">L_2(9)</span> and <span class="SimpleMath">L_2(25)</span>. There is a unique solution.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2l:= CharacterTable( "2.L2(49)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblC:= CharacterTableIsoclinic( 2l * c2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord2:= Filtered( ClassPositionsOfNormalSubgroups( tblC ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; Length( x ) = 2 );</span>
[ [ 1, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= tblC / ord2[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblNbar:= CharacterTableIsoclinic(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( "L2(49).2_3" ) * c2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( tblG, tblNbar );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( fus );</span>
10
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblG, fus[1], tblNbar );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblG, tblNbar );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= List( elms, pi -&gt; PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                tblC, tblG, tblNbar, pi, "4.L2(49).2_3" ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( poss, Length );</span>
[ 0, 0, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= poss[3][1].table;</span>
CharacterTable( "4.L2(49).2_3" )
</pre></div>

<p>Analogous to the situation with <span class="SimpleMath">L_2(9)</span>, a group of the desired structure can be found inside the semilinear group <span class="SimpleMath">Γ</span>L<span class="SimpleMath">(2,49)</span>. In fact, there is a unique class of subgroups in <span class="SimpleMath">Γ</span>L<span class="SimpleMath">(2,49)</span> that contain SL<span class="SimpleMath">(2,49) ≅ 2.G</span>, have the right order, have cyclic commutator factor group, and centre of order <span class="SimpleMath">2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= GammaL(2,49);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi:= IsomorphismPermGroup( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">img:= Image( phi );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der:= DerivedSubgroup( img );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">derder:= DerivedSubgroup( der );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Index( img, derder );</span>
96
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inter:= Filtered( IntermediateSubgroups( img, derder ).subgroups,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               s -&gt; Size( s ) = 4 * Size( derder ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    IsCyclic( CommutatorFactorGroup( s ) ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    Size( Centre( s ) ) = 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( inter );                                        </span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( inter, x -&gt; IsConjugate( img, inter[1], x ) );</span>
true
</pre></div>

<p>The character tables of these groups coincide with the table constructed above, and with the library table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( inter[1] ) ) &lt;&gt; fail;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "4.L2(49).2_3" ) ) &lt;&gt; fail;</span>
true
</pre></div>

<p><a id="X817A961487D2DFD1" name="X817A961487D2DFD1"></a></p>

<h5>2.4-15 <span class="Heading">The Character Table of <span class="SimpleMath">4.L_2(81).2_3</span> (December 2020)</span></h5>

<p>We start with the character-theoretic construction of this table, analogous to the cases of <span class="SimpleMath">L_2(9)</span>, <span class="SimpleMath">L_2(25)</span>, <span class="SimpleMath">L_2(49)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2l:= CharacterTable( "2.L2(81)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblC:= CharacterTableIsoclinic( 2l * c2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord2:= Filtered( ClassPositionsOfNormalSubgroups( tblC ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; Length( x ) = 2 );</span>
[ [ 1, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= tblC / ord2[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblNbar:= CharacterTableIsoclinic(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( "L2(81).2_3" ) * c2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( tblG, tblNbar );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( fus );</span>
40
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fusreps:= RepresentativesFusions( tblG, fus, tblNbar );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( fusreps );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblG, fusreps[1], tblNbar );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblG, tblNbar );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= List( elms, pi -&gt; PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                tblC, tblG, tblNbar, pi, "4.L2(81).2_3" ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( poss, Length );</span>
[ 0, 0, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( poss[3][1].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "4.L2(81).2_3" ) ) &lt;&gt; fail;</span>
true
</pre></div>

<p>Like in the case of <span class="SimpleMath">L_2(25)</span>, there are <em>no</em> <span class="SimpleMath">4.L_2(81).2_3</span> type subgroups in <span class="SimpleMath">Γ L(2,81)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= GammaL(2,81);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi:= IsomorphismPermGroup( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">img:= Image( phi );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der:= DerivedSubgroup( img );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">derder:= DerivedSubgroup( der );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Index( img, derder );</span>
320
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inter:= Filtered( IntermediateSubgroups( img, derder ).subgroups,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               s -&gt; Size( s ) = 4 * Size( derder ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    IsCyclic( CommutatorFactorGroup( s ) ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    Size( Centre( s ) ) = 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( inter, x -&gt; IsConjugate( img, inter[1], x ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrConjugacyClasses( inter[1] );</span>
52
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrConjugacyClasses( CharacterTable( "4.L2(81).2_3" ) );</span>
112
</pre></div>

<p>The subgroups of <span class="SimpleMath">Γ L(2,81)</span> constructed above have the structure <span class="SimpleMath">2.L_2(81).4_1</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "2.L2(81).4_1" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrConjugacyClasses( t );</span>
52
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( inter[1] ) ) &lt;&gt; fail;</span>
true
</pre></div>

<p>Like in the case of <span class="SimpleMath">L_2(25)</span>, we can construct a group with the structure <span class="SimpleMath">4.L_2(81).2_3</span> via the function <code class="code">CyclicExtensions</code> from the <strong class="pkg">GAP</strong> package <strong class="pkg">GrpConst</strong>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c:= Centralizer( img, derder );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( c );  IsCyclic( c );</span>
80
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cgen:= MinimalGeneratingSet( c );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">four:= cgen[1]^20;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= ClosureGroup( derder, four );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "GrpConst", false );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">filt:= Filtered( CyclicExtensions( s, 2 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; Size( Centre( x ) ) = 2 and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   IsCyclic( CommutatorFactorGroup( x ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( filt );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsomorphismGroups( filt[1], filt[2] ) &lt;&gt; fail;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformingPermutationsCharacterTables( CharacterTable( filt[1] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "4.L2(81).2_3" ) ) &lt;&gt; fail;</span>
true
</pre></div>

<p><a id="X7AF324AF7A54798F" name="X7AF324AF7A54798F"></a></p>

<h5>2.4-16 <span class="Heading">The Character Table of <span class="SimpleMath">9.U_3(8).3_3</span> (March 2017)</span></h5>

<p>The group that is called <span class="SimpleMath">9.U_3(8).3_3</span> in the <strong class="pkg">Atlas</strong> of Finite Groups occurs as a subgroup of <span class="SimpleMath">Γ</span>U<span class="SimpleMath">(3, 8)</span>. Note that GU<span class="SimpleMath">(3, 8)</span> has the structure <span class="SimpleMath">3.(3 × U_3(8)).3_2</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 66]</a>), and extending the subgroup <span class="SimpleMath">C = 3.(3 × U_3(8))</span> by the product of an element outside <span class="SimpleMath">C</span> with the field automorphism of order three of GF<span class="SimpleMath">(64)</span> yields a group <span class="SimpleMath">N</span> of the structure <span class="SimpleMath">3.(3 × U_3(8)).3_3</span> whose centre has order three.</p>

<p>The character table of <span class="SimpleMath">N</span> can be constructed with the <span class="SimpleMath">M.G.A</span> construction method from Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>. The situation is similar to that with <span class="SimpleMath">4.A_6.2_3</span>, see Section <a href="chap2.html#X7E9A88DA7CBF6426"><span class="RefLink">2.4-13</span></a>, in particular the situation is described by the same picture that is shown for <span class="SimpleMath">4.A_6.2_3</span> in this section, just the subgroups <span class="SimpleMath">Z</span> and <span class="SimpleMath">⟨ g ⟩</span> have the orders three and nine, respectively, and <span class="SimpleMath">C</span> has index three in <span class="SimpleMath">N</span>.</p>

<p>The normal subgroup <span class="SimpleMath">C ≅ 9.U_3(8)</span> is a central product of <span class="SimpleMath">U = 3.U_3(8)</span> and a cyclic group <span class="SimpleMath">⟨ g ⟩</span> of order <span class="SimpleMath">9</span>, and the factor group of <span class="SimpleMath">N</span> by the central subgroup <span class="SimpleMath">Z = ⟨ g^3 ⟩</span> of order <span class="SimpleMath">3</span> is isomorphic to a subdirect product <span class="SimpleMath">overlineN</span> of <span class="SimpleMath">U_3(8).3_3</span> and a cyclic group of order <span class="SimpleMath">9</span>, such that <span class="SimpleMath">N</span> acts nontrivially on its normal subgroup <span class="SimpleMath">⟨ g ⟩</span>.</p>

<p>Thus <span class="SimpleMath">N</span> has the structure <span class="SimpleMath">3.G.3</span>, with <span class="SimpleMath">3.G = C</span> and <span class="SimpleMath">G.3 = overlineN</span>. Each element in <span class="SimpleMath">N ∖ C</span> raises <span class="SimpleMath">g</span> to its fourth or seventh power, so it acts fixed point freely on the faithful irreducible characters of <span class="SimpleMath">C</span>. Hence we can use <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) for constructing the character table of <span class="SimpleMath">N</span> from the tables of <span class="SimpleMath">C</span> and <span class="SimpleMath">N/Z</span> and the action of <span class="SimpleMath">N</span> on the classes of <span class="SimpleMath">C</span>.</p>

<p>Since we want to construct also <em>Brauer tables</em> of <span class="SimpleMath">N</span>, we have to choose the class fusion that describes the embedding of <span class="SimpleMath">C / Z</span> into <span class="SimpleMath">overlineN</span> compatibly with the known Brauer tables of <span class="SimpleMath">U_3(8)</span> and <span class="SimpleMath">U_3(8).3_3</span>. Note that the <span class="SimpleMath">2</span>-modular tables of these groups impose additional conditions on the class fusion.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= CharacterTable( "U3(8)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s3:= CharacterTable( "U3(8).3_3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleClassFusions( s, s3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesFusions( s, poss, s3 ) );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">smod2:= s mod 2;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s3mod2:= s3 mod 2;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">good:= [];;  modmap:= 0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for map in poss do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modmap:= CompositionMaps( InverseMap( GetFusionMap( s3mod2, s3 ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  CompositionMaps( map, GetFusionMap( smod2, s ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     rest:= List( Irr( s3mod2 ), x -&gt; x{ modmap } );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if not fail in Decomposition( Irr( smod2 ), rest, "nonnegative" ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( good, map );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( good );</span>
2
</pre></div>

<p>The class fusion from <span class="SimpleMath">U_3(8)</span> to <span class="SimpleMath">U_3(8).3_3</span> is determined up to complex conjugation by the <span class="SimpleMath">2</span>-modular Brauer tables. We choose the fusion that is stored on the library tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">good[2] = CompositionMaps( PowerMap( s3, -1 ), good[1] );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( s, s3 ) in good;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sfuss3:= GetFusionMap( s, s3 );;</span>
</pre></div>

<p>In the next step, we construct the character tables of <span class="SimpleMath">C / Z ≅ U_3(8) × 3</span> and <span class="SimpleMath">N / Z ≅ (U_3(8) × 3).3_3</span>, and those class fusions between the two tables that are compatible with the fusion between the factors that was chosen above (w. r. t. the stored factor fusions).</p>

<p>In order not to leave out some candidates, we have to consider also the table of <span class="SimpleMath">N/Z</span> that is obtained from the "other" construction as an isoclinic table of <span class="SimpleMath">3 × U_3(8).3_3</span>.</p>

<p>(This may look complicated. It would perhaps be more natural to construct the ordinary tables first, by considering the possible fusions, and later to adjust the choices to the conditions that are imposed by the Brauer tables. However, the technical complications of that construction would not be smaller in the end.)</p>

<p>We get four candidates, two for each of the two tables of <span class="SimpleMath">N/Z</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c3:= CharacterTable( "Cyclic", 3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= s * c3;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dp:= s3 * c3;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA1:= CharacterTableIsoclinic( dp, rec( k:= 1 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA2:= CharacterTableIsoclinic( dp, rec( k:= 2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">good:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGmod2:= tblG mod 2;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for tblGA in [ tblGA1, tblGA2 ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblGAmod2:= tblGA mod 2;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for map in PossibleClassFusions( tblG, tblGA ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modmap:= CompositionMaps(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           InverseMap( GetFusionMap( tblGAmod2, tblGA ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           CompositionMaps( map, GetFusionMap( tblGmod2, tblG ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       rest:= List( Irr( tblGAmod2 ), x -&gt; x{ modmap } );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if not fail in Decomposition( Irr( tblGmod2 ), rest,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                          "nonnegative" ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          CompositionMaps( GetFusionMap( tblGA, s3 ), map ) =</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          CompositionMaps( sfuss3, GetFusionMap( tblG, s ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Add( good, [ tblGA, map ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( good, x -&gt; x[1] );</span>
[ CharacterTable( "Isoclinic(U3(8).3_3xC3,1)" ), 
  CharacterTable( "Isoclinic(U3(8).3_3xC3,1)" ), 
  CharacterTable( "Isoclinic(U3(8).3_3xC3,2)" ), 
  CharacterTable( "Isoclinic(U3(8).3_3xC3,2)" ) ]
</pre></div>

<p>The character table of <span class="SimpleMath">C</span> can be constructed with <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) from the character table of <span class="SimpleMath">3 × 3.U_3(8)</span>. (Here we need to consider only one variant of the table.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3s:= CharacterTable( "3.U3(8)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dp:= 3s * c3;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG:= CharacterTableIsoclinic( dp );;</span>
</pre></div>

<p>The construction of this table does not automatically yield a factor fusion to the table of <span class="SimpleMath">C/Z</span>. We form the relevant factor table, which has the same ordering of irreducible characters, and use the factor fusion to this table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( tblMG, tblG );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cen:= ClassPositionsOfCentre( tblMG );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( tblMG ){ cen };</span>
[ 1, 9, 9, 3, 9, 9, 3, 9, 9 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">facttbl:= tblMG / [ 1, 4, 7 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr:= TransformingPermutationsCharacterTables( facttbl, tblG );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr.rows;  tr.columns;</span>
()
()
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblMG, GetFusionMap( tblMG, facttbl ), tblG );</span>
</pre></div>

<p>Now we compute the orbits of the possible actions of <span class="SimpleMath">N</span> on the classes of <span class="SimpleMath">C</span>, and the resulting candidates for the character table of <span class="SimpleMath">N</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">posstbls:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for pair in good do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblGA:= pair[1];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     GfusGA:= pair[2];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblG:= s * c3;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     StoreFusion( tblG, GfusGA, tblGA );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for pi in PossibleActionsForTypeMGA( tblMG, tblG, tblGA ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       for cand in PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       tblMG, tblG, tblGA, pi, "test" ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Add( posstbls, [ tblGA, cand ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( posstbls );</span>
32
</pre></div>

<p>Now we discard all those candidates that are not compatible with the <span class="SimpleMath">2</span>-modular character tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">compatible:= [];;  r:= 0;;  modr:= 0;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for pair in posstbls do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblGA:= pair[1];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     r:= pair[2];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     comp:= ComputedClassFusions( tblMG );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     pos:= PositionProperty( comp, x -&gt; x.name = Identifier( r.table ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if pos = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       StoreFusion( tblMG, r.MGfusMGA, r.table );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       comp[ pos ]:= ShallowCopy( comp[ pos ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       comp[ pos ].map:= r.MGfusMGA;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Unbind( ComputedBrauerTables( tblMG )[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modr:= BrauerTableOfTypeMGA( tblMG mod 2, tblGA mod 2, r.table );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     rest:= List( Irr( modr.table ), x -&gt; x{ modr.MGfusMGA } );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     dec:= Decomposition( Irr( tblMG mod 2 ), rest, "nonnegative" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if not fail in dec then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( compatible, pair );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( compatible );</span>
8
</pre></div>

<p>The remaining candidates fall into two equivalence classes.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbls:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for pair in compatible do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if ForAll( tbls, t -&gt; TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                               t, pair[2].table ) = fail ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( tbls, pair[2].table );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( tbls );</span>
2
</pre></div>

<p>The two tables can be distinguished by their element orders  one contains the element order <span class="SimpleMath">54</span> and the other does not  or by their <span class="SimpleMath">4</span>th power maps  the classes of element order <span class="SimpleMath">171</span> in one table are not fixed by the <span class="SimpleMath">4</span>th power map, the corresponding classes in the other table are fixed.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Set( OrdersClassRepresentatives( tbls[1] ) );</span>
[ 1, 2, 3, 4, 6, 7, 9, 12, 18, 19, 21, 27, 36, 54, 57, 63, 171 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Set( OrdersClassRepresentatives( tbls[2] ) );</span>
[ 1, 2, 3, 4, 6, 7, 9, 12, 18, 19, 21, 27, 36, 57, 63, 171 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pos171:= Positions( OrdersClassRepresentatives( tbls[1] ), 171 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pow4:= PowerMap( tbls[1], 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAny( [ 1 .. Length( pos171 ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           i -&gt; pos171[i] = pow4[ pos171[i] ] );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pos171:= Positions( OrdersClassRepresentatives( tbls[2] ), 171 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerMap( tbls[2], 4 ){ pos171 } = pos171;</span>
true
</pre></div>

<p>Thus we can use the group <span class="SimpleMath">N</span> to decide which table is correct. For that, we construct a permutation representation of <span class="SimpleMath">N</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gu:= GU(3,8);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( gu, Elements( GF(64)^3 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 1, 32319, 32832, 32832, 32832, 32832, 32832, 32832, 32832 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= SortedList( First( orbs, x -&gt; Length( x ) = 32319 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">actgu:= Action( gu, orb, OnRight );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( actgu ) = Size( gu );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cen:= Centre( actgu );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( cen );</span>
9
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">u:= ClosureGroup( DerivedSubgroup( actgu ), cen );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">aut:= v -&gt; List( v, x -&gt; x^4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= PermList( List( orb, v -&gt; PositionSorted( orb, aut( v ) ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">outer:= First( GeneratorsOfGroup( actgu ), x -&gt; not x in u );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= ClosureGroup( u, pi * outer );;</span>
</pre></div>

<p>Before we perform computations with the group, we reduce the degree of the representation by a factor of <span class="SimpleMath">7</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= Group( SmallGeneratingSet( g ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">allbl:= AllBlocks( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( allbl, Length );</span>
[ 3, 21, 63, 9, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= Orbit( g, First( allbl, x -&gt; Length( x ) = 7 ), OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">act:= Action( g, orb, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( act ) = Size( g );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints( act );</span>
4617
</pre></div>

<p>Now we test whether an element of order <span class="SimpleMath">171</span> in <span class="SimpleMath">N</span> is conjugate in <span class="SimpleMath">N</span> to its fourth power.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= PseudoRandom( act ); until Order( x ) = 171;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsConjugate( act, x, x^4 );</span>
true
</pre></div>

<p>This means that the second of the candidate tables constructed above is the right one. The character table with the identifier <code class="code">"9.U3(8).3_3"</code> in the character table library is equivalent to this table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib:= CharacterTable( "9.U3(8).3_3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tbls[2], lib ) );</span>
true
</pre></div>

<p><strong class="pkg">GAP</strong>'s currently available methods for the automatic computation of character tables would require too much space when called with this permutation group. Using interactive methods, one can compute the character table with <strong class="pkg">GAP</strong>. The table obtained this way is equivalent to the library character table with the identifier <code class="code">"9.U3(8).3_3"</code>.</p>

<p>I do not know how to disprove the other candidate with character-theoretic arguments. Thus this table provides an example of a pseudo character table, see Section <a href="chap2.html#X7E0C603880157C4E"><span class="RefLink">2.4-17</span></a>.</p>

<p><a id="X7E0C603880157C4E" name="X7E0C603880157C4E"></a></p>

<h5>2.4-17 <span class="Heading">Pseudo Character Tables of the Type <span class="SimpleMath">M.G.A</span> (May 2004)</span></h5>

<p>With the construction method for character tables of groups of the type <span class="SimpleMath">M.G.A</span>, one can construct tables that have many properties of character tables but that are not character tables of groups, cf. <a href="chapBib.html#biBGag86">[Gag86]</a>. For example, the group <span class="SimpleMath">3.A_6.2_3</span> has a <em>central</em> subgroup of order <span class="SimpleMath">3</span>, so it is not of the type <span class="SimpleMath">M.G.A</span> with fixed-point free action on the faithful characters of <span class="SimpleMath">M.G</span>.</p>

<p>However, if we apply the "<span class="SimpleMath">M.G.A</span> construction" to the groups <span class="SimpleMath">M.G = 3.A_6</span>, <span class="SimpleMath">G = A_6</span>, and <span class="SimpleMath">G.A = A_6.2_3</span> then we get a (in this case unique) result.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG := CharacterTable( "3.A6" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG  := CharacterTable( "A6" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA := CharacterTable( "A6.2_3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA );  </span>
[ [ [ 1 ], [ 2, 3 ], [ 4 ], [ 5, 6 ], [ 7, 8 ], [ 9 ], [ 10, 11 ], 
      [ 12, 15 ], [ 13, 17 ], [ 14, 16 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeMGA(                  </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                tblMG, tblG, tblGA, elms[1], "pseudo" );    </span>
[ rec( 
      MGfusMGA := [ 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 10, 8, 10, 
          9 ], table := CharacterTable( "pseudo" ) ) ]
</pre></div>

<p>Such a table automatically satisfies the orthogonality relations, and the tensor product of two "irreducible characters" of which at least one is a row from <span class="SimpleMath">G.A</span> decomposes into a sum of the "irreducible characters", where the coefficients are nonnegative integers.</p>

<p>In this example, any tensor product decomposes with nonnegative integral coefficients, <span class="SimpleMath">n</span>-th symmetrizations of "irreducible characters" decompose, for <span class="SimpleMath">n ≤ 5</span>, and the "class multiplication coefficients" are nonnegative integers.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pseudo:= poss[1].table;</span>
CharacterTable( "pseudo" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( pseudo );</span>
pseudo

      2  4   3  4  3  .  3   2  .   .   .  2  3  3
      3  3   3  1  1  2  1   1  1   1   1  .  .  .
      5  1   1  .  .  .  .   .  1   1   1  .  .  .

        1a  3a 2a 6a 3b 4a 12a 5a 15a 15b 4b 8a 8b
     2P 1a  3a 1a 3a 3b 2a  6a 5a 15a 15b 2a 4a 4a
     3P 1a  1a 2a 2a 1a 4a  4a 5a  5a  5a 4b 8a 8b
     5P 1a  3a 2a 6a 3b 4a 12a 1a  3a  3a 4b 8b 8a

X.1      1   1  1  1  1  1   1  1   1   1  1  1  1
X.2      1   1  1  1  1  1   1  1   1   1 -1 -1 -1
X.3     10  10  2  2  1 -2  -2  .   .   .  .  .  .
X.4     16  16  .  . -2  .   .  1   1   1  .  .  .
X.5      9   9  1  1  .  1   1 -1  -1  -1  1 -1 -1
X.6      9   9  1  1  .  1   1 -1  -1  -1 -1  1  1
X.7     10  10 -2 -2  1  .   .  .   .   .  .  B -B
X.8     10  10 -2 -2  1  .   .  .   .   .  . -B  B
X.9      6  -3 -2  1  .  2  -1  1   A  /A  .  .  .
X.10     6  -3 -2  1  .  2  -1  1  /A   A  .  .  .
X.11    12  -6  4 -2  .  .   .  2  -1  -1  .  .  .
X.12    18  -9  2 -1  .  2  -1 -2   1   1  .  .  .
X.13    30 -15 -2  1  . -2   1  .   .   .  .  .  .

