1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (CTblLibXpls) - Chapter 2: Using Table Automorphisms for Constructing Character Tables in GAP</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap2" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap1.html">[Previous Chapter]</a> <a href="chap3.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap2_mj.html">[MathJax on]</a></p>
<p><a id="X7B77FD307F0DE563" name="X7B77FD307F0DE563"></a></p>
<div class="ChapSects"><a href="chap2.html#X7B77FD307F0DE563">2 <span class="Heading">Using Table Automorphisms for Constructing Character Tables in <strong class="pkg">GAP</strong></span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X8389AD927B74BA4A">2.1 <span class="Heading">Overview</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X7B6AEBDF7B857E2E">2.2 <span class="Heading">Theoretical Background</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X78EBF9BA7A34A9C2">2.2-1 <span class="Heading">Character Table Automorphisms</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X832525DE7AB34F16">2.2-2 <span class="Heading">Permutation Equivalence of Character Tables</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7906869F7F190E76">2.2-3 <span class="Heading">Class Fusions</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X80C37276851D5E39">2.2-4 <span class="Heading">Constructing Character Tables of Certain Isoclinic Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7AEFFEEC84511FD0">2.2-5 <span class="Heading">Character Tables of Isoclinic Groups of the Structure <span class="SimpleMath">p.G.p</span>
(October 2016)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X78F41D2A78E70BEE">2.2-6 <span class="Heading">Isoclinic Double Covers of Almost Simple Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X834B42A07E98FBC6">2.2-7 <span class="Heading">Characters of Normal Subgroups</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X787F430E7FDB8765">2.3 <span class="Heading">The Constructions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X82E75B6880EC9E6C">2.3-1 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">M.G.A</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7CCABDDE864E6300">2.3-2 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">G.S_3</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7D3EF3BC83BE05CF">2.3-3 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">G.2^2</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X81464C4B8178C85A">2.3-4 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">2^2.G</span>
(August 2005)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X86CF6A607B0827EE">2.3-5 <span class="Heading"><span class="SimpleMath">p</span>-Modular Tables of Extensions by <span class="SimpleMath">p</span>-singular Automorphisms</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X788591D78451C024">2.3-6 <span class="Heading">Character Tables of Subdirect Products of Index Two (July 2007)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X817D2134829FA8FA">2.4 <span class="Heading">Examples for the Type <span class="SimpleMath">M.G.A</span></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7F2DBAB48437052C">2.4-1 <span class="Heading">Character Tables of Dihedral Groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7925DBFA7C5986B5">2.4-2 <span class="Heading">An <span class="SimpleMath">M.G.A</span> Type Example with <span class="SimpleMath">M</span> noncentral in <span class="SimpleMath">M.G</span> (May 2004)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7ED45AB379093A70">2.4-3 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">M.G.A</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7A236EDE7A7A28F9">2.4-4 <span class="Heading">More <strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">M.G.A</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X794EC2FD7F69B4E6">2.4-5 <span class="Heading">The Character Tables of <span class="SimpleMath">4_2.L_3(4).2_3</span> and <span class="SimpleMath">12_2.L_3(4).2_3</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7E3E748E85AEDDB3">2.4-6 <span class="Heading">The Character Tables of <span class="SimpleMath">12_1.U_4(3).2_2'</span> and
<span class="SimpleMath">12_2.U_4(3).2_3'</span> (December 2015)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X8379003582D06130">2.4-7 <span class="Heading">Groups of the Structures <span class="SimpleMath">3.U_3(8).3_1</span> and <span class="SimpleMath">3.U_3(8).6</span>
(February 2017)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7B46C77B850D3B4D">2.4-8 <span class="Heading">The Character Table of <span class="SimpleMath">(2^2 × F_4(2)):2 < B</span>
(March 2003)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X8254AA4A843F99BE">2.4-9 <span class="Heading">The Character Table of <span class="SimpleMath">2.(S_3 × Fi_22.2) < 2.B</span> (March 2003)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7AF125168239D208">2.4-10 <span class="Heading">The Character Table of <span class="SimpleMath">(2 × 2.Fi_22):2 < Fi_24</span> (November 2008)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X79C93F7D87D9CF1D">2.4-11 <span class="Heading">The Character Table of <span class="SimpleMath">S_3 × 2.U_4(3).2_2 ≤ 2.Fi_22</span> (September 2002)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X83724BCE86FCD77B">2.4-12 <span class="Heading">The Character Table of <span class="SimpleMath">4.HS.2 ≤ HN.2</span> (May 2002)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7E9A88DA7CBF6426">2.4-13 <span class="Heading">The Character Tables of <span class="SimpleMath">4.A_6.2_3</span>, <span class="SimpleMath">12.A_6.2_3</span>,
and <span class="SimpleMath">4.L_2(25).2_3</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7BD79BA37C3E729B">2.4-14 <span class="Heading">The Character Table of <span class="SimpleMath">4.L_2(49).2_3</span> (December 2020)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X817A961487D2DFD1">2.4-15 <span class="Heading">The Character Table of <span class="SimpleMath">4.L_2(81).2_3</span> (December 2020)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7AF324AF7A54798F">2.4-16 <span class="Heading">The Character Table of <span class="SimpleMath">9.U_3(8).3_3</span> (March 2017)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7E0C603880157C4E">2.4-17 <span class="Heading">Pseudo Character Tables of the Type <span class="SimpleMath">M.G.A</span> (May 2004)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X844185EF7A8F2A99">2.4-18 <span class="Heading">Some Extra-ordinary <span class="SimpleMath">p</span>-Modular Tables of the Type <span class="SimpleMath">M.G.A</span>
(September 2005)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X7F50C782840F06E4">2.5 <span class="Heading">Examples for the Type <span class="SimpleMath">G.S_3</span></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7F0DC29F874AA09F">2.5-1 <span class="Heading">Small Examples</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X80F9BC057980A9E9">2.5-2 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">G.S_3</span></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X7EA489E07D7C7D86">2.6 <span class="Heading">Examples for the Type <span class="SimpleMath">G.2^2</span></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X8054FDE679053B1C">2.6-1 <span class="Heading">The Character Table of <span class="SimpleMath">A_6.2^2</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7FEC3AB081487AF2">2.6-2 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">G.2^2</span> – Easy Cases</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X869B65D3863EDEC3">2.6-3 <span class="Heading">The Character Table of <span class="SimpleMath">S_4(9).2^2</span> (September 2011)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7B38006380618543">2.6-4 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">2.L_3(4).2^2</span>
(June 2010)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X79818ABD7E972370">2.6-5 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">6.L_3(4).2^2</span>
(October 2011)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X878889308653435F">2.6-6 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">2.U_4(3).2^2</span>
(February 2012)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7DC42AE57E9EED4D">2.6-7 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">4_1.L_3(4).2^2</span>
(October 2011)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7E9AF180869B4786">2.6-8 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">4_2.L_3(4).2^2</span>
(October 2011)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7EAF9CD07E536120">2.6-9 <span class="Heading">The Character Table of Aut<span class="SimpleMath">(L_2(81))</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X78AED04685EDCC19">2.6-10 <span class="Heading">The Character Table of <span class="SimpleMath">O_8^+(3).2^2_111</span></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X845BAA2A7FD768B0">2.7 <span class="Heading">Examples for the Type <span class="SimpleMath">2^2.G</span></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X87EEBDB987249117">2.7-1 <span class="Heading">The Character Table of <span class="SimpleMath">2^2.Sz(8)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X83652A0282A64D14">2.7-2 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">2^2.G</span> (September 2005)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7F63DDF77870F967">2.7-3 <span class="Heading">The Character Table of <span class="SimpleMath">2^2.O_8^+(3)</span> (March 2009)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X86A1607787DE6BB9">2.7-4 <span class="Heading">The Character Table of the Schur Cover of <span class="SimpleMath">L_3(4)</span>
(September 2005)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X8711DBB083655A25">2.8 <span class="Heading">Examples of Extensions by <span class="SimpleMath">p</span>-singular Automorphisms</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X81C08739850E4AAE">2.8-1 <span class="Heading">Some <span class="SimpleMath">p</span>-Modular Tables of Groups of the Type <span class="SimpleMath">M.G.A</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7FED618F83ACB7C2">2.8-2 <span class="Heading">Some <span class="SimpleMath">p</span>-Modular Tables of Groups of the Type <span class="SimpleMath">G.S_3</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7EEF6A7F8683177A">2.8-3 <span class="Heading"><span class="SimpleMath">2</span>-Modular Tables of Groups of the Type <span class="SimpleMath">G.2^2</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X875F8DD77C0997FA">2.8-4 <span class="Heading">The <span class="SimpleMath">3</span>-Modular Table of <span class="SimpleMath">U_3(8).3^2</span></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X7A4D6044865E516B">2.9 <span class="Heading">Examples of Subdirect Products of Index Two</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X850FF694801700CF">2.9-1 <span class="Heading">Certain Dihedral Groups as Subdirect Products of Index Two</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X80C5D6FA83D7E2CF">2.9-2 <span class="Heading">The Character Table of <span class="SimpleMath">(D_10 × HN).2 < M</span> (June 2008)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X85EECFD47EC252A2">2.9-3 <span class="Heading">A Counterexample (August 2015)</span></a>
</span>
</div></div>
</div>
<h3>2 <span class="Heading">Using Table Automorphisms for Constructing Character Tables in <strong class="pkg">GAP</strong></span></h3>
<p>Date: June 27th, 2004</p>
<p>This chapter has three aims. First it shows how character table automorphisms can be utilized to construct certain character tables from others using the <strong class="pkg">GAP</strong> system <a href="chapBib.html#biBGAP">[GAP21]</a>; the <strong class="pkg">GAP</strong> functions used for that are part of the <strong class="pkg">GAP</strong> Character Table Library <a href="chapBib.html#biBCTblLib">[Bre24]</a>. Second it documents several constructions of character tables which are contained in the <strong class="pkg">GAP</strong> Character Table Library. Third it serves as a testfile for the involved <strong class="pkg">GAP</strong> functions.</p>
<p><a id="X8389AD927B74BA4A" name="X8389AD927B74BA4A"></a></p>
<h4>2.1 <span class="Heading">Overview</span></h4>
<p>Several types of constructions of character tables of finite groups from known tables of smaller groups are described in Section <a href="chap2.html#X787F430E7FDB8765"><span class="RefLink">2.3</span></a>. Selecting suitable character table automorphisms is an important ingredient of these constructions.</p>
<p>Section <a href="chap2.html#X7B6AEBDF7B857E2E"><span class="RefLink">2.2</span></a> collects the few representation theoretical facts on which these constructions are based.</p>
<p>The remaining sections show examples of the constructions in <strong class="pkg">GAP</strong>. These examples use the <strong class="pkg">GAP</strong> Character Table Library, therefore we load this package first.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "ctbllib", "1.1.4", false );</span>
true
</pre></div>
<p><a id="X7B6AEBDF7B857E2E" name="X7B6AEBDF7B857E2E"></a></p>
<h4>2.2 <span class="Heading">Theoretical Background</span></h4>
<p><a id="X78EBF9BA7A34A9C2" name="X78EBF9BA7A34A9C2"></a></p>
<h5>2.2-1 <span class="Heading">Character Table Automorphisms</span></h5>
<p>Let <span class="SimpleMath">G</span> be a finite group, <span class="SimpleMath">Irr(G)</span> be the matrix of ordinary irreducible characters of <span class="SimpleMath">G</span>, <span class="SimpleMath">Cl(G)</span> be the set of conjugacy classes of elements in <span class="SimpleMath">G</span>, <span class="SimpleMath">g^G</span> the <span class="SimpleMath">G</span>-conjugacy class of <span class="SimpleMath">g ∈ G</span>, and let</p>
<p class="pcenter">pow_p : Cl(G) → Cl(G), g^G ↦ (g^p)^G</p>
<p>be the <span class="SimpleMath">p</span>-th power map, for each prime integer <span class="SimpleMath">p</span>.</p>
<p>A <em>table automorphism</em> of <span class="SimpleMath">G</span> is a permutation <span class="SimpleMath">σ : Cl(G) → Cl(G)</span> with the properties that <span class="SimpleMath">χ ∘ σ ∈ Irr(G)</span> holds for all <span class="SimpleMath">χ ∈ Irr(G)</span> and that <span class="SimpleMath">σ</span> commutes with <span class="SimpleMath">pow_p</span>, for all prime integers <span class="SimpleMath">p</span> that divide the order of <span class="SimpleMath">G</span>. Note that for prime integers <span class="SimpleMath">p</span> that are coprime to the order of <span class="SimpleMath">G</span>, <span class="SimpleMath">pow_p</span> commutes with each <span class="SimpleMath">σ</span> that permutes <span class="SimpleMath">Irr(G)</span>, since <span class="SimpleMath">pow_p</span> acts as a field automorphism on the character values.</p>
<p>In <strong class="pkg">GAP</strong>, a character table covers the irreducible characters –a matrix <span class="SimpleMath">M</span> of character values– as well as the power maps of the underlying group –each power map <span class="SimpleMath">pow_p</span> being represented as a list <span class="SimpleMath">pow_p^'</span> of positive integers denoting the positions of the image classes. The group of table automorphisms of a character table is represented as a permutation group on the column positions of the table; it can be computed with the <strong class="pkg">GAP</strong> function <code class="func">AutomorphismsOfTable</code> (<a href="../../../doc/ref/chap71.html#X7C2753DE8094F4BA"><span class="RefLink">Reference: AutomorphismsOfTable</span></a>).</p>
<p>In the following, we will mainly use that each <em>group automorphism</em> <span class="SimpleMath">σ</span> of <span class="SimpleMath">G</span> induces a table automorphism that maps the class of each element in <span class="SimpleMath">G</span> to the class of its image under <span class="SimpleMath">σ</span>.</p>
<p><a id="X832525DE7AB34F16" name="X832525DE7AB34F16"></a></p>
<h5>2.2-2 <span class="Heading">Permutation Equivalence of Character Tables</span></h5>
<p>Two character tables with matrices <span class="SimpleMath">M_1</span>, <span class="SimpleMath">M_2</span> of irreducibles and <span class="SimpleMath">p</span>-th power maps <span class="SimpleMath">pow_{1,p}</span>, <span class="SimpleMath">pow_{2,p}</span> are <em>permutation equivalent</em> if permutations <span class="SimpleMath">ψ</span> and <span class="SimpleMath">π</span> of row and column positions of the <span class="SimpleMath">M_i</span> exist such that <span class="SimpleMath">[ M_1 ]_{i,j} = [ M_2 ]_{i ψ, j π}</span> holds for all indices <span class="SimpleMath">i</span>, <span class="SimpleMath">j</span>, and such that <span class="SimpleMath">π ⋅ pow_{2,p}^' = pow_{1,p}^' ⋅ π</span> holds for all primes <span class="SimpleMath">p</span> that divide the (common) group order. The first condition is equivalent to the existence of a permutation <span class="SimpleMath">π</span> such that permuting the columns of <span class="SimpleMath">M_1</span> with <span class="SimpleMath">π</span> maps the set of rows of <span class="SimpleMath">M_1</span> to the set of rows of <span class="SimpleMath">M_2</span>.</p>
<p><span class="SimpleMath">π</span> is of course determined only up to table automorphisms of the two character tables, that is, two transforming permutations <span class="SimpleMath">π_1</span>, <span class="SimpleMath">π_2</span> satisfy that <span class="SimpleMath">π_1 ⋅ π_2^-1</span> is a table automorphism of the first table, and <span class="SimpleMath">π_1^-1 ⋅ π_2</span> is a table automorphism of the second.</p>
<p>Clearly two isomorphic groups have permutation equivalent character tables.</p>
<p>The <strong class="pkg">GAP</strong> library function <code class="func">TransformingPermutationsCharacterTables</code> (<a href="../../../doc/ref/chap71.html#X849731AA7EC9FA73"><span class="RefLink">Reference: TransformingPermutationsCharacterTables</span></a>) returns a record that contains transforming permutations of rows and columns if the two argument tables are permutation equivalent, and <code class="keyw">fail</code> otherwise.</p>
<p>In the example sections, the following function for computing representatives from a list of character tables w.r.t. permutation equivalence will be used. More precisely, the input is either a list of character tables or a list of records which have a component <code class="code">table</code> whose value is a character table, and the output is a sublist of the input.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">RepresentativesCharacterTables:= function( list )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local reps, entry, r;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for entry in list do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAll( reps, r -> ( IsCharacterTable( r ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( entry, r ) = fail )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> or ( IsRecord( r ) and TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> entry.table, r.table ) = fail ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( reps, entry );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return reps;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
</pre></div>
<p><a id="X7906869F7F190E76" name="X7906869F7F190E76"></a></p>
<h5>2.2-3 <span class="Heading">Class Fusions</span></h5>
<p>For two groups <span class="SimpleMath">H</span>, <span class="SimpleMath">G</span> such that <span class="SimpleMath">H</span> is isomorphic with a subgroup of <span class="SimpleMath">G</span>, any embedding <span class="SimpleMath">ι : H → G</span> induces a class function</p>
<p class="pcenter">fus_ι : Cl(H) → Cl(G), h^G ↦ (ι(h))^G</p>
<p>the <em>class fusion</em> of <span class="SimpleMath">H</span> in <span class="SimpleMath">G</span> via <span class="SimpleMath">ι</span>. Analogously, for a normal subgroup <span class="SimpleMath">N</span> of <span class="SimpleMath">G</span>, any epimorphism <span class="SimpleMath">π : G → G/N</span> induces a class function</p>
<p class="pcenter">fus_π : Cl(G) → Cl(G/N), g^G ↦ (π(g))^G</p>
<p>the <em>class fusion</em> of <span class="SimpleMath">G</span> onto <span class="SimpleMath">G/N</span> via <span class="SimpleMath">π</span>.</p>
<p>When one works only with character tables and not with groups, these class fusions are the objects that describe subgroup and factor group relations between character tables. Technically, class fusions are necessary for restricting, inducing, and inflating characters from one character table to another. If one is faced with the problem to compute the class fusion between the character tables of two groups <span class="SimpleMath">H</span> and <span class="SimpleMath">G</span> for which it is known that <span class="SimpleMath">H</span> can be embedded into <span class="SimpleMath">G</span> then one can use character-theoretic necessary conditions, concerning that the restriction of all irreducible characters of <span class="SimpleMath">G</span> to <span class="SimpleMath">H</span> (via the class fusion) must decompose into the irreducible characters of <span class="SimpleMath">H</span>, and that the class fusion must commute with the power maps of <span class="SimpleMath">H</span> and <span class="SimpleMath">G</span>.</p>
<p>With this character-theoretic approach, one can clearly determine possible class fusions only up to character table automorphisms. Note that one can interpret each character table automorphism of <span class="SimpleMath">G</span> as a class fusion from the table of <span class="SimpleMath">G</span> to itself.</p>
<p>If <span class="SimpleMath">N</span> is a normal subgroup in <span class="SimpleMath">G</span> then the class fusion of <span class="SimpleMath">N</span> in <span class="SimpleMath">G</span> determines the orbits of the conjugation action of <span class="SimpleMath">G</span> on the classes of <span class="SimpleMath">N</span>. Often the knowledge of these orbits suffices to identify the subgroup of table automorphisms of <span class="SimpleMath">N</span> that corresponds to this action of <span class="SimpleMath">G</span>; for example, this is always the case if <span class="SimpleMath">N</span> has index <span class="SimpleMath">2</span> in <span class="SimpleMath">G</span>.</p>
<p><strong class="pkg">GAP</strong> library functions for dealing with class fusions, power maps, and character table automorphisms are described in the chapter "Maps Concerning Character Tables" in the <strong class="pkg">GAP</strong> Reference Manual.</p>
<p><a id="X80C37276851D5E39" name="X80C37276851D5E39"></a></p>
<h5>2.2-4 <span class="Heading">Constructing Character Tables of Certain Isoclinic Groups</span></h5>
<p>As is stated in <a href="chapBib.html#biBCCN85">[CCN+85, p. xxiii]</a>, two groups <span class="SimpleMath">G</span>, <span class="SimpleMath">H</span> are called <em>isoclinic</em> if they can be embedded into a group <span class="SimpleMath">K</span> such that <span class="SimpleMath">K</span> is generated by <span class="SimpleMath">Z(K)</span> and <span class="SimpleMath">G</span>, and also by <span class="SimpleMath">Z(K)</span> and <span class="SimpleMath">H</span>. In the following, two special cases of isoclinism will be used, where the character tables of the isoclinic groups are closely related.</p>
<dl>
<dt><strong class="Mark">(1)</strong></dt>
<dd><p><span class="SimpleMath">G ≅ 2 × U</span> for a group <span class="SimpleMath">U</span> that has a central subgroup <span class="SimpleMath">N</span> of order <span class="SimpleMath">2</span>, and <span class="SimpleMath">H</span> is the central product of <span class="SimpleMath">U</span> and a cyclic group of order four. Here we can set <span class="SimpleMath">K = 2 × H</span>.</p>
</dd>
<dt><strong class="Mark">(2)</strong></dt>
<dd><p><span class="SimpleMath">G ≅ 2 × U</span> for a group <span class="SimpleMath">U</span> that has a normal subgroup <span class="SimpleMath">N</span> of index <span class="SimpleMath">2</span>, and <span class="SimpleMath">H</span> is the subdirect product of <span class="SimpleMath">U</span> and a cyclic group of order four, Here we can set <span class="SimpleMath">K = 4 × U</span>.</p>
</dd>
</dl>
<p><center> <img src="ctblcons01.png" alt="two constructions of K"/> </center></p>
<p>Starting from the group <span class="SimpleMath">K</span> containing both <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span>, we first note that each irreducible representation of <span class="SimpleMath">G</span> or <span class="SimpleMath">H</span> extends to <span class="SimpleMath">K</span>. More specifically, if <span class="SimpleMath">ρ_G</span> is an irreducible representation of <span class="SimpleMath">G</span> then we can define an extension <span class="SimpleMath">ρ</span> of <span class="SimpleMath">K</span> by defining it suitably on <span class="SimpleMath">Z(K)</span> and then form <span class="SimpleMath">ρ_H</span>, the restriction of <span class="SimpleMath">ρ</span> to <span class="SimpleMath">H</span>.</p>
<p>In our two cases, we set <span class="SimpleMath">S = G ∩ H</span>, so <span class="SimpleMath">K = S ∪ G ∖ S ∪ H ∖ S ∪ z S</span> holds for some element <span class="SimpleMath">z ∈ Z(K) ∖ ( G ∪ H )</span> of order four, and <span class="SimpleMath">G = S ∪ g S</span> for some <span class="SimpleMath">g ∈ G ∖ S</span>, and <span class="SimpleMath">H = S ∪ h S</span> where <span class="SimpleMath">h = z ⋅ g ∈ H ∖ S</span>. For defining <span class="SimpleMath">ρ_H</span>, it suffices to consider <span class="SimpleMath">ρ(h) = ρ(z) ρ(g)</span>, where <span class="SimpleMath">ρ(z) = ϵ_ρ(z) ⋅ I</span> is a scalar matrix.</p>
<p>As for the character table heads of <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span>, we have <span class="SimpleMath">s^G = s^H</span> and <span class="SimpleMath">z (g ⋅ s)^G = (h ⋅ s)^H</span> for each <span class="SimpleMath">s ∈ S</span>, so this defines a bijection of the conjugacy classes of <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span>. For a prime integer <span class="SimpleMath">p</span>, <span class="SimpleMath">(h ⋅ s)^p = (z ⋅ g ⋅ s)^p = z^p ⋅ (g ⋅ s)^p</span> holds for all <span class="SimpleMath">s ∈ S</span>, so the <span class="SimpleMath">p</span>-th power maps of <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span> are related as follows: Inside <span class="SimpleMath">S</span> they coincide for any <span class="SimpleMath">p</span>. If <span class="SimpleMath">p ≡ 1 mod 4</span> they coincide also outside <span class="SimpleMath">S</span>, if <span class="SimpleMath">p ≡ -1 mod 4</span> the images differ by exchanging the classes of <span class="SimpleMath">(h ⋅ s)^p</span> and <span class="SimpleMath">z^2 ⋅ (h ⋅ s)^p</span> (if these elements lie in different classes), and for <span class="SimpleMath">p = 2</span> the images (which lie inside <span class="SimpleMath">S</span>) differ by exchanging the classes of <span class="SimpleMath">(h ⋅ s)^2</span> and <span class="SimpleMath">z^2 ⋅ (g ⋅ s)^2</span> (if these elements lie in different classes).</p>
<p>Let <span class="SimpleMath">ρ</span> be an irreducible representation of <span class="SimpleMath">K</span>. Then <span class="SimpleMath">ρ_G</span> and <span class="SimpleMath">ρ_H</span> are related as follows: <span class="SimpleMath">ρ_G(s) = ρ_H(s)</span> and <span class="SimpleMath">ρ(z) ⋅ ρ_G(g ⋅ s) = ρ_H(h ⋅ s)</span> for all <span class="SimpleMath">s ∈ S</span>. If <span class="SimpleMath">χ_G</span> and <span class="SimpleMath">χ_H</span> are the characters afforded by <span class="SimpleMath">ρ_G</span> and <span class="SimpleMath">ρ_H</span>, respectively, then <span class="SimpleMath">χ_G(s) = χ_H(s)</span> and <span class="SimpleMath">ϵ_ρ(z) ⋅ χ_G(g ⋅ s) = χ_H(h ⋅ s)</span> hold for all <span class="SimpleMath">s ∈ S</span>. In the case <span class="SimpleMath">χ_G(z^2) = χ(1)</span> we have <span class="SimpleMath">ϵ_ρ(z) = ± 1</span>, and both cases actually occur if one considers all irreducible representations of <span class="SimpleMath">K</span>. In the case <span class="SimpleMath">χ_G(z^2) = - χ(1)</span> we have <span class="SimpleMath">ϵ_ρ(z) = ± i</span>, and again both cases occur. So we obtain the irreducible characters of <span class="SimpleMath">H</span> from those of <span class="SimpleMath">G</span> by multiplying the values outside <span class="SimpleMath">S</span> in all those characters by <span class="SimpleMath">i</span> that do not have <span class="SimpleMath">z^2</span> in their kernels.</p>
<p>In <strong class="pkg">GAP</strong>, the function <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) can be used for computing the character table of <span class="SimpleMath">H</span> from that of <span class="SimpleMath">G</span>, and vice versa. (Note that in the above two cases, also the groups <span class="SimpleMath">U</span> and <span class="SimpleMath">H</span> are isoclinic by definition, but <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) does not transfer the character table of <span class="SimpleMath">U</span> to that of <span class="SimpleMath">H</span>.)</p>
<p>One could construct the character tables mentioned above by forming the character tables of certain factor groups or normal subgroups of direct products. However, the construction via <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) has the advantage that the result stores from which sources it arose, and this information can be used to derive also the Brauer character tables, provided that the Brauer character tables of the source tables are known.</p>
<p><a id="X7AEFFEEC84511FD0" name="X7AEFFEEC84511FD0"></a></p>
<h5>2.2-5 <span class="Heading">Character Tables of Isoclinic Groups of the Structure <span class="SimpleMath">p.G.p</span>
(October 2016)</span></h5>
<p>Since the release of <strong class="pkg">GAP</strong> 4.11, <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) admits the construction of the character tables of the isoclinic variants of groups of the structure <span class="SimpleMath">p.G.p</span>, also for odd primes <span class="SimpleMath">p</span>.</p>
<p>This feature will be used in the construction of the character table of <span class="SimpleMath">9.U_3(8).3_3</span>, in order to construct the table of the subgroup <span class="SimpleMath">3.(3 × U_3(8))</span> and of the factor group <span class="SimpleMath">(3 × U_3(8)).3_3</span>, see Section <a href="chap2.html#X7AF324AF7A54798F"><span class="RefLink">2.4-16</span></a>. These constructions are a straightforward generalization of those described in detail in Section <a href="chap2.html#X80C37276851D5E39"><span class="RefLink">2.2-4</span></a>.</p>
<p>There are several examples of <strong class="pkg">Atlas</strong> groups of the structure <span class="SimpleMath">3.G.3</span>. The character table of one such group is shown in the <strong class="pkg">Atlas</strong>, the tables of their isoclinic variants can now be obtained from <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>).</p>
<p>For example, the group GL<span class="SimpleMath">(3,4)</span> has the structure <span class="SimpleMath">3.L_3(4).3</span>. There are three pairwise nonisomorphic isoclinic variants of groups of this structure.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "3.L3(4).3" );</span>
CharacterTable( "3.L3(4).3" )
<span class="GAPprompt">gap></span> <span class="GAPinput">iso1:= CharacterTableIsoclinic( t );</span>
CharacterTable( "Isoclinic(3.L3(4).3,1)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">iso2:= CharacterTableIsoclinic( t, rec( k:= 2 ) );</span>
CharacterTable( "Isoclinic(3.L3(4).3,2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( t, iso1 );</span>
fail
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( t, iso2 );</span>
fail
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( iso1, iso2 );</span>
fail
</pre></div>
<p>The character table of GL<span class="SimpleMath">(3,4)</span> is in fact the one which is shown in the <strong class="pkg">Atlas</strong>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( GL( 3, 4 ) ) ) );</span>
true
</pre></div>
<p><a id="X78F41D2A78E70BEE" name="X78F41D2A78E70BEE"></a></p>
<h5>2.2-6 <span class="Heading">Isoclinic Double Covers of Almost Simple Groups</span></h5>
<p>The function <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) can also be used to switch between the character tables of double covers of groups of the type <span class="SimpleMath">G.2</span>, where <span class="SimpleMath">G</span> is a perfect group, see <a href="chapBib.html#biBCCN85">[CCN+85, Section 6.7]</a>. Typical examples are the double covers of symmetric groups.</p>
<p>Note that these double covers may be isomorphic. This happens for <span class="SimpleMath">2.S_6</span>. More generally, this happens for all semilinear groups <span class="SimpleMath">Σ</span>L<span class="SimpleMath">(2,p^2)</span>, for odd primes <span class="SimpleMath">p</span>. The smallest examples are <span class="SimpleMath">Σ</span>L<span class="SimpleMath">(2,9) = 2.A_6.2_1</span> and <span class="SimpleMath">Σ</span>L<span class="SimpleMath">(2,25) = 2.L_2(25).2_2</span>. This implies that the character table and its isoclinic variant are permutation isomorphic.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "2.A6.2_1" );</span>
CharacterTable( "2.A6.2_1" )
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTableIsoclinic( t ) );</span>
rec( columns := (4,6)(5,7)(11,12)(14,16)(15,17),
group := Group([ (16,17), (14,15) ]),
rows := (3,5)(4,6)(10,11)(12,15,13,14) )
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "2.L2(25).2_2" );</span>
CharacterTable( "2.L2(25).2_2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTableIsoclinic( t ) );</span>
rec( columns := (7,9)(8,10)(20,21)(23,24)(25,27)(26,28),
group := <permutation group with 4 generators>,
rows := (3,5)(4,6)(14,15)(16,17)(19,22,20,21) )
</pre></div>
<p>For groups of the type <span class="SimpleMath">4.G.2</span>, two different situations can occur. Either the distinguished central cyclic subgroup of order four in <span class="SimpleMath">4.G</span> is inverted by the elements in <span class="SimpleMath">4.G.2 ∖ 4.G</span>, or this subgroup is central in <span class="SimpleMath">4.G.2</span>. In the first case, calling <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) with the character table of <span class="SimpleMath">4.G.2</span> yields a character table with the same set of irreducibles, only the <span class="SimpleMath">2</span>-power map will in general differ from that of the input table. In the second case, the one argument version of <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) returns a permutation isomorphic table. By supplying additional arguments, there is a chance to construct tables of different groups.</p>
<p>We demonstrate this phenomenon with the various groups of the structure <span class="SimpleMath">4.L_3(4).2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for m in [ "4_1", "4_2" ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for a in [ "2_1", "2_2", "2_3" ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( tbls, CharacterTable( Concatenation( m, ".L3(4).", a ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls;</span>
[ CharacterTable( "4_1.L3(4).2_1" ), CharacterTable( "4_1.L3(4).2_2" )
, CharacterTable( "4_1.L3(4).2_3" ),
CharacterTable( "4_2.L3(4).2_1" ), CharacterTable( "4_2.L3(4).2_2" )
, CharacterTable( "4_2.L3(4).2_3" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">case1:= Filtered( tbls, t -> Size( ClassPositionsOfCentre( t ) ) = 2 );</span>
[ CharacterTable( "4_1.L3(4).2_1" ), CharacterTable( "4_1.L3(4).2_2" )
, CharacterTable( "4_2.L3(4).2_1" ),
CharacterTable( "4_2.L3(4).2_3" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">case2:= Filtered( tbls, t -> Size( ClassPositionsOfCentre( t ) ) = 4 );</span>
[ CharacterTable( "4_1.L3(4).2_3" ),
CharacterTable( "4_2.L3(4).2_2" ) ]
</pre></div>
<p>The centres of the groups <span class="SimpleMath">4_1.L_3(4).2_1</span>, <span class="SimpleMath">4_1.L_3(4).2_2</span>, <span class="SimpleMath">4_2.L_3(4).2_1</span>, and <span class="SimpleMath">4_2.L_3(4).2_3</span> have order two, that is, these groups belong to the first case. Each of these groups is not permutation equivalent to its isoclinic variant but has the same irreducible characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">isos1:= List( case1, CharacterTableIsoclinic );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( [ 1 .. 4 ], i -> Irr( case1[i] ) = Irr( isos1[i] ) );</span>
[ true, true, true, true ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( [ 1 .. 4 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> TransformingPermutationsCharacterTables( case1[i], isos1[i] ) );</span>
[ fail, fail, fail, fail ]
</pre></div>
<p>The groups <span class="SimpleMath">4_1.L_3(4).2_3</span> and <span class="SimpleMath">4_2.L_3(4).2_2</span> belong to the second case because their centres have order four.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">isos2:= List( case2, CharacterTableIsoclinic );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( [ 1, 2 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> TransformingPermutationsCharacterTables( case2[i], isos2[i] ) );</span>
[ rec( columns := (26,27,28,29)(30,31,32,33)(38,39,40,41)(42,43,44,45)
, group := <permutation group with 5 generators>,
rows := (16,17)(18,19)(20,21)(22,23)(28,29)(32,33)(36,37)(40,
41) ),
rec( columns := (28,29,30,31)(32,33)(34,35,36,37)(38,39,40,41)(42,
43,44,45)(46,47,48,49), group := <permutation group with
3 generators>, rows := (15,16)(17,18)(20,21)(22,23)(24,25)(26,
27)(28,29)(34,35)(38,39)(42,43)(46,47) ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">isos3:= List( case2, t -> CharacterTableIsoclinic( t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfCentre( t ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( [ 1, 2 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> TransformingPermutationsCharacterTables( case2[i], isos3[i] ) );</span>
[ fail, fail ]
</pre></div>
<p><a id="X834B42A07E98FBC6" name="X834B42A07E98FBC6"></a></p>
<h5>2.2-7 <span class="Heading">Characters of Normal Subgroups</span></h5>
<p>Let <span class="SimpleMath">G</span> be a group and <span class="SimpleMath">N</span> be a normal subgroup of <span class="SimpleMath">G</span>. We will need the following well-known facts about the relation between the irreducible characters of <span class="SimpleMath">G</span> and <span class="SimpleMath">N</span>.</p>
<p>For an irreducible (Brauer) character <span class="SimpleMath">χ</span> of <span class="SimpleMath">N</span> and <span class="SimpleMath">g ∈ G</span>, we define <span class="SimpleMath">χ^g</span> by <span class="SimpleMath">χ^g(n) = χ(n^g)</span> for all <span class="SimpleMath">n ∈ N</span>, and set <span class="SimpleMath">I_G(χ) = { g ∈ G; χ^g = χ }</span> (see <a href="chapBib.html#biBFeit82">[Fei82, p. 86]</a>).</p>
<p>If <span class="SimpleMath">I_G(χ) = N</span> then the induced character <span class="SimpleMath">χ^G</span> is an irreducible (Brauer) character of <span class="SimpleMath">G</span> (see <a href="chapBib.html#biBFeit82">[Fei82, Lemma III 2.11]</a> or <a href="chapBib.html#biBNav98">[Nav98, Theorem 8.9]</a> or <a href="chapBib.html#biBLP10">[LP10, Corollary 4.3.8]</a>).</p>
<p>If <span class="SimpleMath">G/N</span> is cyclic and if <span class="SimpleMath">I_G(χ) = G</span> then <span class="SimpleMath">χ = ψ_N</span> for an irreducible (Brauer) character <span class="SimpleMath">ψ</span> of <span class="SimpleMath">G</span>, and each irreducible (Brauer) character <span class="SimpleMath">θ</span> with the property <span class="SimpleMath">χ = θ_N</span> is of the form <span class="SimpleMath">θ = ψ ⋅ ϵ</span>, where <span class="SimpleMath">ϵ</span> is an irreducible (Brauer) character of <span class="SimpleMath">G/N</span> (see <a href="chapBib.html#biBFeit82">[Fei82, Theorem III 2.14]</a> or <a href="chapBib.html#biBNav98">[Nav98, Theorem 8.12]</a> or <a href="chapBib.html#biBLP10">[LP10, Theorem 3.6.13]</a>).</p>
<p>Clifford's theorem (<a href="chapBib.html#biBFeit82">[Fei82, Theorem III 2.12]</a> or <a href="chapBib.html#biBNav98">[Nav98, Corollary 8.7]</a> or <a href="chapBib.html#biBLP10">[LP10, Theorem 3.6.2]</a>) states that the restriction of an irreducible (Brauer) character of <span class="SimpleMath">G</span> to <span class="SimpleMath">N</span> has the form <span class="SimpleMath">e ∑_i=1^t φ_i</span> for a positive integer <span class="SimpleMath">e</span> and irreducible (Brauer) characters <span class="SimpleMath">φ_i</span> of <span class="SimpleMath">N</span>, where <span class="SimpleMath">t</span> is the index of <span class="SimpleMath">I_G(φ_1)</span> in <span class="SimpleMath">G</span>.</p>
<p>Now assume that <span class="SimpleMath">G</span> is a normal subgroup in a larger group <span class="SimpleMath">H</span>, that <span class="SimpleMath">G/N</span> is an abelian chief factor of <span class="SimpleMath">H</span> and that <span class="SimpleMath">ψ</span> is an ordinary irreducible character of <span class="SimpleMath">G</span> such that <span class="SimpleMath">I_H(ψ) = H</span>. Then either <span class="SimpleMath">t = 1</span> and <span class="SimpleMath">e^2</span> is one of <span class="SimpleMath">1</span>, <span class="SimpleMath">|G/N|</span>, or <span class="SimpleMath">t = |G/N|</span> and <span class="SimpleMath">e = 1</span> (see <a href="chapBib.html#biBIsa76">[Isa76, Theorem 6.18]</a>).</p>
<p><a id="X787F430E7FDB8765" name="X787F430E7FDB8765"></a></p>
<h4>2.3 <span class="Heading">The Constructions</span></h4>
<p><a id="X82E75B6880EC9E6C" name="X82E75B6880EC9E6C"></a></p>
<h5>2.3-1 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">M.G.A</span></span></h5>
<p>(This kind of table construction is described in <a href="chapBib.html#biBBre11">[Bre11]</a>.)</p>
<p>Let <span class="SimpleMath">N</span> denote a downward extension of the finite group <span class="SimpleMath">G</span> by a finite group <span class="SimpleMath">M</span>, let <span class="SimpleMath">H</span> denote an automorphic (upward) extension of <span class="SimpleMath">N</span> by a finite cyclic group <span class="SimpleMath">A</span> such that <span class="SimpleMath">M</span> is normal in <span class="SimpleMath">H</span>, and set <span class="SimpleMath">F = H / M</span>. We consider the situation that each irreducible character of <span class="SimpleMath">N</span> that does not contain <span class="SimpleMath">M</span> in its kernel induces irreducibly to <span class="SimpleMath">H</span>. Equivalently, the action of <span class="SimpleMath">A = ⟨ a ⟩</span> on the characters of <span class="SimpleMath">N</span>, via <span class="SimpleMath">χ ↦ χ^a</span>, has only orbits of length exactly <span class="SimpleMath">|A|</span> on the set <span class="SimpleMath">{ χ ∈ Irr(N); M ⊈ ker(χ) }</span>.</p>
<p><center> <img src="ctblcons02.png" alt="groups of the structure M.G.A"/> </center></p>
<p>This occurs for example if <span class="SimpleMath">M</span> is central in <span class="SimpleMath">N</span> and <span class="SimpleMath">A</span> acts fixed-point freely on <span class="SimpleMath">M</span>, we have <span class="SimpleMath">|M| ≡ 1 mod |A|</span> in this case. If <span class="SimpleMath">M</span> has prime order then it is sufficient that <span class="SimpleMath">A</span> does not centralize <span class="SimpleMath">M</span>.</p>
<p>The ordinary (or <span class="SimpleMath">p</span>-modular) irreducible characters of <span class="SimpleMath">H</span> are then given by the ordinary (or <span class="SimpleMath">p</span>-modular) irreducible characters of <span class="SimpleMath">F</span> and <span class="SimpleMath">N</span>, the class fusions from the table of <span class="SimpleMath">N</span> onto the table of <span class="SimpleMath">G</span> and from the table of <span class="SimpleMath">G</span> into that of <span class="SimpleMath">F</span>, and the permutation <span class="SimpleMath">π</span> that is induced by the action of <span class="SimpleMath">A</span> on the conjugacy classes of <span class="SimpleMath">N</span>.</p>
<p>In general, the action of <span class="SimpleMath">A</span> on the classes of <span class="SimpleMath">M</span> is not the right thing to look at, one really must consider the action on the relevant characters of <span class="SimpleMath">M.G</span>. For example, take <span class="SimpleMath">H</span> the quaternion group or the dihedral group of order eight, <span class="SimpleMath">N</span> a cyclic subgroup of index two, and <span class="SimpleMath">M</span> the centre of <span class="SimpleMath">H</span>; here <span class="SimpleMath">A</span> acts trivially on <span class="SimpleMath">M</span>, but the relevant fact is that the action of <span class="SimpleMath">A</span> swaps those two irreducible characters of <span class="SimpleMath">N</span> that take the value <span class="SimpleMath">-1</span> on the involution in <span class="SimpleMath">M</span> –these are the faithful irreducible characters of <span class="SimpleMath">N</span>.</p>
