1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (CTblLibXpls) - Chapter 8: Permutation Characters in GAP</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap8" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap7_mj.html">[Previous Chapter]</a> <a href="chap9_mj.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap8.html">[MathJax off]</a></p>
<p><a id="X7A7EEBE9858333E1" name="X7A7EEBE9858333E1"></a></p>
<div class="ChapSects"><a href="chap8_mj.html#X7A7EEBE9858333E1">8 <span class="Heading">Permutation Characters in <strong class="pkg">GAP</strong></span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X86A1325B82E5AECD">8.1 <span class="Heading">Some Computations with <span class="SimpleMath">\(M_{24}\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X79C9051F805851DB">8.2 <span class="Heading">All Possible Permutation Characters of <span class="SimpleMath">\(M_{11}\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X81A5FC968782CFC3">8.3 <span class="Heading">The Action of <span class="SimpleMath">\(U_6(2)\)</span> on the Cosets of <span class="SimpleMath">\(M_{22}\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X7EE1811C8496C428">8.4 <span class="Heading">Degree <span class="SimpleMath">\(20\,736\)</span> Permutation Characters of <span class="SimpleMath">\(U_6(2)\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X7DC6A6E785A347C8">8.5 <span class="Heading">Degree <span class="SimpleMath">\(57\,572\,775\)</span> Permutation Characters of <span class="SimpleMath">\(O_8^+(3)\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X792D2C2380591D8D">8.6 <span class="Heading">The Action of <span class="SimpleMath">\(O_7(3).2\)</span> on the Cosets of <span class="SimpleMath">\(2^7.S_7\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X875B361C8512939F">8.7 <span class="Heading">The Action of <span class="SimpleMath">\(O_8^+(3).2_1\)</span> on the Cosets of <span class="SimpleMath">\(2^7.A_8\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X7B1DFAF98182CFF4">8.8 <span class="Heading">The Action of <span class="SimpleMath">\(S_4(4).4\)</span> on the Cosets of <span class="SimpleMath">\(5^2.[2^5]\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X7F04F0C684AA8B30">8.9 <span class="Heading">The Action of <span class="SimpleMath">\(Co_1\)</span> on the Cosets of Involution Centralizers</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X8230719D8538384B">8.10 <span class="Heading">The Multiplicity Free Permutation Characters of <span class="SimpleMath">\(G_2(3)\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X7E3E326C7CB0E2CD">8.11 <span class="Heading">Degree <span class="SimpleMath">\(11\,200\)</span> Permutation Characters of <span class="SimpleMath">\(O_8^+(2)\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X7D8572E68194CBB9">8.12 <span class="Heading">A Proof of Nonexistence of a Certain Subgroup</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X8068E9DA7CD03BF2">8.13 <span class="Heading">A Permutation Character of the Lyons group</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X87D6C1A67CC7EE0A">8.14 <span class="Heading">Identifying two subgroups of Aut<span class="SimpleMath">\((U_3(5))\)</span> (October 2001)</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X793669787CF73A55">8.15 <span class="Heading">A Permutation Character of Aut<span class="SimpleMath">\((O_8^+(2))\)</span> (October 2001)</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X8337F3C682B6BE63">8.16 <span class="Heading">Four Primitive Permutation Characters of the Monster Group</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8_mj.html#X78A8A1248336DD26">8.16-1 <span class="Heading">The Subgroup <span class="SimpleMath">\(2^2.2^{11}.2^{22}.(S_3 \times M_{24})\)</span>
(June 2009)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8_mj.html#X79E9247182B20474">8.16-2 <span class="Heading">The Subgroup <span class="SimpleMath">\(2^3.2^6.2^{12}.2^{18}.(L_3(2) \times 3.S_6)\)</span>
(September 2009)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8_mj.html#X7BC36C597E542DEE">8.16-3 <span class="Heading">The Subgroup <span class="SimpleMath">\(2^5.2^{10}.2^{20}.(S_3 \times L_5(2))\)</span>
(October 2009)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8_mj.html#X7F2ABD3E7AFF5F6E">8.16-4 <span class="Heading">The Subgroup <span class="SimpleMath">\(2^{{10+16}}.O_{10}^+(2)\)</span> (November 2009)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X87D11B097D95D027">8.17 <span class="Heading">A permutation character of the Baby Monster (June 2012)</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X86827FA97D27F3A2">8.18 <span class="Heading">A permutation character of <span class="SimpleMath">\(2.B\)</span> (October 2017)</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X849F0EA6807C9B19">8.19 <span class="Heading">Generation of sporadic simple groups by <span class="SimpleMath">\(\pi\)</span>- and <span class="SimpleMath">\(\pi'\)</span>-subgroups (December 2021)</span></a>
</span>
</div>
</div>
<h3>8 <span class="Heading">Permutation Characters in <strong class="pkg">GAP</strong></span></h3>
<p>Date: April 17th, 1999</p>
<p>This is a loose collection of examples of computations with permutation characters and possible permutation characters in the <strong class="pkg">GAP</strong> system <a href="chapBib_mj.html#biBGAP">[GAP21]</a>. We mainly use the <strong class="pkg">GAP</strong> implementation of the algorithms to compute possible permutation characters that are described in <a href="chapBib_mj.html#biBBP98copy">[BP98]</a>, and information from the Atlas of Finite Groups <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>. A <em>possible permutation character</em> of a finite group <span class="SimpleMath">\(G\)</span> is a character satisfying the conditions listed in Section "Possible Permutation Characters" of the <strong class="pkg">GAP</strong> Reference Manual.</p>
<ul>
<li><p>Sections <a href="chap8_mj.html#X87D6C1A67CC7EE0A"><span class="RefLink">8.14</span></a> and <a href="chap8_mj.html#X793669787CF73A55"><span class="RefLink">8.15</span></a> were added in October 2001.</p>
</li>
<li><p>Section <a href="chap8_mj.html#X78A8A1248336DD26"><span class="RefLink">8.16-1</span></a> was added in June 2009.</p>
</li>
<li><p>Section <a href="chap8_mj.html#X79E9247182B20474"><span class="RefLink">8.16-2</span></a> was added in September 2009.</p>
</li>
<li><p>Section <a href="chap8_mj.html#X7BC36C597E542DEE"><span class="RefLink">8.16-3</span></a> was added in October 2009.</p>
</li>
<li><p>Section <a href="chap8_mj.html#X7F2ABD3E7AFF5F6E"><span class="RefLink">8.16-4</span></a> was added in November 2009.</p>
</li>
<li><p>Section <a href="chap8_mj.html#X87D11B097D95D027"><span class="RefLink">8.17</span></a> was added in June 2012.</p>
</li>
<li><p>Section <a href="chap8_mj.html#X86827FA97D27F3A2"><span class="RefLink">8.18</span></a> was added in October 2017.</p>
</li>
<li><p>Section <a href="chap8_mj.html#X849F0EA6807C9B19"><span class="RefLink">8.19</span></a> was added in December 2021.</p>
</li>
</ul>
<p>In the following, the <strong class="pkg">GAP</strong> Character Table Library <a href="chapBib_mj.html#biBCTblLib">[Bre24]</a> will be used frequently.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "ctbllib", "1.2", false );</span>
true
</pre></div>
<p><a id="X86A1325B82E5AECD" name="X86A1325B82E5AECD"></a></p>
<h4>8.1 <span class="Heading">Some Computations with <span class="SimpleMath">\(M_{24}\)</span></span></h4>
<p>We start with the sporadic simple Mathieu group <span class="SimpleMath">\(G = M_{24}\)</span> in its natural action on <span class="SimpleMath">\(24\)</span> points.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= MathieuGroup( 24 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetName( g, "m24" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( g ); IsSimple( g ); NrMovedPoints( g );</span>
244823040
true
24
</pre></div>
<p>The conjugacy classes that are computed for a group can be ordered differently in different <strong class="pkg">GAP</strong> sessions. In order to make the output shown in the following examples stable, we first sort the conjugacy classes of <span class="SimpleMath">\(G\)</span> for our purposes.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ccl:= AttributeValueNotSet( ConjugacyClasses, g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">HasConjugacyClasses( g );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">invariants:= List( ccl, c -> [ Order( Representative( c ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Size( c ), Size( ConjugacyClass( g, Representative( c )^2 ) ) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortParallel( invariants, ccl );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetConjugacyClasses( g, ccl );</span>
</pre></div>
<p>The permutation character <code class="code">pi</code> of <span class="SimpleMath">\(G\)</span> corresponding to the action on the moved points is constructed. This action is <span class="SimpleMath">\(5\)</span>-transitive.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">NrConjugacyClasses( g );</span>
26
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= NaturalCharacter( g );</span>
Character( CharacterTable( m24 ),
[ 24, 8, 0, 6, 0, 0, 4, 0, 4, 2, 0, 3, 3, 2, 0, 2, 0, 0, 1, 1, 1, 1,
0, 0, 1, 1 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">IsTransitive( pi ); Transitivity( pi );</span>
true
5
<span class="GAPprompt">gap></span> <span class="GAPinput">SetIdentifier( CharacterTable( g ), "M24table" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( pi );</span>
M24table
2 10 10 9 3 3 7 7 5 2 3 3 1 1 4 2 . 2 2 1
3 3 1 1 3 2 1 . 1 1 1 1 1 1 . . . 1 1 .
5 1 . 1 1 . . . . 1 . . . . . 1 . . . .
7 1 1 . . 1 . . . . . . 1 1 . . . . . 1
11 1 . . . . . . . . . . . . . . 1 . . .
23 1 . . . . . . . . . . . . . . . . . .
1a 2a 2b 3a 3b 4a 4b 4c 5a 6a 6b 7a 7b 8a 10a 11a 12a 12b 14a
Y.1 24 8 . 6 . . 4 . 4 2 . 3 3 2 . 2 . . 1
2 1 . . . . . .
3 . 1 1 1 1 . .
5 . 1 1 . . . .
7 1 . . 1 1 . .
11 . . . . . . .
23 . . . . . 1 1
14b 15a 15b 21a 21b 23a 23b
Y.1 1 1 1 . . 1 1
</pre></div>
<p>(We have set the <code class="func">Identifier</code> (<a href="..//doc/chap3_mj.html#X860F49407882658F"><span class="RefLink">CTblLib: IdentifierOfMainTable</span></a>) value of the character table because otherwise some default identifier would be chosen, which depends on the <strong class="pkg">GAP</strong> session.)</p>
<p><code class="code">pi</code> determines the permutation characters of the <span class="SimpleMath">\(G\)</span>-actions on related sets, for example <code class="code">piop</code> on the set of ordered and <code class="code">piup</code> on the set of unordered pairs of points.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">piop:= pi * pi;</span>
Character( CharacterTable( m24 ),
[ 576, 64, 0, 36, 0, 0, 16, 0, 16, 4, 0, 9, 9, 4, 0, 4, 0, 0, 1, 1,
1, 1, 0, 0, 1, 1 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">IsTransitive( piop );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">piup:= SymmetricParts( UnderlyingCharacterTable(pi), [ pi ], 2 )[1];</span>
Character( CharacterTable( m24 ),
[ 300, 44, 12, 21, 0, 4, 12, 0, 10, 5, 0, 6, 6, 4, 2, 3, 0, 1, 2, 2,
1, 1, 0, 0, 1, 1 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">IsTransitive( piup );</span>
false
</pre></div>
<p>Clearly the action on unordered pairs is not transitive, since the pairs <span class="SimpleMath">\([ i, i ]\)</span> form an orbit of their own. There are exactly two <span class="SimpleMath">\(G\)</span>-orbits on the unordered pairs, hence the <span class="SimpleMath">\(G\)</span>-action on <span class="SimpleMath">\(2\)</span>-sets of points is transitive.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ScalarProduct( piup, TrivialCharacter( g ) );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">comb:= Combinations( [ 1 .. 24 ], 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:= ActionHomomorphism( g, comb, OnSets );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pihom:= NaturalCharacter( hom );</span>
Character( CharacterTable( m24 ),
[ 276, 36, 12, 15, 0, 4, 8, 0, 6, 3, 0, 3, 3, 2, 2, 1, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">Transitivity( pihom );</span>
1
</pre></div>
<p>In terms of characters, the permutation character <code class="code">pihom</code> is the difference of <code class="code">piup</code> and <code class="code">pi</code> . Note that <strong class="pkg">GAP</strong> does not know that this difference is in fact a character; in general this question is not easy to decide without knowing the irreducible characters of <span class="SimpleMath">\(G\)</span>, and up to now <strong class="pkg">GAP</strong> has not computed the irreducibles.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi2s:= piup - pi;</span>
VirtualCharacter( CharacterTable( m24 ),
[ 276, 36, 12, 15, 0, 4, 8, 0, 6, 3, 0, 3, 3, 2, 2, 1, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">pi2s = pihom;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">HasIrr( g ); HasIrr( CharacterTable( g ) );</span>
false
false
</pre></div>
<p>The point stabilizer in the action on <span class="SimpleMath">\(2\)</span>-sets is in fact a maximal subgroup of <span class="SimpleMath">\(G\)</span>, which is isomorphic to the automorphism group <span class="SimpleMath">\(M_{22}:2\)</span> of the Mathieu group <span class="SimpleMath">\(M_{22}\)</span>. Thus this permutation action is primitive. But we cannot apply <code class="func">IsPrimitive</code> (<a href="../../../doc/ref/chap41_mj.html#X84C19AD68247B760"><span class="RefLink">Reference: IsPrimitive</span></a>) to the character <code class="code">pihom</code> for getting this answer because primitivity of characters is defined in a different way, cf. <code class="func">IsPrimitiveCharacter</code> (<a href="../../../doc/ref/chap75_mj.html#X7BC72ECE822D4245"><span class="RefLink">Reference: IsPrimitiveCharacter</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPrimitive( g, comb, OnSets );</span>
true
</pre></div>
<p>We could also have computed the transitive permutation character of degree <span class="SimpleMath">\(276\)</span> using the <strong class="pkg">GAP</strong> Character Table Library instead of the group <span class="SimpleMath">\(G\)</span>, since the character tables of <span class="SimpleMath">\(G\)</span> and all its maximal subgroups are available, together with the class fusions of the maximal subgroups into <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl:= CharacterTable( "M24" );</span>
CharacterTable( "M24" )
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= Maxes( tbl );</span>
[ "M23", "M22.2", "2^4:a8", "M12.2", "2^6:3.s6", "L3(4).3.2_2",
"2^6:(psl(3,2)xs3)", "L2(23)", "L3(2)" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( maxes[2] );</span>
CharacterTable( "M22.2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">TrivialCharacter( s )^tbl;</span>
Character( CharacterTable( "M24" ),
[ 276, 36, 12, 15, 0, 4, 8, 0, 6, 3, 0, 3, 3, 2, 2, 1, 1, 0, 1, 1,
0, 0, 0, 0, 0, 0 ] )
</pre></div>
<p>Note that the sequence of conjugacy classes in the library table of <span class="SimpleMath">\(G\)</span> does in general not agree with the succession computed for the group.</p>
<p><a id="X79C9051F805851DB" name="X79C9051F805851DB"></a></p>
<h4>8.2 <span class="Heading">All Possible Permutation Characters of <span class="SimpleMath">\(M_{11}\)</span></span></h4>
<p>We compute all possible permutation characters of the Mathieu group <span class="SimpleMath">\(M_{11}\)</span>, using the three different strategies available in <strong class="pkg">GAP</strong>. First we try the algorithm that enumerates all candidates via solving a system of inequalities, which is described in <a href="chapBib_mj.html#biBBP98copy">[BP98, Section 3.2]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m11:= CharacterTable( "M11" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetName( m11, "m11" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermChars( m11 );</span>
[ Character( m11, [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ), Character( m11,
[ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ), Character( m11,
[ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ), Character( m11,
[ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ), Character( m11,
[ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ), Character( m11,
[ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ), Character( m11,
[ 110, 6, 2, 6, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 110, 14, 2, 2, 0, 2, 0, 0, 0, 0 ] ), Character( m11,
[ 132, 12, 6, 0, 2, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 144, 0, 0, 0, 4, 0, 0, 0, 1, 1 ] ), Character( m11,
[ 165, 13, 3, 1, 0, 1, 1, 1, 0, 0 ] ), Character( m11,
[ 220, 4, 4, 0, 0, 4, 0, 0, 0, 0 ] ), Character( m11,
[ 220, 12, 4, 4, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 220, 20, 4, 0, 0, 2, 0, 0, 0, 0 ] ), Character( m11,
[ 330, 2, 6, 2, 0, 2, 0, 0, 0, 0 ] ), Character( m11,
[ 330, 18, 6, 2, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 396, 12, 0, 4, 1, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 440, 8, 8, 0, 0, 2, 0, 0, 0, 0 ] ), Character( m11,
[ 440, 24, 8, 0, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 495, 15, 0, 3, 0, 0, 1, 1, 0, 0 ] ), Character( m11,
[ 660, 4, 3, 4, 0, 1, 0, 0, 0, 0 ] ), Character( m11,
[ 660, 12, 3, 0, 0, 3, 0, 0, 0, 0 ] ), Character( m11,
[ 660, 12, 12, 0, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 660, 28, 3, 0, 0, 1, 0, 0, 0, 0 ] ), Character( m11,
[ 720, 0, 0, 0, 0, 0, 0, 0, 5, 5 ] ), Character( m11,
[ 792, 24, 0, 0, 2, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 880, 0, 16, 0, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 990, 6, 0, 2, 0, 0, 2, 2, 0, 0 ] ), Character( m11,
[ 990, 6, 0, 6, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 990, 30, 0, 2, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 1320, 8, 6, 0, 0, 2, 0, 0, 0, 0 ] ), Character( m11,
[ 1320, 24, 6, 0, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 1584, 0, 0, 0, 4, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 1980, 12, 0, 4, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 1980, 36, 0, 0, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 2640, 0, 12, 0, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 3960, 24, 0, 0, 0, 0, 0, 0, 0, 0 ] ), Character( m11,
[ 7920, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( perms );</span>
39
</pre></div>
<p>Next we try the improved combinatorial approach that is sketched at the end of Section 3.2 in <a href="chapBib_mj.html#biBBP98copy">[BP98]</a>. We get the same characters, except that they may be ordered in a different way; thus we compare the ordered lists.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">degrees:= DivisorsInt( Size( m11 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms2:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for d in degrees do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( perms2, PermChars( m11, d ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( perms ) = Set( perms2 );</span>
true
</pre></div>
<p>Finally, we try the algorithm that is based on Gaussian elimination and that is described in <a href="chapBib_mj.html#biBBP98copy">[BP98, Section 3.3]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms3:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for d in degrees do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( perms3, PermChars( m11, rec( torso:= [ d ] ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( perms ) = Set( perms3 );</span>
true
</pre></div>
<p><strong class="pkg">GAP</strong> provides two more functions to test properties of permutation characters. The first one yields no new information in our case, but the second excludes one possible permutation character; note that <code class="code">TestPerm5</code> needs a <span class="SimpleMath">\(p\)</span>-modular Brauer table, and the <strong class="pkg">GAP</strong> character table library contains all Brauer tables of <span class="SimpleMath">\(M_{11}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">newperms:= TestPerm4( m11, perms );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">newperms = perms;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">newperms:= TestPerm5( m11, perms, m11 mod 11 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">newperms = perms;</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">Difference( perms, newperms );</span>
[ Character( m11, [ 220, 4, 4, 0, 0, 4, 0, 0, 0, 0 ] ) ]
</pre></div>
<p><strong class="pkg">GAP</strong> knows the table of marks of <span class="SimpleMath">\(M_{11}\)</span>, from which the permutation characters can be extracted. It turns out that <span class="SimpleMath">\(M_{11}\)</span> has <span class="SimpleMath">\(39\)</span> conjugacy classes of subgroups but only <span class="SimpleMath">\(36\)</span> different permutation characters, so three candidates computed above are in fact not permutation characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tom:= TableOfMarks( "M11" );</span>
TableOfMarks( "M11" )
<span class="GAPprompt">gap></span> <span class="GAPinput">trueperms:= PermCharsTom( m11, tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( trueperms ); Length( Set( trueperms ) );</span>
39
36
<span class="GAPprompt">gap></span> <span class="GAPinput">Difference( perms, trueperms );</span>
[ Character( m11, [ 220, 4, 4, 0, 0, 4, 0, 0, 0, 0 ] ),
Character( m11, [ 660, 4, 3, 4, 0, 1, 0, 0, 0, 0 ] ),
Character( m11, [ 660, 12, 3, 0, 0, 3, 0, 0, 0, 0 ] ) ]
</pre></div>
<p><a id="X81A5FC968782CFC3" name="X81A5FC968782CFC3"></a></p>
<h4>8.3 <span class="Heading">The Action of <span class="SimpleMath">\(U_6(2)\)</span> on the Cosets of <span class="SimpleMath">\(M_{22}\)</span></span></h4>
<p>We are interested in the permutation character of <span class="SimpleMath">\(U_6(2)\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 115]</a>) that corresponds to the action on the cosets of a <span class="SimpleMath">\(M_{22}\)</span> subgroup (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 39]</a>). The character tables of both the group and the point stabilizer are available in the <strong class="pkg">GAP</strong> character table library, so we can compute class fusion and permutation character directly; note that if the class fusion is not stored on the table of the subgroup, in general one will not get a unique fusion but only a list of candidates for the fusion.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u62:= CharacterTable( "U6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m22:= CharacterTable( "M22" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( m22, u62 );</span>
[ [ 1, 3, 7, 10, 14, 15, 22, 24, 24, 26, 33, 34 ],
[ 1, 3, 7, 10, 14, 15, 22, 24, 24, 26, 34, 33 ],
[ 1, 3, 7, 11, 14, 15, 22, 24, 24, 27, 33, 34 ],
[ 1, 3, 7, 11, 14, 15, 22, 24, 24, 27, 34, 33 ],
[ 1, 3, 7, 12, 14, 15, 22, 24, 24, 28, 33, 34 ],
[ 1, 3, 7, 12, 14, 15, 22, 24, 24, 28, 34, 33 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">RepresentativesFusions( m22, fus, u62 );</span>
[ [ 1, 3, 7, 10, 14, 15, 22, 24, 24, 26, 33, 34 ] ]
</pre></div>
<p>We see that there are six possible class fusions that are equivalent under table automorphisms of <span class="SimpleMath">\(U_6(2)\)</span> and <span class="SimpleMath">\(M22\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= Set( fus,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Induced( m22, u62, [ TrivialCharacter( m22 ) ], x )[1] );</span>
[ Character( CharacterTable( "U6(2)" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 0, 48, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "U6(2)" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "U6(2)" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( u62, cand ).ATLAS;</span>
