File: chap5_mj.html

package info (click to toggle)
gap-ctbllib 1.3.9-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 74,872 kB
  • sloc: xml: 41,268; makefile: 215; javascript: 155
file content (738 lines) | stat: -rw-r--r-- 68,561 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
  src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (CTblLibXpls) - Chapter 5: GAP Computations with \(O_8^+(5).S_3\) and \(O_8^+(2).S_3\)</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap5"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap4_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap6_mj.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap5.html">[MathJax off]</a></p>
<p><a id="X8703EFEE81DDE3DD" name="X8703EFEE81DDE3DD"></a></p>
<div class="ChapSects"><a href="chap5_mj.html#X8703EFEE81DDE3DD">5 <span class="Heading"><strong class="pkg">GAP</strong> Computations with <span class="SimpleMath">\(O_8^+(5).S_3\)</span> and <span class="SimpleMath">\(O_8^+(2).S_3\)</span></span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X8389AD927B74BA4A">5.1 <span class="Heading">Overview</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X85FF559084C08F0F">5.2 <span class="Heading">Constructing Representations of <span class="SimpleMath">\(M.2\)</span> and <span class="SimpleMath">\(S.2\)</span></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5_mj.html#X7FEE53AB845B9327">5.2-1 <span class="Heading">A Matrix Representation of the Weyl Group of Type <span class="SimpleMath">\(E_8\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5_mj.html#X7C8AA7747F160F8A">5.2-2 <span class="Heading">Embedding the Weyl group of Type <span class="SimpleMath">\(E_8\)</span> into GO<span class="SimpleMath">\({}^+(8,5)\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5_mj.html#X83E3E79F8724C365">5.2-3 <span class="Heading">Compatible Generators of <span class="SimpleMath">\(M\)</span>, <span class="SimpleMath">\(M.2\)</span>, <span class="SimpleMath">\(S\)</span>, and <span class="SimpleMath">\(S.2\)</span></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X83F897DD7C48511C">5.3 <span class="Heading">Constructing Representations of <span class="SimpleMath">\(M.3\)</span> and <span class="SimpleMath">\(S.3\)</span></span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5_mj.html#X7B7561D0855EC4F1">5.3-1 <span class="Heading">The Action of <span class="SimpleMath">\(M.3\)</span> on <span class="SimpleMath">\(M\)</span></span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5_mj.html#X8246803779EB8FEE">5.3-2 <span class="Heading">The Action of <span class="SimpleMath">\(S.3\)</span> on <span class="SimpleMath">\(S\)</span></span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X816AFA187E95C018">5.4 <span class="Heading">Constructing Compatible Generators of <span class="SimpleMath">\(H\)</span> and <span class="SimpleMath">\(G\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X83F0387D789709D1">5.5 <span class="Heading">Application: Regular Orbits of <span class="SimpleMath">\(H\)</span> on <span class="SimpleMath">\(G/H\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X7F0C266082BE1578">5.6 <span class="Heading">Appendix: The Permutation Character <span class="SimpleMath">\((1_H^G)_H\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X7F3A630780F8E262">5.7 <span class="Heading">Appendix: The Data File</span></a>
</span>
</div>
</div>

<h3>5 <span class="Heading"><strong class="pkg">GAP</strong> Computations with <span class="SimpleMath">\(O_8^+(5).S_3\)</span> and <span class="SimpleMath">\(O_8^+(2).S_3\)</span></span></h3>

<p>Date: October 08th, 2006</p>

<p>This chapter shows how to construct a representation of the automorphic extension <span class="SimpleMath">\(G\)</span> of the simple group <span class="SimpleMath">\(S = O_8^+(5)\)</span> by a symmetric group on three points, together with an embedding of the normalizer <span class="SimpleMath">\(H\)</span> of an <span class="SimpleMath">\(O_8^+(2)\)</span> type subgroup of <span class="SimpleMath">\(O_8^+(5)\)</span>.</p>

<p>As an application, it is shown that the permutation representation of <span class="SimpleMath">\(G\)</span> on the cosets of <span class="SimpleMath">\(H\)</span> has a base of length two. This question arose in <a href="chapBib_mj.html#biBBGS11">[BGS11]</a>.</p>

<p><a id="X8389AD927B74BA4A" name="X8389AD927B74BA4A"></a></p>

<h4>5.1 <span class="Heading">Overview</span></h4>

<p>Let <span class="SimpleMath">\(S\)</span> denote the simple group <span class="SimpleMath">\(O_8^+(5) \cong \)</span> P<span class="SimpleMath">\(\Omega^+(8,5)\)</span>, that is, the nonabelian simple group that occurs as a composition factor of the general orthogonal group GO<span class="SimpleMath">\({}^+(8,5)\)</span> of <span class="SimpleMath">\(8 \times 8\)</span> matrices over the field with five elements.</p>

<p>The outer automorphism group of <span class="SimpleMath">\(S\)</span> is isomorphic to the symmetric group on four points. Let <span class="SimpleMath">\(G\)</span> be an automorphic extension of <span class="SimpleMath">\(S\)</span> by the symmetric group on three points. By <a href="chapBib_mj.html#biBKle87">[Kle87]</a>, the group <span class="SimpleMath">\(S\)</span> contains a maximal subgroup <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(O_8^+(2)\)</span> such that the normalizer <span class="SimpleMath">\(H\)</span>, say, of <span class="SimpleMath">\(M\)</span> in <span class="SimpleMath">\(G\)</span> is an automorphic extension of <span class="SimpleMath">\(M\)</span> by a symmetric group on three points. (In fact, <span class="SimpleMath">\(H\)</span> is isomorphic to the full automorphism group of <span class="SimpleMath">\(O_8^+(2)\)</span>.)</p>

<p>Let <span class="SimpleMath">\(S.2\)</span> and <span class="SimpleMath">\(S.3\)</span> denote intermediate subgroups between <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(G\)</span>, in which <span class="SimpleMath">\(S\)</span> has the indices <span class="SimpleMath">\(2\)</span> and <span class="SimpleMath">\(3\)</span>, respectively. Analogously, let <span class="SimpleMath">\(M.2 = H \cap S.2\)</span> and <span class="SimpleMath">\(M.3 = H \cap S.3\)</span>.</p>