<p>If the orders of <span class="SimpleMath">M</span> and <span class="SimpleMath">A</span> are coprime then also the power maps of <span class="SimpleMath">H</span> can be computed from the above data. For each prime <span class="SimpleMath">p</span> that divides the orders of both <span class="SimpleMath">M</span> and <span class="SimpleMath">A</span>, the <span class="SimpleMath">p</span>-th power map is in general not uniquely determined by these input data. In this case, we can compute the (finitely many) candidates for the character table of <span class="SimpleMath">H</span> that are described by these data. One possible reason for ambiguities is the existence of several isoclinic but nonisomorphic groups that can arise from the input tables (cf. Section <a href="chap2.html#X80C37276851D5E39"><span class="RefLink">2.2-4</span></a>, see Section <a href="chap2.html#X83724BCE86FCD77B"><span class="RefLink">2.4-12</span></a> for an example).</p>
<p>With the <strong class="pkg">GAP</strong> function <code class="func">PossibleActionsForTypeMGA</code> (<a href="..//doc/chap5.html#X7899AA12836EEF8F"><span class="RefLink">CTblLib: PossibleActionsForTypeMGA</span></a>), one can compute the possible orbit structures induced by <span class="SimpleMath">G.A</span> on the classes of <span class="SimpleMath">M.G</span>, and <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) computes the possible ordinary character tables for a given orbit structure. For constructing the <span class="SimpleMath">p</span>-modular Brauer table of a group <span class="SimpleMath">H</span> of the structure <span class="SimpleMath">M.G.A</span>, the <strong class="pkg">GAP</strong> function <code class="func">BrauerTableOfTypeMGA</code> (<a href="..//doc/chap5.html#X83BE977185ADC24B"><span class="RefLink">CTblLib: BrauerTableOfTypeMGA</span></a>) takes the ordinary character table of <span class="SimpleMath">H</span> and the <span class="SimpleMath">p</span>-modular tables of the subgroup <span class="SimpleMath">M.G</span> and the factor group <span class="SimpleMath">G.A</span> as its input. The <span class="SimpleMath">p</span>-modular table of <span class="SimpleMath">G</span> is not explicitly needed in the construction, it is implicitly given by the class fusions from <span class="SimpleMath">M.G</span> into <span class="SimpleMath">M.G.A</span> and from <span class="SimpleMath">M.G.A</span> onto <span class="SimpleMath">G.A</span>; these class fusions must of course be available.</p>
<p>The <strong class="pkg">GAP</strong> Character Table Library contains many tables of groups of the structure <span class="SimpleMath">M.G.A</span> as described above, which are encoded by references to the tables of the groups <span class="SimpleMath">M.G</span> and <span class="SimpleMath">G.A</span>, plus the fusion and action information. This reduces the space needed for storing these character tables.</p>
<p>For examples, see Section <a href="chap2.html#X817D2134829FA8FA"><span class="RefLink">2.4</span></a>.</p>
<p><a id="X7CCABDDE864E6300" name="X7CCABDDE864E6300"></a></p>
<h5>2.3-2 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">G.S_3</span></span></h5>
<p>Let <span class="SimpleMath">G</span> be a finite group, and <span class="SimpleMath">H</span> be an upward extension of <span class="SimpleMath">G</span> such that the factor group <span class="SimpleMath">H / G</span> is a Frobenius group <span class="SimpleMath">F = K C</span> with abelian kernel <span class="SimpleMath">K</span> and cyclic complement <span class="SimpleMath">C</span> of prime order <span class="SimpleMath">c</span>. (Typical cases for <span class="SimpleMath">F</span> are the symmetric group <span class="SimpleMath">S_3</span> on three points and the alternating group <span class="SimpleMath">A_4</span> on four points.) Let <span class="SimpleMath">N</span> and <span class="SimpleMath">U</span> denote the preimages of <span class="SimpleMath">K</span> and <span class="SimpleMath">C</span> under the natural epimorphism from <span class="SimpleMath">H</span> onto <span class="SimpleMath">F</span>.</p>
<p><center> <img src="ctblcons03.png" alt="Groups of the structure G.3.2"/> </center></p>
<p>For certain isomorphism types of <span class="SimpleMath">F</span>, the ordinary (or <span class="SimpleMath">p</span>-modular) character table of <span class="SimpleMath">H</span> can be computed from the ordinary (or <span class="SimpleMath">p</span>-modular) character tables of <span class="SimpleMath">G</span>, <span class="SimpleMath">U</span>, and <span class="SimpleMath">N</span>, the class fusions from the table of <span class="SimpleMath">G</span> into those of <span class="SimpleMath">U</span> and <span class="SimpleMath">N</span>, and the permutation <span class="SimpleMath">π</span> induced by <span class="SimpleMath">H</span> on the conjugacy classes of <span class="SimpleMath">N</span>. This holds for example for <span class="SimpleMath">F = S_3</span> and in the ordinary case also for <span class="SimpleMath">F = A_4</span>.</p>
<p>Each class of <span class="SimpleMath">H</span> is either a union of <span class="SimpleMath">π</span>-orbits or an <span class="SimpleMath">H</span>-class of <span class="SimpleMath">U ∖ G</span>; the latter classes are in bijection with the <span class="SimpleMath">U</span>-classes of <span class="SimpleMath">U ∖ G</span>, they are just <span class="SimpleMath">|K|</span> times larger since the <span class="SimpleMath">|K|</span> conjugates of <span class="SimpleMath">U</span> in <span class="SimpleMath">H</span> are fused. The power maps of <span class="SimpleMath">H</span> are uniquely determined from the power maps of <span class="SimpleMath">U</span> and <span class="SimpleMath">N</span>, because each element in <span class="SimpleMath">F</span> lies in <span class="SimpleMath">K</span> or in an <span class="SimpleMath">F</span>-conjugate of <span class="SimpleMath">C</span>.</p>
<p>Concerning the computation of the ordinary irreducible characters of <span class="SimpleMath">H</span>, we could induce the irreducible characters of <span class="SimpleMath">U</span> and <span class="SimpleMath">N</span> to <span class="SimpleMath">H</span>, and then take the union of the irreducible characters among those and the irreducible differences of those. (For the case <span class="SimpleMath">F = S_3</span>, this approach has been described in the Appendix of <a href="chapBib.html#biBHL94">[HL94]</a>.)</p>
<p>The <strong class="pkg">GAP</strong> function <code class="func">CharacterTableOfTypeGS3</code> (<a href="..//doc/chap5.html#X7E06095E7CB3316D"><span class="RefLink">CTblLib: CharacterTableOfTypeGS3</span></a>) proceeds in a different way, which is suitable also for the construction of <span class="SimpleMath">p</span>-modular character tables of <span class="SimpleMath">H</span>.</p>
<p>By the facts listed in Section <a href="chap2.html#X834B42A07E98FBC6"><span class="RefLink">2.2-7</span></a>, for an irreducible (Brauer) character <span class="SimpleMath">χ</span> of <span class="SimpleMath">N</span>, we have <span class="SimpleMath">I_H(χ)</span> equal to either <span class="SimpleMath">N</span> or <span class="SimpleMath">H</span>. In the former case, <span class="SimpleMath">χ</span> induces irreducibly to <span class="SimpleMath">H</span>. In the latter case, there are extensions <span class="SimpleMath">ψ^(i)</span>, <span class="SimpleMath">1 ≤ i ≤ |C|</span> (or <span class="SimpleMath">|C|_p^'</span>), to <span class="SimpleMath">H</span>, and we have the following possibilities, depending on the restriction <span class="SimpleMath">χ_G</span>.</p>
<p>If <span class="SimpleMath">χ_G = e φ</span>, for an irreducible character <span class="SimpleMath">φ</span> of <span class="SimpleMath">G</span>, then <span class="SimpleMath">I_U(φ) = U</span> holds, hence the <span class="SimpleMath">ψ^(i)_U</span> are <span class="SimpleMath">|C|</span> (or <span class="SimpleMath">|C|_p^'</span>) extensions of <span class="SimpleMath">χ_G</span> to <span class="SimpleMath">U</span>. Moreover, we have either <span class="SimpleMath">e = 1</span> or <span class="SimpleMath">e^2 = |K|</span>. In the case <span class="SimpleMath">e = 1</span>, this determines the values of the <span class="SimpleMath">ψ^(i)</span> on the classes of <span class="SimpleMath">U</span> outside <span class="SimpleMath">G</span>. In the case <span class="SimpleMath">e ≠ 1</span>, we have the problem to combine <span class="SimpleMath">e</span> extensions of <span class="SimpleMath">φ</span> to a character of <span class="SimpleMath">U</span> that extends to <span class="SimpleMath">H</span>.</p>
<p>(One additional piece of information in the case of ordinary character tables is that the norm of this linear combination equals <span class="SimpleMath">1 + (|K|-1)/|C|</span>, which determines the <span class="SimpleMath">ψ^(i)_U</span> if <span class="SimpleMath">F = A_4 ≅ 2^2:3</span> or <span class="SimpleMath">F = 2^3:7</span> holds; in the former case, the sum of each two out of the three different extensions of <span class="SimpleMath">φ</span> extends to <span class="SimpleMath">U</span>; in the latter case, the sum of all different extensions plus one of the extensions extends. Note that for <span class="SimpleMath">F = S_3</span>, the case <span class="SimpleMath">e ≠ 1</span> does not occur.)</p>
<p>The remaining case is that <span class="SimpleMath">χ_G</span> is not a multiple of an irreducible character of <span class="SimpleMath">G</span>. Then <span class="SimpleMath">χ_G = φ_1 + φ_2 + ... + φ_|K|</span>, for pairwise different irreducible characters <span class="SimpleMath">φ_i</span>, <span class="SimpleMath">1 ≤ i ≤ |K|</span>, of <span class="SimpleMath">G</span> with the property <span class="SimpleMath">φ_i^N = χ</span>. The action of <span class="SimpleMath">U</span> on <span class="SimpleMath">G</span> fixes at least one of the <span class="SimpleMath">φ_i</span>, since <span class="SimpleMath">|K| ≡ 1 mod |C|</span>. Without loss of generality, let <span class="SimpleMath">I_U(φ_1) = U</span>, and let <span class="SimpleMath">φ_1^(i)</span>, <span class="SimpleMath">1 ≤ i ≤ |C|</span>, be the extensions of <span class="SimpleMath">φ_1</span> to <span class="SimpleMath">U</span>. (In fact exactly <span class="SimpleMath">φ_1</span> is fixed by <span class="SimpleMath">U</span> since otherwise <span class="SimpleMath">k ∈ K</span> would exist with <span class="SimpleMath">φ_1^k ≠ φ_1</span> and such that also <span class="SimpleMath">φ_1^k</span> would be invariant in <span class="SimpleMath">U</span>; but then <span class="SimpleMath">φ_1</span> would be invariant under both <span class="SimpleMath">C</span> and <span class="SimpleMath">C^k</span>, which generate <span class="SimpleMath">F</span>. So each of the <span class="SimpleMath">|K|</span> constituents is invariant in exactly one of the <span class="SimpleMath">|K|</span> subgroups of type <span class="SimpleMath">U</span> above <span class="SimpleMath">G</span>.)</p>
<p>Then <span class="SimpleMath">((φ_1^(i))^H)_N = φ_1^N = χ</span>, hence the values of <span class="SimpleMath">ψ^(i)</span> on the classes of <span class="SimpleMath">U ∖ G</span> are given by those of <span class="SimpleMath">(φ_1^(i))^H</span>. (These are exactly the values of <span class="SimpleMath">φ_1^(i)</span>. So in both cases, we take the values of <span class="SimpleMath">χ</span> on <span class="SimpleMath">N</span>, and on the classes of <span class="SimpleMath">U ∖ G</span> the values of the extensions of the unique extendible constituent of <span class="SimpleMath">χ_G</span>.)</p>
<p>For examples, see Section <a href="chap2.html#X7F50C782840F06E4"><span class="RefLink">2.5</span></a>.</p>
<p><a id="X7D3EF3BC83BE05CF" name="X7D3EF3BC83BE05CF"></a></p>
<h5>2.3-3 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">G.2^2</span></span></h5>
<p>Let <span class="SimpleMath">G</span> be a finite group, and <span class="SimpleMath">H</span> be an upward extension of <span class="SimpleMath">G</span> such that the factor group <span class="SimpleMath">H / G</span> is a Klein four group. We assume that the ordinary character tables of <span class="SimpleMath">G</span> and of the three index two subgroups <span class="SimpleMath">U_1</span>, <span class="SimpleMath">U_2</span>, and <span class="SimpleMath">U_3</span> (of the structures <span class="SimpleMath">G.2_1</span>, <span class="SimpleMath">G.2_2</span>, and <span class="SimpleMath">G.2_3</span>, respectively) of <span class="SimpleMath">H</span> above <span class="SimpleMath">G</span> are known, as well as the class fusions of <span class="SimpleMath">G</span> into these groups. The idea behind the method that is described in this section is that in this situation, there are only few possibilities for the ordinary character table of <span class="SimpleMath">H</span>.</p>
<p><center> <img src="ctblcons04.png" alt="groups of the structure G.V4"/> </center></p>
<p>Namely, the action of <span class="SimpleMath">H</span> on the classes of <span class="SimpleMath">G.2_i</span> is given by a table automorphism <span class="SimpleMath">π_i</span> of <span class="SimpleMath">G.2_i</span>, and <span class="SimpleMath">H</span> realizes compatible choices of such automorphisms <span class="SimpleMath">π_1</span>, <span class="SimpleMath">π_2</span>, <span class="SimpleMath">π_3</span> in the sense that the orbits of all three <span class="SimpleMath">π_i</span> on the classes of <span class="SimpleMath">G</span> inside the groups <span class="SimpleMath">G.2_i</span> coincide. Furthermore, if <span class="SimpleMath">G.2_i</span> has <span class="SimpleMath">n_i</span> conjugacy classes then an action <span class="SimpleMath">π_i</span> that is a product of <span class="SimpleMath">f_i</span> disjoint transpositions leads to a character table candidate for <span class="SimpleMath">G.2^2</span> that has <span class="SimpleMath">2 n_i - 3 f_i</span> classes, so also the <span class="SimpleMath">f_i</span> must be compatible.</p>
<p>Taking the "inner" classes, i.e., the orbit sums of the classes inside <span class="SimpleMath">G</span> under the <span class="SimpleMath">π_i</span>, plus the union of the <span class="SimpleMath">π_i</span>-orbits of the classes of <span class="SimpleMath">G.2_i ∖ G</span> gives a possibility for the classes of <span class="SimpleMath">H</span>. Furthermore, the power maps of the groups <span class="SimpleMath">G.2_i</span> determine the power maps of the candidate table constructed this way.</p>
<p>Concerning the computation of the irreducible characters of <span class="SimpleMath">H</span>, we consider also the case of <span class="SimpleMath">p</span>-modular characters tables, where we assume that the ordinary character table of <span class="SimpleMath">H</span> is already known and the only task is to compute the irreducible <span class="SimpleMath">p</span>-modular Brauer characters.</p>
<p>Let <span class="SimpleMath">χ</span> be an irreducible (<span class="SimpleMath">p</span>-modular Brauer) character of <span class="SimpleMath">G</span>. By the facts that are listed in Section <a href="chap2.html#X834B42A07E98FBC6"><span class="RefLink">2.2-7</span></a>, there are three possibilities.</p>
<dl>
<dt><strong class="Mark">1.</strong></dt>
<dd><p><span class="SimpleMath">I_H(χ) = G</span>; then <span class="SimpleMath">χ^H</span> is irreducible.</p>
</dd>
<dt><strong class="Mark">2.</strong></dt>
<dd><p><span class="SimpleMath">I_H(χ) = G.2_i</span> for <span class="SimpleMath">i</span> one of <span class="SimpleMath">1</span>, <span class="SimpleMath">2</span>, <span class="SimpleMath">3</span>; then <span class="SimpleMath">I_G.2_i(χ) = G.2_i</span> for this <span class="SimpleMath">i</span>, so <span class="SimpleMath">χ</span> extends to <span class="SimpleMath">G.2_i</span>; none of these extensions extends to <span class="SimpleMath">H</span> (because otherwise <span class="SimpleMath">χ</span> would be invariant in <span class="SimpleMath">H</span>), so they induce irreducible characters of <span class="SimpleMath">H</span>.</p>
</dd>
<dt><strong class="Mark">3.</strong></dt>
<dd><p><span class="SimpleMath">I_H(χ) = H</span>; then <span class="SimpleMath">χ</span> extends to each of the three groups <span class="SimpleMath">G.2_i</span>, and either all these extensions induce the same character of <span class="SimpleMath">H</span> (which vanishes on <span class="SimpleMath">H ∖ G</span>) or they are invariant in <span class="SimpleMath">H</span> and thus extend to <span class="SimpleMath">H</span>.</p>
</dd>
</dl>
<p>In the latter part of case 3. (except if <span class="SimpleMath">p = 2</span>), the problem is to combine the values of six irreducible characters of the groups <span class="SimpleMath">G.2_i</span> to four characters of <span class="SimpleMath">H</span>. This yields essentially two choices, and we try to exclude one possibility by forming scalar products with the <span class="SimpleMath">2</span>-nd symmetrizations of the known irreducibles. If several possibilities remain then we get several possible tables.</p>
<p>So we end up with a list of possible character tables of <span class="SimpleMath">H</span>. The first step is to specify a list of possible triples <span class="SimpleMath">(π_1, π_2, π_3)</span>, using the table automorphisms of the groups <span class="SimpleMath">G.2_i</span>; this can be done using the <strong class="pkg">GAP</strong> function <code class="func">PossibleActionsForTypeGV4</code> (<a href="..//doc/chap5.html#X7CCD5A2979883144"><span class="RefLink">CTblLib: PossibleActionsForTypeGV4</span></a>). Then the <strong class="pkg">GAP</strong> function <code class="func">PossibleCharacterTablesOfTypeGV4</code> (<a href="..//doc/chap5.html#X7CACDDED7A8C1CF9"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeGV4</span></a>) can be used for computing the character table candidates for each given triple of permutations; it may of course happen that some triples of automorphisms are excluded in this second step.</p>
<p>For examples, see Section <a href="chap2.html#X7EA489E07D7C7D86"><span class="RefLink">2.6</span></a>.</p>
<p><a id="X81464C4B8178C85A" name="X81464C4B8178C85A"></a></p>
<h5>2.3-4 <span class="Heading">Character Tables of Groups of the Structure <span class="SimpleMath">2^2.G</span>
(August 2005)</span></h5>
<p>Let <span class="SimpleMath">G</span> be a finite group, and <span class="SimpleMath">H</span> be a central extension of <span class="SimpleMath">G</span> by a Klein four group <span class="SimpleMath">Z = ⟨ z_1, z_2 ⟩</span>; set <span class="SimpleMath">z_3 = z_1 z_2</span> and <span class="SimpleMath">Z_i = ⟨ z_i ⟩</span>, for <span class="SimpleMath">1 ≤ i ≤ 3</span>. We assume that the ordinary character tables of the three factor groups <span class="SimpleMath">2_i.G = H / Z_i</span> of <span class="SimpleMath">H</span> are known, as well as the class fusions from these groups to <span class="SimpleMath">G</span>. The idea behind the method described in this section is that in this situation, there are only few possibilities for the ordinary character table of <span class="SimpleMath">H</span>.</p>
<p><center> <img src="ctblcons05.png" alt="groups of the structure V4.G"/> </center></p>
<p>Namely, the irreducible (<span class="SimpleMath">p</span>-modular) characters of <span class="SimpleMath">H</span> are exactly the inflations of the irreducible (<span class="SimpleMath">p</span>-modular) characters of the three factor groups <span class="SimpleMath">H / Z_i</span>. (Note that for any noncyclic central subgroup <span class="SimpleMath">C</span> of <span class="SimpleMath">H</span> and any <span class="SimpleMath">χ ∈ Irr(H)</span>, we have <span class="SimpleMath">|ker(χ) ∩ C| > 1</span>. To see this, let <span class="SimpleMath">N = ker(χ)</span>. Then clearly <span class="SimpleMath">|N| > 1</span>, and <span class="SimpleMath">χ</span> can be regarded as a faithful irreducible character of <span class="SimpleMath">H/N</span>. If <span class="SimpleMath">N ∩ C</span> would be trivial then <span class="SimpleMath">N C / N ≅ C</span> would be a noncyclic central subgroup of <span class="SimpleMath">H/N</span>. This cannot happen by <a href="chapBib.html#biBIsa76">[Isa76, Thm. 2.32 (a)]</a>, so the statement can be regarded as an obvious refinement of this theorem.) So all we have to construct is the character table head of <span class="SimpleMath">H</span> –classes and power maps– and the factor fusions from <span class="SimpleMath">H</span> to these groups.</p>
<p>For fixed <span class="SimpleMath">h ∈ H</span>, we consider the question in which <span class="SimpleMath">H</span>-classes the elements <span class="SimpleMath">h</span>, <span class="SimpleMath">h z_1</span>, <span class="SimpleMath">h z_2</span>, and <span class="SimpleMath">h z_3</span> lie. There are three possibilities.</p>
<ol>
<li><p>The four elements are all conjugate in <span class="SimpleMath">H</span>. Then in each of the three groups <span class="SimpleMath">H/Z_i</span>, the two preimages of <span class="SimpleMath">h Z ∈ H/Z</span> are conjugate.</p>
</li>
<li><p>We are not in case 1. but two of the four elements are conjugate in <span class="SimpleMath">H</span>, i. e., <span class="SimpleMath">g^-1 h g = h z_i</span> for some <span class="SimpleMath">g ∈ H</span> and some <span class="SimpleMath">i</span>; then <span class="SimpleMath">g^-1 h z_j g = h z_i z_j</span> for each <span class="SimpleMath">j</span>, so the four elements lie in exactly two <span class="SimpleMath">H</span>-classes. This implies that for <span class="SimpleMath">i ≠ j</span>, the elements <span class="SimpleMath">h</span> and <span class="SimpleMath">h z_j</span> are not <span class="SimpleMath">H</span>-conjugate, so <span class="SimpleMath">h Z_i</span> is not conjugate to <span class="SimpleMath">h z_j Z_i</span> in <span class="SimpleMath">H/Z_i</span> and <span class="SimpleMath">h Z_j</span> is conjugate to <span class="SimpleMath">h z_i Z_j</span> in <span class="SimpleMath">H/Z_j</span>.</p>
</li>
<li><p>The four elements are pairwise nonconjugate in <span class="SimpleMath">H</span>. Then in each of the three groups <span class="SimpleMath">H/Z_i</span>, the two preimages of <span class="SimpleMath">h Z ∈ H/Z</span> are nonconjugate.</p>
</li>
</ol>
<p>We observe that the question which case actually applies for <span class="SimpleMath">h ∈ H</span> can be decided from the three factor fusions from <span class="SimpleMath">H/Z_i</span> to <span class="SimpleMath">G</span>. So we attempt to construct the table head of <span class="SimpleMath">H</span> and the three factor fusions from <span class="SimpleMath">H</span> to the groups <span class="SimpleMath">H/Z_i</span>, as follows. Each class <span class="SimpleMath">g^G</span> of <span class="SimpleMath">G</span> yields either one or two or four preimage classes in <span class="SimpleMath">H</span>.</p>
<p>In case 1., we get one preimage class in <span class="SimpleMath">H</span>, and have no choice for the factor fusions.</p>
<p>In case 2., we get two preimage classes, there is exactly one group <span class="SimpleMath">H/Z_i</span> in which <span class="SimpleMath">g^G</span> has two preimage classes –which are in bijection with the two preimage classes of <span class="SimpleMath">H</span>– and for the other two groups <span class="SimpleMath">H/Z_j</span>, the factor fusions from <span class="SimpleMath">H</span> map the two classes of <span class="SimpleMath">H</span> to the unique preimage class of <span class="SimpleMath">g^G</span>. (In the following picture, this is shown for <span class="SimpleMath">i = 1</span>.)</p>
<p><center> <img src="ctblcons06.png" alt="Two preimages for a class"/> </center></p>
<p>In case 3., the three factor fusions are in general not uniquely determined: We get four classes, which are defined as two pairs of preimages of the two preimages of <span class="SimpleMath">g^G</span> in <span class="SimpleMath">H/Z_1</span> and in <span class="SimpleMath">H/Z_2</span> –so we choose the relevant images in the two factor fusions to <span class="SimpleMath">H/Z_1</span> and <span class="SimpleMath">H/Z_2</span>, respectively. Note that the class of <span class="SimpleMath">h</span> in <span class="SimpleMath">H</span> is the unique class that maps to the class of <span class="SimpleMath">h Z_1</span> in <span class="SimpleMath">H/Z_1</span> and to the class of <span class="SimpleMath">h Z_2</span> in <span class="SimpleMath">H/Z_2</span>, and so on, and we define four classes of <span class="SimpleMath">H</span> via the four possible combinations of image classes in <span class="SimpleMath">H/Z_1</span> and <span class="SimpleMath">H/Z_2</span> (see the picture below).</p>
<p><center> <img src="ctblcons07.png" alt="Four preimages for a class (part 1)"/> </center></p>
<p>Due to the fact that in general we do not know which of the two preimage classes of <span class="SimpleMath">g^G</span> in <span class="SimpleMath">H/Z_3</span> is the class of <span class="SimpleMath">h Z_3</span>, there are in general the following <em>two</em> possibilities for the fusion from <span class="SimpleMath">H</span> to <span class="SimpleMath">H/Z_3</span>.</p>
<p><center> <img src="ctblcons08.png" alt="Four preimages for a class (part 2)"/> </center></p>
<p>This means that we can inflate the irreducible characters of <span class="SimpleMath">H/Z_1</span> and of <span class="SimpleMath">H/Z_2</span> to <span class="SimpleMath">H</span> but that for the inflations of those irreducible characters of <span class="SimpleMath">H/Z_3</span> to <span class="SimpleMath">H</span> that are not characters of <span class="SimpleMath">G</span>, the values on classes where case 3. applies are determined only up to sign.</p>
<p>The <strong class="pkg">GAP</strong> function <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>) computes the candidates for the table of <span class="SimpleMath">H</span> from the tables of the groups <span class="SimpleMath">H/Z_i</span> by setting up the character table head of <span class="SimpleMath">H</span> using the class fusions from <span class="SimpleMath">H/Z_1</span> and <span class="SimpleMath">H/Z_2</span> to <span class="SimpleMath">G</span>, and then forming the possible class fusions from <span class="SimpleMath">H</span> to <span class="SimpleMath">H/Z_3</span>.</p>
<p>If case 3. applies for a class <span class="SimpleMath">g^G</span> with <span class="SimpleMath">g</span> of <em>odd</em> element order then exactly one preimage class in <span class="SimpleMath">H</span> has odd element order, and we can identify this class in the groups <span class="SimpleMath">H/Z_i</span>, which resolves the ambiguity in this situation. More generally, if <span class="SimpleMath">g = k^2</span> holds for some <span class="SimpleMath">k ∈ G</span> then all preimages of <span class="SimpleMath">k^G</span> in <span class="SimpleMath">H</span> square to the same class of <span class="SimpleMath">H</span>, so again this class can be identified. In fact <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>) checks whether the <span class="SimpleMath">p</span>-th power maps of the candidate table for <span class="SimpleMath">H</span> and the <span class="SimpleMath">p</span>-th power map of <span class="SimpleMath">H/Z_3</span> together with the fusion candidate form a commutative diagram.</p>
<p>An additional criterion used by <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>) is given by the property that the product of two characters inflated from <span class="SimpleMath">H/Z_1</span> and <span class="SimpleMath">H/Z_2</span>, respectively, that are not characters of <span class="SimpleMath">G</span> is a character of <span class="SimpleMath">H</span> that contains <span class="SimpleMath">Z_3</span> in its kernel, so it is checked whether the scalar products of these characters with all characters that are inflated from <span class="SimpleMath">H/Z_3</span> via the candidate fusion are nonnegative integers.</p>
<p>Once the fusions from <span class="SimpleMath">H</span> to the groups <span class="SimpleMath">H/Z_i</span> are known, the computation of the irreducible <span class="SimpleMath">p</span>-modular characters of <span class="SimpleMath">H</span> from those of the groups <span class="SimpleMath">H/Z_i</span> is straightforward.</p>
<p>The only open question is why this construction is described in this note. That is, how is it related to table automorphisms?</p>
<p>The answer is that in several interesting cases, the three subgroups <span class="SimpleMath">Z_1</span>, <span class="SimpleMath">Z_2</span>, <span class="SimpleMath">Z_3</span> are conjugate under an order three automorphism <span class="SimpleMath">σ</span>, say, of <span class="SimpleMath">H</span>. In this situation, the three factor groups <span class="SimpleMath">2_i.G = H/Z_i</span> are isomorphic, and we can describe the input tables and fusions by the character table of <span class="SimpleMath">2_1.G</span>, the factor fusion from this group to <span class="SimpleMath">G</span>, and the automorphism <span class="SimpleMath">σ'</span> of <span class="SimpleMath">G</span> that is induced by <span class="SimpleMath">σ</span>. Assume that <span class="SimpleMath">σ(Z_1) = Z_2</span> holds, and choose <span class="SimpleMath">h ∈ H</span>. Then <span class="SimpleMath">σ(h Z_1) = σ(h) Z_2</span> is mapped to <span class="SimpleMath">σ(h) Z = σ'(h Z)</span> under the factor fusion from <span class="SimpleMath">2_2.G</span> to <span class="SimpleMath">G</span>. Let us start with the character table of <span class="SimpleMath">2_1.G</span>, and fix the class fusion to the character table of <span class="SimpleMath">G</span>. We may choose the identity map as isomorphism from the table of <span class="SimpleMath">2_1.G</span> to the tables of <span class="SimpleMath">2_2.G</span> and <span class="SimpleMath">2_3.G</span>, which implies that the class of <span class="SimpleMath">h Z_1</span> is identified with the class of <span class="SimpleMath">h Z_2</span> and in turn the class fusion from the table of <span class="SimpleMath">2_2.G</span> to that of <span class="SimpleMath">G</span> can be chosen as the class fusion from the table of <span class="SimpleMath">2_1.G</span> followed by the permutation of classes of <span class="SimpleMath">G</span> induced by <span class="SimpleMath">σ'</span>; analogously, the fusion from the table of <span class="SimpleMath">2_3.G</span> is obtained by applying this permutation twice to the class fusion from the table of <span class="SimpleMath">2_1.G</span>.</p>
<p>For examples, see Section <a href="chap2.html#X845BAA2A7FD768B0"><span class="RefLink">2.7</span></a>.</p>
<p><a id="X86CF6A607B0827EE" name="X86CF6A607B0827EE"></a></p>
<h5>2.3-5 <span class="Heading"><span class="SimpleMath">p</span>-Modular Tables of Extensions by <span class="SimpleMath">p</span>-singular Automorphisms</span></h5>
<p>Let <span class="SimpleMath">G</span> be a finite group, and <span class="SimpleMath">H</span> be an upward extension of <span class="SimpleMath">G</span> by an automorphism of prime order <span class="SimpleMath">p</span>, say. <span class="SimpleMath">H</span> induces a table automorphism of the <span class="SimpleMath">p</span>-modular character table of <span class="SimpleMath">G</span>; let <span class="SimpleMath">π</span> denote the corresponding permutation of classes of <span class="SimpleMath">G</span>. The columns of the <span class="SimpleMath">p</span>-modular character table of <span class="SimpleMath">H</span> are given by the orbits of <span class="SimpleMath">π</span>, and the irreducible Brauer characters of <span class="SimpleMath">H</span> are exactly the orbit sums of <span class="SimpleMath">π</span> on the irreducible Brauer characters of <span class="SimpleMath">G</span>.</p>
<p>Note that for computing the <span class="SimpleMath">p</span>-modular character table of <span class="SimpleMath">H</span> from that of <span class="SimpleMath">G</span>, it is sufficient to know the orbits of <span class="SimpleMath">π</span> and not <span class="SimpleMath">π</span> itself. Also the ordinary character table of <span class="SimpleMath">H</span> is not needed, but since <strong class="pkg">GAP</strong> stores Brauer character tables relative to their ordinary tables, we are interested mainly in cases where the ordinary character tables of <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span> and the <span class="SimpleMath">p</span>-modular character table of <span class="SimpleMath">G</span> are known. Assuming that the class fusion between the ordinary tables of <span class="SimpleMath">G</span> and <span class="SimpleMath">H</span> is stored on the table of <span class="SimpleMath">G</span>, the orbits of the action of <span class="SimpleMath">H</span> on the <span class="SimpleMath">p</span>-regular classes of <span class="SimpleMath">G</span> can be read off from it.</p>
<p>The <strong class="pkg">GAP</strong> function <code class="func">IBrOfExtensionBySingularAutomorphism</code> (<a href="..//doc/chap5.html#X7AF3EA6C783FCFF9"><span class="RefLink">CTblLib: IBrOfExtensionBySingularAutomorphism</span></a>) can be used to compute the <span class="SimpleMath">p</span>-modular irreducibles of <span class="SimpleMath">H</span>.</p>
<p>For examples, see Section <a href="chap2.html#X8711DBB083655A25"><span class="RefLink">2.8</span></a>.</p>
<p><a id="X788591D78451C024" name="X788591D78451C024"></a></p>
<h5>2.3-6 <span class="Heading">Character Tables of Subdirect Products of Index Two (July 2007)</span></h5>
<p>Let <span class="SimpleMath">C_2</span> denote the cyclic group of order two, let <span class="SimpleMath">G_1</span>, <span class="SimpleMath">G_2</span> be two finite groups, and for <span class="SimpleMath">i ∈ { 1, 2 }</span>, let <span class="SimpleMath">φ_i: G_i → C_2</span> be an epimorphism with kernel <span class="SimpleMath">H_i</span>. Let <span class="SimpleMath">G</span> be the subdirect product (pullback) of <span class="SimpleMath">G_1</span> and <span class="SimpleMath">G_2</span> w.r.t. the epimorphisms <span class="SimpleMath">φ_i</span>, i.e.,</p>
<p class="pcenter">G = { (g_1, g_2) ∈ G_1 × G_2; φ_1(g_1) = φ_2(g_2) } .</p>
<p>The group <span class="SimpleMath">G</span> has index two in the direct product <span class="SimpleMath">G_1 × G_2</span>, and <span class="SimpleMath">G</span> contains <span class="SimpleMath">H_1 × H_2</span> as a subgroup of index two.</p>
<p>In the following, we describe how the ordinary (or <span class="SimpleMath">p</span>-modular) character table of <span class="SimpleMath">G</span> can be computed from the ordinary (or <span class="SimpleMath">p</span>-modular) character tables of the groups <span class="SimpleMath">G_i</span> and <span class="SimpleMath">H_i</span>, and the class fusions from <span class="SimpleMath">H_i</span> to <span class="SimpleMath">G_i</span>.</p>
<p>(For the case that one of the groups <span class="SimpleMath">G_i</span> is a cyclic group of order four, an alternative way to construct the character table of <span class="SimpleMath">G</span> is described in Section <a href="chap2.html#X80C37276851D5E39"><span class="RefLink">2.2-4</span></a>. For the case that one of the groups <span class="SimpleMath">G_i</span> acts fixed point freely on the nontrivial irreducible characters of <span class="SimpleMath">H_i</span>, an alternative construction is described in Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>.)</p>
<p><center> <img src="ctblcons09.png" alt="Subdirect products of index two"/> </center></p>
<p>Each conjugacy class of <span class="SimpleMath">G</span> is either contained in <span class="SimpleMath">H_1 × H_2</span> or not. In the former case, let <span class="SimpleMath">h_i ∈ H_i</span> and <span class="SimpleMath">g_i ∈ G_i ∖ H_i</span>; in particular, <span class="SimpleMath">(g_1, g_2) ∈ G</span> because both <span class="SimpleMath">φ_1(g_1)</span> and <span class="SimpleMath">φ_2(g_2)</span> are not the identity. There are four possibilities.</p>
<dl>
<dt><strong class="Mark">1.</strong></dt>
<dd><p>If <span class="SimpleMath">h_1^{H_1} = h_1^{G_1}</span> and <span class="SimpleMath">h_2^{H_2} = h_2^{G_2}</span> then <span class="SimpleMath">(h_1, h_2)^{H_1 × H_2} = (h_1, h_2)^{G_1 × G_2}</span> holds, hence this class is equal to <span class="SimpleMath">(h_1, h_2)^G</span>.</p>
</dd>
<dt><strong class="Mark">2.</strong></dt>
<dd><p>If <span class="SimpleMath">h_1^{H_1} ≠ h_1^{G_1}</span> and <span class="SimpleMath">h_2^{H_2} ≠ h_2^{G_2}</span> then the four <span class="SimpleMath">H_1 × H_2</span>-classes with the representatives <span class="SimpleMath">(h_1, h_2)</span>, <span class="SimpleMath">(h_1^{g_1}, h_2)</span>, <span class="SimpleMath">(h_1, h_2^{g_2})</span>, and <span class="SimpleMath">(h_1^{g_1}, h_2^{g_2})</span> fall into two <span class="SimpleMath">G</span>-classes, where <span class="SimpleMath">(h_1, h_2)</span> is <span class="SimpleMath">G</span>-conjugate with <span class="SimpleMath">(h_1^{g_1}, h_2^{g_2})</span>, and <span class="SimpleMath">(h_1^{g_1}, h_2)</span> is <span class="SimpleMath">G</span>-conjugate with <span class="SimpleMath">(h_1, h_2^{g_2})</span>.</p>
</dd>
<dt><strong class="Mark">3.</strong></dt>
<dd><p>If <span class="SimpleMath">h_1^{H_1} = h_1^{G_1}</span> and <span class="SimpleMath">h_2^{H_2} ≠ h_2^{G_2}</span> then the two <span class="SimpleMath">H_1 × H_2</span>-classes with the representatives <span class="SimpleMath">(h_1, h_2)</span> and <span class="SimpleMath">(h_1, h_2^{g_2})</span> fuse in <span class="SimpleMath">G</span>; note that there is <span class="SimpleMath">tildeg_1 ∈ C_{G_1}(h_1) ∖ H_1</span>, so <span class="SimpleMath">(tildeg_1, g_2) ∈ G</span> holds.</p>
</dd>
<dt><strong class="Mark">4.</strong></dt>
<dd><p>The case of <span class="SimpleMath">h_1^{H_1} ≠ h_1^{G_1}</span> and <span class="SimpleMath">h_2^{H_2} = h_2^{G_2}</span> is analogous to case 3.</p>
</dd>
</dl>
<p>It remains to deal with the <span class="SimpleMath">G</span>-classes that are not contained in <span class="SimpleMath">H_1 × H_2</span>. Each such class is in fact a conjugacy class of <span class="SimpleMath">G_1 × G_2</span>. Note that two elements <span class="SimpleMath">g_1, g_2 ∈ G_1 ∖ H_1</span> are <span class="SimpleMath">G_1</span>-conjugate if and only if they are <span class="SimpleMath">H_1</span>-conjugate. (If <span class="SimpleMath">g_1^x = g_2</span> for <span class="SimpleMath">x ∈ G_1 ∖ H_1</span> then <span class="SimpleMath">g_1^{g_1 x} = g_2</span> holds, and <span class="SimpleMath">g_1 x ∈ H_1</span>.) This implies <span class="SimpleMath">(g_1, g_2)^{G_1 × G_2} = (g_1, g_2)^{H_1 × H_2}</span>, and thus this class is equal to <span class="SimpleMath">(g_1, g_2)^G</span>.</p>
<p>The (ordinary or <span class="SimpleMath">p</span>-modular) irreducible characters of <span class="SimpleMath">G</span> are given by the restrictions <span class="SimpleMath">χ_G</span> of all those irreducible characters <span class="SimpleMath">χ</span> of <span class="SimpleMath">G_1 × G_2</span> whose restriction to <span class="SimpleMath">H_1 × H_2</span> is irreducible, plus the induced characters <span class="SimpleMath">φ^G</span>, where <span class="SimpleMath">φ</span> runs over all those irreducible characters of <span class="SimpleMath">H_1 × H_2</span> that do not occur as restrictions of characters of <span class="SimpleMath">G_1 × G_2</span>.</p>
<p>In other words, no irreducible character of <span class="SimpleMath">H_1 × H_2</span> has inertia subgroup <span class="SimpleMath">G</span> inside <span class="SimpleMath">G_1 × G_2</span>. This can be seen as follows. Let <span class="SimpleMath">φ</span> be an irreducible character of <span class="SimpleMath">H_1 × H_2</span>. Then <span class="SimpleMath">φ = φ_1 ⋅ φ_2</span>, where <span class="SimpleMath">φ_1</span>, <span class="SimpleMath">φ_2</span> are irreducible characters of <span class="SimpleMath">H_1 × H_2</span> with the properties that <span class="SimpleMath">H_2 ⊆ ker(φ_1)</span> and <span class="SimpleMath">H_1 ⊆ ker(φ_2)</span>. Sloppy speaking, <span class="SimpleMath">φ_i</span> is an irreducible character of <span class="SimpleMath">H_i</span>.</p>
<p>There are four possibilities.</p>
<ol>
<li><p>If <span class="SimpleMath">φ_1</span> extends to <span class="SimpleMath">G_1</span> and <span class="SimpleMath">φ_2</span> extends to <span class="SimpleMath">G_2</span> then <span class="SimpleMath">φ</span> extends to <span class="SimpleMath">G</span>, so <span class="SimpleMath">φ</span> has inertia subgroup <span class="SimpleMath">G_1 × G_2</span>.</p>
</li>
<li><p>If <span class="SimpleMath">φ_1</span> does not extend to <span class="SimpleMath">G_1</span> and <span class="SimpleMath">φ_2</span> does not extend to <span class="SimpleMath">G_2</span> then <span class="SimpleMath">φ^{G_1 × G_2}</span> is irreducible, so <span class="SimpleMath">φ</span> has inertia subgroup <span class="SimpleMath">H_1 × H_2</span>.</p>
</li>
<li><p>If <span class="SimpleMath">φ_1</span> extends to <span class="SimpleMath">G_1</span> and <span class="SimpleMath">φ_2</span> does not extend to <span class="SimpleMath">G_2</span> then <span class="SimpleMath">φ</span> extends to <span class="SimpleMath">G_1 × H_2</span> but not to <span class="SimpleMath">G_1 × G_2</span>, so <span class="SimpleMath">φ</span> has inertia subgroup <span class="SimpleMath">G_1 × H_2</span>.</p>
</li>
<li><p>The case that <span class="SimpleMath">φ_1</span> does not extend to <span class="SimpleMath">G_1</span> and <span class="SimpleMath">φ_2</span> extends to <span class="SimpleMath">G_2</span> is analogous to case 3, <span class="SimpleMath">φ</span> has inertia subgroup <span class="SimpleMath">H_1 × G_2</span>.</p>
</li>
</ol>
<p>For examples, see Section <a href="chap2.html#X7A4D6044865E516B"><span class="RefLink">2.9</span></a>.</p>
<p><a id="X817D2134829FA8FA" name="X817D2134829FA8FA"></a></p>
<h4>2.4 <span class="Heading">Examples for the Type <span class="SimpleMath">M.G.A</span></span></h4>
<p><a id="X7F2DBAB48437052C" name="X7F2DBAB48437052C"></a></p>
<h5>2.4-1 <span class="Heading">Character Tables of Dihedral Groups</span></h5>
<p>Let <span class="SimpleMath">n = 2^k ⋅ m</span> where <span class="SimpleMath">k</span> is a nonnegative integer and <span class="SimpleMath">m</span> is an odd integer, and consider the dihedral group <span class="SimpleMath">D_2n</span> of order <span class="SimpleMath">2n</span>. Let <span class="SimpleMath">N</span> denote the derived subgroup of <span class="SimpleMath">D_2n</span>.</p>
<p>If <span class="SimpleMath">k = 0</span> then <span class="SimpleMath">D_2n</span> has the structure <span class="SimpleMath">M.G.A</span>, with <span class="SimpleMath">M = N</span> and <span class="SimpleMath">G</span> the trivial group, and <span class="SimpleMath">A</span> a cyclic group of order two that inverts each element of <span class="SimpleMath">N</span> and hence acts fixed-point freely on <span class="SimpleMath">N</span>. The smallest nontrivial example is of course that of <span class="SimpleMath">D_6 ≅ S_3</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG:= CharacterTable( "Cyclic", 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "Cyclic", 1 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblMG, [ 1, 1, 1 ], tblG );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblG, [ 1 ], tblGA );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= Elements( AutomorphismsOfTable( tblMG ) );</span>
[ (), (2,3) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= [ [ 1 ], [ 2, 3 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">new:= PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, orbs,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "S3" );</span>
[ rec( MGfusMGA := [ 1, 2, 2 ], table := CharacterTable( "S3" ) ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( new[1].table );</span>
S3
2 1 . 1
3 1 1 .
1a 3a 2a
2P 1a 3a 1a
3P 1a 1a 2a
X.1 1 1 1
X.2 1 1 -1
X.3 2 -1 .
</pre></div>
<p>If <span class="SimpleMath">k > 0</span> then <span class="SimpleMath">D_2n</span> has the structure <span class="SimpleMath">M.G.A</span>, with <span class="SimpleMath">M = N</span> and <span class="SimpleMath">G</span> a cyclic group of order two such that <span class="SimpleMath">M.G</span> is cyclic, and <span class="SimpleMath">A</span> is a cyclic group of order two that inverts each element of <span class="SimpleMath">M.G</span> and hence acts fixed-point freely on <span class="SimpleMath">M.G</span>. The smallest nontrivial example is of course that of <span class="SimpleMath">D_8</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG:= CharacterTable( "Cyclic", 4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA:= CharacterTable( "2^2" );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( tblMG );</span>
[ 1, 4, 2, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblMG, [ 1, 2, 1, 2 ], tblG ); </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblG, [ 1, 2 ], tblGA ); </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= Elements( AutomorphismsOfTable( tblMG ) );</span>
[ (), (2,4) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= Orbits( Group( elms[2] ), [ 1 ..4 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">new:= PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, orbs,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "order8" );</span>
[ rec( MGfusMGA := [ 1, 2, 3, 2 ],
table := CharacterTable( "order8" ) ),
rec( MGfusMGA := [ 1, 2, 3, 2 ],
table := CharacterTable( "order8" ) ) ]
</pre></div>
<p>Here we get two possible tables, which are the character tables of the dihedral and the quaternion group of order eight, respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( new, x -> OrdersClassRepresentatives( x.table ) );</span>
[ [ 1, 4, 2, 2, 2 ], [ 1, 4, 2, 4, 4 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( new[1].table );</span>
order8
2 3 2 3 2 2
1a 4a 2a 2b 2c
2P 1a 2a 1a 1a 1a
X.1 1 1 1 1 1
X.2 1 1 1 -1 -1
X.3 1 -1 1 1 -1
X.4 1 -1 1 -1 1
X.5 2 . -2 . .