[ "1a+22a+252a+616a+1155c+1386a+8064a+9240c",
"1a+22a+252a+616a+1155b+1386a+8064a+9240b",
"1a+22a+252a+616a+1155a+1386a+8064a+9240a" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">aut:= AutomorphismsOfTable( u62 );; Size( aut );</span>
24
<span class="GAPprompt">gap></span> <span class="GAPinput">elms:= Filtered( Elements( aut ), x -> Order( x ) = 3 );</span>
[ (10,11,12)(26,27,28)(40,41,42), (10,12,11)(26,28,27)(40,42,41) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Position( cand, Permuted( cand[1], elms[1] ) );</span>
3
<span class="GAPprompt">gap></span> <span class="GAPinput">Position( cand, Permuted( cand[3], elms[1] ) );</span>
2
</pre></div>
<p>The six fusions induce three different characters, they are conjugate under the action of the unique subgroup of order <span class="SimpleMath">\(3\)</span> in the group of table automorphisms of <span class="SimpleMath">\(U_6(2)\)</span>. The table automorphisms of order <span class="SimpleMath">\(3\)</span> are induced by group automorphisms of <span class="SimpleMath">\(U_6(2)\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 120]</a>). As can be seen from the list of maximal subgroups of <span class="SimpleMath">\(U_6(2)\)</span> in <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 115]</a>, the three induced characters are in fact permutation characters which belong to the three classes of maximal subgroups of type <span class="SimpleMath">\(M_{22}\)</span> in <span class="SimpleMath">\(U_6(2)\)</span>, which are permuted by an outer automorphism of order 3. Now we want to compute the extension of the above permutation character to the group <span class="SimpleMath">\(U_6(2).2\)</span>, which corresponds to the action of this group on the cosets of a <span class="SimpleMath">\(M_{22}.2\)</span> subgroup.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u622:= CharacterTable( "U6(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m222:= CharacterTable( "M22.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( m222, u622 );</span>
[ [ 1, 3, 7, 10, 13, 14, 20, 22, 22, 24, 29, 38, 39, 42, 41, 46, 50,
53, 58, 59, 59 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= Induced( m222, u622, [ TrivialCharacter( m222 ) ], fus[1] );</span>
[ Character( CharacterTable( "U6(2).2" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0, 0, 0,
6, 0, 2, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1080, 72,
0, 48, 8, 0, 0, 0, 18, 0, 0, 0, 8, 0, 0, 2, 0, 0, 0, 0, 2, 2,
0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( u622, cand ).ATLAS;</span>
[ "1a+22a+252a+616a+1155a+1386a+8064a+9240a" ]
</pre></div>
<p>We see that for the embedding of <span class="SimpleMath">\(M_{22}.2\)</span> into <span class="SimpleMath">\(U_6(2).2\)</span>, the class fusion is unique, so we get a unique extension of one of the above permutation characters. This implies that exactly one class of maximal subgroups of type <span class="SimpleMath">\(M_{22}\)</span> extends to <span class="SimpleMath">\(M_{22}.2\)</span> in a given group <span class="SimpleMath">\(U_6(2).2\)</span>.</p>
<p><a id="X7EE1811C8496C428" name="X7EE1811C8496C428"></a></p>
<h4>8.4 <span class="Heading">Degree <span class="SimpleMath">\(20\,736\)</span> Permutation Characters of <span class="SimpleMath">\(U_6(2)\)</span></span></h4>
<p>Now we show an alternative way to compute the characters dealt with in the previous example. This works also if the character table of the point stabilizer is not available. In this situation we can compute all those characters that have certain properties of permutation characters. Of course this may take much longer than the above computations, which needed only a few seconds. (The following calculations may need several hours, depending on the computer used.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PermChars( u62, rec( torso := [ 20736 ] ) );</span>
[ Character( CharacterTable( "U6(2)" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 0, 48, 0, 16, 6, 0, 0, 0,
0, 0, 0, 6, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "U6(2)" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0,
0, 0, 0, 6, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "U6(2)" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 0, 16, 6, 0, 0, 0,
0, 0, 0, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0 ] ) ]
</pre></div>
<p>For the next step, that is, the computation of the extension of the permutation character to <span class="SimpleMath">\(U_6(2).2\)</span>, we may use the above information, since the values on the inner classes are prescribed. The question which of the three candidates for <span class="SimpleMath">\(U_6(2)\)</span> extends to <span class="SimpleMath">\(U_6(2).2\)</span> depends on the choice of the class fusion of <span class="SimpleMath">\(U_6(2)\)</span> into <span class="SimpleMath">\(U_6(2).2\)</span>. With respect to the class fusion that is stored on the <strong class="pkg">GAP</strong> library table, the third candidate extends, as can be seen from the fact that this one is invariant under the permutation of conjugacy classes of <span class="SimpleMath">\(U_6(2)\)</span> that is induced by the action of the chosen supergroup <span class="SimpleMath">\(U_6(2).2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u622:= CharacterTable( "U6(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= InverseMap( GetFusionMap( u62, u622 ) );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, [ 11, 12 ], 13, 14, 15, [ 16, 17 ],
18, 19, 20, 21, 22, 23, 24, 25, 26, [ 27, 28 ], [ 29, 30 ], 31, 32,
[ 33, 34 ], [ 35, 36 ], 37, [ 38, 39 ], 40, [ 41, 42 ], 43, 44,
[ 45, 46 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= List( cand, x -> CompositionMaps( x, inv ) );</span>
[ [ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, [ 0, 48 ], 0, 16, 6, 0, 0,
0, 0, 0, 6, 0, 2, 0, 0, [ 0, 4 ], 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0 ],
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, [ 0, 48 ], 0, 16, 6, 0, 0,
0, 0, 0, 6, 0, 2, 0, 0, [ 0, 4 ], 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0 ],
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0, 0, 0,
6, 0, 2, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PermChars( u622, rec( torso:= ext[3] ) );</span>
[ Character( CharacterTable( "U6(2).2" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0, 0,
0, 6, 0, 2, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1080,
72, 0, 48, 8, 0, 0, 0, 18, 0, 0, 0, 8, 0, 0, 2, 0, 0, 0, 0, 2,
2, 0, 0, 0, 0, 0, 0 ] ) ]
</pre></div>
<p><a id="X7DC6A6E785A347C8" name="X7DC6A6E785A347C8"></a></p>
<h4>8.5 <span class="Heading">Degree <span class="SimpleMath">\(57\,572\,775\)</span> Permutation Characters of <span class="SimpleMath">\(O_8^+(3)\)</span></span></h4>
<p>The group <span class="SimpleMath">\(O_8^+(3)\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 140]</a>) contains a subgroup of type <span class="SimpleMath">\(2^{{3+6}}.L_3(2)\)</span>, which extends to a maximal subgroup <span class="SimpleMath">\(U\)</span> in <span class="SimpleMath">\(O_8^+(3).3\)</span>. For the computation of the permutation character, we cannot use explicit induction since the table of <span class="SimpleMath">\(U\)</span> is not available in the <strong class="pkg">GAP</strong> table library. Since <span class="SimpleMath">\(U \cap O_8^+(3)\)</span> is contained in a <span class="SimpleMath">\(O_8^+(2)\)</span> subgroup of <span class="SimpleMath">\(O_8^+(3)\)</span>, we can try to find the permutation character of <span class="SimpleMath">\(O_8^+(2)\)</span> corresponding to the action on the cosets of <span class="SimpleMath">\(U \cap O_8^+(3)\)</span>, and then induce this character to <span class="SimpleMath">\(O_8^+(3)\)</span>. This kind of computations becomes more difficult with increasing degree, so we try to reduce the problem further. In fact, the <span class="SimpleMath">\(2^{{3+6}}.L_3(2)\)</span> group is contained in a <span class="SimpleMath">\(2^6:A_8\)</span> subgroup of <span class="SimpleMath">\(O_8^+(2)\)</span>, in which the index is only <span class="SimpleMath">\(15\)</span>; the unique possible permutation character of this degree can be read off immediately. Induction to <span class="SimpleMath">\(O_8^+(3)\)</span> through the chain of subgroups is possible provided the class fusions are available. There are <span class="SimpleMath">\(24\)</span> possible fusions from <span class="SimpleMath">\(O_8^+(2)\)</span> into <span class="SimpleMath">\(O_8^+(3)\)</span>, which are all equivalent w.r.t. table automorphisms of <span class="SimpleMath">\(O_8^+(3)\)</span>. If we later want to consider the extension of the permutation character in question to <span class="SimpleMath">\(O_8^+(3).3\)</span> then we have to choose a fusion of an <span class="SimpleMath">\(O_8^+(2)\)</span> subgroup that does <em>not</em> extend to <span class="SimpleMath">\(O_8^+(2).3\)</span>. But if for example our question is just whether the resulting permutation character is multiplicity-free then this can be decided already from the permutation character of <span class="SimpleMath">\(O_8^+(3)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">o8p3:= CharacterTable("O8+(3)");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( o8p3 ) / (2^9*168);</span>
57572775
<span class="GAPprompt">gap></span> <span class="GAPinput">o8p2:= CharacterTable( "O8+(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( o8p2, o8p3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( fus );</span>
24
<span class="GAPprompt">gap></span> <span class="GAPinput">rep:= RepresentativesFusions( o8p2, fus, o8p3 );</span>
[ [ 1, 5, 2, 3, 4, 5, 7, 8, 12, 16, 17, 19, 23, 20, 21, 22, 23, 24,
25, 26, 37, 38, 42, 31, 32, 36, 49, 52, 51, 50, 43, 44, 45, 53,
55, 56, 57, 71, 71, 71, 72, 73, 74, 78, 79, 83, 88, 89, 90, 94,
100, 101, 105 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= rep[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( o8p2 ) / (2^9*168);</span>
2025
<span class="GAPprompt">gap></span> <span class="GAPinput">sub:= CharacterTable( "2^6:A8" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">subfus:= GetFusionMap( sub, o8p2 );</span>
[ 1, 3, 2, 2, 4, 5, 6, 13, 3, 6, 12, 13, 14, 7, 21, 24, 11, 30, 29,
31, 13, 17, 15, 16, 14, 17, 36, 37, 18, 41, 24, 44, 48, 28, 33, 32,
34, 35, 35, 51, 51 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= CompositionMaps( fus, subfus );</span>
[ 1, 2, 5, 5, 3, 4, 5, 23, 2, 5, 19, 23, 20, 7, 37, 31, 17, 50, 51,
43, 23, 23, 21, 22, 20, 23, 56, 57, 24, 72, 31, 78, 89, 52, 45, 44,
53, 55, 55, 100, 100 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( sub ) / (2^9*168);</span>
15
<span class="GAPprompt">gap></span> <span class="GAPinput">List( Irr( sub ), Degree );</span>
[ 1, 7, 14, 20, 21, 21, 21, 28, 35, 45, 45, 56, 64, 70, 28, 28, 35,
35, 35, 35, 70, 70, 70, 70, 140, 140, 140, 140, 140, 210, 210, 252,
252, 280, 280, 315, 315, 315, 315, 420, 448 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PermChars( sub, 15 );</span>
[ Character( CharacterTable( "2^6:A8" ),
[ 15, 15, 15, 7, 7, 7, 7, 7, 3, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3,
3, 3, 3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ind:= Induced( sub, o8p3, cand, fus );</span>
[ Character( CharacterTable( "O8+(3)" ),
[ 57572775, 59535, 59535, 59535, 3591, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 2187, 0, 27, 135, 135, 135, 243, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 27, 27, 0, 0, 0, 0, 27,
27, 27, 27, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">o8p33:= CharacterTable( "O8+(3).3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= InverseMap( GetFusionMap( o8p3, o8p33 ) );</span>
[ 1, [ 2, 3, 4 ], 5, 6, [ 7, 8, 9 ], [ 10, 11, 12 ], 13,
[ 14, 15, 16 ], 17, 18, 19, [ 20, 21, 22 ], 23, [ 24, 25, 26 ],
[ 27, 28, 29 ], 30, [ 31, 32, 33 ], [ 34, 35, 36 ], [ 37, 38, 39 ],
[ 40, 41, 42 ], [ 43, 44, 45 ], 46, [ 47, 48, 49 ], 50,
[ 51, 52, 53 ], 54, 55, 56, 57, [ 58, 59, 60 ], [ 61, 62, 63 ], 64,
[ 65, 66, 67 ], 68, [ 69, 70, 71 ], [ 72, 73, 74 ], [ 75, 76, 77 ],
[ 78, 79, 80 ], [ 81, 82, 83 ], 84, 85, [ 86, 87, 88 ],
[ 89, 90, 91 ], [ 92, 93, 94 ], 95, 96, [ 97, 98, 99 ],
[ 100, 101, 102 ], [ 103, 104, 105 ], [ 106, 107, 108 ],
[ 109, 110, 111 ], [ 112, 113, 114 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= CompositionMaps( ind[1], inv );</span>
[ 57572775, 59535, 3591, 0, 0, 0, 0, 0, 2187, 0, 27, 135, 243, 0, 0,
0, 0, 0, 0, 0, 27, 0, 0, 27, 27, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermChars( o8p33, rec( torso:= ext ) );</span>
[ Character( CharacterTable( "O8+(3).3" ),
[ 57572775, 59535, 3591, 0, 0, 0, 0, 0, 2187, 0, 27, 135, 243, 0,
0, 0, 0, 0, 0, 0, 27, 0, 0, 27, 27, 0, 8, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3159,
3159, 243, 243, 39, 39, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3,
3, 3, 3, 0, 0, 0, 0, 0, 0, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( o8p33, perms ).ATLAS;</span>
[ "1a+780aabb+2457a+2808abc+9450aaabbcc+18200abcdddef+24192a+54600a^{5\
}b+70200aabb+87360ab+139776a^{5}+147420a^{4}b^{4}+163800ab+184275aabc+\
199017aa+218700a+245700a+291200aef+332800a^{4}b^{5}c^{5}+491400aaabcd+\
531441a^{5}b^{4}c^{4}+552825a^{4}+568620aabb+698880a^{4}b^{4}+716800aa\
abbccdddeeff+786240aabb+873600aa+998400aa+1257984a^{6}+1397760aa" ]
</pre></div>
<p><a id="X792D2C2380591D8D" name="X792D2C2380591D8D"></a></p>
<h4>8.6 <span class="Heading">The Action of <span class="SimpleMath">\(O_7(3).2\)</span> on the Cosets of <span class="SimpleMath">\(2^7.S_7\)</span></span></h4>
<p>We want to know whether the permutation character of <span class="SimpleMath">\(O_7(3).2\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 108]</a>) on the cosets of its maximal subgroup <span class="SimpleMath">\(U\)</span> of type <span class="SimpleMath">\(2^7.S_7\)</span> is multiplicity-free. As in the previous examples, first we try to compute the permutation character of the simple group <span class="SimpleMath">\(O_7(3)\)</span>. It turns out that the direct computation of all candidates from the degree is very time consuming. But we can use for example the additional information provided by the fact that <span class="SimpleMath">\(U\)</span> contains an <span class="SimpleMath">\(A_7\)</span> subgroup. We compute the possible class fusions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">o73:= CharacterTable( "O7(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">a7:= CharacterTable( "A7" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( a7, o73 );</span>
[ [ 1, 3, 6, 10, 15, 16, 24, 33, 33 ],
[ 1, 3, 7, 10, 15, 16, 22, 33, 33 ] ]
</pre></div>
<p>We cannot decide easily which fusion is the right one, but already the fact that no other fusions are possible gives us some information about impossible constituents of the permutation character we want to compute.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ind:= List( fus,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Induced( a7, o73, [ TrivialCharacter( a7 ) ], x )[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:= MatScalarProducts( o73, Irr( o73 ), ind );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sum:= Sum( mat );</span>
[ 2, 6, 2, 0, 8, 6, 2, 4, 4, 8, 3, 0, 4, 4, 9, 3, 5, 0, 0, 9, 0, 10,
5, 6, 15, 1, 12, 1, 15, 7, 2, 4, 14, 16, 0, 12, 12, 7, 8, 8, 14,
12, 12, 14, 6, 6, 20, 16, 12, 12, 12, 10, 10, 12, 12, 8, 12, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">const:= Filtered( [ 1 .. Length( sum ) ], x -> sum[x] <> 0 );</span>
[ 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( const );</span>
52
<span class="GAPprompt">gap></span> <span class="GAPinput">const:= Irr( o73 ){ const };;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rat:= RationalizedMat( const );;</span>
</pre></div>
<p>But much more can be deduced from the fact that certain zeros of the permutation character can be predicted.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= ClassNames( o73 );</span>
[ "1a", "2a", "2b", "2c", "3a", "3b", "3c", "3d", "3e", "3f", "3g",
"4a", "4b", "4c", "4d", "5a", "6a", "6b", "6c", "6d", "6e", "6f",
"6g", "6h", "6i", "6j", "6k", "6l", "6m", "6n", "6o", "6p", "7a",
"8a", "8b", "9a", "9b", "9c", "9d", "10a", "10b", "12a", "12b",
"12c", "12d", "12e", "12f", "12g", "12h", "13a", "13b", "14a",
"15a", "18a", "18b", "18c", "18d", "20a" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( fus, x -> names{ x } );</span>
[ [ "1a", "2b", "3b", "3f", "4d", "5a", "6h", "7a", "7a" ],
[ "1a", "2b", "3c", "3f", "4d", "5a", "6f", "7a", "7a" ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">torso:= [ 28431 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">zeros:= [ 5, 8, 9, 11, 17, 20, 23, 28, 29, 32, 36, 37, 38,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 43, 46, 47, 48, 53, 54, 55, 56, 57, 58 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">names{ zeros };</span>
[ "3a", "3d", "3e", "3g", "6a", "6d", "6g", "6l", "6m", "6p", "9a",
"9b", "9c", "12b", "12e", "12f", "12g", "15a", "18a", "18b", "18c",
"18d", "20a" ]
</pre></div>
<p>Every order <span class="SimpleMath">\(3\)</span> element of <span class="SimpleMath">\(U\)</span> lies in an <span class="SimpleMath">\(A_7\)</span> subgroup of <span class="SimpleMath">\(U\)</span>, so among the classes of element order <span class="SimpleMath">\(3\)</span>, at most the classes <code class="code">3B</code>, <code class="code">3C</code>, and <code class="code">3F</code> can have nonzero permutation character values. The excluded classes of element order <span class="SimpleMath">\(6\)</span> are the square roots of the excluded order <span class="SimpleMath">\(3\)</span> elements, likewise the given classes of element orders <span class="SimpleMath">\(9\)</span>, <span class="SimpleMath">\(12\)</span>, and <span class="SimpleMath">\(18\)</span> are excluded. The character value on <code class="code">20A</code> must be zero because <span class="SimpleMath">\(U\)</span> does not contain elements of this order. So we enter the additional information about these zeros.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in zeros do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> torso[i]:= 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">torso;</span>
[ 28431,,,, 0,,, 0, 0,, 0,,,,,, 0,,, 0,,, 0,,,,, 0, 0,,, 0,,,, 0, 0,
0,,,,, 0,,, 0, 0, 0,,,,, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermChars( o73, rec( torso:= torso, chars:= rat ) );</span>
[ Character( CharacterTable( "O7(3)" ),
[ 28431, 567, 567, 111, 0, 0, 243, 0, 0, 81, 0, 15, 3, 27, 15, 6,
0, 0, 27, 0, 3, 27, 0, 0, 0, 3, 9, 0, 0, 3, 3, 0, 4, 1, 1, 0,
0, 0, 0, 2, 2, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( o73, perms ).ATLAS;</span>
[ "1a+78a+168a+182a+260ab+1092a+2457a+2730a+4095b+5460a+11648a" ]
</pre></div>
<p>We see that this character is already multiplicity free, so this holds also for its extension to <span class="SimpleMath">\(O_7(3).2\)</span>, and we need not compute this extension. (Of course we could compute it in the same way as in the examples above.)</p>
<p><a id="X875B361C8512939F" name="X875B361C8512939F"></a></p>
<h4>8.7 <span class="Heading">The Action of <span class="SimpleMath">\(O_8^+(3).2_1\)</span> on the Cosets of <span class="SimpleMath">\(2^7.A_8\)</span></span></h4>
<p>We are interested in the permutation character of <span class="SimpleMath">\(O_8^+(3).2_1\)</span> that corresponds to the action on the cosets of a subgroup of type <span class="SimpleMath">\(2^7.A_8\)</span>. The intersection of the point stabilizer with the simple group <span class="SimpleMath">\(O_8^+(3)\)</span> is of type <span class="SimpleMath">\(2^6.A_8\)</span>. First we compute the class fusion of these groups, modulo problems with ambiguities due to table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">o8p3:= CharacterTable( "O8+(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">o8p2:= CharacterTable( "O8+(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( o8p2, o8p3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NamesOfFusionSources( o8p2 );</span>
[ "A9", "2^8:O8+(2)", "(D10xD10).2^2", "(3x3^3:S3):2",
"(3x3^(1+2)+:2A4).2", "2^(3+3+3).L3(2)", "NRS(O8+(2),2^(3+3+3)_a)",
"NRS(O8+(2),2^(3+3+3)_b)", "O8+(2)N2", "O8+(2)M2", "O8+(2)M3",
"O8+(2)M5", "O8+(2)M6", "O8+(2)M8", "O8+(2)M9", "(3xU4(2)):2",
"O8+(2)M11", "O8+(2)M12", "2^(1+8)_+:(S3xS3xS3)", "3^4:2^3.S4(a)",
"(A5xA5):2^2", "O8+(2)M16", "O8+(2)M17", "2^(1+8)+.O8+(2)", "7:6",
"(A5xD10).2", "(D10xA5).2", "O8+(2)N5C", "2^6:A8", "2.O8+(2)",
"2^2.O8+(2)", "S6(2)" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">sub:= CharacterTable( "2^6:A8" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">subfus:= GetFusionMap( sub, o8p2 );</span>
[ 1, 3, 2, 2, 4, 5, 6, 13, 3, 6, 12, 13, 14, 7, 21, 24, 11, 30, 29,
31, 13, 17, 15, 16, 14, 17, 36, 37, 18, 41, 24, 44, 48, 28, 33, 32,
34, 35, 35, 51, 51 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= List( fus, x -> CompositionMaps( x, subfus ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= Set( fus );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( fus );</span>
24
</pre></div>
<p>The ambiguities due to Galois automorphisms disappear when we are looking for the permutation characters induced by the fusions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ind:= List( fus, x -> Induced( sub, o8p3,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ TrivialCharacter( sub ) ], x )[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ind:= Set( ind );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( ind );</span>
6
</pre></div>
<p>Now we try to extend the candidates to <span class="SimpleMath">\(O_8^+(3).2_1\)</span>; the choice of the fusion of <span class="SimpleMath">\(O_8^+(3)\)</span> into <span class="SimpleMath">\(O_8^+(3).2_1\)</span> determines which of the candidates may extend.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">o8p32:= CharacterTable( "O8+(3).2_1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= GetFusionMap( o8p3, o8p32 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= List( ind, x -> CompositionMaps( x, InverseMap( fus ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= Filtered( ext, x -> ForAll( x, IsInt ) );</span>
[ [ 3838185, 17577, 8505, 8505, 873, 0, 0, 0, 0, 6561, 0, 0, 729, 0,
9, 105, 45, 45, 105, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 189, 0, 0,
0, 9, 9, 27, 27, 0, 0, 27, 9, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0,
0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0 ],
[ 3838185, 17577, 8505, 8505, 873, 0, 6561, 0, 0, 0, 0, 0, 729, 0,
9, 105, 45, 45, 105, 30, 0, 0, 0, 0, 0, 0, 189, 0, 0, 0, 9, 0,
0, 0, 9, 27, 27, 0, 0, 9, 27, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0,
0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ]
</pre></div>
<p>We compute the extensions of the first candidate; the other belongs to another class of subgroups, which is the image under an outer automorphism.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermChars( o8p32, rec( torso:= ext[1] ) );</span>
[ Character( CharacterTable( "O8+(3).2_1" ),
[ 3838185, 17577, 8505, 8505, 873, 0, 0, 0, 0, 6561, 0, 0, 729, 0,
9, 105, 45, 45, 105, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 189, 0, 0,
0, 9, 9, 27, 27, 0, 0, 27, 9, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0,
0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3159, 1575, 567, 63, 87,
15, 0, 0, 45, 0, 81, 9, 27, 0, 0, 3, 3, 3, 3, 5, 5, 0, 0, 0, 4,
0, 0, 27, 0, 9, 0, 0, 15, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( o8p32, perms ).ATLAS;</span>
[ "1a+260abc+520ab+819a+2808b+9450aab+18200a+23400ac+29120b+36400aab+4\
6592abce+49140d+66339a+98280ab+163800a+189540d+232960d+332800ab+368550\
a+419328a+531441ab" ]
</pre></div>