<p>In Section <a href="chap5_mj.html#X85FF559084C08F0F"><span class="RefLink">5.2</span></a>, we use the following approach to construct representations of <span class="SimpleMath">\(M.2\)</span> and <span class="SimpleMath">\(S.2\)</span>. By <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85]</a>, the Weyl group <span class="SimpleMath">\(W\)</span> of type <span class="SimpleMath">\(E_8\)</span> is a double cover of <span class="SimpleMath">\(M.2\)</span>, and the reduction of its rational <span class="SimpleMath">\(8\)</span>-dimensional representation modulo <span class="SimpleMath">\(5\)</span> embeds into the general orthogonal group GO<span class="SimpleMath">\({}^+(8,5)\)</span>, which has the structure <span class="SimpleMath">\(2.O_8^+(5).2^2\)</span>. Then the actions of GO<span class="SimpleMath">\({}^+(8,5)\)</span> and of an isomorphic image of <span class="SimpleMath">\(W\)</span> in GO<span class="SimpleMath">\({}^+(8,5)\)</span> on <span class="SimpleMath">\(1\)</span>-spaces in the natural module of GO<span class="SimpleMath">\({}^+(8,5)\)</span> yield <span class="SimpleMath">\(M.2\)</span> as a subgroup of (a supergroup of) <span class="SimpleMath">\(S.2\)</span>, where both groups are represented as permutation groups on <span class="SimpleMath">\(N = 19\,656\)</span> points.</p>

<p>In Section <a href="chap5_mj.html#X83F897DD7C48511C"><span class="RefLink">5.3</span></a>, first we use <strong class="pkg">GAP</strong> to compute the automorphism group of <span class="SimpleMath">\(M\)</span>. Then we take an outer automorphism <span class="SimpleMath">\(\alpha\)</span> of <span class="SimpleMath">\(M\)</span>, of order three, and extend <span class="SimpleMath">\(\alpha\)</span> to an automorphism of <span class="SimpleMath">\(S\)</span>. Concretely, we compute the images of generating sets of <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(M\)</span> under <span class="SimpleMath">\(\alpha\)</span> and <span class="SimpleMath">\(\alpha^2\)</span>. This yields permutation representations of <span class="SimpleMath">\(S.3\)</span> and its subgroup <span class="SimpleMath">\(M.3\)</span> on <span class="SimpleMath">\(3 N = 58\,968\)</span> points.</p>

<p>In Section <a href="chap5_mj.html#X816AFA187E95C018"><span class="RefLink">5.4</span></a>, we put the above information together, in order to construct permutation representations of <span class="SimpleMath">\(G\)</span> and <span class="SimpleMath">\(M\)</span>, on <span class="SimpleMath">\(3 N\)</span> points.</p>

<p>As an application, it is shown in Section <a href="chap5_mj.html#X83F0387D789709D1"><span class="RefLink">5.5</span></a> that the permutation representation of <span class="SimpleMath">\(G\)</span> on the cosets of <span class="SimpleMath">\(H\)</span> has a base of length two; this question arose in <a href="chapBib_mj.html#biBBGS11">[BGS11]</a>.</p>

<p>In two appendices, it is discussed how to derive a part of this result from the permutation character <span class="SimpleMath">\((1_H^G)_H\)</span> (see Section <a href="chap5_mj.html#X7F0C266082BE1578"><span class="RefLink">5.6</span></a>), and a file containing the data used in the earlier sections is described (see Section <a href="chap5_mj.html#X7F3A630780F8E262"><span class="RefLink">5.7</span></a>).</p>

<p><a id="X85FF559084C08F0F" name="X85FF559084C08F0F"></a></p>

<h4>5.2 <span class="Heading">Constructing Representations of <span class="SimpleMath">\(M.2\)</span> and <span class="SimpleMath">\(S.2\)</span></span></h4>

<p><a id="X7FEE53AB845B9327" name="X7FEE53AB845B9327"></a></p>

<h5>5.2-1 <span class="Heading">A Matrix Representation of the Weyl Group of Type <span class="SimpleMath">\(E_8\)</span></span></h5>

<p>Following the recipe listed in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85, Section Weyl]</a>, we can generate the Weyl group <span class="SimpleMath">\(W\)</span> of type <span class="SimpleMath">\(E_8\)</span> as a group of rational <span class="SimpleMath">\(8 \times 8\)</span> matrices generated by the reflections in the vectors</p>

<p class="center">\[
   \left(\pm 1/2, \pm 1/2, 0, 0, 0, 0, 0, 0\right)
\]</p>

<p>plus the vectors obtained from these by permuting the coordinates, plus those those vectors of the form</p>

<p class="center">\[
   \left( \pm 1/2, \pm 1/2, \pm 1/2, \pm 1/2,
          \pm 1/2, \pm 1/2, \pm 1/2, \pm 1/2 \right)
\]</p>

<p>that have an even number of negative signs. (Clearly it is sufficient to consider only one vector form a pair <span class="SimpleMath">\(\pm v\)</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rootvectors:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in Combinations( [ 1 .. 8 ], 2 ) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     v:= 0 * [ 1 .. 8 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     v{i}:= [ 1, 1 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Add( rootvectors, v );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     v:= 0 * [ 1 .. 8 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     v{i}:= [ 1, -1 ];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     Add( rootvectors, v );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( rootvectors,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     1/2 * Filtered( Tuples( [ -1, 1 ], 8 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             x -&gt; x[1] = 1 and Number( x, y -&gt; y = 1 ) mod 2 = 0 ) );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">we8:= Group( List( rootvectors, ReflectionMat ) );</span>
&lt;matrix group with 120 generators&gt;
</pre></div>

<p><a id="X7C8AA7747F160F8A" name="X7C8AA7747F160F8A"></a></p>

<h5>5.2-2 <span class="Heading">Embedding the Weyl group of Type <span class="SimpleMath">\(E_8\)</span> into GO<span class="SimpleMath">\({}^+(8,5)\)</span></span></h5>

<p>The elements in the group constructed above respect the symmetric bilinear form that is given by the identity matrix.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:= IdentityMat( 8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( GeneratorsOfGroup( we8 ), x -&gt; x * TransposedMat(x) = I );</span>
true
</pre></div>

<p>So the reduction of the matrices modulo <span class="SimpleMath">\(5\)</span> yields a group <span class="SimpleMath">\(W^{\ast}\)</span> of orthogonal matrices w. r. t. the identity matrix. The group GO<span class="SimpleMath">\({}^+(8,5)\)</span> returned by the <strong class="pkg">GAP</strong> function <code class="func">GO</code> (<a href="../../../doc/ref/chap50_mj.html#X7C2051CB7B94CEB1"><span class="RefLink">Reference: GO</span></a>) leaves a different bilinear form invariant.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">largegroup:= GO(1,8,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( InvariantBilinearForm( largegroup ).matrix );</span>
 . 1 . . . . . .
 1 . . . . . . .
 . . 2 . . . . .
 . . . 2 . . . .
 . . . . 2 . . .
 . . . . . 2 . .
 . . . . . . 2 .
 . . . . . . . 2
</pre></div>