</pre></div>
<p>For each <span class="SimpleMath">k > 1</span> and <span class="SimpleMath">m = 1</span>, we get two possible tables this way, that of the dihedral group of order <span class="SimpleMath">2^k+1</span> and that of the generalized quaternion group of order <span class="SimpleMath">2^k+1</span>.</p>
<p><a id="X7925DBFA7C5986B5" name="X7925DBFA7C5986B5"></a></p>
<h5>2.4-2 <span class="Heading">An <span class="SimpleMath">M.G.A</span> Type Example with <span class="SimpleMath">M</span> noncentral in <span class="SimpleMath">M.G</span> (May 2004)</span></h5>
<p>The Sylow <span class="SimpleMath">7</span> normalizer in the symmetric group <span class="SimpleMath">S_12</span> has the structure <span class="SimpleMath">7:6 × S_5</span>, its intersection <span class="SimpleMath">N</span> with the alternating group <span class="SimpleMath">A_12</span> is of index two, it has the structure <span class="SimpleMath">(7:3 × A_5):2</span>.</p>
<p>Let <span class="SimpleMath">M</span> denote the normal subgroup of order <span class="SimpleMath">7</span> in <span class="SimpleMath">N</span>, let <span class="SimpleMath">G</span> denote the normal subgroup of the type <span class="SimpleMath">3 × A_5</span> in <span class="SimpleMath">F = N/M ≅ 3 × S_5</span>, and <span class="SimpleMath">A = F/G</span>, the cyclic group of order two. Then <span class="SimpleMath">N</span> has the structure <span class="SimpleMath">M.G.A</span>, where <span class="SimpleMath">A</span> acts fixed-point freely on the irreducible characters of <span class="SimpleMath">M.G = 7:3 × A_5</span> that do not contain <span class="SimpleMath">M</span> in their kernels, hence the character table of <span class="SimpleMath">N</span> is determined by the character tables of <span class="SimpleMath">M.G</span> and <span class="SimpleMath">F</span>, and the action of <span class="SimpleMath">A</span> on <span class="SimpleMath">M.G</span>.</p>
<p>Note that in this example, the group <span class="SimpleMath">M</span> is not central in <span class="SimpleMath">M.G</span>, unlike in most of our examples.</p>
<p><center> <img src="ctblcons10.png" alt="The structure of (7:3 x A_5):2)"/> </center></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG:= CharacterTable( "7:3" ) * CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= ClassPositionsOfNormalSubgroups( tblMG );</span>
[ [ 1 ], [ 1, 6 .. 11 ], [ 1 .. 5 ], [ 1, 6 .. 21 ], [ 1 .. 15 ],
[ 1 .. 25 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( nsg, x -> Sum( SizesConjugacyClasses( tblMG ){ x } ) );</span>
[ 1, 7, 60, 21, 420, 1260 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= tblMG / nsg[2];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA:= CharacterTable( "Cyclic", 3 ) * CharacterTable( "A5.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GfusGA:= PossibleClassFusions( tblG, tblGA );</span>
[ [ 1, 2, 3, 4, 4, 8, 9, 10, 11, 11, 15, 16, 17, 18, 18 ],
[ 1, 2, 3, 4, 4, 15, 16, 17, 18, 18, 8, 9, 10, 11, 11 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= RepresentativesFusions( Group(()), GfusGA, tblGA );</span>
[ [ 1, 2, 3, 4, 4, 8, 9, 10, 11, 11, 15, 16, 17, 18, 18 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblG, reps[1], tblGA );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">acts:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA );</span>
[ [ [ 1 ], [ 2 ], [ 3 ], [ 4, 5 ], [ 6, 11 ], [ 7, 12 ], [ 8, 13 ],
[ 9, 15 ], [ 10, 14 ], [ 16 ], [ 17 ], [ 18 ], [ 19, 20 ],
[ 21 ], [ 22 ], [ 23 ], [ 24, 25 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> acts[1], "A12N7" );</span>
[ rec(
MGfusMGA := [ 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 5, 6, 7, 9, 8, 10,
11, 12, 13, 13, 14, 15, 16, 17, 17 ],
table := CharacterTable( "A12N7" ) ) ]
</pre></div>
<p>Let us compare the result table with the table of the Sylow <span class="SimpleMath">7</span> normalizer in <span class="SimpleMath">A_12</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= AlternatingGroup( 12 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( Normalizer( g, SylowSubgroup( g, 7 ) ) ) ) );</span>
true
</pre></div>
<p>Since July 2007, an alternative way to construct the character table of <span class="SimpleMath">N</span> from other character tables is to exploit its structure as a subdirect product of index two in the group <span class="SimpleMath">7:6 × S_5</span>, see Section <a href="chap2.html#X788591D78451C024"><span class="RefLink">2.3-6</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblh1:= CharacterTable( "7:3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblg1:= CharacterTable( "7:6" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblh2:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblg2:= CharacterTable( "A5.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">subdir:= CharacterTableOfIndexTwoSubdirectProduct( tblh1, tblg1,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblh2, tblg2, "(7:3xA5).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> subdir.table ) );</span>
true
</pre></div>
<p>For storing the table of <span class="SimpleMath">N</span> in the <strong class="pkg">GAP</strong> Character Table Library, the construction as a subdirect product is more suitable, since the "auxiliary table" of the direct product <span class="SimpleMath">7:3 × A_5</span> need not be stored in the library.</p>
<p><a id="X7ED45AB379093A70" name="X7ED45AB379093A70"></a></p>
<h5>2.4-3 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">M.G.A</span></span></h5>
<p>We show the construction of some character tables of groups of the type <span class="SimpleMath">M.G.A</span> that are contained in the <strong class="pkg">GAP</strong> Character Table Library. Each entry in the following input list contains the names of the library character tables of <span class="SimpleMath">M.G</span>, <span class="SimpleMath">G</span>, <span class="SimpleMath">G.A</span>, and <span class="SimpleMath">M.G.A</span>.</p>
<p>First we consider the situation where <span class="SimpleMath">G</span> is a simple group or a central extension of a simple group whose character table is shown in the <strong class="pkg">Atlas</strong>, and <span class="SimpleMath">M</span> and <span class="SimpleMath">A</span> are cyclic groups such that <span class="SimpleMath">M</span> is central in <span class="SimpleMath">M.G</span>.</p>
<p>In the following cases, the character tables are uniquely determined by the input tables. Note that in each of these cases, <span class="SimpleMath">|A|</span> and <span class="SimpleMath">|M|</span> are coprime.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">listMGA:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.A6", "A6", "A6.2_1", "3.A6.2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.A6", "A6", "A6.2_2", "3.A6.2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6.A6", "2.A6", "2.A6.2_1", "6.A6.2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6.A6", "2.A6", "2.A6.2_2", "6.A6.2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.A7", "A7", "A7.2", "3.A7.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6.A7", "2.A7", "2.A7.2", "6.A7.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.L3(4)", "L3(4)", "L3(4).2_2", "3.L3(4).2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.L3(4)", "L3(4)", "L3(4).2_3", "3.L3(4).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6.L3(4)", "2.L3(4)", "2.L3(4).2_2", "6.L3(4).2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6.L3(4)", "2.L3(4)", "2.L3(4).2_3", "6.L3(4).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12_1.L3(4)", "4_1.L3(4)", "4_1.L3(4).2_2", "12_1.L3(4).2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12_1.L3(4)", "4_1.L3(4)", "4_1.L3(4).2_3", "12_1.L3(4).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12_2.L3(4)", "4_2.L3(4)", "4_2.L3(4).2_2", "12_2.L3(4).2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12_2.L3(4)", "4_2.L3(4)", "4_2.L3(4).2_3", "12_2.L3(4).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.U3(5)", "U3(5)", "U3(5).2", "3.U3(5).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.M22", "M22", "M22.2", "3.M22.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6.M22", "2.M22", "2.M22.2", "6.M22.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12.M22", "4.M22", "4.M22.2", "12.M22.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.L3(7)", "L3(7)", "L3(7).2", "3.L3(7).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3_1.U4(3)", "U4(3)", "U4(3).2_1", "3_1.U4(3).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3_1.U4(3)", "U4(3)", "U4(3).2_2'", "3_1.U4(3).2_2'" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3_2.U4(3)", "U4(3)", "U4(3).2_1", "3_2.U4(3).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3_2.U4(3)", "U4(3)", "U4(3).2_3'", "3_2.U4(3).2_3'" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6_1.U4(3)", "2.U4(3)", "2.U4(3).2_1", "6_1.U4(3).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6_1.U4(3)", "2.U4(3)", "2.U4(3).2_2'", "6_1.U4(3).2_2'" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6_2.U4(3)", "2.U4(3)", "2.U4(3).2_1", "6_2.U4(3).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6_2.U4(3)", "2.U4(3)", "2.U4(3).2_3'", "6_2.U4(3).2_3'" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12_1.U4(3)", "4.U4(3)", "4.U4(3).2_1", "12_1.U4(3).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12_2.U4(3)", "4.U4(3)", "4.U4(3).2_1", "12_2.U4(3).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.G2(3)", "G2(3)", "G2(3).2", "3.G2(3).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.U3(8)", "U3(8)", "U3(8).2", "3.U3(8).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.U3(8).3_1", "U3(8).3_1", "U3(8).6", "3.U3(8).6" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.J3", "J3", "J3.2", "3.J3.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.U3(11)", "U3(11)", "U3(11).2", "3.U3(11).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.McL", "McL", "McL.2", "3.McL.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.O7(3)", "O7(3)", "O7(3).2", "3.O7(3).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6.O7(3)", "2.O7(3)", "2.O7(3).2", "6.O7(3).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.U6(2)", "U6(2)", "U6(2).2", "3.U6(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6.U6(2)", "2.U6(2)", "2.U6(2).2", "6.U6(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.Suz", "Suz", "Suz.2", "3.Suz.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6.Suz", "2.Suz", "2.Suz.2", "6.Suz.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.ON", "ON", "ON.2", "3.ON.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.Fi22", "Fi22", "Fi22.2", "3.Fi22.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6.Fi22", "2.Fi22", "2.Fi22.2", "6.Fi22.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.2E6(2)", "2E6(2)", "2E6(2).2", "3.2E6(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "6.2E6(2)", "2.2E6(2)", "2.2E6(2).2", "6.2E6(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.F3+", "F3+", "F3+.2", "3.F3+.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">];;</span>
</pre></div>
<p>(We need not consider groups <span class="SimpleMath">3.U_3(8).6'</span> and <span class="SimpleMath">3.U_3(8).6'</span>, see Section <a href="chap2.html#X8379003582D06130"><span class="RefLink">2.4-7</span></a>.)</p>
<p>Note that the groups of the types <span class="SimpleMath">12_1.L_3(4).2_1</span> and <span class="SimpleMath">12_2.L_3(4).2_1</span> have central subgroups of order six, so we cannot choose <span class="SimpleMath">G</span> equal to <span class="SimpleMath">4_1.L_3(4)</span> and <span class="SimpleMath">4_2.L_3(4)</span>, respectively, in these cases. See Section <a href="chap2.html#X7A236EDE7A7A28F9"><span class="RefLink">2.4-4</span></a> for the construction of these tables.</p>
<p>Also in the following cases, <span class="SimpleMath">|A|</span> and <span class="SimpleMath">|M|</span> are coprime, we have <span class="SimpleMath">|M| = 3</span> and <span class="SimpleMath">|A| = 2</span>. The group <span class="SimpleMath">M.G</span> has a central subgroup of the type <span class="SimpleMath">2^2 × 3</span>, and <span class="SimpleMath">A</span> acts on this group by inverting the elements in the subgroup of order <span class="SimpleMath">3</span> and by swapping two involutions in the Klein four group.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( listMGA, [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "(2^2x3).L3(4)", "2^2.L3(4)", "2^2.L3(4).2_2", "(2^2x3).L3(4).2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "(2^2x3).L3(4)", "2^2.L3(4)", "2^2.L3(4).2_3", "(2^2x3).L3(4).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "(2^2x3).U6(2)", "2^2.U6(2)", "2^2.U6(2).2", "(2^2x3).U6(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "(2^2x3).2E6(2)", "2^2.2E6(2)", "2^2.2E6(2).2", "(2^2x3).2E6(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">] );</span>
</pre></div>
<p>Additionally, there are a few cases where <span class="SimpleMath">A</span> has order two, and <span class="SimpleMath">G.A</span> has a factor group of the type <span class="SimpleMath">2^2</span>, and a few cases where <span class="SimpleMath">M</span> has the type <span class="SimpleMath">2^2</span> and <span class="SimpleMath">A</span> is of order three and acts transitively on the involutions in <span class="SimpleMath">M</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( listMGA, [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.A6.2_3", "A6.2_3", "A6.2^2", "3.A6.2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.L3(4).2_1", "L3(4).2_1", "L3(4).2^2", "3.L3(4).2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3_1.U4(3).2_2", "U4(3).2_2", "U4(3).(2^2)_{122}",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "3_1.U4(3).(2^2)_{122}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3_2.U4(3).2_3", "U4(3).2_3", "U4(3).(2^2)_{133}",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "3_2.U4(3).(2^2)_{133}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3^2.U4(3).2_3'", "3_2.U4(3).2_3'", "3_2.U4(3).(2^2)_{133}",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "3^2.U4(3).(2^2)_{133}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.L3(4)", "L3(4)", "L3(4).3", "2^2.L3(4).3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "(2^2x3).L3(4)", "3.L3(4)", "3.L3(4).3", "(2^2x3).L3(4).3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.L3(4).2_1", "L3(4).2_1", "L3(4).6", "2^2.L3(4).6" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.Sz(8)", "Sz(8)", "Sz(8).3", "2^2.Sz(8).3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.U6(2)", "U6(2)", "U6(2).3", "2^2.U6(2).3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "(2^2x3).U6(2)", "3.U6(2)", "3.U6(2).3", "(2^2x3).U6(2).3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.O8+(2)", "O8+(2)", "O8+(2).3", "2^2.O8+(2).3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.O8+(3)", "O8+(3)", "O8+(3).3", "2^2.O8+(3).3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.2E6(2)", "2E6(2)", "2E6(2).3", "2^2.2E6(2).3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">] );</span>
</pre></div>
<p>The constructions of the character tables of groups of the types <span class="SimpleMath">4_2.L_3(4).2_3</span>, <span class="SimpleMath">12_2.L_3(4).2_3</span>, <span class="SimpleMath">12_1.U_4(3).2_2'</span> and <span class="SimpleMath">12_2.U_4(3).2_3'</span> is described in Section <a href="chap2.html#X794EC2FD7F69B4E6"><span class="RefLink">2.4-5</span></a> and <a href="chap2.html#X7E3E748E85AEDDB3"><span class="RefLink">2.4-6</span></a>, in these cases the <strong class="pkg">GAP</strong> functions return several possible tables.</p>
<p>The construction of the various character table of groups of the types <span class="SimpleMath">4_1.L_3(4).2^2</span> and <span class="SimpleMath">4_2.L_3(4).2^2</span> are described in Section <a href="chap2.html#X7DC42AE57E9EED4D"><span class="RefLink">2.6-7</span></a>.</p>
<p>The following function takes the ordinary character tables of the groups <span class="SimpleMath">M.G</span>, <span class="SimpleMath">G</span>, and <span class="SimpleMath">G.A</span>, a string to be used as the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) value of the character table of <span class="SimpleMath">M.G.A</span>, and the character table of <span class="SimpleMath">M.G.A</span> that is contained in the <strong class="pkg">GAP</strong> Character Table Library; the function first computes the possible actions of <span class="SimpleMath">G.A</span> on the classes of <span class="SimpleMath">M.G</span>, using the function <code class="func">PossibleActionsForTypeMGA</code> (<a href="..//doc/chap5.html#X7899AA12836EEF8F"><span class="RefLink">CTblLib: PossibleActionsForTypeMGA</span></a>), then computes the union of possible character tables for these actions, and then representatives up to permutation equivalence; if there is only one solution then the result table is compared with the library table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructOrdinaryMGATable:= function( tblMG, tblG, tblGA, name, lib )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local acts, poss, trans;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> acts:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= Concatenation( List( acts, pi -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, pi,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= RepresentativesCharacterTables( poss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( poss ) = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compare the computed table with the library table.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsCharacterTable( lib ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> List( poss, x -> AutomorphismsOfTable( x.table ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no library table for ", name, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> trans:= TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsRecord( trans ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", name,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compare the computed fusion with the stored one.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if OnTuples( poss[1].MGfusMGA, trans.columns )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> <> GetFusionMap( tblMG, lib ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed and stored fusion for ", name,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif Length( poss ) = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E no solution for ", name, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E ", Length( poss ), " possibilities for ", name, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return poss;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
</pre></div>
<p>The following function takes the ordinary character tables of the groups <span class="SimpleMath">M.G</span>, <span class="SimpleMath">G.A</span>, and <span class="SimpleMath">M.G.A</span>, and tries to construct the <span class="SimpleMath">p</span>-modular character tables of <span class="SimpleMath">M.G.A</span> from the <span class="SimpleMath">p</span>-modular character tables of the first two of these tables, for all prime divisors <span class="SimpleMath">p</span> of the order of <span class="SimpleMath">M.G.A</span>. Note that the tables of <span class="SimpleMath">G</span> are not needed in the construction, only the class fusions from <span class="SimpleMath">M.G</span> to <span class="SimpleMath">M.G.A</span> and from <span class="SimpleMath">M.G.A</span> to <span class="SimpleMath">G.A</span> must be stored.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructModularMGATables:= function( tblMG, tblGA, ordtblMGA )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local name, poss, p, modtblMG, modtblGA, modtblMGA, modlib, trans;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> name:= Identifier( ordtblMGA );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in PrimeDivisors( Size( ordtblMGA ) ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblMG := tblMG mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblGA := tblGA mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAll( [ modtblMG, modtblGA ], IsCharacterTable ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblMGA:= BrauerTableOfTypeMGA( modtblMG, modtblGA, ordtblMGA );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( poss, modtblMGA );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlib:= ordtblMGA mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsCharacterTable( modlib ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> trans:= TransformingPermutationsCharacterTables( modtblMGA.table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsRecord( trans ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", name,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " mod ", p, " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> AutomorphismsOfTable( modtblMGA.table );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no library table for ", name, " mod ", p, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I not all input tables for ", name, " mod ", p,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " available\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return poss;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
</pre></div>
<p>Now we run the constructions for the cases in the list. Note that in order to avoid conflicts of the class fusions that arise in the construction with the class fusions that are already stored on the library tables, we choose identifiers for the result tables that are different from the identifiers of the library tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in listMGA do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMG := CharacterTable( input[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblG := CharacterTable( input[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblGA := CharacterTable( input[3] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name := Concatenation( "new", input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib := CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if 1 <> Length( poss ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", Length( poss ), " possibilities for ", name, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif lib = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no library table for ", input[4], "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructModularMGATables( tblMG, tblGA, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#I not all input tables for 3.2E6(2).2 mod 2 available
#I not all input tables for 3.2E6(2).2 mod 3 available
#I not all input tables for 3.2E6(2).2 mod 5 available
#I not all input tables for 3.2E6(2).2 mod 7 available
#I not all input tables for 3.2E6(2).2 mod 11 available
#I not all input tables for 3.2E6(2).2 mod 13 available
#I not all input tables for 3.2E6(2).2 mod 17 available
#I not all input tables for 3.2E6(2).2 mod 19 available
#I not all input tables for 6.2E6(2).2 mod 2 available
#I not all input tables for 6.2E6(2).2 mod 3 available
#I not all input tables for 6.2E6(2).2 mod 5 available
#I not all input tables for 6.2E6(2).2 mod 7 available
#I not all input tables for 6.2E6(2).2 mod 11 available
#I not all input tables for 6.2E6(2).2 mod 13 available
#I not all input tables for 6.2E6(2).2 mod 17 available
#I not all input tables for 6.2E6(2).2 mod 19 available
#I not all input tables for 3.F3+.2 mod 2 available
#I not all input tables for 3.F3+.2 mod 3 available
#I not all input tables for 3.F3+.2 mod 5 available
#I not all input tables for 3.F3+.2 mod 7 available
#I not all input tables for 3.F3+.2 mod 13 available
#I not all input tables for 3.F3+.2 mod 17 available
#I not all input tables for 3.F3+.2 mod 29 available
#I not all input tables for (2^2x3).2E6(2).2 mod 2 available
#I not all input tables for (2^2x3).2E6(2).2 mod 3 available
#I not all input tables for (2^2x3).2E6(2).2 mod 5 available
#I not all input tables for (2^2x3).2E6(2).2 mod 7 available
#I not all input tables for (2^2x3).2E6(2).2 mod 11 available
#I not all input tables for (2^2x3).2E6(2).2 mod 13 available
#I not all input tables for (2^2x3).2E6(2).2 mod 17 available
#I not all input tables for (2^2x3).2E6(2).2 mod 19 available
#I not all input tables for 3^2.U4(3).(2^2)_{133} mod 2 available
#I not all input tables for 3^2.U4(3).(2^2)_{133} mod 5 available
#I not all input tables for 3^2.U4(3).(2^2)_{133} mod 7 available
#I not all input tables for 2^2.O8+(3).3 mod 5 available
#I not all input tables for 2^2.O8+(3).3 mod 7 available
#I not all input tables for 2^2.O8+(3).3 mod 13 available
#I not all input tables for 2^2.2E6(2).3 mod 2 available
#I not all input tables for 2^2.2E6(2).3 mod 3 available
#I not all input tables for 2^2.2E6(2).3 mod 5 available
#I not all input tables for 2^2.2E6(2).3 mod 7 available
#I not all input tables for 2^2.2E6(2).3 mod 11 available
#I not all input tables for 2^2.2E6(2).3 mod 13 available
#I not all input tables for 2^2.2E6(2).3 mod 17 available
#I not all input tables for 2^2.2E6(2).3 mod 19 available
</pre></div>
<p>We do not get any unexpected output, so the character tables in question are determined by the inputs.</p>
<p>Alternative constructions of the character tables of <span class="SimpleMath">3.A_6.2^2</span>, <span class="SimpleMath">3.L_3(4).2^2</span>, and <span class="SimpleMath">3_2.U_4(3).(2^2)_133</span> can be found in Section <a href="chap2.html#X7FEC3AB081487AF2"><span class="RefLink">2.6-2</span></a>.</p>
<p><a id="X7A236EDE7A7A28F9" name="X7A236EDE7A7A28F9"></a></p>
<h5>2.4-4 <span class="Heading">More <strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">M.G.A</span></span></h5>
<p>In the following situations, we have <span class="SimpleMath">|A| = 2</span>, and <span class="SimpleMath">|M|</span> is a multiple of <span class="SimpleMath">2</span>. The result turns out to be unique up to isoclinism, see Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>.</p>
<p>First, there are some cases where the centre of <span class="SimpleMath">M.G</span> is a cyclic group of order four, and <span class="SimpleMath">|M| = 2</span> holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">listMGA2:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "4_1.L3(4)", "2.L3(4)", "2.L3(4).2_1", "4_1.L3(4).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "4_1.L3(4)", "2.L3(4)", "2.L3(4).2_2", "4_1.L3(4).2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "4_2.L3(4)", "2.L3(4)", "2.L3(4).2_1", "4_2.L3(4).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "4.M22", "2.M22", "2.M22.2", "4.M22.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "4.U4(3)", "2.U4(3)", "2.U4(3).2_2", "4.U4(3).2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "4.U4(3)", "2.U4(3)", "2.U4(3).2_3", "4.U4(3).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">];;</span>
</pre></div>
<p>Note that the groups <span class="SimpleMath">4_1.L3(4).2_3</span> and <span class="SimpleMath">4_2.L3(4).2_2</span> and their isoclinic variants have centres of order four, so they do not appear here. The construction of the character table of <span class="SimpleMath">4_2.L_3(4).2_3</span> is more involved, it is described in Section <a href="chap2.html#X794EC2FD7F69B4E6"><span class="RefLink">2.4-5</span></a>.</p>
<p>Also in the following cases, we have <span class="SimpleMath">|M| = 2</span>, but the situation is different because <span class="SimpleMath">M.G</span> has a central subgroup of the type <span class="SimpleMath">2^2</span> containing a unique subgroup of order <span class="SimpleMath">2</span> that is central in <span class="SimpleMath">M.G.A</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( listMGA2, [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.L3(4)", "2.L3(4)", "2.L3(4).2_2", "2^2.L3(4).2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.L3(4)", "2.L3(4)", "2.L3(4).2_3", "2^2.L3(4).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{123}", "2^2.L3(4).2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.O8+(2)", "2.O8+(2)", "2.O8+(2).2", "2^2.O8+(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.U6(2)", "2.U6(2)", "2.U6(2).2", "2^2.U6(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.2E6(2)", "2.2E6(2)", "2.2E6(2).2", "2^2.2E6(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">] );</span>
</pre></div>
<p>Next there are two constructions for <span class="SimpleMath">G = 6.L_3(4)</span>, with <span class="SimpleMath">|M| = 12</span> and <span class="SimpleMath">|A| = 2</span>. Note that the groups <span class="SimpleMath">12_1.L3(4).2_1</span> and <span class="SimpleMath">12_2.L3(4).2_1</span> have central subgroups of the order six, so we cannot use the factor groups <span class="SimpleMath">4_1.L3(4).2_1</span> and <span class="SimpleMath">4_2.L3(4).2_1</span>, respectively, for the constructions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( listMGA2, [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12_1.L3(4)", "6.L3(4)", "6.L3(4).2_1", "12_1.L3(4).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12_2.L3(4)", "6.L3(4)", "6.L3(4).2_1", "12_2.L3(4).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">] );</span>
</pre></div>
<p>Next there are alternative constructions for tables which have been constructed in Section <a href="chap2.html#X7ED45AB379093A70"><span class="RefLink">2.4-3</span></a>. There we had viewed the groups of the structure <span class="SimpleMath">12.S.2</span>, for a simple group <span class="SimpleMath">S</span>, as <span class="SimpleMath">3.G.2</span> with <span class="SimpleMath">G = 4.S</span>. Here we view these groups as <span class="SimpleMath">2.G.2</span> with <span class="SimpleMath">G = 6.S</span>, which means that we do not prescribe the <span class="SimpleMath">4.S.2</span> type factor group. So it is not surprising that we get more than one solution, and that the computation of the <span class="SimpleMath">2</span>-power map of <span class="SimpleMath">12.S.2</span> is more involved. Note that the construction of the character table of <span class="SimpleMath">12_2.L_3(4).2_3</span> is more involved, it is described in Section <a href="chap2.html#X794EC2FD7F69B4E6"><span class="RefLink">2.4-5</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( listMGA2, [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12.M22", "6.M22", "6.M22.2", "12.M22.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12_1.L3(4)", "6.L3(4)", "6.L3(4).2_2", "12_1.L3(4).2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12_1.U4(3)", "6_1.U4(3)", "6_1.U4(3).2_2", "12_1.U4(3).2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "12_2.U4(3)", "6_2.U4(3)", "6_2.U4(3).2_3", "12_2.U4(3).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">] );</span>
</pre></div>
<p>Finally, there are alternative constructions for the cases where the group <span class="SimpleMath">M.G</span> has a central subgroup of the type <span class="SimpleMath">2^2 × 3</span>, and <span class="SimpleMath">A</span> acts on this group by inverting the elements in the subgroup of order <span class="SimpleMath">3</span> and by swapping two involutions in the Klein four group.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( listMGA2, [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "(2^2x3).L3(4)", "6.L3(4)", "6.L3(4).2_2", "(2^2x3).L3(4).2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "(2^2x3).L3(4)", "6.L3(4)", "6.L3(4).2_3", "(2^2x3).L3(4).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "(2^2x3).U6(2)", "6.U6(2)", "6.U6(2).2", "(2^2x3).U6(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "(2^2x3).2E6(2)", "6.2E6(2)", "6.2E6(2).2", "(2^2x3).2E6(2).2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">] );</span>
</pre></div>
<p>Now we run the constructions for the cases in the list.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in listMGA2 do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMG := CharacterTable( input[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblG := CharacterTable( input[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblGA := CharacterTable( input[3] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name := Concatenation( "new", input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib := CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( poss ) = 2 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> iso:= CharacterTableIsoclinic( poss[1].table );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsRecord( TransformingPermutationsCharacterTables( poss[2].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> iso ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( poss[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif Length( poss ) = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I unique up to permutation equivalence: ", name, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if 1 <> Length( poss ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", Length( poss ), " possibilities for ", name, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif lib = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no library table for ", input[4], "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructModularMGATables( tblMG, tblGA, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#E 2 possibilities for new4_1.L3(4).2_1
#E 2 possibilities for new4_1.L3(4).2_2
#E 2 possibilities for new4_2.L3(4).2_1
#E 2 possibilities for new4.M22.2
#E 2 possibilities for new4.U4(3).2_2
#E 2 possibilities for new4.U4(3).2_3
#I unique up to permutation equivalence: new2^2.L3(4).2_2
#I unique up to permutation equivalence: new2^2.L3(4).2_3
#I unique up to permutation equivalence: new2^2.L3(4).2^2
#I unique up to permutation equivalence: new2^2.O8+(2).2
#I unique up to permutation equivalence: new2^2.U6(2).2
#I unique up to permutation equivalence: new2^2.2E6(2).2
#I not all input tables for 2^2.2E6(2).2 mod 2 available
#I not all input tables for 2^2.2E6(2).2 mod 3 available
#I not all input tables for 2^2.2E6(2).2 mod 5 available
#I not all input tables for 2^2.2E6(2).2 mod 7 available
#E 2 possibilities for new12_1.L3(4).2_1
#E 2 possibilities for new12_2.L3(4).2_1
#E 2 possibilities for new12.M22.2
#E 2 possibilities for new12_1.L3(4).2_2
#E 2 possibilities for new12_1.U4(3).2_2
#E 2 possibilities for new12_2.U4(3).2_3
#I unique up to permutation equivalence: new(2^2x3).L3(4).2_2
#I unique up to permutation equivalence: new(2^2x3).L3(4).2_3
#I unique up to permutation equivalence: new(2^2x3).U6(2).2
#I unique up to permutation equivalence: new(2^2x3).2E6(2).2
#I not all input tables for (2^2x3).2E6(2).2 mod 2 available
#I not all input tables for (2^2x3).2E6(2).2 mod 3 available
#I not all input tables for (2^2x3).2E6(2).2 mod 5 available
#I not all input tables for (2^2x3).2E6(2).2 mod 7 available
#I not all input tables for (2^2x3).2E6(2).2 mod 11 available
#I not all input tables for (2^2x3).2E6(2).2 mod 13 available
#I not all input tables for (2^2x3).2E6(2).2 mod 17 available
#I not all input tables for (2^2x3).2E6(2).2 mod 19 available
</pre></div>
<p>Again, we do not get any unexpected output, so the character tables in question are determined up to isoclinism by the inputs.</p>
<p><a id="X794EC2FD7F69B4E6" name="X794EC2FD7F69B4E6"></a></p>
<h5>2.4-5 <span class="Heading">The Character Tables of <span class="SimpleMath">4_2.L_3(4).2_3</span> and <span class="SimpleMath">12_2.L_3(4).2_3</span></span></h5>
<p>In the construction of the character table of <span class="SimpleMath">M.G.A = 4_2.L_3(4).2_3</span> from the tables of <span class="SimpleMath">M.G = 4_2.L_3(4)</span> and <span class="SimpleMath">G.A = 2.L_3(4).2_3</span>, the action of <span class="SimpleMath">A</span> on the classes of <span class="SimpleMath">M.G</span> is uniquely determined, but we get four possible character tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG := CharacterTable( "4_2.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG := CharacterTable( "2.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA := CharacterTable( "2.L3(4).2_3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">name := "new4_2.L3(4).2_3";;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">lib := CharacterTable( "4_2.L3(4).2_3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss := ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );</span>
#E 4 possibilities for new4_2.L3(4).2_3
[ rec(
MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12,
12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22,
21, 20 ], table := CharacterTable( "new4_2.L3(4).2_3" ) ),
rec(
MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12,
12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22,
21, 20 ], table := CharacterTable( "new4_2.L3(4).2_3" ) ),
rec(
MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12,
12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22,
21, 20 ], table := CharacterTable( "new4_2.L3(4).2_3" ) ),
rec(
MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12,
12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22,
21, 20 ], table := CharacterTable( "new4_2.L3(4).2_3" ) ) ]
</pre></div>
<p>The centre of <span class="SimpleMath">4_2.L_3(4)</span> is inverted by the action of the outer automorphism, so the existence of <em>two</em> possible tables can be expected because two isoclinic groups of the type <span class="SimpleMath">4_2.L_3(4).2_3</span> exist, see Section <a href="chap2.html#X78F41D2A78E70BEE"><span class="RefLink">2.2-6</span></a>.</p>
<p>Indeed the result consists of two pairs of isoclinic tables, so we have to decide which pair of tables belongs to the groups of the type <span class="SimpleMath">4_2.L_3(4).2_3</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTableIsoclinic( poss[4].table ) ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[2].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTableIsoclinic( poss[3].table ) ) );</span>
true
</pre></div>
<p>The possible tables differ only w.r.t. the <span class="SimpleMath">2</span>-power map and perhaps the element orders. The <strong class="pkg">Atlas</strong> prints the table of the split extension of <span class="SimpleMath">M.G</span>, this table is one of the first two possibilities.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( poss, x -> PowerMap( x.table, 2 ) );</span>
[ [ 1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,
21, 19, 21, 1, 1, 6, 6, 9, 9, 11, 11, 16, 16, 13, 13 ],
[ 1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,
21, 19, 21, 1, 1, 6, 6, 11, 11, 9, 9, 16, 16, 13, 13 ],
[ 1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,
21, 19, 21, 3, 3, 8, 8, 9, 9, 11, 11, 18, 18, 15, 15 ],
[ 1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,
21, 19, 21, 3, 3, 8, 8, 11, 11, 9, 9, 18, 18, 15, 15 ] ]
</pre></div>
<p>The <span class="SimpleMath">2</span>-power map is not determined by the irreducible characters (and by the <span class="SimpleMath">2</span>-power map of the factor group <span class="SimpleMath">2.L_3(4).2_3</span>). We determine this map using the embedding of <span class="SimpleMath">4_2.L_3(4).2_3</span> into <span class="SimpleMath">4.U_4(3).2_3</span>. Note that <span class="SimpleMath">L_3(4).2_3</span> is a maximal subgroup of <span class="SimpleMath">U_4(3).2_3</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 52]</a>), and that the subgroup <span class="SimpleMath">L_3(4)</span> of <span class="SimpleMath">U_4(3)</span> lifts to <span class="SimpleMath">4_2.L_3(4)</span> in <span class="SimpleMath">4.U_4(3)</span> because no embedding of <span class="SimpleMath">L_3(4)</span>, <span class="SimpleMath">2.L_3(4)</span>, or <span class="SimpleMath">4_1.L_3(4)</span> into <span class="SimpleMath">4.U_4(3)</span> is possible.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossiblePowerMaps( poss[1].table, 2 );</span>
[ [ 1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,
21, 19, 21, 1, 1, 6, 6, 11, 11, 9, 9, 16, 16, 13, 13 ],
[ 1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,
21, 19, 21, 1, 1, 6, 6, 9, 9, 11, 11, 16, 16, 13, 13 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "4.U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( [ "L3(4)", "2.L3(4)", "4_1.L3(4)", "4_2.L3(4)" ], name -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> Length( PossibleClassFusions( CharacterTable( name ), t ) ) );</span>
[ 0, 0, 0, 4 ]
</pre></div>
<p>So the split extension <span class="SimpleMath">4_2.L_3(4).2_3</span> of <span class="SimpleMath">4_2.L_3(4)</span> is a subgroup of the split extension <span class="SimpleMath">4.U_4(3).2_3</span> of <span class="SimpleMath">4.U_4(3)</span>, and only one of the two possible tables of <span class="SimpleMath">4_2.L_3(4).2_3</span> admits a class fusion into the <strong class="pkg">Atlas</strong> table of <span class="SimpleMath">4.U_3(4).2_3</span>; the construction of the latter table is shown in Section <a href="chap2.html#X7ED45AB379093A70"><span class="RefLink">2.4-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "4.U4(3).2_3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( poss, x -> Length( PossibleClassFusions( x.table, t2 ) ) );</span>
[ 0, 16, 0, 0 ]
</pre></div>
<p>I do not know a character theoretic argument that would disprove the existence of a group whose character table is the other candidate (or its isoclinic variant). For example, the table passes the tests from Section <a href="chap2.html#X7E0C603880157C4E"><span class="RefLink">2.4-17</span></a>.</p>
<p>(It is straightforward to compute all extensions of <span class="SimpleMath">4_2.L_3(4)</span> by an automorphism of order two. The extensions with <span class="SimpleMath">34</span> conjugacy classes belong to the second candidate and its isoclinic variant.)</p>
<p>The correct table is the one that is contained in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[2].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructModularMGATables( tblMG, tblGA, lib );;</span>
</pre></div>
<p>In the construction of the character table of <span class="SimpleMath">12_2.L_3(4).2_3</span>, the same ambiguity arises. We resolve it using the fact that <span class="SimpleMath">4_2.L_3(4).2_3</span> occurs as a factor group, modulo the unique normal subgroup of order three.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG := CharacterTable( "12_2.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG := CharacterTable( "6.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA := CharacterTable( "6.L3(4).2_3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">name := "new12_2.L3(4).2_3";;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">lib := CharacterTable( "12_2.L3(4).2_3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss := ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );;</span>
#E 4 possibilities for new12_2.L3(4).2_3
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= ClassPositionsOfNormalSubgroups( poss[1].table );</span>
[ [ 1 ], [ 1, 5 ], [ 1, 7 ], [ 1, 4 .. 7 ], [ 1, 3 .. 7 ],
[ 1 .. 7 ], [ 1 .. 50 ], [ 1 .. 62 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( nsg, x -> Sum( SizesConjugacyClasses( poss[1].table ){ x } ) );</span>
[ 1, 3, 2, 4, 6, 12, 241920, 483840 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">factlib:= CharacterTable( "4_2.L3(4).2_3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( poss, x -> IsRecord( TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x.table / [ 1, 5 ], factlib ) ) );</span>
[ false, true, false, false ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[2].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructModularMGATables( tblMG, tblGA, lib );;</span>
</pre></div>
<p><a id="X7E3E748E85AEDDB3" name="X7E3E748E85AEDDB3"></a></p>
<h5>2.4-6 <span class="Heading">The Character Tables of <span class="SimpleMath">12_1.U_4(3).2_2'</span> and
<span class="SimpleMath">12_2.U_4(3).2_3'</span> (December 2015)</span></h5>
<p>In the construction of the character table of <span class="SimpleMath">M.G.A = 12_1.U_4(3).2_2'</span> from the tables of <span class="SimpleMath">M.G = 12_1.U_4(3)</span> and <span class="SimpleMath">G.A = 2.U_4(3).2_2'</span>, the action of <span class="SimpleMath">A</span> on the classes of <span class="SimpleMath">M.G</span> is uniquely determined, but we get two possible character tables.</p>
<p>(Note that the groups <span class="SimpleMath">2.U_4(3).2_2</span> and <span class="SimpleMath">2.U_4(3).2_2'</span> are isomorphic, but we have to take the latter one because the stored factor fusion from <span class="SimpleMath">12_1.U_4(3)</span> to <span class="SimpleMath">2.U_4(3)</span> must be combined with the class fusion from <span class="SimpleMath">2.U_4(3)</span> to <span class="SimpleMath">2.U_4(3).2_2'</span>; using the library table of <span class="SimpleMath">2.U_4(3).2_2</span> would be technically more involved.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG := CharacterTable( "12_1.U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG := CharacterTable( "2.U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA := CharacterTable( "2.U4(3).2_2'" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">name := "new12_1.U4(3).2_2'";;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">lib := CharacterTable( "12_1.U4(3).2_2'" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss := ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );;</span>
#E 2 possibilities for new12_1.U4(3).2_2'
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructModularMGATables( tblMG, tblGA, lib );;</span>
</pre></div>
<p>This is not surprising, the two tables involve the two isoclinic variants of <span class="SimpleMath">4.U_4(3).2_2'</span> (which is isomorphic with <span class="SimpleMath">4.U_4(3).2_2</span>) as tables of factor groups. The irreducible characters of the two tables are equal, only the <span class="SimpleMath">2</span>-power map and the element orders are different.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Irr( poss[1].table ) = Irr( poss[2].table );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= CharacterTableIsoclinic( poss[1].table );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( iso, poss[2].table );</span>
rec( columns := (), group := <permutation group with 5 generators>,
rows := () )
</pre></div>
<p>The same phenomenon occurs in the construction of the character table of <span class="SimpleMath">M.G.A = 12_2.U_4(3).2_3'</span> from the tables of <span class="SimpleMath">M.G = 12_2.U_4(3)</span> and <span class="SimpleMath">G.A = 2.U_4(3).2_3'</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG := CharacterTable( "12_2.U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG := CharacterTable( "2.U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA := CharacterTable( "2.U4(3).2_3'" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">name := "new12_2.U4(3).2_3'";;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">lib := CharacterTable( "12_2.U4(3).2_3'" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss := ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );;</span>
#E 2 possibilities for new12_2.U4(3).2_3'
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructModularMGATables( tblMG, tblGA, lib );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= CharacterTableIsoclinic( poss[1].table );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( iso, poss[2].table );</span>
rec( columns := (), group := <permutation group with 8 generators>,
rows := () )
</pre></div>
<p><a id="X8379003582D06130" name="X8379003582D06130"></a></p>
<h5>2.4-7 <span class="Heading">Groups of the Structures <span class="SimpleMath">3.U_3(8).3_1</span> and <span class="SimpleMath">3.U_3(8).6</span>
(February 2017)</span></h5>
<p>The list of Improvements to the <strong class="pkg">Atlas</strong> of Finite Groups <a href="chapBib.html#biBBN95">[BN95]</a> states the following, concerning the group <span class="SimpleMath">G = U_3(8)</span>.</p>
<p>"There is a unique group of type <span class="SimpleMath">3.G.6</span> which contains the group of type <span class="SimpleMath">3.G.3</span> shown. But the (unique) groups of type <span class="SimpleMath">3.G.6'</span> and <span class="SimpleMath">3.G.6''</span> contain not this <span class="SimpleMath">3.G.3</span> but its <em>isoclines</em>."</p>
<p>In this section we will show that this statement is not correct, in the sense that the three isoclinic variants of groups of the structure <span class="SimpleMath">3.U_3(8).3_1</span> are in fact isomorphic.</p>
<p>As a consequence, there is a unique group of the structure <span class="SimpleMath">3.U_3(8).6</span>, up to isomorphism. Note that otherwise the strange situation of nonisomorphic groups <span class="SimpleMath">3.G.6</span>, <span class="SimpleMath">3.G.6'</span>, and <span class="SimpleMath">3.G.6''</span> would happen, which would be also not isoclinic because their centres are trivial.</p>
<p>A group of the structure <span class="SimpleMath">3.U_3(8).3_1</span> can be obtained as the semidirect product <span class="SimpleMath">G</span>, say, of the group SU<span class="SimpleMath">(3,8)</span> with the automorphism of the field with <span class="SimpleMath">64</span> elements that raises each field element to its fourth power. Note that the semidirect product of SU<span class="SimpleMath">(3,8)</span> with the field automorphism that squares each field element yields a group of the structure <span class="SimpleMath">3.U_3(8).6</span>.</p>
<p>First we create a permutation representation of <span class="SimpleMath">G</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= SU(3,8);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:= GeneratorsOfGroup( s );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">imgs1:= List( gens, m -> List( m, v -> List( v, x -> x^4 ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">imgs2:= List( gens, m -> List( m, v -> List( v, x -> x^16 ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= GF(64);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mats:= List( gens, m -> IdentityMat( 9, f ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 1 .. Length( gens ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mats[i]{ [ 1 .. 3 ] }{ [ 1 .. 3 ] }:= gens[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mats[i]{ [ 4 .. 6 ] }{ [ 4 .. 6 ] }:= imgs1[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mats[i]{ [ 7 .. 9 ] }{ [ 7 .. 9 ] }:= imgs2[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fieldaut:= NullMat( 9, 9, f );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fieldaut{ [ 4 .. 6 ] }{ [ 1 .. 3 ] }:= IdentityMat( 3, f );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fieldaut{ [ 7 .. 9 ] }{ [ 4 .. 6 ] }:= IdentityMat( 3, f );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fieldaut{ [ 1 .. 3 ] }{ [ 7 .. 9 ] }:= IdentityMat( 3, f );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= [ 1, 0, 0, 1, 0, 0, 1, 0, 0 ] * One( f );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( Concatenation( mats, [ fieldaut ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, v );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( orb );</span>
32319
<span class="GAPprompt">gap></span> <span class="GAPinput">act:= Action( g, orb );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( act ) = 3 * Size( s );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">sm:= SmallerDegreePermutationRepresentation( act );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NrMovedPoints( Image( sm ) );</span>
4617
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Image( sm );;</span>
</pre></div>
<p>The next step is the construction of the central product of <span class="SimpleMath">G</span> and a cyclic group of order nine, of the structure <span class="SimpleMath">3.(3 × U_3(8).3_1)</span>. We could try to create the factor group of <span class="SimpleMath">9 × 3.U_3(8).3_1</span> modulo a diagonal subgroup of order three, by just applying the <code class="code">/</code> operation. Since <strong class="pkg">GAP</strong> would need too much time for that, and since we know better in which situation we are, we create the desired action directly on suitable sets on pairs.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:= CyclicGroup( IsPermGroup, 9 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">dp:= DirectProduct( g, c );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= Image( Embedding( dp, 1 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:= Image( Embedding( dp, 2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c3:= c.1^3;</span>
(4618,4621,4624)(4619,4622,4625)(4620,4623,4626)
<span class="GAPprompt">gap></span> <span class="GAPinput">z:= Centre( u );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( z ); Length( GeneratorsOfGroup( z ) );</span>
3
1
<span class="GAPprompt">gap></span> <span class="GAPinput">diag:= Subgroup( dp, [ c3 * z.1 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( dp, [ 1, 4618 ], OnPairs );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( orb );</span>
41553
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Set( orb );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= List( OrbitsDomain( diag, orb, OnSets ), Set );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( orbs );</span>
13851
<span class="GAPprompt">gap></span> <span class="GAPinput">cp:= Action( dp, orbs, OnSetsSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( cp );</span>
148925952
</pre></div>
<p>The three isoclinic variants of the structure <span class="SimpleMath">3.U_3(8).3_1</span> appear as subgroups of index three in this central product. (The fourth subgroup of index three is of course a central product of the structure <span class="SimpleMath">3.(3 × U_3(8))</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">der:= DerivedSubgroup( cp );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Index( cp, der );</span>
9
<span class="GAPprompt">gap></span> <span class="GAPinput">inter:= IntermediateSubgroups( cp, der ).subgroups;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">z:= Centre( cp );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( z );</span>
9
<span class="GAPprompt">gap></span> <span class="GAPinput">inter:= Filtered( inter, x -> not IsSubset( x, z ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( inter, Size );</span>
[ 49641984, 49641984, 49641984 ]
</pre></div>
<p>Finally, we check that the three groups are isomorphic.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsomorphismGroups( inter[1], inter[2] ) <> fail;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsomorphismGroups( inter[1], inter[3] ) <> fail;</span>
true
</pre></div>
<p><em>Remark:</em></p>
<p>An indication that the groups might be isomorphic is the fact that their character tables are equivalent, which can be shown much easier, as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t1:= CharacterTable( "3.U3(8).3_1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTableIsoclinic( t1, rec( k:= 1 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t3:= CharacterTableIsoclinic( t1, rec( k:= 2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( t1, t2 ) <> fail;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( t1, t3 ) <> fail;</span>