<p>Now we repeat the calculations for <span class="SimpleMath">\(O_8^+(3).2_2\)</span> instead of <span class="SimpleMath">\(O_8^+(3).2_1\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">o8p32:= CharacterTable( "O8+(3).2_2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= GetFusionMap( o8p3, o8p32 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= List( ind, x -> CompositionMaps( x, InverseMap( fus ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= Filtered( ext, x -> ForAll( x, IsInt ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermChars( o8p32, rec( torso:= ext[1] ) );</span>
[ Character( CharacterTable( "O8+(3).2_2" ),
[ 3838185, 17577, 8505, 873, 0, 0, 0, 6561, 0, 0, 0, 0, 729, 0, 9,
105, 45, 105, 30, 0, 0, 0, 0, 0, 0, 189, 0, 0, 0, 9, 0, 9, 27,
0, 0, 0, 27, 27, 9, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0,
0, 6, 0, 0, 0, 0, 0, 0, 0, 199017, 2025, 297, 441, 73, 9, 0,
1215, 0, 0, 0, 0, 0, 81, 0, 0, 0, 0, 27, 27, 0, 1, 9, 12, 0, 0,
45, 0, 0, 1, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0,
0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( o8p32, perms ).ATLAS;</span>
[ "1a+260aac+520ab+819a+2808a+9450aaa+18200accee+23400ac+29120a+36400a\
+46592aa+49140c+66339a+93184a+98280ab+163800a+184275ac+189540c+232960c\
+332800aa+419328a+531441aa" ]
</pre></div>
<p>We might be interested in the extension to <span class="SimpleMath">\(O_8^+(3).(2^2)_{122}\)</span>. It is clear that this cannot be multiplicity free because of the multiplicity <code class="code">9450aaa</code> in the character induced from <span class="SimpleMath">\(O_8^+(3).2_2\)</span>. We could put the extensions to the index two subgroups together, but it is simpler (and not expensive) to run the same program as above.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">o8p322:= CharacterTable( "O8+(3).(2^2)_{122}" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= GetFusionMap( o8p32, o8p322 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= List( perms, x -> CompositionMaps( x, InverseMap( fus ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= Filtered( ext, x -> ForAll( x, IsInt ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermChars( o8p322, rec( torso:= ext[1] ) );</span>
[ Character( CharacterTable( "O8+(3).(2^2)_{122}" ),
[ 3838185, 17577, 8505, 873, 0, 0, 0, 6561, 0, 0, 729, 0, 9, 105,
45, 105, 30, 0, 0, 0, 0, 0, 0, 189, 0, 0, 9, 9, 27, 0, 0, 27,
9, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 9, 0, 0,
0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 3159, 1575,
567, 63, 87, 15, 0, 0, 45, 0, 81, 9, 27, 0, 0, 3, 3, 3, 5, 0,
0, 4, 0, 0, 27, 0, 9, 0, 0, 15, 0, 3, 0, 0, 2, 0, 0, 0, 3, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 199017, 2025, 297, 441, 73, 9, 0,
1215, 0, 0, 0, 0, 81, 0, 0, 0, 27, 27, 0, 1, 9, 12, 0, 0, 45,
0, 0, 1, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0,
0, 28431, 1647, 135, 63, 87, 39, 0, 0, 243, 27, 0, 0, 81, 63,
0, 0, 0, 9, 0, 3, 3, 6, 2, 0, 0, 0, 9, 0, 0, 3, 3, 3, 0, 4, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( o8p322, perms ).ATLAS;</span>
[ "1a+260ace+819a+1040a+2808c+9450aac+18200a+23400ae+29120c+36400aac+4\
6592ac+49140g+66339a+93184a+163800b+189540g+196560a+232960g+332800ac+3\
68550a+419328a+531441ac" ]
</pre></div>
<p><a id="X7B1DFAF98182CFF4" name="X7B1DFAF98182CFF4"></a></p>
<h4>8.8 <span class="Heading">The Action of <span class="SimpleMath">\(S_4(4).4\)</span> on the Cosets of <span class="SimpleMath">\(5^2.[2^5]\)</span></span></h4>
<p>We want to know whether the permutation character corresponding to the action of <span class="SimpleMath">\(S_4(4).4\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 44]</a>) on the cosets of its maximal subgroup of type <span class="SimpleMath">\(5^2:[2^5]\)</span> is multiplicity free. The library names of subgroups for which the class fusions are stored are listed as value of the attribute <code class="func">NamesOfFusionSources</code> (<a href="../../../doc/ref/chap73_mj.html#X7F6569D5786A9D49"><span class="RefLink">Reference: NamesOfFusionSources</span></a>), and for groups whose isomorphism type is not determined by the name this is the recommended way to find out whether the table of the subgroup is contained in the <strong class="pkg">GAP</strong> library and known to belong to this group. (It might be that a table with such a name is contained in the library but belongs to another group, and it may also be that the table of the group is contained in the library --with any name-- but it is not known that this group is isomorphic to a subgroup of <span class="SimpleMath">\(S_4(4).4\)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s444:= CharacterTable( "S4(4).4" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NamesOfFusionSources( s444 );</span>
[ "(L3(2)xS4(4):2).2", "S4(4)", "S4(4).2" ]
</pre></div>
<p>So we cannot simply fetch the table of the subgroup. As in the previous examples, we compute the possible permutation characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermChars( s444,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> rec( torso:= [ Size( s444 ) / ( 5^2*2^5 ) ] ) );</span>
[ Character( CharacterTable( "S4(4).4" ),
[ 4896, 384, 96, 0, 16, 32, 36, 16, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ),
Character( CharacterTable( "S4(4).4" ),
[ 4896, 192, 32, 0, 0, 8, 6, 1, 0, 2, 0, 0, 36, 0, 12, 0, 0, 0, 1,
0, 6, 6, 2, 2, 0, 0, 0, 0, 1, 1 ] ),
Character( CharacterTable( "S4(4).4" ),
[ 4896, 240, 64, 0, 8, 8, 36, 16, 0, 0, 0, 0, 0, 12, 8, 0, 4, 4, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ]
</pre></div>
<p>So there are three candidates. None of them is multiplicity free, so we need not decide which of the candidates actually belongs to the group <span class="SimpleMath">\(5^2:[2^5]\)</span> we have in mind.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( s444, perms ).ATLAS;</span>
[ "1abcd+50abcd+153abcd+170a^{4}b^{4}+680aabb",
"1a+50ac+153a+170aab+256a+680abb+816a+1020a",
"1ac+50ac+68a+153abcd+170aabbb+204a+680abb+1020a" ]
</pre></div>
<p>(If we would be interested which candidate is the right one, we could for example look at the intersection with <span class="SimpleMath">\(S_4(4)\)</span>, and hope for a contradiction to the fact that the group must lie in a <span class="SimpleMath">\((A_5 \times A_5):2\)</span> subgroup.)</p>
<p><a id="X7F04F0C684AA8B30" name="X7F04F0C684AA8B30"></a></p>
<h4>8.9 <span class="Heading">The Action of <span class="SimpleMath">\(Co_1\)</span> on the Cosets of Involution Centralizers</span></h4>
<p>We compute the permutation characters of the sporadic simple Conway group <span class="SimpleMath">\(Co_1\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 180]</a>) corresponding to the actions on the cosets of involution centralizers. Equivalently, we are interested in the action of <span class="SimpleMath">\(Co_1\)</span> on conjugacy classes of involutions. These characters can be computed as follows. First we take the table of <span class="SimpleMath">\(Co_1\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "Co1" );</span>
CharacterTable( "Co1" )
</pre></div>
<p>The centralizer of each <code class="code">2A</code> element is a maximal subgroup of <span class="SimpleMath">\(Co_1\)</span>. This group is also contained in the table library. So we can compute the permutation character by explicit induction, and the decomposition in irreducibles is computed with the command <code class="func">PermCharInfo</code> (<a href="../../../doc/ref/chap72_mj.html#X8477004C7A31D28C"><span class="RefLink">Reference: PermCharInfo</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( Maxes( t )[5] );</span>
CharacterTable( "2^(1+8)+.O8+(2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">ind:= Induced( s, t, [ TrivialCharacter( s ) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( t, ind ).ATLAS;</span>
[ "1a+299a+17250a+27300a+80730a+313950a+644644a+2816856a+5494125a+1243\
2420a+24794000a" ]
</pre></div>
<p>The centralizer of a <code class="code">2B</code> element is not maximal. First we compute which maximal subgroup can contain it. The character tables of all maximal subgroups of <span class="SimpleMath">\(Co_1\)</span> are contained in the <strong class="pkg">GAP</strong>'s table library, so we may take these tables and look at the group orders.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">centorder:= SizesCentralizers( t )[3];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( Maxes( t ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= Filtered( maxes, x -> Size( x ) mod centorder = 0 );</span>
[ CharacterTable( "(A4xG2(4)):2" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= cand[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">index:= Size( u ) / centorder;</span>
3
</pre></div>
<p>So there is a unique class of maximal subgroups containing the centralizer of a <code class="code">2B</code> element, as a subgroup of index <span class="SimpleMath">\(3\)</span>. We compute the unique permutation character of degree <span class="SimpleMath">\(3\)</span> of this group, and induce this character to <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">subperm:= PermChars( u, rec( degree := index, bounds := false ) );</span>
[ Character( CharacterTable( "(A4xG2(4)):2" ),
[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">subperm = PermChars( u, rec( torso := [ 3 ] ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">ind:= Induced( u, t, subperm );</span>
[ Character( CharacterTable( "Co1" ),
[ 2065694400, 181440, 119408, 38016, 2779920, 0, 0, 378, 30240,
864, 0, 720, 316, 80, 2520, 30, 0, 6480, 1508, 0, 0, 0, 0, 0,
38, 18, 105, 0, 600, 120, 56, 24, 0, 12, 0, 0, 0, 120, 48, 18,
0, 0, 6, 0, 360, 144, 108, 0, 0, 10, 0, 0, 0, 0, 0, 4, 2, 3, 9,
0, 0, 15, 3, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
12, 8, 0, 6, 0, 0, 3, 0, 1, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3,
0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( t, ind ).ATLAS;</span>
[ "1a+1771a+8855a+27300aa+313950a+345345a+644644aa+871884aaa+1771000a+\
2055625a+4100096a+7628985a+9669660a+12432420aa+21528000aa+23244375a+24\
174150aa+24794000a+31574400aa+40370176a+60435375a+85250880aa+100725625\
a+106142400a+150732800a+184184000a+185912496a+207491625a+299710125a+30\
2176875a" ]
</pre></div>
<p>Finally, we try the same for the centralizer of a <code class="code">2C</code> element.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">centorder:= SizesCentralizers( t )[4];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= Filtered( maxes, x -> Size( x ) mod centorder = 0 );</span>
[ CharacterTable( "Co2" ), CharacterTable( "2^11:M24" ) ]
</pre></div>
<p>The group order excludes all except two classes of maximal subgroups. But the <code class="code">2C</code> centralizer cannot lie in <span class="SimpleMath">\(Co_2\)</span> because the involution centralizers in <span class="SimpleMath">\(Co_2\)</span> are too small.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= cand[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( u, t );</span>
[ 1, 2, 2, 4, 7, 6, 9, 11, 11, 10, 11, 12, 14, 17, 16, 21, 23, 20,
22, 22, 24, 28, 30, 33, 31, 32, 33, 33, 37, 42, 41, 43, 44, 48, 52,
49, 53, 55, 53, 52, 54, 60, 60, 60, 64, 65, 65, 67, 66, 70, 73, 72,
78, 79, 84, 85, 87, 92, 93, 93 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">centorder;</span>
389283840
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesCentralizers( u )[4];</span>
1474560
</pre></div>
<p>So we try the second candidate.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= cand[2];</span>
CharacterTable( "2^11:M24" )
<span class="GAPprompt">gap></span> <span class="GAPinput">index:= Size( u ) / centorder;</span>
1288
<span class="GAPprompt">gap></span> <span class="GAPinput">subperm:= PermChars( u, rec( torso := [ index ] ) );</span>
[ Character( CharacterTable( "2^11:M24" ),
[ 1288, 1288, 1288, 56, 56, 56, 56, 56, 56, 48, 48, 48, 48, 48, 10,
10, 10, 10, 7, 7, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 0, 0, 0, 0, 2, 2, 2,
2, 3, 3, 3, 1, 1, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">subperm = PermChars( u, rec( degree:= index, bounds := false ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">ind:= Induced( u, t, subperm );</span>
[ Character( CharacterTable( "Co1" ),
[ 10680579000, 1988280, 196560, 94744, 0, 17010, 0, 945, 7560,
3432, 2280, 1728, 252, 308, 0, 225, 0, 0, 0, 270, 0, 306, 0,
46, 45, 25, 0, 0, 120, 32, 12, 52, 36, 36, 0, 0, 0, 0, 0, 45,
15, 0, 9, 3, 0, 0, 0, 0, 18, 0, 30, 0, 6, 18, 0, 3, 5, 0, 0, 0,
0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0,
6, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( t, ind ).ATLAS;</span>
[ "1a+17250aa+27300a+80730aa+644644aaa+871884a+1821600a+2055625aaa+281\
6856a+5494125a^{4}+12432420aa+16347825aa+23244375a+24174150aa+24667500\
aa+24794000aaa+31574400a+40370176a+55255200a+66602250a^{4}+83720000aa+\
85250880aaa+91547820aa+106142400a+150732800a+184184000aaa+185912496aaa\
+185955000aaa+207491625aaa+215547904aa+241741500aaa+247235625a+2578576\
00aa+259008750a+280280000a+302176875a+326956500a+387317700a+402902500a\
+464257024a+469945476b+502078500a+503513010a+504627200a+522161640a" ]
</pre></div>
<p><a id="X8230719D8538384B" name="X8230719D8538384B"></a></p>
<h4>8.10 <span class="Heading">The Multiplicity Free Permutation Characters of <span class="SimpleMath">\(G_2(3)\)</span></span></h4>
<p>We compute the multiplicity free possible permutation characters of <span class="SimpleMath">\(G_2(3)\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 60]</a>). For each divisor <span class="SimpleMath">\(d\)</span> of the group order, we compute all those possible permutation characters of degree <span class="SimpleMath">\(d\)</span> of <span class="SimpleMath">\(G\)</span> for which each irreducible constituent occurs with multiplicity at most <span class="SimpleMath">\(1\)</span>; this is done by prescribing the <code class="code">maxmult</code> component of the second argument of <code class="func">PermChars</code> (<a href="../../../doc/ref/chap72_mj.html#X7D02541482C196A6"><span class="RefLink">Reference: PermChars</span></a>) to be the list with <span class="SimpleMath">\(1\)</span> at each position.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "G2(3)" );</span>
CharacterTable( "G2(3)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "G2(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:= Length( RationalizedMat( Irr( t ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxmult:= List( [ 1 .. n ], i -> 1 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">divs:= DivisorsInt( Size( t ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for d in divs do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( perms,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PermChars( t, rec( bounds := false,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> degree := d,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> maxmult := maxmult ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( perms );</span>
42
<span class="GAPprompt">gap></span> <span class="GAPinput">List( perms, Degree );</span>
[ 1, 351, 351, 364, 364, 378, 378, 546, 546, 546, 546, 546, 702, 702,
728, 728, 1092, 1092, 1092, 1092, 1092, 1092, 1092, 1092, 1456,
1456, 1638, 1638, 2184, 2184, 2457, 2457, 2457, 2457, 3159, 3276,
3276, 3276, 3276, 4368, 6552, 6552 ]
</pre></div>
<p>For finding out which of these candidates are really permutation characters, we could inspect them piece by piece, using the information in <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>. For example, the candidates of degrees <span class="SimpleMath">\(351\)</span>, <span class="SimpleMath">\(364\)</span>, and <span class="SimpleMath">\(378\)</span> are induced from the trivial characters of maximal subgroups of <span class="SimpleMath">\(G\)</span>, whereas the candidates of degree <span class="SimpleMath">\(546\)</span> are not permutation characters.</p>
<p>Since the table of marks of <span class="SimpleMath">\(G\)</span> is available in <strong class="pkg">GAP</strong>, we can extract all permutation characters from the table of marks, and then filter out the multiplicity free ones.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tom:= TableOfMarks( "G2(3)" );</span>
TableOfMarks( "G2(3)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl:= CharacterTable( "G2(3)" );</span>
CharacterTable( "G2(3)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">permstom:= PermCharsTom( tbl, tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( permstom );</span>
433
<span class="GAPprompt">gap></span> <span class="GAPinput">multfree:= Intersection( perms, permstom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( multfree );</span>
15
<span class="GAPprompt">gap></span> <span class="GAPinput">List( multfree, Degree );</span>
[ 1, 351, 351, 364, 364, 378, 378, 702, 702, 728, 728, 1092, 1092,
2184, 2184 ]
</pre></div>
<p><a id="X7E3E326C7CB0E2CD" name="X7E3E326C7CB0E2CD"></a></p>
<h4>8.11 <span class="Heading">Degree <span class="SimpleMath">\(11\,200\)</span> Permutation Characters of <span class="SimpleMath">\(O_8^+(2)\)</span></span></h4>
<p>We compute the primitive permutation characters of degree <span class="SimpleMath">\(11\,200\)</span> of <span class="SimpleMath">\(O_8^+(2)\)</span> and <span class="SimpleMath">\(O_8^+(2).2\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85]</a>). The character table of the maximal subgroup of type <span class="SimpleMath">\(3^4:2^3.S_4\)</span> in <span class="SimpleMath">\(O_8^+(2)\)</span> is not available in the <strong class="pkg">GAP</strong> table library. But the group extends to a wreath product of <span class="SimpleMath">\(S_3\)</span> and <span class="SimpleMath">\(S_4\)</span> in the group <span class="SimpleMath">\(O_8^+(2).2\)</span>, and the table of this wreath product can be constructed easily.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl2:= CharacterTable("O8+(2).2");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s3:= CharacterTable( "Symmetric", 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTableWreathSymmetric( s3, 4 );</span>
CharacterTable( "Sym(3)wrS4" )
</pre></div>
<p>The permutation character <code class="code">pi</code> of <span class="SimpleMath">\(O_8^+(2).2\)</span> can thus be computed by explicit induction, and the character of <span class="SimpleMath">\(O_8^+(2)\)</span> is obtained by restriction of <code class="code">pi</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( s, tbl2 );</span>
[ [ 1, 41, 6, 3, 48, 9, 42, 19, 51, 8, 5, 50, 24, 49, 7, 2, 44, 22,
42, 12, 53, 17, 58, 21, 5, 47, 26, 50, 37, 52, 23, 60, 18, 4,
46, 25, 14, 61, 20, 9, 53, 30, 51, 26, 64, 8, 52, 31, 13, 56,
38 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= Induced( s, tbl2, [ TrivialCharacter( s ) ], fus[1] )[1];</span>
Character( CharacterTable( "O8+(2).2" ),
[ 11200, 256, 160, 160, 80, 40, 40, 76, 13, 0, 0, 8, 8, 4, 0, 0, 16,
16, 4, 4, 4, 1, 1, 1, 1, 5, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0,
0, 1120, 96, 0, 16, 0, 16, 8, 10, 4, 6, 7, 12, 3, 0, 0, 2, 0, 4, 0,
1, 1, 0, 0, 1, 0, 0, 0 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( tbl2, pi ).ATLAS;</span>
[ "1a+84a+168a+175a+300a+700c+972a+1400a+3200a+4200b" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl:= CharacterTable( "O8+(2)" );</span>
CharacterTable( "O8+(2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">rest:= RestrictedClassFunction( pi, tbl );</span>
Character( CharacterTable( "O8+(2)" ),
[ 11200, 256, 160, 160, 160, 80, 40, 40, 40, 76, 13, 0, 0, 8, 8, 8,
4, 0, 0, 0, 16, 16, 16, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 5, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( tbl, rest ).ATLAS;</span>
[ "1a+84abc+175a+300a+700bcd+972a+3200a+4200a" ]
</pre></div>
<p><a id="X7D8572E68194CBB9" name="X7D8572E68194CBB9"></a></p>
<h4>8.12 <span class="Heading">A Proof of Nonexistence of a Certain Subgroup</span></h4>
<p>We prove that the sporadic simple Mathieu group <span class="SimpleMath">\(G = M_{22}\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 39]</a>) has no subgroup of index <span class="SimpleMath">\(56\)</span>. In <a href="chapBib_mj.html#biBIsa76">[Isa76]</a>, remark after Theorem 5.18, this is stated as an example of the case that a character may be a possible permutation character but not a permutation character. Let us consider the possible permutation character of degree <span class="SimpleMath">\(56\)</span> of <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl:= CharacterTable( "M22" );</span>
CharacterTable( "M22" )
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermChars( tbl, rec( torso:= [ 56 ] ) );</span>
[ Character( CharacterTable( "M22" ),
[ 56, 8, 2, 4, 0, 1, 2, 0, 0, 2, 1, 1 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= perms[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Norm( pi );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( tbl, rec( chars:= perms ) );</span>
M22
2 7 7 2 5 4 . 2 . . 3 . .
3 2 1 2 . . . 1 . . . . .
5 1 . . . . 1 . . . . . .
7 1 . . . . . . 1 1 . . .
11 1 . . . . . . . . . 1 1
1a 2a 3a 4a 4b 5a 6a 7a 7b 8a 11a 11b
2P 1a 1a 3a 2a 2a 5a 3a 7a 7b 4a 11b 11a
3P 1a 2a 1a 4a 4b 5a 2a 7b 7a 8a 11a 11b
5P 1a 2a 3a 4a 4b 1a 6a 7b 7a 8a 11a 11b
7P 1a 2a 3a 4a 4b 5a 6a 1a 1a 8a 11b 11a
11P 1a 2a 3a 4a 4b 5a 6a 7a 7b 8a 1a 1a
Y.1 56 8 2 4 . 1 2 . . 2 1 1
</pre></div>
<p>Suppose that <code class="code">pi</code> is a permutation character of <span class="SimpleMath">\(G\)</span>. Since <span class="SimpleMath">\(G\)</span> is <span class="SimpleMath">\(2\)</span>-transitive on the <span class="SimpleMath">\(56\)</span> cosets of the point stabilizer <span class="SimpleMath">\(S\)</span>, this stabilizer is transitive on <span class="SimpleMath">\(55\)</span> points, and thus <span class="SimpleMath">\(G\)</span> has a subgroup <span class="SimpleMath">\(U\)</span> of index <span class="SimpleMath">\(56 \cdot 55 = 3080\)</span>. We compute the possible permutation character of this degree.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermChars( tbl, rec( torso:= [ 56 * 55 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( perms );</span>
16
</pre></div>
<p><span class="SimpleMath">\(U\)</span> is contained in <span class="SimpleMath">\(S\)</span>, so only those candidates must be considered that vanish on all classes where <code class="code">pi</code> vanishes. Furthermore, the index of <span class="SimpleMath">\(U\)</span> in <span class="SimpleMath">\(S\)</span> is odd, so the Sylow <span class="SimpleMath">\(2\)</span> subgroups of <span class="SimpleMath">\(U\)</span> and <span class="SimpleMath">\(S\)</span> are isomorphic; <span class="SimpleMath">\(S\)</span> contains elements of order <span class="SimpleMath">\(8\)</span>, hence also <span class="SimpleMath">\(U\)</span> does.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( tbl );</span>
[ 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 11, 11 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= Filtered( perms, x -> x[5] = 0 and x[10] <> 0 );</span>
[ Character( CharacterTable( "M22" ),
[ 3080, 56, 2, 12, 0, 0, 2, 0, 0, 2, 0, 0 ] ),
Character( CharacterTable( "M22" ),
[ 3080, 8, 2, 8, 0, 0, 2, 0, 0, 4, 0, 0 ] ),
Character( CharacterTable( "M22" ),
[ 3080, 24, 11, 4, 0, 0, 3, 0, 0, 2, 0, 0 ] ),
Character( CharacterTable( "M22" ),
[ 3080, 24, 20, 4, 0, 0, 0, 0, 0, 2, 0, 0 ] ) ]
</pre></div>
<p>For getting an overview of the distribution of the elements of <span class="SimpleMath">\(U\)</span> to the conjugacy classes of <span class="SimpleMath">\(G\)</span>, we use the output of <code class="func">PermCharInfo</code> (<a href="../../../doc/ref/chap72_mj.html#X8477004C7A31D28C"><span class="RefLink">Reference: PermCharInfo</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">infoperms:= PermCharInfo( tbl, perms );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( tbl, infoperms.display );</span>
M22
2 7 7 2 5 2 3
3 2 1 2 . 1 .
5 1 . . . . .
7 1 . . . . .
11 1 . . . . .