<p>In order to conjugate <span class="SimpleMath">\(W^{\ast}\)</span> into this group, we need a <span class="SimpleMath">\(2 \times 2\)</span> matrix <span class="SimpleMath">\(T\)</span> over the field with five elements with the property that <span class="SimpleMath">\(T T^{tr}\)</span> is half of the upper left <span class="SimpleMath">\(2 \times 2\)</span> matrix in the above matrix.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T:= [ [ 1, 2 ], [ 4, 2 ] ] * One( GF(5) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( 2 * T * TransposedMat( T ) );</span>
 . 1
 1 .
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:= IdentityMat( 8, GF(5) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I{ [ 1, 2 ] }{ [ 1, 2 ] }:= T;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">conj:= List( GeneratorsOfGroup( we8 ), x -&gt; I * x * I^-1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSubset( largegroup, conj );</span>
true
</pre></div>

<p><a id="X83E3E79F8724C365" name="X83E3E79F8724C365"></a></p>

<h5>5.2-3 <span class="Heading">Compatible Generators of <span class="SimpleMath">\(M\)</span>, <span class="SimpleMath">\(M.2\)</span>, <span class="SimpleMath">\(S\)</span>, and <span class="SimpleMath">\(S.2\)</span></span></h5>

<p>For the next computations, we switch from the natural matrix representation of GO<span class="SimpleMath">\({}^+(8,5)\)</span> to a permutation representation of PGO<span class="SimpleMath">\({}^+(8,5)\)</span>, of degree <span class="SimpleMath">\(N = 19\,656\)</span>, which is given by the action of GO<span class="SimpleMath">\({}^+(8,5)\)</span> on the smallest orbit of <span class="SimpleMath">\(1\)</span>-spaces in its natural module.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= OrbitsDomain( largegroup, NormedRowVectors( GF(5)^8 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                        OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 39000, 39000, 19656 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">N:= Length( orbs[3] );</span>
19656
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbN:= SortedList( orbs[3] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">largepermgroup:= Action( largegroup, orbN, OnLines );;</span>
</pre></div>

<p>In the same way, permutation representations of the subgroup <span class="SimpleMath">\(M.2 \cong \)</span>SO<span class="SimpleMath">\({}^+(8,2)\)</span> and of its derived subgroup <span class="SimpleMath">\(M\)</span> are obtained. But first we compute a smaller generating set of the simple group <span class="SimpleMath">\(M\)</span>, using a permutation representation on <span class="SimpleMath">\(120\)</span> points.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbwe8:= SortedList( Orbit( we8, rootvectors[1], OnLines ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( orbwe8 );</span>
120
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">we8_to_m2:= ActionHomomorphism( we8, orbwe8, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m2_120:= Image( we8_to_m2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m_120:= DerivedSubgroup( m2_120 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sml:= SmallGeneratingSet( m_120 );;  Length( sml );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_m:= List( sml, x -&gt; PreImagesRepresentative( we8_to_m2, x ) );;</span>
</pre></div>

<p>Now we compute the actions of <span class="SimpleMath">\(M\)</span> and <span class="SimpleMath">\(M.2\)</span> on the above orbit of length <span class="SimpleMath">\(N\)</span>. For generating <span class="SimpleMath">\(M.2\)</span>, we choose an element <span class="SimpleMath">\(b_N \in M.2 \setminus M\)</span>, which is obtained from the action of a matrix <span class="SimpleMath">\(b \in 2.M.2 \setminus 2.M\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_m_N:= List( gens_m,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     x -&gt; Permutation( I * x * I^-1, orbN, OnLines ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m_N:= Group( gens_m_N );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b:= I * we8.1 * I^-1;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DeterminantMat( b );</span>
Z(5)^2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b_N:= Permutation( b, orbN, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m2_N:= ClosureGroup( m_N, b_N );;</span>
</pre></div>

<p>(Note that <span class="SimpleMath">\(M.2\)</span> is not contained in PSO<span class="SimpleMath">\({}^+(8,5)\)</span>, since the determinant of <span class="SimpleMath">\(b\)</span> is <span class="SimpleMath">\(-1\)</span> in the field with five elements.)</p>

<p>The group <span class="SimpleMath">\(S\)</span> is the derived subgroup of PSO<span class="SimpleMath">\({}^+(8,5)\)</span>, and <span class="SimpleMath">\(S.2\)</span> is generated by <span class="SimpleMath">\(S\)</span> together with <span class="SimpleMath">\(b_N\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s_N:= DerivedSubgroup( largepermgroup );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s2_N:= ClosureGroup( s_N, b_N );;</span>
</pre></div>

<p><a id="X83F897DD7C48511C" name="X83F897DD7C48511C"></a></p>

<h4>5.3 <span class="Heading">Constructing Representations of <span class="SimpleMath">\(M.3\)</span> and <span class="SimpleMath">\(S.3\)</span></span></h4>

<p><a id="X7B7561D0855EC4F1" name="X7B7561D0855EC4F1"></a></p>

<h5>5.3-1 <span class="Heading">The Action of <span class="SimpleMath">\(M.3\)</span> on <span class="SimpleMath">\(M\)</span></span></h5>

<p>Let <span class="SimpleMath">\(\alpha\)</span> be an automorphism of <span class="SimpleMath">\(M\)</span>, of order three. Then a representation of the semidirect product <span class="SimpleMath">\(M.3\)</span> of <span class="SimpleMath">\(M\)</span> by <span class="SimpleMath">\(\langle \alpha \rangle\)</span> can be constructed as follows.</p>

<p>If <span class="SimpleMath">\(M\)</span> is given by a matrix representation then we map <span class="SimpleMath">\(g \in M\)</span> to the block diagonal matrix</p>

<p><div class="pcenter"> <table class="GAPDocTable"> <tr> <td class="tdright"><span class="SimpleMath">g</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">g^α</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">g^(α^2)</span></td> </tr> </table> </div> and we represent <span class="SimpleMath">\(\alpha\)</span> by the block permutation matrix</p>

<p><div class="pcenter"> <table class="GAPDocTable"> <tr> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">I</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">I</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">I</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> </tr> </table> </div> where <span class="SimpleMath">\(I\)</span> is the identity element in <span class="SimpleMath">\(M\)</span>.</p>

<p>We need the action of <span class="SimpleMath">\(\alpha\)</span> on <span class="SimpleMath">\(M\)</span>. More precisely, we need images of the chosen generators of <span class="SimpleMath">\(M\)</span> under <span class="SimpleMath">\(\alpha\)</span> and <span class="SimpleMath">\(\alpha^2\)</span>.</p>