true
</pre></div>
<p><a id="X7B46C77B850D3B4D" name="X7B46C77B850D3B4D"></a></p>
<h5>2.4-8 <span class="Heading">The Character Table of <span class="SimpleMath">(2^2 × F_4(2)):2 < B</span>
(March 2003)</span></h5>
<p>The sporadic simple group <span class="SimpleMath">B</span> contains a maximal subgroup <span class="SimpleMath">overlineN</span> of the type <span class="SimpleMath">(2^2 × F_4(2)):2</span>, which is the normalizer of a <code class="code">2C</code> element <span class="SimpleMath">overlinex</span> in <span class="SimpleMath">B</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 217]</a>).</p>
<p>We will see below that the normal Klein four group <span class="SimpleMath">V</span> in <span class="SimpleMath">overlineN</span> contains two <code class="code">2A</code> elements in <span class="SimpleMath">B</span>. The <code class="code">2A</code> centralizer in <span class="SimpleMath">B</span>, a group of the structure <span class="SimpleMath">2.^2E_6(2).2</span>, contains maximal subgroups of the type <span class="SimpleMath">2^2 × F_4(2)</span>. So the two <code class="code">2A</code> type subgroups <span class="SimpleMath">C_1</span>, <span class="SimpleMath">C_2</span> in <span class="SimpleMath">V</span> are conjugate in <span class="SimpleMath">overlineN</span>, and <span class="SimpleMath">Z = ⟨ x ⟩</span> is the centre of <span class="SimpleMath">overlineN</span>.</p>
<p><center> <img src="ctblcons11.png" alt="The structure of (2^2 x F_4(2)):2)"/> </center></p>
<p>We start with computing the class fusion of the <span class="SimpleMath">2^2 × F_4(2)</span> type subgroup <span class="SimpleMath">U</span> of <span class="SimpleMath">overlineN</span> into <span class="SimpleMath">B</span>; in order to speed this up, we first compute the class fusion of the <span class="SimpleMath">F_4(2)</span> subgroup of <span class="SimpleMath">U</span> into <span class="SimpleMath">B</span> (which is unique), and use it and the stored embedding into <span class="SimpleMath">U</span> for prescribing an approximation of the desired class fusion. Additionally, we prescribe (without loss of generality) that the <em>first</em> involution class in <span class="SimpleMath">V</span> is mapped to the class <code class="code">2C</code> of <span class="SimpleMath">B</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f42:= CharacterTable( "F4(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">v4:= CharacterTable( "2^2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">dp:= v4 * f42;</span>
CharacterTable( "V4xF4(2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f42fusb:= PossibleClassFusions( f42, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( f42fusb );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">f42fusdp:= GetFusionMap( f42, dp );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= CompositionMaps( f42fusb[1], InverseMap( f42fusdp ) );</span>
[ 1, 3, 3, 3, 5, 6, 6, 7, 9, 9, 9, 9, 14, 14, 13, 13, 10, 14, 14, 12,
14, 17, 15, 18, 22, 22, 22, 22, 26, 26, 22, 22, 27, 27, 28, 31, 31,
39, 39, 36, 36, 33, 33, 39, 39, 35, 41, 42, 47, 47, 49, 49, 49, 58,
58, 56, 56, 66, 66, 66, 66, 58, 58, 66, 66, 69, 69, 60, 72, 72, 75,
79, 79, 81, 81, 85, 86, 83, 83, 91, 91, 94, 94, 104, 104, 109, 109,
116, 116, 114, 114, 132, 132, 140, 140 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">v4fusdp:= GetFusionMap( v4, dp );</span>
[ 1, 96 .. 286 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">comp[ v4fusdp[2] ]:= 4;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">dpfusb:= PossibleClassFusions( dp, b, rec( fusionmap:= comp ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( dpfusb );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( dpfusb, x -> x{ v4fusdp } );</span>
[ [ 1, 4, 2, 2 ] ]
</pre></div>
<p>As announced above, we see that <span class="SimpleMath">V</span> contains two <code class="code">2A</code> involutions.</p>
<p>Set <span class="SimpleMath">G = U / Z</span>, <span class="SimpleMath">M.G = U</span>, and <span class="SimpleMath">G.A = overlineN / Z</span>. The latter group is the direct product of <span class="SimpleMath">F_4(2).2</span> and a cyclic group of order <span class="SimpleMath">2</span>. Next we compute the class fusion from <span class="SimpleMath">G</span> into <span class="SimpleMath">G.A</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= dp / v4fusdp{ [ 1, 2 ] };;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG:= dp;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA:= c2 * CharacterTable( "F4(2).2" );</span>
CharacterTable( "C2xF4(2).2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">GfusGA:= PossibleClassFusions( tblG, tblGA );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( GfusGA );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( tblG, GfusGA, tblGA ) );</span>
1
</pre></div>
<p>In principle, we have to be careful which of these equivalent maps we choose, since the underlying symmetries may be broken in the central extension <span class="SimpleMath">M.G → G</span>, for which we choose the default factor fusion.</p>
<p>However, in this situation the fusion <span class="SimpleMath">G</span> into <span class="SimpleMath">G.A</span> is unique already up to table automorphisms of the table of <span class="SimpleMath">G.A</span>, so we are free to choose one map.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( Group( () ), GfusGA, tblGA ) );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblG, GfusGA[1], tblGA );</span>
</pre></div>
<p>The tables involved determine the character table of <span class="SimpleMath">M.G.A ≅ overlineN</span> uniquely.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( elms );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, elms[1],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "(2^2xF4(2)):2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMGA:= poss[1].table;;</span>
</pre></div>
<p>Finally, we compare the table we constructed with the one that is contained in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tblMGA,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "(2^2xF4(2)):2" ) ) );</span>
true
</pre></div>
<p><a id="X8254AA4A843F99BE" name="X8254AA4A843F99BE"></a></p>
<h5>2.4-9 <span class="Heading">The Character Table of <span class="SimpleMath">2.(S_3 × Fi_22.2) < 2.B</span> (March 2003)</span></h5>
<p>The sporadic simple group <span class="SimpleMath">B</span> contains a maximal subgroup <span class="SimpleMath">overlineM</span> of type <span class="SimpleMath">S_3 × Fi_22.2</span>. In order to compute the character table of its preimage <span class="SimpleMath">M</span> in the Schur cover <span class="SimpleMath">2.B</span>, we first analyse the structure of <span class="SimpleMath">M</span> and then describe the construction of the character table from known character tables.</p>
<p>Let <span class="SimpleMath">Z</span> denote the centre of <span class="SimpleMath">2.B</span>. We start with <span class="SimpleMath">overlineM = M/Z</span>. Its class fusion into <span class="SimpleMath">B</span> is uniquely determined by the character tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s3:= CharacterTable( "Dihedral", 6 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fi222:= CharacterTable( "Fi22.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMbar:= s3 * fi222;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Mbarfusb:= PossibleClassFusions( tblMbar, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( Mbarfusb );</span>
1
</pre></div>
<p>The subgroup of type <span class="SimpleMath">Fi_22</span> lifts to the double cover <span class="SimpleMath">2.Fi_22</span> (that is, a group that is <em>not</em> a direct product <span class="SimpleMath">2 × Fi_22</span>) in <span class="SimpleMath">2.B</span> since <span class="SimpleMath">2.B</span> admits no class fusion from <span class="SimpleMath">Fi_22</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2b:= CharacterTable( "2.B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions( CharacterTable( "Fi22" ), 2b );</span>
[ ]
</pre></div>
<p>So the preimage of <span class="SimpleMath">Fi_22.2</span> is one of the two nonisomorphic but isoclinic groups of type <span class="SimpleMath">2.Fi_22.2</span>, and we have to decide which one really occurs. For that, we consider the subgroup of type <span class="SimpleMath">3 × Fi_22.2</span> in <span class="SimpleMath">B</span>, which is a <code class="code">3A</code> centralizer in <span class="SimpleMath">B</span>. Its preimage has the structure <span class="SimpleMath">3 × 2.Fi_22.2</span> because the preimage of the central group of order <span class="SimpleMath">3</span> is a cyclic group of order <span class="SimpleMath">6</span> and thus contains a normal complement of the <span class="SimpleMath">2.Fi_22</span> type subgroup. And a class fusion into <span class="SimpleMath">2.B</span> is possible only from the direct product containing the <span class="SimpleMath">2.Fi_22.2</span> group that is printed in the <strong class="pkg">Atlas</strong>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c3:= CharacterTable( "Cyclic", 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2fi222:= CharacterTable( "2.Fi22.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions( c3 * CharacterTableIsoclinic( 2fi222 ), 2b );</span>
[ ]
</pre></div>
<p>Next we note that the involutions in the normal subgroup <span class="SimpleMath">overlineS</span> of type <span class="SimpleMath">S_3</span> in <span class="SimpleMath">overlineM</span> lift to involutions in <span class="SimpleMath">2.B</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s3inMbar:= GetFusionMap( s3, tblMbar );</span>
[ 1, 113 .. 225 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">s3inb:= Mbarfusb[1]{ s3inMbar };</span>
[ 1, 6, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">2bfusb:= GetFusionMap( 2b, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2s3in2B:= InverseMap( 2bfusb ){ s3inb };</span>
[ [ 1, 2 ], [ 8, 9 ], 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">CompositionMaps( OrdersClassRepresentatives( 2b ), 2s3in2B );</span>
[ [ 1, 2 ], [ 3, 6 ], 2 ]
</pre></div>
<p>Thus the preimage <span class="SimpleMath">S</span> of <span class="SimpleMath">overlineS</span> contains elements of order <span class="SimpleMath">6</span> but no elements of order <span class="SimpleMath">4</span>, which implies that <span class="SimpleMath">S</span> is a direct product <span class="SimpleMath">2 × S_3</span>.</p>
<p>The two complements <span class="SimpleMath">C_1</span>, <span class="SimpleMath">C_2</span> of <span class="SimpleMath">Z</span> in <span class="SimpleMath">S</span> are normal in the preimage <span class="SimpleMath">N</span> of <span class="SimpleMath">overlineN = S_3 × Fi_22</span>, which is thus of type <span class="SimpleMath">S_3 × 2.Fi_22</span>. However, they are conjugate under the action of <span class="SimpleMath">2.Fi_22.2</span>, as no class fusion from <span class="SimpleMath">S_3 × 2.Fi_22.2</span> into <span class="SimpleMath">2.B</span> is possible.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions( s3 * 2fi222, 2b );</span>
[ ]
</pre></div>
<p>(More specifically, the classes of element order <span class="SimpleMath">36</span> in <span class="SimpleMath">2.Fi_22.2</span> have centralizer orders <span class="SimpleMath">36</span> and <span class="SimpleMath">72</span>, so their centralizer orders in <span class="SimpleMath">S_3 × 2.Fi_22.2</span> are <span class="SimpleMath">216</span> and <span class="SimpleMath">432</span>; but the centralizers of order <span class="SimpleMath">36</span> elements in <span class="SimpleMath">2.B</span> have centralizer order at most <span class="SimpleMath">216</span>.)</p>
<p>Now let us see how the character table of <span class="SimpleMath">M</span> can be constructed.</p>
<p>Let <span class="SimpleMath">Y</span> denote the normal subgroup of order <span class="SimpleMath">3</span> in <span class="SimpleMath">M</span>, and <span class="SimpleMath">U</span> its centralizer in <span class="SimpleMath">M</span>, which has index <span class="SimpleMath">2</span> in <span class="SimpleMath">M</span>. Then the character table of <span class="SimpleMath">M</span> is determined by the tables of <span class="SimpleMath">M/Y</span>, <span class="SimpleMath">U</span>, <span class="SimpleMath">U/Y ≅ 2.Fi_22.2</span>, and the action of <span class="SimpleMath">M</span> on the classes of <span class="SimpleMath">U</span>.</p>
<p>As for <span class="SimpleMath">M/Y</span>, consider the normal subgroup <span class="SimpleMath">N = N_M(C_1)</span> of index <span class="SimpleMath">2</span> in <span class="SimpleMath">M</span>. In particular, <span class="SimpleMath">S/Y</span> is central in <span class="SimpleMath">N/Y</span> but not in <span class="SimpleMath">M/Y</span>, so the character table of <span class="SimpleMath">M/Y</span> is determined by the tables of <span class="SimpleMath">M/(YZ)</span>, <span class="SimpleMath">N/Y ≅ 2 × 2.Fi_22</span>, <span class="SimpleMath">N/(YZ) ≅ 2 × Fi_22</span>, and the action of <span class="SimpleMath">M/Y</span> on the classes of <span class="SimpleMath">N/Y</span>.</p>
<p>Thus we proceed in two steps, starting with the computation of the character table of <span class="SimpleMath">M/Y</span>, for which we choose the name according to the structure <span class="SimpleMath">2^2.Fi_22.2</span>.</p>
<p><center> <img src="ctblcons12.png" alt="The structure of 2.(S_3 x Fi_22.2)"/> </center></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2fi22:= CharacterTable( "2.Fi22" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblNmodY:= c2 * 2fi22;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">centre:= GetFusionMap( 2fi22, tblNmodY ){</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfCentre( 2fi22 ) };</span>
[ 1, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tblNmod6:= tblNmodY / centre;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMmod6:= c2 * fi222;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( tblNmod6, tblMmod6 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( fus );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblNmod6, fus[1], tblMmod6 );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblNmodY, tblNmod6, tblMmod6 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( elms );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeMGA( tblNmodY, tblNmod6, tblMmod6,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elms[1], "2^2.Fi22.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMmodY:= poss[1].table;</span>
CharacterTable( "2^2.Fi22.2" )
</pre></div>
<p>So we found a unique solution for the character table of <span class="SimpleMath">M/Y</span>. Now we compute the table of <span class="SimpleMath">M</span>. For that, we have to specify the class fusion of <span class="SimpleMath">U/Y</span> into <span class="SimpleMath">M/Y</span>; it is unique up to table automorphisms of <span class="SimpleMath">M/Y</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblU:= c3 * 2fi222;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblUmodY:= tblU / GetFusionMap( c3, tblU );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( tblUmodY, tblMmodY );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( Group( () ), fus, tblMmodY ) );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblUmodY, fus[1], tblMmodY );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblU, tblUmodY, tblMmodY );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( elms );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeMGA( tblU, tblUmodY, tblMmodY,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elms[1], "(S3x2.Fi22).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">tblM:= poss[1].table;</span>
CharacterTable( "(S3x2.Fi22).2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">mfus2b:= PossibleClassFusions( tblM, 2b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( tblM, mfus2b, 2b ) );</span>
1
</pre></div>
<p>We did not construct <span class="SimpleMath">M</span> as a central extension of <span class="SimpleMath">overlineM</span>, so we verify that the tables fit together; note that this way we get also the class fusion from <span class="SimpleMath">M</span> onto <span class="SimpleMath">overlineM</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Irr( tblM / ClassPositionsOfCentre( tblM ) ) = Irr( tblMbar );</span>
true
</pre></div>
<p>Finally, we compare the table we constructed with the one that is contained in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tblM,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "(S3x2.Fi22).2" ) ) );</span>
true
</pre></div>
<p><a id="X7AF125168239D208" name="X7AF125168239D208"></a></p>
<h5>2.4-10 <span class="Heading">The Character Table of <span class="SimpleMath">(2 × 2.Fi_22):2 < Fi_24</span> (November 2008)</span></h5>
<p>The automorphism group <span class="SimpleMath">Fi_24</span> of the sporadic simple group <span class="SimpleMath">Fi_24^'</span> contains a maximal subgroup <span class="SimpleMath">N</span> of the type <span class="SimpleMath">(2 × 2.Fi_22):2</span>, whose intersection with <span class="SimpleMath">Fi_24^'</span> is <span class="SimpleMath">2.Fi_22.2</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 207]</a>).</p>
<p>The normal Klein four group <span class="SimpleMath">V</span> in <span class="SimpleMath">N</span> contains two <code class="code">2C</code> elements in <span class="SimpleMath">Fi_24</span>, because the <code class="code">2C</code> centralizer in <span class="SimpleMath">Fi_24</span>, a group of the structure <span class="SimpleMath">2 × Fi_23</span>, contains maximal subgroups of the type <span class="SimpleMath">2 × 2.Fi_22</span>, and so the two <code class="code">2C</code> type subgroups <span class="SimpleMath">C_1</span>, <span class="SimpleMath">C_2</span> in <span class="SimpleMath">V</span> are conjugate in <span class="SimpleMath">N</span>, and <span class="SimpleMath">Z = Z(N)</span> is the centre of <span class="SimpleMath">N ∩ Fi_24^'</span>.</p>
<p><center> <img src="ctblcons13.png" alt="The structure of (2 x 2.Fi_22):2"/> </center></p>
<p>With <span class="SimpleMath">U = C_N(C_1)</span>, a group of the type <span class="SimpleMath">2 × 2.Fi_22</span>, we set <span class="SimpleMath">G = U / Z</span>, <span class="SimpleMath">M.G = U</span>, and <span class="SimpleMath">G.A = N / Z</span>. The latter group is the direct product of <span class="SimpleMath">Fi_22.2</span> and a cyclic group of order <span class="SimpleMath">2</span>.</p>
<p>This is exactly the situation of the construction of the character table of the group that is called <span class="SimpleMath">2^2.Fi_22.2</span> in Section <a href="chap2.html#X8254AA4A843F99BE"><span class="RefLink">2.4-9</span></a>, where this group occurs as "<span class="SimpleMath">M/Y</span>". Since the character table is uniquely determined by the input data, it is the table we are interested in here.</p>
<p>So all we have to do is to compute the class fusion from this table into that of <span class="SimpleMath">Fi_24</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fi24:= CharacterTable( "Fi24" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "2^2.Fi22.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( t, fi24 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( fus );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( t, fus, fi24 ) );</span>
1
</pre></div>
<p>(It should be noted that we did not need the character table of the <span class="SimpleMath">2.Fi_22.2</span> type subgroup of <span class="SimpleMath">N</span> in the above construction, only the tables of <span class="SimpleMath">2.Fi_22</span> and <span class="SimpleMath">Fi_22.2</span> were used.)</p>
<p>The fact that the character table of a factor of a subgroup of <span class="SimpleMath">2.B</span> occurs as the character table of a subgroup of <span class="SimpleMath">Fi_24</span> is not a coincidence. In fact, the groups <span class="SimpleMath">3.Fi_24</span> and <span class="SimpleMath">2.B</span> are subgroups of the Monster group <span class="SimpleMath">M</span>, and the subgroup <span class="SimpleMath">U = 2.(S_3 × Fi_22.2)</span> of <span class="SimpleMath">2.B</span> normalizes an element of order three. The full normalizer of this element in <span class="SimpleMath">M</span> is <span class="SimpleMath">3.Fi_24</span>, which means that we have established <span class="SimpleMath">U</span> as a (maximal) subgroup of <span class="SimpleMath">3.Fi_24</span>. Note that we have constructed the character table of <span class="SimpleMath">U</span> in Section <a href="chap2.html#X8254AA4A843F99BE"><span class="RefLink">2.4-9</span></a>.</p>
<p>Let us compute the class fusion of <span class="SimpleMath">U</span> into <span class="SimpleMath">3.Fi_24</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "(S3x2.Fi22).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3fi24:= CharacterTable( "3.Fi24" );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( t, 3fi24 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( fus );</span>
16
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( t, fus, 3fi24 ) );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( t, 3fi24 ) in fus; </span>
true
</pre></div>
<p>Moreover, <span class="SimpleMath">U</span> turns out to be the full normalizer of a <code class="code">6A</code> element in <span class="SimpleMath">M</span>,</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfusm:= PossibleClassFusions( t, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( tfusm );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( t, tfusm, m ) );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = 6 );</span>
[ [ 1, 2, 142, 143 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( tfusm, x -> x{ nsg[1] } );</span>
[ [ 1, 2, 4, 13 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t ){ nsg[1] };</span>
[ 1, 2, 3, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( m, -1 )[13];</span>
13
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( t ) = 2 * SizesCentralizers( m )[13];</span>
true
</pre></div>
<p>(Thus <span class="SimpleMath">U</span> is also the full normalizer of an element of order six in <span class="SimpleMath">2.B</span> and in <span class="SimpleMath">3.Fi_24</span>.)</p>
<p><a id="X79C93F7D87D9CF1D" name="X79C93F7D87D9CF1D"></a></p>
<h5>2.4-11 <span class="Heading">The Character Table of <span class="SimpleMath">S_3 × 2.U_4(3).2_2 ≤ 2.Fi_22</span> (September 2002)</span></h5>
<p>The sporadic simple Fischer group <span class="SimpleMath">Fi_22</span> contains a maximal subgroup <span class="SimpleMath">overlineM</span> of type <span class="SimpleMath">S_3 × U_4(3).2_2</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 163]</a>). We claim that the preimage <span class="SimpleMath">M</span> of <span class="SimpleMath">overlineM</span> in the central extension <span class="SimpleMath">2.Fi_22</span> has the structure <span class="SimpleMath">S_3 × 2.U_4(3).2_2</span>, where the factor of type <span class="SimpleMath">2.U_4(3).2_2</span> is the one printed in the <strong class="pkg">Atlas</strong>.</p>
<p>For that, we first note that the normal subgroup <span class="SimpleMath">overlineS</span> of type <span class="SimpleMath">S_3</span> in <span class="SimpleMath">overlineM</span> lifts to a group <span class="SimpleMath">S</span> which has the structure <span class="SimpleMath">2 × S_3</span>. This follows from the fact that all involutions in <span class="SimpleMath">Fi_22</span> lift to involutions in <span class="SimpleMath">2.Fi_22</span> or, equivalently, the central involution in <span class="SimpleMath">2.Fi_22</span> is not a square. <center> <img src="ctblcons14.png" alt="The structure of S_3 x 2.U_4(3).2_2"/> </center></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2Fi22:= CharacterTable( "2.Fi22" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassPositionsOfCentre( 2Fi22 );</span>
[ 1, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">2 in PowerMap( 2Fi22, 2 );</span>
false
</pre></div>
<p>Second, the normal subgroup <span class="SimpleMath">overlineU ≅ U_4(3).2_2</span> of <span class="SimpleMath">Fi_22</span> lifts to a nonsplit extension <span class="SimpleMath">U</span> in <span class="SimpleMath">2.Fi_22</span>, since <span class="SimpleMath">2.Fi_22</span> contains no <span class="SimpleMath">U_4(3)</span> type subgroup. Furthermore, <span class="SimpleMath">U</span> is the <span class="SimpleMath">2.U_4(3).2_2</span> type group printed in the <strong class="pkg">Atlas</strong> because the isoclinic variant does not admit a class fusion into <span class="SimpleMath">2.Fi_22</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions( CharacterTable( "U4(3)" ), 2Fi22 );</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tblU:= CharacterTable( "2.U4(3).2_2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= CharacterTableIsoclinic( tblU );</span>
CharacterTable( "Isoclinic(2.U4(3).2_2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions( iso, 2Fi22 ); </span>
[ ]
</pre></div>
<p>Now there are just two possibilities. Either the two <span class="SimpleMath">S_3</span> type subgroups in <span class="SimpleMath">S</span> are normal in <span class="SimpleMath">M</span> (and thus <span class="SimpleMath">M</span> is the direct product of any such <span class="SimpleMath">S_3</span> with the preimage of the <span class="SimpleMath">U_4(3).2_2</span> type subgroup), or they are conjugate in <span class="SimpleMath">M</span>.</p>
<p>Suppose we are in the latter situation, let <span class="SimpleMath">z</span> be a generator of the centre of <span class="SimpleMath">2.Fi_22</span>, and let <span class="SimpleMath">τ</span>, <span class="SimpleMath">σ</span> be an involution and an order three element respectively, in one of the <span class="SimpleMath">S_3</span> type subgroups.</p>
<p>Each element <span class="SimpleMath">g ∈ U ∖ U^'</span> conjugates <span class="SimpleMath">τ</span> to an involution in the other <span class="SimpleMath">S_3</span> type subgroup of <span class="SimpleMath">S</span>, so <span class="SimpleMath">g^-1 τ g = τ σ^i z</span> for some <span class="SimpleMath">i ∈ { 0, 1, 2 }</span>. Furthermore, it is possible to choose <span class="SimpleMath">g</span> as an involution.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">derpos:= ClassPositionsOfDerivedSubgroup( tblU );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">outer:= Difference( [ 1 .. NrConjugacyClasses( tblU ) ], derpos );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2 in OrdersClassRepresentatives( tblU ){ outer };</span>
true
</pre></div>
<p>With this choice, <span class="SimpleMath">(g τ)^2 = τ σ^i z τ = σ^-i z</span> holds, which means that <span class="SimpleMath">(g τ)^3</span> squares to <span class="SimpleMath">z</span>. As we have seen above, this is impossible, hence <span class="SimpleMath">M</span> is a direct product, as claimed.</p>
<p>The class fusion of <span class="SimpleMath">M</span> into <span class="SimpleMath">2.Fi_22</span> is determined by the character tables, up to table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblM:= CharacterTable( "Dihedral", 6 ) * tblU;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( tblM, 2Fi22 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( tblM, fus, 2Fi22 ) );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tblM,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2.Fi22M8" ) ) );</span>
true
</pre></div>
<p><a id="X83724BCE86FCD77B" name="X83724BCE86FCD77B"></a></p>
<h5>2.4-12 <span class="Heading">The Character Table of <span class="SimpleMath">4.HS.2 ≤ HN.2</span> (May 2002)</span></h5>
<p>The maximal subgroup <span class="SimpleMath">U</span> of type <span class="SimpleMath">2.HS.2</span> in the sporadic simple group <span class="SimpleMath">HN</span> extends to a group <span class="SimpleMath">N</span> of structure <span class="SimpleMath">4.HS.2</span> in the automorphism group <span class="SimpleMath">HN.2</span> of <span class="SimpleMath">HN</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 166]</a>).</p>
<p><span class="SimpleMath">N</span> is the normalizer of a <code class="code">4D</code> element <span class="SimpleMath">g ∈ HN.2 ∖ HN</span>. The centralizer <span class="SimpleMath">C</span> of <span class="SimpleMath">g</span> is of type <span class="SimpleMath">4.HS</span>, which is the central product of <span class="SimpleMath">2.HS</span> and the cyclic group <span class="SimpleMath">⟨ g ⟩</span> of order <span class="SimpleMath">4</span>. We have <span class="SimpleMath">Z = Z(N) = ⟨ g^2 ⟩</span>. Since <span class="SimpleMath">U/Z ≅ HS.2</span> is a complement of <span class="SimpleMath">⟨ g ⟩ / Z</span> in <span class="SimpleMath">N/Z</span>, the factor group <span class="SimpleMath">N/Z</span> is a direct product of <span class="SimpleMath">HS.2</span> and a cyclic group of order <span class="SimpleMath">2</span>.</p>
<p><center> <img src="ctblcons15.png" alt="The structure of 4.HS.2"/> </center></p>
<p>Thus <span class="SimpleMath">N</span> has the structure <span class="SimpleMath">2.G.2</span>, the normal subgroup <span class="SimpleMath">2.G</span> being <span class="SimpleMath">C</span>, the factor group <span class="SimpleMath">G.2</span> being <span class="SimpleMath">2 × HS.2</span>, and <span class="SimpleMath">G</span> being <span class="SimpleMath">2 × HS</span>. Each element in <span class="SimpleMath">N ∖ C</span> inverts <span class="SimpleMath">g</span>, so <span class="SimpleMath">N</span> acts fixed point freely on the faithful irreducible characters of <span class="SimpleMath">C</span>. Hence we can use <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) for constructing the character table of <span class="SimpleMath">N</span> from the tables of <span class="SimpleMath">C</span> and <span class="SimpleMath">N/Z</span> and the action of <span class="SimpleMath">N</span> on the classes of <span class="SimpleMath">C</span>.</p>
<p>We start with the table of the central product <span class="SimpleMath">C</span>. It can be viewed as an isoclinic table of the direct product of <span class="SimpleMath">2.HS</span> and a cyclic group of order <span class="SimpleMath">2</span>, see <a href="chap2.html#X80C37276851D5E39"><span class="RefLink">2.2-4</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblC:= CharacterTableIsoclinic( CharacterTable( "2.HS" ) * c2 );;</span>
</pre></div>
<p>The table of <span class="SimpleMath">G</span> is given as that of the factor group by the unique normal subgroup of <span class="SimpleMath">C</span> that consists of two conjugacy classes.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord2:= Filtered( ClassPositionsOfNormalSubgroups( tblC ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Length( x ) = 2 );</span>
[ [ 1, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tblCbar:= tblC / ord2[1];;</span>
</pre></div>
<p>Finally, we construct the table of the extension <span class="SimpleMath">G.2</span> and the class fusion of <span class="SimpleMath">G</span> into this table (which is uniquely determined by the character tables).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblNbar:= CharacterTable( "HS.2" ) * c2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( tblCbar, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 29, 30, 31, 32,
33, 34, 35, 36, 35, 36, 37, 38, 39, 40, 41, 42, 41, 42 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblCbar, fus[1], tblNbar );</span>
</pre></div>
<p>Now we compute the table automorphisms of the table of <span class="SimpleMath">C</span> that are compatible with the extension <span class="SimpleMath">N</span>; we get two solutions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblCbar, tblNbar );</span>
[ [ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6, 8 ], [ 7 ], [ 9 ], [ 10 ],
[ 11 ], [ 12, 14 ], [ 13 ], [ 15 ], [ 16, 18 ], [ 17 ], [ 19 ],
[ 20 ], [ 21 ], [ 22 ], [ 23 ], [ 24, 26 ], [ 25 ], [ 27 ],
[ 28, 30 ], [ 29 ], [ 31 ], [ 32, 34 ], [ 33 ], [ 35 ],
[ 36, 38 ], [ 37 ], [ 39 ], [ 40, 42 ], [ 41 ], [ 43 ],
[ 44, 46 ], [ 45 ], [ 47 ], [ 48, 50 ], [ 49 ], [ 51, 53 ],
[ 52, 54 ], [ 55 ], [ 56, 58 ], [ 57 ], [ 59 ], [ 60 ],
[ 61, 65 ], [ 62, 68 ], [ 63, 67 ], [ 64, 66 ], [ 69 ],
[ 70, 72 ], [ 71 ], [ 73 ], [ 74, 76 ], [ 75 ], [ 77, 81 ],
[ 78, 84 ], [ 79, 83 ], [ 80, 82 ] ],
[ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6, 8 ], [ 7 ], [ 9 ], [ 10 ],
[ 11 ], [ 12, 14 ], [ 13 ], [ 15, 17 ], [ 16 ], [ 18 ], [ 19 ],
[ 20 ], [ 21 ], [ 22 ], [ 23 ], [ 24, 26 ], [ 25 ], [ 27 ],
[ 28, 30 ], [ 29 ], [ 31 ], [ 32, 34 ], [ 33 ], [ 35, 37 ],
[ 36 ], [ 38 ], [ 39 ], [ 40, 42 ], [ 41 ], [ 43 ], [ 44, 46 ],
[ 45 ], [ 47, 49 ], [ 48 ], [ 50 ], [ 51, 53 ], [ 52, 54 ],
[ 55 ], [ 56, 58 ], [ 57 ], [ 59 ], [ 60 ], [ 61, 65 ],
[ 62, 68 ], [ 63, 67 ], [ 64, 66 ], [ 69, 71 ], [ 70 ], [ 72 ],
[ 73 ], [ 74, 76 ], [ 75 ], [ 77, 83 ], [ 78, 82 ], [ 79, 81 ],
[ 80, 84 ] ] ]
</pre></div>
<p>We compute the possible character tables arising from these two actions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= List( elms, pi -> PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblC, tblCbar, tblNbar, pi, "4.HS.2" ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( poss, Length );</span>
[ 0, 2 ]
</pre></div>
<p>So one of the two table automorphisms turned out to be impossible; the reason is that the corresponding "character table" would not admit a <span class="SimpleMath">2</span>-power map. (Alternatively, we could exclude this action on <span class="SimpleMath">C</span> by the fact that it is not compatible with the action of <span class="SimpleMath">2.HS.2</span> on its subgroup <span class="SimpleMath">2.HS</span>, which occurs here as the restriction of the action of <span class="SimpleMath">N</span> on <span class="SimpleMath">C</span> to that of <span class="SimpleMath">U</span> on <span class="SimpleMath">C ∩ U</span>.)</p>
<p>The other table automorphism leads to two possible character tables. This is not surprising since <span class="SimpleMath">N</span> contains a subgroup of type <span class="SimpleMath">2.HS.2</span>, and the above setup does not determine which of the two isoclinism types of this group occurs. Let us look at the possible class fusions from these tables into that of <span class="SimpleMath">HN.2</span>:</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= poss[2];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hn2:= CharacterTable( "HN.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">possfus:= List( result, r -> PossibleClassFusions( r.table, hn2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( possfus, Length );</span>
[ 32, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">RepresentativesFusions( result[1].table, possfus[1], hn2 );</span>
[ [ 1, 46, 2, 2, 47, 3, 7, 45, 4, 58, 13, 6, 46, 47, 6, 47, 7, 48,
10, 62, 20, 9, 63, 21, 12, 64, 24, 27, 49, 50, 13, 59, 14, 16,
70, 30, 18, 53, 52, 17, 54, 20, 65, 22, 36, 56, 26, 76, 39, 77,
28, 59, 58, 31, 78, 41, 34, 62, 35, 65, 2, 45, 3, 45, 6, 48, 7,
47, 17, 54, 13, 49, 13, 50, 14, 50, 18, 53, 18, 52, 21, 56, 25,
57, 27, 59, 30, 60, 44, 72, 34, 66, 35, 66, 41, 71 ] ]
</pre></div>
<p>Only one of the candidates admits an embedding, and the class fusion is unique up to table automorphisms. So we are done.</p>
<p>Finally, we compare the table we have constructed with the one that is contained in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">libtbl:= CharacterTable( "4.HS.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( result[1].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> libtbl ) );</span>
true
</pre></div>
<p>(The following paragraphs have been added in May 2006.)</p>
<p>The Brauer tables of <span class="SimpleMath">N = 2.G.2</span> can be constructed as in Section <a href="chap2.html#X7ED45AB379093A70"><span class="RefLink">2.4-3</span></a>. Note that the Brauer tables of <span class="SimpleMath">C = 2.G</span> and of <span class="SimpleMath">N / Z = G.2</span> are automatically available because the ordinary tables constructed above arose as a direct product and as an isoclinic table of a direct product, and the <strong class="pkg">GAP</strong> Character Table Library contains the Brauer tables of the direct factors involved.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblC, result[1].MGfusMGA, result[1].table );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( PrimeDivisors( Size( result[1].table ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> p -> IsRecord( TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> BrauerTableOfTypeMGA( tblC mod p, tblNbar mod p,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result[1].table ).table, libtbl mod p ) ) );</span>
true
</pre></div>
<p>Here it is advantageous that the Brauer table of <span class="SimpleMath">C / Z = G</span> is not needed in the construction, since <strong class="pkg">GAP</strong> does not know how to compute the <span class="SimpleMath">p</span>-modular table of the ordinary table of <span class="SimpleMath">G</span> constructed above. Of course we have <span class="SimpleMath">G ≅ 2 × HS</span>, and the <span class="SimpleMath">p</span>-modular table of <span class="SimpleMath">HS</span> is known, but in the construction of the table of <span class="SimpleMath">G</span> as a factor of the table of <span class="SimpleMath">2.G</span>, the information is missing that the nonsolvable simple direct factor of <span class="SimpleMath">2.G</span> corresponds to the library table of <span class="SimpleMath">HS</span>.</p>
<p><a id="X7E9A88DA7CBF6426" name="X7E9A88DA7CBF6426"></a></p>
<h5>2.4-13 <span class="Heading">The Character Tables of <span class="SimpleMath">4.A_6.2_3</span>, <span class="SimpleMath">12.A_6.2_3</span>,
and <span class="SimpleMath">4.L_2(25).2_3</span></span></h5>
<p>For the "broken box" cases in the <strong class="pkg">Atlas</strong> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. xxiv]</a>), the character tables can be constructed with the <span class="SimpleMath">M.G.A</span> construction method from Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>. (The situation with <span class="SimpleMath">9.U_3(8).3_3</span> is more complicated, this group will be considered in Section <a href="chap2.html#X7AF324AF7A54798F"><span class="RefLink">2.4-16</span></a>.)</p>
<p>The group <span class="SimpleMath">N = 4.A_6.2_3</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 5]</a>) can be described as an upward extension of the normal subgroup <span class="SimpleMath">C ≅ 4.A_6</span> –which is a central product of <span class="SimpleMath">U = 2.A_6</span> and a cyclic group <span class="SimpleMath">⟨ g ⟩</span> of order <span class="SimpleMath">4</span>– by a cyclic group of order <span class="SimpleMath">2</span>, such that the factor group of <span class="SimpleMath">N</span> by the central subgroup <span class="SimpleMath">Z = ⟨ g^2 ⟩</span> of order <span class="SimpleMath">2</span> is isomorphic to a subdirect product <span class="SimpleMath">overlineN</span> of <span class="SimpleMath">M_10 = A_6.2_3</span> and a cyclic group of order <span class="SimpleMath">4</span> and that <span class="SimpleMath">N</span> acts nontrivially on its normal subgroup <span class="SimpleMath">⟨ g ⟩</span>.</p>
<p><center> <img src="ctblcons16.png" alt="The structure of 4.A_6.2_3"/> </center></p>
<p>Thus <span class="SimpleMath">N</span> has the structure <span class="SimpleMath">2.G.2</span>, with <span class="SimpleMath">2.G = C</span> and <span class="SimpleMath">G.2 = overlineN</span>. These two groups are isoclinic variants of <span class="SimpleMath">2 × 2.A_6</span> and of <span class="SimpleMath">2 × M_10</span>, respectively. Each element in <span class="SimpleMath">N ∖ C</span> inverts <span class="SimpleMath">g</span>, so it acts fixed point freely on the faithful irreducible characters of <span class="SimpleMath">C</span>. Hence we can use <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) for constructing the character table of <span class="SimpleMath">N</span> from the tables of <span class="SimpleMath">C</span> and <span class="SimpleMath">N/Z</span> and the action of <span class="SimpleMath">N</span> on the classes of <span class="SimpleMath">C</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2a6:= CharacterTable( "2.A6" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblC:= CharacterTableIsoclinic( 2a6 * c2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord2:= Filtered( ClassPositionsOfNormalSubgroups( tblC ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Length( x ) = 2 );</span>
[ [ 1, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= tblC / ord2[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblNbar:= CharacterTableIsoclinic( CharacterTable( "A6.2_3" ) * c2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( tblG, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 9, 10 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblG, fus[1], tblNbar );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblG, tblNbar );</span>
[ [ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7, 11 ], [ 8, 12 ],
[ 9, 13 ], [ 10, 14 ], [ 15, 17 ], [ 16, 18 ], [ 19, 23 ],
[ 20, 24 ], [ 21, 25 ], [ 22, 26 ] ],
[ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6 ], [ 7, 11 ], [ 8, 14 ],
[ 9, 13 ], [ 10, 12 ], [ 15 ], [ 16, 18 ], [ 17 ], [ 19, 23 ],
[ 20, 26 ], [ 21, 25 ], [ 22, 24 ] ],
[ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6 ], [ 7, 11 ], [ 8, 14 ],
[ 9, 13 ], [ 10, 12 ], [ 15, 17 ], [ 16 ], [ 18 ], [ 19, 23 ],
[ 20, 26 ], [ 21, 25 ], [ 22, 24 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= List( elms, pi -> PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblC, tblG, tblNbar, pi, "4.A6.2_3" ) );</span>
[ [ ], [ ],
[
rec(
MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 9, 6, 9, 8, 7, 10,
11, 10, 12, 13, 14, 15, 16, 13, 16, 15, 14 ],
table := CharacterTable( "4.A6.2_3" ) ) ] ]
</pre></div>
<p>So we get a unique solution. It coincides with the character table of <span class="SimpleMath">4.A_6.2_3</span> that is stored in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= poss[3][1].table;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "4.A6.2_3" ) ) );</span>
true
</pre></div>
<p>Note that the first two candidates for the action lead to tables that do not admit a <span class="SimpleMath">2</span>-power map. In fact the <span class="SimpleMath">2</span>-power map of the character table of <span class="SimpleMath">4.A_6.2_3</span> is not uniquely determined by the matrix of character values. However, the <span class="SimpleMath">2</span>-power map is unique up to automorphisms of this matrix; the function <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) takes this into account, and returns only representatives, in this case one table.</p>
<p>As is mentioned in the <strong class="pkg">Atlas</strong> (see <a href="chapBib.html#biBCCN85">[CCN+85, Section 6.7]</a>), the group <span class="SimpleMath">Γ L(2,9)</span> contains subgroups of the structure <span class="SimpleMath">4.A_6.2_3</span>. We can find them as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= GammaL(2,9);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phi:= IsomorphismPermGroup( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">img:= Image( phi );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">der:= DerivedSubgroup( img );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">derder:= DerivedSubgroup( der );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Index( img, derder );</span>
16
<span class="GAPprompt">gap></span> <span class="GAPinput">inter:= Filtered( IntermediateSubgroups( img, derder ).subgroups,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s -> Size( s ) = 4 * Size( derder ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsCyclic( CommutatorFactorGroup( s ) ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Size( Centre( s ) ) = 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( inter );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( inter, x -> IsConjugate( img, inter[1], x ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( inter[1] ) ) );</span>
true
</pre></div>
<p>The <strong class="pkg">Atlas</strong> states in <a href="chapBib.html#biBCCN85">[CCN+85, Section 6.7]</a> that there is a group of the structure <span class="SimpleMath">2^2.A_6.2_3</span> that is isoclinic with <span class="SimpleMath">4.A_6.2_3</span>. We construct also the character table of the <span class="SimpleMath">2^2.A_6.2_3</span> type group with the <span class="SimpleMath">M.G.A</span> construction method from Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>.</p>
<p>The group <span class="SimpleMath">N = 2^2.A_6.2_3</span> can be described as an upward extension of the normal subgroup <span class="SimpleMath">C ≅ 2 × 2.A_6</span> by a cyclic group of order <span class="SimpleMath">2</span>, such that the factor group of <span class="SimpleMath">N</span> by the central subgroup <span class="SimpleMath">Z</span> of order <span class="SimpleMath">2</span> that is contained in <span class="SimpleMath">U = C' ≅ 2.A_6</span> is isomorphic to a subdirect product <span class="SimpleMath">overlineN</span> of <span class="SimpleMath">M_10 = A_6.2_3</span> and a cyclic group of order <span class="SimpleMath">4</span> and that <span class="SimpleMath">N</span> acts nontrivially on the centre of <span class="SimpleMath">C</span>, which is a Klein four group. <center> <img src="ctblcons17.png" alt="The structure of 2^2.A_6.2_3"/> </center></p>
<p>Thus <span class="SimpleMath">N</span> has the structure <span class="SimpleMath">2.G.2</span>, with <span class="SimpleMath">2.G = C</span> and <span class="SimpleMath">G.2 = overlineN</span>. These latter group is an isoclinic variant of <span class="SimpleMath">2 × M_10</span>, as in the construction of <span class="SimpleMath">4.A_6.2_3</span>. Each element in <span class="SimpleMath">N ∖ C</span> swaps the two involutions in <span class="SimpleMath">Z(C) ∖ Z</span>, so it acts fixed point freely on those irreducible characters of <span class="SimpleMath">C</span> whose kernels do not contain <span class="SimpleMath">Z</span>. Hence we can use <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) for constructing the character table of <span class="SimpleMath">N</span> from the tables of <span class="SimpleMath">C</span> and <span class="SimpleMath">N/Z</span> and the action of <span class="SimpleMath">N</span> on the classes of <span class="SimpleMath">C</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblC:= 2a6 * c2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">z:= GetFusionMap( 2a6, tblC ){ ClassPositionsOfCentre( 2a6 ) };</span>
[ 1, 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= tblC / z;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblNbar:= CharacterTableIsoclinic( CharacterTable( "A6.2_3" ) * c2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( tblG, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 9, 10 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblG, fus[1], tblNbar );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblG, tblNbar );</span>
[ [ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7, 11 ], [ 8, 12 ],
[ 9, 13 ], [ 10, 14 ], [ 15, 17 ], [ 16, 18 ], [ 19, 23 ],
[ 20, 24 ], [ 21, 25 ], [ 22, 26 ] ],
[ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6 ], [ 7, 11 ], [ 8, 14 ],
[ 9, 13 ], [ 10, 12 ], [ 15 ], [ 16, 18 ], [ 17 ], [ 19, 23 ],
[ 20, 26 ], [ 21, 25 ], [ 22, 24 ] ],
[ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6 ], [ 7, 11 ], [ 8, 14 ],
[ 9, 13 ], [ 10, 12 ], [ 15, 17 ], [ 16 ], [ 18 ], [ 19, 23 ],
[ 20, 26 ], [ 21, 25 ], [ 22, 24 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= List( elms, pi -> PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblC, tblG, tblNbar, pi, "2^2.A6.2_3" ) );</span>
[ [ ], [ ],
[
rec(
MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 9, 6, 9, 8, 7, 10,
11, 10, 12, 13, 14, 15, 16, 13, 16, 15, 14 ],
table := CharacterTable( "2^2.A6.2_3" ) ) ] ]
</pre></div>
<p>So we get a unique solution.</p>
<p>The group <span class="SimpleMath">N = 12.A_6.2_3</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 5]</a>) can be described as an upward extension of the normal subgroup <span class="SimpleMath">C ≅ 12.A_6</span> –which is a central product of <span class="SimpleMath">U = 6.A_6</span> and a cyclic group <span class="SimpleMath">⟨ g ⟩</span> of order <span class="SimpleMath">4</span>– by a cyclic group of order <span class="SimpleMath">2</span>, such that the factor group of <span class="SimpleMath">N</span> by the central subgroup <span class="SimpleMath">Z = ⟨ g^2 ⟩</span> of order <span class="SimpleMath">2</span> is isomorphic to a subdirect product <span class="SimpleMath">overlineN</span> of <span class="SimpleMath">3.M_10 = 3.A_6.2_3</span> and a cyclic group of order <span class="SimpleMath">4</span> and that <span class="SimpleMath">N</span> acts nontrivially on its normal subgroup <span class="SimpleMath">⟨ g ⟩</span>.</p>
<p>Note that <span class="SimpleMath">N</span> has a central subgroup <span class="SimpleMath">Y</span>, say, of order <span class="SimpleMath">3</span>, so the situation here differs from that for groups of the type <span class="SimpleMath">12.G.2</span> with <span class="SimpleMath">G</span> one of <span class="SimpleMath">L_3(4)</span>, <span class="SimpleMath">U_4(3)</span>, where the action on the normal subgroup of order three is nontrivial.</p>
<p><center> <img src="ctblcons18.png" alt="The structure of 12.A_6.2_3"/> </center></p>
<p>Thus <span class="SimpleMath">N</span> has the structure <span class="SimpleMath">2.G.2</span>, with <span class="SimpleMath">2.G = C</span> and <span class="SimpleMath">G.2 = overlineN</span>. These two groups are isoclinic variants of <span class="SimpleMath">2 × 6.A_6</span> and of <span class="SimpleMath">2 × 3.M_10</span>, respectively. Each element in <span class="SimpleMath">N ∖ C</span> inverts <span class="SimpleMath">g</span>, so it acts fixed point freely on the faithful irreducible characters of <span class="SimpleMath">C</span>. Hence we can use <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) for constructing the character table of <span class="SimpleMath">N</span> from the tables of <span class="SimpleMath">C</span> and <span class="SimpleMath">N/Z</span> and the action of <span class="SimpleMath">N</span> on the classes of <span class="SimpleMath">C</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblC:= CharacterTableIsoclinic( CharacterTable( "6.A6" ) * c2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord2:= Filtered( ClassPositionsOfNormalSubgroups( tblC ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Length( x ) = 2 );</span>
[ [ 1, 7 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= tblC / ord2[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblNbar:= CharacterTableIsoclinic( CharacterTable( "3.A6.2_3" ) * c2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( tblG, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 21, 22, 23, 24, 25, 26 ]
,
[ 1, 2, 5, 6, 3, 4, 7, 8, 11, 12, 9, 10, 13, 14, 13, 14, 15, 16,
19, 20, 17, 18, 21, 22, 25, 26, 23, 24, 21, 22, 25, 26, 23, 24
] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">rep:= RepresentativesFusions( Group( () ), fus, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 21, 22, 23, 24, 25, 26
] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblG, rep[1], tblNbar );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblG, tblNbar );</span>
[ [ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ 8 ], [ 9 ],
[ 10 ], [ 11 ], [ 12 ], [ 13 ], [ 14 ], [ 15 ], [ 16 ], [ 17 ],
[ 18 ], [ 19, 23 ], [ 20, 24 ], [ 21, 25 ], [ 22, 26 ],
[ 27, 33 ], [ 28, 34 ], [ 29, 35 ], [ 30, 36 ], [ 31, 37 ],
[ 32, 38 ], [ 39, 51 ], [ 40, 52 ], [ 41, 53 ], [ 42, 54 ],
[ 43, 55 ], [ 44, 56 ], [ 45, 57 ], [ 46, 58 ], [ 47, 59 ],
[ 48, 60 ], [ 49, 61 ], [ 50, 62 ] ],
[ [ 1 ], [ 2, 8 ], [ 3 ], [ 4, 10 ], [ 5 ], [ 6, 12 ], [ 7 ],
[ 9 ], [ 11 ], [ 13 ], [ 14 ], [ 15 ], [ 16 ], [ 17 ], [ 18 ],
[ 19, 23 ], [ 20, 26 ], [ 21, 25 ], [ 22, 24 ], [ 27 ],
[ 28, 34 ], [ 29 ], [ 30, 36 ], [ 31 ], [ 32, 38 ], [ 33 ],
[ 35 ], [ 37 ], [ 39, 51 ], [ 40, 58 ], [ 41, 53 ], [ 42, 60 ],
[ 43, 55 ], [ 44, 62 ], [ 45, 57 ], [ 46, 52 ], [ 47, 59 ],
[ 48, 54 ], [ 49, 61 ], [ 50, 56 ] ],
[ [ 1 ], [ 2, 8 ], [ 3 ], [ 4, 10 ], [ 5 ], [ 6, 12 ], [ 7 ],
[ 9 ], [ 11 ], [ 13 ], [ 14 ], [ 15 ], [ 16 ], [ 17 ], [ 18 ],
[ 19, 23 ], [ 20, 26 ], [ 21, 25 ], [ 22, 24 ], [ 27, 33 ],
[ 28 ], [ 29, 35 ], [ 30 ], [ 31, 37 ], [ 32 ], [ 34 ], [ 36 ],
[ 38 ], [ 39, 51 ], [ 40, 58 ], [ 41, 53 ], [ 42, 60 ],
[ 43, 55 ], [ 44, 62 ], [ 45, 57 ], [ 46, 52 ], [ 47, 59 ],
[ 48, 54 ], [ 49, 61 ], [ 50, 56 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= List( elms, pi -> PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblC, tblG, tblNbar, pi, "12.A6.2_3" ) );</span>
[ [ ], [ ],
[
rec(
MGfusMGA := [ 1, 2, 3, 4, 5, 6, 7, 2, 8, 4, 9, 6, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 16, 19, 18, 17, 20, 21, 22,
23, 24, 25, 20, 26, 22, 27, 24, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 29, 36, 31, 38, 33, 40, 35,
30, 37, 32, 39, 34 ],
table := CharacterTable( "12.A6.2_3" ) ) ] ]
</pre></div>
<p>So we get again a unique solution. It coincides with the character table that is stored in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[3][1].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "12.A6.2_3" ) ) );</span>
true
</pre></div>
<p>The construction of the character table of <span class="SimpleMath">4.L_2(25).2_3</span> is analogous to that of the table of <span class="SimpleMath">4.A_6.2_3</span>. We get a unique table that coincides with the table in the <strong class="pkg">GAP</strong> library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblC:= CharacterTableIsoclinic( CharacterTable( "2.L2(25)" ) * c2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord2:= Filtered( ClassPositionsOfNormalSubgroups( tblC ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Length( x ) = 2 );</span>
[ [ 1, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= tblC / ord2[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblNbar:= CharacterTableIsoclinic( CharacterTable( "L2(25).2_3" ) * c2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( tblG, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 15,
16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20 ],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 17,
18, 17, 18, 19, 20, 19, 20, 15, 16, 15, 16 ],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 19,
20, 19, 20, 15, 16, 15, 16, 17, 18, 17, 18 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">rep:= RepresentativesFusions( Group( () ), fus, tblNbar );</span>
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 15,