1a 2a 3a 4a 6a 8a
2P 1a 1a 3a 2a 3a 4a
3P 1a 2a 1a 4a 2a 8a
5P 1a 2a 3a 4a 6a 8a
7P 1a 2a 3a 4a 6a 8a
11P 1a 2a 3a 4a 6a 8a
I.1 3080 56 2 12 2 2
I.2 1 21 8 54 24 36
I.3 1 3 4 9 12 18
I.4 3080 8 2 8 2 4
I.5 1 3 8 36 24 72
I.6 1 3 4 9 12 18
I.7 3080 24 11 4 3 2
I.8 1 9 44 18 36 36
I.9 1 3 4 9 12 18
I.10 3080 24 20 4 . 2
I.11 1 9 80 18 . 36
I.12 1 3 4 9 12 18
</pre></div>
<p>We have four candidates. For each the above list shows first the character values, then the cardinality of the intersection of <span class="SimpleMath">\(U\)</span> with the classes, and then lower bounds for the lengths of <span class="SimpleMath">\(U\)</span>-conjugacy classes of these elements. Only those classes of <span class="SimpleMath">\(G\)</span> are shown that contain elements of <span class="SimpleMath">\(U\)</span> for at least one of the characters.</p>
<p>If the first two candidates are permutation characters corresponding to <span class="SimpleMath">\(U\)</span> then <span class="SimpleMath">\(U\)</span> contains exactly <span class="SimpleMath">\(8\)</span> elements of order <span class="SimpleMath">\(3\)</span> and thus <span class="SimpleMath">\(U\)</span> has a normal Sylow <span class="SimpleMath">\(3\)</span> subgroup <span class="SimpleMath">\(P\)</span>. But the order of <span class="SimpleMath">\(N_G(P)\)</span> is bounded by <span class="SimpleMath">\(72\)</span>, which can be shown as follows. The only elements in <span class="SimpleMath">\(G\)</span> with centralizer order divisible by <span class="SimpleMath">\(9\)</span> are of order <span class="SimpleMath">\(1\)</span> or <span class="SimpleMath">\(3\)</span>, so <span class="SimpleMath">\(P\)</span> is self-centralizing in <span class="SimpleMath">\(G\)</span>. The factor <span class="SimpleMath">\(N_G(P)/C_G(P)\)</span> is isomorphic with a subgroup of Aut<span class="SimpleMath">\((G) \cong GL(2,3)\)</span> which has order divisible by <span class="SimpleMath">\(16\)</span>, hence the order of <span class="SimpleMath">\(N_G(P)\)</span> divides <span class="SimpleMath">\(144\)</span>. Now note that <span class="SimpleMath">\([ G : N_G(P) ] \equiv 1 \pmod{3}\)</span> by Sylow's Theorem, and <span class="SimpleMath">\(|G|/144 = 3\,080 \equiv -1 \pmod{3}\)</span>. Thus the first two candidates are not permutation characters.</p>
<p>If the last two candidates are permutation characters corresponding to <span class="SimpleMath">\(U\)</span> then <span class="SimpleMath">\(U\)</span> has self-normalizing Sylow subgroups. This is because the index of a Sylow <span class="SimpleMath">\(2\)</span> normalizer in <span class="SimpleMath">\(G\)</span> is odd and divides <span class="SimpleMath">\(9\)</span>, and if it is smaller than <span class="SimpleMath">\(9\)</span> then <span class="SimpleMath">\(U\)</span> contains at most <span class="SimpleMath">\(3 \cdot 15 + 1\)</span> elements of <span class="SimpleMath">\(2\)</span> power order; the index of a Sylow <span class="SimpleMath">\(3\)</span> normalizer in <span class="SimpleMath">\(G\)</span> is congruent to <span class="SimpleMath">\(1\)</span> modulo <span class="SimpleMath">\(3\)</span> and divides <span class="SimpleMath">\(16\)</span>, and if it is smaller than <span class="SimpleMath">\(16\)</span> then <span class="SimpleMath">\(U\)</span> contains at most <span class="SimpleMath">\(4 \cdot 8\)</span> elements of order <span class="SimpleMath">\(3\)</span>.</p>
<p>But since <span class="SimpleMath">\(U\)</span> is solvable and not a <span class="SimpleMath">\(p\)</span>-group, not all its Sylow subgroups can be self-normalizing; note that <span class="SimpleMath">\(U\)</span> has a proper normal subgroup <span class="SimpleMath">\(N\)</span> containing a Sylow <span class="SimpleMath">\(p\)</span> subgroup <span class="SimpleMath">\(P\)</span> of <span class="SimpleMath">\(U\)</span> for a prime divisor <span class="SimpleMath">\(p\)</span> of <span class="SimpleMath">\(|U|\)</span>, and <span class="SimpleMath">\(U = N \cdot N_U(P)\)</span> holds by the Frattini argument (see <a href="chapBib_mj.html#biBHup67">[Hup67, Satz I.7.8]</a>).</p>
<p><a id="X8068E9DA7CD03BF2" name="X8068E9DA7CD03BF2"></a></p>
<h4>8.13 <span class="Heading">A Permutation Character of the Lyons group</span></h4>
<p>Let <span class="SimpleMath">\(G\)</span> be a maximal subgroup with structure <span class="SimpleMath">\(3^{{2+4}}:2A_5.D_8\)</span> in the sporadic simple Lyons group <span class="SimpleMath">\(Ly\)</span>. We want to compute the permutation character <span class="SimpleMath">\(1_G^{Ly}\)</span>. (This construction has been explained in <a href="chapBib_mj.html#biBBP98copy">[BP98, Section 4.2]</a>, without showing explicit <strong class="pkg">GAP</strong> code.)</p>
<p>In the representation of <span class="SimpleMath">\(Ly\)</span> as automorphism group of the rank <span class="SimpleMath">\(5\)</span> graph <code class="code">B</code> with <span class="SimpleMath">\(9\,606\,125\)</span> points (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 174]</a>), <span class="SimpleMath">\(G\)</span> is the stabilizer of an edge. A group <span class="SimpleMath">\(S\)</span> with structure <span class="SimpleMath">\(3.McL.2\)</span> is the point stabilizer. So the two point stabilizer <span class="SimpleMath">\(U = S \cap G\)</span> is a subgroup of index <span class="SimpleMath">\(2\)</span> in <span class="SimpleMath">\(G\)</span>. The index of <span class="SimpleMath">\(U\)</span> in <span class="SimpleMath">\(S\)</span> is <span class="SimpleMath">\(15\,400\)</span>, and according to the list of maximal subgroups of <span class="SimpleMath">\(McL.2\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 100]</a>), the group <span class="SimpleMath">\(U\)</span> is isomorphic to the preimage in <span class="SimpleMath">\(3.McL.2\)</span> of a subgroup <span class="SimpleMath">\(H\)</span> of <span class="SimpleMath">\(McL.2\)</span> with structure <span class="SimpleMath">\(3_+^{{1+4}}:4S_5\)</span>.</p>
<p>Using the improved combinatorial method described in <a href="chapBib_mj.html#biBBP98copy">[BP98, Section 3.2]</a>, all possible permutation characters of degree <span class="SimpleMath">\(15\,400\)</span> for the group <span class="SimpleMath">\(McL\)</span> are computed. (The method of <a href="chapBib_mj.html#biBBP98copy">[BP98, Section 3.3]</a> is slower but also needs only a few seconds.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ly:= CharacterTable( "Ly" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mcl:= CharacterTable( "McL" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mcl2:= CharacterTable( "McL.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3mcl2:= CharacterTable( "3.McL.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermChars( mcl, rec( degree:= 15400 ) );</span>
[ Character( CharacterTable( "McL" ),
[ 15400, 56, 91, 10, 12, 25, 0, 11, 2, 0, 0, 2, 1, 1, 1, 0, 0, 3,
0, 0, 1, 1, 1, 1 ] ), Character( CharacterTable( "McL" ),
[ 15400, 280, 10, 37, 20, 0, 5, 10, 1, 0, 0, 2, 1, 1, 0, 0, 0, 2,
0, 0, 0, 0, 0, 0 ] ) ]
</pre></div>
<p>We get two characters, corresponding to the two classes of maximal subgroups of index <span class="SimpleMath">\(15\,400\)</span> in <span class="SimpleMath">\(McL\)</span>. The permutation character <span class="SimpleMath">\(\pi = 1_{{H \cap McL}}^{McL}\)</span> is the one with nonzero value on the class <code class="code">10A</code>, since the subgroup of structure <span class="SimpleMath">\(2S_5\)</span> in <span class="SimpleMath">\(H \cap McL\)</span> contains elements of order <span class="SimpleMath">\(10\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord10:= Filtered( [ 1 .. NrConjugacyClasses( mcl ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> OrdersClassRepresentatives( mcl )[i] = 10 );</span>
[ 15 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( perms, pi -> pi[ ord10[1] ] );</span>
[ 1, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= perms[1];</span>
Character( CharacterTable( "McL" ),
[ 15400, 56, 91, 10, 12, 25, 0, 11, 2, 0, 0, 2, 1, 1, 1, 0, 0, 3, 0,
0, 1, 1, 1, 1 ] )
</pre></div>
<p>The character <span class="SimpleMath">\(1_H^{McL.2}\)</span> is an extension of <span class="SimpleMath">\(\pi\)</span>, so we can use the method of <a href="chapBib_mj.html#biBBP98copy">[BP98, Section 3.3]</a> to compute all possible permutation characters for the group <span class="SimpleMath">\(McL.2\)</span> that have the values of <span class="SimpleMath">\(\pi\)</span> on the classes of <span class="SimpleMath">\(McL\)</span>. We find that the extension of <span class="SimpleMath">\(\pi\)</span> to a permutation character of <span class="SimpleMath">\(McL.2\)</span> is unique. Regarded as a character of <span class="SimpleMath">\(3.McL.2\)</span>, this character is equal to <span class="SimpleMath">\(1_U^S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">map:= InverseMap( GetFusionMap( mcl, mcl2 ) );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, [ 10, 11 ], 12, [ 13, 14 ], 15, 16, 17,
18, [ 19, 20 ], [ 21, 22 ], [ 23, 24 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">torso:= CompositionMaps( pi, map );</span>
[ 15400, 56, 91, 10, 12, 25, 0, 11, 2, 0, 2, 1, 1, 0, 0, 3, 0, 1, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermChars( mcl2, rec( torso:= torso ) );</span>
[ Character( CharacterTable( "McL.2" ),
[ 15400, 56, 91, 10, 12, 25, 0, 11, 2, 0, 2, 1, 1, 0, 0, 3, 0, 1,
1, 110, 26, 2, 4, 0, 0, 5, 2, 1, 1, 0, 0, 1, 1 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= Inflated( perms[1], 3mcl2 );</span>
Character( CharacterTable( "3.McL.2" ),
[ 15400, 15400, 56, 56, 91, 91, 10, 12, 12, 25, 25, 0, 0, 11, 11, 2,
2, 0, 0, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0, 3, 3, 0, 0, 0, 1, 1, 1, 1,
1, 1, 110, 26, 2, 4, 0, 0, 5, 2, 1, 1, 0, 0, 1, 1 ] )
</pre></div>
<p>The fusion of conjugacy classes of <span class="SimpleMath">\(S\)</span> in <span class="SimpleMath">\(Ly\)</span> can be computed from the character tables of <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(Ly\)</span> given in <a href="chapBib_mj.html#biBCCN85">[CCN+85]</a>, it is unique up to Galois automorphisms of the table of <span class="SimpleMath">\(Ly\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( 3mcl2, ly );; Length( fus );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= AutomorphismsOfTable( ly );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrbitLengths( g, fus, OnTuples ); </span>
[ 4 ]
</pre></div>
<p>Now we can induce <span class="SimpleMath">\(1_U^S\)</span> to <span class="SimpleMath">\(Ly\)</span>, which yields <span class="SimpleMath">\((1_U^S)^{Ly} = 1_U^{Ly}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= Induced( 3mcl2, ly, [ pi ], fus[1] )[1];</span>
Character( CharacterTable( "Ly" ),
[ 147934325000, 286440, 1416800, 1082, 784, 12500, 0, 672, 42, 24,
0, 40, 0, 2, 20, 0, 0, 0, 64, 10, 0, 50, 2, 0, 0, 4, 0, 0, 0, 0, 4,
0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] )
</pre></div>
<p>All elements of odd order in <span class="SimpleMath">\(G\)</span> are contained in <span class="SimpleMath">\(U\)</span>, for such an element <span class="SimpleMath">\(g\)</span> we have</p>
<p class="center">\[
1_G^{Ly}(g) = |C_{Ly}(g)| / |G| \cdot |G \cap Cl_{Ly}(g)|
= |C_{Ly}(g)| / (2 \cdot |U|) \cdot |U \cap Cl_{Ly}(g)|
= 1/2 \cdot 1_U^{Ly}(g) \ ,
\]</p>
<p>so we can prescribe the values of <span class="SimpleMath">\(1_G^{Ly}\)</span> on all classes of odd element order. For elements <span class="SimpleMath">\(g\)</span> of even order we have the weaker condition <span class="SimpleMath">\(U\cap Cl_{Ly}(g) \subseteq G \cap Cl_{Ly}(g)\)</span> and thus <span class="SimpleMath">\(1_G^{Ly}(g) \geq 1/2 \cdot 1_U^{Ly}(g)\)</span>, which gives lower bounds for the value of <span class="SimpleMath">\(1_G^{Ly}\)</span> on the remaining classes.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">orders:= OrdersClassRepresentatives( ly );</span>
[ 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12,
14, 15, 15, 15, 18, 20, 21, 21, 22, 22, 24, 24, 24, 25, 28, 30, 30,
31, 31, 31, 31, 31, 33, 33, 37, 37, 40, 40, 42, 42, 67, 67, 67 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">torso:= [];; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 1 .. Length( orders ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if orders[i] mod 2 = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> torso[i]:= pi[i]/2;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">torso;</span>
[ 73967162500,, 708400, 541,, 6250, 0,,,, 0,,, 1,,, 0, 0,,,, 25, 1, 0,
,, 0, 0,,,,,, 0,,,, 0, 0, 0, 0, 0, 0, 0, 0, 0,,,,, 0, 0, 0 ]
</pre></div>
<p>Exactly one possible permutation character of <span class="SimpleMath">\(Ly\)</span> satisfies these conditions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermChars( ly, rec( torso:= torso ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( perms );</span>
43
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= Filtered( perms, cand -> ForAll( [ 1 .. Length( orders ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> cand[i] >= pi[i] / 2 ) );</span>
[ Character( CharacterTable( "Ly" ),
[ 73967162500, 204820, 708400, 541, 392, 6250, 0, 1456, 61, 25, 0,
22, 10, 1, 10, 0, 0, 0, 32, 5, 0, 25, 1, 0, 1, 2, 0, 0, 0, 0,
4, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0,
0, 0 ] ) ]
</pre></div>
<p>(The permutation character <span class="SimpleMath">\(1_G^{Ly}\)</span> was used in the proof that the character <span class="SimpleMath">\(\chi_{37}\)</span> of <span class="SimpleMath">\(Ly\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 175]</a>) occurs with multiplicity at least 2 in each character of <span class="SimpleMath">\(Ly\)</span> that is induced from a proper subgroup of <span class="SimpleMath">\(Ly\)</span>.)</p>
<p><a id="X87D6C1A67CC7EE0A" name="X87D6C1A67CC7EE0A"></a></p>
<h4>8.14 <span class="Heading">Identifying two subgroups of Aut<span class="SimpleMath">\((U_3(5))\)</span> (October 2001)</span></h4>
<p>According to the Atlas of Finite Groups <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 34]</a>, the group Aut<span class="SimpleMath">\((U_3(5))\)</span> has two classes of maximal subgroups of order <span class="SimpleMath">\(2^4 \cdot 3^3\)</span>, which have the structures <span class="SimpleMath">\(3^2 \colon 2S_4\)</span> and <span class="SimpleMath">\(6^2 \colon D_{12}\)</span>, respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl:= CharacterTable( "U3(5).3.2" );</span>
CharacterTable( "U3(5).3.2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">deg:= Size( tbl ) / ( 2^4*3^3 );</span>
1750
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermChars( tbl, rec( torso:= [ deg ] ) );</span>
[ Character( CharacterTable( "U3(5).3.2" ),
[ 1750, 70, 13, 2, 0, 0, 1, 0, 0, 0, 10, 7, 10, 4, 2, 0, 0, 0, 0,
0, 0, 30, 10, 3, 0, 0, 1, 0, 0 ] ),
Character( CharacterTable( "U3(5).3.2" ),
[ 1750, 30, 4, 6, 0, 0, 0, 0, 0, 0, 40, 7, 0, 6, 0, 0, 0, 0, 0, 0,
0, 20, 0, 2, 2, 0, 0, 0, 0 ] ) ]
</pre></div>
<p>Now the question is which character belongs to which subgroup. We see that the first character vanishes on the classes of element order <span class="SimpleMath">\(8\)</span> and the second does not, so only the first one can be the permutation character induced from <span class="SimpleMath">\(6^2 \colon D_{12}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord8:= Filtered( [ 1 .. NrConjugacyClasses( tbl ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> OrdersClassRepresentatives( tbl )[i] = 8 );</span>
[ 9, 25 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( pi, x -> x{ ord8 } );</span>
[ [ 0, 0 ], [ 0, 2 ] ]
</pre></div>
<p>Thus the question is whether the second candidate is really a permutation character. Since none of the two candidates vanishes on any outer coset of <span class="SimpleMath">\(U_3(5)\)</span> in Aut<span class="SimpleMath">\((U_3(5))\)</span>, the point stabilizers are extensions of groups of order <span class="SimpleMath">\(2^3 \cdot 3^2\)</span> in <span class="SimpleMath">\(U_3(5)\)</span>. The restrictions of the candidates to <span class="SimpleMath">\(U_3(5)\)</span> are different, so we can try to answer the question using information about this group.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">subtbl:= CharacterTable( "U3(5)" );</span>
CharacterTable( "U3(5)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">rest:= RestrictedClassFunctions( pi, subtbl );</span>
[ Character( CharacterTable( "U3(5)" ),
[ 1750, 70, 13, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] ),
Character( CharacterTable( "U3(5)" ),
[ 1750, 30, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ]
</pre></div>
<p>The intersection of the <span class="SimpleMath">\(3^2 \colon 2S_4\)</span> subgroup with <span class="SimpleMath">\(U_3(5)\)</span> lies inside the maximal subgroup of type <span class="SimpleMath">\(M_{10}\)</span>, which does not contain elements of order<span class="SimpleMath">\(6\)</span>. Only the second character has this property.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord6:= Filtered( [ 1 .. NrConjugacyClasses( subtbl ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> OrdersClassRepresentatives( subtbl )[i] = 6 );</span>
[ 9 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( rest, x -> x{ ord6 } );</span>
[ [ 1 ], [ 0 ] ]
</pre></div>
<p>In order to establish the two characters as permutation characters, we could also compute the permutation characters of the degree in question directly from the table of marks of <span class="SimpleMath">\(U_3(5)\)</span>, which is contained in the <strong class="pkg">GAP</strong> library of tables of marks.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tom:= TableOfMarks( "U3(5)" );</span>
TableOfMarks( "U3(5)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermCharsTom( subtbl, tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( Filtered( perms, x -> x[1] = deg ) ) = Set( rest );</span>
true
</pre></div>
<p>We were mainly interested in the multiplicities of irreducible characters in these characters. The action of Aut<span class="SimpleMath">\((U_3(5)\)</span> on the cosets of <span class="SimpleMath">\(3^2 \colon 2S_4\)</span> turns out to be multiplicity-free whereas that on the cosets of <span class="SimpleMath">\(6^2 \colon D_{12}\)</span> is not.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( tbl, pi ).ATLAS;</span>
[ "1a+21a+42a+84aac+105a+125a+126a+250a+252a+288bc",
"1a+42a+84ac+105ab+125a+126a+250a+252b+288bc" ]
</pre></div>
<p>It should be noted that the restrictions of the multiplicity-free character to the subgroups <span class="SimpleMath">\(U_3(5).2\)</span> and <span class="SimpleMath">\(U_3(5).3\)</span> of Aut<span class="SimpleMath">\((U_3(5)\)</span> are not multiplicity-free.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">subtbl2:= CharacterTable( "U3(5).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rest2:= RestrictedClassFunctions( pi, subtbl2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( subtbl2, rest2 ).ATLAS;</span>
[ "1a+21aab+28aa+56aa+84a+105a+125aab+126aab+288aa",
"1a+21ab+28a+56a+84a+105ab+125aab+126a+252a+288aa" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">subtbl3:= CharacterTable( "U3(5).3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rest3:= RestrictedClassFunctions( pi, subtbl3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( subtbl3, rest3 ).ATLAS;</span>
[ "1a+21abc+84aab+105a+125abc+126abc+144bcef",
"1a+21bc+84ab+105aa+125abc+126adg+144bcef" ]
</pre></div>
<p><a id="X793669787CF73A55" name="X793669787CF73A55"></a></p>
<h4>8.15 <span class="Heading">A Permutation Character of Aut<span class="SimpleMath">\((O_8^+(2))\)</span> (October 2001)</span></h4>
<p>According to the Atlas of Finite Groups <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 85]</a>, the group <span class="SimpleMath">\(G =\)</span> Aut<span class="SimpleMath">\((O_8^+(2))\)</span> has a class of maximal subgroups of order <span class="SimpleMath">\(2^{13} \cdot 3^2\)</span>, thus the index of these subgroups in <span class="SimpleMath">\(G\)</span> is <span class="SimpleMath">\(3^4 \cdot 5^2 \cdot 7\)</span>. The intersection of these subgroups with <span class="SimpleMath">\(H = O_8^+(2)\)</span> lie inside maximal subgroups of type <span class="SimpleMath">\(2^6 \colon A_8\)</span>. We want to show that the permutation character of the action of <span class="SimpleMath">\(G\)</span> on the cosets of these subgroups is not multiplicity-free.</p>
<p>Since the table of marks for <span class="SimpleMath">\(H\)</span> is available in <strong class="pkg">GAP</strong>, but not that for <span class="SimpleMath">\(G\)</span>, we first compute the <span class="SimpleMath">\(H\)</span>-permutation characters of the intersections with <span class="SimpleMath">\(H\)</span> of index <span class="SimpleMath">\(3^4 \cdot 5^2 \cdot 7 = 14\,175\)</span> subgroups in <span class="SimpleMath">\(G\)</span>.</p>
<p>(Note that these intersections have order <span class="SimpleMath">\(2^{12} \cdot 3\)</span> because subgroups of order <span class="SimpleMath">\(2^{12} \cdot 3^2\)</span> are contained in <span class="SimpleMath">\(O_8^+(2).2\)</span> and hence are not maximal in <span class="SimpleMath">\(G\)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "O8+(2).3.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "O8+(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tom:= TableOfMarks( s );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermCharsTom( s, tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">deg:= 3^4*5^2*7;</span>
14175
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= Filtered( perms, x -> x[1] = deg );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( perms );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( Set( perms ) );</span>
1
</pre></div>
<p>We see that there are four classes of subgroups <span class="SimpleMath">\(S\)</span> in <span class="SimpleMath">\(H\)</span> that may belong to maximal subgroups of the desired index in <span class="SimpleMath">\(G\)</span>, and that the permutation characters are equal. They lead to such groups if they extend to <span class="SimpleMath">\(G\)</span>, so we compute the possible permutation characters of <span class="SimpleMath">\(G\)</span> that extend these characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( s, t );</span>
[ [ 1, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 9, 10, 10, 10, 11, 12, 12,
12, 13, 13, 13, 14, 14, 14, 15, 16, 16, 16, 17, 17, 17, 18, 19,
20, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 26, 26, 26, 27,
27, 27 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= fus[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= InverseMap( fus );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= CompositionMaps( perms[1], inv );</span>
[ 14175, 1215, 375, 79, 0, 0, 27, 27, 99, 15, 7, 0, 0, 0, 0, 9, 3, 1,
0, 1, 1, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ext:= PermChars( t, rec( torso:= comp ) );</span>
[ Character( CharacterTable( "O8+(2).3.2" ),
[ 14175, 1215, 375, 79, 0, 0, 27, 27, 99, 15, 7, 0, 0, 0, 0, 9, 3,
1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 63, 9, 15, 7, 1, 0, 3, 3, 3, 1,
0, 0, 1, 1, 945, 129, 45, 69, 21, 25, 13, 0, 0, 0, 9, 0, 3, 3,
7, 1, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PermCharInfo( t, ext[1] ).ATLAS;</span>
[ "1a+50b+100a+252bb+300b+700b+972bb+1400a+1944a+3200b+4032b" ]
</pre></div>
<p>Thus we get one permutation character of <span class="SimpleMath">\(G\)</span> which is not multiplicity-free.</p>
<p><a id="X8337F3C682B6BE63" name="X8337F3C682B6BE63"></a></p>
<h4>8.16 <span class="Heading">Four Primitive Permutation Characters of the Monster Group</span></h4>
<p>In this section, we compute four primitive permutation characters <span class="SimpleMath">\(1_H^M\)</span> of the sporadic simple Monster group <span class="SimpleMath">\(M\)</span>, using the following strategy.</p>
<p>Let <span class="SimpleMath">\(E\)</span> be an elementary abelian <span class="SimpleMath">\(2\)</span>-subgroup of <span class="SimpleMath">\(M\)</span>, and <span class="SimpleMath">\(H = N_M(E)\)</span>. For an involution <span class="SimpleMath">\(z \in E\)</span>, let <span class="SimpleMath">\(G = C_M(z)\)</span> and <span class="SimpleMath">\(U = G \cap H = C_H(z)\)</span> and <span class="SimpleMath">\(V = C_H(E)\)</span>, a normal subgroup of <span class="SimpleMath">\(H\)</span>. According to the Atlas of Finite Groups <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 234]</a>, <span class="SimpleMath">\(G\)</span> has the structure <span class="SimpleMath">\(2.B\)</span> if <span class="SimpleMath">\(z\)</span> is in the class <code class="code">2A</code> of <span class="SimpleMath">\(M\)</span>, and <span class="SimpleMath">\(G\)</span> has the structure <span class="SimpleMath">\(2^{{1+24}}_+.Co_1\)</span> if <span class="SimpleMath">\(z\)</span> is in the class <code class="code">2B</code> of <span class="SimpleMath">\(M\)</span>. In the latter case, let <span class="SimpleMath">\(N\)</span> denote the extraspecial normal subgroup of order <span class="SimpleMath">\(2^{25}\)</span> in <span class="SimpleMath">\(G\)</span>. It will turn out that in our situation, <span class="SimpleMath">\(U\)</span> contains <span class="SimpleMath">\(N\)</span>.</p>
<p>We want to compute many values of <span class="SimpleMath">\(1_H^M\)</span> from the knowledge of permutation characters <span class="SimpleMath">\(1_X^M\)</span>, for suitable subgroups <span class="SimpleMath">\(X\)</span> with the property <span class="SimpleMath">\(V \leq X \leq U\)</span>, and then use the <strong class="pkg">GAP</strong> function <code class="func">PermChars</code> (<a href="../../../doc/ref/chap72_mj.html#X7D02541482C196A6"><span class="RefLink">Reference: PermChars</span></a>) for computing all those possible permutation characters of <span class="SimpleMath">\(M\)</span> that take the known values; if there is a unique solution then this is the desired character <span class="SimpleMath">\(1_H^M\)</span>.</p>