<p>The group <span class="SimpleMath">\(M\)</span> is small enough for asking <strong class="pkg">GAP</strong> to compute its automorphism group, which is isomorphic with <span class="SimpleMath">\(O^+_8(2).S_3\)</span>; for that, we use the degree <span class="SimpleMath">\(120\)</span> permutation representation constructed in Section <a href="chap5_mj.html#X83E3E79F8724C365"><span class="RefLink">5.2-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">aut_m:= AutomorphismGroup( m_120 );;</span>
</pre></div>

<p>We pick an outer automorphism <span class="SimpleMath">\(\alpha\)</span> of order three.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nice_aut_m:= NiceMonomorphism( aut_m );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der:= DerivedSubgroup( Image( nice_aut_m ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der2:= DerivedSubgroup( der );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat x:= Random( der );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     ord:= Order( x );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until ord mod 3 = 0 and ord mod 9 &lt;&gt; 0 and not x in der2;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= x^( ord / 3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha_120:= PreImagesRepresentative( nice_aut_m, x );;</span>
</pre></div>

<p>Next we compute the images of the generators <code class="code">sml</code> under <span class="SimpleMath">\(\alpha\)</span> and <span class="SimpleMath">\(\alpha^2\)</span>, and the corresponding elements in the action of <span class="SimpleMath">\(M\)</span> on <span class="SimpleMath">\(N\)</span> points.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sml_alpha:= List( sml, x -&gt; Image( alpha_120, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sml_alpha_2:= List( sml_alpha, x -&gt; Image( alpha_120, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_m_alpha:= List( sml_alpha,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                    x -&gt; PreImagesRepresentative( we8_to_m2, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_m_alpha_2:= List( sml_alpha_2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                      x -&gt; PreImagesRepresentative( we8_to_m2, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_m_N_alpha:= List( gens_m_alpha,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     x -&gt; Permutation( I * x * I^-1, orbN, OnLines ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_m_N_alpha_2:= List( gens_m_alpha_2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     x -&gt; Permutation( I * x * I^-1, orbN, OnLines ) );;</span>
</pre></div>

<p>Finally, we use the construction descibed in the beginning of this section, and obtain a permutation representation of <span class="SimpleMath">\(M.3\)</span> on <span class="SimpleMath">\(3 N = 58\,968\)</span> points.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha_3N:= PermList( Concatenation( [ [ 1 .. N ] + 2*N,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                         [ 1 .. N ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                         [ 1 .. N ] + N ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens_m_3N:= List( [ 1 .. Length( gens_m_N ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     i -&gt; gens_m_N[i] *</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          ( gens_m_N_alpha[i]^alpha_3N ) *</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          ( gens_m_N_alpha_2[i]^(alpha_3N^2) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m_3N:= Group( gens_m_3N );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m3_3N:= ClosureGroup( m_3N, alpha_3N );;</span>
</pre></div>

<p><a id="X8246803779EB8FEE" name="X8246803779EB8FEE"></a></p>

<h5>5.3-2 <span class="Heading">The Action of <span class="SimpleMath">\(S.3\)</span> on <span class="SimpleMath">\(S\)</span></span></h5>

<p>Our approach is to extend the automorphism <span class="SimpleMath">\(\alpha\)</span> of <span class="SimpleMath">\(M\)</span> to <span class="SimpleMath">\(S\)</span>; we can do this because in the full automorphism group of <span class="SimpleMath">\(S\)</span>, <em>any</em> <span class="SimpleMath">\(O^+_8(2)\)</span> type subgroup extends to a group of the type <span class="SimpleMath">\(O^+_8(2).3\)</span>, and this extension lies in a subgroup of the type <span class="SimpleMath">\(O^+_8(5).3\)</span> (see <a href="chapBib_mj.html#biBKle87">[Kle87]</a>).</p>

<p>The group <span class="SimpleMath">\(M\)</span> is maximal in <span class="SimpleMath">\(S\)</span>, so <span class="SimpleMath">\(S\)</span> is generated by <span class="SimpleMath">\(M\)</span> together with any element <span class="SimpleMath">\(s \in S \setminus M\)</span>. Having fixed such an element <span class="SimpleMath">\(s\)</span>, what we have to is to find the images of <span class="SimpleMath">\(s\)</span> under the automorphisms that extend <span class="SimpleMath">\(\alpha\)</span> and <span class="SimpleMath">\(\alpha^2\)</span>.</p>

<p>For that, we first choose <span class="SimpleMath">\(x \in M\)</span> such that <span class="SimpleMath">\(C_S(x)\)</span> is a small group that is not contained in <span class="SimpleMath">\(M\)</span>. Then we choose <span class="SimpleMath">\(s \in C_S(x) \setminus M\)</span>, and using that <span class="SimpleMath">\(s^\alpha\)</span> must lie in <span class="SimpleMath">\(C_S(C_M(s)^\alpha)\)</span>, we then check which elements of this small subgroup can be the desired image.</p>

<p>Each element <span class="SimpleMath">\(x\)</span> of order nine in <span class="SimpleMath">\(M\)</span> has a root <span class="SimpleMath">\(s\)</span> of order <span class="SimpleMath">\(63\)</span> in <span class="SimpleMath">\(S\)</span>, and <span class="SimpleMath">\(C_S(x)\)</span> has order <span class="SimpleMath">\(189\)</span>. For suitable such <span class="SimpleMath">\(x\)</span>, exactly one element <span class="SimpleMath">\(y \in C_S(C_M(s)^\alpha)\)</span> has order <span class="SimpleMath">\(63\)</span> and satisfies the necessary conditions that the orders of the products of <span class="SimpleMath">\(s\)</span> and the generators of <span class="SimpleMath">\(M\)</span> are equal to the orders of the product of <span class="SimpleMath">\(y\)</span> and the images of these generators under <span class="SimpleMath">\(\alpha\)</span>. In other words, we have <span class="SimpleMath">\(s^\alpha = y\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha:= GroupHomomorphismByImagesNC( m_N, m_N,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               gens_m_N, gens_m_N_alpha );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CheapTestForHomomorphism:= function( gens, genimages, x, cand )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       return Order( x ) = Order( cand ) and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              ForAll( [ 1 .. Length( gens ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           i -&gt; Order( gens[i] * x ) = Order( genimages[i] * cand ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     repeat</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       x:= Random( m_N );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     until Order( x ) = 9;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     c_s:= Centralizer( s_N, x );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     repeat</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       s:= Random( c_s );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     until Order( s ) = 63;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     c_m_alpha:= Images( alpha, Centralizer( m_N, s ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     good:= Filtered( Elements( Centralizer( s_N, c_m_alpha ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">              x -&gt; CheapTestForHomomorphism( gens_m_N,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     gens_m_N_alpha, s, x ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Length( good ) = 1;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s_alpha:= good[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c_m_alpha_2:= Images( alpha, c_m_alpha );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">good:= Filtered( Elements( Centralizer( s_N, c_m_alpha_2 ) ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     x -&gt; CheapTestForHomomorphism( gens_m_N_alpha, gens_m_N_alpha_2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                    s_alpha, x ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s_alpha_2:= good[1];;</span>
</pre></div>