16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblG, rep[1], tblNbar );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblG, tblNbar );</span>
[ [ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ 8 ], [ 9 ],
[ 10 ], [ 11, 13 ], [ 12, 14 ], [ 15, 19 ], [ 16, 20 ],
[ 17, 21 ], [ 18, 22 ], [ 23, 25 ], [ 24, 26 ], [ 27, 33 ],
[ 28, 34 ], [ 29, 31 ], [ 30, 32 ], [ 35, 39 ], [ 36, 40 ],
[ 37, 41 ], [ 38, 42 ], [ 43, 47 ], [ 44, 48 ], [ 45, 49 ],
[ 46, 50 ], [ 51, 55 ], [ 52, 56 ], [ 53, 57 ], [ 54, 58 ] ],
[ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6 ], [ 7 ], [ 8, 10 ], [ 9 ],
[ 11 ], [ 12, 14 ], [ 13 ], [ 15, 19 ], [ 16, 22 ], [ 17, 21 ],
[ 18, 20 ], [ 23, 25 ], [ 24 ], [ 26 ], [ 27, 31 ], [ 28, 34 ],
[ 29, 33 ], [ 30, 32 ], [ 35, 39 ], [ 36, 42 ], [ 37, 41 ],
[ 38, 40 ], [ 43, 47 ], [ 44, 50 ], [ 45, 49 ], [ 46, 48 ],
[ 51, 55 ], [ 52, 58 ], [ 53, 57 ], [ 54, 56 ] ],
[ [ 1 ], [ 2, 4 ], [ 3 ], [ 5 ], [ 6 ], [ 7 ], [ 8, 10 ], [ 9 ],
[ 11, 13 ], [ 12 ], [ 14 ], [ 15, 19 ], [ 16, 22 ], [ 17, 21 ],
[ 18, 20 ], [ 23, 25 ], [ 24 ], [ 26 ], [ 27, 33 ], [ 28, 32 ],
[ 29, 31 ], [ 30, 34 ], [ 35, 39 ], [ 36, 42 ], [ 37, 41 ],
[ 38, 40 ], [ 43, 47 ], [ 44, 50 ], [ 45, 49 ], [ 46, 48 ],
[ 51, 55 ], [ 52, 58 ], [ 53, 57 ], [ 54, 56 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= List( elms, pi -> PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblC, tblG, tblNbar, pi, "4.L2(25).2_3" ) );</span>
[ [ ], [ ],
[
rec(
MGfusMGA := [ 1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 9, 11, 12,
13, 14, 15, 12, 15, 14, 13, 16, 17, 16, 18, 19, 20, 21,
22, 21, 20, 19, 22, 23, 24, 25, 26, 23, 26, 25, 24, 27,
28, 29, 30, 27, 30, 29, 28, 31, 32, 33, 34, 31, 34, 33,
32 ], table := CharacterTable( "4.L2(25).2_3" ) ) ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[3][1].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "4.L2(25).2_3" ) ) );</span>
true
</pre></div>
<p>Note that the group <span class="SimpleMath">Γ L(2,25)</span> does <em>not</em> contain subgroups of the structure <span class="SimpleMath">4.L_2(25).2_3</span>, since <span class="SimpleMath">Γ L(2,25)</span> acts on its subgroup of scalar matrices via mapping each element to its fifth power, thus the central subgroup of order four in GL<span class="SimpleMath">(2,25)</span> is central also in <span class="SimpleMath">Γ L(2,25)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= GammaL(2,25);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phi:= IsomorphismPermGroup( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">img:= Image( phi );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">der:= DerivedSubgroup( img );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">derder:= DerivedSubgroup( der );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Index( img, derder );</span>
48
<span class="GAPprompt">gap></span> <span class="GAPinput">inter:= Filtered( IntermediateSubgroups( img, derder ).subgroups,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s -> Size( s ) = 4 * Size( derder ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsCyclic( CommutatorFactorGroup( s ) ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Size( Centre( s ) ) = 2 );</span>
[ ]
</pre></div>
<p>In order to construct a representation of a group of the structure <span class="SimpleMath">4.L_2(25).2_3</span>, we can use the function <code class="code">CyclicExtensions</code> from the <strong class="pkg">GAP</strong> package <strong class="pkg">GrpConst</strong>. We start from the index two subgroup <span class="SimpleMath">4.L_2(25)</span>, which is a central product of <span class="SimpleMath">SL(2,25)</span> and a cyclic group of order four, and find exactly one upwards extension by a cyclic group of order two, up to isomorphism, with the required properties.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:= Centralizer( img, derder );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( c ); IsCyclic( c );</span>
24
true
<span class="GAPprompt">gap></span> <span class="GAPinput">cgen:= MinimalGeneratingSet( c );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">four:= cgen[1]^6;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= ClosureGroup( derder, four );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "GrpConst", false );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( CyclicExtensions( s, 2 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Size( Centre( x ) ) = 2 and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsCyclic( CommutatorFactorGroup( x ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( filt );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">IsomorphismGroups( filt[1], filt[2] ) <> fail;</span>
true
</pre></div>
<p>The character table of this group coincides with the library table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( CharacterTable( filt[1] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "4.L2(25).2_3" ) ) <> fail;</span>
true
</pre></div>
<p><a id="X7BD79BA37C3E729B" name="X7BD79BA37C3E729B"></a></p>
<h5>2.4-14 <span class="Heading">The Character Table of <span class="SimpleMath">4.L_2(49).2_3</span> (December 2020)</span></h5>
<p>The character tables of the simple group <span class="SimpleMath">L_2(49)</span> and of its extensions do not appear in the <strong class="pkg">Atlas</strong> of Finite Groups <a href="chapBib.html#biBCCN85">[CCN+85]</a>, but they may be regarded as <strong class="pkg">Atlas</strong> tables because a data file in the format used to produce the <strong class="pkg">Atlas</strong> has been available for a long time, as is stated in <a href="chapBib.html#biBJLPW95">[JLPW95, Appendix 2]</a>.</p>
<p>Analogous to <span class="SimpleMath">L_2(9) ≅ A_6</span> and <span class="SimpleMath">L_2(25)</span>, see Section <a href="chap2.html#X7E9A88DA7CBF6426"><span class="RefLink">2.4-13</span></a>, the <strong class="pkg">Atlas</strong> map for <span class="SimpleMath">G = L_2(49)</span> shows a "broken box", since there is no group of the form <span class="SimpleMath">2.G.2_3</span>, and a group of the structure <span class="SimpleMath">4.G.2_3</span> can be considered instead, which has a normal subgroup isomorphic with <span class="SimpleMath">2.(2 × G)</span> and a factor group isomorphic with <span class="SimpleMath">(2 × G).2_3</span>, see Section <a href="chap2.html#X7E9A88DA7CBF6426"><span class="RefLink">2.4-13</span></a>. Having its character table available has the effect that the functions <code class="func">DisplayAtlasMap</code> (<a href="..//doc/chap3.html#X875A6BB485A49976"><span class="RefLink">CTblLib: DisplayAtlasMap for the name of a simple group</span></a>) and <code class="func">BrowseAtlasTable</code> (<a href="..//doc/chap3.html#X79DC72707B08A701"><span class="RefLink">CTblLib: BrowseAtlasTable</span></a>) work with input <code class="code">"L2(49)"</code>.</p>
<p>We construct the character table of <span class="SimpleMath">4.L_2(49).2_3</span> in the same way as for the extensions of <span class="SimpleMath">L_2(9)</span> and <span class="SimpleMath">L_2(25)</span>. There is a unique solution.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2l:= CharacterTable( "2.L2(49)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblC:= CharacterTableIsoclinic( 2l * c2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord2:= Filtered( ClassPositionsOfNormalSubgroups( tblC ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Length( x ) = 2 );</span>
[ [ 1, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= tblC / ord2[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblNbar:= CharacterTableIsoclinic(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "L2(49).2_3" ) * c2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( tblG, tblNbar );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( fus );</span>
10
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblG, fus[1], tblNbar );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblG, tblNbar );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= List( elms, pi -> PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblC, tblG, tblNbar, pi, "4.L2(49).2_3" ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( poss, Length );</span>
[ 0, 0, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= poss[3][1].table;</span>
CharacterTable( "4.L2(49).2_3" )
</pre></div>
<p>Analogous to the situation with <span class="SimpleMath">L_2(9)</span>, a group of the desired structure can be found inside the semilinear group <span class="SimpleMath">Γ</span>L<span class="SimpleMath">(2,49)</span>. In fact, there is a unique class of subgroups in <span class="SimpleMath">Γ</span>L<span class="SimpleMath">(2,49)</span> that contain SL<span class="SimpleMath">(2,49) ≅ 2.G</span>, have the right order, have cyclic commutator factor group, and centre of order <span class="SimpleMath">2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= GammaL(2,49);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phi:= IsomorphismPermGroup( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">img:= Image( phi );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">der:= DerivedSubgroup( img );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">derder:= DerivedSubgroup( der );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Index( img, derder );</span>
96
<span class="GAPprompt">gap></span> <span class="GAPinput">inter:= Filtered( IntermediateSubgroups( img, derder ).subgroups,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s -> Size( s ) = 4 * Size( derder ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsCyclic( CommutatorFactorGroup( s ) ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Size( Centre( s ) ) = 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( inter ); </span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( inter, x -> IsConjugate( img, inter[1], x ) );</span>
true
</pre></div>
<p>The character tables of these groups coincide with the table constructed above, and with the library table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( inter[1] ) ) <> fail;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "4.L2(49).2_3" ) ) <> fail;</span>
true
</pre></div>
<p><a id="X817A961487D2DFD1" name="X817A961487D2DFD1"></a></p>
<h5>2.4-15 <span class="Heading">The Character Table of <span class="SimpleMath">4.L_2(81).2_3</span> (December 2020)</span></h5>
<p>We start with the character-theoretic construction of this table, analogous to the cases of <span class="SimpleMath">L_2(9)</span>, <span class="SimpleMath">L_2(25)</span>, <span class="SimpleMath">L_2(49)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2l:= CharacterTable( "2.L2(81)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblC:= CharacterTableIsoclinic( 2l * c2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord2:= Filtered( ClassPositionsOfNormalSubgroups( tblC ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Length( x ) = 2 );</span>
[ [ 1, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= tblC / ord2[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblNbar:= CharacterTableIsoclinic(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "L2(81).2_3" ) * c2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( tblG, tblNbar );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( fus );</span>
40
<span class="GAPprompt">gap></span> <span class="GAPinput">fusreps:= RepresentativesFusions( tblG, fus, tblNbar );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( fusreps );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblG, fusreps[1], tblNbar );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblC, tblG, tblNbar );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= List( elms, pi -> PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblC, tblG, tblNbar, pi, "4.L2(81).2_3" ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( poss, Length );</span>
[ 0, 0, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( poss[3][1].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "4.L2(81).2_3" ) ) <> fail;</span>
true
</pre></div>
<p>Like in the case of <span class="SimpleMath">L_2(25)</span>, there are <em>no</em> <span class="SimpleMath">4.L_2(81).2_3</span> type subgroups in <span class="SimpleMath">Γ L(2,81)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= GammaL(2,81);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phi:= IsomorphismPermGroup( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">img:= Image( phi );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">der:= DerivedSubgroup( img );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">derder:= DerivedSubgroup( der );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Index( img, derder );</span>
320
<span class="GAPprompt">gap></span> <span class="GAPinput">inter:= Filtered( IntermediateSubgroups( img, derder ).subgroups,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s -> Size( s ) = 4 * Size( derder ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsCyclic( CommutatorFactorGroup( s ) ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Size( Centre( s ) ) = 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( inter, x -> IsConjugate( img, inter[1], x ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">NrConjugacyClasses( inter[1] );</span>
52
<span class="GAPprompt">gap></span> <span class="GAPinput">NrConjugacyClasses( CharacterTable( "4.L2(81).2_3" ) );</span>
112
</pre></div>
<p>The subgroups of <span class="SimpleMath">Γ L(2,81)</span> constructed above have the structure <span class="SimpleMath">2.L_2(81).4_1</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "2.L2(81).4_1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NrConjugacyClasses( t );</span>
52
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( inter[1] ) ) <> fail;</span>
true
</pre></div>
<p>Like in the case of <span class="SimpleMath">L_2(25)</span>, we can construct a group with the structure <span class="SimpleMath">4.L_2(81).2_3</span> via the function <code class="code">CyclicExtensions</code> from the <strong class="pkg">GAP</strong> package <strong class="pkg">GrpConst</strong>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:= Centralizer( img, derder );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( c ); IsCyclic( c );</span>
80
true
<span class="GAPprompt">gap></span> <span class="GAPinput">cgen:= MinimalGeneratingSet( c );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">four:= cgen[1]^20;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= ClosureGroup( derder, four );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "GrpConst", false );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( CyclicExtensions( s, 2 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Size( Centre( x ) ) = 2 and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsCyclic( CommutatorFactorGroup( x ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( filt );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">IsomorphismGroups( filt[1], filt[2] ) <> fail;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">TransformingPermutationsCharacterTables( CharacterTable( filt[1] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "4.L2(81).2_3" ) ) <> fail;</span>
true
</pre></div>
<p><a id="X7AF324AF7A54798F" name="X7AF324AF7A54798F"></a></p>
<h5>2.4-16 <span class="Heading">The Character Table of <span class="SimpleMath">9.U_3(8).3_3</span> (March 2017)</span></h5>
<p>The group that is called <span class="SimpleMath">9.U_3(8).3_3</span> in the <strong class="pkg">Atlas</strong> of Finite Groups occurs as a subgroup of <span class="SimpleMath">Γ</span>U<span class="SimpleMath">(3, 8)</span>. Note that GU<span class="SimpleMath">(3, 8)</span> has the structure <span class="SimpleMath">3.(3 × U_3(8)).3_2</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 66]</a>), and extending the subgroup <span class="SimpleMath">C = 3.(3 × U_3(8))</span> by the product of an element outside <span class="SimpleMath">C</span> with the field automorphism of order three of GF<span class="SimpleMath">(64)</span> yields a group <span class="SimpleMath">N</span> of the structure <span class="SimpleMath">3.(3 × U_3(8)).3_3</span> whose centre has order three.</p>
<p>The character table of <span class="SimpleMath">N</span> can be constructed with the <span class="SimpleMath">M.G.A</span> construction method from Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>. The situation is similar to that with <span class="SimpleMath">4.A_6.2_3</span>, see Section <a href="chap2.html#X7E9A88DA7CBF6426"><span class="RefLink">2.4-13</span></a>, in particular the situation is described by the same picture that is shown for <span class="SimpleMath">4.A_6.2_3</span> in this section, just the subgroups <span class="SimpleMath">Z</span> and <span class="SimpleMath">⟨ g ⟩</span> have the orders three and nine, respectively, and <span class="SimpleMath">C</span> has index three in <span class="SimpleMath">N</span>.</p>
<p>The normal subgroup <span class="SimpleMath">C ≅ 9.U_3(8)</span> is a central product of <span class="SimpleMath">U = 3.U_3(8)</span> and a cyclic group <span class="SimpleMath">⟨ g ⟩</span> of order <span class="SimpleMath">9</span>, and the factor group of <span class="SimpleMath">N</span> by the central subgroup <span class="SimpleMath">Z = ⟨ g^3 ⟩</span> of order <span class="SimpleMath">3</span> is isomorphic to a subdirect product <span class="SimpleMath">overlineN</span> of <span class="SimpleMath">U_3(8).3_3</span> and a cyclic group of order <span class="SimpleMath">9</span>, such that <span class="SimpleMath">N</span> acts nontrivially on its normal subgroup <span class="SimpleMath">⟨ g ⟩</span>.</p>
<p>Thus <span class="SimpleMath">N</span> has the structure <span class="SimpleMath">3.G.3</span>, with <span class="SimpleMath">3.G = C</span> and <span class="SimpleMath">G.3 = overlineN</span>. Each element in <span class="SimpleMath">N ∖ C</span> raises <span class="SimpleMath">g</span> to its fourth or seventh power, so it acts fixed point freely on the faithful irreducible characters of <span class="SimpleMath">C</span>. Hence we can use <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) for constructing the character table of <span class="SimpleMath">N</span> from the tables of <span class="SimpleMath">C</span> and <span class="SimpleMath">N/Z</span> and the action of <span class="SimpleMath">N</span> on the classes of <span class="SimpleMath">C</span>.</p>
<p>Since we want to construct also <em>Brauer tables</em> of <span class="SimpleMath">N</span>, we have to choose the class fusion that describes the embedding of <span class="SimpleMath">C / Z</span> into <span class="SimpleMath">overlineN</span> compatibly with the known Brauer tables of <span class="SimpleMath">U_3(8)</span> and <span class="SimpleMath">U_3(8).3_3</span>. Note that the <span class="SimpleMath">2</span>-modular tables of these groups impose additional conditions on the class fusion.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "U3(8)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s3:= CharacterTable( "U3(8).3_3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleClassFusions( s, s3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( s, poss, s3 ) );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">smod2:= s mod 2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s3mod2:= s3 mod 2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">good:= [];; modmap:= 0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for map in poss do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modmap:= CompositionMaps( InverseMap( GetFusionMap( s3mod2, s3 ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( map, GetFusionMap( smod2, s ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> rest:= List( Irr( s3mod2 ), x -> x{ modmap } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not fail in Decomposition( Irr( smod2 ), rest, "nonnegative" ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( good, map );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( good );</span>
2
</pre></div>
<p>The class fusion from <span class="SimpleMath">U_3(8)</span> to <span class="SimpleMath">U_3(8).3_3</span> is determined up to complex conjugation by the <span class="SimpleMath">2</span>-modular Brauer tables. We choose the fusion that is stored on the library tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">good[2] = CompositionMaps( PowerMap( s3, -1 ), good[1] );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, s3 ) in good;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">sfuss3:= GetFusionMap( s, s3 );;</span>
</pre></div>
<p>In the next step, we construct the character tables of <span class="SimpleMath">C / Z ≅ U_3(8) × 3</span> and <span class="SimpleMath">N / Z ≅ (U_3(8) × 3).3_3</span>, and those class fusions between the two tables that are compatible with the fusion between the factors that was chosen above (w. r. t. the stored factor fusions).</p>
<p>In order not to leave out some candidates, we have to consider also the table of <span class="SimpleMath">N/Z</span> that is obtained from the "other" construction as an isoclinic table of <span class="SimpleMath">3 × U_3(8).3_3</span>.</p>
<p>(This may look complicated. It would perhaps be more natural to construct the ordinary tables first, by considering the possible fusions, and later to adjust the choices to the conditions that are imposed by the Brauer tables. However, the technical complications of that construction would not be smaller in the end.)</p>
<p>We get four candidates, two for each of the two tables of <span class="SimpleMath">N/Z</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c3:= CharacterTable( "Cyclic", 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= s * c3;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">dp:= s3 * c3;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA1:= CharacterTableIsoclinic( dp, rec( k:= 1 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA2:= CharacterTableIsoclinic( dp, rec( k:= 2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">good:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGmod2:= tblG mod 2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for tblGA in [ tblGA1, tblGA2 ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblGAmod2:= tblGA mod 2;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for map in PossibleClassFusions( tblG, tblGA ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modmap:= CompositionMaps(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> InverseMap( GetFusionMap( tblGAmod2, tblGA ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( map, GetFusionMap( tblGmod2, tblG ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> rest:= List( Irr( tblGAmod2 ), x -> x{ modmap } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not fail in Decomposition( Irr( tblGmod2 ), rest,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "nonnegative" ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( GetFusionMap( tblGA, s3 ), map ) =</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( sfuss3, GetFusionMap( tblG, s ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( good, [ tblGA, map ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( good, x -> x[1] );</span>
[ CharacterTable( "Isoclinic(U3(8).3_3xC3,1)" ),
CharacterTable( "Isoclinic(U3(8).3_3xC3,1)" ),
CharacterTable( "Isoclinic(U3(8).3_3xC3,2)" ),
CharacterTable( "Isoclinic(U3(8).3_3xC3,2)" ) ]
</pre></div>
<p>The character table of <span class="SimpleMath">C</span> can be constructed with <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>) from the character table of <span class="SimpleMath">3 × 3.U_3(8)</span>. (Here we need to consider only one variant of the table.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">3s:= CharacterTable( "3.U3(8)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">dp:= 3s * c3;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG:= CharacterTableIsoclinic( dp );;</span>
</pre></div>
<p>The construction of this table does not automatically yield a factor fusion to the table of <span class="SimpleMath">C/Z</span>. We form the relevant factor table, which has the same ordering of irreducible characters, and use the factor fusion to this table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( tblMG, tblG );</span>
fail
<span class="GAPprompt">gap></span> <span class="GAPinput">cen:= ClassPositionsOfCentre( tblMG );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( tblMG ){ cen };</span>
[ 1, 9, 9, 3, 9, 9, 3, 9, 9 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">facttbl:= tblMG / [ 1, 4, 7 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr:= TransformingPermutationsCharacterTables( facttbl, tblG );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr.rows; tr.columns;</span>
()
()
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblMG, GetFusionMap( tblMG, facttbl ), tblG );</span>
</pre></div>
<p>Now we compute the orbits of the possible actions of <span class="SimpleMath">N</span> on the classes of <span class="SimpleMath">C</span>, and the resulting candidates for the character table of <span class="SimpleMath">N</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">posstbls:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for pair in good do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblGA:= pair[1];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GfusGA:= pair[2];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblG:= s * c3;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> StoreFusion( tblG, GfusGA, tblGA );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for pi in PossibleActionsForTypeMGA( tblMG, tblG, tblGA ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for cand in PossibleCharacterTablesOfTypeMGA(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMG, tblG, tblGA, pi, "test" ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( posstbls, [ tblGA, cand ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( posstbls );</span>
32
</pre></div>
<p>Now we discard all those candidates that are not compatible with the <span class="SimpleMath">2</span>-modular character tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">compatible:= [];; r:= 0;; modr:= 0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for pair in posstbls do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblGA:= pair[1];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r:= pair[2];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> comp:= ComputedClassFusions( tblMG );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pos:= PositionProperty( comp, x -> x.name = Identifier( r.table ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if pos = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> StoreFusion( tblMG, r.MGfusMGA, r.table );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> comp[ pos ]:= ShallowCopy( comp[ pos ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> comp[ pos ].map:= r.MGfusMGA;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( ComputedBrauerTables( tblMG )[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modr:= BrauerTableOfTypeMGA( tblMG mod 2, tblGA mod 2, r.table );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> rest:= List( Irr( modr.table ), x -> x{ modr.MGfusMGA } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> dec:= Decomposition( Irr( tblMG mod 2 ), rest, "nonnegative" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not fail in dec then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( compatible, pair );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( compatible );</span>
8
</pre></div>
<p>The remaining candidates fall into two equivalence classes.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for pair in compatible do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAll( tbls, t -> TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> t, pair[2].table ) = fail ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( tbls, pair[2].table );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( tbls );</span>
2
</pre></div>
<p>The two tables can be distinguished by their element orders one contains the element order <span class="SimpleMath">54</span> and the other does not or by their <span class="SimpleMath">4</span>th power maps the classes of element order <span class="SimpleMath">171</span> in one table are not fixed by the <span class="SimpleMath">4</span>th power map, the corresponding classes in the other table are fixed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( OrdersClassRepresentatives( tbls[1] ) );</span>
[ 1, 2, 3, 4, 6, 7, 9, 12, 18, 19, 21, 27, 36, 54, 57, 63, 171 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( OrdersClassRepresentatives( tbls[2] ) );</span>
[ 1, 2, 3, 4, 6, 7, 9, 12, 18, 19, 21, 27, 36, 57, 63, 171 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pos171:= Positions( OrdersClassRepresentatives( tbls[1] ), 171 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pow4:= PowerMap( tbls[1], 4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAny( [ 1 .. Length( pos171 ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> pos171[i] = pow4[ pos171[i] ] );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">pos171:= Positions( OrdersClassRepresentatives( tbls[2] ), 171 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( tbls[2], 4 ){ pos171 } = pos171;</span>
true
</pre></div>
<p>Thus we can use the group <span class="SimpleMath">N</span> to decide which table is correct. For that, we construct a permutation representation of <span class="SimpleMath">N</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">gu:= GU(3,8);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbs:= OrbitsDomain( gu, Elements( GF(64)^3 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( orbs, Length );</span>
[ 1, 32319, 32832, 32832, 32832, 32832, 32832, 32832, 32832 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= SortedList( First( orbs, x -> Length( x ) = 32319 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">actgu:= Action( gu, orb, OnRight );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( actgu ) = Size( gu );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">cen:= Centre( actgu );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( cen );</span>
9
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= ClosureGroup( DerivedSubgroup( actgu ), cen );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">aut:= v -> List( v, x -> x^4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermList( List( orb, v -> PositionSorted( orb, aut( v ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">outer:= First( GeneratorsOfGroup( actgu ), x -> not x in u );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= ClosureGroup( u, pi * outer );;</span>
</pre></div>
<p>Before we perform computations with the group, we reduce the degree of the representation by a factor of <span class="SimpleMath">7</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( SmallGeneratingSet( g ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">allbl:= AllBlocks( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( allbl, Length );</span>
[ 3, 21, 63, 9, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, First( allbl, x -> Length( x ) = 7 ), OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">act:= Action( g, orb, OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( act ) = Size( g );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">NrMovedPoints( act );</span>
4617
</pre></div>
<p>Now we test whether an element of order <span class="SimpleMath">171</span> in <span class="SimpleMath">N</span> is conjugate in <span class="SimpleMath">N</span> to its fourth power.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= PseudoRandom( act ); until Order( x ) = 171;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsConjugate( act, x, x^4 );</span>
true
</pre></div>
<p>This means that the second of the candidate tables constructed above is the right one. The character table with the identifier <code class="code">"9.U3(8).3_3"</code> in the character table library is equivalent to this table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">lib:= CharacterTable( "9.U3(8).3_3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tbls[2], lib ) );</span>
true
</pre></div>
<p><strong class="pkg">GAP</strong>'s currently available methods for the automatic computation of character tables would require too much space when called with this permutation group. Using interactive methods, one can compute the character table with <strong class="pkg">GAP</strong>. The table obtained this way is equivalent to the library character table with the identifier <code class="code">"9.U3(8).3_3"</code>.</p>
<p>I do not know how to disprove the other candidate with character-theoretic arguments. Thus this table provides an example of a pseudo character table, see Section <a href="chap2.html#X7E0C603880157C4E"><span class="RefLink">2.4-17</span></a>.</p>
<p><a id="X7E0C603880157C4E" name="X7E0C603880157C4E"></a></p>
<h5>2.4-17 <span class="Heading">Pseudo Character Tables of the Type <span class="SimpleMath">M.G.A</span> (May 2004)</span></h5>
<p>With the construction method for character tables of groups of the type <span class="SimpleMath">M.G.A</span>, one can construct tables that have many properties of character tables but that are not character tables of groups, cf. <a href="chapBib.html#biBGag86">[Gag86]</a>. For example, the group <span class="SimpleMath">3.A_6.2_3</span> has a <em>central</em> subgroup of order <span class="SimpleMath">3</span>, so it is not of the type <span class="SimpleMath">M.G.A</span> with fixed-point free action on the faithful characters of <span class="SimpleMath">M.G</span>.</p>
<p>However, if we apply the "<span class="SimpleMath">M.G.A</span> construction" to the groups <span class="SimpleMath">M.G = 3.A_6</span>, <span class="SimpleMath">G = A_6</span>, and <span class="SimpleMath">G.A = A_6.2_3</span> then we get a (in this case unique) result.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG := CharacterTable( "3.A6" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG := CharacterTable( "A6" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA := CharacterTable( "A6.2_3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA ); </span>
[ [ [ 1 ], [ 2, 3 ], [ 4 ], [ 5, 6 ], [ 7, 8 ], [ 9 ], [ 10, 11 ],
[ 12, 15 ], [ 13, 17 ], [ 14, 16 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeMGA( </span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMG, tblG, tblGA, elms[1], "pseudo" ); </span>
[ rec(
MGfusMGA := [ 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 10, 8, 10,
9 ], table := CharacterTable( "pseudo" ) ) ]
</pre></div>
<p>Such a table automatically satisfies the orthogonality relations, and the tensor product of two "irreducible characters" of which at least one is a row from <span class="SimpleMath">G.A</span> decomposes into a sum of the "irreducible characters", where the coefficients are nonnegative integers.</p>
<p>In this example, any tensor product decomposes with nonnegative integral coefficients, <span class="SimpleMath">n</span>-th symmetrizations of "irreducible characters" decompose, for <span class="SimpleMath">n ≤ 5</span>, and the "class multiplication coefficients" are nonnegative integers.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pseudo:= poss[1].table;</span>
CharacterTable( "pseudo" )
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( pseudo );</span>
pseudo
2 4 3 4 3 . 3 2 . . . 2 3 3
3 3 3 1 1 2 1 1 1 1 1 . . .
5 1 1 . . . . . 1 1 1 . . .
1a 3a 2a 6a 3b 4a 12a 5a 15a 15b 4b 8a 8b
2P 1a 3a 1a 3a 3b 2a 6a 5a 15a 15b 2a 4a 4a
3P 1a 1a 2a 2a 1a 4a 4a 5a 5a 5a 4b 8a 8b
5P 1a 3a 2a 6a 3b 4a 12a 1a 3a 3a 4b 8b 8a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1
X.3 10 10 2 2 1 -2 -2 . . . . . .
X.4 16 16 . . -2 . . 1 1 1 . . .
X.5 9 9 1 1 . 1 1 -1 -1 -1 1 -1 -1
X.6 9 9 1 1 . 1 1 -1 -1 -1 -1 1 1
X.7 10 10 -2 -2 1 . . . . . . B -B
X.8 10 10 -2 -2 1 . . . . . . -B B
X.9 6 -3 -2 1 . 2 -1 1 A /A . . .
X.10 6 -3 -2 1 . 2 -1 1 /A A . . .
X.11 12 -6 4 -2 . . . 2 -1 -1 . . .
X.12 18 -9 2 -1 . 2 -1 -2 1 1 . . .
X.13 30 -15 -2 1 . -2 1 . . . . . .
A = -E(15)-E(15)^2-E(15)^4-E(15)^8
= (-1-Sqrt(-15))/2 = -1-b15
B = E(8)+E(8)^3
= Sqrt(-2) = i2
<span class="GAPprompt">gap></span> <span class="GAPinput">IsInternallyConsistent( pseudo );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">irr:= Irr( pseudo );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">test:= Concatenation( List( [ 2 .. 5 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> n -> Symmetrizations( pseudo, irr, n ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( test, Set( Tensored( irr, irr ) ) );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fail in Decomposition( irr, test, "nonnegative" );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">if ForAny( Tuples( [ 1 .. NrConjugacyClasses( pseudo ) ], 3 ), </span>
<span class="GAPprompt">></span> <span class="GAPinput"> t -> not ClassMultiplicationCoefficient( pseudo, t[1], t[2], t[3] ) </span>
<span class="GAPprompt">></span> <span class="GAPinput"> in NonnegativeIntegers ) then </span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "contradiction" );</span>
<span class="GAPprompt">></span> <span class="GAPinput">fi;</span>
</pre></div>
<p>I do not know a character-theoretic argument for showing that this table is <em>not</em> the character table of a group, but we can use the following group-theoretic argument. Suppose that the group <span class="SimpleMath">G</span>, say, has the above character table. Then <span class="SimpleMath">G</span> has a unique composition series with factors of the orders <span class="SimpleMath">3</span>, <span class="SimpleMath">360</span>, and <span class="SimpleMath">2</span>, respectively. Let <span class="SimpleMath">N</span> denote the normal subgroup of order <span class="SimpleMath">3</span> in <span class="SimpleMath">G</span>. The factor group <span class="SimpleMath">F = G/N</span> is an automorphic extension of <span class="SimpleMath">A_6</span>, and according to <a href="chapBib.html#biBCCN85">[CCN+85, p. 4]</a> it is isomorphic with <span class="SimpleMath">M_10 = A_6.2_3</span> and has Sylow <span class="SimpleMath">3</span> normalizers of the structure <span class="SimpleMath">3^2 : Q_8</span>. Since the Sylow <span class="SimpleMath">3</span> subgroup of <span class="SimpleMath">G</span> is a self-centralizing nonabelian group of order <span class="SimpleMath">3^3</span> and of exponent <span class="SimpleMath">3</span>, the Sylow <span class="SimpleMath">3</span> normalizers in <span class="SimpleMath">G</span> have the structure <span class="SimpleMath">3^{1+2}_+ : Q_8</span>, but the <span class="SimpleMath">Q_8</span> type subgroups of Aut<span class="SimpleMath">( 3^{1+2}_+ )</span> act trivially on the centre of <span class="SimpleMath">3^{1+2}_+</span>, contrary to the situation in the above table.</p>
<p>In general, this construction need not produce tables for which all symmetrizations of irreducible characters decompose properly. For example, applying <code class="func">PossibleCharacterTablesOfTypeMGA</code> (<a href="..//doc/chap5.html#X78F82DD67E083B88"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeMGA</span></a>) to the case <span class="SimpleMath">M.G = 3.L_3(4)</span> and <span class="SimpleMath">G.A = L_3(4).2_1</span> does not yield a table because the function suppresses tables that do not admit <span class="SimpleMath">p</span>-th power maps, for prime divisors <span class="SimpleMath">p</span> of the order of <span class="SimpleMath">M.G.A</span>, and in this case no compatible <span class="SimpleMath">2</span>-power map exists.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG := CharacterTable( "3.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG := CharacterTable( "L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA := CharacterTable( "L3(4).2_1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA );</span>
[ [ [ 1 ], [ 2, 3 ], [ 4 ], [ 5, 6 ], [ 7 ], [ 8 ], [ 9, 10 ],
[ 11 ], [ 12, 13 ], [ 14 ], [ 15, 16 ], [ 17, 20 ], [ 18, 22 ],
[ 19, 21 ], [ 23, 26 ], [ 24, 28 ], [ 25, 27 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, elms[1], "?" );</span>
[ ]
</pre></div>
<p>Also, it may happen that already <code class="func">PossibleActionsForTypeMGA</code> (<a href="..//doc/chap5.html#X7899AA12836EEF8F"><span class="RefLink">CTblLib: PossibleActionsForTypeMGA</span></a>) returns an empty list. Examples are <span class="SimpleMath">M.G = 3_1.U_4(3)</span>, <span class="SimpleMath">G.A = U_4(3).2_2</span> and <span class="SimpleMath">M.G = 3_2.U_4(3)</span>, <span class="SimpleMath">G.A = U_4(3).2_3</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG := CharacterTable( "U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG := CharacterTable( "3_1.U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA := CharacterTable( "U4(3).2_2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleActionsForTypeMGA( tblMG, tblG, tblGA );</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tblMG:= CharacterTable( "3_2.U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblGA:= CharacterTable( "U4(3).2_3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleActionsForTypeMGA( tblMG, tblG, tblGA );</span>
[ ]
</pre></div>
<p>Also the sections <a href="chap2.html#X794EC2FD7F69B4E6"><span class="RefLink">2.4-5</span></a> and <a href="chap2.html#X7AF324AF7A54798F"><span class="RefLink">2.4-16</span></a> provide examples of pseudo character tables. If one does not use the arguments about Brauer tables then the latter section presents in fact several pseudo character tables.</p>
<p><a id="X844185EF7A8F2A99" name="X844185EF7A8F2A99"></a></p>
<h5>2.4-18 <span class="Heading">Some Extra-ordinary <span class="SimpleMath">p</span>-Modular Tables of the Type <span class="SimpleMath">M.G.A</span>
(September 2005)</span></h5>
<p>For a group <span class="SimpleMath">M.G.A</span> in the sense of Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a> such that <em>not</em> all ordinary irreducible characters <span class="SimpleMath">χ</span> have the property that <span class="SimpleMath">M</span> is contained in the kernel of <span class="SimpleMath">χ</span> or <span class="SimpleMath">χ</span> is induced from <span class="SimpleMath">M.G</span>, it may happen that there are primes <span class="SimpleMath">p</span> such that all irreducible <span class="SimpleMath">p</span>-modular characters have this property. This happens if and only if the preimages in <span class="SimpleMath">M.G.A</span> of each <span class="SimpleMath">p</span>-regular conjugacy class in <span class="SimpleMath">G.A ∖ G</span> form one conjugacy class.</p>
<p>The following function can be used to decide whether this situation applies to a character table in the <strong class="pkg">GAP</strong> Character Table Library; here we assume that for the library table of a group with the structure <span class="SimpleMath">M.G.A</span>, the class fusions from <span class="SimpleMath">M.G</span> and to <span class="SimpleMath">G.A</span> are stored.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">FindExtraordinaryCase:= function( tblMGA )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local result, der, nsg, tblMGAclasses, orders, tblMG,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMGfustblMGA, tblMGclasses, pos, M, Mimg, tblMGAfustblGA, tblGA,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> outer, inv, filt, other, primes, p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> der:= ClassPositionsOfDerivedSubgroup( tblMGA );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nsg:= ClassPositionsOfNormalSubgroups( tblMGA );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMGAclasses:= SizesConjugacyClasses( tblMGA );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> orders:= OrdersClassRepresentatives( tblMGA );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( der ) < NrConjugacyClasses( tblMGA ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Look for tables of normal subgroups of the form $M.G$.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for tblMG in Filtered( List( NamesOfFusionSources( tblMGA ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable ), x -> x <> fail ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMGfustblMGA:= GetFusionMap( tblMG, tblMGA );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMGclasses:= SizesConjugacyClasses( tblMG );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pos:= Position( nsg, Set( tblMGfustblMGA ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if pos <> fail and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Size( tblMG ) = Sum( tblMGAclasses{ nsg[ pos ] } ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Look for normal subgroups of the form $M$.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for M in Difference( ClassPositionsOfNormalSubgroups( tblMG ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ [ 1 ], [ 1 .. NrConjugacyClasses( tblMG ) ] ] ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Mimg:= Set( tblMGfustblMGA{ M } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Sum( tblMGAclasses{ Mimg } ) = Sum( tblMGclasses{ M } ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMGAfustblGA:= First( ComputedClassFusions( tblMGA ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r -> ClassPositionsOfKernel( r.map ) = Mimg );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if tblMGAfustblGA <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblGA:= CharacterTable( tblMGAfustblGA.name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMGAfustblGA:= tblMGAfustblGA.map;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> outer:= Difference( [ 1 .. NrConjugacyClasses( tblGA ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( tblMGAfustblGA, tblMGfustblMGA ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> inv:= InverseMap( tblMGAfustblGA ){ outer };</span>
<span class="GAPprompt">></span> <span class="GAPinput"> filt:= Flat( Filtered( inv, IsList ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsEmpty( filt ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> other:= Filtered( inv, IsInt );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> primes:= Filtered( PrimeDivisors( Size( tblMGA ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> p -> ForAll( orders{ filt }, x -> x mod p = 0 )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and ForAny( orders{ other }, x -> x mod p <> 0 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in primes do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( result, [ Identifier( tblMG ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Identifier( tblMGA ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Identifier( tblGA ), p ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return result;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>Let us list the tables which are found by this function.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cases:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for name in AllCharacterTableNames( IsDuplicateTable, false ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( cases, FindExtraordinaryCase( CharacterTable( name ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in Set( cases ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( i, "\n" ); </span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
[ "2.A6", "2.A6.2_1", "A6.2_1", 3 ]
[ "2.Fi22", "2.Fi22.2", "Fi22.2", 3 ]
[ "2.L2(25)", "2.L2(25).2_2", "L2(25).2_2", 5 ]
[ "2.L2(49)", "2.L2(49).2_2", "L2(49).2_2", 7 ]
[ "2.L2(81)", "2.L2(81).2_1", "L2(81).2_1", 3 ]
[ "2.L2(81)", "2.L2(81).4_1", "L2(81).4_1", 3 ]
[ "2.L2(81).2_1", "2.L2(81).4_1", "L2(81).4_1", 3 ]
[ "2.L4(3)", "2.L4(3).2_2", "L4(3).2_2", 3 ]
[ "2.L4(3)", "2.L4(3).2_3", "L4(3).2_3", 3 ]
[ "2.S3", "2.D12", "S3x2", 3 ]
[ "2.U4(3).2_1", "2.U4(3).(2^2)_{12*2*}", "U4(3).(2^2)_{122}", 3 ]
[ "2.U4(3).2_1", "2.U4(3).(2^2)_{122}", "U4(3).(2^2)_{122}", 3 ]
[ "2.U4(3).2_1", "2.U4(3).(2^2)_{13*3*}", "U4(3).(2^2)_{133}", 3 ]
[ "2.U4(3).2_1", "2.U4(3).(2^2)_{133}", "U4(3).(2^2)_{133}", 3 ]
[ "3.U3(8)", "3.U3(8).3_1", "U3(8).3_1", 2 ]
[ "3.U3(8)", "3.U3(8).6", "U3(8).6", 2 ]
[ "3.U3(8)", "3.U3(8).6", "U3(8).6", 3 ]
[ "3.U3(8).2", "3.U3(8).6", "U3(8).6", 2 ]
[ "3^2:8", "2.A8N3", "s3wrs2", 3 ]
[ "5^(1+2):8:4", "2.HS.2N5", "HS.2N5", 5 ]
[ "6.A6", "6.A6.2_1", "3.A6.2_1", 3 ]
[ "6.A6", "6.A6.2_1", "A6.2_1", 3 ]
[ "6.Fi22", "6.Fi22.2", "3.Fi22.2", 3 ]
[ "6.Fi22", "6.Fi22.2", "Fi22.2", 3 ]
[ "Isoclinic(2.U4(3).2_1)", "2.U4(3).(2^2)_{1*2*2}",
"U4(3).(2^2)_{122}", 3 ]
[ "Isoclinic(2.U4(3).2_1)", "2.U4(3).(2^2)_{1*3*3}",
"U4(3).(2^2)_{133}", 3 ]
[ "bd10", "2.D20", "D20", 5 ]
</pre></div>
<p>The smallest example in this list is <span class="SimpleMath">2.A_6.2_1</span>, the double cover of the symmetric group on six points. The <span class="SimpleMath">3</span>-modular table of this group looks as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( CharacterTable( "2.A6.2_1" ) mod 3 );</span>
2.A6.2_1mod3
2 5 5 4 3 1 1 4 4 3
3 2 2 . . . . 1 1 .
5 1 1 . . 1 1 . . .
1a 2a 4a 8a 5a 10a 2b 4b 8b
2P 1a 1a 2a 4a 5a 5a 1a 2a 4a
3P 1a 2a 4a 8a 5a 10a 2b 4b 8b
5P 1a 2a 4a 8a 1a 2a 2b 4b 8b
X.1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 -1 -1 -1
X.3 6 6 -2 2 1 1 . . .
X.4 4 4 . -2 -1 -1 2 -2 .
X.5 4 4 . -2 -1 -1 -2 2 .
X.6 9 9 1 1 -1 -1 3 3 -1
X.7 9 9 1 1 -1 -1 -3 -3 1
X.8 4 -4 . . -1 1 . . .
X.9 12 -12 . . 2 -2 . . .
</pre></div>
<p>We see that the two faithful irreducible characters vanish on the three classes outside <span class="SimpleMath">2.A_6</span>.</p>
<p>For the groups in the above list, the function <code class="func">BrauerTableOfTypeMGA</code> (<a href="..//doc/chap5.html#X83BE977185ADC24B"><span class="RefLink">CTblLib: BrauerTableOfTypeMGA</span></a>) can be used to construct the <span class="SimpleMath">p</span>-modular tables of <span class="SimpleMath">M.G.A</span> from the tables of <span class="SimpleMath">M.G</span> and <span class="SimpleMath">G.A</span>, for the given special primes <span class="SimpleMath">p</span>. The computations can be performed as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in cases do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> p:= input[4];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblMG:= CharacterTable( input[1] ) mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblMGA:= CharacterTable( input[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblGA:= CharacterTable( input[3] ) mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name:= Concatenation( Identifier( ordtblMGA ), " mod ", String(p) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAll( [ modtblMG, modtblGA ], IsCharacterTable ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= BrauerTableOfTypeMGA( modtblMG, modtblGA, ordtblMGA );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlib:= ordtblMGA mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsCharacterTable( modlib ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> trans:= TransformingPermutationsCharacterTables( poss.table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsRecord( trans ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", name,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no library table for ", name, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I not all input tables for ", name, " available\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#I not all input tables for 2.L2(49).2_2 mod 7 available
#I not all input tables for 2.L2(81).2_1 mod 3 available
#I not all input tables for 2.L2(81).4_1 mod 3 available
#I not all input tables for 2.L2(81).4_1 mod 3 available
</pre></div>
<p>The examples <span class="SimpleMath">2.A_6.2_1</span>, <span class="SimpleMath">2.L_2(25).2_2</span>, and <span class="SimpleMath">2.L_2(49).2_2</span> belong to the infinite series of semiliniear groups <span class="SimpleMath">Σ</span>L<span class="SimpleMath">(2,p^2)</span>, for odd primes <span class="SimpleMath">p</span>. All groups in this series have the property that all faithful irreducible characters vanish on the <span class="SimpleMath">p</span>-regular classes outside SL<span class="SimpleMath">(2,p^2)</span>. (Cf. Section <a href="chap2.html#X78F41D2A78E70BEE"><span class="RefLink">2.2-6</span></a> for another property of the groups in this series.)</p>
<p><a id="X7F50C782840F06E4" name="X7F50C782840F06E4"></a></p>
<h4>2.5 <span class="Heading">Examples for the Type <span class="SimpleMath">G.S_3</span></span></h4>
<p><a id="X7F0DC29F874AA09F" name="X7F0DC29F874AA09F"></a></p>
<h5>2.5-1 <span class="Heading">Small Examples</span></h5>
<p>The symmetric group <span class="SimpleMath">S_4</span> on four points has the form <span class="SimpleMath">G.S_3</span> where <span class="SimpleMath">G</span> is the Klein four group <span class="SimpleMath">V_4</span>, <span class="SimpleMath">G.2</span> is the dihedral group <span class="SimpleMath">D_8</span> of order <span class="SimpleMath">8</span>, and <span class="SimpleMath">G.3</span> is the alternating group <span class="SimpleMath">A_4</span>. The trivial character of <span class="SimpleMath">A_4</span> extends twofold to <span class="SimpleMath">S_4</span>, in the same way as the trivial character of <span class="SimpleMath">V_4</span> extends to the dihedral group. The nontrivial linear characters of <span class="SimpleMath">A_4</span> induce irreducibly to <span class="SimpleMath">S_4</span>. The irreducible degree three character of <span class="SimpleMath">A_4</span> is induced from any of the three nontrivial linear characters of <span class="SimpleMath">V_4</span>, it extends to <span class="SimpleMath">S_4</span> in the same way as the unique constituent of the restriction to <span class="SimpleMath">V_4</span> that is invariant in the chosen <span class="SimpleMath">D_8</span> extends to <span class="SimpleMath">D_8</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= c2 * c2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tC:= CharacterTable( "Dihedral", 8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tK:= CharacterTable( "Alternating", 4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfustC:= PossibleClassFusions( t, tC );</span>
[ [ 1, 3, 4, 4 ], [ 1, 3, 5, 5 ], [ 1, 4, 3, 4 ], [ 1, 4, 4, 3 ],
[ 1, 5, 3, 5 ], [ 1, 5, 5, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( t, tfustC[1], tC );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfustK:= PossibleClassFusions( t, tK );</span>
[ [ 1, 2, 2, 2 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( t, tfustK[1], tK );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeGS3( t, tC, tK );</span>
[ (3,4) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">new:= CharacterTableOfTypeGS3( t, tC, tK, elms[1], "S4" );</span>
rec( table := CharacterTable( "S4" ),
tblCfustblKC := [ 1, 4, 2, 2, 5 ], tblKfustblKC := [ 1, 2, 3, 3 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( new.table );</span>
S4
2 3 3 . 2 2
3 1 . 1 . .