A = -E(15)-E(15)^2-E(15)^4-E(15)^8
  = (-1-Sqrt(-15))/2 = -1-b15
B = E(8)+E(8)^3
  = Sqrt(-2) = i2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInternallyConsistent( pseudo );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr:= Irr( pseudo );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">test:= Concatenation( List( [ 2 .. 5 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              n -&gt; Symmetrizations( pseudo, irr, n ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( test, Set( Tensored( irr, irr ) ) );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fail in Decomposition( irr, test, "nonnegative" );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">if ForAny( Tuples( [ 1 .. NrConjugacyClasses( pseudo ) ], 3 ),        </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     t -&gt; not ClassMultiplicationCoefficient( pseudo, t[1], t[2], t[3] )   </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              in NonnegativeIntegers ) then                           </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Error( "contradiction" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">fi;</span>
</pre></div>

<p>I do not know a character-theoretic argument for showing that this table is <em>not</em> the character table of a group, but we can use the following group-theoretic argument. Suppose that the group <span class="SimpleMath">G</span>, say, has the above character table. Then <span class="SimpleMath">G</span> has a unique composition series with factors of the orders <span class="SimpleMath">3</span>, <span class="SimpleMath">360</span>, and <span class="SimpleMath">2</span>, respectively. Let <span class="SimpleMath">N</span> denote the normal subgroup of order <span class="SimpleMath">3</span> in <span class="SimpleMath">G</span>. The factor group <span class="SimpleMath">F = G/N</span> is an automorphic extension of <span class="SimpleMath">A_6</span>, and according to <a href="chapBib.html#biBCCN85">[CCN+85, p. 4]</a> it is isomorphic with <span class="SimpleMath">M_10 = A_6.2_3</span> and has Sylow <span class="SimpleMath">3</span> normalizers of the structure <span class="SimpleMath">3^2 : Q_8</span>. Since the Sylow <span class="SimpleMath">3</span> subgroup of <span class="SimpleMath">G</span> is a self-centralizing nonabelian group of order <span class="SimpleMath">3^3</span> and of exponent <span class="SimpleMath">3</span>, the Sylow <span class="SimpleMath">3</span> normalizers in <span class="SimpleMath">G</span> have the structure <span class="SimpleMath">3^{1+2}_+ : Q_8</span>, but the <span class="SimpleMath">Q_8</span> type subgroups of Aut<span class="SimpleMath">( 3^{1+2}_+ )</span> act trivially on the centre of <span class="SimpleMath">3^{1+2}_+</span>, contrary to the situation in the above table.</p>

<p>In general, this construction need not produce tables for which all symmetrizations of irreducible characters decompose properly. For example, applying <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) to the case <span class="SimpleMath">M.G = 3.L_3(4)</span> and <span class="SimpleMath">G.A = L_3(4).2_1</span> does not yield a table because the function suppresses tables that do not admit <span class="SimpleMath">p</span>-th power maps, for prime divisors <span class="SimpleMath">p</span> of the order of <span class="SimpleMath">M.G.A</span>, and in this case no compatible <span class="SimpleMath">2</span>-power map exists.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG := CharacterTable( "3.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG  := CharacterTable( "L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA := CharacterTable( "L3(4).2_1" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA );</span>
[ [ [ 1 ], [ 2, 3 ], [ 4 ], [ 5, 6 ], [ 7 ], [ 8 ], [ 9, 10 ], 
      [ 11 ], [ 12, 13 ], [ 14 ], [ 15, 16 ], [ 17, 20 ], [ 18, 22 ], 
      [ 19, 21 ], [ 23, 26 ], [ 24, 28 ], [ 25, 27 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, elms[1], "?" );</span>
[  ]
</pre></div>

<p>Also, it may happen that already <code class="func">PossibleActionsForTypeMGA</code> (<a href="..//doc/chap5.html#X7899AA12836EEF8F"><span class="RefLink">CTblLib: PossibleActionsForTypeMGA</span></a>) returns an empty list. Examples are <span class="SimpleMath">M.G = 3_1.U_4(3)</span>, <span class="SimpleMath">G.A = U_4(3).2_2</span> and <span class="SimpleMath">M.G = 3_2.U_4(3)</span>, <span class="SimpleMath">G.A = U_4(3).2_3</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG  := CharacterTable( "U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG := CharacterTable( "3_1.U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA := CharacterTable( "U4(3).2_2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossibleActionsForTypeMGA( tblMG, tblG, tblGA );</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblMG:= CharacterTable( "3_2.U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblGA:= CharacterTable( "U4(3).2_3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossibleActionsForTypeMGA( tblMG, tblG, tblGA );</span>
[  ]
</pre></div>

<p>Also the sections <a href="chap2.html#X794EC2FD7F69B4E6"><span class="RefLink">2.4-5</span></a> and <a href="chap2.html#X7AF324AF7A54798F"><span class="RefLink">2.4-16</span></a> provide examples of pseudo character tables. If one does not use the arguments about Brauer tables then the latter section presents in fact several pseudo character tables.</p>

<p><a id="X844185EF7A8F2A99" name="X844185EF7A8F2A99"></a></p>

<h5>2.4-18 <span class="Heading">Some Extra-ordinary <span class="SimpleMath">p</span>-Modular Tables of the Type <span class="SimpleMath">M.G.A</span>
(September 2005)</span></h5>

<p>For a group <span class="SimpleMath">M.G.A</span> in the sense of Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a> such that <em>not</em> all ordinary irreducible characters <span class="SimpleMath">χ</span> have the property that <span class="SimpleMath">M</span> is contained in the kernel of <span class="SimpleMath">χ</span> or <span class="SimpleMath">χ</span> is induced from <span class="SimpleMath">M.G</span>, it may happen that there are primes <span class="SimpleMath">p</span> such that all irreducible <span class="SimpleMath">p</span>-modular characters have this property. This happens if and only if the preimages in <span class="SimpleMath">M.G.A</span> of each <span class="SimpleMath">p</span>-regular conjugacy class in <span class="SimpleMath">G.A ∖ G</span> form one conjugacy class.</p>

<p>The following function can be used to decide whether this situation applies to a character table in the <strong class="pkg">GAP</strong> Character Table Library; here we assume that for the library table of a group with the structure <span class="SimpleMath">M.G.A</span>, the class fusions from <span class="SimpleMath">M.G</span> and to <span class="SimpleMath">G.A</span> are stored.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FindExtraordinaryCase:= function( tblMGA )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   local result, der, nsg, tblMGAclasses, orders, tblMG,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         tblMGfustblMGA, tblMGclasses, pos, M, Mimg, tblMGAfustblGA, tblGA,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         outer, inv, filt, other, primes, p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   result:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   der:= ClassPositionsOfDerivedSubgroup( tblMGA );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   nsg:= ClassPositionsOfNormalSubgroups( tblMGA );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   tblMGAclasses:= SizesConjugacyClasses( tblMGA );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   orders:= OrdersClassRepresentatives( tblMGA );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   if Length( der ) &lt; NrConjugacyClasses( tblMGA ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     # Look for tables of normal subgroups of the form $M.G$.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for tblMG in Filtered( List( NamesOfFusionSources( tblMGA ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                  CharacterTable ), x -&gt; x &lt;&gt; fail ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       tblMGfustblMGA:= GetFusionMap( tblMG, tblMGA );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       tblMGclasses:= SizesConjugacyClasses( tblMG );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       pos:= Position( nsg, Set( tblMGfustblMGA ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if pos &lt;&gt; fail and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          Size( tblMG ) = Sum( tblMGAclasses{ nsg[ pos ] } ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         # Look for normal subgroups of the form $M$.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         for M in Difference( ClassPositionsOfNormalSubgroups( tblMG ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                      [ [ 1 ], [ 1 .. NrConjugacyClasses( tblMG ) ] ] ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Mimg:= Set( tblMGfustblMGA{ M } );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           if Sum( tblMGAclasses{ Mimg } ) = Sum( tblMGclasses{ M } ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             tblMGAfustblGA:= First( ComputedClassFusions( tblMGA ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 r -&gt; ClassPositionsOfKernel( r.map ) = Mimg );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             if tblMGAfustblGA &lt;&gt; fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               tblGA:= CharacterTable( tblMGAfustblGA.name );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               tblMGAfustblGA:= tblMGAfustblGA.map;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               outer:= Difference( [ 1 .. NrConjugacyClasses( tblGA ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   CompositionMaps( tblMGAfustblGA, tblMGfustblMGA ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               inv:= InverseMap( tblMGAfustblGA ){ outer };</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               filt:= Flat( Filtered( inv, IsList ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               if not IsEmpty( filt ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 other:= Filtered( inv, IsInt );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 primes:= Filtered( PrimeDivisors( Size( tblMGA ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    p -&gt; ForAll( orders{ filt }, x -&gt; x mod p = 0 )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                         and ForAny( orders{ other }, x -&gt; x mod p &lt;&gt; 0 ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 for p in primes do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   Add( result, [ Identifier( tblMG ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                  Identifier( tblMGA ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                  Identifier( tblGA ), p ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   return result;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p>Let us list the tables which are found by this function.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cases:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for name in AllCharacterTableNames( IsDuplicateTable, false ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Append( cases, FindExtraordinaryCase( CharacterTable( name ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in Set( cases ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Print( i, "\n" ); </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
[ "2.A6", "2.A6.2_1", "A6.2_1", 3 ]
[ "2.Fi22", "2.Fi22.2", "Fi22.2", 3 ]
[ "2.L2(25)", "2.L2(25).2_2", "L2(25).2_2", 5 ]
[ "2.L2(49)", "2.L2(49).2_2", "L2(49).2_2", 7 ]
[ "2.L2(81)", "2.L2(81).2_1", "L2(81).2_1", 3 ]
[ "2.L2(81)", "2.L2(81).4_1", "L2(81).4_1", 3 ]
[ "2.L2(81).2_1", "2.L2(81).4_1", "L2(81).4_1", 3 ]
[ "2.L4(3)", "2.L4(3).2_2", "L4(3).2_2", 3 ]
[ "2.L4(3)", "2.L4(3).2_3", "L4(3).2_3", 3 ]
[ "2.S3", "2.D12", "S3x2", 3 ]
[ "2.U4(3).2_1", "2.U4(3).(2^2)_{12*2*}", "U4(3).(2^2)_{122}", 3 ]
[ "2.U4(3).2_1", "2.U4(3).(2^2)_{122}", "U4(3).(2^2)_{122}", 3 ]
[ "2.U4(3).2_1", "2.U4(3).(2^2)_{13*3*}", "U4(3).(2^2)_{133}", 3 ]
[ "2.U4(3).2_1", "2.U4(3).(2^2)_{133}", "U4(3).(2^2)_{133}", 3 ]
[ "3.U3(8)", "3.U3(8).3_1", "U3(8).3_1", 2 ]
[ "3.U3(8)", "3.U3(8).6", "U3(8).6", 2 ]
[ "3.U3(8)", "3.U3(8).6", "U3(8).6", 3 ]
[ "3.U3(8).2", "3.U3(8).6", "U3(8).6", 2 ]
[ "3^2:8", "2.A8N3", "s3wrs2", 3 ]
[ "5^(1+2):8:4", "2.HS.2N5", "HS.2N5", 5 ]
[ "6.A6", "6.A6.2_1", "3.A6.2_1", 3 ]
[ "6.A6", "6.A6.2_1", "A6.2_1", 3 ]
[ "6.Fi22", "6.Fi22.2", "3.Fi22.2", 3 ]
[ "6.Fi22", "6.Fi22.2", "Fi22.2", 3 ]
[ "Isoclinic(2.U4(3).2_1)", "2.U4(3).(2^2)_{1*2*2}", 
  "U4(3).(2^2)_{122}", 3 ]
[ "Isoclinic(2.U4(3).2_1)", "2.U4(3).(2^2)_{1*3*3}", 
  "U4(3).(2^2)_{133}", 3 ]
[ "bd10", "2.D20", "D20", 5 ]
</pre></div>

<p>The smallest example in this list is <span class="SimpleMath">2.A_6.2_1</span>, the double cover of the symmetric group on six points. The <span class="SimpleMath">3</span>-modular table of this group looks as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( CharacterTable( "2.A6.2_1" ) mod 3 );</span>
2.A6.2_1mod3

     2  5   5  4  3  1   1  4  4  3
     3  2   2  .  .  .   .  1  1  .
     5  1   1  .  .  1   1  .  .  .

       1a  2a 4a 8a 5a 10a 2b 4b 8b
    2P 1a  1a 2a 4a 5a  5a 1a 2a 4a
    3P 1a  2a 4a 8a 5a 10a 2b 4b 8b
    5P 1a  2a 4a 8a 1a  2a 2b 4b 8b

X.1     1   1  1  1  1   1  1  1  1
X.2     1   1  1  1  1   1 -1 -1 -1
X.3     6   6 -2  2  1   1  .  .  .
X.4     4   4  . -2 -1  -1  2 -2  .
X.5     4   4  . -2 -1  -1 -2  2  .
X.6     9   9  1  1 -1  -1  3  3 -1
X.7     9   9  1  1 -1  -1 -3 -3  1
X.8     4  -4  .  . -1   1  .  .  .
X.9    12 -12  .  .  2  -2  .  .  .
</pre></div>

<p>We see that the two faithful irreducible characters vanish on the three classes outside <span class="SimpleMath">2.A_6</span>.</p>

<p>For the groups in the above list, the function <code class="func">BrauerTableOfTypeMGA</code> (<a href="..//doc/chap5.html#X83BE977185ADC24B"><span class="RefLink">CTblLib: BrauerTableOfTypeMGA</span></a>) can be used to construct the <span class="SimpleMath">p</span>-modular tables of <span class="SimpleMath">M.G.A</span> from the tables of <span class="SimpleMath">M.G</span> and <span class="SimpleMath">G.A</span>, for the given special primes <span class="SimpleMath">p</span>. The computations can be performed as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in cases do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     p:= input[4];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modtblMG:=  CharacterTable( input[1] ) mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ordtblMGA:= CharacterTable( input[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modtblGA:=  CharacterTable( input[3] ) mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     name:= Concatenation( Identifier( ordtblMGA ), " mod ", String(p) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if ForAll( [ modtblMG, modtblGA ], IsCharacterTable ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       poss:= BrauerTableOfTypeMGA( modtblMG, modtblGA, ordtblMGA );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modlib:= ordtblMGA mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if IsCharacterTable( modlib ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         trans:= TransformingPermutationsCharacterTables( poss.table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     modlib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if not IsRecord( trans ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed table and library table for ", name,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#I  no library table for ", name, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  not all input tables for ", name, " available\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#I  not all input tables for 2.L2(49).2_2 mod 7 available
#I  not all input tables for 2.L2(81).2_1 mod 3 available
#I  not all input tables for 2.L2(81).4_1 mod 3 available
#I  not all input tables for 2.L2(81).4_1 mod 3 available
</pre></div>

<p>The examples <span class="SimpleMath">2.A_6.2_1</span>, <span class="SimpleMath">2.L_2(25).2_2</span>, and <span class="SimpleMath">2.L_2(49).2_2</span> belong to the infinite series of semiliniear groups <span class="SimpleMath">Σ</span>L<span class="SimpleMath">(2,p^2)</span>, for odd primes <span class="SimpleMath">p</span>. All groups in this series have the property that all faithful irreducible characters vanish on the <span class="SimpleMath">p</span>-regular classes outside SL<span class="SimpleMath">(2,p^2)</span>. (Cf. Section <a href="chap2.html#X78F41D2A78E70BEE"><span class="RefLink">2.2-6</span></a> for another property of the groups in this series.)</p>

<p><a id="X7F50C782840F06E4" name="X7F50C782840F06E4"></a></p>

<h4>2.5 <span class="Heading">Examples for the Type <span class="SimpleMath">G.S_3</span></span></h4>

<p><a id="X7F0DC29F874AA09F" name="X7F0DC29F874AA09F"></a></p>

<h5>2.5-1 <span class="Heading">Small Examples</span></h5>

<p>The symmetric group <span class="SimpleMath">S_4</span> on four points has the form <span class="SimpleMath">G.S_3</span> where <span class="SimpleMath">G</span> is the Klein four group <span class="SimpleMath">V_4</span>, <span class="SimpleMath">G.2</span> is the dihedral group <span class="SimpleMath">D_8</span> of order <span class="SimpleMath">8</span>, and <span class="SimpleMath">G.3</span> is the alternating group <span class="SimpleMath">A_4</span>. The trivial character of <span class="SimpleMath">A_4</span> extends twofold to <span class="SimpleMath">S_4</span>, in the same way as the trivial character of <span class="SimpleMath">V_4</span> extends to the dihedral group. The nontrivial linear characters of <span class="SimpleMath">A_4</span> induce irreducibly to <span class="SimpleMath">S_4</span>. The irreducible degree three character of <span class="SimpleMath">A_4</span> is induced from any of the three nontrivial linear characters of <span class="SimpleMath">V_4</span>, it extends to <span class="SimpleMath">S_4</span> in the same way as the unique constituent of the restriction to <span class="SimpleMath">V_4</span> that is invariant in the chosen <span class="SimpleMath">D_8</span> extends to <span class="SimpleMath">D_8</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= c2 * c2;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tC:= CharacterTable( "Dihedral", 8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tK:= CharacterTable( "Alternating", 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tfustC:= PossibleClassFusions( t, tC );</span>
[ [ 1, 3, 4, 4 ], [ 1, 3, 5, 5 ], [ 1, 4, 3, 4 ], [ 1, 4, 4, 3 ], 
  [ 1, 5, 3, 5 ], [ 1, 5, 5, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( t, tfustC[1], tC );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tfustK:= PossibleClassFusions( t, tK );</span>
[ [ 1, 2, 2, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( t, tfustK[1], tK );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeGS3( t, tC, tK );</span>
[ (3,4) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">new:= CharacterTableOfTypeGS3( t, tC, tK, elms[1], "S4" );</span>
rec( table := CharacterTable( "S4" ), 
  tblCfustblKC := [ 1, 4, 2, 2, 5 ], tblKfustblKC := [ 1, 2, 3, 3 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( new.table );</span>
S4

     2  3  3  .  2  2
     3  1  .  1  .  .

       1a 2a 3a 4a 2b
    2P 1a 1a 3a 2a 1a
    3P 1a 2a 1a 4a 2b

X.1     1  1  1  1  1
X.2     1  1  1 -1 -1
X.3     3 -1  .  1 -1
X.4     3 -1  . -1  1
X.5     2  2 -1  .  .
</pre></div>

<p>The case <span class="SimpleMath">e &gt; 1</span> occurs in the following example. We choose <span class="SimpleMath">G</span> the cyclic group of order two, <span class="SimpleMath">G.C</span> the cyclic group of order six, <span class="SimpleMath">G.K</span> the quaternion group of order eight, and construct the character table of <span class="SimpleMath">G.F = SL_2(3)</span>, with <span class="SimpleMath">F ≅ A_4</span>.</p>

<p>We get three extensions of the trivial character of <span class="SimpleMath">G.K</span> to <span class="SimpleMath">G.F</span>, a degree three character induced from the nontrivial linear characters of <span class="SimpleMath">G.K</span>, and three extensions of the irreducible degree <span class="SimpleMath">2</span> character of <span class="SimpleMath">G.K</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tC:= CharacterTable( "Cyclic", 6 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tK:= CharacterTable( "Quaternionic", 8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tfustC:= PossibleClassFusions( t, tC );</span>
[ [ 1, 4 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( t, tfustC[1], tC );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tfustK:= PossibleClassFusions( t, tK );</span>
[ [ 1, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( t, tfustK[1], tK );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeGS3( t, tC, tK );</span>
[ (2,5,4) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">new:= CharacterTableOfTypeGS3( t, tC, tK, elms[1], "SL(2,3)" );</span>
rec( table := CharacterTable( "SL(2,3)" ), 
  tblCfustblKC := [ 1, 4, 5, 3, 6, 7 ], 
  tblKfustblKC := [ 1, 2, 3, 2, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( new.table );</span>
SL(2,3)

     2  3  2  3  1   1   1  1
     3  1  .  1  1   1   1  1

       1a 4a 2a 6a  3a  3b 6b
    2P 1a 2a 1a 3a  3b  3a 3b
    3P 1a 4a 2a 2a  1a  1a 2a

X.1     1  1  1  1   1   1  1
X.2     1  1  1  A  /A   A /A
X.3     1  1  1 /A   A  /A  A
X.4     3 -1  3  .   .   .  .
X.5     2  . -2 /A  -A -/A  A
X.6     2  . -2  1  -1  -1  1
X.7     2  . -2  A -/A  -A /A

A = E(3)
  = (-1+Sqrt(-3))/2 = b3
</pre></div>

<p><a id="X80F9BC057980A9E9" name="X80F9BC057980A9E9"></a></p>

<h5>2.5-2 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">G.S_3</span></span></h5>

<p>We demonstrate the construction of all those ordinary and modular character tables in the <strong class="pkg">GAP</strong> Character Table Library that are of the type <span class="SimpleMath">G.S_3</span> where <span class="SimpleMath">G</span> is a simple group or a central extension of a simple group whose character table is contained in the <strong class="pkg">Atlas</strong>. Here is the list of <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) values needed for accessing the input tables and the known library tables corresponding to the output.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">listGS3:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "U3(5)",      "U3(5).2",      "U3(5).3",      "U3(5).S3"        ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.U3(5)",    "3.U3(5).2",    "3.U3(5).3",    "3.U3(5).S3"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "L3(4)",      "L3(4).2_2",    "L3(4).3",      "L3(4).3.2_2"     ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "L3(4)",      "L3(4).2_3",    "L3(4).3",      "L3(4).3.2_3"     ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.L3(4)",    "3.L3(4).2_2",  "3.L3(4).3",    "3.L3(4).3.2_2"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.L3(4)",    "3.L3(4).2_3",  "3.L3(4).3",    "3.L3(4).3.2_3"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.L3(4)",  "2^2.L3(4).2_2","2^2.L3(4).3",  "2^2.L3(4).3.2_2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.L3(4)",  "2^2.L3(4).2_3","2^2.L3(4).3",  "2^2.L3(4).3.2_3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "U6(2)",      "U6(2).2",      "U6(2).3",      "U6(2).3.2"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.U6(2)",    "3.U6(2).2",    "3.U6(2).3",    "3.U6(2).3.2"     ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.U6(2)",  "2^2.U6(2).2",  "2^2.U6(2).3",  "2^2.U6(2).3.2"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "O8+(2)",     "O8+(2).2",     "O8+(2).3",     "O8+(2).3.2"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.O8+(2)", "2^2.O8+(2).2", "2^2.O8+(2).3", "2^2.O8+(2).3.2"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "L3(7)",      "L3(7).2",      "L3(7).3",      "L3(7).S3"        ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.L3(7)",    "3.L3(7).2",    "3.L3(7).3",    "3.L3(7).S3"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "U3(8)",      "U3(8).2",      "U3(8).3_2",    "U3(8).S3"        ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.U3(8)",    "3.U3(8).2",    "3.U3(8).3_2",  "3.U3(8).S3"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "U3(11)",     "U3(11).2",     "U3(11).3",     "U3(11).S3"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.U3(11)",   "3.U3(11).2",   "3.U3(11).3",   "3.U3(11).S3"     ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "O8+(3)",     "O8+(3).2_2",   "O8+(3).3",     "O8+(3).S3"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2E6(2)",     "2E6(2).2",     "2E6(2).3",     "2E6(2).S3"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.2E6(2)", "2^2.2E6(2).2", "2^2.2E6(2).3", "2^2.2E6(2).S3"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">];;</span>
</pre></div>