<p>Using the notation of the previous section, this means that the permutation representation of <span class="SimpleMath">\(M.3\)</span> on <span class="SimpleMath">\(3 N\)</span> points can be extended to <span class="SimpleMath">\(S.3\)</span> by choosing the permutation corresponding to the block diagonal matrix</p>

<p><div class="pcenter"> <table class="GAPDocTable"> <tr> <td class="tdright"><span class="SimpleMath">s</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">s^α</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">s^(α^2)</span></td> </tr> </table> </div> as an additional generator.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">outer:= s * ( s_alpha^alpha_3N ) * ( s_alpha_2^(alpha_3N^2) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s3_3N:= ClosureGroup( m3_3N, outer );;</span>
</pre></div>

<p>(And of course we have <span class="SimpleMath">\(S = \langle M, s \rangle\)</span>, which yields generators for <span class="SimpleMath">\(S\)</span> that are compatible with those of <span class="SimpleMath">\(M\)</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s_3N:= ClosureGroup( m_3N, outer );;</span>
</pre></div>

<p><a id="X816AFA187E95C018" name="X816AFA187E95C018"></a></p>

<h4>5.4 <span class="Heading">Constructing Compatible Generators of <span class="SimpleMath">\(H\)</span> and <span class="SimpleMath">\(G\)</span></span></h4>

<p>After having constructed compatible representations of <span class="SimpleMath">\(M.2\)</span> and <span class="SimpleMath">\(G.2\)</span> on <span class="SimpleMath">\(N\)</span> points (see Section <a href="chap5_mj.html#X83E3E79F8724C365"><span class="RefLink">5.2-3</span></a>) and of <span class="SimpleMath">\(M.3\)</span> and <span class="SimpleMath">\(S.3\)</span> on <span class="SimpleMath">\(3 N\)</span> points (see Section <a href="chap5_mj.html#X8246803779EB8FEE"><span class="RefLink">5.3-2</span></a>), the last construction step is to find a permutation on <span class="SimpleMath">\(3 N\)</span> points with the following properties:</p>


<ul>
<li><p>The induced automorphism <span class="SimpleMath">\(\beta\)</span> of <span class="SimpleMath">\(M\)</span> extends to <span class="SimpleMath">\(M.3\)</span> such that the automorphism <span class="SimpleMath">\(\alpha\)</span> of <span class="SimpleMath">\(M\)</span> is inverted, modulo inner automorphisms of <span class="SimpleMath">\(M\)</span>.</p>

</li>
<li><p>The action on the first <span class="SimpleMath">\(N\)</span> points coincides with that of the element <span class="SimpleMath">\(b_N \in M.2 \setminus M\)</span> that was constructed in Section <a href="chap5_mj.html#X83E3E79F8724C365"><span class="RefLink">5.2-3</span></a>.</p>

</li>
</ul>
<p>Using the notation of the previous sections, we represent <span class="SimpleMath">\(\beta\)</span> by a block matrix</p>

<p><div class="pcenter"> <table class="GAPDocTable"> <tr> <td class="tdright"><span class="SimpleMath">b</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">b d</span></td> </tr> <tr> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> <td class="tdright"><span class="SimpleMath">b g</span></td> <td class="tdright"><span class="SimpleMath">&nbsp;</span></td> </tr> </table> </div> where <span class="SimpleMath">\(b\)</span> describes the action of <span class="SimpleMath">\(\beta\)</span> on <span class="SimpleMath">\(M\)</span> (on <span class="SimpleMath">\(N\)</span> points), <span class="SimpleMath">\(g\)</span> describes the inner automorphism <span class="SimpleMath">\(\gamma\)</span> of <span class="SimpleMath">\(M\)</span> that is defined by the condition <span class="SimpleMath">\(\beta \alpha = \alpha^2 \beta \gamma\)</span>, and <span class="SimpleMath">\(d\)</span> describes <span class="SimpleMath">\(\gamma \gamma^\alpha\)</span>.</p>

<p>So we compute an element in <span class="SimpleMath">\(M\)</span> that induces the conjugation automorphism <span class="SimpleMath">\(\gamma\)</span>, and its image under <span class="SimpleMath">\(\alpha\)</span>. We do this in the representation of <span class="SimpleMath">\(M\)</span> on <span class="SimpleMath">\(120\)</span> points, and carry over the result to the representation on <span class="SimpleMath">\(N\)</span> points, via the rational matrix representation; this approach had been used already in Section <a href="chap5_mj.html#X83E3E79F8724C365"><span class="RefLink">5.2-3</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b_120:= Permutation( we8.1, orbwe8, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g_120:= RepresentativeAction( m_120,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               List( sml_alpha_2, x -&gt; x^b_120 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               List( sml, x -&gt; (x^b_120)^alpha_120 ), OnTuples );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g_120_alpha:= g_120^alpha_120;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g_N:= Permutation( I * PreImagesRepresentative( we8_to_m2, g_120 )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                        * I^-1, orbN, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g_N_alpha:= Permutation( I * PreImagesRepresentative( we8_to_m2,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                 g_120_alpha ) * I^-1, orbN, OnLines );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= PermList( Concatenation(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     ListPerm( b_N ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     ListPerm( b_N * g_N ) + 2*N,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     ListPerm( b_N * g_N * g_N_alpha ) + N ) );;</span>
</pre></div>

<p>So we have constructed compatible generators for <span class="SimpleMath">\(H\)</span> and <span class="SimpleMath">\(G\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h:= ClosureGroup( m3_3N, inv );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= ClosureGroup( s3_3N, inv );;</span>
</pre></div>

<p><a id="X83F0387D789709D1" name="X83F0387D789709D1"></a></p>

<h4>5.5 <span class="Heading">Application: Regular Orbits of <span class="SimpleMath">\(H\)</span> on <span class="SimpleMath">\(G/H\)</span></span></h4>

<p>We want to show that <span class="SimpleMath">\(H\)</span> has regular orbits on the right cosets <span class="SimpleMath">\(G/H\)</span>. The stabilizer in <span class="SimpleMath">\(H\)</span> of the coset <span class="SimpleMath">\(H g\)</span> is <span class="SimpleMath">\(H \cap H^g\)</span>, so we compute that there are elements <span class="SimpleMath">\(s \in S\)</span> with the property <span class="SimpleMath">\(|H \cap H^s| = 1\)</span>.</p>