1a 2a 3a 4a 2b
2P 1a 1a 3a 2a 1a
3P 1a 2a 1a 4a 2b
X.1 1 1 1 1 1
X.2 1 1 1 -1 -1
X.3 3 -1 . 1 -1
X.4 3 -1 . -1 1
X.5 2 2 -1 . .
</pre></div>
<p>The case <span class="SimpleMath">e > 1</span> occurs in the following example. We choose <span class="SimpleMath">G</span> the cyclic group of order two, <span class="SimpleMath">G.C</span> the cyclic group of order six, <span class="SimpleMath">G.K</span> the quaternion group of order eight, and construct the character table of <span class="SimpleMath">G.F = SL_2(3)</span>, with <span class="SimpleMath">F ≅ A_4</span>.</p>
<p>We get three extensions of the trivial character of <span class="SimpleMath">G.K</span> to <span class="SimpleMath">G.F</span>, a degree three character induced from the nontrivial linear characters of <span class="SimpleMath">G.K</span>, and three extensions of the irreducible degree <span class="SimpleMath">2</span> character of <span class="SimpleMath">G.K</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "Cyclic", 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tC:= CharacterTable( "Cyclic", 6 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tK:= CharacterTable( "Quaternionic", 8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfustC:= PossibleClassFusions( t, tC );</span>
[ [ 1, 4 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( t, tfustC[1], tC );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfustK:= PossibleClassFusions( t, tK );</span>
[ [ 1, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( t, tfustK[1], tK );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeGS3( t, tC, tK );</span>
[ (2,5,4) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">new:= CharacterTableOfTypeGS3( t, tC, tK, elms[1], "SL(2,3)" );</span>
rec( table := CharacterTable( "SL(2,3)" ),
tblCfustblKC := [ 1, 4, 5, 3, 6, 7 ],
tblKfustblKC := [ 1, 2, 3, 2, 2 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( new.table );</span>
SL(2,3)
2 3 2 3 1 1 1 1
3 1 . 1 1 1 1 1
1a 4a 2a 6a 3a 3b 6b
2P 1a 2a 1a 3a 3b 3a 3b
3P 1a 4a 2a 2a 1a 1a 2a
X.1 1 1 1 1 1 1 1
X.2 1 1 1 A /A A /A
X.3 1 1 1 /A A /A A
X.4 3 -1 3 . . . .
X.5 2 . -2 /A -A -/A A
X.6 2 . -2 1 -1 -1 1
X.7 2 . -2 A -/A -A /A
A = E(3)
= (-1+Sqrt(-3))/2 = b3
</pre></div>
<p><a id="X80F9BC057980A9E9" name="X80F9BC057980A9E9"></a></p>
<h5>2.5-2 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">G.S_3</span></span></h5>
<p>We demonstrate the construction of all those ordinary and modular character tables in the <strong class="pkg">GAP</strong> Character Table Library that are of the type <span class="SimpleMath">G.S_3</span> where <span class="SimpleMath">G</span> is a simple group or a central extension of a simple group whose character table is contained in the <strong class="pkg">Atlas</strong>. Here is the list of <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) values needed for accessing the input tables and the known library tables corresponding to the output.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">listGS3:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "U3(5)", "U3(5).2", "U3(5).3", "U3(5).S3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.U3(5)", "3.U3(5).2", "3.U3(5).3", "3.U3(5).S3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "L3(4)", "L3(4).2_2", "L3(4).3", "L3(4).3.2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "L3(4)", "L3(4).2_3", "L3(4).3", "L3(4).3.2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.L3(4)", "3.L3(4).2_2", "3.L3(4).3", "3.L3(4).3.2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.L3(4)", "3.L3(4).2_3", "3.L3(4).3", "3.L3(4).3.2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.L3(4)", "2^2.L3(4).2_2","2^2.L3(4).3", "2^2.L3(4).3.2_2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.L3(4)", "2^2.L3(4).2_3","2^2.L3(4).3", "2^2.L3(4).3.2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "U6(2)", "U6(2).2", "U6(2).3", "U6(2).3.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.U6(2)", "3.U6(2).2", "3.U6(2).3", "3.U6(2).3.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.U6(2)", "2^2.U6(2).2", "2^2.U6(2).3", "2^2.U6(2).3.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "O8+(2)", "O8+(2).2", "O8+(2).3", "O8+(2).3.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.O8+(2)", "2^2.O8+(2).2", "2^2.O8+(2).3", "2^2.O8+(2).3.2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "L3(7)", "L3(7).2", "L3(7).3", "L3(7).S3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.L3(7)", "3.L3(7).2", "3.L3(7).3", "3.L3(7).S3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "U3(8)", "U3(8).2", "U3(8).3_2", "U3(8).S3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.U3(8)", "3.U3(8).2", "3.U3(8).3_2", "3.U3(8).S3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "U3(11)", "U3(11).2", "U3(11).3", "U3(11).S3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.U3(11)", "3.U3(11).2", "3.U3(11).3", "3.U3(11).S3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "O8+(3)", "O8+(3).2_2", "O8+(3).3", "O8+(3).S3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2E6(2)", "2E6(2).2", "2E6(2).3", "2E6(2).S3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.2E6(2)", "2^2.2E6(2).2", "2^2.2E6(2).3", "2^2.2E6(2).S3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">];;</span>
</pre></div>
<p>(For <span class="SimpleMath">G</span> one of <span class="SimpleMath">L_3(4)</span>, <span class="SimpleMath">U_6(2)</span>, <span class="SimpleMath">O_8^+(2)</span>, and <span class="SimpleMath">^2E_6(2)</span>, the tables of <span class="SimpleMath">2^2.G</span>, <span class="SimpleMath">2^2.G.2</span>, and <span class="SimpleMath">2^2.G.3</span> can be constructed with the methods described in Section <a href="chap2.html#X81464C4B8178C85A"><span class="RefLink">2.3-4</span></a> and Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>, respectively.)</p>
<p>Analogously, the automorphism groups of <span class="SimpleMath">L_3(4)</span>, <span class="SimpleMath">U_3(8)</span>, and <span class="SimpleMath">O_8^+(3)</span> have factor groups isomorphic with <span class="SimpleMath">S_3</span>; in these cases, we choose <span class="SimpleMath">G = L_3(4).2_1</span>, <span class="SimpleMath">G = U_3(8).3_1</span>, and <span class="SimpleMath">G = O_8^+(3).2^2_111</span>, respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( listGS3, [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "L3(4).2_1", "L3(4).2^2", "L3(4).6", "L3(4).D12" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.L3(4).2_1", "2^2.L3(4).2^2", "2^2.L3(4).6", "2^2.L3(4).D12" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "U3(8).3_1", "U3(8).6", "U3(8).3^2", "U3(8).(S3x3)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "O8+(3).(2^2)_{111}", "O8+(3).D8", "O8+(3).A4", "O8+(3).S4" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">] );</span>
</pre></div>
<p>In all these cases, the required table automorphism of <span class="SimpleMath">G.3</span> is uniquely determined. We first compute the ordinary character table of <span class="SimpleMath">G.S_3</span> and then the <span class="SimpleMath">p</span>-modular tables, for all prime divisors <span class="SimpleMath">p</span> of the order of <span class="SimpleMath">G</span> such that the <strong class="pkg">GAP</strong> Character Table Library contains the necessary <span class="SimpleMath">p</span>-modular input tables.</p>
<p>In each case, we compare the computed character tables with the ones in the <strong class="pkg">GAP</strong> Character Table Library. Note that in order to avoid conflicts of the class fusions that arise in the construction with the class fusions that are already stored on the library tables, we choose identifiers for the result tables that are different from the identifiers of the library tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProcessGS3Example:= function( t, tC, tK, identifier, pi )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local tF, lib, trans, p, tmodp, tCmodp, tKmodp, modtF;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> tF:= CharacterTableOfTypeGS3( t, tC, tK, pi,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Concatenation( identifier, "new" ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib:= CharacterTable( identifier );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if lib <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> trans:= TransformingPermutationsCharacterTables( tF.table, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsRecord( trans ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for `", identifier,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "' differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no library table for `", identifier, "'\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> StoreFusion( tC, tF.tblCfustblKC, tF.table );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> StoreFusion( tK, tF.tblKfustblKC, tF.table );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in PrimeDivisors( Size( t ) ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tmodp := t mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tCmodp:= tC mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tKmodp:= tK mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsCharacterTable( tmodp ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsCharacterTable( tCmodp ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsCharacterTable( tKmodp ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtF:= CharacterTableOfTypeGS3( tmodp, tCmodp, tKmodp,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tF.table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Concatenation( identifier, "mod", String( p ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( Irr( modtF.table ) ) <></span>
<span class="GAPprompt">></span> <span class="GAPinput"> Length( Irr( modtF.table )[1] ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E nonsquare result table for `",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> identifier, " mod ", p, "'\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif lib <> fail and IsCharacterTable( lib mod p ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> trans:= TransformingPermutationsCharacterTables( modtF.table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib mod p );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsRecord( trans ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for `",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> identifier, " mod ", p, "' differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no library table for `", identifier, " mod ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> p, "'\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I not all inputs available for `", identifier,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " mod ", p, "'\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>Now we call the function for the examples in the list.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in listGS3 do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> t := CharacterTable( input[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tC:= CharacterTable( input[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tK:= CharacterTable( input[3] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> identifier:= input[4];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elms:= PossibleActionsForTypeGS3( t, tC, tK );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( elms ) = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ProcessGS3Example( t, tC, tK, identifier, elms[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", Length( elms ), " actions possible for `",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> identifier, "'\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#I not all inputs available for `O8+(3).S3 mod 3'
#I not all inputs available for `2E6(2).S3 mod 2'
#I not all inputs available for `2E6(2).S3 mod 3'
#I not all inputs available for `2E6(2).S3 mod 5'
#I not all inputs available for `2E6(2).S3 mod 7'
#I not all inputs available for `2E6(2).S3 mod 11'
#I not all inputs available for `2E6(2).S3 mod 13'
#I not all inputs available for `2E6(2).S3 mod 17'
#I not all inputs available for `2E6(2).S3 mod 19'
#I not all inputs available for `2^2.2E6(2).S3 mod 2'
#I not all inputs available for `2^2.2E6(2).S3 mod 3'
#I not all inputs available for `2^2.2E6(2).S3 mod 5'
#I not all inputs available for `2^2.2E6(2).S3 mod 7'
#I not all inputs available for `2^2.2E6(2).S3 mod 11'
#I not all inputs available for `2^2.2E6(2).S3 mod 13'
#I not all inputs available for `2^2.2E6(2).S3 mod 17'
#I not all inputs available for `2^2.2E6(2).S3 mod 19'
#I not all inputs available for `U3(8).(S3x3) mod 2'
#I not all inputs available for `U3(8).(S3x3) mod 19'
#I not all inputs available for `O8+(3).S4 mod 3'
</pre></div>
<p>Also the ordinary character table of the automorphic extension of the simple <strong class="pkg">Atlas</strong> group <span class="SimpleMath">O_8^+(3)</span> by <span class="SimpleMath">A_4</span> can be constructed with the same approach. Here we get four possible permutations, which lead to essentially the same character table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">input:= [ "O8+(3)", "O8+(3).3", "O8+(3).(2^2)_{111}", "O8+(3).A4" ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t := CharacterTable( input[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tC:= CharacterTable( input[2] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tK:= CharacterTable( input[3] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">identifier:= input[4];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= PossibleActionsForTypeGS3( t, tC, tK );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( elms );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">differ:= MovedPoints( Group( List( elms, x -> x / elms[1] ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( elms, x -> RestrictedPerm( x, differ ) );</span>
[ (118,216,169)(119,217,170)(120,218,167)(121,219,168),
(118,216,170)(119,217,169)(120,219,168)(121,218,167),
(118,217,169)(119,216,170)(120,218,168)(121,219,167),
(118,217,170)(119,216,169)(120,219,167)(121,218,168) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= List( elms, pi -> CharacterTableOfTypeGS3( t, tC, tK, pi,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Concatenation( identifier, "new" ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">lib:= CharacterTable( identifier );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( poss, r -> IsRecord(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( r.table, lib ) ) );</span>
true
</pre></div>
<p>Also the construction of the <span class="SimpleMath">p</span>-modular tables of <span class="SimpleMath">O_8^+(3).A_4</span> works.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProcessGS3Example( t, tC, tK, identifier, elms[1] );</span>
#I not all inputs available for `O8+(3).A4 mod 3'
</pre></div>
<p><a id="X7EA489E07D7C7D86" name="X7EA489E07D7C7D86"></a></p>
<h4>2.6 <span class="Heading">Examples for the Type <span class="SimpleMath">G.2^2</span></span></h4>
<p><a id="X8054FDE679053B1C" name="X8054FDE679053B1C"></a></p>
<h5>2.6-1 <span class="Heading">The Character Table of <span class="SimpleMath">A_6.2^2</span></span></h5>
<p>As the first example, we consider the automorphism group Aut<span class="SimpleMath">( A_6 ) ≅ A_6.2^2</span> of the alternating group <span class="SimpleMath">A_6</span> on six points.</p>
<p>In this case, the triple of actions on the subgroups <span class="SimpleMath">A_6.2_i</span> is uniquely determined by the condition on the number of conjugacy classes in Section <a href="chap2.html#X7D3EF3BC83BE05CF"><span class="RefLink">2.3-3</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "A6" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblsG2:= List( [ "A6.2_1", "A6.2_2", "A6.2_3" ], CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( tblsG2, NrConjugacyClasses );</span>
[ 11, 11, 8 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">possact:= List( tblsG2, x -> Filtered( Elements( </span>
<span class="GAPprompt">></span> <span class="GAPinput"> AutomorphismsOfTable( x ) ), y -> Order( y ) <= 2 ) );</span>
[ [ (), (3,4)(7,8)(10,11) ],
[ (), (8,9), (5,6)(10,11), (5,6)(8,9)(10,11) ], [ (), (7,8) ] ]
</pre></div>
<p>Note that <span class="SimpleMath">n_1 = n_2</span> implies <span class="SimpleMath">f_1 = f_2</span>, and <span class="SimpleMath">n_1 - n_3 = 3</span> implies <span class="SimpleMath">f_1 - f_3 = 2</span>, so we get <span class="SimpleMath">f_1 = 3</span> and <span class="SimpleMath">f_3 = 1</span>, and <span class="SimpleMath">A_6.2^2</span> has <span class="SimpleMath">2 ⋅ 11 - 3 ⋅ 3 = 2 ⋅ 8 - 3 ⋅ 1 = 13</span> classes.</p>
<p>(The compatibility on the classes inside <span class="SimpleMath">A_6</span> yields only that the classes <span class="SimpleMath">3</span> and <span class="SimpleMath">4</span> of <span class="SimpleMath">A_6.2_1 ≅ S_6</span> must be fused in <span class="SimpleMath">A_6.2^2</span>, as well as the classes <span class="SimpleMath">5</span> and <span class="SimpleMath">6</span> of <span class="SimpleMath">A_6.2_2 ≅</span> PGL<span class="SimpleMath">(2,9)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( tblsG2, x -> GetFusionMap( tblG, x ) );</span>
[ [ 1, 2, 3, 4, 5, 6, 6 ], [ 1, 2, 3, 3, 4, 5, 6 ],
[ 1, 2, 3, 3, 4, 5, 5 ] ]
</pre></div>
<p>These arguments are used by the <strong class="pkg">GAP</strong> function <code class="func">PossibleActionsForTypeGV4</code> (<a href="..//doc/chap5.html#X7CCD5A2979883144"><span class="RefLink">CTblLib: PossibleActionsForTypeGV4</span></a>), which returns the list of all possible triples of permutations such that the <span class="SimpleMath">i</span>-th permutation describes the action of <span class="SimpleMath">A_6.2^2</span> on the classes of <span class="SimpleMath">A_6.2_i</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">acts:= PossibleActionsForTypeGV4( tblG, tblsG2 ); </span>
[ [ (3,4)(7,8)(10,11), (5,6)(8,9)(10,11), (7,8) ] ]
</pre></div>
<p>For the given actions, the <strong class="pkg">GAP</strong> function <code class="func">PossibleCharacterTablesOfTypeGV4</code> (<a href="..//doc/chap5.html#X7CACDDED7A8C1CF9"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeGV4</span></a>) then computes the possibilities for the character table of <span class="SimpleMath">A_6.2^2</span>; in this case, the result is unique.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeGV4( tblG, tblsG2, acts[1],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "A6.2^2" );</span>
[ rec(
G2fusGV4 := [ [ 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8 ],
[ 1, 2, 3, 4, 5, 5, 9, 10, 10, 11, 11 ],
[ 1, 2, 3, 4, 5, 12, 13, 13 ] ],
table := CharacterTable( "A6.2^2" ) ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "A6.2^2" ) ) );</span>
true
</pre></div>
<p>Finally, possible <span class="SimpleMath">p</span>-modular tables can be computed from the <span class="SimpleMath">p</span>-modular input tables and the ordinary table of <span class="SimpleMath">A_6.2^2</span>; here we show this for <span class="SimpleMath">p = 3</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleCharacterTablesOfTypeGV4( tblG mod 3,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> List( tblsG2, t -> t mod 3 ), poss[1].table );</span>
[ rec(
G2fusGV4 :=
[ [ 1, 2, 3, 4, 5, 5, 6 ], [ 1, 2, 3, 4, 4, 7, 8, 8, 9, 9 ],
[ 1, 2, 3, 4, 10, 11, 11 ] ],
table := BrauerTable( "A6.2^2", 3 ) ) ]
</pre></div>
<p><a id="X7FEC3AB081487AF2" name="X7FEC3AB081487AF2"></a></p>
<h5>2.6-2 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">G.2^2</span> – Easy Cases</span></h5>
<p>We demonstrate the construction of all those ordinary and modular character tables in the <strong class="pkg">GAP</strong> Character Table Library that are of the type <span class="SimpleMath">G.2^2</span> where <span class="SimpleMath">G</span> is a simple group or a central extension of a simple group whose character table is contained in the <strong class="pkg">Atlas</strong>. Here is the list of <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) values needed for accessing the input tables and the result tables.</p>
<p>(The construction of the character table of <span class="SimpleMath">O_8^+(3).2^2_111</span> is more involved and will be described in Section <a href="chap2.html#X78AED04685EDCC19"><span class="RefLink">2.6-10</span></a>. The construction of the character tables of groups of the type <span class="SimpleMath">2.L_3(4).2^2</span> and <span class="SimpleMath">6.L_3(4).2^2</span> is described in the sections <a href="chap2.html#X7B38006380618543"><span class="RefLink">2.6-4</span></a> and <a href="chap2.html#X79818ABD7E972370"><span class="RefLink">2.6-5</span></a>, respectively. The construction of the character tables of groups of the type <span class="SimpleMath">2.U_4(3).2^2</span> is described in Section <a href="chap2.html#X878889308653435F"><span class="RefLink">2.6-6</span></a>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">listGV4:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "A6", "A6.2_1", "A6.2_2", "A6.2_3", "A6.2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.A6", "3.A6.2_1", "3.A6.2_2", "3.A6.2_3", "3.A6.2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "L2(25)", "L2(25).2_1", "L2(25).2_2", "L2(25).2_3", "L2(25).2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "L3(4)", "L3(4).2_1", "L3(4).2_2", "L3(4).2_3", "L3(4).2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.L3(4)", "2^2.L3(4).2_1", "2^2.L3(4).2_2", "2^2.L3(4).2_3",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "2^2.L3(4).2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3.L3(4)", "3.L3(4).2_1", "3.L3(4).2_2", "3.L3(4).2_3", "3.L3(4).2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "U4(3)", "U4(3).2_1", "U4(3).2_2", "U4(3).2_2'",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "U4(3).(2^2)_{122}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "U4(3)", "U4(3).2_1", "U4(3).2_3", "U4(3).2_3'",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "U4(3).(2^2)_{133}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3_1.U4(3)", "3_1.U4(3).2_1", "3_1.U4(3).2_2", "3_1.U4(3).2_2'",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "3_1.U4(3).(2^2)_{122}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "3_2.U4(3)", "3_2.U4(3).2_1", "3_2.U4(3).2_3", "3_2.U4(3).2_3'",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "3_2.U4(3).(2^2)_{133}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "L2(49)", "L2(49).2_1", "L2(49).2_2", "L2(49).2_3", "L2(49).2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "L2(81)", "L2(81).2_1", "L2(81).2_2", "L2(81).2_3", "L2(81).2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "L3(9)", "L3(9).2_1", "L3(9).2_2", "L3(9).2_3", "L3(9).2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "O8+(3)", "O8+(3).2_1", "O8+(3).2_2", "O8+(3).2_2'",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "O8+(3).(2^2)_{122}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "O8-(3)", "O8-(3).2_1", "O8-(3).2_2", "O8-(3).2_3", "O8-(3).2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">];;</span>
</pre></div>
<p>Analogously, the automorphism groups <span class="SimpleMath">L_3(4).D_12</span> of <span class="SimpleMath">L_3(4)</span> and <span class="SimpleMath">U_4(3).D_8</span> of <span class="SimpleMath">U_4(3)</span>, and the subgroup <span class="SimpleMath">O_8^+(3).D_8</span> of the automorphism group <span class="SimpleMath">O_8^+(3).S_4</span> have factor groups that are isomorphic with <span class="SimpleMath">2^2</span>; in these cases, we choose <span class="SimpleMath">G = L_3(4).3</span>, <span class="SimpleMath">G = U_4(3).2_1</span>, and <span class="SimpleMath">G = O_8^+(3).2_1</span>, respectively.</p>
<p>Also the group <span class="SimpleMath">2^2.L_3(4).D_12</span> has a factor group isomorphic with <span class="SimpleMath">2^2</span>. Note that the character tables of <span class="SimpleMath">L_3(4).D_12</span> and <span class="SimpleMath">2^2.L_3(4).D_12</span> have been constructed already in Section <a href="chap2.html#X80F9BC057980A9E9"><span class="RefLink">2.5-2</span></a>.</p>
<p>The automorphism groups of <span class="SimpleMath">L_4(4)</span> and <span class="SimpleMath">U_4(5)</span> have the structure <span class="SimpleMath">L_4(4).2^2</span> and <span class="SimpleMath">U_4(5).2^2</span>, respectively; their tables are contained in the <strong class="pkg">GAP</strong> Character Table Library but not in the <strong class="pkg">Atlas</strong>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Append( listGV4, [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "L3(4).3", "L3(4).6", "L3(4).3.2_2", "L3(4).3.2_3", "L3(4).D12" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "2^2.L3(4).3", "2^2.L3(4).6", "2^2.L3(4).3.2_2", "2^2.L3(4).3.2_3",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "2^2.L3(4).D12" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "U4(3).2_1", "U4(3).4", "U4(3).(2^2)_{122}", "U4(3).(2^2)_{133}",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "U4(3).D8" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "O8+(3).2_1", "O8+(3).(2^2)_{111}", "O8+(3).(2^2)_{122}", "O8+(3).4",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "O8+(3).D8" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "L4(4)", "L4(4).2_1", "L4(4).2_2", "L4(4).2_3", "L4(4).2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ "U4(5)", "U4(5).2_1", "U4(5).2_2", "U4(5).2_3", "U4(5).2^2" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">] );</span>
</pre></div>
<p>Now we proceed in two steps, the computation of the possible ordinary character tables from the ordinary tables of the relevant subgroups, and then the computation of the Brauer tables from the Brauer tables of the relevant subgroups and from the ordinary table of the group.</p>
<p>The following function first computes the possible triples of actions on the subgroups <span class="SimpleMath">G.2_i</span>, using the function <code class="func">PossibleActionsForTypeGV4</code> (<a href="..//doc/chap5.html#X7CCD5A2979883144"><span class="RefLink">CTblLib: PossibleActionsForTypeGV4</span></a>). Then the union of the candidate tables for these actions is computed, this list is returned in the end. and representatives of classes of permutation equivalent candidates are inspected further with consistency checks. If there is a unique solution up to permutation equivalence, this table is compared with the one that is contained in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructOrdinaryGV4Table:= function( tblG, tblsG2, name, lib )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local acts, nam, poss, reps, i, trans;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute the possible actions for the ordinary tables.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> acts:= PossibleActionsForTypeGV4( tblG, tblsG2 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute the possible ordinary tables for the given actions.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nam:= Concatenation( "new", name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= Concatenation( List( acts, triple -> </span>
<span class="GAPprompt">></span> <span class="GAPinput"> PossibleCharacterTablesOfTypeGV4( tblG, tblsG2, triple, nam ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Test the possibilities for permutation equivalence.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps:= RepresentativesCharacterTables( poss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if 1 < Length( reps ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", name, ": ", Length( reps ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " equivalence classes\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif Length( reps ) = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E ", name, ": no solution\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compare the computed table with the library table.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsCharacterTable( lib ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no library table for ", name, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PrintToLib( name, poss[1].table );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. 3 ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( LibraryFusion( tblsG2[i],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> rec( name:= name, map:= poss[1].G2fusGV4[i] ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> trans:= TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsRecord( trans ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", name,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compare the computed fusions with the stored ones.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if List( poss[1].G2fusGV4, x -> OnTuples( x, trans.columns ) )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> <> List( tblsG2, x -> GetFusionMap( x, lib ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed and stored fusions for ", name,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return poss;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
</pre></div>
<p>The following function computes, for all those prime divisors <span class="SimpleMath">p</span> of the group order in question such that the <span class="SimpleMath">p</span>-modular Brauer tables of the subgroups <span class="SimpleMath">G.2_i</span> are available, the possible <span class="SimpleMath">p</span>-modular Brauer tables. If the solution is unique up to permutation equivalence, it is compared with the table that is contained in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<p>It may happen (even in the case that the ordinary character table is unique up to permutation equivalence) that some candidates for the ordinary character table are excluded due to information provided by some <span class="SimpleMath">p</span>-modular table. In this case, a message is printed, and the ordinary character table from the <strong class="pkg">GAP</strong> Character Table Library is checked again under the additional restrictions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructModularGV4Tables:= function( tblG, tblsG2, ordposs,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordlibtblGV4 )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local name, modposs, primes, checkordinary, i, record, p, tmodp,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> t2modp, poss, modlib, trans, reps;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsCharacterTable( ordlibtblGV4 ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no ordinary library table ...\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name:= Identifier( ordlibtblGV4 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modposs:= List( ordposs, x -> [] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> primes:= ShallowCopy( PrimeDivisors( Size( tblG ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordposs:= ShallowCopy( ordposs );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> checkordinary:= false;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. Length( ordposs ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> record:= ordposs[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in primes do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tmodp := tblG mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> t2modp:= List( tblsG2, t2 -> t2 mod p );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsCharacterTable( tmodp ) and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ForAll( t2modp, IsCharacterTable ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= PossibleCharacterTablesOfTypeGV4( tmodp, t2modp,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> record.table, record.G2fusGV4 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= RepresentativesCharacterTables( poss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( poss ) = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I excluded cand. ", i, " (out of ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Length( ordposs ), ") for ", name, " by ", p,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "-mod. table\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( ordposs[i] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( modposs[i] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> checkordinary:= true;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> break;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif Length( poss ) = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compare the computed table with the library table.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlib:= ordlibtblGV4 mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsCharacterTable( modlib ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> trans:= TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss[1].table, modlib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsRecord( trans ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name, " mod ", p, " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no library table for ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name, " mod ", p, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PrintToLib( name, poss[1].table );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", name, " mod ", p, ": ", Length( poss ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " equivalence classes\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( modposs[i], poss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif i = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I not all input tables for ", name, " mod ", p,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " available\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> primes:= Difference( primes, [ p ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if checkordinary then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Test whether the ordinary table is admissible.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordposs:= Compacted( ordposs );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modposs:= Compacted( modposs );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps:= RepresentativesCharacterTables( ordposs );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if 1 < Length( reps ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", name, ": ", Length( reps ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " equivalence classes (ord. table)\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif Length( reps ) = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E ", name, ": no solution (ord. table)\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compare the computed table with the library table.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> trans:= TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordposs[1].table, ordlibtblGV4 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsRecord( trans ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", name,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compare the computed fusions with the stored ones.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if List( ordposs[1].G2fusGV4, x -> OnTuples( x, trans.columns ) )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> <> List( tblsG2, x -> GetFusionMap( x, ordlibtblGV4 ) ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed and stored fusions for ", name,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return rec( ordinary:= ordposs, modular:= modposs );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
</pre></div>
<p>Finally, here is the loop over the list of tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in listGV4 do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblG := CharacterTable( input[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblsG2 := List( input{ [ 2 .. 4 ] }, CharacterTable );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib := CharacterTable( input[5] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss := ConstructOrdinaryGV4Table( tblG, tblsG2, input[5], lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#I excluded cand. 2 (out of 2) for L3(4).2^2 by 3-mod. table
#I excluded cand. 2 (out of 8) for 2^2.L3(4).2^2 by 7-mod. table
#I excluded cand. 3 (out of 8) for 2^2.L3(4).2^2 by 5-mod. table
#I excluded cand. 4 (out of 8) for 2^2.L3(4).2^2 by 5-mod. table
#I excluded cand. 5 (out of 8) for 2^2.L3(4).2^2 by 5-mod. table
#I excluded cand. 6 (out of 8) for 2^2.L3(4).2^2 by 5-mod. table
#I excluded cand. 7 (out of 8) for 2^2.L3(4).2^2 by 7-mod. table
#I excluded cand. 2 (out of 2) for 3.L3(4).2^2 by 3-mod. table
#I excluded cand. 2 (out of 2) for L3(9).2^2 by 7-mod. table
#I not all input tables for O8+(3).(2^2)_{122} mod 3 available
#I not all input tables for O8-(3).2^2 mod 3 available
#I not all input tables for O8-(3).2^2 mod 5 available
#I not all input tables for O8-(3).2^2 mod 7 available
#I not all input tables for O8-(3).2^2 mod 13 available
#I not all input tables for O8-(3).2^2 mod 41 available
#I excluded cand. 2 (out of 2) for L3(4).D12 by 3-mod. table
#I excluded cand. 2 (out of 2) for 2^2.L3(4).D12 by 7-mod. table
#I not all input tables for O8+(3).D8 mod 3 available
#I not all input tables for L4(4).2^2 mod 3 available
#I not all input tables for L4(4).2^2 mod 5 available
#I not all input tables for L4(4).2^2 mod 7 available
#I not all input tables for L4(4).2^2 mod 17 available
#I not all input tables for U4(5).2^2 mod 2 available
#I not all input tables for U4(5).2^2 mod 3 available
#I not all input tables for U4(5).2^2 mod 5 available
#I not all input tables for U4(5).2^2 mod 7 available
#I not all input tables for U4(5).2^2 mod 13 available
</pre></div>
<p>The groups <span class="SimpleMath">3.A_6.2^2</span>, <span class="SimpleMath">3.L_3(4).2^2</span>, and <span class="SimpleMath">3_2.U_4(3).(2^2)_133</span> have also the structure <span class="SimpleMath">M.G.A</span>, with <span class="SimpleMath">M.G</span> equal to <span class="SimpleMath">3.A_6.2_3</span>, <span class="SimpleMath">3.L_3(4).2_1</span>, and <span class="SimpleMath">3_2.U_4(3).2_3</span>, respectively, and <span class="SimpleMath">G.A</span> equal to <span class="SimpleMath">A_6.2^2</span>, <span class="SimpleMath">L_3(4).2^2</span>, and <span class="SimpleMath">U_4(3).(2^2)_133</span>, respectively (see Section <a href="chap2.html#X7ED45AB379093A70"><span class="RefLink">2.4-3</span></a>).</p>
<p>Similarly, the group <span class="SimpleMath">L_3(4).D_12</span> has also the structure <span class="SimpleMath">G.S_3</span>, with <span class="SimpleMath">G = L_3(4).2_1</span>, <span class="SimpleMath">G.2 = L_3(4).2^2</span>, and <span class="SimpleMath">G.3 = L_3(4).6</span>, respectively (see Section <a href="chap2.html#X80F9BC057980A9E9"><span class="RefLink">2.5-2</span></a>).</p>
<p><a id="X869B65D3863EDEC3" name="X869B65D3863EDEC3"></a></p>
<h5>2.6-3 <span class="Heading">The Character Table of <span class="SimpleMath">S_4(9).2^2</span> (September 2011)</span></h5>
<p>The available functions yield two possibilities for the ordinary character table of <span class="SimpleMath">S_4(9).2^2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "S4(9)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblsG2:= List( [ "S4(9).2_1", "S4(9).2_2", "S4(9).2_3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">lib:= CharacterTable( "S4(9).2^2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, "newS4(9).2^2", lib );;</span>
#I newS4(9).2^2: 2 equivalence classes
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= RepresentativesCharacterTables( poss );;</span>
</pre></div>
<p>The two candidates differ w. r. t. the action of <span class="SimpleMath">S_4(9).2^2</span> on the classes of element order <span class="SimpleMath">80</span> in <span class="SimpleMath">S_4(9).2_2</span>. In the two possible tables, each element of order <span class="SimpleMath">80</span> is conjugate to its third power or to its <span class="SimpleMath">13</span>-th power, respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">order80:= PositionsProperty( OrdersClassRepresentatives( tblsG2[2] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x = 80 );</span>
[ 98, 99, 100, 101, 102, 103, 104, 105 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( poss, r -> r.G2fusGV4[2]{ order80 } );</span>
[ [ 77, 77, 78, 79, 80, 78, 79, 80 ],
[ 77, 78, 79, 79, 77, 80, 80, 78 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( tblsG2[2], 3 ){ order80 };</span>
[ 99, 98, 103, 104, 105, 100, 101, 102 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( tblsG2[2], 13 ){ order80 };</span>
[ 102, 105, 101, 100, 98, 104, 103, 99 ]
</pre></div>
<p>We claim that the first candidate is the correct one. For that, first note that <span class="SimpleMath">S_4(9).2_2</span> is the extension of the simple group by a diagonal automorphism. (An easy way to see this is that for any subgroup of <span class="SimpleMath">S_4(9)</span> isomorphic with <span class="SimpleMath">S_2(81) ≅ L_2(81)</span>, the extension by a diagonal automorphism contains elements of order <span class="SimpleMath">80</span> –this group is isomorphic with PGL<span class="SimpleMath">(2,81)</span>– and only <span class="SimpleMath">S_4(9).2_2</span> contains elements of order <span class="SimpleMath">80</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( tblsG2, x -> 80 in OrdersClassRepresentatives( x ) );</span>
[ false, true, false ]
</pre></div>
<p>Now the field automorphism of <span class="SimpleMath">S_4(9).2_2</span> maps each element <span class="SimpleMath">x</span> of order <span class="SimpleMath">80</span> in <span class="SimpleMath">S_4(9).2_2</span> to a conjugate of <span class="SimpleMath">x^3</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl:= poss[1].table;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tbl, lib ) );</span>
true
</pre></div>
<p><a id="X7B38006380618543" name="X7B38006380618543"></a></p>
<h5>2.6-4 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">2.L_3(4).2^2</span>
(June 2010)</span></h5>
<p>The outer automorphism group of the group <span class="SimpleMath">L_3(4)</span> is a dihedral group of order <span class="SimpleMath">12</span>; its Sylow <span class="SimpleMath">2</span>-subgroups are Klein four groups, so there is a unique almost simple group <span class="SimpleMath">H</span> of the type <span class="SimpleMath">L_3(4).2^2</span>, up to isomorphism. In this section, we construct the character tables of the double covers of this group with the approach from Section <a href="chap2.html#X7D3EF3BC83BE05CF"><span class="RefLink">2.3-3</span></a>.</p>
<p>The group <span class="SimpleMath">H</span> has three subgroups of index two, of the types <span class="SimpleMath">L_3(4).2_1</span>, <span class="SimpleMath">L_3(4).2_2</span>, and <span class="SimpleMath">L_3(4).2_3</span>, respectively. So any double cover of <span class="SimpleMath">H</span> contains one subgroup of each of the types <span class="SimpleMath">2.L_3(4).2_1</span>, <span class="SimpleMath">2.L_3(4).2_2</span>, and <span class="SimpleMath">2.L_3(4).2_3</span>, and there are two isoclinic variants of each of these group to consider, see Section <a href="chap2.html#X78F41D2A78E70BEE"><span class="RefLink">2.2-6</span></a>. So we start with eight different inputs for the construction of the character tables of double covers.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= List( [ 1 .. 3 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> Concatenation( "2.L3(4).2_", String( i ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls:= List( names, CharacterTable );</span>
[ CharacterTable( "2.L3(4).2_1" ), CharacterTable( "2.L3(4).2_2" ),
CharacterTable( "2.L3(4).2_3" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">isos:= List( names, nam -> CharacterTable( Concatenation( nam, "*" ) ) );</span>
[ CharacterTable( "Isoclinic(2.L3(4).2_1)" ),
CharacterTable( "Isoclinic(2.L3(4).2_2)" ),
CharacterTable( "Isoclinic(2.L3(4).2_3)" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], tbls[2], tbls[3], "2.L3(4).(2^2)_{123}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], isos[2], tbls[3], "2.L3(4).(2^2)_{12*3}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], tbls[2], isos[3], "2.L3(4).(2^2)_{123*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], isos[2], isos[3], "2.L3(4).(2^2)_{12*3*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], tbls[2], tbls[3], "2.L3(4).(2^2)_{1*23}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], isos[2], tbls[3], "2.L3(4).(2^2)_{1*2*3}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], tbls[2], isos[3], "2.L3(4).(2^2)_{1*23*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], isos[2], isos[3], "2.L3(4).(2^2)_{1*2*3*}" ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "2.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblsG2:= input{ [ 1 .. 3 ] };</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib:= CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, input[4], lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( result, RepresentativesCharacterTables( poss ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#I excluded cand. 2 (out of 8) for 2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 3 (out of 8) for 2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 4 (out of 8) for 2.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 5 (out of 8) for 2.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 6 (out of 8) for 2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 7 (out of 8) for 2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 2 (out of 8) for 2.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 2.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 4 (out of 8) for 2.L3(4).(2^2)_{12*3*} by
7-mod. table
#I excluded cand. 5 (out of 8) for 2.L3(4).(2^2)_{12*3*} by
7-mod. table
#I excluded cand. 6 (out of 8) for 2.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 7 (out of 8) for 2.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 2 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 3 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 4 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by
7-mod. table
#I excluded cand. 5 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by
7-mod. table
#I excluded cand. 6 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 7 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 2 (out of 8) for 2.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 2.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 4 (out of 8) for 2.L3(4).(2^2)_{1*23*} by
7-mod. table
#I excluded cand. 5 (out of 8) for 2.L3(4).(2^2)_{1*23*} by
7-mod. table
#I excluded cand. 6 (out of 8) for 2.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 7 (out of 8) for 2.L3(4).(2^2)_{1*23*} by
5-mod. table
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= List( result, x -> x.table );</span>
[ CharacterTable( "new2.L3(4).(2^2)_{123}" ),
CharacterTable( "new2.L3(4).(2^2)_{12*3}" ),
CharacterTable( "new2.L3(4).(2^2)_{123*}" ),
CharacterTable( "new2.L3(4).(2^2)_{12*3*}" ),
CharacterTable( "new2.L3(4).(2^2)_{1*23}" ),
CharacterTable( "new2.L3(4).(2^2)_{1*2*3}" ),
CharacterTable( "new2.L3(4).(2^2)_{1*23*}" ),
CharacterTable( "new2.L3(4).(2^2)_{1*2*3*}" ) ]
</pre></div>
<p>We get exactly one character table for each input. For each of these tables, there are three possibilities to form an isoclinic table, corresponding to the three subgroups of index two. It turns out that the eight solutions form two orbits under forming some isoclinic table. Tables in different orbits are essentially different, already their numbers of conjugacy classes differ.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( result, NrConjugacyClasses );</span>
[ 39, 33, 33, 39, 33, 39, 39, 33 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= result[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= List( nsg, x -> CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( iso, x -> PositionProperty( result, y -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( x, y ) <> fail ) );</span>
[ 4, 7, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= result[2];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= List( nsg, x -> CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( iso, x -> PositionProperty( result, y -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( x, y ) <> fail ) );</span>
[ 3, 8, 5 ]
</pre></div>
<p>Up to now, it is not clear that the character tables we have constructed are really the character tables of some groups. The existence of groups for the first orbit of character tables can be established as follows.</p>
<p>The group <span class="SimpleMath">U_6(2).2</span> contains a maximal subgroup <span class="SimpleMath">M</span> of the type <span class="SimpleMath">L_3(4).2^2</span>, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 115]</a>. Its derived subgroup <span class="SimpleMath">M'</span> of the type <span class="SimpleMath">L_3(4)</span> lies inside <span class="SimpleMath">U_6(2)</span>, and we claim that the preimage of <span class="SimpleMath">M'</span> under the natural epimorphism from <span class="SimpleMath">2.U_6(2)</span> to <span class="SimpleMath">U_6(2)</span> is a double cover of <span class="SimpleMath">L_3(4)</span>. Unfortunately, <span class="SimpleMath">L_3(4)</span> admits class fusions into <span class="SimpleMath">2.U_6(2)</span>, so this criterion cannot be used.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">l34:= CharacterTable( "L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "U6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2u:= CharacterTable( "2.U6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PossibleClassFusions( l34, 2u );</span>
[ [ 1, 5, 12, 16, 22, 22, 23, 23, 41, 41 ],
[ 1, 5, 12, 22, 16, 22, 23, 23, 41, 41 ],
[ 1, 5, 12, 22, 22, 16, 23, 23, 41, 41 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( l34 );</span>
[ 1, 2, 3, 4, 4, 4, 5, 5, 7, 7 ]
</pre></div>
<p>Consider the three classes of elements of order four in <span class="SimpleMath">L_3(4)</span>. Under the possible fusions into <span class="SimpleMath">2.U_6(2)</span>, they are mapped to the classes <span class="SimpleMath">16</span> and <span class="SimpleMath">22</span>, which are preimages of the classes <span class="SimpleMath">10</span> and <span class="SimpleMath">14</span> (<code class="code">4C</code> and <code class="code">4G</code>) of <span class="SimpleMath">U_6(2)</span>. Note that the maximal subgroups of type <span class="SimpleMath">L_3(4).2</span> in <span class="SimpleMath">U_6(2)</span> extend to <span class="SimpleMath">L_3(4).6</span> type subgroups in <span class="SimpleMath">U_6(2).3</span>, and the three classes <code class="code">4C</code>, <code class="code">4D</code>, <code class="code">4E</code> form one orbit under the action of an outer automorphism of order three of <span class="SimpleMath">U_6(2)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( 2u, u ){ [ 16, 22 ] };</span>
[ 10, 14 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassNames( u, "ATLAS" ){ [ 10, 14 ] };</span>
[ "4C", "4G" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( u, CharacterTable( "U6(2).3" ) );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 24, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 36, 36, 37, 38, 39, 40 ]
</pre></div>
<p>This means that any <span class="SimpleMath">L_3(4)</span> type subgroup of <span class="SimpleMath">U_6(2)</span> that extends to an <span class="SimpleMath">L_3(4).6</span> type subgroup in <span class="SimpleMath">U_6(2).3</span> either contains elements from all three classes <code class="code">4C</code>, <code class="code">4D</code>, <code class="code">4E</code> of <span class="SimpleMath">U_6(2)</span>, or contains no element from these classes. Thus we know that any double cover of <span class="SimpleMath">U_6(2).2</span> contains a double cover of <span class="SimpleMath">L_3(4).2^2</span>. Only the first of our result tables admits a class fusion into the table of <span class="SimpleMath">2.U_6(2).2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2u2:= CharacterTable( "2.U6(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= List( result, x -> PossibleClassFusions( x, 2u2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( fus, Length );</span>
[ 4, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p>As a consequence, the fourth result table is established as that of a maximal subgroup of the group isoclinic to <span class="SimpleMath">2.U_6(2).2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2u2iso:= CharacterTableIsoclinic( 2u2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= List( result, x -> PossibleClassFusions( x, 2u2iso ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 0, 4, 0, 0, 0, 0 ]
</pre></div>
<p>Similarly, the group <span class="SimpleMath">HS.2</span> contains a maximal subgroup <span class="SimpleMath">M</span> of the type <span class="SimpleMath">L_3(4).2^2</span>, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 80]</a>. Its derived subgroup <span class="SimpleMath">M'</span> of the type <span class="SimpleMath">L_3(4)</span> lies inside <span class="SimpleMath">HS</span>, and the preimage of <span class="SimpleMath">M'</span> under the natural epimorphism from <span class="SimpleMath">2.HS</span> to <span class="SimpleMath">HS</span> is a double cover of <span class="SimpleMath">L_3(4)</span>, because <span class="SimpleMath">L_3(4)</span> does not admit a class fusion into <span class="SimpleMath">2.HS.2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">h2:= CharacterTable( "HS.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2h2:= CharacterTable( "2.HS.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions( l34, 2h2 );</span>
[ ]
</pre></div>
<p>Only the fifth of our result tables admits a class fusion into <span class="SimpleMath">2.HS.2</span>, which means that <span class="SimpleMath">2.L_3(4).(2^2)_1∗23</span> is a subgroup of <span class="SimpleMath">2.HS.2</span>, and the eighth result table –<span class="SimpleMath">2.L_3(4).(2^2)_1∗2∗3∗}</span>– admits a class fusion into the isoclinic variant of <span class="SimpleMath">2.HS.2</span> This shows the existence of groups for the tables from the second orbit.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= List( result, x -> PossibleClassFusions( x, 2h2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 0, 0, 4, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">2h2iso:= CharacterTableIsoclinic( 2h2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= List( result, x -> PossibleClassFusions( x, 2h2iso ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 0, 0, 0, 0, 0, 4 ]
</pre></div>
<p><a id="X79818ABD7E972370" name="X79818ABD7E972370"></a></p>
<h5>2.6-5 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">6.L_3(4).2^2</span>
(October 2011)</span></h5>
<p>We have two approaches for constructing the character tables of these groups.</p>
<p>First, we may regard them as normal products of the three normal subgroups of index two, each of them having the structure <span class="SimpleMath">6.L_3(4).2</span>, and use the approach from Section <a href="chap2.html#X7D3EF3BC83BE05CF"><span class="RefLink">2.3-3</span></a>, as we did in Section <a href="chap2.html#X7B38006380618543"><span class="RefLink">2.6-4</span></a> for the groups of the structure <span class="SimpleMath">2.L_3(4).2^2</span>.</p>
<p>Second, we may use the approach from Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>. Note that the factor group <span class="SimpleMath">L_3(4).2^2</span> contains each of the three groups <span class="SimpleMath">L_3(4).2_i</span> as a subgroup, for <span class="SimpleMath">1 ≤ i ≤ 3</span>, and the groups of the type <span class="SimpleMath">6.L_3(4).2_1</span> have a centre of order six, whereas the centres of the <span class="SimpleMath">6.L_3(4).2_2</span> and <span class="SimpleMath">6.L_3(4).2_3</span> type groups have order two. For that, the character tables of the subgroups <span class="SimpleMath">6.L_3(4).2_1</span> and <span class="SimpleMath">6.L_3(4).2_1^∗</span> are needed, as well as the character tables of the eight possible factor groups <span class="SimpleMath">2.L_3(4).2^2</span>; the latter tables are known from Section <a href="chap2.html#X7B38006380618543"><span class="RefLink">2.6-4</span></a>.</p>
<p>We show both approaches. (The second approach is better suited for storing the character tables in the Character Table Library, since the irreducible characters need not be stored, and since the Brauer tables of the groups can be derived from the Brauer tables of the compound tables.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls:= List( [ "1", "2", "3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> CharacterTable( Concatenation( "6.L3(4).2_", i ) ) );</span>
[ CharacterTable( "6.L3(4).2_1" ), CharacterTable( "6.L3(4).2_2" ),