<p>(For <span class="SimpleMath">G</span> one of <span class="SimpleMath">L_3(4)</span>, <span class="SimpleMath">U_6(2)</span>, <span class="SimpleMath">O_8^+(2)</span>, and <span class="SimpleMath">^2E_6(2)</span>, the tables of <span class="SimpleMath">2^2.G</span>, <span class="SimpleMath">2^2.G.2</span>, and <span class="SimpleMath">2^2.G.3</span> can be constructed with the methods described in Section <a href="chap2.html#X81464C4B8178C85A"><span class="RefLink">2.3-4</span></a> and Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>, respectively.)</p>

<p>Analogously, the automorphism groups of <span class="SimpleMath">L_3(4)</span>, <span class="SimpleMath">U_3(8)</span>, and <span class="SimpleMath">O_8^+(3)</span> have factor groups isomorphic with <span class="SimpleMath">S_3</span>; in these cases, we choose <span class="SimpleMath">G = L_3(4).2_1</span>, <span class="SimpleMath">G = U_3(8).3_1</span>, and <span class="SimpleMath">G = O_8^+(3).2^2_111</span>, respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( listGS3, [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "L3(4).2_1",          "L3(4).2^2",     "L3(4).6",     "L3(4).D12"     ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.L3(4).2_1",      "2^2.L3(4).2^2", "2^2.L3(4).6", "2^2.L3(4).D12" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "U3(8).3_1",          "U3(8).6",       "U3(8).3^2",   "U3(8).(S3x3)"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "O8+(3).(2^2)_{111}", "O8+(3).D8",     "O8+(3).A4",   "O8+(3).S4"     ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">] );</span>
</pre></div>

<p>In all these cases, the required table automorphism of <span class="SimpleMath">G.3</span> is uniquely determined. We first compute the ordinary character table of <span class="SimpleMath">G.S_3</span> and then the <span class="SimpleMath">p</span>-modular tables, for all prime divisors <span class="SimpleMath">p</span> of the order of <span class="SimpleMath">G</span> such that the <strong class="pkg">GAP</strong> Character Table Library contains the necessary <span class="SimpleMath">p</span>-modular input tables.</p>

<p>In each case, we compare the computed character tables with the ones in the <strong class="pkg">GAP</strong> Character Table Library. Note that in order to avoid conflicts of the class fusions that arise in the construction with the class fusions that are already stored on the library tables, we choose identifiers for the result tables that are different from the identifiers of the library tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProcessGS3Example:= function( t, tC, tK, identifier, pi )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   local tF, lib, trans, p, tmodp, tCmodp, tKmodp, modtF;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   tF:= CharacterTableOfTypeGS3( t, tC, tK, pi,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            Concatenation( identifier, "new" ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   lib:= CharacterTable( identifier );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   if lib &lt;&gt; fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     trans:= TransformingPermutationsCharacterTables( tF.table, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if not IsRecord( trans ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#E  computed table and library table for `", identifier,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              "' differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Print( "#I  no library table for `", identifier, "'\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   StoreFusion( tC, tF.tblCfustblKC, tF.table );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   StoreFusion( tK, tF.tblKfustblKC, tF.table );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   for p in PrimeDivisors( Size( t ) ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tmodp := t  mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tCmodp:= tC mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tKmodp:= tK mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if IsCharacterTable( tmodp ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        IsCharacterTable( tCmodp ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        IsCharacterTable( tKmodp ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modtF:= CharacterTableOfTypeGS3( tmodp, tCmodp, tKmodp,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   tF.table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   Concatenation(  identifier, "mod", String( p ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if   Length( Irr( modtF.table ) ) &lt;&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            Length( Irr( modtF.table )[1] ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#E  nonsquare result table for `",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                identifier, " mod ", p, "'\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       elif lib &lt;&gt; fail and IsCharacterTable( lib mod p ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         trans:= TransformingPermutationsCharacterTables( modtF.table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                                          lib mod p );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if not IsRecord( trans ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed table and library table for `",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  identifier, " mod ", p, "' differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#I  no library table for `", identifier, " mod ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                p, "'\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  not all inputs available for `", identifier,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              " mod ", p, "'\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
</pre></div>

<p>Now we call the function for the examples in the list.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in listGS3 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     t := CharacterTable( input[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tC:= CharacterTable( input[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tK:= CharacterTable( input[3] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     identifier:= input[4];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     elms:= PossibleActionsForTypeGS3( t, tC, tK );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if Length( elms ) = 1 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       ProcessGS3Example( t, tC, tK, identifier, elms[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  ", Length( elms ), " actions possible for `",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              identifier, "'\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#I  not all inputs available for `O8+(3).S3 mod 3'
#I  not all inputs available for `2E6(2).S3 mod 2'
#I  not all inputs available for `2E6(2).S3 mod 3'
#I  not all inputs available for `2E6(2).S3 mod 5'
#I  not all inputs available for `2E6(2).S3 mod 7'
#I  not all inputs available for `2E6(2).S3 mod 11'
#I  not all inputs available for `2E6(2).S3 mod 13'
#I  not all inputs available for `2E6(2).S3 mod 17'
#I  not all inputs available for `2E6(2).S3 mod 19'
#I  not all inputs available for `2^2.2E6(2).S3 mod 2'
#I  not all inputs available for `2^2.2E6(2).S3 mod 3'
#I  not all inputs available for `2^2.2E6(2).S3 mod 5'
#I  not all inputs available for `2^2.2E6(2).S3 mod 7'
#I  not all inputs available for `2^2.2E6(2).S3 mod 11'
#I  not all inputs available for `2^2.2E6(2).S3 mod 13'
#I  not all inputs available for `2^2.2E6(2).S3 mod 17'
#I  not all inputs available for `2^2.2E6(2).S3 mod 19'
#I  not all inputs available for `U3(8).(S3x3) mod 2'
#I  not all inputs available for `U3(8).(S3x3) mod 19'
#I  not all inputs available for `O8+(3).S4 mod 3'
</pre></div>

<p>Also the ordinary character table of the automorphic extension of the simple <strong class="pkg">Atlas</strong> group <span class="SimpleMath">O_8^+(3)</span> by <span class="SimpleMath">A_4</span> can be constructed with the same approach. Here we get four possible permutations, which lead to essentially the same character table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">input:= [ "O8+(3)", "O8+(3).3", "O8+(3).(2^2)_{111}", "O8+(3).A4" ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t := CharacterTable( input[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tC:= CharacterTable( input[2] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tK:= CharacterTable( input[3] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">identifier:= input[4];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= PossibleActionsForTypeGS3( t, tC, tK );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( elms );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">differ:= MovedPoints( Group( List( elms, x -&gt; x / elms[1] ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( elms, x -&gt; RestrictedPerm( x, differ ) );</span>
[ (118,216,169)(119,217,170)(120,218,167)(121,219,168), 
  (118,216,170)(119,217,169)(120,219,168)(121,218,167), 
  (118,217,169)(119,216,170)(120,218,168)(121,219,167), 
  (118,217,170)(119,216,169)(120,219,167)(121,218,168) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= List( elms, pi -&gt; CharacterTableOfTypeGS3( t, tC, tK, pi,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            Concatenation( identifier, "new" ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib:= CharacterTable( identifier );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( poss, r -&gt; IsRecord(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       TransformingPermutationsCharacterTables( r.table, lib ) ) );</span>
true
</pre></div>

<p>Also the construction of the <span class="SimpleMath">p</span>-modular tables of <span class="SimpleMath">O_8^+(3).A_4</span> works.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProcessGS3Example( t, tC, tK, identifier, elms[1] );</span>
#I  not all inputs available for `O8+(3).A4 mod 3'
</pre></div>

<p><a id="X7EA489E07D7C7D86" name="X7EA489E07D7C7D86"></a></p>

<h4>2.6 <span class="Heading">Examples for the Type <span class="SimpleMath">G.2^2</span></span></h4>

<p><a id="X8054FDE679053B1C" name="X8054FDE679053B1C"></a></p>

<h5>2.6-1 <span class="Heading">The Character Table of <span class="SimpleMath">A_6.2^2</span></span></h5>

<p>As the first example, we consider the automorphism group Aut<span class="SimpleMath">( A_6 ) ≅ A_6.2^2</span> of the alternating group <span class="SimpleMath">A_6</span> on six points.</p>

<p>In this case, the triple of actions on the subgroups <span class="SimpleMath">A_6.2_i</span> is uniquely determined by the condition on the number of conjugacy classes in Section <a href="chap2.html#X7D3EF3BC83BE05CF"><span class="RefLink">2.3-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "A6" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblsG2:= List( [ "A6.2_1", "A6.2_2", "A6.2_3" ], CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( tblsG2, NrConjugacyClasses );</span>
[ 11, 11, 8 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">possact:= List( tblsG2, x -&gt; Filtered( Elements( </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       AutomorphismsOfTable( x ) ), y -&gt; Order( y ) &lt;= 2 ) );</span>
[ [ (), (3,4)(7,8)(10,11) ], 
  [ (), (8,9), (5,6)(10,11), (5,6)(8,9)(10,11) ], [ (), (7,8) ] ]
</pre></div>

<p>Note that <span class="SimpleMath">n_1 = n_2</span> implies <span class="SimpleMath">f_1 = f_2</span>, and <span class="SimpleMath">n_1 - n_3 = 3</span> implies <span class="SimpleMath">f_1 - f_3 = 2</span>, so we get <span class="SimpleMath">f_1 = 3</span> and <span class="SimpleMath">f_3 = 1</span>, and <span class="SimpleMath">A_6.2^2</span> has <span class="SimpleMath">2 ⋅ 11 - 3 ⋅ 3 = 2 ⋅ 8 - 3 ⋅ 1 = 13</span> classes.</p>

<p>(The compatibility on the classes inside <span class="SimpleMath">A_6</span> yields only that the classes <span class="SimpleMath">3</span> and <span class="SimpleMath">4</span> of <span class="SimpleMath">A_6.2_1 ≅ S_6</span> must be fused in <span class="SimpleMath">A_6.2^2</span>, as well as the classes <span class="SimpleMath">5</span> and <span class="SimpleMath">6</span> of <span class="SimpleMath">A_6.2_2 ≅</span> PGL<span class="SimpleMath">(2,9)</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( tblsG2, x -&gt; GetFusionMap( tblG, x ) );</span>
[ [ 1, 2, 3, 4, 5, 6, 6 ], [ 1, 2, 3, 3, 4, 5, 6 ], 
  [ 1, 2, 3, 3, 4, 5, 5 ] ]
</pre></div>

<p>These arguments are used by the <strong class="pkg">GAP</strong> function <code class="func">PossibleActionsForTypeGV4</code> (<a href="..//doc/chap5.html#X7CCD5A2979883144"><span class="RefLink">CTblLib: PossibleActionsForTypeGV4</span></a>), which returns the list of all possible triples of permutations such that the <span class="SimpleMath">i</span>-th permutation describes the action of <span class="SimpleMath">A_6.2^2</span> on the classes of <span class="SimpleMath">A_6.2_i</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">acts:= PossibleActionsForTypeGV4( tblG, tblsG2 );    </span>
[ [ (3,4)(7,8)(10,11), (5,6)(8,9)(10,11), (7,8) ] ]
</pre></div>

<p>For the given actions, the <strong class="pkg">GAP</strong> function <code class="func">PossibleCharacterTablesOfTypeGV4</code> (<a href="..//doc/chap5.html#X7CACDDED7A8C1CF9"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeGV4</span></a>) then computes the possibilities for the character table of <span class="SimpleMath">A_6.2^2</span>; in this case, the result is unique.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeGV4( tblG, tblsG2, acts[1],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              "A6.2^2" );</span>
[ rec( 
      G2fusGV4 := [ [ 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8 ], 
          [ 1, 2, 3, 4, 5, 5, 9, 10, 10, 11, 11 ], 
          [ 1, 2, 3, 4, 5, 12, 13, 13 ] ], 
      table := CharacterTable( "A6.2^2" ) ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( "A6.2^2" ) ) );</span>
true
</pre></div>

<p>Finally, possible <span class="SimpleMath">p</span>-modular tables can be computed from the <span class="SimpleMath">p</span>-modular input tables and the ordinary table of <span class="SimpleMath">A_6.2^2</span>; here we show this for <span class="SimpleMath">p = 3</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossibleCharacterTablesOfTypeGV4( tblG mod 3,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       List( tblsG2, t -&gt; t mod 3 ), poss[1].table );</span>
[ rec( 
      G2fusGV4 := 
        [ [ 1, 2, 3, 4, 5, 5, 6 ], [ 1, 2, 3, 4, 4, 7, 8, 8, 9, 9 ], 
          [ 1, 2, 3, 4, 10, 11, 11 ] ], 
      table := BrauerTable( "A6.2^2", 3 ) ) ]
</pre></div>

<p><a id="X7FEC3AB081487AF2" name="X7FEC3AB081487AF2"></a></p>

<h5>2.6-2 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">G.2^2</span> – Easy Cases</span></h5>

<p>We demonstrate the construction of all those ordinary and modular character tables in the <strong class="pkg">GAP</strong> Character Table Library that are of the type <span class="SimpleMath">G.2^2</span> where <span class="SimpleMath">G</span> is a simple group or a central extension of a simple group whose character table is contained in the <strong class="pkg">Atlas</strong>. Here is the list of <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) values needed for accessing the input tables and the result tables.</p>

<p>(The construction of the character table of <span class="SimpleMath">O_8^+(3).2^2_111</span> is more involved and will be described in Section <a href="chap2.html#X78AED04685EDCC19"><span class="RefLink">2.6-10</span></a>. The construction of the character tables of groups of the type <span class="SimpleMath">2.L_3(4).2^2</span> and <span class="SimpleMath">6.L_3(4).2^2</span> is described in the sections <a href="chap2.html#X7B38006380618543"><span class="RefLink">2.6-4</span></a> and <a href="chap2.html#X79818ABD7E972370"><span class="RefLink">2.6-5</span></a>, respectively. The construction of the character tables of groups of the type <span class="SimpleMath">2.U_4(3).2^2</span> is described in Section <a href="chap2.html#X878889308653435F"><span class="RefLink">2.6-6</span></a>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">listGV4:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "A6",      "A6.2_1",      "A6.2_2",      "A6.2_3",      "A6.2^2"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.A6",    "3.A6.2_1",    "3.A6.2_2",    "3.A6.2_3",    "3.A6.2^2"    ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "L2(25)",  "L2(25).2_1",  "L2(25).2_2",  "L2(25).2_3",  "L2(25).2^2"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "L3(4)",   "L3(4).2_1",   "L3(4).2_2",   "L3(4).2_3",   "L3(4).2^2"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.L3(4)", "2^2.L3(4).2_1", "2^2.L3(4).2_2", "2^2.L3(4).2_3",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                                        "2^2.L3(4).2^2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3.L3(4)", "3.L3(4).2_1", "3.L3(4).2_2", "3.L3(4).2_3", "3.L3(4).2^2" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "U4(3)",   "U4(3).2_1",   "U4(3).2_2",   "U4(3).2_2'",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                                    "U4(3).(2^2)_{122}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "U4(3)",   "U4(3).2_1",   "U4(3).2_3",   "U4(3).2_3'",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                                    "U4(3).(2^2)_{133}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3_1.U4(3)", "3_1.U4(3).2_1", "3_1.U4(3).2_2", "3_1.U4(3).2_2'",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                                "3_1.U4(3).(2^2)_{122}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "3_2.U4(3)", "3_2.U4(3).2_1", "3_2.U4(3).2_3", "3_2.U4(3).2_3'",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                                "3_2.U4(3).(2^2)_{133}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "L2(49)",  "L2(49).2_1",  "L2(49).2_2",  "L2(49).2_3",  "L2(49).2^2"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "L2(81)",  "L2(81).2_1",  "L2(81).2_2",  "L2(81).2_3",  "L2(81).2^2"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "L3(9)",   "L3(9).2_1",   "L3(9).2_2",   "L3(9).2_3",   "L3(9).2^2"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "O8+(3)",  "O8+(3).2_1",  "O8+(3).2_2",  "O8+(3).2_2'",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                                   "O8+(3).(2^2)_{122}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "O8-(3)",  "O8-(3).2_1",  "O8-(3).2_2",  "O8-(3).2_3",  "O8-(3).2^2"  ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">];;</span>
</pre></div>

<p>Analogously, the automorphism groups <span class="SimpleMath">L_3(4).D_12</span> of <span class="SimpleMath">L_3(4)</span> and <span class="SimpleMath">U_4(3).D_8</span> of <span class="SimpleMath">U_4(3)</span>, and the subgroup <span class="SimpleMath">O_8^+(3).D_8</span> of the automorphism group <span class="SimpleMath">O_8^+(3).S_4</span> have factor groups that are isomorphic with <span class="SimpleMath">2^2</span>; in these cases, we choose <span class="SimpleMath">G = L_3(4).3</span>, <span class="SimpleMath">G = U_4(3).2_1</span>, and <span class="SimpleMath">G = O_8^+(3).2_1</span>, respectively.</p>

<p>Also the group <span class="SimpleMath">2^2.L_3(4).D_12</span> has a factor group isomorphic with <span class="SimpleMath">2^2</span>. Note that the character tables of <span class="SimpleMath">L_3(4).D_12</span> and <span class="SimpleMath">2^2.L_3(4).D_12</span> have been constructed already in Section <a href="chap2.html#X80F9BC057980A9E9"><span class="RefLink">2.5-2</span></a>.</p>

<p>The automorphism groups of <span class="SimpleMath">L_4(4)</span> and <span class="SimpleMath">U_4(5)</span> have the structure <span class="SimpleMath">L_4(4).2^2</span> and <span class="SimpleMath">U_4(5).2^2</span>, respectively; their tables are contained in the <strong class="pkg">GAP</strong> Character Table Library but not in the <strong class="pkg">Atlas</strong>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( listGV4, [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "L3(4).3", "L3(4).6",     "L3(4).3.2_2", "L3(4).3.2_3", "L3(4).D12"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "2^2.L3(4).3", "2^2.L3(4).6", "2^2.L3(4).3.2_2", "2^2.L3(4).3.2_3",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                                        "2^2.L3(4).D12" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "U4(3).2_1", "U4(3).4", "U4(3).(2^2)_{122}", "U4(3).(2^2)_{133}",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                                             "U4(3).D8" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "O8+(3).2_1", "O8+(3).(2^2)_{111}", "O8+(3).(2^2)_{122}", "O8+(3).4",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                                            "O8+(3).D8" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "L4(4)",   "L4(4).2_1",   "L4(4).2_2",   "L4(4).2_3",   "L4(4).2^2"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ "U4(5)",   "U4(5).2_1",   "U4(5).2_2",   "U4(5).2_3",   "U4(5).2^2"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">] );</span>
</pre></div>

<p>Now we proceed in two steps, the computation of the possible ordinary character tables from the ordinary tables of the relevant subgroups, and then the computation of the Brauer tables from the Brauer tables of the relevant subgroups and from the ordinary table of the group.</p>

<p>The following function first computes the possible triples of actions on the subgroups <span class="SimpleMath">G.2_i</span>, using the function <code class="func">PossibleActionsForTypeGV4</code> (<a href="..//doc/chap5.html#X7CCD5A2979883144"><span class="RefLink">CTblLib: PossibleActionsForTypeGV4</span></a>). Then the union of the candidate tables for these actions is computed, this list is returned in the end. and representatives of classes of permutation equivalent candidates are inspected further with consistency checks. If there is a unique solution up to permutation equivalence, this table is compared with the one that is contained in the <strong class="pkg">GAP</strong> Character Table Library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstructOrdinaryGV4Table:= function( tblG, tblsG2, name, lib )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     local acts, nam, poss, reps, i, trans;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     # Compute the possible actions for the ordinary tables.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     acts:= PossibleActionsForTypeGV4( tblG, tblsG2 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     # Compute the possible ordinary tables for the given actions.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     nam:= Concatenation( "new", name );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= Concatenation( List( acts, triple -&gt; </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         PossibleCharacterTablesOfTypeGV4( tblG, tblsG2, triple, nam ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     # Test the possibilities for permutation equivalence.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     reps:= RepresentativesCharacterTables( poss );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if 1 &lt; Length( reps ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  ", name, ": ", Length( reps ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              " equivalence classes\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     elif Length( reps ) = 0 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#E  ", name, ": no solution\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       # Compare the computed table with the library table.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if not IsCharacterTable( lib ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#I  no library table for ", name, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         PrintToLib( name, poss[1].table );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         for i in [ 1 .. 3 ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( LibraryFusion( tblsG2[i],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                      rec( name:= name, map:= poss[1].G2fusGV4[i] ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         trans:= TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if not IsRecord( trans ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed table and library table for ", name,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         # Compare the computed fusions with the stored ones.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if List( poss[1].G2fusGV4, x -&gt; OnTuples( x, trans.columns ) )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                &lt;&gt; List( tblsG2, x -&gt; GetFusionMap( x, lib ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed and stored fusions for ", name,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     return poss;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   end;;</span>
</pre></div>

<p>The following function computes, for all those prime divisors <span class="SimpleMath">p</span> of the group order in question such that the <span class="SimpleMath">p</span>-modular Brauer tables of the subgroups <span class="SimpleMath">G.2_i</span> are available, the possible <span class="SimpleMath">p</span>-modular Brauer tables. If the solution is unique up to permutation equivalence, it is compared with the table that is contained in the <strong class="pkg">GAP</strong> Character Table Library.</p>

<p>It may happen (even in the case that the ordinary character table is unique up to permutation equivalence) that some candidates for the ordinary character table are excluded due to information provided by some <span class="SimpleMath">p</span>-modular table. In this case, a message is printed, and the ordinary character table from the <strong class="pkg">GAP</strong> Character Table Library is checked again under the additional restrictions.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstructModularGV4Tables:= function( tblG, tblsG2, ordposs,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                         ordlibtblGV4 )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     local name, modposs, primes, checkordinary, i, record, p, tmodp,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           t2modp, poss, modlib, trans, reps;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if not IsCharacterTable( ordlibtblGV4 ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  no ordinary library table ...\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       return [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     name:= Identifier( ordlibtblGV4 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modposs:= List( ordposs, x -&gt; [] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     primes:= ShallowCopy( PrimeDivisors( Size( tblG ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ordposs:= ShallowCopy( ordposs );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     checkordinary:= false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for i in [ 1 .. Length( ordposs ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       record:= ordposs[i];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       for p in primes do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         tmodp := tblG  mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         t2modp:= List( tblsG2, t2 -&gt; t2 mod p );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if IsCharacterTable( tmodp ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            ForAll( t2modp, IsCharacterTable ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           poss:= PossibleCharacterTablesOfTypeGV4( tmodp, t2modp,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                      record.table, record.G2fusGV4 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           poss:= RepresentativesCharacterTables( poss );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           if   Length( poss ) = 0 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Print( "#I  excluded cand. ", i, " (out of ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    Length( ordposs ), ") for ", name, " by ", p,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    "-mod. table\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Unbind( ordposs[i] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Unbind( modposs[i] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             checkordinary:= true;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             break;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           elif Length( poss ) = 1 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             # Compare the computed table with the library table.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             modlib:= ordlibtblGV4 mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             if IsCharacterTable( modlib ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               trans:= TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                           poss[1].table, modlib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               if not IsRecord( trans ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 Print( "#E  computed table and library table for ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                        name, " mod ", p, " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               Print( "#I  no library table for ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                      name, " mod ", p, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               PrintToLib( name, poss[1].table );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Print( "#I  ", name, " mod ", p, ": ", Length( poss ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    " equivalence classes\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Add( modposs[i], poss );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         elif i = 1 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#I  not all input tables for ", name, " mod ", p,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " available\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           primes:= Difference( primes, [ p ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if checkordinary then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       # Test whether the ordinary table is admissible.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       ordposs:= Compacted( ordposs );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modposs:= Compacted( modposs );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       reps:= RepresentativesCharacterTables( ordposs );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if 1 &lt; Length( reps ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#I  ", name, ": ", Length( reps ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                " equivalence classes (ord. table)\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       elif Length( reps ) = 0 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#E  ", name, ": no solution (ord. table)\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         # Compare the computed table with the library table.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         trans:= TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     ordposs[1].table, ordlibtblGV4 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if not IsRecord( trans ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed table and library table for ", name,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         # Compare the computed fusions with the stored ones.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if List( ordposs[1].G2fusGV4, x -&gt; OnTuples( x, trans.columns ) )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              &lt;&gt; List( tblsG2, x -&gt; GetFusionMap( x, ordlibtblGV4 ) ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed and stored fusions for ", name,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     return rec( ordinary:= ordposs, modular:= modposs );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   end;;</span>
</pre></div>