<p>(Of course this implies that also in the permutation representations of the subgroups <span class="SimpleMath">\(S\)</span>, <span class="SimpleMath">\(S.2\)</span>, and <span class="SimpleMath">\(S.3\)</span> of <span class="SimpleMath">\(G\)</span> on the cosets of the intersection with <span class="SimpleMath">\(H\)</span>, the point stabilizers have regular orbits.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     conj:= Random( s_3N );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     inter:= Intersection( h, h^conj );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   until Size( inter ) = 1;</span>
</pre></div>

<p>Eventually <strong class="pkg">GAP</strong> will return from this loop, so there are elements <span class="SimpleMath">\(s\)</span> with the required property.</p>

<p>(Computing one such intersection takes about six minutes on a 2.5 GHz Pentium 4, so one may have to be a bit patient.)</p>

<p><a id="X7F0C266082BE1578" name="X7F0C266082BE1578"></a></p>

<h4>5.6 <span class="Heading">Appendix: The Permutation Character <span class="SimpleMath">\((1_H^G)_H\)</span></span></h4>

<p>As an alternative to the computation of <span class="SimpleMath">\(|H \cap H^s|\)</span> for suitable <span class="SimpleMath">\(s \in S\)</span>, we can try to derive information from the permutation character <span class="SimpleMath">\((1_H^G)_H\)</span>. Unfortunately, there seems to be no easy way to prove the existence of regular <span class="SimpleMath">\(H\)</span>-orbits on <span class="SimpleMath">\(G/H\)</span> (cf. Section <a href="chap5_mj.html#X83F0387D789709D1"><span class="RefLink">5.5</span></a>) only by means of this character.</p>

<p>However, it is not difficult to show that regular orbits of <span class="SimpleMath">\(M\)</span>, <span class="SimpleMath">\(M.2\)</span>, and <span class="SimpleMath">\(M.3\)</span> exist. For that, we compute <span class="SimpleMath">\((1_H^G)_H\)</span>, by computing class representatives of <span class="SimpleMath">\(H\)</span>, their centralizer orders in <span class="SimpleMath">\(G\)</span>, and the class fusion of <span class="SimpleMath">\(H\)</span>-classes in <span class="SimpleMath">\(G\)</span>.</p>

<p>We want to compute the class representatives in a small permutation representation of <span class="SimpleMath">\(H\)</span>; this could be done using the degree <span class="SimpleMath">\(360\)</span> representation that was implicitly constructed above, but it is technically easier to use a degree <span class="SimpleMath">\(405\)</span> representation that is obtained from the degree <span class="SimpleMath">\(58\,968\)</span> representation by the action of <span class="SimpleMath">\(H\)</span> on blocks in an orbit of length <span class="SimpleMath">\(22\,680\)</span>. (One could get this also using the <strong class="pkg">GAP</strong> function <code class="func">SmallerDegreePermutationRepresentation</code> (<a href="../../../doc/ref/chap43_mj.html#X8086628878AFD3EA"><span class="RefLink">Reference: SmallerDegreePermutationRepresentation</span></a>).)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orbs:= Orbits( h, MovedPoints( h ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( orbs, Length );</span>
[ 22680, 36288 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= orbs[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bl:= Blocks( h, orb );;  Length( bl[1] );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">actbl:= Action( h, bl, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bll:= Blocks( actbl, MovedPoints( actbl ) );;  Length( bll );  </span>
405
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">oneblock:= Union( bl{ bll[1] } );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">orb:= SortedList( Orbit( h, oneblock, OnSets ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">acthom:= ActionHomomorphism( h, orb, OnSets );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= ConjugacyClasses( Image( acthom ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= List( ccl, x -&gt; PreImagesRepresentative( acthom,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                              Representative( x ) ) );;</span>
</pre></div>

<p>Then we carry back class representatives to the degree <span class="SimpleMath">\(58\,968\)</span> representation, and compute the class fusion and the centralizer orders in <span class="SimpleMath">\(G\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reps:= List( ccl, x -&gt; PreImagesRepresentative( acthom,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                              Representative( x ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fusion:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">centralizers:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fusreps:= [];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [ 1 .. Length( reps ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     found:= false;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     cen:= Size( Centralizer( g, reps[i] ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     for j in [ 1 .. Length( fusreps ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if cen = centralizers[j] and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          IsConjugate( g, fusreps[j], reps[i] ) then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         fusion[i]:= j;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         found:= true;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         break;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     if not found then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( fusreps, reps[i] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( fusion, Length( fusreps ) );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       Add( centralizers, cen );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
</pre></div>

<p>Next we compute the permutation character values, using the formula</p>

<p class="center">\[
   (1_H)^G(g) = (|C_G(g)| \sum_{h} |h^H|) /|H| ,
\]</p>

<p>where the summation runs over class representatives <span class="SimpleMath">\(h \in H\)</span> that are <span class="SimpleMath">\(G\)</span>-conjugate to <span class="SimpleMath">\(g\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= 0 * [ 1 .. Length( fusreps ) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [ 1 .. Length( ccl ) ] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     pi[ fusion[i] ]:= pi[ fusion[i] ] + centralizers[ fusion[i] ] *</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                             Size( ccl[i] );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= pi{ fusion } / Size( h );;</span>
</pre></div>

<p>In order to write the permutation character w.r.t. the ordering of classes in the <strong class="pkg">GAP</strong> character table, we use the <strong class="pkg">GAP</strong> function <code class="func">CompatibleConjugacyClasses</code> (<a href="../../../doc/ref/chap71_mj.html#X790019E87CFDDB98"><span class="RefLink">Reference: CompatibleConjugacyClasses</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblh:= CharacterTable( "O8+(2).S3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">map:= CompatibleConjugacyClasses( Image( acthom ), ccl, tblh );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= pi{ map }; </span>
[ 51162109375, 69375, 1259375, 69375, 568750, 1750, 4000, 375, 135, 
  975, 135, 625, 150, 650, 30, 72, 80, 72, 27, 27, 3, 7, 25, 30, 6, 
  12, 25, 484375, 1750, 375, 375, 30, 40, 15, 15, 15, 6, 6, 3, 3, 3, 
  157421875, 121875, 4875, 475, 75, 3875, 475, 13000, 1750, 300, 400, 
  30, 60, 15, 15, 15, 125, 10, 30, 4, 8, 6, 9, 7, 5, 6, 5 ]
</pre></div>