CharacterTable( "6.L3(4).2_3" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">isos:= List( [ "1", "2", "3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> CharacterTable( Concatenation( "6.L3(4).2_", i, "*" ) ) );</span>
[ CharacterTable( "Isoclinic(6.L3(4).2_1)" ),
CharacterTable( "Isoclinic(6.L3(4).2_2)" ),
CharacterTable( "Isoclinic(6.L3(4).2_3)" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], tbls[2], tbls[3], "6.L3(4).(2^2)_{123}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], isos[2], tbls[3], "6.L3(4).(2^2)_{12*3}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], tbls[2], isos[3], "6.L3(4).(2^2)_{123*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], isos[2], isos[3], "6.L3(4).(2^2)_{12*3*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], tbls[2], tbls[3], "6.L3(4).(2^2)_{1*23}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], isos[2], tbls[3], "6.L3(4).(2^2)_{1*2*3}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], tbls[2], isos[3], "6.L3(4).(2^2)_{1*23*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], isos[2], isos[3], "6.L3(4).(2^2)_{1*2*3*}" ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "6.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblsG2:= input{ [ 1 .. 3 ] };</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib:= CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, input[4], lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( result, RepresentativesCharacterTables( poss ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#I excluded cand. 2 (out of 8) for 6.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 3 (out of 8) for 6.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 4 (out of 8) for 6.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 5 (out of 8) for 6.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 6 (out of 8) for 6.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 7 (out of 8) for 6.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 2 (out of 8) for 6.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 6.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 4 (out of 8) for 6.L3(4).(2^2)_{12*3*} by
7-mod. table
#I excluded cand. 5 (out of 8) for 6.L3(4).(2^2)_{12*3*} by
7-mod. table
#I excluded cand. 6 (out of 8) for 6.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 7 (out of 8) for 6.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 2 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 3 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 4 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by
7-mod. table
#I excluded cand. 5 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by
7-mod. table
#I excluded cand. 6 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 7 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 2 (out of 8) for 6.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 6.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 4 (out of 8) for 6.L3(4).(2^2)_{1*23*} by
7-mod. table
#I excluded cand. 5 (out of 8) for 6.L3(4).(2^2)_{1*23*} by
7-mod. table
#I excluded cand. 6 (out of 8) for 6.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 7 (out of 8) for 6.L3(4).(2^2)_{1*23*} by
5-mod. table
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= List( result, x -> x.table );</span>
[ CharacterTable( "new6.L3(4).(2^2)_{123}" ),
CharacterTable( "new6.L3(4).(2^2)_{12*3}" ),
CharacterTable( "new6.L3(4).(2^2)_{123*}" ),
CharacterTable( "new6.L3(4).(2^2)_{12*3*}" ),
CharacterTable( "new6.L3(4).(2^2)_{1*23}" ),
CharacterTable( "new6.L3(4).(2^2)_{1*2*3}" ),
CharacterTable( "new6.L3(4).(2^2)_{1*23*}" ),
CharacterTable( "new6.L3(4).(2^2)_{1*2*3*}" ) ]
</pre></div>
<p>As in Section <a href="chap2.html#X7B38006380618543"><span class="RefLink">2.6-4</span></a>, we get exactly one character table for each input, and the eight solutions lie in two orbits under isoclinism.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( result, NrConjugacyClasses );</span>
[ 59, 53, 53, 59, 53, 59, 59, 53 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= result[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= List( nsg, x -> CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( iso, x -> PositionProperty( result, y -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( x, y ) <> fail ) );</span>
[ 7, 6, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= result[2];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= List( nsg, x -> CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( iso, x -> PositionProperty( result, y -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( x, y ) <> fail ) );</span>
[ 8, 5, 3 ]
</pre></div>
<p>Up to now, it is not clear that the character tables we have constructed are really the character tables of some groups. The existence of groups for the first orbit of character tables can be established as follows.</p>
<p>We have shown in Section <a href="chap2.html#X7B38006380618543"><span class="RefLink">2.6-4</span></a> that the maximal subgroups <span class="SimpleMath">M</span> of the type <span class="SimpleMath">L_3(4).2^2</span> in <span class="SimpleMath">U_6(2).2</span> lift to double covers <span class="SimpleMath">2.L_3(4).2^2</span> in <span class="SimpleMath">2.U_6(2).2</span>. The preimages of these groups under the natural epimorphism from <span class="SimpleMath">6.U_6(2).2</span> have the structure <span class="SimpleMath">6.L_3(4).2^2</span>, where the derived subgroup is the six-fold cover of <span class="SimpleMath">L_3(4)</span>; this follows from the fact that <span class="SimpleMath">6.U_6(2)</span> does not admit a class fusion from the double cover <span class="SimpleMath">2.L_3(4)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2l34:= CharacterTable( "2.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">6u:= CharacterTable( "6.U6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PossibleClassFusions( 2l34, 6u );</span>
[ ]
</pre></div>
<p>This establishes the first and the fourth result as character tables of subgroups of <span class="SimpleMath">6.U_6(2)</span> and its isoclinic variant, respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">6u2:= CharacterTable( "6.U6(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= List( result, x -> PossibleClassFusions( x, 6u2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( fus, Length );</span>
[ 8, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">6u2iso:= CharacterTableIsoclinic( 6u2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= List( result, x -> PossibleClassFusions( x, 6u2iso ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 0, 8, 0, 0, 0, 0 ]
</pre></div>
<p>Similarly, the group <span class="SimpleMath">G_2(4).2</span> contains a maximal subgroup <span class="SimpleMath">M</span> of the type <span class="SimpleMath">3.L_3(4).2^2</span>, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 97]</a>. Its derived subgroup <span class="SimpleMath">M'</span> of the type <span class="SimpleMath">3.L_3(4)</span> lies inside <span class="SimpleMath">G_2(4)</span>, and the preimage of <span class="SimpleMath">M'</span> under the natural epimorphism from <span class="SimpleMath">2.G_2(4)</span> to <span class="SimpleMath">G_2(4)</span> is a double cover of <span class="SimpleMath">3.L_3(4)</span>, because <span class="SimpleMath">3.L_3(4)</span> does not admit a class fusion into <span class="SimpleMath">2.G_2(4).2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">3l34:= CharacterTable( "3.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g2:= CharacterTable( "G2(4).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2g2:= CharacterTable( "2.G2(4).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions( 3l34, 2g2 );</span>
[ ]
</pre></div>
<p>Only the third and eighth of our result tables admit a class fusion into <span class="SimpleMath">2.G_2(4).2</span> and its isoclinic variant, respectively. This shows the existence of groups for the tables from the second orbit.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= List( result, x -> PossibleClassFusions( x, 2g2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 16, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">2g2iso:= CharacterTableIsoclinic( 2g2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= List( result, x -> PossibleClassFusions( x, 2g2iso ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 0, 0, 0, 0, 0, 16 ]
</pre></div>
<p>Now we try the second approach and compare the results.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= [ "L3(4).(2^2)_{123}", "L3(4).(2^2)_{12*3}",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "L3(4).(2^2)_{123*}", "L3(4).(2^2)_{12*3*}" ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs1:= List( names, nam -> [ "6.L3(4).2_1", "2.L3(4).2_1",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Concatenation( "2.", nam ), Concatenation( "6.", nam ) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= List( names, nam -> ReplacedString( nam, "1", "1*" ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs2:= List( names, nam -> [ "6.L3(4).2_1*", "2.L3(4).2_1*",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Concatenation( "2.", nam ), Concatenation( "6.", nam ) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs:= Concatenation( inputs1, inputs2 );</span>
[ [ "6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{123}",
"6.L3(4).(2^2)_{123}" ],
[ "6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{12*3}",
"6.L3(4).(2^2)_{12*3}" ],
[ "6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{123*}",
"6.L3(4).(2^2)_{123*}" ],
[ "6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{12*3*}",
"6.L3(4).(2^2)_{12*3*}" ],
[ "6.L3(4).2_1*", "2.L3(4).2_1*", "2.L3(4).(2^2)_{1*23}",
"6.L3(4).(2^2)_{1*23}" ],
[ "6.L3(4).2_1*", "2.L3(4).2_1*", "2.L3(4).(2^2)_{1*2*3}",
"6.L3(4).(2^2)_{1*2*3}" ],
[ "6.L3(4).2_1*", "2.L3(4).2_1*", "2.L3(4).(2^2)_{1*23*}",
"6.L3(4).(2^2)_{1*23*}" ],
[ "6.L3(4).2_1*", "2.L3(4).2_1*", "2.L3(4).(2^2)_{1*2*3*}",
"6.L3(4).(2^2)_{1*2*3*}" ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">result2:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMG := CharacterTable( input[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblG := CharacterTable( input[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblGA := CharacterTable( input[3] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name := Concatenation( "new", input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib := CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( result2, poss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">result2:= List( result2, x -> x.table );</span>
[ CharacterTable( "new6.L3(4).(2^2)_{123}" ),
CharacterTable( "new6.L3(4).(2^2)_{12*3}" ),
CharacterTable( "new6.L3(4).(2^2)_{123*}" ),
CharacterTable( "new6.L3(4).(2^2)_{12*3*}" ),
CharacterTable( "new6.L3(4).(2^2)_{1*23}" ),
CharacterTable( "new6.L3(4).(2^2)_{1*2*3}" ),
CharacterTable( "new6.L3(4).(2^2)_{1*23*}" ),
CharacterTable( "new6.L3(4).(2^2)_{1*2*3*}" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">trans:= List( [ 1 .. 8 ], i -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( result[i],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result2[i] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( trans, IsRecord );</span>
true
</pre></div>
<p><a id="X878889308653435F" name="X878889308653435F"></a></p>
<h5>2.6-6 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">2.U_4(3).2^2</span>
(February 2012)</span></h5>
<p>The outer automorphism group of the group <span class="SimpleMath">U_4(3)</span> is a dihedral group of order <span class="SimpleMath">8</span>. There are two almost simple groups of the type <span class="SimpleMath">U_4(3).2^2</span>, up to isomorphism, denoted as <span class="SimpleMath">U_4(3).(2^2)_122</span> and <span class="SimpleMath">U_4(3).(2^2)_133</span>, respectively. Note that <span class="SimpleMath">U_4(3).2_1</span> is the extension by the central involution of the outer automorphism group of <span class="SimpleMath">U_4(3)</span>, the other two subgroups of index two in <span class="SimpleMath">U_4(3).(2^2)_122</span> are <span class="SimpleMath">U_4(3).2_2</span> and <span class="SimpleMath">U_4(3).2^'_2</span>, respectively, and the other two subgroups of index two in <span class="SimpleMath">U_4(3).(2^2)_133</span> are <span class="SimpleMath">U_4(3).2_3</span> and <span class="SimpleMath">U_4(3).2^'_3</span>, respectively.</p>
<p>Since Aut<span class="SimpleMath">( U_4(3) )</span> possesses a double cover (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 52]</a>), double covers of <span class="SimpleMath">U_4(3).(2^2)_122</span> and <span class="SimpleMath">U_4(3).(2^2)_133</span> exist.</p>
<p>First we deal with the double covers of <span class="SimpleMath">U_4(3).(2^2)_122</span>. Any such group contains one subgroup of the type <span class="SimpleMath">2.U_4(3).2_1</span> and two subgroups of the type <span class="SimpleMath">2.U_4(3).2_2</span>, and there are two isoclinic variants of each of these group to consider, see Section <a href="chap2.html#X78F41D2A78E70BEE"><span class="RefLink">2.2-6</span></a>. Thus we start with six different inputs for the construction of the character tables of double covers.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls:= List( [ "1", "2", "2'" ], i -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( Concatenation( "2.U4(3).2_", i ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">isos:= List( [ "1", "2", "2'" ], i -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( Concatenation( "Isoclinic(2.U4(3).2_", i, ")" ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], tbls[2], tbls[3], "2.U4(3).(2^2)_{122}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], tbls[2], tbls[3], "2.U4(3).(2^2)_{1*22}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], isos[2], tbls[3], "2.U4(3).(2^2)_{12*2}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], isos[2], tbls[3], "2.U4(3).(2^2)_{1*2*2}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], isos[2], isos[3], "2.U4(3).(2^2)_{12*2*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], isos[2], isos[3], "2.U4(3).(2^2)_{1*2*2*}" ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "2.U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblsG2:= input{ [ 1 .. 3 ] };</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib:= CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, input[4], lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( result, RepresentativesCharacterTables( poss ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= List( result, x -> x.table );</span>
[ CharacterTable( "new2.U4(3).(2^2)_{122}" ),
CharacterTable( "new2.U4(3).(2^2)_{1*22}" ),
CharacterTable( "new2.U4(3).(2^2)_{12*2}" ),
CharacterTable( "new2.U4(3).(2^2)_{1*2*2}" ),
CharacterTable( "new2.U4(3).(2^2)_{12*2*}" ),
CharacterTable( "new2.U4(3).(2^2)_{1*2*2*}" ) ]
</pre></div>
<p>We get exactly one character table for each input. For each of these tables, there are three possibilities to form an isoclinic table, corresponding to the three subgroups of index two. It turns out that the six solutions form two orbits under forming some isoclinic table. Tables in different orbits are essentially different, already their numbers of conjugacy classes differ.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( result, NrConjugacyClasses );</span>
[ 87, 102, 102, 87, 87, 102 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= result[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= List( nsg, x -> CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( iso, x -> PositionProperty( result, y -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( x, y ) <> fail ) );</span>
[ 4, 4, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= result[2];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= List( nsg, x -> CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( iso, x -> PositionProperty( result, y -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( x, y ) <> fail ) );</span>
[ 3, 3, 6 ]
</pre></div>
<p>Up to now, it is not clear that the character tables we have constructed are really the character tables of some groups. The existence of groups for the first orbit of character tables can be established as follows.</p>
<p>The group <span class="SimpleMath">O_8^+(3)</span> contains maximal subgroups of the type <span class="SimpleMath">2.U_4(3).2^2</span>, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 140]</a>. Only the first of our result tables admits a class fusion into the table of <span class="SimpleMath">O_8^+(3)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "O8+(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= List( result, x -> PossibleClassFusions( x, u ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( fus, Length );</span>
[ 24, 0, 0, 0, 0, 0 ]
</pre></div>
<p>A table in the second orbit belongs to a maximal subgroup of <span class="SimpleMath">O_7(3).2</span>, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 109]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "O7(3).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= List( result, x -> PossibleClassFusions( x, u ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 16, 0, 0, 0, 0 ]
</pre></div>
<p>Note that this subgroup of <span class="SimpleMath">O_7(3).2 ≅ SO(7,3)</span> is the orthogonal group GO<span class="SimpleMath">_6^-(3)</span>.</p>
<p>Now we deal with the double covers of <span class="SimpleMath">U_4(3).(2^2)_133</span>. The constructions of the character tables are completely analogous to those in the case of <span class="SimpleMath">U_4(3).(2^2)_122</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls:= List( [ "1", "3", "3'" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> CharacterTable( Concatenation( "2.U4(3).2_", i ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">isos:= List( [ "1", "3", "3'" ], i -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( Concatenation( "Isoclinic(2.U4(3).2_", i, ")" ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], tbls[2], tbls[3], "2.U4(3).(2^2)_{133}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], tbls[2], tbls[3], "2.U4(3).(2^2)_{1*33}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], isos[2], tbls[3], "2.U4(3).(2^2)_{13*3}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], isos[2], tbls[3], "2.U4(3).(2^2)_{1*3*3}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], isos[2], isos[3], "2.U4(3).(2^2)_{13*3*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], isos[2], isos[3], "2.U4(3).(2^2)_{1*3*3*}" ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "2.U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblsG2:= input{ [ 1 .. 3 ] };</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib:= CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, input[4], lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( result, RepresentativesCharacterTables( poss ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#I excluded cand. 2 (out of 4) for 2.U4(3).(2^2)_{1*33} by
3-mod. table
#I excluded cand. 3 (out of 4) for 2.U4(3).(2^2)_{1*33} by
3-mod. table
#I excluded cand. 2 (out of 4) for 2.U4(3).(2^2)_{13*3} by
3-mod. table
#I excluded cand. 3 (out of 4) for 2.U4(3).(2^2)_{13*3} by
3-mod. table
#I excluded cand. 2 (out of 4) for 2.U4(3).(2^2)_{1*3*3*} by
3-mod. table
#I excluded cand. 3 (out of 4) for 2.U4(3).(2^2)_{1*3*3*} by
3-mod. table
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= List( result, x -> x.table );</span>
[ CharacterTable( "new2.U4(3).(2^2)_{133}" ),
CharacterTable( "new2.U4(3).(2^2)_{1*33}" ),
CharacterTable( "new2.U4(3).(2^2)_{13*3}" ),
CharacterTable( "new2.U4(3).(2^2)_{1*3*3}" ),
CharacterTable( "new2.U4(3).(2^2)_{13*3*}" ),
CharacterTable( "new2.U4(3).(2^2)_{1*3*3*}" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( result, NrConjugacyClasses );</span>
[ 69, 72, 72, 69, 69, 72 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= result[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= List( nsg, x -> CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( iso, x -> PositionProperty( result, y -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( x, y ) <> fail ) );</span>
[ 4, 4, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= result[2];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= List( nsg, x -> CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( iso, x -> PositionProperty( result, y -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( x, y ) <> fail ) );</span>
[ 3, 3, 6 ]
</pre></div>
<p><a id="X7DC42AE57E9EED4D" name="X7DC42AE57E9EED4D"></a></p>
<h5>2.6-7 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">4_1.L_3(4).2^2</span>
(October 2011)</span></h5>
<p>The situation with <span class="SimpleMath">4_1.L_3(4).2^2</span> is analogous to that with <span class="SimpleMath">6.L_3(4).2^2</span>, see Section <a href="chap2.html#X79818ABD7E972370"><span class="RefLink">2.6-5</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls:= List( [ "1", "2", "3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> CharacterTable( Concatenation( "4_1.L3(4).2_", i ) ) );</span>
[ CharacterTable( "4_1.L3(4).2_1" ), CharacterTable( "4_1.L3(4).2_2" )
, CharacterTable( "4_1.L3(4).2_3" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">isos:= List( [ "1", "2", "3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> CharacterTable( Concatenation( "4_1.L3(4).2_", i, "*" ) ) );</span>
[ CharacterTable( "Isoclinic(4_1.L3(4).2_1)" ),
CharacterTable( "Isoclinic(4_1.L3(4).2_2)" ),
CharacterTable( "4_1.L3(4).2_3*" ) ]
</pre></div>
<p>Note that the group <span class="SimpleMath">4_1.L_3(4).2_3</span> has a centre of order four, so one cannot construct the isoclinic variant by calling the one argument version of <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( tbls, ClassPositionsOfCentre );</span>
[ [ 1, 3 ], [ 1, 3 ], [ 1, 2, 3, 4 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tbls[3],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTableIsoclinic( tbls[3] ) ) );</span>
true
</pre></div>
<p>Again, we get eight different character tables, in two orbits.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], tbls[2], tbls[3], "4_1.L3(4).(2^2)_{123}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], tbls[2], tbls[3], "4_1.L3(4).(2^2)_{1*23}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], isos[2], tbls[3], "4_1.L3(4).(2^2)_{12*3}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], isos[2], tbls[3], "4_1.L3(4).(2^2)_{1*2*3}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], tbls[2], isos[3], "4_1.L3(4).(2^2)_{123*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], tbls[2], isos[3], "4_1.L3(4).(2^2)_{1*23*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], isos[2], isos[3], "4_1.L3(4).(2^2)_{12*3*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], isos[2], isos[3], "4_1.L3(4).(2^2)_{1*2*3*}" ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "4_1.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblsG2:= input{ [ 1 .. 3 ] };</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib:= CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, input[4], lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( result, RepresentativesCharacterTables( poss ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#I excluded cand. 2 (out of 8) for 4_1.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_1.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_1.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_1.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_1.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_1.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 2 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 2 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by
5-mod. table
#I excluded cand. 2 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by
5-mod. table
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= List( result, x -> x.table );</span>
[ CharacterTable( "new4_1.L3(4).(2^2)_{123}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{1*23}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{12*3}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{1*2*3}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{123*}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{1*23*}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{12*3*}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{1*2*3*}" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( result, NrConjugacyClasses );</span>
[ 48, 48, 48, 48, 42, 42, 42, 42 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= result[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= List( nsg, x -> CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( iso, x -> PositionProperty( result, y -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( x, y ) <> fail ) );</span>
[ 3, 2, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= result[5];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= List( nsg, x -> CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( iso, x -> PositionProperty( result, y -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( x, y ) <> fail ) );</span>
[ 7, 6, 8 ]
</pre></div>
<p>Note that only two out of the eight tables of the type <span class="SimpleMath">2.L_3(4).2^2</span> occur as factors of the eight tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">facts:= [ CharacterTable( "2.L3(4).(2^2)_{123}" ), </span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2.L3(4).(2^2)_{123*}" ) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">factresults:= List( result, t -> t / ClassPositionsOfCentre( t ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( factresults, t -> PositionProperty( facts, f -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsRecord( TransformingPermutationsCharacterTables( t, f ) ) ) );</span>
[ 1, 1, 1, 1, 2, 2, 2, 2 ]
</pre></div>
<p>This is not surprising; note that for <span class="SimpleMath">1 ≤ i ≤ 2</span>, the two isoclinic variants of <span class="SimpleMath">4_1.L_3(4).2_i</span> have isomorphic factor groups of the type <span class="SimpleMath">2.L_3(4).2_i</span>. (For <span class="SimpleMath">i = 3</span>, this is not the case.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">test:= [ CharacterTable( "4_1.L3(4).2_1" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "4_1.L3(4).2_1*" ) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( test, ClassPositionsOfCentre );</span>
[ [ 1, 3 ], [ 1, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fact:= List( test, t -> t / ClassPositionsOfCentre( t ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( fact[1], fact[2] ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">test:= [ CharacterTable( "4_1.L3(4).2_2" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "4_1.L3(4).2_2*" ) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( test, ClassPositionsOfCentre );</span>
[ [ 1, 3 ], [ 1, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fact:= List( test, t -> t / ClassPositionsOfCentre( t ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( fact[1], fact[2] ) );</span>
true
</pre></div>
<p>Now we try the second approach and compare the results. By the abovementioned asymmetry, it is clear that the tables are not uniquely determined by the input data.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= [ "L3(4).(2^2)_{123}", "L3(4).(2^2)_{1*23}",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "L3(4).(2^2)_{12*3}", "L3(4).(2^2)_{1*2*3}" ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs1:= List( names, nam -> [ "4_1.L3(4).2_3", "2.L3(4).2_3",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Concatenation( "2.", nam ), Concatenation( "4_1.", nam ) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= List( names, nam -> ReplacedString( nam, "3}", "3*}" ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs2:= List( names, nam -> [ "4_1.L3(4).2_3*", "2.L3(4).2_3*",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Concatenation( "2.", nam ), Concatenation( "4_1.", nam ) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs:= Concatenation( inputs1, inputs2 );</span>
[ [ "4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2^2)_{123}",
"4_1.L3(4).(2^2)_{123}" ],
[ "4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2^2)_{1*23}",
"4_1.L3(4).(2^2)_{1*23}" ],
[ "4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2^2)_{12*3}",
"4_1.L3(4).(2^2)_{12*3}" ],
[ "4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2^2)_{1*2*3}",
"4_1.L3(4).(2^2)_{1*2*3}" ],
[ "4_1.L3(4).2_3*", "2.L3(4).2_3*", "2.L3(4).(2^2)_{123*}",
"4_1.L3(4).(2^2)_{123*}" ],
[ "4_1.L3(4).2_3*", "2.L3(4).2_3*", "2.L3(4).(2^2)_{1*23*}",
"4_1.L3(4).(2^2)_{1*23*}" ],
[ "4_1.L3(4).2_3*", "2.L3(4).2_3*", "2.L3(4).(2^2)_{12*3*}",
"4_1.L3(4).(2^2)_{12*3*}" ],
[ "4_1.L3(4).2_3*", "2.L3(4).2_3*", "2.L3(4).(2^2)_{1*2*3*}",
"4_1.L3(4).(2^2)_{1*2*3*}" ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">result2:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMG := CharacterTable( input[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblG := CharacterTable( input[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblGA := CharacterTable( input[3] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name := Concatenation( "new", input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib := CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( result2, poss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#E 4 possibilities for new4_1.L3(4).(2^2)_{123}
#E no solution for new4_1.L3(4).(2^2)_{1*23}
#E no solution for new4_1.L3(4).(2^2)_{12*3}
#E no solution for new4_1.L3(4).(2^2)_{1*2*3}
#E 4 possibilities for new4_1.L3(4).(2^2)_{123*}
#E no solution for new4_1.L3(4).(2^2)_{1*23*}
#E no solution for new4_1.L3(4).(2^2)_{12*3*}
#E no solution for new4_1.L3(4).(2^2)_{1*2*3*}
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( result2 );</span>
8
<span class="GAPprompt">gap></span> <span class="GAPinput">result2:= List( result2, x -> x.table );</span>
[ CharacterTable( "new4_1.L3(4).(2^2)_{123}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{123}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{123}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{123}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{123*}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{123*}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{123*}" ),
CharacterTable( "new4_1.L3(4).(2^2)_{123*}" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( result, t1 -> PositionsProperty( result2, t2 -> IsRecord(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( t1, t2 ) ) ) );</span>
[ [ 1 ], [ 4 ], [ 3 ], [ 2 ], [ 7 ], [ 6 ], [ 5 ], [ 8 ] ]
</pre></div>
<p>At the moment, I do not know interesting groups that contain one of the <span class="SimpleMath">4_1.L_3(4).2^2</span> type groups and whose character tables are available.</p>
<p><a id="X7E9AF180869B4786" name="X7E9AF180869B4786"></a></p>
<h5>2.6-8 <span class="Heading">The Character Tables of Groups of the Type <span class="SimpleMath">4_2.L_3(4).2^2</span>
(October 2011)</span></h5>
<p>The situation with <span class="SimpleMath">4_2.L_3(4).2^2</span> is analogous to that with <span class="SimpleMath">6.L_3(4).2^2</span>, see Section <a href="chap2.html#X79818ABD7E972370"><span class="RefLink">2.6-5</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls:= List( [ "1", "2", "3" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> CharacterTable( Concatenation( "4_2.L3(4).2_", i ) ) );</span>
[ CharacterTable( "4_2.L3(4).2_1" ), CharacterTable( "4_2.L3(4).2_2" )
, CharacterTable( "4_2.L3(4).2_3" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">isos:= List( [ "1", "2", "3" ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> CharacterTable( Concatenation( "4_2.L3(4).2_", i, "*" ) ) );</span>
[ CharacterTable( "Isoclinic(4_2.L3(4).2_1)" ),
CharacterTable( "4_2.L3(4).2_2*" ),
CharacterTable( "Isoclinic(4_2.L3(4).2_3)" ) ]
</pre></div>
<p>Note that the group <span class="SimpleMath">4_1.L_3(4).2_2</span> has a centre of order four, so one cannot construct the isoclinic variant not by calling the one argument version of <code class="func">CharacterTableIsoclinic</code> (<a href="../../../doc/ref/chap71.html#X85BE46F784B83938"><span class="RefLink">Reference: CharacterTableIsoclinic</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( tbls, ClassPositionsOfCentre );</span>
[ [ 1, 3 ], [ 1, 2, 3, 4 ], [ 1, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( tbls[2],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTableIsoclinic( tbls[2] ) ) );</span>
true
</pre></div>
<p>Again, we get eight different character tables, in two orbits.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], tbls[2], tbls[3], "4_2.L3(4).(2^2)_{123}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], tbls[2], tbls[3], "4_2.L3(4).(2^2)_{1*23}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], isos[2], tbls[3], "4_2.L3(4).(2^2)_{12*3}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], tbls[2], isos[3], "4_2.L3(4).(2^2)_{123*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], isos[2], tbls[3], "4_2.L3(4).(2^2)_{1*2*3}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], tbls[2], isos[3], "4_2.L3(4).(2^2)_{1*23*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ tbls[1], isos[2], isos[3], "4_2.L3(4).(2^2)_{12*3*}" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ isos[1], isos[2], isos[3], "4_2.L3(4).(2^2)_{1*2*3*}" ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "4_2.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblsG2:= input{ [ 1 .. 3 ] };</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib:= CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= ConstructOrdinaryGV4Table( tblG, tblsG2, input[4], lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructModularGV4Tables( tblG, tblsG2, poss, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( result, RepresentativesCharacterTables( poss ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#I excluded cand. 2 (out of 8) for 4_2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_2.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_2.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 2 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 2 (out of 8) for 4_2.L3(4).(2^2)_{123*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_2.L3(4).(2^2)_{123*} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_2.L3(4).(2^2)_{123*} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_2.L3(4).(2^2)_{123*} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_2.L3(4).(2^2)_{123*} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_2.L3(4).(2^2)_{123*} by
5-mod. table
#I excluded cand. 2 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by
5-mod. table
<span class="GAPprompt">gap></span> <span class="GAPinput">result:= List( result, x -> x.table );</span>
[ CharacterTable( "new4_2.L3(4).(2^2)_{123}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{1*23}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{12*3}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{123*}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{1*2*3}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{1*23*}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{12*3*}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{1*2*3*}" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( result, NrConjugacyClasses );</span>
[ 50, 50, 44, 50, 44, 50, 44, 44 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= result[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= List( nsg, x -> CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( iso, x -> PositionProperty( result, y -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( x, y ) <> fail ) );</span>
[ 4, 2, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= result[3];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( t ){ x } ) = Size( t ) / 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= List( nsg, x -> CharacterTableIsoclinic( t, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( iso, x -> PositionProperty( result, y -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( x, y ) <> fail ) );</span>
[ 7, 5, 8 ]
</pre></div>
<p>Note that only two out of the eight tables of the type <span class="SimpleMath">2.L_3(4).2^2</span> occur as factors of the eight tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">facts:= [ CharacterTable( "2.L3(4).(2^2)_{123}" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2.L3(4).(2^2)_{12*3}" ) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">factresults:= List( result, t -> t / ClassPositionsOfCentre( t ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( factresults, t -> PositionProperty( facts, f -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsRecord( TransformingPermutationsCharacterTables( t, f ) ) ) );</span>
[ 1, 1, 2, 1, 2, 1, 2, 2 ]
</pre></div>
<p>This is not surprising; note that for <span class="SimpleMath">i ∈ { 1, 3 }</span>, the two isoclinic variants of <span class="SimpleMath">4_1.L_3(4).2_i</span> have isomorphic factor groups of the type <span class="SimpleMath">2.L_3(4).2_i</span>. (For <span class="SimpleMath">i = 2</span>, this is not the case.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">test:= [ CharacterTable( "4_2.L3(4).2_1" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "4_2.L3(4).2_1*" ) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( test, ClassPositionsOfCentre );</span>
[ [ 1, 3 ], [ 1, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fact:= List( test, t -> t / ClassPositionsOfCentre( t ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( fact[1], fact[2] ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">test:= [ CharacterTable( "4_2.L3(4).2_3" ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "4_2.L3(4).2_3*" ) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( test, ClassPositionsOfCentre );</span>
[ [ 1, 3 ], [ 1, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fact:= List( test, t -> t / ClassPositionsOfCentre( t ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( fact[1], fact[2] ) );</span>
true
</pre></div>
<p>Now we try the second approach and compare the results. By the abovementioned asymmetry, it is clear that the tables are not uniquely determined by the input data.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= [ "L3(4).(2^2)_{123}", "L3(4).(2^2)_{1*23}",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "L3(4).(2^2)_{123*}", "L3(4).(2^2)_{1*23*}" ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs1:= List( names, nam -> [ "4_2.L3(4).2_2", "2.L3(4).2_2",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Concatenation( "2.", nam ), Concatenation( "4_2.", nam ) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= List( names, nam -> ReplacedString( nam, "23", "2*3" ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs2:= List( names, nam -> [ "4_2.L3(4).2_2*", "2.L3(4).2_2*",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Concatenation( "2.", nam ), Concatenation( "4_2.", nam ) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inputs:= Concatenation( inputs1, inputs2 );</span>
[ [ "4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2^2)_{123}",
"4_2.L3(4).(2^2)_{123}" ],
[ "4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2^2)_{1*23}",
"4_2.L3(4).(2^2)_{1*23}" ],
[ "4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2^2)_{123*}",
"4_2.L3(4).(2^2)_{123*}" ],
[ "4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2^2)_{1*23*}",
"4_2.L3(4).(2^2)_{1*23*}" ],
[ "4_2.L3(4).2_2*", "2.L3(4).2_2*", "2.L3(4).(2^2)_{12*3}",
"4_2.L3(4).(2^2)_{12*3}" ],
[ "4_2.L3(4).2_2*", "2.L3(4).2_2*", "2.L3(4).(2^2)_{1*2*3}",
"4_2.L3(4).(2^2)_{1*2*3}" ],
[ "4_2.L3(4).2_2*", "2.L3(4).2_2*", "2.L3(4).(2^2)_{12*3*}",
"4_2.L3(4).(2^2)_{12*3*}" ],
[ "4_2.L3(4).2_2*", "2.L3(4).2_2*", "2.L3(4).(2^2)_{1*2*3*}",
"4_2.L3(4).(2^2)_{1*2*3*}" ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">result2:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in inputs do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblMG := CharacterTable( input[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblG := CharacterTable( input[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblGA := CharacterTable( input[3] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name := Concatenation( "new", input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib := CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= ConstructOrdinaryMGATable( tblMG, tblG, tblGA, name, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( result2, poss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#E 4 possibilities for new4_2.L3(4).(2^2)_{123}
#E no solution for new4_2.L3(4).(2^2)_{1*23}
#E no solution for new4_2.L3(4).(2^2)_{123*}
#E no solution for new4_2.L3(4).(2^2)_{1*23*}
#E 4 possibilities for new4_2.L3(4).(2^2)_{12*3}
#E no solution for new4_2.L3(4).(2^2)_{1*2*3}
#E no solution for new4_2.L3(4).(2^2)_{12*3*}
#E no solution for new4_2.L3(4).(2^2)_{1*2*3*}
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( result2 );</span>
8
<span class="GAPprompt">gap></span> <span class="GAPinput">result2:= List( result2, x -> x.table );</span>
[ CharacterTable( "new4_2.L3(4).(2^2)_{123}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{123}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{123}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{123}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{12*3}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{12*3}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{12*3}" ),
CharacterTable( "new4_2.L3(4).(2^2)_{12*3}" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( result, t1 -> PositionsProperty( result2, t2 -> IsRecord(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> TransformingPermutationsCharacterTables( t1, t2 ) ) ) );</span>
[ [ 1 ], [ 4 ], [ 7 ], [ 3 ], [ 6 ], [ 2 ], [ 5 ], [ 8 ] ]
</pre></div>
<p>The group <span class="SimpleMath">ON.2</span> contains a maximal subgroup <span class="SimpleMath">M</span> of the type <span class="SimpleMath">4_2.L_3(4).2^2</span>, see <a href="chapBib.html#biBCCN85">[CCN+85, p. 132]</a>. Only the third result table admits a class fusion into <span class="SimpleMath">ON.2</span>. This shows the existence of groups for the tables from the second orbit.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">on2:= CharacterTable( "ON.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= List( result, x -> PossibleClassFusions( x, on2 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( fus, Length );</span>
[ 0, 0, 16, 0, 0, 0, 0, 0 ]
</pre></div>
<p><a id="X7EAF9CD07E536120" name="X7EAF9CD07E536120"></a></p>
<h5>2.6-9 <span class="Heading">The Character Table of Aut<span class="SimpleMath">(L_2(81))</span></span></h5>
<p>The group Aut<span class="SimpleMath">(L_2(81)) ≅ L_2(81).(2 × 4)</span> has the structure <span class="SimpleMath">G.2^2</span> where <span class="SimpleMath">G = L_2(81).2_1</span>. Here we get two triples of possible actions on the tables of the groups <span class="SimpleMath">G.2_i</span>, and one possible character table for each triple.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">input:= [ "L2(81).2_1", "L2(81).4_1", "L2(81).4_2", "L2(81).2^2",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "L2(81).(2x4)" ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG := CharacterTable( input[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblsG2 := List( input{ [ 2 .. 4 ] }, CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">name := Concatenation( "new", input[5] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">lib := CharacterTable( input[5] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss := ConstructOrdinaryGV4Table( tblG, tblsG2, name, lib );;</span>
#I newL2(81).(2x4): 2 equivalence classes
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= RepresentativesCharacterTables( poss );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( reps );</span>
2
</pre></div>
<p>Due to the different underlying actions, the power maps of the two candidate tables differ.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord:= OrdersClassRepresentatives( reps[1].table );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord = OrdersClassRepresentatives( reps[2].table ); </span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">pos:= Position( ord, 80 );</span>
33
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( reps[1].table, 3 )[ pos ];</span>
34
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( reps[2].table, 3 )[ pos ];</span>
33
</pre></div>
<p>Aut<span class="SimpleMath">(L_2(81))</span> can be generated by PGL<span class="SimpleMath">(2,81) = L_2(81).2_2</span> and the Frobenius automorphism of order four that is defined on GL<span class="SimpleMath">(2,81)</span> as the map that cubes the matrix entries. The elements of order <span class="SimpleMath">80</span> in Aut<span class="SimpleMath">(L_2(81))</span> are conjugates of diagonal matrices modulo scalar matrices, which are mapped to their third powers by the Frobenius homomorphism. So the third power map of Aut<span class="SimpleMath">(L_2(81))</span> fixes the classes of elements of order <span class="SimpleMath">80</span>. In other words, the second of the two tables is the right one.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">trans:= TransformingPermutationsCharacterTables( reps[2].table, lib );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( trans );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">List( reps[2].G2fusGV4, x -> OnTuples( x, trans.columns ) )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> = List( tblsG2, x -> GetFusionMap( x, lib ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructModularGV4Tables( tblG, tblsG2, [ reps[2] ], lib );;</span>
#I not all input tables for L2(81).(2x4) mod 41 available
</pre></div>
<p><a id="X78AED04685EDCC19" name="X78AED04685EDCC19"></a></p>
<h5>2.6-10 <span class="Heading">The Character Table of <span class="SimpleMath">O_8^+(3).2^2_111</span></span></h5>
<p>The construction of the character table of the group <span class="SimpleMath">O_8^+(3).2^2_111</span> is not as straightforward as the constructions shown in Section <a href="chap2.html#X7FEC3AB081487AF2"><span class="RefLink">2.6-2</span></a>. Here we get <span class="SimpleMath">26</span> triples of actions on the tables of the three subgroups <span class="SimpleMath">G.2_i</span> of index two, but only one of them leads to candidates for the desired character table. Specifically, we get <span class="SimpleMath">64</span> such candidates, in two equivalence classes w.r.t. permutation equivalence.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">input:= [ "O8+(3)", "O8+(3).2_1", "O8+(3).2_1'", "O8+(3).2_1''",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "O8+(3).(2^2)_{111}" ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG := CharacterTable( input[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblsG2 := List( input{ [ 2 .. 4 ] }, CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">name := Concatenation( "new", input[5] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">lib := CharacterTable( input[5] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss := ConstructOrdinaryGV4Table( tblG, tblsG2, name, lib );;</span>
#I newO8+(3).(2^2)_{111}: 2 equivalence classes
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
64
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= RepresentativesCharacterTables( poss );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( reps );</span>
2
</pre></div>
<p>The two candidate tables differ only in four irreducible characters involving irrationalities on the classes of element order <span class="SimpleMath">28</span>. All three subgroups <span class="SimpleMath">G.2_i</span> contain elements of order <span class="SimpleMath">28</span> that do not lie in the simple group <span class="SimpleMath">G</span>; these classes are roots of the same (unique) class of element order <span class="SimpleMath">7</span>. The centralizer <span class="SimpleMath">C</span> of an order <span class="SimpleMath">7</span> element in <span class="SimpleMath">G.2^2</span> has order <span class="SimpleMath">112 = 2^4 ⋅ 7</span>, the intersection of <span class="SimpleMath">C</span> with <span class="SimpleMath">G</span> has the structure <span class="SimpleMath">2^2 × 7</span> since <span class="SimpleMath">G</span> contains three classes of cyclic subgroups of the order <span class="SimpleMath">14</span>, and each of the intersections of <span class="SimpleMath">C</span> with one of the subgroups <span class="SimpleMath">G.2_i</span> has the structure <span class="SimpleMath">2 × 4 × 7</span>, so the structure of <span class="SimpleMath">C</span> is <span class="SimpleMath">4^2 × 7 ≅ 4 × 28</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= reps[1].table;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord7:= Filtered( [ 1 .. NrConjugacyClasses( t ) ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> OrdersClassRepresentatives( t )[i] = 7 );</span>
[ 37 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesCentralizers( t ){ ord7 };</span>
[ 112 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ord28:= Filtered( [ 1 .. NrConjugacyClasses( t ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> OrdersClassRepresentatives( t )[i] = 28 );</span>
[ 112, 113, 114, 115, 161, 162, 163, 164, 210, 211, 212, 213 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( reps[1].G2fusGV4, x -> Intersection( ord28, x ) );</span>
[ [ 112, 113, 114, 115 ], [ 161, 162, 163, 164 ],
[ 210, 211, 212, 213 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">sub:= CharacterTable( "Cyclic", 28 ) * CharacterTable( "Cyclic", 4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( reps, x -> Length( PossibleClassFusions( sub, x.table ) ) );</span>
[ 0, 96 ]
</pre></div>
<p>It turns out that only one of the two candidate tables admits a class fusion from the character table of <span class="SimpleMath">C</span>, thus we have determined the ordinary character table of <span class="SimpleMath">O_8^+(3).2^2_111</span>. It coincides with the table from the library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">trans:= TransformingPermutationsCharacterTables( reps[2].table, lib );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( trans );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">List( reps[2].G2fusGV4, x -> OnTuples( x, trans.columns ) )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> = List( tblsG2, x -> GetFusionMap( x, lib ) );</span>
true
</pre></div>
<p>(If we do not believe the statement about the structure of <span class="SimpleMath">C</span> then we can check all <span class="SimpleMath">14</span> groups of order <span class="SimpleMath">112</span> that contain a central subgroup of order <span class="SimpleMath">7</span>. A unique such group admits a class fusion into at least one of the two candidate tables.)</p>
<p>The wrong candidate for the ordinary table cannot be excluded via conditions that are forced by the construction of the <span class="SimpleMath">p</span>-modular tables of <span class="SimpleMath">O_8^+(3).2^2_111</span>. Thus we restrict the ordinary tables used for this construction to those candidates that are equivalent to the correct table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= Filtered( poss,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> r -> TransformingPermutationsCharacterTables( r.table, lib )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> <> fail );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructModularGV4Tables( tblG, tblsG2, poss, lib );;</span>
#I not all input tables for O8+(3).(2^2)_{111} mod 3 available
</pre></div>
<p>So also the <span class="SimpleMath">p</span>-modular tables of <span class="SimpleMath">O_8^+(3).2^2_111</span> can be computed this way, provided that the <span class="SimpleMath">p</span>-modular tables of the index <span class="SimpleMath">2</span> subgroups are available.</p>
<p><a id="X845BAA2A7FD768B0" name="X845BAA2A7FD768B0"></a></p>
<h4>2.7 <span class="Heading">Examples for the Type <span class="SimpleMath">2^2.G</span></span></h4>
<p>We compute the character table of a group of the type <span class="SimpleMath">2^2.G</span> from the character tables of the three factor groups of the type <span class="SimpleMath">2.G</span>, using the function <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>), see Section <a href="chap2.html#X81464C4B8178C85A"><span class="RefLink">2.3-4</span></a>.</p>
<p><a id="X87EEBDB987249117" name="X87EEBDB987249117"></a></p>
<h5>2.7-1 <span class="Heading">The Character Table of <span class="SimpleMath">2^2.Sz(8)</span></span></h5>
<p>The three central involutions in <span class="SimpleMath">2^2.Sz(8)</span> are permuted cyclicly by an outer automorphism <span class="SimpleMath">α</span> of order three. In order to apply <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>), we need the character table of the group <span class="SimpleMath">2.Sz(8)</span> and the action on the classes of <span class="SimpleMath">Sz(8)</span> that is induced by <span class="SimpleMath">α</span>.</p>
<p>The ordinary character table of <span class="SimpleMath">G = Sz(8)</span> admits exactly five table automorphisms of order dividing <span class="SimpleMath">3</span>. Each of these possibilities leads to exactly one possible character table of <span class="SimpleMath">2^2.G</span>, and the five tables are permutation equivalent. From this point of view, we need not know which of the table automorphisms are induced by outer <em>group</em> automorphisms of <span class="SimpleMath">G</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "Sz(8)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2t:= CharacterTable( "2.Sz(8)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">aut:= AutomorphismsOfTable( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= Set( Filtered( aut, x -> Order( x ) in [ 1, 3 ] ), </span>
<span class="GAPprompt">></span> <span class="GAPinput"> SmallestGeneratorPerm );</span>
[ (), (9,10,11), (6,7,8), (6,7,8)(9,10,11), (6,7,8)(9,11,10) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= List( elms, </span>
<span class="GAPprompt">></span> <span class="GAPinput"> pi -> PossibleCharacterTablesOfTypeV4G( t, 2t, pi, "2^2.Sz(8)" ) );</span>
[ [ CharacterTable( "2^2.Sz(8)" ) ], [ CharacterTable( "2^2.Sz(8)" ) ]
, [ CharacterTable( "2^2.Sz(8)" ) ],
[ CharacterTable( "2^2.Sz(8)" ) ],
[ CharacterTable( "2^2.Sz(8)" ) ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= RepresentativesCharacterTables( Concatenation( poss ) );</span>
[ CharacterTable( "2^2.Sz(8)" ) ]
</pre></div>
<p>The tables coincide with the one that is stored in the <strong class="pkg">GAP</strong> library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( reps[1],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2^2.Sz(8)" ) ) );</span>
true
</pre></div>
<p>The computation of the <span class="SimpleMath">p</span>-modular character table of <span class="SimpleMath">2^2.G</span> from the <span class="SimpleMath">p</span>-modular character table of <span class="SimpleMath">2.G</span> and the three factor fusions from <span class="SimpleMath">2^2.G</span> to <span class="SimpleMath">2.G</span> is straightforward, as is stated in Section <a href="chap2.html#X81464C4B8178C85A"><span class="RefLink">2.3-4</span></a>. The three fusions are stored on the tables returned by <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( poss[1][1], 2t, "1" );</span>
[ 1, 1, 2, 2, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12,
12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( poss[1][1], 2t, "2" );</span>
[ 1, 2, 1, 2, 3, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12,
13, 12, 13, 14, 15, 14, 15, 16, 17, 16, 17, 18, 19, 18, 19 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( poss[1][1], 2t, "3" );</span>
[ 1, 2, 2, 1, 3, 4, 5, 6, 7, 7, 6, 8, 9, 9, 8, 10, 11, 11, 10, 12,
13, 13, 12, 14, 15, 15, 14, 16, 17, 17, 16, 18, 19, 19, 18 ]
</pre></div>
<p>The <strong class="pkg">GAP</strong> library function <code class="func">BrauerTableOfTypeV4G</code> (<a href="..//doc/chap5.html#X8536F9027F097C79"><span class="RefLink">CTblLib: BrauerTableOfTypeV4G</span></a>) can be used to derive Brauer tables of <span class="SimpleMath">2^2.G</span>. We have to compute the <span class="SimpleMath">p</span>-modular tables for prime divisors <span class="SimpleMath">p</span> of <span class="SimpleMath">|G|</span>, that is, for <span class="SimpleMath">p ∈ { 2, 5, 7, 13 }</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrimeDivisors( Size( t ) );</span>
[ 2, 5, 7, 13 ]
</pre></div>
<p>Clearly <span class="SimpleMath">p = 2</span> is uninteresting from this point of view because the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">2^2.G</span> can be identified with the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G</span>.</p>