<p>Finally, here is the loop over the list of tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in listGV4 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblG   := CharacterTable( input[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblsG2 := List( input{ [ 2 .. 4 ] }, CharacterTable );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib    := CharacterTable( input[5] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss   := ConstructOrdinaryGV4Table( tblG, tblsG2, input[5], lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#I  excluded cand. 2 (out of 2) for L3(4).2^2 by 3-mod. table
#I  excluded cand. 2 (out of 8) for 2^2.L3(4).2^2 by 7-mod. table
#I  excluded cand. 3 (out of 8) for 2^2.L3(4).2^2 by 5-mod. table
#I  excluded cand. 4 (out of 8) for 2^2.L3(4).2^2 by 5-mod. table
#I  excluded cand. 5 (out of 8) for 2^2.L3(4).2^2 by 5-mod. table
#I  excluded cand. 6 (out of 8) for 2^2.L3(4).2^2 by 5-mod. table
#I  excluded cand. 7 (out of 8) for 2^2.L3(4).2^2 by 7-mod. table
#I  excluded cand. 2 (out of 2) for 3.L3(4).2^2 by 3-mod. table
#I  excluded cand. 2 (out of 2) for L3(9).2^2 by 7-mod. table
#I  not all input tables for O8+(3).(2^2)_{122} mod 3 available
#I  not all input tables for O8-(3).2^2 mod 3 available
#I  not all input tables for O8-(3).2^2 mod 5 available
#I  not all input tables for O8-(3).2^2 mod 7 available
#I  not all input tables for O8-(3).2^2 mod 13 available
#I  not all input tables for O8-(3).2^2 mod 41 available
#I  excluded cand. 2 (out of 2) for L3(4).D12 by 3-mod. table
#I  excluded cand. 2 (out of 2) for 2^2.L3(4).D12 by 7-mod. table
#I  not all input tables for O8+(3).D8 mod 3 available
#I  not all input tables for L4(4).2^2 mod 3 available
#I  not all input tables for L4(4).2^2 mod 5 available
#I  not all input tables for L4(4).2^2 mod 7 available
#I  not all input tables for L4(4).2^2 mod 17 available
#I  not all input tables for U4(5).2^2 mod 2 available
#I  not all input tables for U4(5).2^2 mod 3 available
#I  not all input tables for U4(5).2^2 mod 5 available
#I  not all input tables for U4(5).2^2 mod 7 available
#I  not all input tables for U4(5).2^2 mod 13 available
</pre></div>

<p>The groups <span class="SimpleMath">3.A_6.2^2</span>, <span class="SimpleMath">3.L_3(4).2^2</span>, and <span class="SimpleMath">3_2.U_4(3).(2^2)_133</span> have also the structure <span class="SimpleMath">M.G.A</span>, with <span class="SimpleMath">M.G</span> equal to <span class="SimpleMath">3.A_6.2_3</span>, <span class="SimpleMath">3.L_3(4).2_1</span>, and <span class="SimpleMath">3_2.U_4(3).2_3</span>, respectively, and <span class="SimpleMath">G.A</span> equal to <span class="SimpleMath">A_6.2^2</span>, <span class="SimpleMath">L_3(4).2^2</span>, and <span class="SimpleMath">U_4(3).(2^2)_133</span>, respectively (see Section <a href="chap2.html#X7ED45AB379093A70"><span class="RefLink">2.4-3</span></a>).</p>

<p>Similarly, the group <span class="SimpleMath">L_3(4).D_12</span> has also the structure <span class="SimpleMath">G.S_3</span>, with <span class="SimpleMath">G = L_3(4).2_1</span>, <span class="SimpleMath">G.2 = L_3(4).2^2</span>, and <span class="SimpleMath">G.3 = L_3(4).6</span>, respectively (see Section <a href="chap2.html#X80F9BC057980A9E9"><span class="RefLink">2.5-2</span></a>).</p>

<p><a id="X869B65D3863EDEC3" name="X869B65D3863EDEC3"></a></p>

<h5>2.6-3 <span class="Heading">The Character Table of <span class="SimpleMath">S_4(9).2^2</span> (September 2011)</span></h5>

<p>The available functions yield two possibilities for the ordinary character table of <span class="SimpleMath">S_4(9).2^2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "S4(9)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblsG2:= List( [ "S4(9).2_1", "S4(9).2_2", "S4(9).2_3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib:= CharacterTable( "S4(9).2^2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, "newS4(9).2^2", lib );;</span>
#I  newS4(9).2^2: 2 equivalence classes
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= RepresentativesCharacterTables( poss );;</span>
</pre></div>

<p>The two candidates differ w. r. t. the action of <span class="SimpleMath">S_4(9).2^2</span> on the classes of element order <span class="SimpleMath">80</span> in <span class="SimpleMath">S_4(9).2_2</span>. In the two possible tables, each element of order <span class="SimpleMath">80</span> is conjugate to its third power or to its <span class="SimpleMath">13</span>-th power, respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">order80:= PositionsProperty( OrdersClassRepresentatives( tblsG2[2] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 x -&gt; x = 80 );</span>
[ 98, 99, 100, 101, 102, 103, 104, 105 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( poss, r -&gt; r.G2fusGV4[2]{ order80 } );</span>
[ [ 77, 77, 78, 79, 80, 78, 79, 80 ], 
  [ 77, 78, 79, 79, 77, 80, 80, 78 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerMap( tblsG2[2], 3 ){ order80 };</span>
[ 99, 98, 103, 104, 105, 100, 101, 102 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerMap( tblsG2[2], 13 ){ order80 };</span>
[ 102, 105, 101, 100, 98, 104, 103, 99 ]
</pre></div>

<p>We claim that the first candidate is the correct one. For that, first note that <span class="SimpleMath">S_4(9).2_2</span> is the extension of the simple group by a diagonal automorphism. (An easy way to see this is that for any subgroup of <span class="SimpleMath">S_4(9)</span> isomorphic with <span class="SimpleMath">S_2(81) ≅ L_2(81)</span>, the extension by a diagonal automorphism contains elements of order <span class="SimpleMath">80</span> –this group is isomorphic with PGL<span class="SimpleMath">(2,81)</span>– and only <span class="SimpleMath">S_4(9).2_2</span> contains elements of order <span class="SimpleMath">80</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( tblsG2, x -&gt; 80 in OrdersClassRepresentatives( x ) );</span>
[ false, true, false ]
</pre></div>

<p>Now the field automorphism of <span class="SimpleMath">S_4(9).2_2</span> maps each element <span class="SimpleMath">x</span> of order <span class="SimpleMath">80</span> in <span class="SimpleMath">S_4(9).2_2</span> to a conjugate of <span class="SimpleMath">x^3</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= poss[1].table;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tbl, lib ) );</span>
true
</pre></div>

<p><a id="X7B38006380618543" name="X7B38006380618543"></a></p>

<h5>2.6-4 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">2.L_3(4).2^2</span>
(June 2010)</span></h5>

<p>The outer automorphism group of the group <span class="SimpleMath">L_3(4)</span> is a dihedral group of order <span class="SimpleMath">12</span>; its Sylow <span class="SimpleMath">2</span>-subgroups are Klein four groups, so there is a unique almost simple group <span class="SimpleMath">H</span> of the type <span class="SimpleMath">L_3(4).2^2</span>, up to isomorphism. In this section, we construct the character tables of the double covers of this group with the approach from Section <a href="chap2.html#X7D3EF3BC83BE05CF"><span class="RefLink">2.3-3</span></a>.</p>

<p>The group <span class="SimpleMath">H</span> has three subgroups of index two, of the types <span class="SimpleMath">L_3(4).2_1</span>, <span class="SimpleMath">L_3(4).2_2</span>, and <span class="SimpleMath">L_3(4).2_3</span>, respectively. So any double cover of <span class="SimpleMath">H</span> contains one subgroup of each of the types <span class="SimpleMath">2.L_3(4).2_1</span>, <span class="SimpleMath">2.L_3(4).2_2</span>, and <span class="SimpleMath">2.L_3(4).2_3</span>, and there are two isoclinic variants of each of these group to consider, see Section <a href="chap2.html#X78F41D2A78E70BEE"><span class="RefLink">2.2-6</span></a>. So we start with eight different inputs for the construction of the character tables of double covers.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">names:= List( [ 1 .. 3 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 i -&gt; Concatenation( "2.L3(4).2_", String( i ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbls:= List( names, CharacterTable );</span>
[ CharacterTable( "2.L3(4).2_1" ), CharacterTable( "2.L3(4).2_2" ), 
  CharacterTable( "2.L3(4).2_3" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">isos:= List( names, nam -&gt; CharacterTable( Concatenation( nam, "*" ) ) );</span>
[ CharacterTable( "Isoclinic(2.L3(4).2_1)" ), 
  CharacterTable( "Isoclinic(2.L3(4).2_2)" ), 
  CharacterTable( "Isoclinic(2.L3(4).2_3)" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], tbls[2], tbls[3], "2.L3(4).(2^2)_{123}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], isos[2], tbls[3], "2.L3(4).(2^2)_{12*3}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], tbls[2], isos[3], "2.L3(4).(2^2)_{123*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], isos[2], isos[3], "2.L3(4).(2^2)_{12*3*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], tbls[2], tbls[3], "2.L3(4).(2^2)_{1*23}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], isos[2], tbls[3], "2.L3(4).(2^2)_{1*2*3}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], tbls[2], isos[3], "2.L3(4).(2^2)_{1*23*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], isos[2], isos[3], "2.L3(4).(2^2)_{1*2*3*}" ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "2.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblsG2:= input{ [ 1 .. 3 ] };</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib:= CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, input[4], lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Append( result, RepresentativesCharacterTables( poss ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#I  excluded cand. 2 (out of 8) for 2.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 2.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 2.L3(4).(2^2)_{123} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 2.L3(4).(2^2)_{123} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 2.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 2.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 2 (out of 8) for 2.L3(4).(2^2)_{12*3*} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 2.L3(4).(2^2)_{12*3*} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 2.L3(4).(2^2)_{12*3*} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 2.L3(4).(2^2)_{12*3*} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 2.L3(4).(2^2)_{12*3*} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 2.L3(4).(2^2)_{12*3*} by 
5-mod. table
#I  excluded cand. 2 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by 
5-mod. table
#I  excluded cand. 2 (out of 8) for 2.L3(4).(2^2)_{1*23*} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 2.L3(4).(2^2)_{1*23*} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 2.L3(4).(2^2)_{1*23*} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 2.L3(4).(2^2)_{1*23*} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 2.L3(4).(2^2)_{1*23*} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 2.L3(4).(2^2)_{1*23*} by 
5-mod. table
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= List( result, x -&gt; x.table );</span>
[ CharacterTable( "new2.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new2.L3(4).(2^2)_{12*3}" ), 
  CharacterTable( "new2.L3(4).(2^2)_{123*}" ), 
  CharacterTable( "new2.L3(4).(2^2)_{12*3*}" ), 
  CharacterTable( "new2.L3(4).(2^2)_{1*23}" ), 
  CharacterTable( "new2.L3(4).(2^2)_{1*2*3}" ), 
  CharacterTable( "new2.L3(4).(2^2)_{1*23*}" ), 
  CharacterTable( "new2.L3(4).(2^2)_{1*2*3*}" ) ]
</pre></div>

<p>We get exactly one character table for each input. For each of these tables, there are three possibilities to form an isoclinic table, corresponding to the three subgroups of index two. It turns out that the eight solutions form two orbits under forming some isoclinic table. Tables in different orbits are essentially different, already their numbers of conjugacy classes differ.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( result, NrConjugacyClasses );</span>
[ 39, 33, 33, 39, 33, 39, 39, 33 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= result[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= List( nsg, x -&gt; CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( iso, x -&gt; PositionProperty( result, y -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           TransformingPermutationsCharacterTables( x, y ) &lt;&gt; fail ) );</span>
[ 4, 7, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= result[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= List( nsg, x -&gt; CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( iso, x -&gt; PositionProperty( result, y -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           TransformingPermutationsCharacterTables( x, y ) &lt;&gt; fail ) );</span>
[ 3, 8, 5 ]
</pre></div>

<p>Up to now, it is not clear that the character tables we have constructed are really the character tables of some groups. The existence of groups for the first orbit of character tables can be established as follows.</p>

<p>The group <span class="SimpleMath">U_6(2).2</span> contains a maximal subgroup <span class="SimpleMath">M</span> of the type <span class="SimpleMath">L_3(4).2^2</span>, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 115]</a>. Its derived subgroup <span class="SimpleMath">M'</span> of the type <span class="SimpleMath">L_3(4)</span> lies inside <span class="SimpleMath">U_6(2)</span>, and we claim that the preimage of <span class="SimpleMath">M'</span> under the natural epimorphism from <span class="SimpleMath">2.U_6(2)</span> to <span class="SimpleMath">U_6(2)</span> is a double cover of <span class="SimpleMath">L_3(4)</span>. Unfortunately, <span class="SimpleMath">L_3(4)</span> admits class fusions into <span class="SimpleMath">2.U_6(2)</span>, so this criterion cannot be used.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l34:= CharacterTable( "L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">u:= CharacterTable( "U6(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2u:= CharacterTable( "2.U6(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= PossibleClassFusions( l34, 2u );</span>
[ [ 1, 5, 12, 16, 22, 22, 23, 23, 41, 41 ], 
  [ 1, 5, 12, 22, 16, 22, 23, 23, 41, 41 ], 
  [ 1, 5, 12, 22, 22, 16, 23, 23, 41, 41 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( l34 );</span>
[ 1, 2, 3, 4, 4, 4, 5, 5, 7, 7 ]
</pre></div>

<p>Consider the three classes of elements of order four in <span class="SimpleMath">L_3(4)</span>. Under the possible fusions into <span class="SimpleMath">2.U_6(2)</span>, they are mapped to the classes <span class="SimpleMath">16</span> and <span class="SimpleMath">22</span>, which are preimages of the classes <span class="SimpleMath">10</span> and <span class="SimpleMath">14</span> (<code class="code">4C</code> and <code class="code">4G</code>) of <span class="SimpleMath">U_6(2)</span>. Note that the maximal subgroups of type <span class="SimpleMath">L_3(4).2</span> in <span class="SimpleMath">U_6(2)</span> extend to <span class="SimpleMath">L_3(4).6</span> type subgroups in <span class="SimpleMath">U_6(2).3</span>, and the three classes <code class="code">4C</code>, <code class="code">4D</code>, <code class="code">4E</code> form one orbit under the action of an outer automorphism of order three of <span class="SimpleMath">U_6(2)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( 2u, u ){ [ 16, 22 ] };</span>
[ 10, 14 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassNames( u, "ATLAS" ){ [ 10, 14 ] };</span>
[ "4C", "4G" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( u, CharacterTable( "U6(2).3" ) );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 11, 12, 13, 14, 15, 16, 17, 
  18, 19, 20, 21, 22, 23, 24, 24, 24, 25, 26, 27, 28, 29, 30, 31, 32, 
  33, 34, 35, 36, 36, 36, 37, 38, 39, 40 ]
</pre></div>

<p>This means that any <span class="SimpleMath">L_3(4)</span> type subgroup of <span class="SimpleMath">U_6(2)</span> that extends to an <span class="SimpleMath">L_3(4).6</span> type subgroup in <span class="SimpleMath">U_6(2).3</span> either contains elements from all three classes <code class="code">4C</code>, <code class="code">4D</code>, <code class="code">4E</code> of <span class="SimpleMath">U_6(2)</span>, or contains no element from these classes. Thus we know that any double cover of <span class="SimpleMath">U_6(2).2</span> contains a double cover of <span class="SimpleMath">L_3(4).2^2</span>. Only the first of our result tables admits a class fusion into the table of <span class="SimpleMath">2.U_6(2).2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2u2:= CharacterTable( "2.U6(2).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= List( result, x -&gt; PossibleClassFusions( x, 2u2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( fus, Length );</span>
[ 4, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>

<p>As a consequence, the fourth result table is established as that of a maximal subgroup of the group isoclinic to <span class="SimpleMath">2.U_6(2).2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2u2iso:= CharacterTableIsoclinic( 2u2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= List( result, x -&gt; PossibleClassFusions( x, 2u2iso ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 0, 4, 0, 0, 0, 0 ]
</pre></div>

<p>Similarly, the group <span class="SimpleMath">HS.2</span> contains a maximal subgroup <span class="SimpleMath">M</span> of the type <span class="SimpleMath">L_3(4).2^2</span>, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 80]</a>. Its derived subgroup <span class="SimpleMath">M'</span> of the type <span class="SimpleMath">L_3(4)</span> lies inside <span class="SimpleMath">HS</span>, and the preimage of <span class="SimpleMath">M'</span> under the natural epimorphism from <span class="SimpleMath">2.HS</span> to <span class="SimpleMath">HS</span> is a double cover of <span class="SimpleMath">L_3(4)</span>, because <span class="SimpleMath">L_3(4)</span> does not admit a class fusion into <span class="SimpleMath">2.HS.2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h2:= CharacterTable( "HS.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2h2:= CharacterTable( "2.HS.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossibleClassFusions( l34, 2h2 );</span>
[  ]
</pre></div>

<p>Only the fifth of our result tables admits a class fusion into <span class="SimpleMath">2.HS.2</span>, which means that <span class="SimpleMath">2.L_3(4).(2^2)_1∗23</span> is a subgroup of <span class="SimpleMath">2.HS.2</span>, and the eighth result table –<span class="SimpleMath">2.L_3(4).(2^2)_1∗2∗3∗}</span>– admits a class fusion into the isoclinic variant of <span class="SimpleMath">2.HS.2</span> This shows the existence of groups for the tables from the second orbit.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= List( result, x -&gt; PossibleClassFusions( x, 2h2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 0, 0, 4, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2h2iso:= CharacterTableIsoclinic( 2h2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= List( result, x -&gt; PossibleClassFusions( x, 2h2iso ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 0, 0, 0, 0, 0, 4 ]
</pre></div>

<p><a id="X79818ABD7E972370" name="X79818ABD7E972370"></a></p>

<h5>2.6-5 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">6.L_3(4).2^2</span>
(October 2011)</span></h5>

<p>We have two approaches for constructing the character tables of these groups.</p>

<p>First, we may regard them as normal products of the three normal subgroups of index two, each of them having the structure <span class="SimpleMath">6.L_3(4).2</span>, and use the approach from Section <a href="chap2.html#X7D3EF3BC83BE05CF"><span class="RefLink">2.3-3</span></a>, as we did in Section <a href="chap2.html#X7B38006380618543"><span class="RefLink">2.6-4</span></a> for the groups of the structure <span class="SimpleMath">2.L_3(4).2^2</span>.</p>

<p>Second, we may use the approach from Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>. Note that the factor group <span class="SimpleMath">L_3(4).2^2</span> contains each of the three groups <span class="SimpleMath">L_3(4).2_i</span> as a subgroup, for <span class="SimpleMath">1 ≤ i ≤ 3</span>, and the groups of the type <span class="SimpleMath">6.L_3(4).2_1</span> have a centre of order six, whereas the centres of the <span class="SimpleMath">6.L_3(4).2_2</span> and <span class="SimpleMath">6.L_3(4).2_3</span> type groups have order two. For that, the character tables of the subgroups <span class="SimpleMath">6.L_3(4).2_1</span> and <span class="SimpleMath">6.L_3(4).2_1^∗</span> are needed, as well as the character tables of the eight possible factor groups <span class="SimpleMath">2.L_3(4).2^2</span>; the latter tables are known from Section <a href="chap2.html#X7B38006380618543"><span class="RefLink">2.6-4</span></a>.</p>

<p>We show both approaches. (The second approach is better suited for storing the character tables in the Character Table Library, since the irreducible characters need not be stored, and since the Brauer tables of the groups can be derived from the Brauer tables of the compound tables.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbls:= List( [ "1", "2", "3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     i -&gt; CharacterTable( Concatenation( "6.L3(4).2_", i ) ) );</span>
[ CharacterTable( "6.L3(4).2_1" ), CharacterTable( "6.L3(4).2_2" ), 
  CharacterTable( "6.L3(4).2_3" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">isos:= List( [ "1", "2", "3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     i -&gt; CharacterTable( Concatenation( "6.L3(4).2_", i, "*" ) ) );</span>
[ CharacterTable( "Isoclinic(6.L3(4).2_1)" ), 
  CharacterTable( "Isoclinic(6.L3(4).2_2)" ), 
  CharacterTable( "Isoclinic(6.L3(4).2_3)" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], tbls[2], tbls[3], "6.L3(4).(2^2)_{123}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], isos[2], tbls[3], "6.L3(4).(2^2)_{12*3}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], tbls[2], isos[3], "6.L3(4).(2^2)_{123*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], isos[2], isos[3], "6.L3(4).(2^2)_{12*3*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], tbls[2], tbls[3], "6.L3(4).(2^2)_{1*23}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], isos[2], tbls[3], "6.L3(4).(2^2)_{1*2*3}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], tbls[2], isos[3], "6.L3(4).(2^2)_{1*23*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], isos[2], isos[3], "6.L3(4).(2^2)_{1*2*3*}" ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "6.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblsG2:= input{ [ 1 .. 3 ] };</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib:= CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, input[4], lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Append( result, RepresentativesCharacterTables( poss ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#I  excluded cand. 2 (out of 8) for 6.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 6.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 6.L3(4).(2^2)_{123} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 6.L3(4).(2^2)_{123} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 6.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 6.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 2 (out of 8) for 6.L3(4).(2^2)_{12*3*} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 6.L3(4).(2^2)_{12*3*} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 6.L3(4).(2^2)_{12*3*} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 6.L3(4).(2^2)_{12*3*} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 6.L3(4).(2^2)_{12*3*} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 6.L3(4).(2^2)_{12*3*} by 
5-mod. table
#I  excluded cand. 2 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by 
5-mod. table
#I  excluded cand. 2 (out of 8) for 6.L3(4).(2^2)_{1*23*} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 6.L3(4).(2^2)_{1*23*} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 6.L3(4).(2^2)_{1*23*} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 6.L3(4).(2^2)_{1*23*} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 6.L3(4).(2^2)_{1*23*} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 6.L3(4).(2^2)_{1*23*} by 
5-mod. table
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= List( result, x -&gt; x.table );</span>
[ CharacterTable( "new6.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{12*3}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{123*}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{12*3*}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{1*23}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{1*2*3}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{1*23*}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{1*2*3*}" ) ]
</pre></div>