<p>(In the year 2023, the character tables of three of the four maximal subgroups <span class="SimpleMath">\(H\)</span> in question became available, since then one can compute the permutation characters directly by first computing the possible class fusions to <span class="SimpleMath">\(M\)</span> and then inducing the trivial character of <span class="SimpleMath">\(H\)</span> to <span class="SimpleMath">\(M\)</span>. We get the same results this way, see below.)</p>
<p><center> <img src="ctblpope01.png" alt="setup: some subgroups of G"/> </center></p>
<p>Why does this approach have a chance to be successful? Currently we do not have representations for the subgroups <span class="SimpleMath">\(H\)</span> in question, but the character tables of the involution centralizers <span class="SimpleMath">\(G\)</span> in <span class="SimpleMath">\(M\)</span> are available, and also either the character tables of <span class="SimpleMath">\(X/V\)</span> for the interesting subgroups <span class="SimpleMath">\(X\)</span> are known or we have enough information to compute the characters <span class="SimpleMath">\(1_X^G\)</span>.</p>
<p>And how do we compute certain values of <span class="SimpleMath">\(1_H^M\)</span>? Suppose that <span class="SimpleMath">\(C\)</span> is a union of classes of <span class="SimpleMath">\(M\)</span> and <span class="SimpleMath">\(I\)</span> is an index set such that <span class="SimpleMath">\((1_H)_{{C \cap H}} = (\sum_{{i \in I}} c_i 1_{{X_i}}^H)_{{C \cap H}}\)</span> holds for suitable rational numbers <span class="SimpleMath">\(c_i\)</span>.</p>
<p>The right hand side of this equality lives in <span class="SimpleMath">\(H/V\)</span>, provided that <span class="SimpleMath">\(C\)</span> "behaves well" w.r.t. factoring out the normal subgroup <span class="SimpleMath">\(V\)</span> of <span class="SimpleMath">\(H\)</span>, i. e., if there is a set of classes in <span class="SimpleMath">\(H/V\)</span> whose preimages in <span class="SimpleMath">\(H\)</span> form the set <span class="SimpleMath">\(H \cap C\)</span>. For example, <span class="SimpleMath">\(C\)</span> may be the set of all those elements in <span class="SimpleMath">\(M\)</span> whose order is not divisible by a particular prime <span class="SimpleMath">\(p\)</span> that divides <span class="SimpleMath">\(|H|\)</span> but not <span class="SimpleMath">\(|U|\)</span>.</p>
<p>Under these conditions, we have <span class="SimpleMath">\((1_H^M)_{C} = ((\sum_{{i \in I}} c_i 1_{{X_i}}^G)^M)_{C}\)</span>, and we interpret the right hand side as follows: If <span class="SimpleMath">\(X_i\)</span> contains <span class="SimpleMath">\(N\)</span> then <span class="SimpleMath">\(1_{{X_i}}^G\)</span> can be identified with <span class="SimpleMath">\(1_{{X_i/N}}^{{G/N}}\)</span>. If <span class="SimpleMath">\(X_i\)</span> contains at least <span class="SimpleMath">\(Z\)</span> then <span class="SimpleMath">\(1_{{X_i}}^G\)</span> can be identified with <span class="SimpleMath">\(1_{{X_i/Z}}^{{G/Z}}\)</span>. As mentioned above, we have good chances to compute these characters. So the main task in each of the following sections is to find, for a suitable set <span class="SimpleMath">\(C\)</span> of classes, a linear combination of permutation characters of <span class="SimpleMath">\(H/V\)</span> whose restriction to <span class="SimpleMath">\((C \cap H) / V\)</span> is constant and nonzero.</p>
<p><a id="X78A8A1248336DD26" name="X78A8A1248336DD26"></a></p>
<h5>8.16-1 <span class="Heading">The Subgroup <span class="SimpleMath">\(2^2.2^{11}.2^{22}.(S_3 \times M_{24})\)</span>
(June 2009)</span></h5>
<p>According to the Atlas of Finite Groups <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 234]</a>, the Monster group <span class="SimpleMath">\(M\)</span> has a class of maximal subgroups <span class="SimpleMath">\(H\)</span> of the type <span class="SimpleMath">\(2^2.2^{11}.2^{22}.(S_3 \times M_{24})\)</span>. Currently the character table of <span class="SimpleMath">\(H\)</span> and the class fusion into <span class="SimpleMath">\(M\)</span> are not available in <strong class="pkg">GAP</strong>. We are interested in the permutation character <span class="SimpleMath">\(1_H^G\)</span>, and we will compute it without this information.</p>
<p>The subgroup <span class="SimpleMath">\(H\)</span> normalizes a Klein four group <span class="SimpleMath">\(E\)</span> whose involutions lie in the class <code class="code">2B</code>. We fix an involution <span class="SimpleMath">\(z\)</span> in <span class="SimpleMath">\(E\)</span>, and set <span class="SimpleMath">\(G = C_M(z)\)</span>, <span class="SimpleMath">\(U = C_H(z)\)</span>, and <span class="SimpleMath">\(V = C_H(E)\)</span>. Further, let <span class="SimpleMath">\(N\)</span> be the extraspecial normal subgroup of order <span class="SimpleMath">\(2^{25}\)</span> in <span class="SimpleMath">\(G\)</span>.</p>
<p>So <span class="SimpleMath">\(G\)</span> has the structure <span class="SimpleMath">\(2^{{1+24}}_+.Co_1\)</span>, and <span class="SimpleMath">\(U\)</span> has index three in <span class="SimpleMath">\(H\)</span>. The order of <span class="SimpleMath">\(N U / N\)</span> is a multiple of <span class="SimpleMath">\(2^{{2+11+22-25}} \cdot 2 \cdot |M_{24}|\)</span>, and <span class="SimpleMath">\(N U / N\)</span> occurs as a subgroup of <span class="SimpleMath">\(G / N \cong Co_1\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">co1:= CharacterTable( "Co1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">order:= 2^(2+11+22-25) * 2 * Size( CharacterTable( "M24" ) );</span>
501397585920
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( Maxes( co1 ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( maxes, t -> Size( t ) mod order = 0 );</span>
[ CharacterTable( "2^11:M24" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( filt, t -> Size( t ) / order );</span>
[ 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">k:= filt[1];;</span>
</pre></div>
<p>The list of maximal subgroups of <span class="SimpleMath">\(Co_1\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 183]</a>) tells us that <span class="SimpleMath">\(NU / N\)</span> is a maximal subgroup <span class="SimpleMath">\(K\)</span> of <span class="SimpleMath">\(Co_1\)</span> and has the structure <span class="SimpleMath">\(2^{11}:M_{24}\)</span>. In particular, <span class="SimpleMath">\(U\)</span> contains <span class="SimpleMath">\(N\)</span> and thus <span class="SimpleMath">\(U/N \cong K\)</span>.</p>
<p>Let <span class="SimpleMath">\(C = \{ g \in M; 3 \nmid |g|\)</span> or <span class="SimpleMath">\(1_V^M(g^3) = 0 \}\)</span>.</p>
<p>Then <span class="SimpleMath">\((1_H)_{{C \cap H}} = (1_U^H - 1/3 1_V^H)_{{C \cap H}}\)</span> holds, as we can see from computations with <span class="SimpleMath">\(H/V \cong S_3\)</span>, as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= CharacterTable( "Symmetric", 3 );</span>
CharacterTable( "Sym(3)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( f );</span>
[ 1, 2, 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">deg3:= PermChars( f, 3 );</span>
[ Character( CharacterTable( "Sym(3)" ), [ 3, 1, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">deg6:= PermChars( f, 6 );</span>
[ Character( CharacterTable( "Sym(3)" ), [ 6, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">deg3[1] - 1/3 * deg6[1];</span>
ClassFunction( CharacterTable( "Sym(3)" ), [ 1, 1, 0 ] )
</pre></div>
<p>The character table of <span class="SimpleMath">\(G\)</span> is available in <strong class="pkg">GAP</strong>, so we can compute the permutation character <span class="SimpleMath">\(\pi = 1_U^G\)</span> by computing the primitive permutation character <span class="SimpleMath">\(1_K^{{Co_1}}\)</span>, identifying it with <span class="SimpleMath">\(1_{{U/N}}^{{G/N}}\)</span>, and then inflating this character to <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "M" );</span>
CharacterTable( "M" )
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= CharacterTable( "MC2B" );</span>
CharacterTable( "2^1+24.Co1" )
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= RestrictedClassFunction( TrivialCharacter( k )^co1, g );;</span>
</pre></div>
<p>Next we consider the permutation character <span class="SimpleMath">\(\phi = 1_V^G\)</span>. The group <span class="SimpleMath">\(V\)</span> does not contain <span class="SimpleMath">\(N\)</span> because <span class="SimpleMath">\(K\)</span> is perfect. But <span class="SimpleMath">\(V\)</span> contains <span class="SimpleMath">\(Z\)</span> because otherwise <span class="SimpleMath">\(U\)</span> would be a direct product of <span class="SimpleMath">\(V\)</span> and <span class="SimpleMath">\(Z\)</span>, which would imply that <span class="SimpleMath">\(N\)</span> would be a direct product of <span class="SimpleMath">\(V \cap N\)</span> and <span class="SimpleMath">\(Z\)</span>. So we can regard <span class="SimpleMath">\(\phi\)</span> as the inflation of <span class="SimpleMath">\(1_{{V/Z}}^{{G/Z}}\)</span> from <span class="SimpleMath">\(G/Z\)</span> to <span class="SimpleMath">\(G\)</span>, i. e., we can perform the computations with the character table of the factor group <span class="SimpleMath">\(G/Z\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">zclasses:= ClassPositionsOfCentre( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gmodz:= g / zclasses;</span>
CharacterTable( "2^1+24.Co1/[ 1, 2 ]" )
<span class="GAPprompt">gap></span> <span class="GAPinput">invmap:= InverseMap( GetFusionMap( g, gmodz ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pibar:= CompositionMaps( pi, invmap );;</span>
</pre></div>
<p>Since <span class="SimpleMath">\(\phi(g) = [G:V] \cdot |g^G \cap V| / |g^G|\)</span> holds for <span class="SimpleMath">\(g \in G\)</span>, and since <span class="SimpleMath">\(g^G \cap V \subseteq g^G \cap VN\)</span>, with equality if <span class="SimpleMath">\(g\)</span> has odd order, we get <span class="SimpleMath">\(\phi(g) = 2 \cdot \pi(g)\)</span> if <span class="SimpleMath">\(g\)</span> has odd order, and <span class="SimpleMath">\(\phi(g) = 0\)</span> if <span class="SimpleMath">\(\pi(g) = 0\)</span>.</p>
<p>We want to compute the possible permutation characters with these values.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">factorders:= OrdersClassRepresentatives( gmodz );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phibar:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 1 .. NrConjugacyClasses( gmodz ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if factorders[i] mod 2 = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> phibar[i]:= 2 * pibar[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif pibar[i] = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> phibar[i]:= 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PermChars( gmodz, rec( torso:= phibar ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( cand );</span>
1
</pre></div>
<p>Now we know <span class="SimpleMath">\(\pi^M = 1_U^M\)</span> and <span class="SimpleMath">\(\phi^M = 1_V^M\)</span>, so we can write down <span class="SimpleMath">\((1_H^M)_{C}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">phi:= RestrictedClassFunction( cand[1], g )^m;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= pi^m;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= ShallowCopy( pi - 1/3 * phi );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">morders:= OrdersClassRepresentatives( m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 1 .. Length( morders ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if morders[i] mod 3 = 0 and phi[ PowerMap( m, 3 )[i] ] <> 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( cand[i] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p>We claim that <span class="SimpleMath">\(1_H^M(g) \geq \pi^M(g) - 1/3 \psi^M(g)\)</span> for all <span class="SimpleMath">\(g \in M\)</span>. In order to see this, let <span class="SimpleMath">\(H'\)</span> denote the index two subgroup of <span class="SimpleMath">\(H\)</span>, and let <span class="SimpleMath">\(g \in M\)</span>. Since <span class="SimpleMath">\(H\)</span> is the disjoint union of <span class="SimpleMath">\(V\)</span>, <span class="SimpleMath">\(H' \setminus V\)</span>, and three <span class="SimpleMath">\(H\)</span>-conjugates of <span class="SimpleMath">\(U \setminus V\)</span>, we get</p>
<p><div class="pcenter"><table> <tr> <td class="tdright"><span class="SimpleMath">1_H^M(g)</span></td> <td class="tdcenter"><span class="SimpleMath">=</span></td> <td class="tdleft"><span class="SimpleMath">[M:H] ⋅ |g^M ∩ H| / |g^M|</span></td> </tr> <tr> <td class="tdcenter"><span class="SimpleMath"> </span></td> <td class="tdcenter"><span class="SimpleMath">=</span></td> <td class="tdcenter"><span class="SimpleMath">[M:H] ⋅ ( |g^M ∩ V| + 3 |g^M ∩ U \ V| + |g^M ∩ H' \ V| ) / |g^M|</span></td> </tr> <tr> <td class="tdcenter"><span class="SimpleMath"> </span></td> <td class="tdcenter"><span class="SimpleMath">=</span></td> <td class="tdcenter"><span class="SimpleMath">[M:H] ⋅ ( 3 |g^M ∩ U| - 2 |g^M ∩ V| + |g^M ∩ H' \ V| ) / |g^M|</span></td> </tr> <tr> <td class="tdcenter"><span class="SimpleMath"> </span></td> <td class="tdcenter"><span class="SimpleMath">=</span></td> <td class="tdcenter"><span class="SimpleMath">1_U^M(g) - 1/3 ⋅ 1_V^G(g) + [M:H] ⋅ |g^M ∩ H' \ V| / |g^M| .</span></td> </tr> </table> </div></p>
<p>Possible constituents of <span class="SimpleMath">\(1_H^M\)</span> are those rational irreducible characters of <span class="SimpleMath">\(M\)</span> that are constituents of <span class="SimpleMath">\(\pi^M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">constit:= Filtered( RationalizedMat( Irr( m ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> chi -> ScalarProduct( m, chi, pi ) <> 0 );;</span>
</pre></div>
<p>Now we compute the possible permutation characters that have the prescribed values, are compatible with the given lower bounds for values, and have only constituents in the given list.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PermChars( m,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> rec( torso:= cand, chars:= constit,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lower:= ShallowCopy( pi - 1/3 * phi ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> normalsubgroup:= [ 1 .. NrConjugacyClasses( m ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nonfaithful:= TrivialCharacter( m ) ) );</span>
[ Character( CharacterTable( "M" ),
[ 16009115629875684006343550944921875, 7774182899642733721875,
120168544413337875, 4436049512692980, 215448838605,
131873639625, 760550656275, 110042727795, 943894035, 568854195,
1851609375, 0, 4680311220, 405405, 78624756, 14467005, 178605,
248265, 874650, 0, 76995, 591163, 224055, 34955, 29539, 20727,
0, 0, 375375, 15775, 0, 0, 0, 495, 116532, 3645, 62316, 1017,
11268, 357, 1701, 45, 117, 705, 0, 0, 4410, 1498, 0, 3780, 810,
0, 0, 83, 135, 31, 0, 0, 0, 0, 0, 0, 0, 255, 195, 0, 215, 0, 0,
210, 0, 42, 0, 35, 15, 1, 1, 160, 48, 9, 92, 25, 9, 9, 5, 1,
21, 0, 0, 0, 0, 0, 98, 74, 42, 0, 0, 0, 120, 76, 10, 0, 0, 0,
0, 0, 1, 1, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 3, 0,
0, 0, 18, 0, 10, 0, 3, 3, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0,
0, 0, 2, 0, 0, 0, 0, 0, 6, 12, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0 ] ) ]
</pre></div>
<p>There is only one candidate, so we have found the permutation character.</p>
<p>The character table of <span class="SimpleMath">\(H\)</span> is available since 2023. We can compute the permutation character directly from this table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:= CharacterTable( "2^(2+11+22).(M24xS3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( h, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand = Set( fus, map -> InducedClassFunctionsByFusionMap( h, m,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ TrivialCharacter( h ) ], map )[1] );</span>
true
</pre></div>
<p><a id="X79E9247182B20474" name="X79E9247182B20474"></a></p>
<h5>8.16-2 <span class="Heading">The Subgroup <span class="SimpleMath">\(2^3.2^6.2^{12}.2^{18}.(L_3(2) \times 3.S_6)\)</span>
(September 2009)</span></h5>
<p>According to the Atlas of Finite Groups <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 234]</a>, the Monster group <span class="SimpleMath">\(M\)</span> has a class of maximal subgroups <span class="SimpleMath">\(H\)</span> of the type <span class="SimpleMath">\(2^3.2^6.2^{12}.2^{18}.(L_3(2) \times 3.S_6)\)</span>. Currently the character table of <span class="SimpleMath">\(H\)</span> and the class fusion into <span class="SimpleMath">\(M\)</span> are not available in <strong class="pkg">GAP</strong>. We are interested in the permutation character <span class="SimpleMath">\(1_H^G\)</span>, and we will compute it without this information.</p>
<p>The subgroup <span class="SimpleMath">\(H\)</span> normalizes an elementary abelian group <span class="SimpleMath">\(E\)</span> of order eight whose involutions lie in the class <code class="code">2B</code>. We fix an involution <span class="SimpleMath">\(z\)</span> in <span class="SimpleMath">\(E\)</span>, and set <span class="SimpleMath">\(G = C_M(z)\)</span>, <span class="SimpleMath">\(U = C_H(z)\)</span>, and <span class="SimpleMath">\(V = C_H(E)\)</span>. Further, let <span class="SimpleMath">\(N\)</span> be the extraspecial normal subgroup of order <span class="SimpleMath">\(2^{25}\)</span> in <span class="SimpleMath">\(G\)</span>.</p>
<p>So <span class="SimpleMath">\(G\)</span> has the structure <span class="SimpleMath">\(2^{{1+24}}_+.Co_1\)</span>, and <span class="SimpleMath">\(U\)</span> has index seven in <span class="SimpleMath">\(H\)</span>. The order of <span class="SimpleMath">\(N U / N\)</span> is a multiple of <span class="SimpleMath">\(2^{{3+6+12+18-25}} \cdot |L_3(2)| \cdot |3.S_6| / 7\)</span>, and <span class="SimpleMath">\(N U / N\)</span> occurs as a subgroup of <span class="SimpleMath">\(G / N \cong Co_1\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">co1:= CharacterTable( "Co1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">order:= 2^(3+6+12+18-25) * 168 * 3 * Factorial( 6 ) / 7;</span>
849346560
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( Maxes( co1 ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( maxes, t -> Size( t ) mod order = 0 );</span>
[ CharacterTable( "2^(1+8)+.O8+(2)" ),
CharacterTable( "2^(4+12).(S3x3S6)" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( filt, t -> Size( t ) / order );</span>
[ 105, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">o8p2:= CharacterTable( "O8+(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PermChars( o8p2, rec( torso:= [ 105 ] ) );</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">k:= filt[2];;</span>
</pre></div>
<p>The list of maximal subgroups of <span class="SimpleMath">\(Co_1\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 183]</a>) tells us that <span class="SimpleMath">\(NU / N\)</span> is a maximal subgroup <span class="SimpleMath">\(K\)</span> of <span class="SimpleMath">\(Co_1\)</span> and has the structure <span class="SimpleMath">\(2^{{4+12}}.(S_3 \times 3.S_6)\)</span>. (Note that the group <span class="SimpleMath">\(O_8^+(2)\)</span> has no proper subgroup of index <span class="SimpleMath">\(105\)</span>.) In particular, <span class="SimpleMath">\(U\)</span> contains <span class="SimpleMath">\(N\)</span> and thus <span class="SimpleMath">\(U/N \cong K\)</span>.</p>
<p>Let <span class="SimpleMath">\(C\)</span> be the set of elements in <span class="SimpleMath">\(M\)</span> whose order is not divisible by <span class="SimpleMath">\(7\)</span>. Then <span class="SimpleMath">\((1_H)_{{C \cap H}} = (1_U^H - 1/3 1_{VN}^H + 1/21 1_V^H)_{{C \cap H}}\)</span> holds, as we can see from computations with <span class="SimpleMath">\(H/V \cong L_3(2)\)</span>, as follows.</p>
<p>So S4, V4, 1 suffice! --></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= CharacterTable( "L3(2)" );</span>
CharacterTable( "L3(2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( f );</span>
[ 1, 2, 3, 4, 7, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">deg7:= PermChars( f, 7 );</span>
[ Character( CharacterTable( "L3(2)" ), [ 7, 3, 1, 1, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">deg42:= PermChars( f, 42 );</span>
[ Character( CharacterTable( "L3(2)" ), [ 42, 2, 0, 2, 0, 0 ] ),
Character( CharacterTable( "L3(2)" ), [ 42, 6, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">deg168:= PermChars( f, 168 );</span>
[ Character( CharacterTable( "L3(2)" ), [ 168, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">deg7[1] - 1/3 * deg42[2] + 1/21 * deg168[1];</span>
ClassFunction( CharacterTable( "L3(2)" ), [ 1, 1, 1, 1, 0, 0 ] )
</pre></div>
<p>(Note that <span class="SimpleMath">\(VN/V\)</span> is a Klein four group, and there is only one transitive permutation character of <span class="SimpleMath">\(L_3(2)\)</span> that is induced from such subgroups.)</p>
<p>The character table of <span class="SimpleMath">\(G\)</span> is available in <strong class="pkg">GAP</strong>, so we can compute the permutation character <span class="SimpleMath">\(\pi = 1_U^G\)</span> by computing the primitive permutation character <span class="SimpleMath">\(1_K^{{Co_1}}\)</span>, identifying it with <span class="SimpleMath">\(1_{{U/N}}^{{G/N}}\)</span>, and then inflating this character to <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "M" );</span>
CharacterTable( "M" )
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= CharacterTable( "MC2B" );</span>
CharacterTable( "2^1+24.Co1" )
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= RestrictedClassFunction( TrivialCharacter( k )^co1, g );;</span>
</pre></div>
<p>The permutation character <span class="SimpleMath">\(\psi = 1_{VN}^G\)</span> can be computed as the inflation of <span class="SimpleMath">\(1_{{VN/N}}^{{G/N}} = (1_{{VN/N}}^{{U/N}})^{{G/N}}\)</span>, where <span class="SimpleMath">\(1_{{VN/N}}^{{U/N}}\)</span> is a character of <span class="SimpleMath">\(K\)</span> that can be identified with the regular permutation character of <span class="SimpleMath">\(U/VN \cong S_3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= ClassPositionsOfNormalSubgroups( k );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsgsizes:= List( nsg, x -> Sum( SizesConjugacyClasses( k ){ x } ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nn:= nsg[ Position( nsgsizes, Size( k ) / 6 ) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">psi:= 0 * [ 1 .. NrConjugacyClasses( k ) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in nn do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> psi[i]:= 6;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">psi:= InducedClassFunction( k, psi, co1 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">psi:= RestrictedClassFunction( psi, g );;</span>
</pre></div>
<p>Next we consider the permutation character <span class="SimpleMath">\(\phi = 1_V^G\)</span>. The group <span class="SimpleMath">\(V\)</span> does not contain <span class="SimpleMath">\(N\)</span> because <span class="SimpleMath">\(K\)</span> does not have a factor group of the type <span class="SimpleMath">\(S_4\)</span>. But <span class="SimpleMath">\(V\)</span> contains <span class="SimpleMath">\(Z\)</span> because <span class="SimpleMath">\(U/V\)</span> is centerless. So we can regard <span class="SimpleMath">\(\phi\)</span> as the inflation of <span class="SimpleMath">\(1_{{V/Z}}^{{G/Z}}\)</span> from <span class="SimpleMath">\(G/Z\)</span> to <span class="SimpleMath">\(G\)</span>, i. e., we can perform the computations with the character table of the factor group <span class="SimpleMath">\(G/Z\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">zclasses:= ClassPositionsOfCentre( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gmodz:= g / zclasses;</span>
CharacterTable( "2^1+24.Co1/[ 1, 2 ]" )
<span class="GAPprompt">gap></span> <span class="GAPinput">invmap:= InverseMap( GetFusionMap( g, gmodz ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">psibar:= CompositionMaps( psi, invmap );;</span>
</pre></div>
<p>Since <span class="SimpleMath">\(\phi(g) = [G:V] \cdot |g^G \cap V| / |g^G|\)</span> holds for <span class="SimpleMath">\(g \in G\)</span>, and since <span class="SimpleMath">\(g^G \cap V \subseteq g^G \cap VN\)</span>, with equality if <span class="SimpleMath">\(g\)</span> has odd order, we get <span class="SimpleMath">\(\phi(g) = 4 \cdot \psi(g)\)</span> if <span class="SimpleMath">\(g\)</span> has odd order, and <span class="SimpleMath">\(\phi(g) = 0\)</span> if <span class="SimpleMath">\(\psi(g) = 0\)</span>.</p>
<p>We want to compute the possible permutation characters with these values. This is easier if we "go down" from <span class="SimpleMath">\(VN\)</span> to <span class="SimpleMath">\(V\)</span> in two steps.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">factorders:= OrdersClassRepresentatives( gmodz );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phibar:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">upperphibar:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 1 .. NrConjugacyClasses( gmodz ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if factorders[i] mod 2 = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> phibar[i]:= 2 * psibar[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif psibar[i] = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> phibar[i]:= 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> upperphibar[i]:= 2 * psibar[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PermChars( gmodz, rec( torso:= phibar,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> upper:= upperphibar,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> normalsubgroup:= [ 1 .. NrConjugacyClasses( gmodz ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nonfaithful:= TrivialCharacter( gmodz ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( cand );</span>
3
</pre></div>