<p>For each of the five ordinary tables (corresponding to the five possible table automorphisms of <span class="SimpleMath">G</span>) constructed above, we get one candidate of a <span class="SimpleMath">5</span>-modular table. However, these tables are <em>not</em> all equivalent. There are two equivalence classes, and one of the two possibilities is inconsistent in the sense that not all tensor products of irreducibles decompose into irreducibles.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= List( poss, l -> BrauerTableOfTypeV4G( l[1], 2t mod 5,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructionInfoCharacterTable( l[1] )[3] ) );</span>
[ BrauerTable( "2^2.Sz(8)", 5 ), BrauerTable( "2^2.Sz(8)", 5 ),
BrauerTable( "2^2.Sz(8)", 5 ), BrauerTable( "2^2.Sz(8)", 5 ),
BrauerTable( "2^2.Sz(8)", 5 ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesCharacterTables( cand ) );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">List( cand, CTblLib.Test.TensorDecomposition );</span>
[ false, true, false, true, true ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesCharacterTables( cand{ [ 2, 4, 5 ] } ) );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( cand[2],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2^2.Sz(8)" ) mod 5 ) );</span>
true
</pre></div>
<p>This implies that only those table automorphisms of <span class="SimpleMath">G</span> can be induced by an outer group automorphism that move the classes of element order <span class="SimpleMath">13</span>.</p>
<p>The <span class="SimpleMath">7</span>-modular table of <span class="SimpleMath">2^2.G</span> is uniquely determined, independent of the choice of the table automorphism of <span class="SimpleMath">G</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= List( poss, l -> BrauerTableOfTypeV4G( l[1], 2t mod 7,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructionInfoCharacterTable( l[1] )[3] ) );</span>
[ BrauerTable( "2^2.Sz(8)", 7 ), BrauerTable( "2^2.Sz(8)", 7 ),
BrauerTable( "2^2.Sz(8)", 7 ), BrauerTable( "2^2.Sz(8)", 7 ),
BrauerTable( "2^2.Sz(8)", 7 ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesCharacterTables( cand ) );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( cand[1], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2^2.Sz(8)" ) mod 7 ) );</span>
true
</pre></div>
<p>We get two candidates for the <span class="SimpleMath">13</span>-modular table of <span class="SimpleMath">2^2.G</span>, also if we consider only the three admissible table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= elms{ [ 2, 4, 5 ] };</span>
[ (9,10,11), (6,7,8)(9,10,11), (6,7,8)(9,11,10) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= poss{ [ 2, 4, 5 ] };; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= List( poss, l -> BrauerTableOfTypeV4G( l[1], 2t mod 13,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructionInfoCharacterTable( l[1] )[3] ) );</span>
[ BrauerTable( "2^2.Sz(8)", 13 ), BrauerTable( "2^2.Sz(8)", 13 ),
BrauerTable( "2^2.Sz(8)", 13 ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesCharacterTables( cand ) );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">List( cand, CTblLib.Test.TensorDecomposition ); </span>
[ true, true, true ]
</pre></div>
<p>The action of the outer automorphism of order three of <span class="SimpleMath">G</span> can be read off from the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G</span>. Note that the ordinary and the <span class="SimpleMath">5</span>-modular character table of <span class="SimpleMath">G</span> possess two independent table automorphisms of order three, whereas the group of table automorphisms of the <span class="SimpleMath">2</span>-modular table has order three. (The reason is that the irrational values on the classes of the element orders <span class="SimpleMath">7</span> and <span class="SimpleMath">13</span> appear in the same irreducible <span class="SimpleMath">2</span>-modular Brauer characters.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">mod2:= CharacterTable( "Sz(8)" ) mod 2;</span>
BrauerTable( "Sz(8)", 2 )
<span class="GAPprompt">gap></span> <span class="GAPinput">AutomorphismsOfTable( mod2 );</span>
Group([ (3,4,5)(6,7,8) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( mod2 );</span>
[ 1, 5, 7, 7, 7, 13, 13, 13 ]
</pre></div>
<p>This means that the first candidate is ruled out; this determines the <span class="SimpleMath">13</span>-modular character table of <span class="SimpleMath">2^2.G</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesCharacterTables( cand{ [ 2, 3 ] } ) );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( cand[2],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "2^2.Sz(8)" ) mod 13 ) );</span>
true
</pre></div>
<p><a id="X83652A0282A64D14" name="X83652A0282A64D14"></a></p>
<h5>2.7-2 <span class="Heading"><strong class="pkg">Atlas</strong> Tables of the Type <span class="SimpleMath">2^2.G</span> (September 2005)</span></h5>
<p>Besides <span class="SimpleMath">2^2.Sz(8)</span> (cf. Section <a href="chap2.html#X87EEBDB987249117"><span class="RefLink">2.7-1</span></a>), <span class="SimpleMath">2^2.O_8^+(3)</span> (cf. Section <a href="chap2.html#X7F63DDF77870F967"><span class="RefLink">2.7-3</span></a>), and certain central extensions of <span class="SimpleMath">L_3(4)</span> (cf. Section <a href="chap2.html#X86A1607787DE6BB9"><span class="RefLink">2.7-4</span></a>), the following examples of central extensions of nearly simple <strong class="pkg">Atlas</strong> groups <span class="SimpleMath">G</span> by a Klein four group occur.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">listV4G:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "2^2.L3(4)", "2.L3(4)", "L3(4)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "2^2.L3(4).2_1", "2.L3(4).2_1", "L3(4).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "(2^2x3).L3(4)", "6.L3(4)", "3.L3(4)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "(2^2x3).L3(4).2_1", "6.L3(4).2_1", "3.L3(4).2_1" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "2^2.O8+(2)", "2.O8+(2)", "O8+(2)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "2^2.U6(2)", "2.U6(2)", "U6(2)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "(2^2x3).U6(2)", "6.U6(2)", "3.U6(2)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "2^2.2E6(2)", "2.2E6(2)", "2E6(2)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ "(2^2x3).2E6(2)", "6.2E6(2)", "3.2E6(2)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput">];;</span>
</pre></div>
<p>(For the tables of <span class="SimpleMath">(2^2 × 3).G</span>, with <span class="SimpleMath">G</span> one of <span class="SimpleMath">L_3(4)</span>, <span class="SimpleMath">U_6(2)</span>, or <span class="SimpleMath">^2E_6(2)</span>, we could alternatively use the tables of <span class="SimpleMath">2^2.G</span> and <span class="SimpleMath">3.G</span>, and the construction described in Chapter <a href="chap3.html#X7A80D5ED7D6E57B7"><span class="RefLink">3</span></a>.)</p>
<p>The function for computing the candidates for the ordinary character tables is similar to the one from Section <a href="chap2.html#X7FEC3AB081487AF2"><span class="RefLink">2.6-2</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructOrdinaryV4GTable:= function( tblG, tbl2G, name, lib )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local ord3, nam, poss, reps, trans;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute the possible actions for the ordinary tables.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ord3:= Set( Filtered( AutomorphismsOfTable( tblG ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Order( x ) = 3 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SmallestGeneratorPerm );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if 1 < Length( ord3 ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", name,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ": the action of the automorphism is not unique" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute the possible ordinary tables for the given actions.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nam:= Concatenation( "new", name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= Concatenation( List( ord3, pi -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> PossibleCharacterTablesOfTypeV4G( tblG, tbl2G, pi, nam ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Test the possibilities for permutation equivalence.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps:= RepresentativesCharacterTables( poss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if 1 < Length( reps ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", name, ": ", Length( reps ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " equivalence classes\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif Length( reps ) = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E ", name, ": no solution\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compare the computed table with the library table.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsCharacterTable( lib ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no library table for ", name, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PrintToLib( name, poss[1].table );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> trans:= TransformingPermutationsCharacterTables( reps[1], lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsRecord( trans ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", name,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return poss;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
</pre></div>
<p>Concerning the Brauer tables, the same ambiguity problem may occur as in Section <a href="chap2.html#X7FEC3AB081487AF2"><span class="RefLink">2.6-2</span></a>: Some candidates for the ordinary table may be excluded due to information provided by some <span class="SimpleMath">p</span>-modular table, see Section <a href="chap2.html#X87EEBDB987249117"><span class="RefLink">2.7-1</span></a> for an easy example. Our strategy is analogous to the one used in Section <a href="chap2.html#X7FEC3AB081487AF2"><span class="RefLink">2.6-2</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConstructModularV4GTables:= function( tblG, tbl2G, ordposs,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordlibtblV4G )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local name, modposs, primes, checkordinary, i, p, tmodp, 2tmodp, aut,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss, modlib, trans, reps;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsCharacterTable( ordlibtblV4G ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no ordinary library table ...\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name:= Identifier( ordlibtblV4G );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modposs:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> primes:= ShallowCopy( PrimeDivisors( Size( tblG ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordposs:= ShallowCopy( ordposs );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> checkordinary:= false;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. Length( ordposs ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modposs[i]:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in primes do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tmodp := tblG mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 2tmodp:= tbl2G mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsCharacterTable( tmodp ) and IsCharacterTable( 2tmodp ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> aut:= ConstructionInfoCharacterTable( ordposs[i] )[3];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss:= BrauerTableOfTypeV4G( ordposs[i], 2tmodp, aut );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if CTblLib.Test.TensorDecomposition( poss, false ) = false then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I excluded cand. ", i, " (out of ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Length( ordposs ), ") for ", name, " by ", p,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "-mod. table\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( ordposs[i] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( modposs[i] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> checkordinary:= true;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> break;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( modposs[i], poss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I not all input tables for ", name, " mod ", p,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " available\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> primes:= Difference( primes, [ p ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsBound( modposs[i] ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compare the computed Brauer tables with the library tables.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for poss in modposs[i] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> p:= UnderlyingCharacteristic( poss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlib:= ordlibtblV4G mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsCharacterTable( modlib ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> trans:= TransformingPermutationsCharacterTables(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss, modlib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsRecord( trans ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name, " mod ", p, " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I no library table for ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> name, " mod ", p, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PrintToLib( name, poss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if checkordinary then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Test whether the ordinary table is admissible.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordposs:= Compacted( ordposs );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modposs:= Compacted( modposs );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps:= RepresentativesCharacterTables( ordposs );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if 1 < Length( reps ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", name, ": ", Length( reps ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " equivalence classes (ord. table)\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif Length( reps ) = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E ", name, ": no solution (ord. table)\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compare the computed table with the library table.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> trans:= TransformingPermutationsCharacterTables( reps[1],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordlibtblV4G );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsRecord( trans ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", name,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Test the uniqueness of the Brauer tables.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for poss in TransposedMat( modposs ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps:= RepresentativesCharacterTables( poss );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( reps ) <> 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#I ", name, ": ", Length( reps ), " candidates for the ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> UnderlyingCharacteristic( reps[1] ), "-modular table\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return rec( ordinary:= ordposs, modular:= modposs );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
</pre></div>
<p>In our examples, the action of the outer automorphism of order three on the classes of <span class="SimpleMath">G</span> turns out to be uniquely determined by the table automorphisms of the character table of <span class="SimpleMath">G</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in listV4G do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblG := CharacterTable( input[3] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tbl2G := CharacterTable( input[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lib := CharacterTable( input[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> poss := ConstructOrdinaryV4GTable( tblG, tbl2G, input[1], lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ConstructModularV4GTables( tblG, tbl2G, poss, lib );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
#I excluded cand. 1 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I excluded cand. 2 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I excluded cand. 7 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I excluded cand. 10 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I excluded cand. 15 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I excluded cand. 16 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I excluded cand. 1 (out of 16) for (2^2x3).L3(4).2_1 by 7-mod. table
#I excluded cand. 2 (out of 16) for (2^2x3).L3(4).2_1 by 7-mod. table
#I excluded cand. 7 (out of 16) for (2^2x3).L3(4).2_1 by 7-mod. table
#I excluded cand. 10 (out of 16) for (2^2x3).L3(4).2_1 by
7-mod. table
#I excluded cand. 15 (out of 16) for (2^2x3).L3(4).2_1 by
7-mod. table
#I excluded cand. 16 (out of 16) for (2^2x3).L3(4).2_1 by
7-mod. table
#I not all input tables for 2^2.2E6(2) mod 2 available
#I not all input tables for 2^2.2E6(2) mod 3 available
#I not all input tables for 2^2.2E6(2) mod 5 available
#I not all input tables for 2^2.2E6(2) mod 7 available
#I not all input tables for (2^2x3).2E6(2) mod 2 available
#I not all input tables for (2^2x3).2E6(2) mod 3 available
#I not all input tables for (2^2x3).2E6(2) mod 5 available
#I not all input tables for (2^2x3).2E6(2) mod 7 available
#I not all input tables for (2^2x3).2E6(2) mod 11 available
#I not all input tables for (2^2x3).2E6(2) mod 13 available
#I not all input tables for (2^2x3).2E6(2) mod 17 available
#I not all input tables for (2^2x3).2E6(2) mod 19 available
</pre></div>
<p><a id="X7F63DDF77870F967" name="X7F63DDF77870F967"></a></p>
<h5>2.7-3 <span class="Heading">The Character Table of <span class="SimpleMath">2^2.O_8^+(3)</span> (March 2009)</span></h5>
<p>When one tries to construct the character table of the central extensions of <span class="SimpleMath">G = O_8^+(3)</span> by a Klein four group, in the same way as in Section <a href="chap2.html#X83652A0282A64D14"><span class="RefLink">2.7-2</span></a>, one notices that the order three automorphism that relates the three central extensions of <span class="SimpleMath">G</span> by an involution is <em>not</em> uniquely determined.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">entry:= [ "2^2.O8+(3)", "2.O8+(3)", "O8+(3)" ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( entry[3] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">aut:= AutomorphismsOfTable( tblG );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord3:= Set( Filtered( aut, x -> Order( x ) = 3 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SmallestGeneratorPerm );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( ord3 );</span>
4
</pre></div>
<p>However, the table candidates one gets from the four possible automorphisms turn out to be all equivalent, hence the character table of <span class="SimpleMath">2^2.O_8^+(3)</span> can be constructed as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl2G:= CharacterTable( entry[2] );</span>
CharacterTable( "2.O8+(3)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">for pi in ord3 do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( poss,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PossibleCharacterTablesOfTypeV4G( tblG, tbl2G, pi, entry[1] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
32
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= RepresentativesCharacterTables( poss );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
1
</pre></div>
<p>The computed table coincides with the library table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">lib:= CharacterTable( entry[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">if TransformingPermutationsCharacterTables( poss[1], lib ) = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E differences for ", entry[1], "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
</pre></div>
<p><a id="X86A1607787DE6BB9" name="X86A1607787DE6BB9"></a></p>
<h5>2.7-4 <span class="Heading">The Character Table of the Schur Cover of <span class="SimpleMath">L_3(4)</span>
(September 2005)</span></h5>
<p>The Schur cover of <span class="SimpleMath">G = L_3(4)</span> has the structure <span class="SimpleMath">(4^2 × 3).L_3(4)</span>. Following <a href="chapBib.html#biBCCN85">[CCN+85, p. 23]</a>, we regard the multiplier of <span class="SimpleMath">G</span> as</p>
<p class="pcenter">M = ⟨ a, b, c, d ∣ [a,b] = [a,c] = [a,d] = [b,c] = [b,d] = [c,d] = a^4 = b^4 = c^4 = d^3 = abc ⟩ ,</p>
<p>and we will consider the automorphism <span class="SimpleMath">α</span> of <span class="SimpleMath">M.G</span> that acts as <span class="SimpleMath">(a,b,c)(d)</span> on <span class="SimpleMath">M</span>.</p>
<p>The subgroup lattice of the subgroup <span class="SimpleMath">⟨ a, b, c ⟩ = ⟨ a, b ⟩ ≅ 4^2</span> of <span class="SimpleMath">M</span> looks as follows. (The subgroup in the centre of the picture is the Klein four group <span class="SimpleMath">⟨ a^2, b^2, c^2 ⟩ = ⟨ a^2, b^2 ⟩</span>.)</p>
<p><center> <img src="ctblcons19.png" alt="Schur cover of L3(4)"/> </center></p>
<p>(The symmetry w.r.t. <span class="SimpleMath">α</span> would be reflected better in a three dimensional model, with <span class="SimpleMath">⟨ a, b ⟩</span>, <span class="SimpleMath">⟨ a^2, b^2 ⟩</span>, and the trivial subgroup on a vertical symmetry axis, and with the remaining subgroups on three circles such that <span class="SimpleMath">α</span> induces a rotation.)</p>
<p>The following is a 3D variant of the picture, which shows the symmetry of order three of the group <span class="SimpleMath">4 × 4</span>. <center> <img src="ctblcons20.png" alt="Schur cover of L3(4), emphasizing a symmetry of order three "/> </center></p>
<p>We have <span class="SimpleMath">(M / ⟨ a ⟩).G ≅ (M / ⟨ b ⟩).G ≅ (M / ⟨ c ⟩).G ≅ 12_2.G</span> and <span class="SimpleMath">(M / ⟨ a b^2 ⟩).G ≅ (M / ⟨ b c^2 ⟩).G ≅ (M / ⟨ c a^2 ⟩).G ≅ 12_1.G</span>. This is because the action of <span class="SimpleMath">G.2_2</span> fixes <span class="SimpleMath">a</span>, and swaps <span class="SimpleMath">b</span> and <span class="SimpleMath">c</span>; so <span class="SimpleMath">b</span> is inverted modulo <span class="SimpleMath">⟨ a ⟩</span> but fixed modulo <span class="SimpleMath">⟨ a b^2 ⟩</span>, and the normal subgroup of order four in <span class="SimpleMath">4_2.G.2_2</span> is central but that in <span class="SimpleMath">4_1.G.2_2</span> is not central.</p>
<p>The constructions of the character tables of <span class="SimpleMath">4^2.G</span> and <span class="SimpleMath">(4^2 × 3).G</span> are essentially the same. We start with the table of <span class="SimpleMath">4^2.G</span>. It can be regarded as a central extension <span class="SimpleMath">H = V.2^2.G</span> of <span class="SimpleMath">2^2.G</span> by a Klein four group <span class="SimpleMath">V</span>. The three subgroups of order two in <span class="SimpleMath">V</span> are cyclicly permuted by the automorphism of <span class="SimpleMath">M / ⟨ d ⟩</span> induced by <span class="SimpleMath">α</span>, so the three factors by these subgroups are isomorphic groups <span class="SimpleMath">F</span>, say, with the structure <span class="SimpleMath">(2 × 4).G</span>.</p>
<p>The group <span class="SimpleMath">F</span> itself is a central extension of <span class="SimpleMath">2.G</span> by a Klein four group, but in this case the three factor groups by the order two subgroups of the Klein four group are nonisomorphic groups, of the types <span class="SimpleMath">4_1.G</span>, <span class="SimpleMath">4_2.G</span>, and <span class="SimpleMath">2^2.G</span>, respectively. The <strong class="pkg">GAP</strong> function <code class="func">PossibleCharacterTablesOfTypeV4G</code> (<a href="..//doc/chap5.html#X7E7043A5857B9240"><span class="RefLink">CTblLib: PossibleCharacterTablesOfTypeV4G</span></a>) can be used to construct the character table of <span class="SimpleMath">F</span> from the three factors. Note that in this case, no information about table automorphisms is required.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "2.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls2G:= List( [ "4_1.L3(4)", "4_2.L3(4)", "2^2.L3(4)"],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeV4G( tblG, tbls2G, "(2x4).L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= RepresentativesCharacterTables( poss );</span>
[ CharacterTable( "(2x4).L3(4)" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">lib:= CharacterTable( "(2x4).L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( reps[1], lib ) );</span>
true
</pre></div>
<p>In the second step, we construct the table of <span class="SimpleMath">4^2.G</span> from that of <span class="SimpleMath">(2 × 4).G</span> and the table automorphism of <span class="SimpleMath">2^2.G</span> that is induced by <span class="SimpleMath">α</span>; it turns out that the group of table automorphisms of <span class="SimpleMath">2^2.G</span> contains a unique subgroup of order three.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= tbls2G[3];</span>
CharacterTable( "2^2.L3(4)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl2G:= lib; </span>
CharacterTable( "(2x4).L3(4)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">aut:= AutomorphismsOfTable( tblG );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord3:= Set( Filtered( aut, x -> Order( x ) = 3 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SmallestGeneratorPerm );</span>
[ (2,3,4)(6,7,8)(10,11,12)(13,15,17)(14,16,18)(20,21,22)(24,25,26)(28,
29,30)(32,33,34) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= ord3[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeV4G( tblG, tbl2G, pi, "4^2.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= RepresentativesCharacterTables( poss ); </span>
[ CharacterTable( "4^2.L3(4)" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">lib:= CharacterTable( "4^2.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( reps[1], lib ) );</span>
true
</pre></div>
<p>With the same approach, we compute the table of <span class="SimpleMath">(2 × 12).G = 2^2.6.G</span> from the tables of the three nonisomorphic factor groups <span class="SimpleMath">12_1.G</span>, <span class="SimpleMath">12_2.G</span>, and <span class="SimpleMath">(2^2 × 3).G</span>, and we compute the table of <span class="SimpleMath">(4^2 × 3).G = 2^2.(2^2 × 3).G</span> from the three tables of the factor groups <span class="SimpleMath">(2 × 12).G</span> and the action induced by <span class="SimpleMath">α</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "6.L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls2G:= List( [ "12_1.L3(4)", "12_2.L3(4)", "(2^2x3).L3(4)"], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeV4G( tblG, tbls2G, "(2x12).L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= RepresentativesCharacterTables( poss );</span>
[ CharacterTable( "(2x12).L3(4)" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">lib:= CharacterTable( "(2x12).L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( reps[1], lib ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">tblG:= CharacterTable( "(2^2x3).L3(4)" ); </span>
CharacterTable( "(2^2x3).L3(4)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl2G:= CharacterTable( "(2x12).L3(4)" );</span>
CharacterTable( "(2x12).L3(4)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">aut:= AutomorphismsOfTable( tblG );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord3:= Set( Filtered( aut, x -> Order( x ) = 3 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SmallestGeneratorPerm );</span>
[ (2,7,8)(3,4,10)(6,11,12)(14,19,20)(15,16,22)(18,23,24)(26,27,28)(29,
35,41)(30,37,43)(31,39,45)(32,36,42)(33,38,44)(34,40,46)(48,53,
54)(49,50,56)(52,57,58)(60,65,66)(61,62,68)(64,69,70)(72,77,
78)(73,74,80)(76,81,82)(84,89,90)(85,86,92)(88,93,94) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= ord3[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeV4G( tblG, tbl2G, pi,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "(4^2x3).L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= RepresentativesCharacterTables( poss );</span>
[ CharacterTable( "(4^2x3).L3(4)" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">lib:= CharacterTable( "(4^2x3).L3(4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( reps[1], lib ) );</span>
true
</pre></div>
<p><a id="X8711DBB083655A25" name="X8711DBB083655A25"></a></p>
<h4>2.8 <span class="Heading">Examples of Extensions by <span class="SimpleMath">p</span>-singular Automorphisms</span></h4>
<p><a id="X81C08739850E4AAE" name="X81C08739850E4AAE"></a></p>
<h5>2.8-1 <span class="Heading">Some <span class="SimpleMath">p</span>-Modular Tables of Groups of the Type <span class="SimpleMath">M.G.A</span></span></h5>
<p>We show an alternative construction of <span class="SimpleMath">p</span>-modular tables of certain groups that have been met in Section <a href="chap2.html#X7ED45AB379093A70"><span class="RefLink">2.4-3</span></a>. Each entry in the <strong class="pkg">GAP</strong> list <code class="code">listMGA</code> contains the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) values of character tables of groups of the types <span class="SimpleMath">M.G</span>, <span class="SimpleMath">G</span>, <span class="SimpleMath">G.A</span>, and <span class="SimpleMath">M.G.A</span>. For each entry with <span class="SimpleMath">|A| = p</span>, a prime integer, we fetch the <span class="SimpleMath">p</span>-modular table of <span class="SimpleMath">G</span> and the ordinary table of <span class="SimpleMath">G.A</span>, compute the action of <span class="SimpleMath">G.A</span> on the <span class="SimpleMath">p</span>-regular classes of <span class="SimpleMath">G</span>, and then compute the <span class="SimpleMath">p</span>-modular table of <span class="SimpleMath">G.A</span>. Analogously, we compute the <span class="SimpleMath">p</span>-modular table of <span class="SimpleMath">M.G.A</span> from the <span class="SimpleMath">p</span>-modular table of <span class="SimpleMath">M.G</span> and the ordinary table of <span class="SimpleMath">M.G.A</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in listMGA do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblMG := CharacterTable( input[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblG := CharacterTable( input[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblGA := CharacterTable( input[3] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblMGA := CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> p:= Size( ordtblGA ) / Size( ordtblG );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsPrimeInt( p ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblG:= ordtblG mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modtblG <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblGA := CharacterTableRegular( ordtblGA, p );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SetIrr( modtblGA, IBrOfExtensionBySingularAutomorphism( modtblG,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblGA ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblGA:= ordtblGA mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modlibtblGA = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E ", p, "-modular table of '", Identifier( ordtblGA ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "' is missing\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif TransformingPermutationsCharacterTables( modtblGA,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblGA ) = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", input[3],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " mod ", p, " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblMG:= ordtblMG mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modtblMG <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblMGA := CharacterTableRegular( ordtblMGA, p );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SetIrr( modtblMGA, IBrOfExtensionBySingularAutomorphism( modtblMG,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblMGA ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblMGA:= ordtblMGA mod p;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modlibtblMGA = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E ", p, "-modular table of '", Identifier( ordtblMGA ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "' is missing\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif TransformingPermutationsCharacterTables( modtblMGA,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblMGA ) = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", input[4],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " mod ", p, " differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p><a id="X7FED618F83ACB7C2" name="X7FED618F83ACB7C2"></a></p>
<h5>2.8-2 <span class="Heading">Some <span class="SimpleMath">p</span>-Modular Tables of Groups of the Type <span class="SimpleMath">G.S_3</span></span></h5>
<p>We show an alternative construction of <span class="SimpleMath">2</span>- and <span class="SimpleMath">3</span>-modular tables of certain groups that have been met in Section <a href="chap2.html#X80F9BC057980A9E9"><span class="RefLink">2.5-2</span></a>. Each entry in the <strong class="pkg">GAP</strong> list <code class="code">listGS3</code> contains the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) values of character tables of groups of the types <span class="SimpleMath">G</span>, <span class="SimpleMath">G.2</span>, <span class="SimpleMath">G.3</span>, and <span class="SimpleMath">G.S_3</span>. For each entry, we fetch the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G</span> and the ordinary table of <span class="SimpleMath">G.2</span>, compute the action of <span class="SimpleMath">G.2</span> on the <span class="SimpleMath">2</span>-regular classes of <span class="SimpleMath">G</span>, and then compute the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G.2</span>. Analogously, we compute the <span class="SimpleMath">3</span>-modular table of <span class="SimpleMath">G.3</span> from the <span class="SimpleMath">3</span>-modular table of <span class="SimpleMath">G</span> and the ordinary table of <span class="SimpleMath">G.3</span>, and we compute the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G.S_3</span> from the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G.3</span> and the ordinary table of <span class="SimpleMath">G.S_3</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in listGS3 do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblG:= CharacterTable( input[1] ) mod 2;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modtblG <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblG2 := CharacterTable( input[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblG2 := CharacterTableRegular( ordtblG2, 2 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SetIrr( modtblG2, IBrOfExtensionBySingularAutomorphism( modtblG,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblG2 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblG2:= ordtblG2 mod 2;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modlibtblG2 = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E 2-modular table of '", Identifier( ordtblG2 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "' is missing\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif TransformingPermutationsCharacterTables( modtblG2,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblG2 ) = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", input[2],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " mod 2 differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblG:= CharacterTable( input[1] ) mod 3;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modtblG <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblG3 := CharacterTable( input[3] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblG3 := CharacterTableRegular( ordtblG3, 3 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SetIrr( modtblG3, IBrOfExtensionBySingularAutomorphism( modtblG,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblG3 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblG3:= ordtblG3 mod 3;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modlibtblG3 = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E 3-modular table of '", Identifier( ordtblG3 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "' is missing\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif TransformingPermutationsCharacterTables( modtblG3,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblG3 ) = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", input[3],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " mod 3 differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblG3:= CharacterTable( input[3] ) mod 2;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modtblG3 <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblGS3 := CharacterTable( input[4] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblGS3 := CharacterTableRegular( ordtblGS3, 2 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SetIrr( modtblGS3, IBrOfExtensionBySingularAutomorphism( modtblG3,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblGS3 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblGS3:= ordtblGS3 mod 2;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modlibtblGS3 = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E 2-modular table of '", Identifier( ordtblGS3 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "' is missing\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif TransformingPermutationsCharacterTables( modtblGS3,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblGS3 ) = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", input[4],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " mod 2 differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p><a id="X7EEF6A7F8683177A" name="X7EEF6A7F8683177A"></a></p>
<h5>2.8-3 <span class="Heading"><span class="SimpleMath">2</span>-Modular Tables of Groups of the Type <span class="SimpleMath">G.2^2</span></span></h5>
<p>We show an alternative construction of <span class="SimpleMath">2</span>-modular tables of certain groups that have been met in Section <a href="chap2.html#X7FEC3AB081487AF2"><span class="RefLink">2.6-2</span></a>. Each entry in the <strong class="pkg">GAP</strong> list <code class="code">listGV4</code> contains the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) values of character tables of groups of the types <span class="SimpleMath">G</span>, <span class="SimpleMath">G.2_1</span>, <span class="SimpleMath">G.2_2</span>, <span class="SimpleMath">G.2_3</span>, and <span class="SimpleMath">G.2^2</span>. For each entry, we fetch the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G</span> and the ordinary tables of the groups <span class="SimpleMath">G.2_i</span>, and compute the <span class="SimpleMath">2</span>-modular tables of <span class="SimpleMath">G.2_i</span>; Then we compute from this modular table and the ordinary table of <span class="SimpleMath">G.2^2</span> the <span class="SimpleMath">2</span>-modular table of <span class="SimpleMath">G.2^2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for input in listGV4 do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblG:= CharacterTable( input[1] ) mod 2;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modtblG <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblsG2:= List( input{ [ 2 .. 4 ] }, CharacterTable );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblGV4:= CharacterTable( input[5] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for tblG2 in ordtblsG2 do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblG2:= CharacterTableRegular( tblG2, 2 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SetIrr( modtblG2, IBrOfExtensionBySingularAutomorphism( modtblG,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblG2 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblG2:= tblG2 mod 2;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modlibtblG2 = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E 2-modular table of '", Identifier( tblG2 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "' is missing\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif TransformingPermutationsCharacterTables( modtblG2,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblG2 ) = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Identifier( tblG2 ), " mod 2 differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblGV4:= CharacterTableRegular( ordtblGV4, 2 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SetIrr( modtblGV4, IBrOfExtensionBySingularAutomorphism( modtblG2,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblGV4 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblGV4:= ordtblGV4 mod 2;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modlibtblGV4 = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E 2-modular table of '", Identifier( ordtblGV4 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "' is missing\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif TransformingPermutationsCharacterTables( modtblGV4,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblGV4 mod 2 ) = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ", input[5],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> " mod 2 differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p><a id="X875F8DD77C0997FA" name="X875F8DD77C0997FA"></a></p>
<h5>2.8-4 <span class="Heading">The <span class="SimpleMath">3</span>-Modular Table of <span class="SimpleMath">U_3(8).3^2</span></span></h5>
<p>The only example of an <strong class="pkg">Atlas</strong> group of the structure <span class="SimpleMath">G.3^3</span> is <span class="SimpleMath">U_3(8).3^2</span>. Its <span class="SimpleMath">3</span>-modular character table can be constructed from the known <span class="SimpleMath">3</span>-modular character table of any of its index <span class="SimpleMath">3</span> subgroups, plus the action of <span class="SimpleMath">U_3(8).3^2</span> on the classes of this subgroup.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ordtblG3:= CharacterTable( "U3(8).3^2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">modlibtblG3:= ordtblG3 mod 3;</span>
BrauerTable( "U3(8).3^2", 3 )
<span class="GAPprompt">gap></span> <span class="GAPinput">for nam in [ "U3(8).3_1", "U3(8).3_2", "U3(8).3_3" ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblG:= CharacterTable( nam ) mod 3;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if modtblG = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "no 3-modular table of ", nam );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modtblG3:= CharacterTableRegular( ordtblG3, 3 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> SetIrr( modtblG3, IBrOfExtensionBySingularAutomorphism( modtblG,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ordtblG3 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if TransformingPermutationsCharacterTables( modtblG3,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modlibtblG3 ) = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "#E computed table and library table for ",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Identifier( ordtblG3 ), " mod 3 differ\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p>As expected, we get the same <span class="SimpleMath">3</span>-modular table for any choice of the index <span class="SimpleMath">3</span> subgroup.</p>
<p>Note that all <span class="SimpleMath">3</span>-modular Brauer characters of <span class="SimpleMath">U_3(8).3^2</span> lift to characteristic zero.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">rest:= RestrictedClassFunctions( Irr( ordtblG3 ), modlibtblG3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubset( rest, Irr( modlibtblG3 ) );</span>
true
</pre></div>
<p><a id="X7A4D6044865E516B" name="X7A4D6044865E516B"></a></p>
<h4>2.9 <span class="Heading">Examples of Subdirect Products of Index Two</span></h4>
<p>Typical examples of this construction are those maximal subgroups of alternating groups <span class="SimpleMath">A_n</span> that extend in the corresponding symmetric groups <span class="SimpleMath">S_n</span> to direct products of the structures <span class="SimpleMath">S_m × S_n-m</span>, for <span class="SimpleMath">2 < m < n/2</span>. Also certain subgroups of these maximal subgroups that have this structure can be interesting, see Section <a href="chap2.html#X7925DBFA7C5986B5"><span class="RefLink">2.4-2</span></a>.</p>
<p><a id="X850FF694801700CF" name="X850FF694801700CF"></a></p>
<h5>2.9-1 <span class="Heading">Certain Dihedral Groups as Subdirect Products of Index Two</span></h5>
<p>Also dihedral groups of order <span class="SimpleMath">2 n</span> with <span class="SimpleMath">n</span> divisible by at least two different primes have the required structure: Let <span class="SimpleMath">n = n_1 n_2</span> with coprime <span class="SimpleMath">n_1</span>, <span class="SimpleMath">n_2</span>, and let the normal subgroups <span class="SimpleMath">H_1</span>, <span class="SimpleMath">H_2</span> be cyclic subgroups of order <span class="SimpleMath">n_1</span> and <span class="SimpleMath">n_2</span>, respectively, inside the cyclic subgroup of index two. Then the factors <span class="SimpleMath">G/N_1</span>, <span class="SimpleMath">G/N_2</span> are themselves dihedral groups.</p>
<p>So an example (with <span class="SimpleMath">n_1 = 3</span> and <span class="SimpleMath">n_2 = 5</span>) is the construction of the dihedral group <span class="SimpleMath">D_30</span> as a subdirect product of index two in the direct product <span class="SimpleMath">D_6 × D_10</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblh1:= CharacterTable( "C3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblg1:= CharacterTable( "S3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblh1, PossibleClassFusions( tblh1, tblg1 )[1], tblg1 );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblh2:= CharacterTable( "C5" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblg2:= CharacterTable( "D10" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( tblh2, PossibleClassFusions( tblh2, tblg2 )[1], tblg2 );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">subdir:= CharacterTableOfIndexTwoSubdirectProduct( tblh1, tblg1,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblh2, tblg2, "D30" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( subdir.table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "Dihedral", 30 ) ) );</span>
true
</pre></div>
<p><a id="X80C5D6FA83D7E2CF" name="X80C5D6FA83D7E2CF"></a></p>
<h5>2.9-2 <span class="Heading">The Character Table of <span class="SimpleMath">(D_10 × HN).2 < M</span> (June 2008)</span></h5>
<p>The sporadic simple Monster group contains maximal subgroups with the structure <span class="SimpleMath">(D_10 × HN).2</span> (see <a href="chapBib.html#biBCCN85">[CCN+85, p. 234]</a>), the factor group modulo <span class="SimpleMath">D_10</span> is the automorphism group <span class="SimpleMath">HN.2</span> of <span class="SimpleMath">HN</span>, and the factor group modulo <span class="SimpleMath">HN</span> is the Frobenius group <span class="SimpleMath">5:4</span> of order <span class="SimpleMath">20</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblh1:= CharacterTable( "D10" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblg1:= CharacterTable( "5:4" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblh2:= CharacterTable( "HN" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblg2:= CharacterTable( "HN.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">subdir:= CharacterTableOfIndexTwoSubdirectProduct( tblh1, tblg1,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> tblh2, tblg2, "(D10xHN).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( subdir.table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "(D10xHN).2" ) ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( subdir.table, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( fus );</span>
16
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( subdir.table, fus, m ) );</span>
1
</pre></div>
<p>An alternative construction is the one described in Section <a href="chap2.html#X82E75B6880EC9E6C"><span class="RefLink">2.3-1</span></a>, as <span class="SimpleMath">(D_10 × HN).2 = M.G.A</span> with <span class="SimpleMath">G = 2 × HN</span>, <span class="SimpleMath">M.G = D_10 × HN</span>, and <span class="SimpleMath">G.A</span> the subdirect product of <span class="SimpleMath">HN.2</span> and a cyclic group of order four (which can be constructed as the isoclinic variant of <span class="SimpleMath">2 × HN.2</span>, see Section <a href="chap2.html#X80C37276851D5E39"><span class="RefLink">2.2-4</span></a>).</p>
<p>Here is this construction:</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2:= CharacterTable( "C2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hn:= CharacterTable( "HN" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= c2 * hn;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">d10:= CharacterTable( "D10" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mg:= d10 * hn;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= ClassPositionsOfNormalSubgroups( mg );</span>
[ [ 1 ], [ 1, 55 .. 109 ], [ 1, 55 .. 163 ], [ 1 .. 54 ],
[ 1 .. 162 ], [ 1 .. 216 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesConjugacyClasses( mg ){ nsg[2] };</span>
[ 1, 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= mg / nsg[2];</span>
CharacterTable( "D10xHN/[ 1, 55, 109 ]" )
<span class="GAPprompt">gap></span> <span class="GAPinput">help:= c2 * CharacterTable( "HN.2" );</span>
CharacterTable( "C2xHN.2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">ga:= CharacterTableIsoclinic( help ); </span>
CharacterTable( "Isoclinic(C2xHN.2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">gfusga:= PossibleClassFusions( g, ga ); </span>
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 23, 24, 25, 25, 26, 27, 28, 29, 30, 31,
32, 32, 33, 33, 34, 35, 36, 37, 37, 38, 39, 40, 40, 41, 42, 42,
43, 43, 44, 44, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 101, 102,
103, 103, 104, 105, 106, 107, 108, 109, 110, 110, 111, 111,
112, 113, 114, 115, 115, 116, 117, 118, 118, 119, 120, 120,
121, 121, 122, 122 ],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 23, 24, 25, 25, 26, 27, 28, 29, 30, 31,
32, 32, 33, 33, 35, 34, 36, 37, 37, 38, 39, 40, 40, 41, 42, 42,
43, 43, 44, 44, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 101, 102,
103, 103, 104, 105, 106, 107, 108, 109, 110, 110, 111, 111,
113, 112, 114, 115, 115, 116, 117, 118, 118, 119, 120, 120,
121, 121, 122, 122 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StoreFusion( g, gfusga[1], ga );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">acts:= PossibleActionsForTypeMGA( mg, g, ga );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( acts );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= PossibleCharacterTablesOfTypeMGA( mg, g, ga, acts[1], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> "(D10xHN).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( TransformingPermutationsCharacterTables( poss[1].table,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CharacterTable( "(D10xHN).2" ) ) );</span>
true
</pre></div>
<p><a id="X85EECFD47EC252A2" name="X85EECFD47EC252A2"></a></p>
<h5>2.9-3 <span class="Heading">A Counterexample (August 2015)</span></h5>
<p>A group <span class="SimpleMath">G</span> is called <em>real</em> if each of its elements is conjugate in <span class="SimpleMath">G</span> to its inverse. Equivalently, a group is real if and only if all its character values are real. One might ask whether the Sylow <span class="SimpleMath">2</span>-subgroup of a real group is itself real. Counterexamples can be found by a search through <strong class="pkg">GAP</strong>'s library of small groups. Using the facts we have collected about index two subdirect products in Section <a href="chap2.html#X788591D78451C024"><span class="RefLink">2.3-6</span></a>, we can demonstrate such a counterexample without using <strong class="pkg">GAP</strong>.</p>
<p>Let <span class="SimpleMath">H_1 = A_4</span>, <span class="SimpleMath">G_1 = S_4</span>, <span class="SimpleMath">H_2 = C_4</span>, and <span class="SimpleMath">G_2</span> a nonabelian group of order <span class="SimpleMath">8</span>, and consider the unique index two subgroup <span class="SimpleMath">G</span> of <span class="SimpleMath">G_1 × G_2</span> that is different from <span class="SimpleMath">H_1 × G_2</span> and <span class="SimpleMath">G_1 × H_2</span>.</p>
<p>Each irreducible character of <span class="SimpleMath">G</span> either extends to <span class="SimpleMath">G_1 × G_2</span> or it is induced from an irreducible character of <span class="SimpleMath">H_1 × H_2</span>. In the former case, the character is integer valued. Irrational values in the latter case arise as follows.</p>
<p>Let <span class="SimpleMath">χ</span> be an irreducible character of <span class="SimpleMath">H_1 × H_2</span>; then it is the product of irreducible characters <span class="SimpleMath">χ_1</span> and <span class="SimpleMath">χ_2</span> of <span class="SimpleMath">H_1</span> and <span class="SimpleMath">H_2</span>, respectively. If <span class="SimpleMath">χ</span> has irrational values then <span class="SimpleMath">χ_1</span> takes primitive third roots of unity <span class="SimpleMath">ω, ω^2</span> on elements of order three in <span class="SimpleMath">H_1</span>, or <span class="SimpleMath">χ_2</span> takes primitive fourth roots of unity <span class="SimpleMath">± i</span> on elements of order four in <span class="SimpleMath">H_2</span>, or both. In the first two cases, inducing <span class="SimpleMath">χ</span> to <span class="SimpleMath">G</span> yields an integer valued character, because each pair of Galois conjugate classes fuses in <span class="SimpleMath">G</span> on which <span class="SimpleMath">χ</span> takes irrational values. In the last case, <span class="SimpleMath">χ</span> takes primitive <span class="SimpleMath">12</span>-th roots of unity <span class="SimpleMath">± i ω</span> and <span class="SimpleMath">± i ω^2</span> on elements of order <span class="SimpleMath">12</span>; since <span class="SimpleMath">G</span> fuses the classes with the character values <span class="SimpleMath">i ω</span> and <span class="SimpleMath">-i ω^2</span>, we get the character value <span class="SimpleMath">i ω -i ω^2 = -sqrt{3}</span> in the induced character <span class="SimpleMath">χ^G</span>. This means that this character is real valued. Hence <span class="SimpleMath">G</span> is real.</p>
<p>Now we consider a Sylow <span class="SimpleMath">2</span>-subgroup of <span class="SimpleMath">G</span>. It has also the structure of a subdirect product, as follows. Let <span class="SimpleMath">H_1 = V_4</span>, <span class="SimpleMath">G_1 = D_8</span>, and <span class="SimpleMath">H_2</span> and <span class="SimpleMath">G_2</span> as above, and consider the unique index two subgroup <span class="SimpleMath">G</span> of <span class="SimpleMath">G_1 × G_2</span> that is different from <span class="SimpleMath">H_1 × G_2</span> and <span class="SimpleMath">G_1 × H_2</span>.</p>
<p>As above, irrational values in an irreducible character of <span class="SimpleMath">G</span> arise only if this character is induced from a character <span class="SimpleMath">χ</span>, say, that is the product of irreducible characters <span class="SimpleMath">χ_1</span> and <span class="SimpleMath">χ_2</span> of <span class="SimpleMath">H_1</span> and <span class="SimpleMath">H_2</span>, respectively. In this case, <span class="SimpleMath">χ_2</span> takes primitive fourth roots of unity <span class="SimpleMath">± i</span> on elements of order four in <span class="SimpleMath">H_2</span>. Moreover, <span class="SimpleMath">χ_1</span> takes different values <span class="SimpleMath">± 1</span> on the two classes of <span class="SimpleMath">H_1</span> that are fused in <span class="SimpleMath">G</span> if the induced character has irrational values, and these values are <span class="SimpleMath">± 2i</span>. Hence the group <span class="SimpleMath">G</span> is <em>not</em> real.</p>
<p>(In fact the above two groups of order <span class="SimpleMath">96</span> are the smallest real groups with non-real Sylow <span class="SimpleMath">2</span>-subgroup, and there are no other such groups of this order.)</p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap1.html">[Previous Chapter]</a> <a href="chap3.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|