<p>As in Section <a href="chap2.html#X7B38006380618543"><span class="RefLink">2.6-4</span></a>, we get exactly one character table for each input, and the eight solutions lie in two orbits under isoclinism.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( result, NrConjugacyClasses );</span>
[ 59, 53, 53, 59, 53, 59, 59, 53 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= result[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= List( nsg, x -&gt; CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( iso, x -&gt; PositionProperty( result, y -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           TransformingPermutationsCharacterTables( x, y ) &lt;&gt; fail ) );</span>
[ 7, 6, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= result[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= List( nsg, x -&gt; CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( iso, x -&gt; PositionProperty( result, y -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           TransformingPermutationsCharacterTables( x, y ) &lt;&gt; fail ) );</span>
[ 8, 5, 3 ]
</pre></div>

<p>Up to now, it is not clear that the character tables we have constructed are really the character tables of some groups. The existence of groups for the first orbit of character tables can be established as follows.</p>

<p>We have shown in Section <a href="chap2.html#X7B38006380618543"><span class="RefLink">2.6-4</span></a> that the maximal subgroups <span class="SimpleMath">M</span> of the type <span class="SimpleMath">L_3(4).2^2</span> in <span class="SimpleMath">U_6(2).2</span> lift to double covers <span class="SimpleMath">2.L_3(4).2^2</span> in <span class="SimpleMath">2.U_6(2).2</span>. The preimages of these groups under the natural epimorphism from <span class="SimpleMath">6.U_6(2).2</span> have the structure <span class="SimpleMath">6.L_3(4).2^2</span>, where the derived subgroup is the six-fold cover of <span class="SimpleMath">L_3(4)</span>; this follows from the fact that <span class="SimpleMath">6.U_6(2)</span> does not admit a class fusion from the double cover <span class="SimpleMath">2.L_3(4)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2l34:= CharacterTable( "2.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">6u:= CharacterTable( "6.U6(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= PossibleClassFusions( 2l34, 6u );</span>
[  ]
</pre></div>

<p>This establishes the first and the fourth result as character tables of subgroups of <span class="SimpleMath">6.U_6(2)</span> and its isoclinic variant, respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">6u2:= CharacterTable( "6.U6(2).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= List( result, x -&gt; PossibleClassFusions( x, 6u2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( fus, Length );</span>
[ 8, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">6u2iso:= CharacterTableIsoclinic( 6u2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= List( result, x -&gt; PossibleClassFusions( x, 6u2iso ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 0, 8, 0, 0, 0, 0 ]
</pre></div>

<p>Similarly, the group <span class="SimpleMath">G_2(4).2</span> contains a maximal subgroup <span class="SimpleMath">M</span> of the type <span class="SimpleMath">3.L_3(4).2^2</span>, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 97]</a>. Its derived subgroup <span class="SimpleMath">M'</span> of the type <span class="SimpleMath">3.L_3(4)</span> lies inside <span class="SimpleMath">G_2(4)</span>, and the preimage of <span class="SimpleMath">M'</span> under the natural epimorphism from <span class="SimpleMath">2.G_2(4)</span> to <span class="SimpleMath">G_2(4)</span> is a double cover of <span class="SimpleMath">3.L_3(4)</span>, because <span class="SimpleMath">3.L_3(4)</span> does not admit a class fusion into <span class="SimpleMath">2.G_2(4).2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3l34:= CharacterTable( "3.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g2:= CharacterTable( "G2(4).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2g2:= CharacterTable( "2.G2(4).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PossibleClassFusions( 3l34, 2g2 );</span>
[  ]
</pre></div>

<p>Only the third and eighth of our result tables admit a class fusion into <span class="SimpleMath">2.G_2(4).2</span> and its isoclinic variant, respectively. This shows the existence of groups for the tables from the second orbit.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= List( result, x -&gt; PossibleClassFusions( x, 2g2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 16, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2g2iso:= CharacterTableIsoclinic( 2g2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= List( result, x -&gt; PossibleClassFusions( x, 2g2iso ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 0, 0, 0, 0, 0, 16 ]
</pre></div>

<p>Now we try the second approach and compare the results.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">names:= [ "L3(4).(2^2)_{123}", "L3(4).(2^2)_{12*3}",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             "L3(4).(2^2)_{123*}", "L3(4).(2^2)_{12*3*}" ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs1:= List( names, nam -&gt; [ "6.L3(4).2_1", "2.L3(4).2_1",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Concatenation( "2.", nam ), Concatenation( "6.", nam ) ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">names:= List( names, nam -&gt; ReplacedString( nam, "1", "1*" ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs2:= List( names, nam -&gt; [ "6.L3(4).2_1*", "2.L3(4).2_1*",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Concatenation( "2.", nam ), Concatenation( "6.", nam ) ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs:= Concatenation( inputs1, inputs2 );</span>
[ [ "6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{123}", 
      "6.L3(4).(2^2)_{123}" ], 
  [ "6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{12*3}", 
      "6.L3(4).(2^2)_{12*3}" ], 
  [ "6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{123*}", 
      "6.L3(4).(2^2)_{123*}" ], 
  [ "6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{12*3*}", 
      "6.L3(4).(2^2)_{12*3*}" ], 
  [ "6.L3(4).2_1*", "2.L3(4).2_1*", "2.L3(4).(2^2)_{1*23}", 
      "6.L3(4).(2^2)_{1*23}" ], 
  [ "6.L3(4).2_1*", "2.L3(4).2_1*", "2.L3(4).(2^2)_{1*2*3}", 
      "6.L3(4).(2^2)_{1*2*3}" ], 
  [ "6.L3(4).2_1*", "2.L3(4).2_1*", "2.L3(4).(2^2)_{1*23*}", 
      "6.L3(4).(2^2)_{1*23*}" ], 
  [ "6.L3(4).2_1*", "2.L3(4).2_1*", "2.L3(4).(2^2)_{1*2*3*}", 
      "6.L3(4).(2^2)_{1*2*3*}" ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result2:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for  input in inputs do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblMG := CharacterTable( input[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblG  := CharacterTable( input[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblGA := CharacterTable( input[3] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     name  := Concatenation( "new", input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib   := CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Append( result2, poss );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result2:= List( result2, x -&gt; x.table );</span>
[ CharacterTable( "new6.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{12*3}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{123*}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{12*3*}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{1*23}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{1*2*3}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{1*23*}" ), 
  CharacterTable( "new6.L3(4).(2^2)_{1*2*3*}" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">trans:= List( [ 1 .. 8 ], i -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       TransformingPermutationsCharacterTables( result[i],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           result2[i] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( trans, IsRecord );</span>
true
</pre></div>

<p><a id="X878889308653435F" name="X878889308653435F"></a></p>

<h5>2.6-6 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">2.U_4(3).2^2</span>
(February 2012)</span></h5>

<p>The outer automorphism group of the group <span class="SimpleMath">U_4(3)</span> is a dihedral group of order <span class="SimpleMath">8</span>. There are two almost simple groups of the type <span class="SimpleMath">U_4(3).2^2</span>, up to isomorphism, denoted as <span class="SimpleMath">U_4(3).(2^2)_122</span> and <span class="SimpleMath">U_4(3).(2^2)_133</span>, respectively. Note that <span class="SimpleMath">U_4(3).2_1</span> is the extension by the central involution of the outer automorphism group of <span class="SimpleMath">U_4(3)</span>, the other two subgroups of index two in <span class="SimpleMath">U_4(3).(2^2)_122</span> are <span class="SimpleMath">U_4(3).2_2</span> and <span class="SimpleMath">U_4(3).2^'_2</span>, respectively, and the other two subgroups of index two in <span class="SimpleMath">U_4(3).(2^2)_133</span> are <span class="SimpleMath">U_4(3).2_3</span> and <span class="SimpleMath">U_4(3).2^'_3</span>, respectively.</p>

<p>Since Aut<span class="SimpleMath">( U_4(3) )</span> possesses a double cover (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 52]</a>), double covers of <span class="SimpleMath">U_4(3).(2^2)_122</span> and <span class="SimpleMath">U_4(3).(2^2)_133</span> exist.</p>

<p>First we deal with the double covers of <span class="SimpleMath">U_4(3).(2^2)_122</span>. Any such group contains one subgroup of the type <span class="SimpleMath">2.U_4(3).2_1</span> and two subgroups of the type <span class="SimpleMath">2.U_4(3).2_2</span>, and there are two isoclinic variants of each of these group to consider, see Section <a href="chap2.html#X78F41D2A78E70BEE"><span class="RefLink">2.2-6</span></a>. Thus we start with six different inputs for the construction of the character tables of double covers.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbls:= List( [ "1", "2", "2'" ], i -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     CharacterTable( Concatenation( "2.U4(3).2_", i ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">isos:= List( [ "1", "2", "2'" ], i -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     CharacterTable( Concatenation( "Isoclinic(2.U4(3).2_", i, ")" ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], tbls[2], tbls[3], "2.U4(3).(2^2)_{122}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], tbls[2], tbls[3], "2.U4(3).(2^2)_{1*22}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], isos[2], tbls[3], "2.U4(3).(2^2)_{12*2}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], isos[2], tbls[3], "2.U4(3).(2^2)_{1*2*2}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], isos[2], isos[3], "2.U4(3).(2^2)_{12*2*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], isos[2], isos[3], "2.U4(3).(2^2)_{1*2*2*}" ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "2.U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblsG2:= input{ [ 1 .. 3 ] };</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib:= CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, input[4], lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Append( result, RepresentativesCharacterTables( poss ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= List( result, x -&gt; x.table );</span>
[ CharacterTable( "new2.U4(3).(2^2)_{122}" ), 
  CharacterTable( "new2.U4(3).(2^2)_{1*22}" ), 
  CharacterTable( "new2.U4(3).(2^2)_{12*2}" ), 
  CharacterTable( "new2.U4(3).(2^2)_{1*2*2}" ), 
  CharacterTable( "new2.U4(3).(2^2)_{12*2*}" ), 
  CharacterTable( "new2.U4(3).(2^2)_{1*2*2*}" ) ]
</pre></div>

<p>We get exactly one character table for each input. For each of these tables, there are three possibilities to form an isoclinic table, corresponding to the three subgroups of index two. It turns out that the six solutions form two orbits under forming some isoclinic table. Tables in different orbits are essentially different, already their numbers of conjugacy classes differ.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( result, NrConjugacyClasses );</span>
[ 87, 102, 102, 87, 87, 102 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= result[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= List( nsg, x -&gt; CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( iso, x -&gt; PositionProperty( result, y -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           TransformingPermutationsCharacterTables( x, y ) &lt;&gt; fail ) );</span>
[ 4, 4, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= result[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= List( nsg, x -&gt; CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( iso, x -&gt; PositionProperty( result, y -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           TransformingPermutationsCharacterTables( x, y ) &lt;&gt; fail ) );</span>
[ 3, 3, 6 ]
</pre></div>

<p>Up to now, it is not clear that the character tables we have constructed are really the character tables of some groups. The existence of groups for the first orbit of character tables can be established as follows.</p>

<p>The group <span class="SimpleMath">O_8^+(3)</span> contains maximal subgroups of the type <span class="SimpleMath">2.U_4(3).2^2</span>, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 140]</a>. Only the first of our result tables admits a class fusion into the table of <span class="SimpleMath">O_8^+(3)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">u:= CharacterTable( "O8+(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= List( result, x -&gt; PossibleClassFusions( x, u ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( fus, Length );</span>
[ 24, 0, 0, 0, 0, 0 ]
</pre></div>

<p>A table in the second orbit belongs to a maximal subgroup of <span class="SimpleMath">O_7(3).2</span>, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 109]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">u:= CharacterTable( "O7(3).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= List( result, x -&gt; PossibleClassFusions( x, u ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 16, 0, 0, 0, 0 ]
</pre></div>

<p>Note that this subgroup of <span class="SimpleMath">O_7(3).2 ≅ SO(7,3)</span> is the orthogonal group GO<span class="SimpleMath">_6^-(3)</span>.</p>

<p>Now we deal with the double covers of <span class="SimpleMath">U_4(3).(2^2)_133</span>. The constructions of the character tables are completely analogous to those in the case of <span class="SimpleMath">U_4(3).(2^2)_122</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbls:= List( [ "1", "3", "3'" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     i -&gt; CharacterTable( Concatenation( "2.U4(3).2_", i ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">isos:= List( [ "1", "3", "3'" ], i -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     CharacterTable( Concatenation( "Isoclinic(2.U4(3).2_", i, ")" ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], tbls[2], tbls[3], "2.U4(3).(2^2)_{133}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], tbls[2], tbls[3], "2.U4(3).(2^2)_{1*33}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], isos[2], tbls[3], "2.U4(3).(2^2)_{13*3}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], isos[2], tbls[3], "2.U4(3).(2^2)_{1*3*3}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], isos[2], isos[3], "2.U4(3).(2^2)_{13*3*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], isos[2], isos[3], "2.U4(3).(2^2)_{1*3*3*}" ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "2.U4(3)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblsG2:= input{ [ 1 .. 3 ] };</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib:= CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, input[4], lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Append( result, RepresentativesCharacterTables( poss ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#I  excluded cand. 2 (out of 4) for 2.U4(3).(2^2)_{1*33} by 
3-mod. table
#I  excluded cand. 3 (out of 4) for 2.U4(3).(2^2)_{1*33} by 
3-mod. table
#I  excluded cand. 2 (out of 4) for 2.U4(3).(2^2)_{13*3} by 
3-mod. table
#I  excluded cand. 3 (out of 4) for 2.U4(3).(2^2)_{13*3} by 
3-mod. table
#I  excluded cand. 2 (out of 4) for 2.U4(3).(2^2)_{1*3*3*} by 
3-mod. table
#I  excluded cand. 3 (out of 4) for 2.U4(3).(2^2)_{1*3*3*} by 
3-mod. table
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= List( result, x -&gt; x.table );</span>
[ CharacterTable( "new2.U4(3).(2^2)_{133}" ), 
  CharacterTable( "new2.U4(3).(2^2)_{1*33}" ), 
  CharacterTable( "new2.U4(3).(2^2)_{13*3}" ), 
  CharacterTable( "new2.U4(3).(2^2)_{1*3*3}" ), 
  CharacterTable( "new2.U4(3).(2^2)_{13*3*}" ), 
  CharacterTable( "new2.U4(3).(2^2)_{1*3*3*}" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( result, NrConjugacyClasses );</span>
[ 69, 72, 72, 69, 69, 72 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= result[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= List( nsg, x -&gt; CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( iso, x -&gt; PositionProperty( result, y -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           TransformingPermutationsCharacterTables( x, y ) &lt;&gt; fail ) );</span>
[ 4, 4, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= result[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= List( nsg, x -&gt; CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( iso, x -&gt; PositionProperty( result, y -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           TransformingPermutationsCharacterTables( x, y ) &lt;&gt; fail ) );</span>
[ 3, 3, 6 ]
</pre></div>

<p><a id="X7DC42AE57E9EED4D" name="X7DC42AE57E9EED4D"></a></p>

<h5>2.6-7 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">4_1.L_3(4).2^2</span>
(October 2011)</span></h5>

<p>The situation with <span class="SimpleMath">4_1.L_3(4).2^2</span> is analogous to that with <span class="SimpleMath">6.L_3(4).2^2</span>, see Section <a href="chap2.html#X79818ABD7E972370"><span class="RefLink">2.6-5</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbls:= List( [ "1", "2", "3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     i -&gt; CharacterTable( Concatenation( "4_1.L3(4).2_", i ) ) );</span>
[ CharacterTable( "4_1.L3(4).2_1" ), CharacterTable( "4_1.L3(4).2_2" )
    , CharacterTable( "4_1.L3(4).2_3" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">isos:= List( [ "1", "2", "3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     i -&gt; CharacterTable( Concatenation( "4_1.L3(4).2_", i, "*" ) ) );</span>
[ CharacterTable( "Isoclinic(4_1.L3(4).2_1)" ), 
  CharacterTable( "Isoclinic(4_1.L3(4).2_2)" ), 
  CharacterTable( "4_1.L3(4).2_3*" ) ]
</pre></div>

<p>Note that the group <span class="SimpleMath">4_1.L_3(4).2_3</span> has a centre of order four, so one cannot construct the isoclinic variant by calling the one argument version of <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( tbls, ClassPositionsOfCentre );</span>
[ [ 1, 3 ], [ 1, 3 ], [ 1, 2, 3, 4 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tbls[3],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTableIsoclinic( tbls[3] ) ) );</span>
true
</pre></div>

<p>Again, we get eight different character tables, in two orbits.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], tbls[2], tbls[3], "4_1.L3(4).(2^2)_{123}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], tbls[2], tbls[3], "4_1.L3(4).(2^2)_{1*23}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], isos[2], tbls[3], "4_1.L3(4).(2^2)_{12*3}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], isos[2], tbls[3], "4_1.L3(4).(2^2)_{1*2*3}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], tbls[2], isos[3], "4_1.L3(4).(2^2)_{123*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], tbls[2], isos[3], "4_1.L3(4).(2^2)_{1*23*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], isos[2], isos[3], "4_1.L3(4).(2^2)_{12*3*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], isos[2], isos[3], "4_1.L3(4).(2^2)_{1*2*3*}" ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "4_1.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblsG2:= input{ [ 1 .. 3 ] };</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib:= CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, input[4], lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Append( result, RepresentativesCharacterTables( poss ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#I  excluded cand. 2 (out of 8) for 4_1.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 4_1.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 4_1.L3(4).(2^2)_{123} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 4_1.L3(4).(2^2)_{123} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 4_1.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 4_1.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 2 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by 
5-mod. table
#I  excluded cand. 2 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by 
5-mod. table
#I  excluded cand. 2 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by 
5-mod. table
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= List( result, x -&gt; x.table );</span>
[ CharacterTable( "new4_1.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{1*23}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{12*3}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{1*2*3}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{123*}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{1*23*}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{12*3*}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{1*2*3*}" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( result, NrConjugacyClasses );</span>
[ 48, 48, 48, 48, 42, 42, 42, 42 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= result[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= List( nsg, x -&gt; CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( iso, x -&gt; PositionProperty( result, y -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           TransformingPermutationsCharacterTables( x, y ) &lt;&gt; fail ) );</span>
[ 3, 2, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= result[5];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= List( nsg, x -&gt; CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( iso, x -&gt; PositionProperty( result, y -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           TransformingPermutationsCharacterTables( x, y ) &lt;&gt; fail ) );</span>
[ 7, 6, 8 ]
</pre></div>

<p>Note that only two out of the eight tables of the type <span class="SimpleMath">2.L_3(4).2^2</span> occur as factors of the eight tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">facts:= [ CharacterTable( "2.L3(4).(2^2)_{123}" ), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             CharacterTable( "2.L3(4).(2^2)_{123*}" ) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">factresults:= List( result, t -&gt; t / ClassPositionsOfCentre( t ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( factresults, t -&gt; PositionProperty( facts, f -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           IsRecord( TransformingPermutationsCharacterTables( t, f ) ) ) );</span>
[ 1, 1, 1, 1, 2, 2, 2, 2 ]
</pre></div>

<p>This is not surprising; note that for <span class="SimpleMath">1 ≤ i ≤ 2</span>, the two isoclinic variants of <span class="SimpleMath">4_1.L_3(4).2_i</span> have isomorphic factor groups of the type <span class="SimpleMath">2.L_3(4).2_i</span>. (For <span class="SimpleMath">i = 3</span>, this is not the case.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">test:= [ CharacterTable( "4_1.L3(4).2_1" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            CharacterTable( "4_1.L3(4).2_1*" ) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( test, ClassPositionsOfCentre );</span>
[ [ 1, 3 ], [ 1, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fact:= List( test, t -&gt; t / ClassPositionsOfCentre( t ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( fact[1], fact[2] ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">test:= [ CharacterTable( "4_1.L3(4).2_2" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            CharacterTable( "4_1.L3(4).2_2*" ) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( test, ClassPositionsOfCentre );</span>
[ [ 1, 3 ], [ 1, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fact:= List( test, t -&gt; t / ClassPositionsOfCentre( t ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( fact[1], fact[2] ) );</span>
true
</pre></div>

<p>Now we try the second approach and compare the results. By the abovementioned asymmetry, it is clear that the tables are not uniquely determined by the input data.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">names:= [ "L3(4).(2^2)_{123}", "L3(4).(2^2)_{1*23}",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             "L3(4).(2^2)_{12*3}", "L3(4).(2^2)_{1*2*3}" ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs1:= List( names, nam -&gt; [ "4_1.L3(4).2_3", "2.L3(4).2_3",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Concatenation( "2.", nam ), Concatenation( "4_1.", nam ) ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">names:= List( names, nam -&gt; ReplacedString( nam, "3}", "3*}" ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs2:= List( names, nam -&gt; [ "4_1.L3(4).2_3*", "2.L3(4).2_3*",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Concatenation( "2.", nam ), Concatenation( "4_1.", nam ) ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs:= Concatenation( inputs1, inputs2 );</span>
[ [ "4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2^2)_{123}", 
      "4_1.L3(4).(2^2)_{123}" ], 
  [ "4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2^2)_{1*23}", 
      "4_1.L3(4).(2^2)_{1*23}" ], 
  [ "4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2^2)_{12*3}", 
      "4_1.L3(4).(2^2)_{12*3}" ], 
  [ "4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2^2)_{1*2*3}", 
      "4_1.L3(4).(2^2)_{1*2*3}" ], 
  [ "4_1.L3(4).2_3*", "2.L3(4).2_3*", "2.L3(4).(2^2)_{123*}", 
      "4_1.L3(4).(2^2)_{123*}" ], 
  [ "4_1.L3(4).2_3*", "2.L3(4).2_3*", "2.L3(4).(2^2)_{1*23*}", 
      "4_1.L3(4).(2^2)_{1*23*}" ], 
  [ "4_1.L3(4).2_3*", "2.L3(4).2_3*", "2.L3(4).(2^2)_{12*3*}", 
      "4_1.L3(4).(2^2)_{12*3*}" ], 
  [ "4_1.L3(4).2_3*", "2.L3(4).2_3*", "2.L3(4).(2^2)_{1*2*3*}", 
      "4_1.L3(4).(2^2)_{1*2*3*}" ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result2:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for  input in inputs do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblMG := CharacterTable( input[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblG  := CharacterTable( input[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblGA := CharacterTable( input[3] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     name  := Concatenation( "new", input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib   := CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Append( result2, poss );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#E  4 possibilities for new4_1.L3(4).(2^2)_{123}
#E  no solution for new4_1.L3(4).(2^2)_{1*23}
#E  no solution for new4_1.L3(4).(2^2)_{12*3}
#E  no solution for new4_1.L3(4).(2^2)_{1*2*3}
#E  4 possibilities for new4_1.L3(4).(2^2)_{123*}
#E  no solution for new4_1.L3(4).(2^2)_{1*23*}
#E  no solution for new4_1.L3(4).(2^2)_{12*3*}
#E  no solution for new4_1.L3(4).(2^2)_{1*2*3*}
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( result2 );</span>
8
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result2:= List( result2, x -&gt; x.table );</span>
[ CharacterTable( "new4_1.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{123*}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{123*}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{123*}" ), 
  CharacterTable( "new4_1.L3(4).(2^2)_{123*}" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( result, t1 -&gt; PositionsProperty( result2, t2 -&gt; IsRecord(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     TransformingPermutationsCharacterTables( t1, t2 ) ) ) );</span>
[ [ 1 ], [ 4 ], [ 3 ], [ 2 ], [ 7 ], [ 6 ], [ 5 ], [ 8 ] ]
</pre></div>