<p>Now we consider the restrictions of this permutation character to <span class="SimpleMath">\(M\)</span>, <span class="SimpleMath">\(M.2\)</span>, and <span class="SimpleMath">\(M.3\)</span>. Note that <span class="SimpleMath">\((1_H^G)_M = (1_M^S)_M\)</span>, <span class="SimpleMath">\((1_H^G)_{M.2} = (1_{M.2}^{S.2})_{M.2}\)</span>, and <span class="SimpleMath">\((1_H^G)_{M.3} = (1_{M.3}^{S.3})_{M.3}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblm2:= CharacterTable( "O8+(2).2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblm3:= CharacterTable( "O8+(2).3" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tblm:= CharacterTable( "O8+(2)" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi_m2:= pi{ GetFusionMap( tblm2, tblh ) };;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi_m3:= pi{ GetFusionMap( tblm3, tblh ) };;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi_m:= pi_m3{ GetFusionMap( tblm, tblm3 ) };;</span>
</pre></div>

<p>The permutation character <span class="SimpleMath">\((1_M^S)_M\)</span> decomposes into <span class="SimpleMath">\(483\)</span> transitive permutation characters, and regular <span class="SimpleMath">\(M\)</span>-orbits on <span class="SimpleMath">\(S/M\)</span> correspond to regular constituents in this decomposition. If there is no regular transitive constituent in <span class="SimpleMath">\((1_M^S)_M\)</span> then the largest degree of a transitive constituent is <span class="SimpleMath">\(|M|/2\)</span>; but then the degree of <span class="SimpleMath">\(1_M^S\)</span> is less than <span class="SimpleMath">\(483 |M|/2\)</span>, which is smaller than <span class="SimpleMath">\([S:M]\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= ScalarProduct( tblm, pi_m, TrivialCharacter( tblm ) );</span>
483
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n * Size( tblm ) / 2;</span>
42065049600
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi[1];</span>
51162109375
</pre></div>

<p>For the case of <span class="SimpleMath">\(M.2 &lt; S.2\)</span>, this argument turns out to be not sufficient. So we first compute a lower bound on the number of regular <span class="SimpleMath">\(M\)</span>-orbits on <span class="SimpleMath">\(S/M\)</span>. For involutions <span class="SimpleMath">\(g \in M\)</span>, the number of transitive constituents <span class="SimpleMath">\(1_{\langle g \rangle}^M\)</span> in <span class="SimpleMath">\((1_M^S)_M\)</span> is at most the integral part of <span class="SimpleMath">\(1_M^S(g) / 1_{\langle g \rangle}^M(g) = 2 \cdot 1_M^S(g) / |C_M(g)|\)</span>; from this we compute that there are at most <span class="SimpleMath">\(208\)</span> such constituents.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= Filtered( [ 1 .. NrConjugacyClasses( tblm ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             i -&gt; OrdersClassRepresentatives( tblm )[i] = 2 );</span>
[ 2, 3, 4, 5, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n2:= List( inv,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          i -&gt; Int( 2 * pi_m[i] / SizesCentralizers( tblm )[i] ) );</span>
[ 1, 54, 54, 54, 45 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sum( n2 );</span>
208
</pre></div>

<p>As a consequence, <span class="SimpleMath">\(M\)</span> has at least <span class="SimpleMath">\(148\)</span> regular orbits on <span class="SimpleMath">\(S/M\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">First( [ 1 .. 483 ],                                           </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     i -&gt; i * Size( tblm ) + 208 * Size( tblm ) / 2</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          + ( 483 - i - 208 - 1 ) * Size( tblm ) / 3 + 1 &gt;= pi[1] );</span>
148
</pre></div>

<p>Now we consider the action of <span class="SimpleMath">\(M.2\)</span> on <span class="SimpleMath">\(S.2/M.2\)</span>. If <span class="SimpleMath">\(M.2\)</span> has no regular orbit then the <span class="SimpleMath">\(148\)</span> regular orbits of <span class="SimpleMath">\(M\)</span> must arise from the restriction of transitive constituents <span class="SimpleMath">\(1_U^{M.2}\)</span> to <span class="SimpleMath">\(M\)</span> with <span class="SimpleMath">\(|U| = 2\)</span> and such that <span class="SimpleMath">\(U\)</span> is not contained in <span class="SimpleMath">\(M\)</span>. (This follows from the fact that the restriction of a transitive constituent of <span class="SimpleMath">\((1_{M.2}^{S.2})_{M.2}\)</span> to <span class="SimpleMath">\(M\)</span> is either itself a transitive constituent of <span class="SimpleMath">\((1_M^S)_M\)</span> or the sum of two such constituents; the latter case occurs if and only if the point stabilizer is contained in <span class="SimpleMath">\(M\)</span>.) However, the number of these constituents is at most <span class="SimpleMath">\(134\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= Filtered( [ 1 .. NrConjugacyClasses( tblm2 ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             i -&gt; OrdersClassRepresentatives( tblm2 )[i] = 2 and</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  not i in ClassPositionsOfDerivedSubgroup( tblm2 ) );</span>
[ 41, 42 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n2:= List( inv,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          i -&gt; Int( 2 * pi_m2[i] / SizesCentralizers( tblm2 )[i] ) );</span>
[ 108, 26 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sum( n2 );</span>
134
</pre></div>

<p>Finally, we consider the action of <span class="SimpleMath">\(M.3\)</span> on <span class="SimpleMath">\(S.3/M.3\)</span>. We compute that <span class="SimpleMath">\((1_{M.3}^{S.3})_{M.3}\)</span> has <span class="SimpleMath">\(205\)</span> transitive constituents, and at most <span class="SimpleMath">\(69\)</span> of them can be induced from subgroups of order two. This is already sufficient to show that there must be regular constituents.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= ScalarProduct( tblm3, pi_m3, TrivialCharacter( tblm3 ) );</span>
205
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv:= Filtered( [ 1 .. NrConjugacyClasses( tblm3 ) ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             i -&gt; OrdersClassRepresentatives( tblm3 )[i] = 2 );</span>
[ 2, 3, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n2:= List( inv,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">          i -&gt; Int( 2 * pi_m3[i] / SizesCentralizers( tblm3 )[i] ) );</span>
[ 0, 54, 15 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sum( n2 );</span>
69
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">69 * Size( tblm3 ) / 2 + ( n - 69 - 1 ) * Size( tblm3 ) / 3 + 1;</span>
41542502401
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi[1];</span>
51162109375
</pre></div>

<p><a id="X7F3A630780F8E262" name="X7F3A630780F8E262"></a></p>

<h4>5.7 <span class="Heading">Appendix: The Data File</span></h4>

<p>The file <code class="file">o8p2s3_o8p5s3.g</code> that can be found at</p>

<p><span class="URL"><a href="http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/data/o8p2s3_o8p5s3.g">http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/data/o8p2s3_o8p5s3.g</a></span></p>

<p>contains the relevant data used in the above computations. This covers the representations for the groups and the permutation character of <span class="SimpleMath">\(O^+_8(2).S_3\)</span> computed in Section <a href="chap5_mj.html#X7F0C266082BE1578"><span class="RefLink">5.6</span></a>.</p>