<p>One of the candidates computed in this first step is excluded by the fact that it is induced from a subgroup that contains <span class="SimpleMath">\(N/Z\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">nn:= First( ClassPositionsOfNormalSubgroups( gmodz ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( SizesConjugacyClasses( gmodz ){x} ) = 2^24 );</span>
[ 1 .. 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">cont:= PermCharInfo( gmodz, cand ).contained;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= cand{ Filtered( [ 1 .. Length( cand ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> Sum( cont[i]{ nn } ) < 2^24 ) };;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( cand );</span>
2
</pre></div>
<p>Now we run the second step. After excluding the candidates that cannot be induced from subgroups whose intersection with <span class="SimpleMath">\(N/Z\)</span> has index four in <span class="SimpleMath">\(N/Z\)</span>, we get four solutions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for v in cand do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> phibar:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> upperphibar:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. NrConjugacyClasses( gmodz ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if factorders[i] mod 2 = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> phibar[i]:= 2 * v[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif v[i] = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> phibar[i]:= 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> upperphibar[i]:= 2 * v[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( poss, PermChars( gmodz, rec( torso:= phibar,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> upper:= upperphibar,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> normalsubgroup:= [ 1 .. NrConjugacyClasses( gmodz ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nonfaithful:= TrivialCharacter( gmodz ) ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
6
<span class="GAPprompt">gap></span> <span class="GAPinput">cont:= PermCharInfo( gmodz, poss ).contained;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">poss:= poss{ Filtered( [ 1 .. Length( poss ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> Sum( cont[i]{ nn } ) < 2^23 ) };;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( poss );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">phicand:= RestrictedClassFunctions( poss, g );;</span>
</pre></div>
<p>Since we have several candidates for <span class="SimpleMath">\(1_V^G\)</span>, we form the linear combinations for all these candidates.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">phicand:= RestrictedClassFunctions( poss, g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phicand:= InducedClassFunctions( phicand, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">psi:= psi^m;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= pi^m;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= List( phicand,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> phi -> ShallowCopy( pi - 1/3 * psi + 1/21 * phi ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">morders:= OrdersClassRepresentatives( m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for x in cand do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. Length( morders ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if morders[i] mod 7 = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( x[i] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p>Exactly one of the candidates has only integral values.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= Filtered( cand, x -> ForAll( x, IsInt ) );</span>
[ [ 4050306254358548053604918389065234375, 148844831270071996434375,
2815847622206994375, 14567365753025085, 3447181417680,
659368198125, 3520153823175, 548464353255, 5706077895,
3056566695, 264515625, 0, 19572895485, 6486480, 186109245,
61410960, 758160, 688365,,, 172503, 1264351, 376155, 137935,
99127, 52731, 0, 0, 119625, 3625, 0, 0, 0, 0, 402813, 29160,
185301, 2781, 21069, 1932, 4212, 360, 576, 1125, 0, 0,,,, 2160,
810, 0, 0, 111, 179, 43, 0, 0, 0, 0, 0, 0, 0, 185, 105, 0, 65,
0, 0,,,,, 0, 0, 0, 0, 337, 105, 36, 157, 37, 18, 18, 16, 4, 21,
0, 0, 0, 0, 0,,,,, 0, 0, 60, 40, 10, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0,,, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 1, 0, 0, 0,,,,, 0, 0, 0, 0,
0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0,,,, 0, 0, 0, 6, 8, 0, 0, 2,
0, 0, 0, 0, 0, 0, 0, 0,,, 0, 0, 0, 0, 0,,,, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,, 0 ] ]
</pre></div>
<p>Possible constituents of <span class="SimpleMath">\(1_H^M\)</span> are those rational irreducible characters of <span class="SimpleMath">\(M\)</span> that are constituents of <span class="SimpleMath">\(\pi^M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">constit:= Filtered( RationalizedMat( Irr( m ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> chi -> ScalarProduct( m, chi, pi ) <> 0 );;</span>
</pre></div>
<p>Now we compute the possible permutation characters that have the prescribed values and have only constituents in the given list.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PermChars( m, rec( torso:= cand[1], chars:= constit ) );</span>
[ Character( CharacterTable( "M" ),
[ 4050306254358548053604918389065234375, 148844831270071996434375,
2815847622206994375, 14567365753025085, 3447181417680,
659368198125, 3520153823175, 548464353255, 5706077895,
3056566695, 264515625, 0, 19572895485, 6486480, 186109245,
61410960, 758160, 688365, 58310, 0, 172503, 1264351, 376155,
137935, 99127, 52731, 0, 0, 119625, 3625, 0, 0, 0, 0, 402813,
29160, 185301, 2781, 21069, 1932, 4212, 360, 576, 1125, 0, 0,
1302, 294, 0, 2160, 810, 0, 0, 111, 179, 43, 0, 0, 0, 0, 0, 0,
0, 185, 105, 0, 65, 0, 0, 224, 0, 14, 0, 0, 0, 0, 0, 337, 105,
36, 157, 37, 18, 18, 16, 4, 21, 0, 0, 0, 0, 0, 70, 38, 14, 0,
0, 0, 60, 40, 10, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 10, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 5, 1, 0, 0, 0, 24, 0, 6, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 6, 8, 0, 0, 2,
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0 ] ) ]
</pre></div>
<p>There is only one candidate, so we have found the permutation character.</p>
<p>The character table of <span class="SimpleMath">\(H\)</span> is available since 2023. We can compute the permutation character directly from this table. (The class fusion from <span class="SimpleMath">\(H\)</span> to <span class="SimpleMath">\(M\)</span> is unique up to table automorphisms, but its computation is a bit tricky, thus we do not compute this fusion here.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:= CharacterTable( "2^[39].(L3(2)x3.S6)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand[1] = TrivialCharacter( h )^m;</span>
true
</pre></div>
<p><a id="X7BC36C597E542DEE" name="X7BC36C597E542DEE"></a></p>
<h5>8.16-3 <span class="Heading">The Subgroup <span class="SimpleMath">\(2^5.2^{10}.2^{20}.(S_3 \times L_5(2))\)</span>
(October 2009)</span></h5>
<p>According to the Atlas of Finite Groups <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 234]</a>, the Monster group <span class="SimpleMath">\(M\)</span> has a class of maximal subgroups <span class="SimpleMath">\(H\)</span> of the type <span class="SimpleMath">\(2^5.2^{10}.2^{20}.(S_3 \times L_5(2))\)</span>. Currently the character table of <span class="SimpleMath">\(H\)</span> and the class fusion into <span class="SimpleMath">\(M\)</span> are not available in <strong class="pkg">GAP</strong>. We are interested in the permutation character <span class="SimpleMath">\(1_H^G\)</span>, and we will compute it without this information.</p>
<p>The subgroup <span class="SimpleMath">\(H\)</span> normalizes an elementary abelian group <span class="SimpleMath">\(E\)</span> of order <span class="SimpleMath">\(32\)</span> whose involutions lie in the class <code class="code">2B</code>. We fix an involution <span class="SimpleMath">\(z\)</span> in <span class="SimpleMath">\(E\)</span>, and set <span class="SimpleMath">\(G = C_M(z)\)</span>, <span class="SimpleMath">\(U = C_H(z)\)</span>, and <span class="SimpleMath">\(V = C_H(E)\)</span>. Further, let <span class="SimpleMath">\(N\)</span> be the extraspecial normal subgroup of order <span class="SimpleMath">\(2^{25}\)</span> in <span class="SimpleMath">\(G\)</span>.</p>
<p>So <span class="SimpleMath">\(G\)</span> has the structure <span class="SimpleMath">\(2^{{1+24}}_+.Co_1\)</span>, and <span class="SimpleMath">\(U\)</span> has index <span class="SimpleMath">\(31\)</span> in <span class="SimpleMath">\(H\)</span>. The order of <span class="SimpleMath">\(N U / N\)</span> is a multiple of <span class="SimpleMath">\(2^{{5+10+20-25}} \cdot |L_5(2)| \cdot |S_3| / 31\)</span>, and <span class="SimpleMath">\(N U / N\)</span> occurs as a subgroup of <span class="SimpleMath">\(G / N \cong Co_1\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">co1:= CharacterTable( "Co1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">order:= 2^35*Size( CharacterTable( "L5(2)" ) )*6 / 2^25 / 31;</span>
1981808640
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( Maxes( co1 ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( maxes, t -> Size( t ) mod order = 0 );</span>
[ CharacterTable( "2^11:M24" ), CharacterTable( "2^(1+8)+.O8+(2)" ),
CharacterTable( "2^(2+12):(A8xS3)" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( filt, t -> Size( t ) / order );</span>
[ 253, 45, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">m24:= CharacterTable( "M24" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PermChars( m24, rec( torso:=[ 253 ] ) );</span>
[ Character( CharacterTable( "M24" ),
[ 253, 29, 13, 10, 1, 5, 5, 1, 3, 2, 1, 1, 1, 1, 3, 0, 2, 1, 1, 1,
0, 0, 1, 1, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">TestPerm5( m24, cand, m24 mod 11 );</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PermChars( CharacterTable( "O8+(2)" ), rec( torso:=[ 45 ] ) );</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">k:= filt[3];;</span>
</pre></div>
<p>The list of maximal subgroups of <span class="SimpleMath">\(Co_1\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 183]</a>) tells us that <span class="SimpleMath">\(NU / N\)</span> is a maximal subgroup <span class="SimpleMath">\(K\)</span> of <span class="SimpleMath">\(Co_1\)</span> and has the structure <span class="SimpleMath">\(2^{{2+12}}.(A_8 \times S_3)\)</span>. (Note that the group <span class="SimpleMath">\(M_{24}\)</span> has no proper subgroup of index <span class="SimpleMath">\(253\)</span>, which is shown above using the <span class="SimpleMath">\(11\)</span>-modular Brauer table of <span class="SimpleMath">\(M_{24}\)</span>. Furthermore, the group <span class="SimpleMath">\(O_8^+(2)\)</span> has no subgroup of index <span class="SimpleMath">\(45\)</span>.) In particular, <span class="SimpleMath">\(U\)</span> contains <span class="SimpleMath">\(N\)</span> and thus <span class="SimpleMath">\(U/N \cong K\)</span>.</p>
<p>Let <span class="SimpleMath">\(C\)</span> be the set of elements in <span class="SimpleMath">\(M\)</span> whose order is not divisible by <span class="SimpleMath">\(31\)</span> or <span class="SimpleMath">\(21\)</span>. We want to find an index set <span class="SimpleMath">\(I\)</span> and subgroups <span class="SimpleMath">\(X_i\)</span>, for <span class="SimpleMath">\(i \in I\)</span>, with the property that <span class="SimpleMath">\(V \leq X_i \leq U\)</span> and</p>
<p class="center">\[
(1_H)_{{C \cap H}} = \left( \sum_{{i \in I}} c_i 1_{{X_i}}^H \right)_{{C \cap H}}
\]</p>
<p>holds for suitable rational integers <span class="SimpleMath">\(c_i\)</span>. Let <span class="SimpleMath">\(W\)</span> be the full preimage of the elementary normal subgroup of order <span class="SimpleMath">\(16\)</span> in <span class="SimpleMath">\(U/V \cong 2^4.A_8\)</span> under the natural epimorphism from <span class="SimpleMath">\(U\)</span> to <span class="SimpleMath">\(U/V\)</span>, and set <span class="SimpleMath">\(I_1 = \{ i \in I; W \leq X_i \}\)</span> and <span class="SimpleMath">\(I_2 = I \setminus I_1\)</span>.</p>
<p>Using the known table of marks of <span class="SimpleMath">\(U/V\)</span>, we will find a solution such that <span class="SimpleMath">\([W:(W \cap X_i)] = 2\)</span> for all <span class="SimpleMath">\(i \in I_2\)</span>. First we compute the permutation characters <span class="SimpleMath">\(1_S^{{U/V}}\)</span> for all subgroups <span class="SimpleMath">\(S\)</span> of <span class="SimpleMath">\(U/V\)</span> that contain <span class="SimpleMath">\(W/V\)</span>, and induce them to <span class="SimpleMath">\(H/V\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">subtbl:= CharacterTable( "2^4:A8" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">subtom:= TableOfMarks( subtbl );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms:= PermCharsTom( subtbl, subtom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= ClassPositionsOfNormalSubgroups( subtbl );</span>
[ [ 1 ], [ 1, 2 ], [ 1 .. 25 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">above:= Filtered( perms, x -> x[1] = x[2] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl:= CharacterTable( "L5(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">above:= Set( Induced( subtbl, tbl, above ) );;</span>
</pre></div>
<p>Next we compute the permutation characters <span class="SimpleMath">\(1_S^{{U/V}}\)</span> for all subgroups <span class="SimpleMath">\(S\)</span> of <span class="SimpleMath">\(U/V\)</span> whose intersection with <span class="SimpleMath">\(W/V\)</span> has index two in <span class="SimpleMath">\(W/V\)</span>. Afterwards we exclude certain subgroups that would slow down later computations, and induce also these characters to <span class="SimpleMath">\(H/V\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">index2:= Filtered( perms,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Sum( PermCharInfo( subtbl, [x] ).contained[1]{ [1,2] } ) = 8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">index2:= Filtered( index2, x -> not x[1] in [ 630, 840, 1260, 1680 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">index2:= Set( Induced( subtbl, tbl, index2 ) );;</span>
</pre></div>
<p>Now we induce the permutation characters to <span class="SimpleMath">\(H/V\)</span>, and compute the coefficients of a linear combination as desired.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">orders:= OrdersClassRepresentatives( tbl );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">goodclasses:= Filtered( [ 1 .. NrConjugacyClasses( tbl ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> not orders[i] in [ 21, 31 ] );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">matrix:= List( Concatenation( above, index2 ), x -> x{ goodclasses } );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sol:= SolutionMat( matrix,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ListWithIdenticalEntries( Length( goodclasses ), 1 ) );</span>
[ 692/651, 57/217, -78/217, -26/217, 0, 74/651, 11/217, 0, 3/217,
151/651, 0, 22/651, 0, 0, 0, -11/217, 0, 0, 0, 0, 0, 0, 0, 0,
-115/651, 0, -3/31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -34/93,
-11/651, 0, 2/21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/31, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">nonzero:= Filtered( [ 1 .. Length( sol ) ], i -> sol[i] <> 0 );</span>
[ 1, 2, 3, 4, 6, 7, 9, 10, 12, 16, 25, 27, 106, 107, 109, 120 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">sol:= sol{ nonzero };;</span>
</pre></div>
<p>Now we transfer this linear combination to the character tables which are given in our situation.</p>
<p>Those constituents that are induced from subgroups of <span class="SimpleMath">\(H\)</span> above <span class="SimpleMath">\(W\)</span> can be identified uniquely via their degrees and their values distribution; we compute these characters in the character table of <span class="SimpleMath">\(U/W\)</span> obtained as a factor table of the character table of <span class="SimpleMath">\(U/N\)</span>, lift them back to <span class="SimpleMath">\(U/N\)</span>, induce them to <span class="SimpleMath">\(G/N\)</span>, inflate them to <span class="SimpleMath">\(G\)</span>, and then induce them fo <span class="SimpleMath">\(M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a8degrees:= List( above{ Filtered( nonzero,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x <= Length( above ) ) },</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x[1] ) / 31;</span>
[ 1, 8, 15, 28, 56, 56, 70, 105, 120, 168, 336, 336 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">a8tbl:= subtbl / [ 1, 2 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invtoa8:= InverseMap( GetFusionMap( subtbl, a8tbl ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= ClassPositionsOfNormalSubgroups( k );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nn:= First( nsg, x -> Sum( SizesConjugacyClasses( k ){ x } ) = 6*2^14 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">a8tbl_other:= k / nn;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= CharacterTable( "MC2B" );</span>
CharacterTable( "2^1+24.Co1" )
<span class="GAPprompt">gap></span> <span class="GAPinput">constit:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 1 .. Length( a8degrees ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cand:= PermChars( a8tbl_other, rec( torso:= [ a8degrees[i] ] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> filt:= Filtered( perms, x -> x^tbl = above[ nonzero[i] ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> filt:= List( filt, x -> CompositionMaps( x, invtoa8 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cand:= Filtered( cand,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> ForAny( filt, y -> Collected( x ) = Collected(y) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( constit, List( Induced( Restricted( Induced(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Restricted( cand, k ), co1 ), g ), m ), ValuesOfClassFunction ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( constit, Length );</span>
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
</pre></div>
<p>Dealing with the remaining constituents is more involved. For a permutation character <span class="SimpleMath">\(1_{{X/V}}^{{U/V}}\)</span>, we compute <span class="SimpleMath">\(1_{{WX/V}}^{{U/V}}\)</span>, a character whose degree is half as large and which can be regarded as a character of <span class="SimpleMath">\(U/W\)</span>. This character can be treated like the ones above: We lift it to <span class="SimpleMath">\(U/N\)</span>, induce it to <span class="SimpleMath">\(G/N\)</span>, and inflate it to <span class="SimpleMath">\(G/Z(G)\)</span>; let this character be <span class="SimpleMath">\(1_Y^{{G/Z(G)}}\)</span>, for some subgroup <span class="SimpleMath">\(Y\)</span>. Then we compute the possible permutation characters of <span class="SimpleMath">\(G/Z(G)\)</span> that can be induced from a subgroup of index two inside <span class="SimpleMath">\(Y\)</span>, inflate these characters to <span class="SimpleMath">\(G\)</span> and then induce them to <span class="SimpleMath">\(M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">downdegrees:= List( index2{ Filtered( nonzero,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x > Length( above ) )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> - Length( above ) },</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> x[1] ) / 31;</span>
[ 30, 210, 210, 1920 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= g / ClassPositionsOfCentre( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">forders:= OrdersClassRepresentatives( f );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv:= InverseMap( GetFusionMap( g, f ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for j in [ 1 .. Length( downdegrees ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> chars:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cand:= PermChars( a8tbl_other, rec( torso:= [ downdegrees[j]/2 ] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> filt:= Filtered( perms, x -> x^tbl = index2[ nonzero[</span>
<span class="GAPprompt">></span> <span class="GAPinput"> j + Length( a8degrees ) ] - Length( above ) ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> filt:= Induced( subtbl, a8tbl, filt,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GetFusionMap( subtbl, a8tbl ));</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cand:= Filtered( cand, x -> ForAny( filt,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> y -> Collected( x ) = Collected( y ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cand:= Restricted( Induced( Restricted( cand, k ), co1 ), g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for chi in cand do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cchi:= CompositionMaps( chi, inv );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> upper:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pphi:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. NrConjugacyClasses( f ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if forders[i] mod 2 = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pphi[i]:= 2 * cchi[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif cchi[i] = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pphi[i]:= 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> upper[i]:= 2* cchi[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Append( chars, PermChars( f, rec( torso:= ShallowCopy( pphi ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> upper:= upper,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> normalsubgroup:= [ 1 .. 4 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nonfaithful:= cchi ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( constit, List( Induced( Restricted( chars, g ), m ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ValuesOfClassFunction ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( constit, Length );</span>
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 10, 10, 2 ]
</pre></div>
<p>Now we form the possible linear combinations.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= List( Cartesian( constit ), l -> sol * l );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "M" );</span>
CharacterTable( "M" )
<span class="GAPprompt">gap></span> <span class="GAPinput">morders:= OrdersClassRepresentatives( m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for x in cand do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in [ 1 .. Length( morders ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if morders[i] mod 31 = 0 or morders[i] mod 21 = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Unbind( x[i] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
</pre></div>
<p>Exactly one of the candidates has only integral values.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= Filtered( cand, x -> ForAll( x, IsInt ) );</span>
[ [ 391965121389536908413379198941796875, 23914487292951376996875,
474163138042468875, 9500455925885925, 646346515815,
334363486275, 954161764875, 147339103275, 1481392395,
1313281515, 0, 8203125, 9827885925, 1216215, 91556325, 9388791,
115911, 587331, 874650, 0, 79515, 581955, 336375, 104371,
62331, 36855, 0, 0, 0, 0, 28125, 525, 1125, 0, 188325, 16767,
88965, 2403, 9477, 1155, 891, 207, 351, 627, 0, 0, 4410, 1498,
0, 0, 0, 30, 150, 91, 151, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 125,
0, 5, 5,,,,, 0, 0, 0, 0, 141, 45, 27, 61, 27, 9, 9, 7, 3, 15,
0, 0, 0, 0, 0, 98, 74, 42, 0, 0, 30, 0, 0, 0, 6, 6, 6,,, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,,,,, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0,
0, 0, 2, 2, 0, 2,,, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,,,, 0,
0, 0, 0, 0, 0,,, 0, 0, 0, 0, 0, 0,, 0, 0, 0 ] ]
</pre></div>
<p>Now we compute the possible permutation characters that have the prescribed values.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PermChars( m, rec( torso:= cand[1] ) );</span>
[ Character( CharacterTable( "M" ),
[ 391965121389536908413379198941796875, 23914487292951376996875,
474163138042468875, 9500455925885925, 646346515815,
334363486275, 954161764875, 147339103275, 1481392395,
1313281515, 0, 8203125, 9827885925, 1216215, 91556325, 9388791,
115911, 587331, 874650, 0, 79515, 581955, 336375, 104371,
62331, 36855, 0, 0, 0, 0, 28125, 525, 1125, 0, 188325, 16767,
88965, 2403, 9477, 1155, 891, 207, 351, 627, 0, 0, 4410, 1498,
0, 0, 0, 30, 150, 91, 151, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 125,
0, 5, 5, 210, 0, 42, 0, 0, 0, 0, 0, 141, 45, 27, 61, 27, 9, 9,
7, 3, 15, 0, 0, 0, 0, 0, 98, 74, 42, 0, 0, 30, 0, 0, 0, 6, 6,
6, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0, 18, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 3, 3, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 ] ) ]
</pre></div>
<p>There is only one candidate, so we have found the permutation character.</p>
<p><a id="X7F2ABD3E7AFF5F6E" name="X7F2ABD3E7AFF5F6E"></a></p>
<h5>8.16-4 <span class="Heading">The Subgroup <span class="SimpleMath">\(2^{{10+16}}.O_{10}^+(2)\)</span> (November 2009)</span></h5>
<p>According to the Atlas of Finite Groups <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 234]</a>, the Monster group <span class="SimpleMath">\(M\)</span> has a class of maximal subgroups <span class="SimpleMath">\(H\)</span> of the type <span class="SimpleMath">\(2^{{10+16}}.O_{10}^+(2)\)</span>. Currently the character table of <span class="SimpleMath">\(H\)</span> and the class fusion into <span class="SimpleMath">\(M\)</span> are not available in <strong class="pkg">GAP</strong>. We are interested in the permutation character <span class="SimpleMath">\(1_H^M\)</span>, and we will compute it without this information.</p>