<p>At the moment, I do not know interesting groups that contain one of the <span class="SimpleMath">4_1.L_3(4).2^2</span> type groups and whose character tables are available.</p>

<p><a id="X7E9AF180869B4786" name="X7E9AF180869B4786"></a></p>

<h5>2.6-8 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">4_2.L_3(4).2^2</span>
(October 2011)</span></h5>

<p>The situation with <span class="SimpleMath">4_2.L_3(4).2^2</span> is analogous to that with <span class="SimpleMath">6.L_3(4).2^2</span>, see Section <a href="chap2.html#X79818ABD7E972370"><span class="RefLink">2.6-5</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbls:= List( [ "1", "2", "3" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     i -&gt; CharacterTable( Concatenation( "4_2.L3(4).2_", i ) ) );</span>
[ CharacterTable( "4_2.L3(4).2_1" ), CharacterTable( "4_2.L3(4).2_2" )
    , CharacterTable( "4_2.L3(4).2_3" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">isos:= List( [ "1", "2", "3" ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     i -&gt; CharacterTable( Concatenation( "4_2.L3(4).2_", i, "*" ) ) );</span>
[ CharacterTable( "Isoclinic(4_2.L3(4).2_1)" ), 
  CharacterTable( "4_2.L3(4).2_2*" ), 
  CharacterTable( "Isoclinic(4_2.L3(4).2_3)" ) ]
</pre></div>

<p>Note that the group <span class="SimpleMath">4_1.L_3(4).2_2</span> has a centre of order four, so one cannot construct the isoclinic variant not by calling the one argument version of <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( tbls, ClassPositionsOfCentre );</span>
[ [ 1, 3 ], [ 1, 2, 3, 4 ], [ 1, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tbls[2],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTableIsoclinic( tbls[2] ) ) );</span>
true
</pre></div>

<p>Again, we get eight different character tables, in two orbits.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], tbls[2], tbls[3], "4_2.L3(4).(2^2)_{123}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], tbls[2], tbls[3], "4_2.L3(4).(2^2)_{1*23}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], isos[2], tbls[3], "4_2.L3(4).(2^2)_{12*3}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], tbls[2], isos[3], "4_2.L3(4).(2^2)_{123*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], isos[2], tbls[3], "4_2.L3(4).(2^2)_{1*2*3}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], tbls[2], isos[3], "4_2.L3(4).(2^2)_{1*23*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ tbls[1], isos[2], isos[3], "4_2.L3(4).(2^2)_{12*3*}" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ isos[1], isos[2], isos[3], "4_2.L3(4).(2^2)_{1*2*3*}" ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "4_2.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblsG2:= input{ [ 1 .. 3 ] };</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib:= CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, input[4], lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Append( result, RepresentativesCharacterTables( poss ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#I  excluded cand. 2 (out of 8) for 4_2.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 4_2.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 4_2.L3(4).(2^2)_{123} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 4_2.L3(4).(2^2)_{123} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 4_2.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 4_2.L3(4).(2^2)_{123} by 
5-mod. table
#I  excluded cand. 2 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by 
5-mod. table
#I  excluded cand. 2 (out of 8) for 4_2.L3(4).(2^2)_{123*} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 4_2.L3(4).(2^2)_{123*} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 4_2.L3(4).(2^2)_{123*} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 4_2.L3(4).(2^2)_{123*} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 4_2.L3(4).(2^2)_{123*} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 4_2.L3(4).(2^2)_{123*} by 
5-mod. table
#I  excluded cand. 2 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by 
5-mod. table
#I  excluded cand. 3 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by 
5-mod. table
#I  excluded cand. 4 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by 
7-mod. table
#I  excluded cand. 5 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by 
7-mod. table
#I  excluded cand. 6 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by 
5-mod. table
#I  excluded cand. 7 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by 
5-mod. table
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result:= List( result, x -&gt; x.table );</span>
[ CharacterTable( "new4_2.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{1*23}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{12*3}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{123*}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{1*2*3}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{1*23*}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{12*3*}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{1*2*3*}" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( result, NrConjugacyClasses );</span>
[ 50, 50, 44, 50, 44, 50, 44, 44 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= result[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= List( nsg, x -&gt; CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( iso, x -&gt; PositionProperty( result, y -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           TransformingPermutationsCharacterTables( x, y ) &lt;&gt; fail ) );</span>
[ 4, 2, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= result[3];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           x -&gt; Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso:= List( nsg, x -&gt; CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( iso, x -&gt; PositionProperty( result, y -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           TransformingPermutationsCharacterTables( x, y ) &lt;&gt; fail ) );</span>
[ 7, 5, 8 ]
</pre></div>

<p>Note that only two out of the eight tables of the type <span class="SimpleMath">2.L_3(4).2^2</span> occur as factors of the eight tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">facts:= [ CharacterTable( "2.L3(4).(2^2)_{123}" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             CharacterTable( "2.L3(4).(2^2)_{12*3}" ) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">factresults:= List( result, t -&gt; t / ClassPositionsOfCentre( t ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( factresults, t -&gt; PositionProperty( facts, f -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           IsRecord( TransformingPermutationsCharacterTables( t, f ) ) ) );</span>
[ 1, 1, 2, 1, 2, 1, 2, 2 ]
</pre></div>

<p>This is not surprising; note that for <span class="SimpleMath">i ∈ { 1, 3 }</span>, the two isoclinic variants of <span class="SimpleMath">4_1.L_3(4).2_i</span> have isomorphic factor groups of the type <span class="SimpleMath">2.L_3(4).2_i</span>. (For <span class="SimpleMath">i = 2</span>, this is not the case.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">test:= [ CharacterTable( "4_2.L3(4).2_1" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            CharacterTable( "4_2.L3(4).2_1*" ) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( test, ClassPositionsOfCentre );</span>
[ [ 1, 3 ], [ 1, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fact:= List( test, t -&gt; t / ClassPositionsOfCentre( t ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( fact[1], fact[2] ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">test:= [ CharacterTable( "4_2.L3(4).2_3" ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            CharacterTable( "4_2.L3(4).2_3*" ) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( test, ClassPositionsOfCentre );</span>
[ [ 1, 3 ], [ 1, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fact:= List( test, t -&gt; t / ClassPositionsOfCentre( t ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( fact[1], fact[2] ) );</span>
true
</pre></div>

<p>Now we try the second approach and compare the results. By the abovementioned asymmetry, it is clear that the tables are not uniquely determined by the input data.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">names:= [ "L3(4).(2^2)_{123}", "L3(4).(2^2)_{1*23}",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             "L3(4).(2^2)_{123*}", "L3(4).(2^2)_{1*23*}" ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs1:= List( names, nam -&gt; [ "4_2.L3(4).2_2", "2.L3(4).2_2",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Concatenation( "2.", nam ), Concatenation( "4_2.", nam ) ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">names:= List( names, nam -&gt; ReplacedString( nam, "23", "2*3" ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs2:= List( names, nam -&gt; [ "4_2.L3(4).2_2*", "2.L3(4).2_2*",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Concatenation( "2.", nam ), Concatenation( "4_2.", nam ) ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inputs:= Concatenation( inputs1, inputs2 );</span>
[ [ "4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2^2)_{123}", 
      "4_2.L3(4).(2^2)_{123}" ], 
  [ "4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2^2)_{1*23}", 
      "4_2.L3(4).(2^2)_{1*23}" ], 
  [ "4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2^2)_{123*}", 
      "4_2.L3(4).(2^2)_{123*}" ], 
  [ "4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2^2)_{1*23*}", 
      "4_2.L3(4).(2^2)_{1*23*}" ], 
  [ "4_2.L3(4).2_2*", "2.L3(4).2_2*", "2.L3(4).(2^2)_{12*3}", 
      "4_2.L3(4).(2^2)_{12*3}" ], 
  [ "4_2.L3(4).2_2*", "2.L3(4).2_2*", "2.L3(4).(2^2)_{1*2*3}", 
      "4_2.L3(4).(2^2)_{1*2*3}" ], 
  [ "4_2.L3(4).2_2*", "2.L3(4).2_2*", "2.L3(4).(2^2)_{12*3*}", 
      "4_2.L3(4).(2^2)_{12*3*}" ], 
  [ "4_2.L3(4).2_2*", "2.L3(4).2_2*", "2.L3(4).(2^2)_{1*2*3*}", 
      "4_2.L3(4).(2^2)_{1*2*3*}" ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result2:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for  input in inputs do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblMG := CharacterTable( input[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblG  := CharacterTable( input[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblGA := CharacterTable( input[3] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     name  := Concatenation( "new", input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib   := CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Append( result2, poss );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#E  4 possibilities for new4_2.L3(4).(2^2)_{123}
#E  no solution for new4_2.L3(4).(2^2)_{1*23}
#E  no solution for new4_2.L3(4).(2^2)_{123*}
#E  no solution for new4_2.L3(4).(2^2)_{1*23*}
#E  4 possibilities for new4_2.L3(4).(2^2)_{12*3}
#E  no solution for new4_2.L3(4).(2^2)_{1*2*3}
#E  no solution for new4_2.L3(4).(2^2)_{12*3*}
#E  no solution for new4_2.L3(4).(2^2)_{1*2*3*}
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( result2 );</span>
8
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">result2:= List( result2, x -&gt; x.table );</span>
[ CharacterTable( "new4_2.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{123}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{12*3}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{12*3}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{12*3}" ), 
  CharacterTable( "new4_2.L3(4).(2^2)_{12*3}" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( result, t1 -&gt; PositionsProperty( result2, t2 -&gt; IsRecord(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     TransformingPermutationsCharacterTables( t1, t2 ) ) ) );</span>
[ [ 1 ], [ 4 ], [ 7 ], [ 3 ], [ 6 ], [ 2 ], [ 5 ], [ 8 ] ]
</pre></div>

<p>The group <span class="SimpleMath">ON.2</span> contains a maximal subgroup <span class="SimpleMath">M</span> of the type <span class="SimpleMath">4_2.L_3(4).2^2</span>, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 132]</a>. Only the third result table admits a class fusion into <span class="SimpleMath">ON.2</span>. This shows the existence of groups for the tables from the second orbit.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">on2:= CharacterTable( "ON.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= List( result, x -&gt; PossibleClassFusions( x, on2 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 16, 0, 0, 0, 0, 0 ]
</pre></div>

<p><a id="X7EAF9CD07E536120" name="X7EAF9CD07E536120"></a></p>

<h5>2.6-9 <span class="Heading">The Character Table of Aut<span class="SimpleMath">(L_2(81))</span></span></h5>

<p>The group Aut<span class="SimpleMath">(L_2(81)) ≅ L_2(81).(2 × 4)</span> has the structure <span class="SimpleMath">G.2^2</span> where <span class="SimpleMath">G = L_2(81).2_1</span>. Here we get two triples of possible actions on the tables of the groups <span class="SimpleMath">G.2_i</span>, and one possible character table for each triple.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">input:= [ "L2(81).2_1", "L2(81).4_1", "L2(81).4_2", "L2(81).2^2",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                                       "L2(81).(2x4)" ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG   := CharacterTable( input[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblsG2 := List( input{ [ 2 .. 4 ] }, CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">name   := Concatenation( "new", input[5] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib    := CharacterTable( input[5] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss   := ConstructOrdinaryGV4Table( tblG, tblsG2, name, lib );;</span>
#I  newL2(81).(2x4): 2 equivalence classes
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= RepresentativesCharacterTables( poss );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( reps );</span>
2
</pre></div>

<p>Due to the different underlying actions, the power maps of the two candidate tables differ.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord:= OrdersClassRepresentatives( reps[1].table );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord = OrdersClassRepresentatives( reps[2].table ); </span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pos:= Position( ord, 80 );</span>
33
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerMap( reps[1].table, 3 )[ pos ];</span>
34
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerMap( reps[2].table, 3 )[ pos ];</span>
33
</pre></div>

<p>Aut<span class="SimpleMath">(L_2(81))</span> can be generated by PGL<span class="SimpleMath">(2,81) = L_2(81).2_2</span> and the Frobenius automorphism of order four that is defined on GL<span class="SimpleMath">(2,81)</span> as the map that cubes the matrix entries. The elements of order <span class="SimpleMath">80</span> in Aut<span class="SimpleMath">(L_2(81))</span> are conjugates of diagonal matrices modulo scalar matrices, which are mapped to their third powers by the Frobenius homomorphism. So the third power map of Aut<span class="SimpleMath">(L_2(81))</span> fixes the classes of elements of order <span class="SimpleMath">80</span>. In other words, the second of the two tables is the right one.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">trans:= TransformingPermutationsCharacterTables( reps[2].table, lib );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( trans );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( reps[2].G2fusGV4, x -&gt; OnTuples( x, trans.columns ) )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> = List( tblsG2, x -&gt; GetFusionMap( x, lib ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstructModularGV4Tables( tblG, tblsG2, [ reps[2] ], lib );;</span>
#I  not all input tables for L2(81).(2x4) mod 41 available
</pre></div>

<p><a id="X78AED04685EDCC19" name="X78AED04685EDCC19"></a></p>

<h5>2.6-10 <span class="Heading">The Character Table of <span class="SimpleMath">O_8^+(3).2^2_111</span></span></h5>

<p>The construction of the character table of the group <span class="SimpleMath">O_8^+(3).2^2_111</span> is not as straightforward as the constructions shown in Section <a href="chap2.html#X7FEC3AB081487AF2"><span class="RefLink">2.6-2</span></a>. Here we get <span class="SimpleMath">26</span> triples of actions on the tables of the three subgroups <span class="SimpleMath">G.2_i</span> of index two, but only one of them leads to candidates for the desired character table. Specifically, we get <span class="SimpleMath">64</span> such candidates, in two equivalence classes w.r.t. permutation equivalence.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">input:= [ "O8+(3)", "O8+(3).2_1",  "O8+(3).2_1'", "O8+(3).2_1''",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                                 "O8+(3).(2^2)_{111}" ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG   := CharacterTable( input[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblsG2 := List( input{ [ 2 .. 4 ] }, CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">name   := Concatenation( "new", input[5] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib    := CharacterTable( input[5] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss   := ConstructOrdinaryGV4Table( tblG, tblsG2, name, lib );;</span>
#I  newO8+(3).(2^2)_{111}: 2 equivalence classes
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
64
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= RepresentativesCharacterTables( poss );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( reps );</span>
2
</pre></div>

<p>The two candidate tables differ only in four irreducible characters involving irrationalities on the classes of element order <span class="SimpleMath">28</span>. All three subgroups <span class="SimpleMath">G.2_i</span> contain elements of order <span class="SimpleMath">28</span> that do not lie in the simple group <span class="SimpleMath">G</span>; these classes are roots of the same (unique) class of element order <span class="SimpleMath">7</span>. The centralizer <span class="SimpleMath">C</span> of an order <span class="SimpleMath">7</span> element in <span class="SimpleMath">G.2^2</span> has order <span class="SimpleMath">112 = 2^4 ⋅ 7</span>, the intersection of <span class="SimpleMath">C</span> with <span class="SimpleMath">G</span> has the structure <span class="SimpleMath">2^2 × 7</span> since <span class="SimpleMath">G</span> contains three classes of cyclic subgroups of the order <span class="SimpleMath">14</span>, and each of the intersections of <span class="SimpleMath">C</span> with one of the subgroups <span class="SimpleMath">G.2_i</span> has the structure <span class="SimpleMath">2 × 4 × 7</span>, so the structure of <span class="SimpleMath">C</span> is <span class="SimpleMath">4^2 × 7 ≅ 4 × 28</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= reps[1].table;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord7:= Filtered( [ 1 .. NrConjugacyClasses( t ) ],                        </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              i -&gt; OrdersClassRepresentatives( t )[i] = 7 );</span>
[ 37 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesCentralizers( t ){ ord7 };</span>
[ 112 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord28:= Filtered( [ 1 .. NrConjugacyClasses( t ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              i -&gt; OrdersClassRepresentatives( t )[i] = 28 );</span>
[ 112, 113, 114, 115, 161, 162, 163, 164, 210, 211, 212, 213 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( reps[1].G2fusGV4, x -&gt; Intersection( ord28, x ) );</span>
[ [ 112, 113, 114, 115 ], [ 161, 162, 163, 164 ], 
  [ 210, 211, 212, 213 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sub:= CharacterTable( "Cyclic", 28 ) * CharacterTable( "Cyclic", 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( reps, x -&gt; Length( PossibleClassFusions( sub, x.table ) ) );</span>
[ 0, 96 ]
</pre></div>

<p>It turns out that only one of the two candidate tables admits a class fusion from the character table of <span class="SimpleMath">C</span>, thus we have determined the ordinary character table of <span class="SimpleMath">O_8^+(3).2^2_111</span>. It coincides with the table from the library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">trans:= TransformingPermutationsCharacterTables( reps[2].table, lib );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( trans );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( reps[2].G2fusGV4, x -&gt; OnTuples( x, trans.columns ) )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> = List( tblsG2, x -&gt; GetFusionMap( x, lib ) );</span>
true
</pre></div>

<p>(If we do not believe the statement about the structure of <span class="SimpleMath">C</span> then we can check all <span class="SimpleMath">14</span> groups of order <span class="SimpleMath">112</span> that contain a central subgroup of order <span class="SimpleMath">7</span>. A unique such group admits a class fusion into at least one of the two candidate tables.)</p>

<p>The wrong candidate for the ordinary table cannot be excluded via conditions that are forced by the construction of the <span class="SimpleMath">p</span>-modular tables of <span class="SimpleMath">O_8^+(3).2^2_111</span>. Thus we restrict the ordinary tables used for this construction to those candidates that are equivalent to the correct table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= Filtered( poss,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     r -&gt; TransformingPermutationsCharacterTables( r.table, lib )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          &lt;&gt; fail );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstructModularGV4Tables( tblG, tblsG2, poss, lib );;</span>
#I  not all input tables for O8+(3).(2^2)_{111} mod 3 available
</pre></div>

<p>So also the <span class="SimpleMath">p</span>-modular tables of <span class="SimpleMath">O_8^+(3).2^2_111</span> can be computed this way, provided that the <span class="SimpleMath">p</span>-modular tables of the index <span class="SimpleMath">2</span> subgroups are available.</p>

<p><a id="X845BAA2A7FD768B0" name="X845BAA2A7FD768B0"></a></p>

<h4>2.7 <span class="Heading">Examples for the Type <span class="SimpleMath">2^2.G</span></span></h4>

<p>We compute the character table of a group of the type <span class="SimpleMath">2^2.G</span> from the character tables of the three factor groups of the type <span class="SimpleMath">2.G</span>, using the function <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>), see Section <a href="chap2.html#X81464C4B8178C85A"><span class="RefLink">2.3-4</span></a>.</p>

<p><a id="X87EEBDB987249117" name="X87EEBDB987249117"></a></p>

<h5>2.7-1 <span class="Heading">The Character Table of <span class="SimpleMath">2^2.Sz(8)</span></span></h5>

<p>The three central involutions in <span class="SimpleMath">2^2.Sz(8)</span> are permuted cyclicly by an outer automorphism <span class="SimpleMath">α</span> of order three. In order to apply <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>), we need the character table of the group <span class="SimpleMath">2.Sz(8)</span> and the action on the classes of <span class="SimpleMath">Sz(8)</span> that is induced by <span class="SimpleMath">α</span>.</p>

<p>The ordinary character table of <span class="SimpleMath">G = Sz(8)</span> admits exactly five table automorphisms of order dividing <span class="SimpleMath">3</span>. Each of these possibilities leads to exactly one possible character table of <span class="SimpleMath">2^2.G</span>, and the five tables are permutation equivalent. From this point of view, we need not know which of the table automorphisms are induced by outer <em>group</em> automorphisms of <span class="SimpleMath">G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "Sz(8)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2t:= CharacterTable( "2.Sz(8)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">aut:= AutomorphismsOfTable( t );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= Set( Filtered( aut, x -&gt; Order( x ) in [ 1, 3 ] ),           </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               SmallestGeneratorPerm );</span>
[ (), (9,10,11), (6,7,8), (6,7,8)(9,10,11), (6,7,8)(9,11,10) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= List( elms,                                         </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      pi -&gt; PossibleCharacterTablesOfTypeV4G( t, 2t, pi, "2^2.Sz(8)" ) );</span>
[ [ CharacterTable( "2^2.Sz(8)" ) ], [ CharacterTable( "2^2.Sz(8)" ) ]
    , [ CharacterTable( "2^2.Sz(8)" ) ], 
  [ CharacterTable( "2^2.Sz(8)" ) ], 
  [ CharacterTable( "2^2.Sz(8)" ) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= RepresentativesCharacterTables( Concatenation( poss ) );</span>
[ CharacterTable( "2^2.Sz(8)" ) ]
</pre></div>

<p>The tables coincide with the one that is stored in the <strong class="pkg">GAP</strong> library.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( reps[1],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "2^2.Sz(8)" ) ) );</span>
true
</pre></div>

<p>The computation of the <span class="SimpleMath">p</span>-modular character table of <span class="SimpleMath">2^2.G</span> from the <span class="SimpleMath">p</span>-modular character table of <span class="SimpleMath">2.G</span> and the three factor fusions from <span class="SimpleMath">2^2.G</span> to <span class="SimpleMath">2.G</span> is straightforward, as is stated in Section <a href="chap2.html#X81464C4B8178C85A"><span class="RefLink">2.3-4</span></a>. The three fusions are stored on the tables returned by <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( poss[1][1], 2t, "1" );</span>
[ 1, 1, 2, 2, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 
  12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( poss[1][1], 2t, "2" );</span>
[ 1, 2, 1, 2, 3, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 
  13, 12, 13, 14, 15, 14, 15, 16, 17, 16, 17, 18, 19, 18, 19 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GetFusionMap( poss[1][1], 2t, "3" );</span>
[ 1, 2, 2, 1, 3, 4, 5, 6, 7, 7, 6, 8, 9, 9, 8, 10, 11, 11, 10, 12, 
  13, 13, 12, 14, 15, 15, 14, 16, 17, 17, 16, 18, 19, 19, 18 ]
</pre></div>

<p>The <strong class="pkg">GAP</strong> library function <code class="func">BrauerTableOfTypeV4G</code> (<a href="..//doc/chap5.html#X8536F9027F097C79"><span class="RefLink">CTblLib: BrauerTableOfTypeV4G</span></a>) can be used to derive Brauer tables of <span class="SimpleMath">2^2.G</span>. We have to compute the <span class="SimpleMath">p</span>-modular tables for prime divisors <span class="SimpleMath">p</span> of <span class="SimpleMath">|G|</span>, that is, for <span class="SimpleMath">p ∈ { 2, 5, 7, 13 }</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimeDivisors( Size( t ) );</span>
[ 2, 5, 7, 13 ]
</pre></div>