<p>Reading the file into <strong class="pkg">GAP</strong> will define a global variable <code class="code">o8p2s3_o8p5s3_data</code>, a record with the following components.</p>


<dl>
<dt><strong class="Mark"><code class="code">pi</code></strong></dt>
<dd><p>the list of values of the permutation character of <span class="SimpleMath">\(G = O^+_8(5).S_3\)</span> on the cosets of its subgroup <span class="SimpleMath">\(H = O^+_8(2).S_3\)</span>, restricted to <span class="SimpleMath">\(H\)</span>, corresponding to the ordering of classes in the character table of <span class="SimpleMath">\(H\)</span> in the <strong class="pkg">GAP</strong> Character Table Library (this table has the <code class="func">Identifier</code> (<a href="../../../doc/ref/chap70_mj.html#X810E53597B5BB4F8"><span class="RefLink">Reference: Identifier for tables of marks</span></a>) value <code class="code">"O8+(2).3.2"</code>),</p>

</dd>
<dt><strong class="Mark"><code class="code">dim8Q</code></strong></dt>
<dd><p>a record with generators for <span class="SimpleMath">\(2.M\)</span> and <span class="SimpleMath">\(2.M.2\)</span>, matrices of dimension eight over the Rationals,</p>

</dd>
<dt><strong class="Mark"><code class="code">deg120</code></strong></dt>
<dd><p>a record with generators for <span class="SimpleMath">\(M\)</span> and <span class="SimpleMath">\(M.2\)</span>, permutations of degree <span class="SimpleMath">\(120\)</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">deg360</code></strong></dt>
<dd><p>a record with generators for <span class="SimpleMath">\(M\)</span>, <span class="SimpleMath">\(M.2\)</span>, <span class="SimpleMath">\(M.3\)</span>, and <span class="SimpleMath">\(H\)</span>, permutations of degree <span class="SimpleMath">\(360\)</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">dim8f5</code></strong></dt>
<dd><p>a record with generators for <span class="SimpleMath">\(2.M\)</span>, <span class="SimpleMath">\(2.M.2\)</span>, <span class="SimpleMath">\(2.S\)</span>, and <span class="SimpleMath">\(2.S.2\)</span>, matrices of dimension eight over the field with five elements,</p>

</dd>
<dt><strong class="Mark"><code class="code">deg19656</code></strong></dt>
<dd><p>a record with generators for <span class="SimpleMath">\(M\)</span>, <span class="SimpleMath">\(M.2\)</span>, <span class="SimpleMath">\(S\)</span>, and <span class="SimpleMath">\(S.2\)</span>, permutations of degree <span class="SimpleMath">\(19\,656\)</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">deg58968</code></strong></dt>
<dd><p>a record with generators for <span class="SimpleMath">\(M\)</span>, <span class="SimpleMath">\(M.2\)</span>, <span class="SimpleMath">\(M.3\)</span>, <span class="SimpleMath">\(H\)</span>, <span class="SimpleMath">\(S\)</span>, <span class="SimpleMath">\(S.2\)</span>, <span class="SimpleMath">\(S.3\)</span>, and <span class="SimpleMath">\(G\)</span>, permutations of degree <span class="SimpleMath">\(58\,968\)</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">seed405</code></strong></dt>
<dd><p>a block whose <span class="SimpleMath">\(H\)</span>-orbit in the representation on <span class="SimpleMath">\(58\,968\)</span> points, w.r.t. the action <code class="func">OnSets</code> (<a href="../../../doc/ref/chap41_mj.html#X85AA04347CD117F9"><span class="RefLink">Reference: OnSets</span></a>), yields a representation of <span class="SimpleMath">\(H\)</span> on <span class="SimpleMath">\(405\)</span> points.</p>

</dd>
</dl>
<p>For each of the permutation representations, we have (where applicable)</p>

<div class="pcenter"><table class="GAPDocTablenoborder">
<tr>
<td class="tdleft"><span class="SimpleMath">\(M\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(\cong\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\langle a_1, a_2 \rangle\)</span>,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M.2\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(\cong\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\langle a_1, a_2, b \rangle\)</span>,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(M.3\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(\cong\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\langle a_1, a_2, t \rangle\)</span>,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(H\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(\cong\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\langle a_1, a_2, t, b \rangle\)</span>,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(\cong\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\langle a_1, a_2, c \rangle\)</span>,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S.2\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(\cong\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\langle a_1, a_2, c, b \rangle\)</span>,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(S.3\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(\cong\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\langle a_1, a_2, c, t \rangle\)</span>,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(G\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(\cong\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\langle a_1, a_2, c, t, b \rangle\)</span>,</td>
</tr>
</table><br />
</div>

<p>where <span class="SimpleMath">\(a_1, a_2, b, t, c\)</span> are the values of the record components <code class="code">a1</code>, <code class="code">a2</code>, <code class="code">b</code>, <code class="code">t</code>, and <code class="code">c</code>.</p>

<p>Analogously, for the matrix representations, we have (where applicable)</p>

<div class="pcenter"><table class="GAPDocTablenoborder">
<tr>
<td class="tdleft"><span class="SimpleMath">\(2.M\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(\cong\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\langle a_1, a_2 \rangle\)</span>,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(2.M.2\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(\cong\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\langle a_1, a_2, b \rangle\)</span>,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(2.S\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(\cong\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\langle a_1, a_2, c \rangle\)</span>,</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(2.S.2\)</span></td>
<td class="tdcenter"><span class="SimpleMath">\(\cong\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\langle a_1, a_2, c, b \rangle\)</span>,</td>
</tr>
</table><br />
</div>

<p>Additional components are used for deriving the representations from initial data, as in the constructions in the previous sections.</p>

<p>For example, most of the permutations needed arise as the induced actions of matrices on orbits of vectors; these orbits are computed when the file is read, and are then stored in the components <code class="code">orb120</code> and <code class="code">orb19656</code>.</p>

<p>The file <code class="file">o8p2s3_o8p5s3.g</code> does not contain the generators explicitly, but it is self-contained in the sense that only a few <strong class="pkg">GAP</strong> functions are actually needed to produce the data; for example, it should not be difficult to translate the contents of the file into the language of other computer algebra systems.</p>

<p>Advantages of this way to store the data are that the relations between the representations become explicit, and also that only very little space is needed to describe the representations –the size of the file is less than <span class="SimpleMath">\(10\)</span> kB, whereas storing (explicitly) one of the permutations on <span class="SimpleMath">\(58\,968\)</span> points requires already about <span class="SimpleMath">\(350\)</span> kB.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap4_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap6_mj.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>