<p>The subgroup <span class="SimpleMath">\(H\)</span> normalizes an elementary abelian group <span class="SimpleMath">\(E\)</span> of order <span class="SimpleMath">\(2^{10}\)</span> which contains <span class="SimpleMath">\(496\)</span> involutions in the class <code class="code">2A</code> and <span class="SimpleMath">\(527\)</span> involutions in the class <code class="code">2B</code>. Let <span class="SimpleMath">\(V\)</span> denote the normal subgroup of order <span class="SimpleMath">\(2^{26}\)</span> in <span class="SimpleMath">\(H\)</span>, and set <span class="SimpleMath">\(\bar{H} = H/N\)</span>. Since the smallest two indices of maximal subgroups of <span class="SimpleMath">\(\bar{H}\)</span> are <span class="SimpleMath">\(496\)</span> and <span class="SimpleMath">\(527\)</span>, respectively, <span class="SimpleMath">\(H\)</span> acts transitively on both the <code class="code">2A</code> and the <code class="code">2B</code> involutions in <span class="SimpleMath">\(E\)</span>, and the centralizers of these involutions contain <span class="SimpleMath">\(V\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Hbar:= CharacterTable( "O10+(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">U_Abar:= CharacterTable( "O10+(2)M1" );</span>
CharacterTable( "S8(2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">Index( Hbar, U_Abar );</span>
496
<span class="GAPprompt">gap></span> <span class="GAPinput">U_Bbar:= CharacterTable( "O10+(2)M2" );</span>
CharacterTable( "2^8:O8+(2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">Index( Hbar, U_Bbar );</span>
527
</pre></div>
<p>We fix a <code class="code">2A</code> involution <span class="SimpleMath">\(z_A\)</span> in <span class="SimpleMath">\(E\)</span>, and set <span class="SimpleMath">\(G_A = C_M(z_A)\)</span> and <span class="SimpleMath">\(U_A = C_H(z_A)\)</span>. So <span class="SimpleMath">\(G_A\)</span> has the structure <span class="SimpleMath">\(2.B\)</span> and <span class="SimpleMath">\(U_A\)</span> has the structure <span class="SimpleMath">\(2^{{10+16}}.S_8(2)\)</span>. From the list of maximal subgroups of <span class="SimpleMath">\(B\)</span> we see that the image of <span class="SimpleMath">\(G_A\)</span> under the natural epimorphism from <span class="SimpleMath">\(G_A\)</span> to <span class="SimpleMath">\(B\)</span> is a maximal subgroup of <span class="SimpleMath">\(B\)</span> and has the structure <span class="SimpleMath">\(2^{{9+16}}.S_8(2)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );</span>
CharacterTable( "B" )
<span class="GAPprompt">gap></span> <span class="GAPinput">Horder:= 2^26 * Size( Hbar );</span>
1577011055923770163200
<span class="GAPprompt">gap></span> <span class="GAPinput">order:= Horder / ( 2 * 496 );</span>
1589728887019929600
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( Maxes( b ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( maxes, t -> Size( t ) mod order = 0 );</span>
[ CharacterTable( "2^(9+16).S8(2)" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( filt, t -> Size( t ) / order );</span>
[ 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">u1:= filt[1];</span>
CharacterTable( "2^(9+16).S8(2)" )
</pre></div>
<p>Analogously, we fix a <code class="code">2B</code> involution <span class="SimpleMath">\(z_B\)</span> in <span class="SimpleMath">\(E\)</span>, and set <span class="SimpleMath">\(G_B = C_M(z_B)\)</span> and <span class="SimpleMath">\(U_B = C_H(z_B)\)</span>, Further, let <span class="SimpleMath">\(N\)</span> be the extraspecial normal subgroup of order <span class="SimpleMath">\(2^{25}\)</span> in <span class="SimpleMath">\(G_B\)</span>. So <span class="SimpleMath">\(G_B\)</span> has the structure <span class="SimpleMath">\(2^{{1+24}}_+.Co_1\)</span>, and <span class="SimpleMath">\(U_B\)</span> has index <span class="SimpleMath">\(527\)</span> in <span class="SimpleMath">\(G_B\)</span>. From the list of maximal subgroups of <span class="SimpleMath">\(Co_1\)</span> we see that the image of <span class="SimpleMath">\(U_B\)</span> under the natural epimorphism from <span class="SimpleMath">\(G_B\)</span> to <span class="SimpleMath">\(Co_1\)</span> is a maximal subgroup of <span class="SimpleMath">\(Co_1\)</span> and has the structure <span class="SimpleMath">\(2^{{1+8}}_+.O_8^+(2)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">co1:= CharacterTable( "Co1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">order:= Horder / ( 2^25 * 527 );</span>
89181388800
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( Maxes( co1 ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( maxes, t -> Size( t ) mod order = 0 );</span>
[ CharacterTable( "2^(1+8)+.O8+(2)" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( filt, t -> Size( t ) / order );</span>
[ 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">u2:= filt[1];</span>
CharacterTable( "2^(1+8)+.O8+(2)" )
</pre></div>
<p>First we compute the permutation characters <span class="SimpleMath">\(\pi_A = 1_{{U_A}}^M\)</span> and <span class="SimpleMath">\(\pi_B = 1_{{U_B}}^M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "M" );</span>
CharacterTable( "M" )
<span class="GAPprompt">gap></span> <span class="GAPinput">2b:= CharacterTable( "MC2A" );</span>
CharacterTable( "2.B" )
<span class="GAPprompt">gap></span> <span class="GAPinput">mm:= CharacterTable( "MC2B" );</span>
CharacterTable( "2^1+24.Co1" )
<span class="GAPprompt">gap></span> <span class="GAPinput">pi_A:= RestrictedClassFunction( TrivialCharacter( u1 )^b, 2b )^m;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi_B:= RestrictedClassFunction( TrivialCharacter( u2 )^co1, mm )^m;;</span>
</pre></div>
<p>The degree of <span class="SimpleMath">\(1_H^M\)</span> is of course known.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">torso:= [ Size( m ) / Horder ];</span>
[ 512372707698741056749515292734375 ]
</pre></div>
<p>Next we compute some zero values of <span class="SimpleMath">\(1_H^M\)</span>, using the following conditions.</p>
<ul>
<li><p>For <span class="SimpleMath">\(g \in M\)</span>, if <span class="SimpleMath">\(|g|\)</span> does not divide <span class="SimpleMath">\(|H|\)</span> or if <span class="SimpleMath">\(|g|\)</span> is not the product of an element order in <span class="SimpleMath">\(H/V\)</span> and a <span class="SimpleMath">\(2\)</span>-power. (In fact we could use that the exponent of <span class="SimpleMath">\(V\)</span> is <span class="SimpleMath">\(4\)</span>, but this would not improve the result.)</p>
</li>
<li><p>Let <span class="SimpleMath">\(U \leq H \leq G\)</span>, and let <span class="SimpleMath">\(p\)</span> be a prime that does not divide <span class="SimpleMath">\([H:U]\)</span>. Then <span class="SimpleMath">\(U\)</span> contains a Sylow <span class="SimpleMath">\(p\)</span> subgroup of <span class="SimpleMath">\(H\)</span>, so each element of order <span class="SimpleMath">\(p\)</span> in <span class="SimpleMath">\(H\)</span> is conjugate in <span class="SimpleMath">\(H\)</span> to an element in <span class="SimpleMath">\(U\)</span>. For <span class="SimpleMath">\(g \in G\)</span>, <span class="SimpleMath">\(g = g_p h\)</span>, where the order of <span class="SimpleMath">\(g_p\)</span> is a power of <span class="SimpleMath">\(p\)</span> such that <span class="SimpleMath">\(1_U^G(g_p) = 0\)</span> holds, we have <span class="SimpleMath">\(1_H^G(g) = 0\)</span>. We apply this to <span class="SimpleMath">\(U \in \{ U_A, U_B \}\)</span>.</p>
</li>
</ul>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">morders:= OrdersClassRepresentatives( m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">2parts:= Union( [ 1 ], Filtered( Set( morders ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> IsPrimePowerInt( x ) and IsEvenInt( x ) ) );</span>
[ 1, 2, 4, 8, 16, 32 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">factorders:= Set( OrdersClassRepresentatives( Hbar ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">primes_A:= Filtered( PrimeDivisors( Horder ), p -> 496 mod p <> 0 );</span>
[ 3, 5, 7, 17 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">primes_B:= Filtered( PrimeDivisors( Horder ), p -> 527 mod p <> 0 );</span>
[ 2, 3, 5, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">primes:= Union( primes_A, primes_B );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:= NrConjugacyClasses( m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 1 .. n ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Horder mod morders[i] <> 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> torso[i]:= 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif ForAll( factorders, x -> not morders[i] / x in 2parts ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> torso[i]:= 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in primes do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if morders[i] mod p = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pprime:= morders[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> while pprime mod p = 0 do pprime:= pprime / p; od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pos:= PowerMap( m, pprime )[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if p in primes_A and pi_A[ pos ] = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> torso[i]:= 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif p in primes_B and pi_B[ pos ] = 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> torso[i]:= 0;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">torso;</span>
[ 512372707698741056749515292734375,,,,, 0,,,,,,,,,,,, 0,, 0,,,,,,,,,,
,,,, 0,,,, 0,,,,,, 0, 0, 0,,, 0,,,, 0,,,,,,,,,, 0,,,,,,,, 0, 0, 0,
0, 0, 0, 0,,,,, 0,,,,, 0, 0, 0, 0, 0, 0,,,, 0, 0,,,,, 0,,,,,,, 0, 0,
, 0, 0,,,,, 0, 0, 0, 0, 0,,,,, 0,, 0, 0, 0, 0, 0,, 0, 0, 0, 0, 0, 0,
, 0,, 0, 0, 0, 0,, 0, 0, 0, 0, 0,,,,,, 0,,, 0, 0,, 0, 0, 0, 0, 0,
0, 0, 0, 0,, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0 ]
</pre></div>
<p>Now we want to compute as many nonzero values of <span class="SimpleMath">\(1_H^M\)</span> as possible, using the same approach as in the previous sections. For that, we first compute several permutation characters <span class="SimpleMath">\(1_X^M\)</span>, for subgroups <span class="SimpleMath">\(X\)</span> with the property <span class="SimpleMath">\(V < X < U_A\)</span> or <span class="SimpleMath">\(V < X < U_B\)</span>. Then we find several subsets <span class="SimpleMath">\(C\)</span> of <span class="SimpleMath">\(M\)</span>, each being a union of conjugacy classes of <span class="SimpleMath">\(M\)</span> such that <span class="SimpleMath">\((1_H)_{{C \cap H}}\)</span> is a linear combination of the characters <span class="SimpleMath">\(1_X^H\)</span>, restricted to <span class="SimpleMath">\(C \cap H\)</span>. This yields the values of <span class="SimpleMath">\(1_H^M\)</span> on the classes in <span class="SimpleMath">\(C\)</span>.</p>
<p>The actual computations are performed with the characters <span class="SimpleMath">\(1_{{X/V}}^{{H/V}}\)</span>. So we build two parallel lists <code class="code">cand</code> and <code class="code">candbar</code> of permutation characters of <span class="SimpleMath">\(M\)</span> and of <span class="SimpleMath">\(H/V\)</span>, respectively. For that, we write two small <strong class="pkg">GAP</strong> functions:</p>
<ul>
<li><p>In the function <code class="code">AddSubgroupOfS82</code>, we choose a subgroup <span class="SimpleMath">\(Y\)</span> of <span class="SimpleMath">\(S_8(2) \cong U_A/V\)</span>, compute <span class="SimpleMath">\(1_Y^{{U_A/V}}\)</span>, inflate it to a character of <span class="SimpleMath">\(U_A\)</span>, induce this character to <span class="SimpleMath">\(B\)</span>, inflate the result to <span class="SimpleMath">\(G_A\)</span>, and finally induce this character to <span class="SimpleMath">\(M\)</span>.</p>
</li>
<li><p>In the function <code class="code">AddSubgroupOfO8p2</code>, we choose a subgroup <span class="SimpleMath">\(Y\)</span> of the factor group <span class="SimpleMath">\(F \cong O_8^+(2)\)</span> of <span class="SimpleMath">\(U_B/N\)</span>, compute <span class="SimpleMath">\(1_Y^F\)</span>, inflate it to a character of <span class="SimpleMath">\(U_B/N\)</span>, induce this to a character of <span class="SimpleMath">\(G_B/N \cong Co_1\)</span>, inflate this to a character of <span class="SimpleMath">\(G_B\)</span>, and finally induce this character to <span class="SimpleMath">\(M\)</span>.</p>
<p>One difficulty in this case is that choosing a subgroup <span class="SimpleMath">\(X/V\)</span> of <span class="SimpleMath">\(H/V\)</span> involves fixing the class fusion into <span class="SimpleMath">\(H/V\)</span>, but it is not clear which is a compatible class fusion of the corresponding subgroup <span class="SimpleMath">\(X\)</span> into <span class="SimpleMath">\(M\)</span>; therefore, each entry of <code class="code">cand</code> is in fact not the permutation character of <span class="SimpleMath">\(M\)</span> in question but a list of possibilities.</p>
</li>
</ul>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= [ [ pi_A ], [ pi_B ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">candbar:= [ TrivialCharacter( U_Abar )^Hbar,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> TrivialCharacter( U_Bbar )^Hbar ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfS82:= function( subname )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local psis82;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> psis82:= TrivialCharacter( CharacterTable( subname ) )^U_Abar;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( cand, [ Restricted( Restricted( psis82, u1 )^b, 2b )^m ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( candbar, psis82 ^ Hbar );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tt1:= CharacterTable( "O8+(2)" );</span>
CharacterTable( "O8+(2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfO8p2:= function( subname )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local psi, list, char;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> psi:= TrivialCharacter( CharacterTable( subname ) )^tt1;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> list:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for char in Orbit( AutomorphismsOfTable( tt1 ), psi, Permuted ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> AddSet( list, Restricted( Restricted( char, u2 ) ^ co1, mm ) ^ m );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( cand, list );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( candbar, Restricted( psi, U_Bbar ) ^ Hbar );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>Now we choose the subgroups that will turn out to be sufficient for our computations.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfS82( "O8+(2).2" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfO8p2( "S6(2)" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfS82( "O8-(2).2" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfS82( "A10.2" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfS82( "S4(4).2" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfS82( "L2(17)" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfO8p2( "A9" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfO8p2( "2^6:A8" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfO8p2( "(3xU4(2)):2" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfO8p2( "(A5xA5):2^2" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AddSubgroupOfS82( "S8(2)M4" );</span>
</pre></div>
<p>In the case of <span class="SimpleMath">\(A_5 < S_8(2)\)</span>, the function <code class="code">AddSubgroupOfS82</code> does not work because there are several class fusions of <span class="SimpleMath">\(A_5\)</span> into <span class="SimpleMath">\(S_8(2)\)</span>. We choose one fusion; the fact that it really describes an embedding of an <span class="SimpleMath">\(A_5\)</span> type subgroup of <span class="SimpleMath">\(S_8(2)\)</span> can be checked using the function <code class="func">NrPolyhedralSubgroups</code> (<a href="../../../doc/ref/chap71_mj.html#X83AE05BF8085B3C8"><span class="RefLink">Reference: NrPolyhedralSubgroups</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a5:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( a5, U_Abar )[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NrPolyhedralSubgroups( U_Abar, fus[2], fus[3], fus[4] );</span>
rec( number := 548352, type := "A5" )
<span class="GAPprompt">gap></span> <span class="GAPinput">psis82:= Induced( a5, U_Abar, [ TrivialCharacter( a5 ) ], fus )[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Add( cand, [ Restricted( Restricted( psis82, u1 )^b, 2b )^m ] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Add( candbar, psis82 ^ Hbar );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( cand, Length );</span>
[ 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1 ]
</pre></div>
<p>The following function takes a condition on conjugacy classes in terms of their element orders, which gives a set <span class="SimpleMath">\(C\)</span> of elements in <span class="SimpleMath">\(M\)</span>. It forms the corresponding set of elements in <span class="SimpleMath">\(H/V\)</span> and tries to express the restriction of <span class="SimpleMath">\(1_{{H/V}}\)</span> as a linear combination of the characters <span class="SimpleMath">\(1_X^{{H/V}}\)</span> that are stored in the list <code class="code">candbar</code>. If this works and if the corresponding linear combination of the candidates in <code class="code">cand</code> is unique, the newly found values of <span class="SimpleMath">\(1_H^M\)</span> are entered into the list <code class="code">torso</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Hbarorders:= OrdersClassRepresentatives( Hbar );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">TryCondition:= function( cond )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local pos, sol, lincomb, oldknown, i;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> pos:= Filtered( [ 1 .. Length( Hbarorders ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> cond( Hbarorders[i] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sol:= SolutionMat( candbar{[1..Length(candbar)]}{ pos },</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ListWithIdenticalEntries( Length( pos ), 1 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if sol = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return "no solution";</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> pos:= Filtered( [ 1 .. Length( morders) ], i -> cond( morders[i] ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lincomb:= Filtered( Set( Cartesian( cand ), x -> sol * x ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> ForAll( pos, i -> IsPosInt( x[i] ) or x[i] = 0 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( lincomb ) <> 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return "solution is not unique";</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> lincomb:= lincomb[1];;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> oldknown:= Number( torso );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in pos do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsBound( torso[i] ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if torso[i] <> lincomb[i] then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "contradiction of new and known value at position ", i );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif not IsInt( lincomb[i] ) or lincomb[i] < 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "new value at position ", i, " is not a nonneg. integer" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> torso[i]:= lincomb[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return Concatenation( "now ", String( Number( torso ) ), " values (",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> String( Number( torso ) - oldknown ), " new)" );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p>This procedure makes sense only if the elements of <span class="SimpleMath">\(H\)</span> that satisfy the condition are contained in the full preimage of the classes of <span class="SimpleMath">\(H/V\)</span> that satisfy the condition. Note that this is in fact the case for the conditions used below. This is clear for condition concerning only <em>odd</em> element orders, because <span class="SimpleMath">\(V\)</span> is a <span class="SimpleMath">\(2\)</span>-group. Also the set of all elements of the orders <span class="SimpleMath">\(9\)</span>, <span class="SimpleMath">\(18\)</span>, and <span class="SimpleMath">\(36\)</span> is such a "closed" set, since <span class="SimpleMath">\(M\)</span> has no elements of order <span class="SimpleMath">\(72\)</span>. Finally, the set of all elements of the orders <span class="SimpleMath">\(1\)</span>, <span class="SimpleMath">\(2\)</span>, and <span class="SimpleMath">\(4\)</span> in <span class="SimpleMath">\(H\)</span> is admissible because it is contained in the preimage of the set of all elements of these orders in <span class="SimpleMath">\(H/V\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">TryCondition( x -> x mod 7 = 0 and x mod 3 <> 0 );</span>
"now 99 values (7 new)"
<span class="GAPprompt">gap></span> <span class="GAPinput">TryCondition( x -> x mod 17 = 0 and x mod 3 <> 0 );</span>
"now 102 values (3 new)"
<span class="GAPprompt">gap></span> <span class="GAPinput">TryCondition( x -> x mod 5 = 0 and x mod 3 <> 0 );</span>
"now 119 values (17 new)"
<span class="GAPprompt">gap></span> <span class="GAPinput">TryCondition( x -> 4 mod x = 0 );</span>
"now 125 values (6 new)"
<span class="GAPprompt">gap></span> <span class="GAPinput">TryCondition( x -> 9 mod x = 0 );</span>
"now 129 values (4 new)"
<span class="GAPprompt">gap></span> <span class="GAPinput">TryCondition( x -> x in [ 9, 18, 36 ] );</span>
"now 138 values (9 new)"
</pre></div>
<p>Possible constituents of <span class="SimpleMath">\(1_H^M\)</span> are those rational irreducible characters of <span class="SimpleMath">\(M\)</span> that are constituents of <span class="SimpleMath">\(\pi^M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">constit:= Filtered( RationalizedMat( Irr( m ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> ScalarProduct( m, x, pi_A ) <> 0</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and ScalarProduct( m, x, pi_B ) <> 0 );;</span>
</pre></div>
<p>For the missing values, we can provide at least lower bounds, using that <span class="SimpleMath">\(U \leq H \leq G\)</span> implies <span class="SimpleMath">\(1_H^G(g) \geq 1_U^G(g) / [H:U] = [G:H] \cdot 1_U^G(g) / 1_U^G(1)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">lower:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Hindex:= Size( m ) / Horder;</span>
512372707698741056749515292734375
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 1 .. NrConjugacyClasses( m ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lower[i]:= Maximum( pi_A[i] / ( pi_A[1] / Hindex ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pi_B[i] / ( pi_B[1] / Hindex ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsInt( lower[i] ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lower[i]:= Int( lower[i] + 1 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
</pre></div>
<p>Now we compute the possible permutation characters that have the prescribed values, are compatible with the given lower bounds for values, and have only constituents in the given list.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= PermChars( m, rec( torso:= torso, chars:= constit,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> lower:= lower, normalsubgroup:= [ 1 .. NrConjugacyClasses( m ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nonfaithful:= TrivialCharacter( m ) ) );</span>
[ Character( CharacterTable( "M" ),
[ 512372707698741056749515292734375, 405589064025344574375,
29628786742129575, 658201521662685, 215448838605, 0,
121971774375, 28098354375, 335229607, 108472455, 164587500,
4921875, 2487507165, 2567565, 26157789, 6593805, 398925, 0,
437325, 0, 44983, 234399, 90675, 21391, 41111, 12915, 6561,
6561, 177100, 7660, 6875, 315, 275, 0, 113373, 17901, 57213, 0,
4957, 1197, 909, 301, 397, 0, 0, 0, 3885, 525, 0, 2835, 90, 45,
0, 103, 67, 43, 28, 81, 189, 9, 9, 9, 0, 540, 300, 175, 20, 15,
7, 420, 0, 0, 0, 0, 0, 0, 0, 165, 61, 37, 37, 0, 9, 9, 13, 5,
0, 0, 0, 0, 0, 0, 77, 45, 13, 0, 0, 45, 115, 19, 10, 0, 5, 5,
9, 9, 1, 1, 0, 0, 4, 0, 0, 9, 9, 3, 1, 0, 0, 0, 0, 0, 0, 4, 1,
1, 0, 24, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 3, 3, 1, 1, 2, 0, 3, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0 ] ) ]
</pre></div>
<p>There is only one candidate, so we have found the permutation character.</p>
<p>The character table of <span class="SimpleMath">\(H\)</span> is available since 2023. We can compute the permutation character directly from this table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:= CharacterTable( "2^(10+16).O10+(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( h, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand = Set( fus, map -> InducedClassFunctionsByFusionMap( h, m,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ TrivialCharacter( h ) ], map )[1] );</span>
true
</pre></div>
<p><a id="X87D11B097D95D027" name="X87D11B097D95D027"></a></p>
<h4>8.17 <span class="Heading">A permutation character of the Baby Monster (June 2012)</span></h4>
<p>We compute the character of the Baby Monster that is induced from the trivial character of a Sylow <span class="SimpleMath">\(2\)</span>-subgroup. (Gabriel Navarro had asked me how <strong class="pkg">GAP</strong> can compute this character.) We start with the computation of those transitive permutation characters of the symmetric group on five points that have degree <span class="SimpleMath">\(15\)</span>. Note that the function <code class="func">PermChars</code> (<a href="../../../doc/ref/chap72_mj.html#X7D02541482C196A6"><span class="RefLink">Reference: PermChars</span></a>) computes in general only candidates, but here we are sure that the result consists of permutation characters because it is unique.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "S5" );</span>
CharacterTable( "A5.2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermChars( t, rec( torso:= [ 15 ] ) );</span>
[ Character( CharacterTable( "A5.2" ), [ 15, 3, 0, 0, 3, 1, 0 ] ) ]
</pre></div>