<p>Clearly <span class="SimpleMath">p = 2</span> is uninteresting from this point of view because the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">2^2.G</span> can be identified with the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G</span>.</p>

<p>For each of the five ordinary tables (corresponding to the five possible table automorphisms of <span class="SimpleMath">G</span>) constructed above, we get one candidate of a <span class="SimpleMath">5</span>-modular table. However, these tables are <em>not</em> all equivalent. There are two equivalence classes, and one of the two possibilities is inconsistent in the sense that not all tensor products of irreducibles decompose into irreducibles.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( poss, l -&gt; BrauerTableOfTypeV4G( l[1], 2t mod 5,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ConstructionInfoCharacterTable( l[1] )[3] ) );</span>
[ BrauerTable( "2^2.Sz(8)", 5 ), BrauerTable( "2^2.Sz(8)", 5 ), 
  BrauerTable( "2^2.Sz(8)", 5 ), BrauerTable( "2^2.Sz(8)", 5 ), 
  BrauerTable( "2^2.Sz(8)", 5 ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesCharacterTables( cand ) );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( cand, CTblLib.Test.TensorDecomposition );</span>
[ false, true, false, true, true ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesCharacterTables( cand{ [ 2, 4, 5 ] } ) );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( cand[2],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "2^2.Sz(8)" ) mod 5 ) );</span>
true
</pre></div>

<p>This implies that only those table automorphisms of <span class="SimpleMath">G</span> can be induced by an outer group automorphism that move the classes of element order <span class="SimpleMath">13</span>.</p>

<p>The <span class="SimpleMath">7</span>-modular table of <span class="SimpleMath">2^2.G</span> is uniquely determined, independent of the choice of the table automorphism of <span class="SimpleMath">G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( poss, l -&gt; BrauerTableOfTypeV4G( l[1], 2t mod 7,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ConstructionInfoCharacterTable( l[1] )[3] ) );</span>
[ BrauerTable( "2^2.Sz(8)", 7 ), BrauerTable( "2^2.Sz(8)", 7 ), 
  BrauerTable( "2^2.Sz(8)", 7 ), BrauerTable( "2^2.Sz(8)", 7 ), 
  BrauerTable( "2^2.Sz(8)", 7 ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesCharacterTables( cand ) );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( cand[1],      </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "2^2.Sz(8)" ) mod 7 ) );</span>
true
</pre></div>

<p>We get two candidates for the <span class="SimpleMath">13</span>-modular table of <span class="SimpleMath">2^2.G</span>, also if we consider only the three admissible table automorphisms.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">elms:= elms{ [ 2, 4, 5 ] };</span>
[ (9,10,11), (6,7,8)(9,10,11), (6,7,8)(9,11,10) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= poss{ [ 2, 4, 5 ] };;                                     </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cand:= List( poss, l -&gt; BrauerTableOfTypeV4G( l[1], 2t mod 13,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ConstructionInfoCharacterTable( l[1] )[3] ) );</span>
[ BrauerTable( "2^2.Sz(8)", 13 ), BrauerTable( "2^2.Sz(8)", 13 ), 
  BrauerTable( "2^2.Sz(8)", 13 ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesCharacterTables( cand ) );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( cand, CTblLib.Test.TensorDecomposition );                      </span>
[ true, true, true ]
</pre></div>

<p>The action of the outer automorphism of order three of <span class="SimpleMath">G</span> can be read off from the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G</span>. Note that the ordinary and the <span class="SimpleMath">5</span>-modular character table of <span class="SimpleMath">G</span> possess two independent table automorphisms of order three, whereas the group of table automorphisms of the <span class="SimpleMath">2</span>-modular table has order three. (The reason is that the irrational values on the classes of the element orders <span class="SimpleMath">7</span> and <span class="SimpleMath">13</span> appear in the same irreducible <span class="SimpleMath">2</span>-modular Brauer characters.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mod2:= CharacterTable( "Sz(8)" ) mod 2;</span>
BrauerTable( "Sz(8)", 2 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AutomorphismsOfTable( mod2 );</span>
Group([ (3,4,5)(6,7,8) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrdersClassRepresentatives( mod2 );</span>
[ 1, 5, 7, 7, 7, 13, 13, 13 ]
</pre></div>

<p>This means that the first candidate is ruled out; this determines the <span class="SimpleMath">13</span>-modular character table of <span class="SimpleMath">2^2.G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesCharacterTables( cand{ [ 2, 3 ] } ) );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( cand[2],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       CharacterTable( "2^2.Sz(8)" ) mod 13 ) );</span>
true
</pre></div>

<p><a id="X83652A0282A64D14" name="X83652A0282A64D14"></a></p>

<h5>2.7-2 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">2^2.G</span> (September 2005)</span></h5>

<p>Besides <span class="SimpleMath">2^2.Sz(8)</span> (cf. Section <a href="chap2.html#X87EEBDB987249117"><span class="RefLink">2.7-1</span></a>), <span class="SimpleMath">2^2.O_8^+(3)</span> (cf. Section <a href="chap2.html#X7F63DDF77870F967"><span class="RefLink">2.7-3</span></a>), and certain central extensions of <span class="SimpleMath">L_3(4)</span> (cf. Section <a href="chap2.html#X86A1607787DE6BB9"><span class="RefLink">2.7-4</span></a>), the following examples of central extensions of nearly simple <strong class="pkg">Atlas</strong> groups <span class="SimpleMath">G</span> by a Klein four group occur.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">listV4G:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "2^2.L3(4)",         "2.L3(4)",     "L3(4)"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "2^2.L3(4).2_1",     "2.L3(4).2_1", "L3(4).2_1"   ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "(2^2x3).L3(4)",     "6.L3(4)",     "3.L3(4)"     ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "(2^2x3).L3(4).2_1", "6.L3(4).2_1", "3.L3(4).2_1" ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "2^2.O8+(2)",        "2.O8+(2)",    "O8+(2)"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "2^2.U6(2)",         "2.U6(2)",     "U6(2)"       ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "(2^2x3).U6(2)",     "6.U6(2)",     "3.U6(2)"     ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "2^2.2E6(2)",        "2.2E6(2)",    "2E6(2)"      ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [ "(2^2x3).2E6(2)",    "6.2E6(2)",    "3.2E6(2)"    ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">];;</span>
</pre></div>

<p>(For the tables of <span class="SimpleMath">(2^2 × 3).G</span>, with <span class="SimpleMath">G</span> one of <span class="SimpleMath">L_3(4)</span>, <span class="SimpleMath">U_6(2)</span>, or <span class="SimpleMath">^2E_6(2)</span>, we could alternatively use the tables of <span class="SimpleMath">2^2.G</span> and <span class="SimpleMath">3.G</span>, and the construction described in Chapter <a href="chap3.html#X7A80D5ED7D6E57B7"><span class="RefLink">3</span></a>.)</p>

<p>The function for computing the candidates for the ordinary character tables is similar to the one from Section <a href="chap2.html#X7FEC3AB081487AF2"><span class="RefLink">2.6-2</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstructOrdinaryV4GTable:= function( tblG, tbl2G, name, lib )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     local ord3, nam, poss, reps, trans;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     # Compute the possible actions for the ordinary tables.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ord3:= Set( Filtered( AutomorphismsOfTable( tblG ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                           x -&gt; Order( x ) = 3 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 SmallestGeneratorPerm );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if 1 &lt; Length( ord3 ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  ", name,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              ": the action of the automorphism is not unique" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     # Compute the possible ordinary tables for the given actions.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     nam:= Concatenation( "new", name );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss:= Concatenation( List( ord3, pi -&gt;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            PossibleCharacterTablesOfTypeV4G( tblG, tbl2G, pi, nam ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     # Test the possibilities for permutation equivalence.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     reps:= RepresentativesCharacterTables( poss );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if 1 &lt; Length( reps ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  ", name, ": ", Length( reps ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              " equivalence classes\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     elif Length( reps ) = 0 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#E  ", name, ": no solution\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       # Compare the computed table with the library table.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if not IsCharacterTable( lib ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#I  no library table for ", name, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         PrintToLib( name, poss[1].table );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         trans:= TransformingPermutationsCharacterTables( reps[1], lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if not IsRecord( trans ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed table and library table for ", name,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     return poss;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   end;;</span>
</pre></div>

<p>Concerning the Brauer tables, the same ambiguity problem may occur as in Section <a href="chap2.html#X7FEC3AB081487AF2"><span class="RefLink">2.6-2</span></a>: Some candidates for the ordinary table may be excluded due to information provided by some <span class="SimpleMath">p</span>-modular table, see Section <a href="chap2.html#X87EEBDB987249117"><span class="RefLink">2.7-1</span></a> for an easy example. Our strategy is analogous to the one used in Section <a href="chap2.html#X7FEC3AB081487AF2"><span class="RefLink">2.6-2</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstructModularV4GTables:= function( tblG, tbl2G, ordposs,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                         ordlibtblV4G )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     local name, modposs, primes, checkordinary, i, p, tmodp, 2tmodp, aut,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           poss, modlib, trans, reps;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if not IsCharacterTable( ordlibtblV4G ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#I  no ordinary library table ...\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       return [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     name:= Identifier( ordlibtblV4G );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modposs:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     primes:= ShallowCopy( PrimeDivisors( Size( tblG ) ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ordposs:= ShallowCopy( ordposs );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     checkordinary:= false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for i in [ 1 .. Length( ordposs ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modposs[i]:= [];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       for p in primes do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         tmodp := tblG  mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         2tmodp:= tbl2G mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if IsCharacterTable( tmodp ) and IsCharacterTable( 2tmodp ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           aut:= ConstructionInfoCharacterTable( ordposs[i] )[3];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           poss:= BrauerTableOfTypeV4G( ordposs[i], 2tmodp, aut );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           if CTblLib.Test.TensorDecomposition( poss, false ) = false then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Print( "#I  excluded cand. ", i, " (out of ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    Length( ordposs ), ") for ", name, " by ", p,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    "-mod. table\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Unbind( ordposs[i] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Unbind( modposs[i] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             checkordinary:= true;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             break;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Add( modposs[i], poss );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#I  not all input tables for ", name, " mod ", p,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " available\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           primes:= Difference( primes, [ p ] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if IsBound( modposs[i] ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         # Compare the computed Brauer tables with the library tables.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         for poss in modposs[i] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           p:= UnderlyingCharacteristic( poss );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           modlib:= ordlibtblV4G mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           if IsCharacterTable( modlib ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             trans:= TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                         poss, modlib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             if not IsRecord( trans ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               Print( "#E  computed table and library table for ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                      name, " mod ", p, " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             Print( "#I  no library table for ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    name, " mod ", p, "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             PrintToLib( name, poss );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if checkordinary then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       # Test whether the ordinary table is admissible.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       ordposs:= Compacted( ordposs );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modposs:= Compacted( modposs );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       reps:= RepresentativesCharacterTables( ordposs );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if 1 &lt; Length( reps ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#I  ", name, ": ", Length( reps ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                " equivalence classes (ord. table)\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       elif Length( reps ) = 0 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#E  ", name, ": no solution (ord. table)\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         # Compare the computed table with the library table.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         trans:= TransformingPermutationsCharacterTables( reps[1],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     ordlibtblV4G );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if not IsRecord( trans ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed table and library table for ", name,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     # Test the uniqueness of the Brauer tables.</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for poss in TransposedMat( modposs ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       reps:= RepresentativesCharacterTables( poss );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if Length( reps ) &lt;&gt; 1 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#I  ", name, ": ", Length( reps ), " candidates for the ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                UnderlyingCharacteristic( reps[1] ), "-modular table\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     return rec( ordinary:= ordposs, modular:= modposs );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   end;;</span>
</pre></div>

<p>In our examples, the action of the outer automorphism of order three on the classes of <span class="SimpleMath">G</span> turns out to be uniquely determined by the table automorphisms of the character table of <span class="SimpleMath">G</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in listV4G do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tblG  := CharacterTable( input[3] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     tbl2G := CharacterTable( input[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     lib   := CharacterTable( input[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     poss  := ConstructOrdinaryV4GTable( tblG, tbl2G, input[1], lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ConstructModularV4GTables( tblG, tbl2G, poss, lib );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
#I  excluded cand. 1 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I  excluded cand. 2 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I  excluded cand. 7 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I  excluded cand. 10 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I  excluded cand. 15 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I  excluded cand. 16 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I  excluded cand. 1 (out of 16) for (2^2x3).L3(4).2_1 by 7-mod. table
#I  excluded cand. 2 (out of 16) for (2^2x3).L3(4).2_1 by 7-mod. table
#I  excluded cand. 7 (out of 16) for (2^2x3).L3(4).2_1 by 7-mod. table
#I  excluded cand. 10 (out of 16) for (2^2x3).L3(4).2_1 by 
7-mod. table
#I  excluded cand. 15 (out of 16) for (2^2x3).L3(4).2_1 by 
7-mod. table
#I  excluded cand. 16 (out of 16) for (2^2x3).L3(4).2_1 by 
7-mod. table
#I  not all input tables for 2^2.2E6(2) mod 2 available
#I  not all input tables for 2^2.2E6(2) mod 3 available
#I  not all input tables for 2^2.2E6(2) mod 5 available
#I  not all input tables for 2^2.2E6(2) mod 7 available
#I  not all input tables for (2^2x3).2E6(2) mod 2 available
#I  not all input tables for (2^2x3).2E6(2) mod 3 available
#I  not all input tables for (2^2x3).2E6(2) mod 5 available
#I  not all input tables for (2^2x3).2E6(2) mod 7 available
#I  not all input tables for (2^2x3).2E6(2) mod 11 available
#I  not all input tables for (2^2x3).2E6(2) mod 13 available
#I  not all input tables for (2^2x3).2E6(2) mod 17 available
#I  not all input tables for (2^2x3).2E6(2) mod 19 available
</pre></div>

<p><a id="X7F63DDF77870F967" name="X7F63DDF77870F967"></a></p>

<h5>2.7-3 <span class="Heading">The Character Table of <span class="SimpleMath">2^2.O_8^+(3)</span> (March 2009)</span></h5>

<p>When one tries to construct the character table of the central extensions of <span class="SimpleMath">G = O_8^+(3)</span> by a Klein four group, in the same way as in Section <a href="chap2.html#X83652A0282A64D14"><span class="RefLink">2.7-2</span></a>, one notices that the order three automorphism that relates the three central extensions of <span class="SimpleMath">G</span> by an involution is <em>not</em> uniquely determined.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">entry:= [ "2^2.O8+(3)", "2.O8+(3)", "O8+(3)" ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( entry[3] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">aut:= AutomorphismsOfTable( tblG );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord3:= Set( Filtered( aut, x -&gt; Order( x ) = 3 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               SmallestGeneratorPerm );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( ord3 );</span>
4
</pre></div>

<p>However, the table candidates one gets from the four possible automorphisms turn out to be all equivalent, hence the character table of <span class="SimpleMath">2^2.O_8^+(3)</span> can be constructed as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl2G:= CharacterTable( entry[2] );</span>
CharacterTable( "2.O8+(3)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for pi in ord3 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  Append( poss,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          PossibleCharacterTablesOfTypeV4G( tblG, tbl2G, pi, entry[1] ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
32
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= RepresentativesCharacterTables( poss );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
1
</pre></div>

<p>The computed table coincides with the library table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib:= CharacterTable( entry[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">if TransformingPermutationsCharacterTables( poss[1], lib ) = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Print( "#E  differences for ", entry[1], "\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   fi;</span>
</pre></div>

<p><a id="X86A1607787DE6BB9" name="X86A1607787DE6BB9"></a></p>

<h5>2.7-4 <span class="Heading">The Character Table of the Schur Cover of <span class="SimpleMath">L_3(4)</span>
(September 2005)</span></h5>

<p>The Schur cover of <span class="SimpleMath">G = L_3(4)</span> has the structure <span class="SimpleMath">(4^2 × 3).L_3(4)</span>. Following <a href="chapBib.html#biBCCN85">[CCN+85, p. 23]</a>, we regard the multiplier of <span class="SimpleMath">G</span> as</p>

<p class="pcenter">M = ⟨ a, b, c, d ∣ [a,b] = [a,c] = [a,d] = [b,c] = [b,d] = [c,d] = a^4 = b^4 = c^4 = d^3 = abc ⟩ ,</p>

<p>and we will consider the automorphism <span class="SimpleMath">α</span> of <span class="SimpleMath">M.G</span> that acts as <span class="SimpleMath">(a,b,c)(d)</span> on <span class="SimpleMath">M</span>.</p>

<p>The subgroup lattice of the subgroup <span class="SimpleMath">⟨ a, b, c ⟩ = ⟨ a, b ⟩ ≅ 4^2</span> of <span class="SimpleMath">M</span> looks as follows. (The subgroup in the centre of the picture is the Klein four group <span class="SimpleMath">⟨ a^2, b^2, c^2 ⟩ = ⟨ a^2, b^2 ⟩</span>.)</p>

<p><center> <img src="ctblcons19.png" alt="Schur cover of L3(4)"/> </center></p>

<p>(The symmetry w.r.t. <span class="SimpleMath">α</span> would be reflected better in a three dimensional model, with <span class="SimpleMath">⟨ a, b ⟩</span>, <span class="SimpleMath">⟨ a^2, b^2 ⟩</span>, and the trivial subgroup on a vertical symmetry axis, and with the remaining subgroups on three circles such that <span class="SimpleMath">α</span> induces a rotation.)</p>

<p>The following is a 3D variant of the picture, which shows the symmetry of order three of the group <span class="SimpleMath">4 × 4</span>. <center> <img src="ctblcons20.png" alt="Schur cover of L3(4), emphasizing a symmetry of order three "/> </center></p>

<p>We have <span class="SimpleMath">(M / ⟨ a ⟩).G ≅ (M / ⟨ b ⟩).G ≅ (M / ⟨ c ⟩).G ≅ 12_2.G</span> and <span class="SimpleMath">(M / ⟨ a b^2 ⟩).G ≅ (M / ⟨ b c^2 ⟩).G ≅ (M / ⟨ c a^2 ⟩).G ≅ 12_1.G</span>. This is because the action of <span class="SimpleMath">G.2_2</span> fixes <span class="SimpleMath">a</span>, and swaps <span class="SimpleMath">b</span> and <span class="SimpleMath">c</span>; so <span class="SimpleMath">b</span> is inverted modulo <span class="SimpleMath">⟨ a ⟩</span> but fixed modulo <span class="SimpleMath">⟨ a b^2 ⟩</span>, and the normal subgroup of order four in <span class="SimpleMath">4_2.G.2_2</span> is central but that in <span class="SimpleMath">4_1.G.2_2</span> is not central.</p>

<p>The constructions of the character tables of <span class="SimpleMath">4^2.G</span> and <span class="SimpleMath">(4^2 × 3).G</span> are essentially the same. We start with the table of <span class="SimpleMath">4^2.G</span>. It can be regarded as a central extension <span class="SimpleMath">H = V.2^2.G</span> of <span class="SimpleMath">2^2.G</span> by a Klein four group <span class="SimpleMath">V</span>. The three subgroups of order two in <span class="SimpleMath">V</span> are cyclicly permuted by the automorphism of <span class="SimpleMath">M / ⟨ d ⟩</span> induced by <span class="SimpleMath">α</span>, so the three factors by these subgroups are isomorphic groups <span class="SimpleMath">F</span>, say, with the structure <span class="SimpleMath">(2 × 4).G</span>.</p>

<p>The group <span class="SimpleMath">F</span> itself is a central extension of <span class="SimpleMath">2.G</span> by a Klein four group, but in this case the three factor groups by the order two subgroups of the Klein four group are nonisomorphic groups, of the types <span class="SimpleMath">4_1.G</span>, <span class="SimpleMath">4_2.G</span>, and <span class="SimpleMath">2^2.G</span>, respectively. The <strong class="pkg">GAP</strong> function <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>) can be used to construct the character table of <span class="SimpleMath">F</span> from the three factors. Note that in this case, no information about table automorphisms is required.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "2.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbls2G:= List( [ "4_1.L3(4)", "4_2.L3(4)", "2^2.L3(4)"],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeV4G( tblG, tbls2G, "(2x4).L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= RepresentativesCharacterTables( poss );</span>
[ CharacterTable( "(2x4).L3(4)" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib:= CharacterTable( "(2x4).L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( reps[1], lib ) );</span>
true
</pre></div>

<p>In the second step, we construct the table of <span class="SimpleMath">4^2.G</span> from that of <span class="SimpleMath">(2 × 4).G</span> and the table automorphism of <span class="SimpleMath">2^2.G</span> that is induced by <span class="SimpleMath">α</span>; it turns out that the group of table automorphisms of <span class="SimpleMath">2^2.G</span> contains a unique subgroup of order three.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= tbls2G[3];</span>
CharacterTable( "2^2.L3(4)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl2G:= lib;       </span>
CharacterTable( "(2x4).L3(4)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">aut:= AutomorphismsOfTable( tblG );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord3:= Set( Filtered( aut, x -&gt; Order( x ) = 3 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               SmallestGeneratorPerm );</span>
[ (2,3,4)(6,7,8)(10,11,12)(13,15,17)(14,16,18)(20,21,22)(24,25,26)(28,
    29,30)(32,33,34) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= ord3[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeV4G( tblG, tbl2G, pi, "4^2.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= RepresentativesCharacterTables( poss );        </span>
[ CharacterTable( "4^2.L3(4)" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib:= CharacterTable( "4^2.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( reps[1], lib ) );</span>
true
</pre></div>

<p>With the same approach, we compute the table of <span class="SimpleMath">(2 × 12).G = 2^2.6.G</span> from the tables of the three nonisomorphic factor groups <span class="SimpleMath">12_1.G</span>, <span class="SimpleMath">12_2.G</span>, and <span class="SimpleMath">(2^2 × 3).G</span>, and we compute the table of <span class="SimpleMath">(4^2 × 3).G = 2^2.(2^2 × 3).G</span> from the three tables of the factor groups <span class="SimpleMath">(2 × 12).G</span> and the action induced by <span class="SimpleMath">α</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "6.L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbls2G:= List( [ "12_1.L3(4)", "12_2.L3(4)", "(2^2x3).L3(4)"],            </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  CharacterTable );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeV4G( tblG, tbls2G, "(2x12).L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= RepresentativesCharacterTables( poss );</span>
[ CharacterTable( "(2x12).L3(4)" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib:= CharacterTable( "(2x12).L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( reps[1], lib ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblG:= CharacterTable( "(2^2x3).L3(4)" ); </span>
CharacterTable( "(2^2x3).L3(4)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl2G:= CharacterTable( "(2x12).L3(4)" );</span>
CharacterTable( "(2x12).L3(4)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">aut:= AutomorphismsOfTable( tblG );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord3:= Set( Filtered( aut, x -&gt; Order( x ) = 3 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               SmallestGeneratorPerm );</span>
[ (2,7,8)(3,4,10)(6,11,12)(14,19,20)(15,16,22)(18,23,24)(26,27,28)(29,
    35,41)(30,37,43)(31,39,45)(32,36,42)(33,38,44)(34,40,46)(48,53,
    54)(49,50,56)(52,57,58)(60,65,66)(61,62,68)(64,69,70)(72,77,
    78)(73,74,80)(76,81,82)(84,89,90)(85,86,92)(88,93,94) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= ord3[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeV4G( tblG, tbl2G, pi,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                            "(4^2x3).L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= RepresentativesCharacterTables( poss );</span>
[ CharacterTable( "(4^2x3).L3(4)" ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lib:= CharacterTable( "(4^2x3).L3(4)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( reps[1], lib ) );</span>
true
</pre></div>

<p><a id="X8711DBB083655A25" name="X8711DBB083655A25"></a></p>

<h4>2.8 <span class="Heading">Examples of Extensions by <span class="SimpleMath">p</span>-singular Automorphisms</span></h4>

<p><a id="X81C08739850E4AAE" name="X81C08739850E4AAE"></a></p>

<h5>2.8-1 <span class="Heading">Some <span class="SimpleMath">p</span>-Modular Tables of Groups of the Type <span class="SimpleMath">M.G.A</span></span></h5>

<p>We show an alternative construction of <span class="SimpleMath">p</span>-modular tables of certain groups that have been met in Section <a href="chap2.html#X7ED45AB379093A70"><span class="RefLink">2.4-3</span></a>. Each entry in the <strong class="pkg">GAP</strong> list <code class="code">listMGA</code> contains the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) values of character tables of groups of the types <span class="SimpleMath">M.G</span>, <span class="SimpleMath">G</span>, <span class="SimpleMath">G.A</span>, and <span class="SimpleMath">M.G.A</span>. For each entry with <span class="SimpleMath">|A| = p</span>, a prime integer, we fetch the <span class="SimpleMath">p</span>-modular table of <span class="SimpleMath">G</span> and the ordinary table of <span class="SimpleMath">G.A</span>, compute the action of <span class="SimpleMath">G.A</span> on the <span class="SimpleMath">p</span>-regular classes of <span class="SimpleMath">G</span>, and then compute the <span class="SimpleMath">p</span>-modular table of <span class="SimpleMath">G.A</span>. Analogously, we compute the <span class="SimpleMath">p</span>-modular table of <span class="SimpleMath">M.G.A</span> from the <span class="SimpleMath">p</span>-modular table of <span class="SimpleMath">M.G</span> and the ordinary table of <span class="SimpleMath">M.G.A</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in listMGA do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ordtblMG  := CharacterTable( input[1] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ordtblG   := CharacterTable( input[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ordtblGA  := CharacterTable( input[3] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ordtblMGA := CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     p:= Size( ordtblGA ) / Size( ordtblG );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if IsPrimeInt( p ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modtblG:= ordtblG mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if modtblG &lt;&gt; fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         modtblGA := CharacterTableRegular( ordtblGA, p );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         SetIrr( modtblGA, IBrOfExtensionBySingularAutomorphism( modtblG,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                               ordtblGA ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         modlibtblGA:= ordtblGA mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if modlibtblGA = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  ", p, "-modular table of '", Identifier( ordtblGA ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  "' is missing\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         elif TransformingPermutationsCharacterTables( modtblGA,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  modlibtblGA ) = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed table and library table for ", input[3],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " mod ", p, " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modtblMG:= ordtblMG mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if modtblMG &lt;&gt; fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         modtblMGA := CharacterTableRegular( ordtblMGA, p );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         SetIrr( modtblMGA, IBrOfExtensionBySingularAutomorphism( modtblMG,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                ordtblMGA ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         modlibtblMGA:= ordtblMGA mod p;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if modlibtblMGA = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  ", p, "-modular table of '", Identifier( ordtblMGA ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  "' is missing\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         elif TransformingPermutationsCharacterTables( modtblMGA,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  modlibtblMGA ) = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed table and library table for ", input[4],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " mod ", p, " differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p><a id="X7FED618F83ACB7C2" name="X7FED618F83ACB7C2"></a></p>

<h5>2.8-2 <span class="Heading">Some <span class="SimpleMath">p</span>-Modular Tables of Groups of the Type <span class="SimpleMath">G.S_3</span></span></h5>

<p>We show an alternative construction of <span class="SimpleMath">2</span>- and <span class="SimpleMath">3</span>-modular tables of certain groups that have been met in Section <a href="chap2.html#X80F9BC057980A9E9"><span class="RefLink">2.5-2</span></a>. Each entry in the <strong class="pkg">GAP</strong> list <code class="code">listGS3</code> contains the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) values of character tables of groups of the types <span class="SimpleMath">G</span>, <span class="SimpleMath">G.2</span>, <span class="SimpleMath">G.3</span>, and <span class="SimpleMath">G.S_3</span>. For each entry, we fetch the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G</span> and the ordinary table of <span class="SimpleMath">G.2</span>, compute the action of <span class="SimpleMath">G.2</span> on the <span class="SimpleMath">2</span>-regular classes of <span class="SimpleMath">G</span>, and then compute the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G.2</span>. Analogously, we compute the <span class="SimpleMath">3</span>-modular table of <span class="SimpleMath">G.3</span> from the <span class="SimpleMath">3</span>-modular table of <span class="SimpleMath">G</span> and the ordinary table of <span class="SimpleMath">G.3</span>, and we compute the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G.S_3</span> from the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G.3</span> and the ordinary table of <span class="SimpleMath">G.S_3</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in listGS3 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modtblG:= CharacterTable( input[1] ) mod 2;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if modtblG &lt;&gt; fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       ordtblG2 := CharacterTable( input[2] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modtblG2 := CharacterTableRegular( ordtblG2, 2 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       SetIrr( modtblG2, IBrOfExtensionBySingularAutomorphism( modtblG,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                             ordtblG2 ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modlibtblG2:= ordtblG2 mod 2;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if modlibtblG2 = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#E  2-modular table of '", Identifier( ordtblG2 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                "' is missing\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       elif TransformingPermutationsCharacterTables( modtblG2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                modlibtblG2 ) = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#E  computed table and library table for ", input[2],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                " mod 2 differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modtblG:= CharacterTable( input[1] ) mod 3;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if modtblG &lt;&gt; fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       ordtblG3 := CharacterTable( input[3] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modtblG3 := CharacterTableRegular( ordtblG3, 3 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       SetIrr( modtblG3, IBrOfExtensionBySingularAutomorphism( modtblG,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                             ordtblG3 ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modlibtblG3:= ordtblG3 mod 3;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if modlibtblG3 = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#E  3-modular table of '", Identifier( ordtblG3 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                "' is missing\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       elif TransformingPermutationsCharacterTables( modtblG3,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                modlibtblG3 ) = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#E  computed table and library table for ", input[3],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                " mod 3 differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modtblG3:= CharacterTable( input[3] ) mod 2;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if modtblG3 &lt;&gt; fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       ordtblGS3 := CharacterTable( input[4] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modtblGS3 := CharacterTableRegular( ordtblGS3, 2 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       SetIrr( modtblGS3, IBrOfExtensionBySingularAutomorphism( modtblG3,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                              ordtblGS3 ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       modlibtblGS3:= ordtblGS3 mod 2;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if modlibtblGS3 = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#E  2-modular table of '", Identifier( ordtblGS3 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                "' is missing\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       elif TransformingPermutationsCharacterTables( modtblGS3,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                modlibtblGS3 ) = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         Print( "#E  computed table and library table for ", input[4],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                " mod 2 differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p><a id="X7EEF6A7F8683177A" name="X7EEF6A7F8683177A"></a></p>

<h5>2.8-3 <span class="Heading"><span class="SimpleMath">2</span>-Modular Tables of Groups of the Type <span class="SimpleMath">G.2^2</span></span></h5>

<p>We show an alternative construction of <span class="SimpleMath">2</span>-modular tables of certain groups that have been met in Section <a href="chap2.html#X7FEC3AB081487AF2"><span class="RefLink">2.6-2</span></a>. Each entry in the <strong class="pkg">GAP</strong> list <code class="code">listGV4</code> contains the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) values of character tables of groups of the types <span class="SimpleMath">G</span>, <span class="SimpleMath">G.2_1</span>, <span class="SimpleMath">G.2_2</span>, <span class="SimpleMath">G.2_3</span>, and <span class="SimpleMath">G.2^2</span>. For each entry, we fetch the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G</span> and the ordinary tables of the groups <span class="SimpleMath">G.2_i</span>, and compute the <span class="SimpleMath">2</span>-modular tables of <span class="SimpleMath">G.2_i</span>; Then we compute from this modular table and the ordinary table of <span class="SimpleMath">G.2^2</span> the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G.2^2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for input in listGV4 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modtblG:= CharacterTable( input[1] ) mod 2;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if modtblG &lt;&gt; fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       ordtblsG2:= List( input{ [ 2 .. 4 ] }, CharacterTable );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       ordtblGV4:= CharacterTable( input[5] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       for tblG2 in ordtblsG2 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         modtblG2:= CharacterTableRegular( tblG2, 2 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         SetIrr( modtblG2, IBrOfExtensionBySingularAutomorphism( modtblG,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                               tblG2 ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         modlibtblG2:= tblG2 mod 2;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if modlibtblG2 = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  2-modular table of '", Identifier( tblG2 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  "' is missing\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         elif TransformingPermutationsCharacterTables( modtblG2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  modlibtblG2 ) = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed table and library table for ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  Identifier( tblG2 ), " mod 2 differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         modtblGV4:= CharacterTableRegular( ordtblGV4, 2 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         SetIrr( modtblGV4, IBrOfExtensionBySingularAutomorphism( modtblG2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                               ordtblGV4 ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         modlibtblGV4:= ordtblGV4 mod 2;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         if modlibtblGV4 = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  2-modular table of '", Identifier( ordtblGV4 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  "' is missing\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         elif TransformingPermutationsCharacterTables( modtblGV4,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                ordtblGV4 mod 2 ) = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           Print( "#E  computed table and library table for ", input[5],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  " mod 2 differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p><a id="X875F8DD77C0997FA" name="X875F8DD77C0997FA"></a></p>

<h5>2.8-4 <span class="Heading">The <span class="SimpleMath">3</span>-Modular Table of <span class="SimpleMath">U_3(8).3^2</span></span></h5>

<p>The only example of an <strong class="pkg">Atlas</strong> group of the structure <span class="SimpleMath">G.3^3</span> is <span class="SimpleMath">U_3(8).3^2</span>. Its <span class="SimpleMath">3</span>-modular character table can be constructed from the known <span class="SimpleMath">3</span>-modular character table of any of its index <span class="SimpleMath">3</span> subgroups, plus the action of <span class="SimpleMath">U_3(8).3^2</span> on the classes of this subgroup.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ordtblG3:= CharacterTable( "U3(8).3^2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">modlibtblG3:= ordtblG3 mod 3;</span>
BrauerTable( "U3(8).3^2", 3 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for nam in [ "U3(8).3_1", "U3(8).3_2", "U3(8).3_3" ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modtblG:= CharacterTable( nam ) mod 3;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if modtblG = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Error( "no 3-modular table of ", nam );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     modtblG3:= CharacterTableRegular( ordtblG3, 3 );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     SetIrr( modtblG3, IBrOfExtensionBySingularAutomorphism( modtblG,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                           ordtblG3 ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if TransformingPermutationsCharacterTables( modtblG3,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            modlibtblG3 ) = fail then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Print( "#E  computed table and library table for ",</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              Identifier( ordtblG3 ), " mod 3 differ\n" );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p>As expected, we get the same <span class="SimpleMath">3</span>-modular table for any choice of the index <span class="SimpleMath">3</span> subgroup.</p>

<p>Note that all <span class="SimpleMath">3</span>-modular Brauer characters of <span class="SimpleMath">U_3(8).3^2</span> lift to characteristic zero.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rest:= RestrictedClassFunctions( Irr( ordtblG3 ), modlibtblG3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSubset( rest, Irr( modlibtblG3 ) );</span>
true
</pre></div>

<p><a id="X7A4D6044865E516B" name="X7A4D6044865E516B"></a></p>

<h4>2.9 <span class="Heading">Examples of Subdirect Products of Index Two</span></h4>

<p>Typical examples of this construction are those maximal subgroups of alternating groups <span class="SimpleMath">A_n</span> that extend in the corresponding symmetric groups <span class="SimpleMath">S_n</span> to direct products of the structures <span class="SimpleMath">S_m × S_n-m</span>, for <span class="SimpleMath">2 &lt; m &lt; n/2</span>. Also certain subgroups of these maximal subgroups that have this structure can be interesting, see Section <a href="chap2.html#X7925DBFA7C5986B5"><span class="RefLink">2.4-2</span></a>.</p>

<p><a id="X850FF694801700CF" name="X850FF694801700CF"></a></p>

<h5>2.9-1 <span class="Heading">Certain Dihedral Groups as Subdirect Products of Index Two</span></h5>

<p>Also dihedral groups of order <span class="SimpleMath">2 n</span> with <span class="SimpleMath">n</span> divisible by at least two different primes have the required structure: Let <span class="SimpleMath">n = n_1 n_2</span> with coprime <span class="SimpleMath">n_1</span>, <span class="SimpleMath">n_2</span>, and let the normal subgroups <span class="SimpleMath">H_1</span>, <span class="SimpleMath">H_2</span> be cyclic subgroups of order <span class="SimpleMath">n_1</span> and <span class="SimpleMath">n_2</span>, respectively, inside the cyclic subgroup of index two. Then the factors <span class="SimpleMath">G/N_1</span>, <span class="SimpleMath">G/N_2</span> are themselves dihedral groups.</p>

<p>So an example (with <span class="SimpleMath">n_1 = 3</span> and <span class="SimpleMath">n_2 = 5</span>) is the construction of the dihedral group <span class="SimpleMath">D_30</span> as a subdirect product of index two in the direct product <span class="SimpleMath">D_6 × D_10</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblh1:= CharacterTable( "C3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblg1:= CharacterTable( "S3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblh1, PossibleClassFusions( tblh1, tblg1 )[1], tblg1 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblh2:= CharacterTable( "C5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblg2:= CharacterTable( "D10" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( tblh2, PossibleClassFusions( tblh2, tblg2 )[1], tblg2 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">subdir:= CharacterTableOfIndexTwoSubdirectProduct( tblh1, tblg1,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                tblh2, tblg2, "D30" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( subdir.table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( "Dihedral", 30 ) ) );</span>
true
</pre></div>

<p><a id="X80C5D6FA83D7E2CF" name="X80C5D6FA83D7E2CF"></a></p>

<h5>2.9-2 <span class="Heading">The Character Table of <span class="SimpleMath">(D_10 × HN).2 &lt; M</span> (June 2008)</span></h5>

<p>The sporadic simple Monster group contains maximal subgroups with the structure <span class="SimpleMath">(D_10 × HN).2</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 234]</a>), the factor group modulo <span class="SimpleMath">D_10</span> is the automorphism group <span class="SimpleMath">HN.2</span> of <span class="SimpleMath">HN</span>, and the factor group modulo <span class="SimpleMath">HN</span> is the Frobenius group <span class="SimpleMath">5:4</span> of order <span class="SimpleMath">20</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblh1:= CharacterTable( "D10" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblg1:= CharacterTable( "5:4" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblh2:= CharacterTable( "HN" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblg2:= CharacterTable( "HN.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">subdir:= CharacterTableOfIndexTwoSubdirectProduct( tblh1, tblg1,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                tblh2, tblg2, "(D10xHN).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( subdir.table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( "(D10xHN).2" ) ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( subdir.table, m );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( fus );</span>
16
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( RepresentativesFusions( subdir.table, fus, m ) );</span>
1
</pre></div>

<p>An alternative construction is the one described in Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>, as <span class="SimpleMath">(D_10 × HN).2 = M.G.A</span> with <span class="SimpleMath">G = 2 × HN</span>, <span class="SimpleMath">M.G = D_10 × HN</span>, and <span class="SimpleMath">G.A</span> the subdirect product of <span class="SimpleMath">HN.2</span> and a cyclic group of order four (which can be constructed as the isoclinic variant of <span class="SimpleMath">2 × HN.2</span>, see Section <a href="chap2.html#X80C37276851D5E39"><span class="RefLink">2.2-4</span></a>).</p>

<p>Here is this construction:</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2:= CharacterTable( "C2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hn:= CharacterTable( "HN" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= c2 * hn;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">d10:= CharacterTable( "D10" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mg:= d10 * hn;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= ClassPositionsOfNormalSubgroups( mg );</span>
[ [ 1 ], [ 1, 55 .. 109 ], [ 1, 55 .. 163 ], [ 1 .. 54 ], 
  [ 1 .. 162 ], [ 1 .. 216 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SizesConjugacyClasses( mg ){ nsg[2] };</span>
[ 1, 2, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= mg / nsg[2];</span>
CharacterTable( "D10xHN/[ 1, 55, 109 ]" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">help:= c2 * CharacterTable( "HN.2" );</span>
CharacterTable( "C2xHN.2" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ga:= CharacterTableIsoclinic( help ); </span>
CharacterTable( "Isoclinic(C2xHN.2)" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gfusga:= PossibleClassFusions( g, ga ); </span>
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 
      18, 19, 20, 21, 22, 23, 23, 24, 25, 25, 26, 27, 28, 29, 30, 31, 
      32, 32, 33, 33, 34, 35, 36, 37, 37, 38, 39, 40, 40, 41, 42, 42, 
      43, 43, 44, 44, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 89, 
      90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 101, 102, 
      103, 103, 104, 105, 106, 107, 108, 109, 110, 110, 111, 111, 
      112, 113, 114, 115, 115, 116, 117, 118, 118, 119, 120, 120, 
      121, 121, 122, 122 ], 
  [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 
      18, 19, 20, 21, 22, 23, 23, 24, 25, 25, 26, 27, 28, 29, 30, 31, 
      32, 32, 33, 33, 35, 34, 36, 37, 37, 38, 39, 40, 40, 41, 42, 42, 
      43, 43, 44, 44, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 89, 
      90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 101, 102, 
      103, 103, 104, 105, 106, 107, 108, 109, 110, 110, 111, 111, 
      113, 112, 114, 115, 115, 116, 117, 118, 118, 119, 120, 120, 
      121, 121, 122, 122 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StoreFusion( g, gfusga[1], ga );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">acts:= PossibleActionsForTypeMGA( mg, g, ga );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( acts );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeMGA( mg, g, ga, acts[1],       </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              "(D10xHN).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( poss );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 CharacterTable( "(D10xHN).2" ) ) );</span>
true
</pre></div>

<p><a id="X85EECFD47EC252A2" name="X85EECFD47EC252A2"></a></p>

<h5>2.9-3 <span class="Heading">A Counterexample (August 2015)</span></h5>

<p>A group <span class="SimpleMath">G</span> is called <em>real</em> if each of its elements is conjugate in <span class="SimpleMath">G</span> to its inverse. Equivalently, a group is real if and only if all its character values are real. One might ask whether the Sylow <span class="SimpleMath">2</span>-subgroup of a real group is itself real. Counterexamples can be found by a search through <strong class="pkg">GAP</strong>'s library of small groups. Using the facts we have collected about index two subdirect products in Section <a href="chap2.html#X788591D78451C024"><span class="RefLink">2.3-6</span></a>, we can demonstrate such a counterexample without using <strong class="pkg">GAP</strong>.</p>

<p>Let <span class="SimpleMath">H_1 = A_4</span>, <span class="SimpleMath">G_1 = S_4</span>, <span class="SimpleMath">H_2 = C_4</span>, and <span class="SimpleMath">G_2</span> a nonabelian group of order <span class="SimpleMath">8</span>, and consider the unique index two subgroup <span class="SimpleMath">G</span> of <span class="SimpleMath">G_1 × G_2</span> that is different from <span class="SimpleMath">H_1 × G_2</span> and <span class="SimpleMath">G_1 × H_2</span>.</p>

<p>Each irreducible character of <span class="SimpleMath">G</span> either extends to <span class="SimpleMath">G_1 × G_2</span> or it is induced from an irreducible character of <span class="SimpleMath">H_1 × H_2</span>. In the former case, the character is integer valued. Irrational values in the latter case arise as follows.</p>

<p>Let <span class="SimpleMath">χ</span> be an irreducible character of <span class="SimpleMath">H_1 × H_2</span>; then it is the product of irreducible characters <span class="SimpleMath">χ_1</span> and <span class="SimpleMath">χ_2</span> of <span class="SimpleMath">H_1</span> and <span class="SimpleMath">H_2</span>, respectively. If <span class="SimpleMath">χ</span> has irrational values then <span class="SimpleMath">χ_1</span> takes primitive third roots of unity <span class="SimpleMath">ω, ω^2</span> on elements of order three in <span class="SimpleMath">H_1</span>, or <span class="SimpleMath">χ_2</span> takes primitive fourth roots of unity <span class="SimpleMath">± i</span> on elements of order four in <span class="SimpleMath">H_2</span>, or both. In the first two cases, inducing <span class="SimpleMath">χ</span> to <span class="SimpleMath">G</span> yields an integer valued character, because each pair of Galois conjugate classes fuses in <span class="SimpleMath">G</span> on which <span class="SimpleMath">χ</span> takes irrational values. In the last case, <span class="SimpleMath">χ</span> takes primitive <span class="SimpleMath">12</span>-th roots of unity <span class="SimpleMath">± i ω</span> and <span class="SimpleMath">± i ω^2</span> on elements of order <span class="SimpleMath">12</span>; since <span class="SimpleMath">G</span> fuses the classes with the character values <span class="SimpleMath">i ω</span> and <span class="SimpleMath">-i ω^2</span>, we get the character value <span class="SimpleMath">i ω -i ω^2 = -sqrt{3}</span> in the induced character <span class="SimpleMath">χ^G</span>. This means that this character is real valued. Hence <span class="SimpleMath">G</span> is real.</p>

<p>Now we consider a Sylow <span class="SimpleMath">2</span>-subgroup of <span class="SimpleMath">G</span>. It has also the structure of a subdirect product, as follows. Let <span class="SimpleMath">H_1 = V_4</span>, <span class="SimpleMath">G_1 = D_8</span>, and <span class="SimpleMath">H_2</span> and <span class="SimpleMath">G_2</span> as above, and consider the unique index two subgroup <span class="SimpleMath">G</span> of <span class="SimpleMath">G_1 × G_2</span> that is different from <span class="SimpleMath">H_1 × G_2</span> and <span class="SimpleMath">G_1 × H_2</span>.</p>

<p>As above, irrational values in an irreducible character of <span class="SimpleMath">G</span> arise only if this character is induced from a character <span class="SimpleMath">χ</span>, say, that is the product of irreducible characters <span class="SimpleMath">χ_1</span> and <span class="SimpleMath">χ_2</span> of <span class="SimpleMath">H_1</span> and <span class="SimpleMath">H_2</span>, respectively. In this case, <span class="SimpleMath">χ_2</span> takes primitive fourth roots of unity <span class="SimpleMath">± i</span> on elements of order four in <span class="SimpleMath">H_2</span>. Moreover, <span class="SimpleMath">χ_1</span> takes different values <span class="SimpleMath">± 1</span> on the two classes of <span class="SimpleMath">H_1</span> that are fused in <span class="SimpleMath">G</span> if the induced character has irrational values, and these values are <span class="SimpleMath">± 2i</span>. Hence the group <span class="SimpleMath">G</span> is <em>not</em> real.</p>

<p>(In fact the above two groups of order <span class="SimpleMath">96</span> are the smallest real groups with non-real Sylow <span class="SimpleMath">2</span>-subgroup, and there are no other such groups of this order.)</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap1.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap3.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>