<p>Next, we regard this character as a character of the group <span class="SimpleMath">\(2^5:S_5\)</span> that occurs as a maximal subgroup of index <span class="SimpleMath">\(231\)</span> in <span class="SimpleMath">\(M_{22}:2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m222:= CharacterTable( "M22.2" );</span>
CharacterTable( "M22.2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= List( Maxes( m222 ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= Filtered( mx, x -> Size( m222 ) / Size( x ) = 231 );</span>
[ CharacterTable( "M22.2M4" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= pi[1]{ GetFusionMap( mx[1], t ) };</span>
[ 15, 15, 3, 3, 3, 0, 0, 3, 3, 1, 1, 0, 15, 15, 3, 3, 3, 0, 0, 3, 3,
1, 1, 0 ]
</pre></div>
<p>We induce this character to <span class="SimpleMath">\(M_{22}:2\)</span>. (Note that this is the character that is induced from the trivial character of a Sylow <span class="SimpleMath">\(2\)</span>-subgroup of <span class="SimpleMath">\(M_{22}:2\)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= InducedClassFunction( mx[1], pi, m222 );</span>
ClassFunction( CharacterTable( "M22.2" ),
[ 3465, 105, 0, 9, 5, 0, 0, 0, 0, 1, 0, 189, 45, 9, 13, 0, 1, 0, 0,
0, 0 ] )
</pre></div>
<p>Next, we regard this character as a character of the group <span class="SimpleMath">\(2^{10}:M_{22}:2\)</span> that occurs as a maximal subgroup of index <span class="SimpleMath">\(46575\)</span> in <span class="SimpleMath">\(Co_2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">co2:= CharacterTable( "Co2" );</span>
CharacterTable( "Co2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= List( Maxes( co2 ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= Filtered( mx, x -> Size( co2 ) / Size( x ) = 46575 );</span>
[ CharacterTable( "2^10:m22:2" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= pi{ GetFusionMap( mx[1], m222 ) };</span>
[ 3465, 3465, 3465, 3465, 105, 105, 105, 105, 105, 105, 105, 105, 0,
0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 0, 189, 189, 189, 189, 189, 189, 45, 45, 45, 45,
9, 9, 9, 9, 13, 13, 13, 13, 13, 13, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p>We induce this character to <span class="SimpleMath">\(Co_2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= InducedClassFunction( mx[1], pi, co2 );</span>
ClassFunction( CharacterTable( "Co2" ),
[ 161382375, 626535, 162855, 27495, 0, 0, 6615, 3975, 2727, 855,
567, 975, 115, 0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 51, 19, 27, 35, 7, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0 ] )
</pre></div>
<p>Next, we regard this character as a character of the group <span class="SimpleMath">\(2^{{1+22}}.Co_2\)</span> that occurs as a maximal subgroup of index <span class="SimpleMath">\(11707448673375\)</span> in the Baby Monster.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );</span>
CharacterTable( "B" )
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= List( Maxes( b ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= Filtered( mx, x -> Size( b ) / Size( x ) = 11707448673375 );</span>
[ CharacterTable( "2^(1+22).Co2" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= pi{ GetFusionMap( mx[1], co2 ) };;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi[1];</span>
161382375
</pre></div>
<p>We induce this character to the Baby Monster.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= InducedClassFunction( mx[1], pi, b );</span>
ClassFunction( CharacterTable( "B" ),
[ 1889375872099856765625, 2609385408855225, 62316674429625,
207818526825, 268788490425, 0, 0, 13052741625, 7537207545,
128298681, 270580905, 46366425, 74315385, 35633385, 3937689,
201825, 1233225, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 713097,
241425, 320625, 88521, 275265, 57705, 19305, 20089, 9441, 6489,
2577, 1825, 5345, 753, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
273, 417, 105, 97, 185, 33, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] )
</pre></div>
<p><a id="X86827FA97D27F3A2" name="X86827FA97D27F3A2"></a></p>
<h4>8.18 <span class="Heading">A permutation character of <span class="SimpleMath">\(2.B\)</span> (October 2017)</span></h4>
<p>We compute the character of the double cover <span class="SimpleMath">\(2.B\)</span> of the Baby Monster that is induced from the trivial character of a subgroup <span class="SimpleMath">\(U\)</span> of the structure <span class="SimpleMath">\(2^{1+22}.McL\)</span>.</p>
<p>This subgroup occurs as the intersection of two conjugates of <span class="SimpleMath">\(2.B\)</span> inside the Monster group <span class="SimpleMath">\(M\)</span>. More precisely, we consider <span class="SimpleMath">\(2.B\)</span> as the centralizer of an involution <span class="SimpleMath">\(a\)</span> in <span class="SimpleMath">\(M\)</span>, and we are interested in the permutation action of <span class="SimpleMath">\(M\)</span> on the cosets of <span class="SimpleMath">\(2.B\)</span> (or, equivalently, on the conjugacy class in <span class="SimpleMath">\(M\)</span> of this involution). The restriction of this action to <span class="SimpleMath">\(2.B\)</span> has nine orbits. One of them has point stabilizer <span class="SimpleMath">\(U\)</span>.</p>
<p>Background information can be found in <a href="chapBib_mj.html#biBGMS89">[GJMS89]</a>. The decomposition into the nine orbits appears in Definition (3.4.9) on p 587, and our orbit is characterized in Table VII (on p. 582) by the facts that its points <span class="SimpleMath">\(c\)</span> have order <span class="SimpleMath">\(4\)</span> and the squares of <span class="SimpleMath">\(a c\)</span> lie in the class <code class="code">2B</code> of <span class="SimpleMath">\(M\)</span>. This implies that <span class="SimpleMath">\(a\)</span> and <span class="SimpleMath">\(c\)</span> do not commute, hence <span class="SimpleMath">\(a\)</span> does not lie in <span class="SimpleMath">\(U\)</span>.</p>
<p>From this description, we know that <span class="SimpleMath">\(U\)</span> is a subgroup of a maximal subgroup of the type <span class="SimpleMath">\(2^{2+22}.Co_2\)</span> in <span class="SimpleMath">\(2.B\)</span>, and the group <span class="SimpleMath">\(\langle U, a \rangle\)</span> has the type <span class="SimpleMath">\(2^{2+22}.McL\)</span>.</p>
<p>Thus we can proceed in two steps. First we induce the trivial character of <span class="SimpleMath">\(\langle U, a \rangle\)</span> to <span class="SimpleMath">\(2.B\)</span>. Then we use the variant of the <strong class="pkg">GAP</strong> function <code class="func">PermChars</code> (<a href="../../../doc/ref/chap72_mj.html#X7D02541482C196A6"><span class="RefLink">Reference: PermChars</span></a>) that allows us to prescribe the permutation character of the closure with a normal subgroup, which is <span class="SimpleMath">\(\langle a \rangle\)</span> in our case.</p>
<p>The first step can be performed by inducing the trivial character of <span class="SimpleMath">\(McL\)</span> to <span class="SimpleMath">\(Co_2\)</span>, <span class="SimpleMath">\(\ldots\)</span></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">mcl:= CharacterTable( "McL" );</span>
CharacterTable( "McL" )
<span class="GAPprompt">gap></span> <span class="GAPinput">co2:= CharacterTable( "Co2" );</span>
CharacterTable( "Co2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">ind:= Induced( mcl, co2, [ TrivialCharacter( mcl ) ] )[1];</span>
Character( CharacterTable( "Co2" ),
[ 47104, 0, 1024, 0, 16, 160, 0, 0, 0, 0, 64, 0, 0, 4, 24, 16, 0, 0,
0, 16, 0, 8, 0, 0, 0, 0, 0, 8, 4, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4,
0, 0, 2, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ] )
</pre></div>
<p><span class="SimpleMath">\(\ldots\)</span> regarding this character as a character of <span class="SimpleMath">\(2^{1+22}.Co_2\)</span>, <span class="SimpleMath">\(\ldots\)</span></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "BM2" );</span>
CharacterTable( "2^(1+22).Co2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">infl:= ind{ GetFusionMap( m, co2 ) };</span>
[ 47104, 47104, 47104, 47104, 47104, 47104, 47104, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 16, 16, 16, 16, 160, 160, 160, 160, 160, 160, 160, 160,
160, 160, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 4, 4, 4, 24, 24, 24, 24, 24, 24, 24, 24, 16, 16, 16,
16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8,
8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4,
4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,
2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4,
4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1 ]
</pre></div>
<p><span class="SimpleMath">\(\ldots\)</span> inducing this character to <span class="SimpleMath">\(B\)</span>, <span class="SimpleMath">\(\ldots\)</span></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );</span>
CharacterTable( "B" )
<span class="GAPprompt">gap></span> <span class="GAPinput">ind:= Induced( m, b, [ infl ] )[1];</span>
ClassFunction( CharacterTable( "B" ),
[ 551467662310656000, 186911262720, 272993634304, 0, 634521600,
194594400, 69984, 8495104, 17465344, 129024, 276480, 2073600,
16384, 798720, 46080, 0, 5120, 138600, 1000, 110880, 252000,
112480, 432, 12960, 0, 1312, 8352, 864, 432, 0, 2520, 0, 2880,
2880, 3072, 2880, 0, 0, 256, 64, 1152, 576, 640, 192, 96, 0, 108,
2520, 744, 0, 104, 120, 40, 30, 160, 16, 1120, 1024, 0, 0, 96, 288,
64, 144, 0, 96, 0, 108, 16, 48, 0, 32, 12, 0, 0, 0, 168, 0, 104,
48, 0, 4, 0, 0, 0, 0, 32, 16, 8, 8, 0, 24, 12, 4, 0, 0, 0, 0, 24,
4, 24, 24, 0, 0, 0, 0, 4, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 8, 0, 16, 8, 4, 0, 0, 0, 0, 0, 4, 2,
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] )
</pre></div>
<p><span class="SimpleMath">\(\ldots\)</span> and regarding the result as a character of <span class="SimpleMath">\(2.B\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2b:= CharacterTable( "2.B" );</span>
CharacterTable( "2.B" )
<span class="GAPprompt">gap></span> <span class="GAPinput">infl:= ind{ GetFusionMap( 2b, b ) };</span>
[ 551467662310656000, 551467662310656000, 186911262720, 272993634304,
272993634304, 0, 634521600, 194594400, 194594400, 69984, 69984,
8495104, 17465344, 129024, 276480, 2073600, 2073600, 16384, 798720,
46080, 0, 5120, 138600, 138600, 1000, 1000, 110880, 252000, 112480,
112480, 432, 12960, 0, 1312, 1312, 8352, 864, 864, 432, 0, 2520,
2520, 0, 2880, 2880, 3072, 2880, 0, 0, 256, 64, 1152, 576, 576,
640, 192, 96, 0, 0, 108, 108, 2520, 744, 744, 0, 104, 104, 120, 40,
40, 30, 30, 160, 16, 1120, 1024, 0, 0, 0, 96, 288, 64, 144, 144, 0,
96, 0, 108, 108, 16, 48, 0, 32, 12, 12, 0, 0, 0, 0, 168, 0, 104,
104, 48, 0, 0, 4, 4, 0, 0, 0, 0, 32, 16, 8, 8, 8, 0, 0, 24, 12, 4,
4, 0, 0, 0, 0, 0, 0, 24, 4, 24, 24, 0, 0, 0, 0, 0, 4, 0, 0, 0, 6,
6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,
0, 0, 0, 0, 0, 0, 8, 0, 16, 8, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, 2, 2,
2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p>Now we have the character <span class="SimpleMath">\(\psi\)</span> that represents the "nonfaithful half" of the desired permutation character. We have to "fill it up" with faithful characters of <span class="SimpleMath">\(2.B\)</span> of total degree <span class="SimpleMath">\(\psi(1)\)</span> such that the sum with <span class="SimpleMath">\(\psi\)</span> can be a permutation character of <span class="SimpleMath">\(2.B\)</span>.</p>
<p>The <strong class="pkg">GAP</strong> function <code class="func">PermChars</code> (<a href="../../../doc/ref/chap72_mj.html#X7D02541482C196A6"><span class="RefLink">Reference: PermChars</span></a>) is designed for this situation. We specify the normal subgroup <span class="SimpleMath">\(N = \langle a \rangle\)</span> by listing the positions of its conjugacy classes in the character table of <span class="SimpleMath">\(2.B\)</span>, we enter the known permutation character <span class="SimpleMath">\(1_{{UN}}^{{2.B}}\)</span>, and of course we specify the degree of the possible permutation characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">centre:= ClassPositionsOfCentre( 2b );</span>
[ 1, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:= PermChars( 2b, rec( torso:= [ 2 * infl[1], 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> normalsubgroup:= centre,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nonfaithful:= infl ) );</span>
[ Character( CharacterTable( "2.B" ),
[ 1102935324621312000, 0, 186911262720, 541790208000, 4197060608,
0, 634521600, 389188800, 0, 139968, 0, 8495104, 17465344,
129024, 276480, 4026240, 120960, 16384, 798720, 46080, 0, 5120,
277200, 0, 2000, 0, 110880, 252000, 190080, 34880, 432, 12960,
0, 2592, 32, 8352, 1728, 0, 432, 0, 5040, 0, 0, 2880, 2880,
3072, 2880, 0, 0, 256, 64, 1152, 1008, 144, 640, 192, 96, 0, 0,
216, 0, 2520, 960, 528, 0, 200, 8, 120, 80, 0, 60, 0, 160, 16,
1120, 1024, 0, 0, 0, 96, 288, 64, 216, 72, 0, 96, 0, 216, 0,
16, 48, 0, 32, 24, 0, 0, 0, 0, 0, 168, 0, 160, 48, 48, 0, 0, 8,
0, 0, 0, 0, 0, 32, 16, 8, 12, 4, 0, 0, 24, 12, 0, 8, 0, 0, 0,
0, 0, 0, 24, 4, 24, 24, 0, 0, 0, 0, 0, 4, 0, 0, 0, 6, 6, 8, 4,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0,
0, 0, 0, 0, 8, 0, 16, 8, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 2, 2, 2,
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">MatScalarProducts( 2b, Irr( 2b ), pi );</span>
[ [ 1, 1, 2, 1, 2, 0, 2, 3, 2, 0, 0, 1, 4, 1, 2, 0, 3, 2, 0, 2, 0, 0,
2, 2, 0, 0, 2, 3, 1, 5, 0, 4, 3, 2, 0, 0, 3, 2, 0, 6, 4, 0, 1,
1, 0, 0, 0, 0, 3, 0, 1, 0, 0, 5, 0, 5, 2, 0, 0, 2, 0, 0, 4, 1,
0, 2, 0, 4, 2, 4, 4, 3, 0, 2, 4, 2, 4, 0, 3, 0, 3, 2, 5, 0, 1,
0, 3, 1, 0, 1, 1, 2, 5, 3, 1, 1, 4, 5, 1, 1, 0, 3, 0, 0, 3, 2,
1, 1, 2, 1, 1, 4, 0, 3, 2, 3, 1, 3, 0, 1, 3, 0, 2, 2, 1, 3, 3,
0, 0, 2, 0, 0, 0, 0, 3, 0, 3, 3, 3, 1, 0, 3, 0, 4, 0, 1, 0, 0,
2, 0, 0, 2, 0, 0, 2, 1, 1, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 0, 2, 1, 1, 3, 3, 0, 0, 0, 1, 1, 1, 1, 2, 3, 2, 0,
0, 2, 2, 4, 3, 5, 2, 4, 0, 0, 0, 0, 5, 2, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 0, 7, 0, 0, 1, 7, 7, 0, 0, 0, 1, 6, 4, 5, 0, 0, 3, 0,
0, 0, 0, 0, 4, 1, 1, 3, 8, 3, 2, 2, 5, 0, 1 ] ]
</pre></div>
<p>We are lucky: There is a unique solution, and its computation is quite fast.</p>
<p><a id="X849F0EA6807C9B19" name="X849F0EA6807C9B19"></a></p>
<h4>8.19 <span class="Heading">Generation of sporadic simple groups by <span class="SimpleMath">\(\pi\)</span>- and <span class="SimpleMath">\(\pi'\)</span>-subgroups (December 2021)</span></h4>
<p>This section shows the computations that are needed in order to show the following statements from <a href="chapBib_mj.html#biBBG21">[BG]</a>.</p>
<p><em>Proposition 2.2</em>: Let <span class="SimpleMath">\(S\)</span> be a sporadic simple group and let <span class="SimpleMath">\(P\)</span> be a Sylow <span class="SimpleMath">\(2\)</span>-subgroup of <span class="SimpleMath">\(S\)</span>. If <span class="SimpleMath">\(1 \neq x \in S\)</span>, then <span class="SimpleMath">\(S = \langle P, x^g \rangle\)</span> for some <span class="SimpleMath">\(g \in S\)</span>.</p>
<p><em>Theorem 7.1</em>: Let <span class="SimpleMath">\(S\)</span> be a sporadic simple group and let <span class="SimpleMath">\(p \leq q\)</span> be primes each dividing <span class="SimpleMath">\(|S|\)</span>. Then <span class="SimpleMath">\(S\)</span> can be generated by a Sylow <span class="SimpleMath">\(p\)</span>-subgroup and a Sylow <span class="SimpleMath">\(q\)</span>-subgroup.</p>
<p>A stronger version of Theorem 7.1: Let <span class="SimpleMath">\(S\)</span> be a sporadic simple group, <span class="SimpleMath">\(p\)</span> be a prime dividing <span class="SimpleMath">\(|S|\)</span>, and <span class="SimpleMath">\(P\)</span> be a Sylow <span class="SimpleMath">\(p\)</span>-subgroup of <span class="SimpleMath">\(S\)</span>. If <span class="SimpleMath">\(1 \neq x \in S\)</span>, then <span class="SimpleMath">\(S = \langle P, x^g \rangle\)</span> for some <span class="SimpleMath">\(g \in S\)</span>.</p>
<p>First we show <a href="chapBib_mj.html#biBBG21">[BG, Proposition 2.2]</a>. Let <span class="SimpleMath">\(S\)</span> be a sporadic simple group, fix a Sylow <span class="SimpleMath">\(2\)</span>-subgroup <span class="SimpleMath">\(P\)</span> of <span class="SimpleMath">\(S\)</span>, and let <span class="SimpleMath">\(x\)</span> be a nonidentity element in <span class="SimpleMath">\(S\)</span>. We use known information about maximal subgroups of <span class="SimpleMath">\(S\)</span> to show that <span class="SimpleMath">\(x^S\)</span> is not a subset of the union of those maximal subgroups in <span class="SimpleMath">\(S\)</span> that contain <span class="SimpleMath">\(P\)</span>.</p>
<p>Let <span class="SimpleMath">\(M\)</span> be a maximal subgroup of <span class="SimpleMath">\(S\)</span> with the property <span class="SimpleMath">\(P \leq M\)</span>. The number of <span class="SimpleMath">\(S\)</span>-conjugates of <span class="SimpleMath">\(M\)</span> that contain <span class="SimpleMath">\(P\)</span> is equal to <span class="SimpleMath">\(|N_S(P)|/|N_M(P)| \leq [N_S(P):P]\)</span>, thus these subgroups can contain at most <span class="SimpleMath">\([N_S(P):P] |x^S \cap M|\)</span> elements from the class <span class="SimpleMath">\(x^S\)</span>.</p>
<p>Thus the number of elements in <span class="SimpleMath">\(x^S\)</span> that generate a proper subgroup of <span class="SimpleMath">\(S\)</span> together with <span class="SimpleMath">\(P\)</span> is bounded from above by <span class="SimpleMath">\([N_S(P):P] \sum_M |x^S \cap M|\)</span>, where the sum is taken over representatives <span class="SimpleMath">\(M\)</span> of conjugacy classes of maximal subgroups of odd index in <span class="SimpleMath">\(S\)</span>.</p>
<p>Let <span class="SimpleMath">\(1_M^S\)</span> denote the permutation character of the action of <span class="SimpleMath">\(S\)</span> on the cosets of <span class="SimpleMath">\(M\)</span>. We have <span class="SimpleMath">\(|x^S \cap M| = |x^S| 1_M^S(x) / 1_M^S(1)\)</span>. Hence we are done when we show that</p>
<p class="center">\[
[N_S(P):P] \sum_M 1_M^S(x) / 1_M^S(1) < 1
\]</p>
<p>holds.</p>
<p>The numbers <span class="SimpleMath">\([N_S(P):P]\)</span> can be read off from <a href="chapBib_mj.html#biBWil98">[Wil98, Table I]</a>. Here we use the fact that the character table of the Sylow <span class="SimpleMath">\(2\)</span>-normalizer of <span class="SimpleMath">\(S\)</span> is available except if <span class="SimpleMath">\(S\)</span> is one of <span class="SimpleMath">\(Co_1\)</span>, <span class="SimpleMath">\(J_4\)</span>, <span class="SimpleMath">\(F_{3+}\)</span>, <span class="SimpleMath">\(B\)</span>, or <span class="SimpleMath">\(M\)</span>, and that the Sylow <span class="SimpleMath">\(2\)</span>-subgroup if self-normalizing in these cases.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= AllCharacterTableNames( IsSporadicSimple, true,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IsDuplicateTable, false : OrderedBy:= Size );</span>
[ "M11", "M12", "J1", "M22", "J2", "M23", "HS", "J3", "M24", "McL",
"He", "Ru", "Suz", "ON", "Co3", "Co2", "Fi22", "HN", "Ly", "Th",
"Fi23", "Co1", "J4", "F3+", "B", "M" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">normindices:= rec( Co1:= 1, J4:= 1, F3\+:= 1, B:= 1, M:= 1 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for name in names do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> n:= CharacterTable( Concatenation( name, "N2" ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if n = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( name, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> 2part:= 2^Length( Positions( Factors( Size( n ) ), 2 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> normindices.( name ):= Size( n ) / 2part;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
Co1
J4
F3+
B
M
</pre></div>
<p>For all sporadic simple groups <span class="SimpleMath">\(S\)</span> except the Monster group, the primitive permutation characters <span class="SimpleMath">\(1_M^S\)</span> can be computed from the data about maximal subgroups contained in <strong class="pkg">GAP</strong>'s library of character tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxbound:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for name in Filtered( names, x -> x <> "M" ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> t:= CharacterTable( name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mx:= List( Maxes( t ), CharacterTable );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> odd:= Filtered( mx, s -> ( Size( t ) / Size( s ) ) mod 2 <> 0 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> primperm:= List( odd, s -> TrivialCharacter( s )^t );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sum:= normindices.( name ) * Sum( primperm, pi -> pi / pi[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( maxbound,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ name, Maximum( sum{ [ 2 .. Length( sum ) ] } ) ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortBy( maxbound, x -> - x[2] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxbound[1];</span>
[ "J2", 3/5 ]
</pre></div>
<p>We see that the left hand side of the above inequality is always less than or equal to <span class="SimpleMath">\(3/5\)</span>, in particular it is less than <span class="SimpleMath">\(1\)</span>.</p>
<p>The Monster group is known to contain exactly five classes of maximal subgroups of odd index, of the structures <span class="SimpleMath">\(2^{1+24}.Co_1\)</span> (the normalizer of a <code class="code">2B</code> element in the Monster), <span class="SimpleMath">\(2^{10+16}.O_{10}^+(2)\)</span>, <span class="SimpleMath">\(2^{2+11+22}.(M_{24} \times S_3)\)</span>, <span class="SimpleMath">\(2^{5+10+20}.(S_3 \times L_5(2))\)</span>, <span class="SimpleMath">\([2^{39}].(L_3(2) \times 3S_6)\)</span>. The corresponding permutation characters are known, see Section <a href="chap8_mj.html#X8337F3C682B6BE63"><span class="RefLink">8.16</span></a>. First we read the information about the known primitive permutation characters of the Monster into the <strong class="pkg">GAP</strong> session, and extract the primitive permutation characters of odd degree.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">dir:= DirectoriesPackageLibrary( "ctbllib", "data" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filename:= Filename( dir, "prim_perm_M.json" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Monster_prim_data:= EvalString( StringFile( filename ) )[2];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( Monster_prim_data );</span>
46
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">monstermaxindices:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">monstermaxtables:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for entry in Monster_prim_data do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( entry ) = 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s:= CharacterTable( entry[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( monstermaxtables, s );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( monstermaxindices, Size( t ) / Size( s ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( monstermaxtables, fail );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( monstermaxindices, entry[2][1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">odd_prim:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 1 .. Length( Monster_prim_data ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if monstermaxindices[i] mod 2 <> 0 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if monstermaxtables[i] <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( odd_prim, TrivialCharacter( monstermaxtables[i] )^t );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( odd_prim, Monster_prim_data[i][2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( odd_prim );</span>
5
</pre></div>
<p>Now we can use the same approach as before.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sum:= normindices.M * Sum( odd_prim, pi -> pi / pi[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">max:= Maximum( sum{ [ 2 .. Length( sum ) ] } );</span>
12784979/103007903752128375
<span class="GAPprompt">gap></span> <span class="GAPinput">max < 10^-9;</span>
true
</pre></div>
<p>Next we show <a href="chapBib_mj.html#biBBG21">[BG, Theorem 7.1]</a> and its stronger version stated above. Let us first assume that <span class="SimpleMath">\(S\)</span> is not the Monster.</p>
<p>As a first step, we generalize the approach from the above computations in order to check for which prime divisors <span class="SimpleMath">\(p\)</span> of <span class="SimpleMath">\(|S|\)</span> and for which nontrivial conjugacy classes <span class="SimpleMath">\(x^S\)</span> of <span class="SimpleMath">\(S\)</span> the group <span class="SimpleMath">\(S\)</span> is generated by a Sylow <span class="SimpleMath">\(p\)</span>-subgroup <span class="SimpleMath">\(P\)</span> together with a conjugate of <span class="SimpleMath">\(x\)</span>.</p>
<p>The upper bound <span class="SimpleMath">\([N_S(P):P]\)</span> for <span class="SimpleMath">\(|N_S(P)|/|N_M(P)|\)</span>, for a maximal subgroup <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(S\)</span> that contains <span class="SimpleMath">\(P\)</span>, is not good enough in some of the cases considered here. Instead of it, we compute the upper bound <span class="SimpleMath">\(u(S, M, p)\)</span> which is defined as follows; we assume that we know <span class="SimpleMath">\(|N_S(P)|\)</span>.</p>
<ul>
<li><p>If <span class="SimpleMath">\(P\)</span> is cyclic then we can compute <span class="SimpleMath">\(|N_M(P)|\)</span> from the character table of <span class="SimpleMath">\(M\)</span>, and set <span class="SimpleMath">\(u(S, M, p) = |N_S(P)| / |N_M(P)|\)</span>.</p>
</li>
<li><p>Otherwise, if <span class="SimpleMath">\(P\)</span> is normal in <span class="SimpleMath">\(M\)</span>, we set <span class="SimpleMath">\(u(S, M, p) = |N_S(P)| / |M|\)</span>.</p>
</li>
<li><p>Otherwise, if we know a subgroup <span class="SimpleMath">\(U\)</span> of <span class="SimpleMath">\(M\)</span> such that <span class="SimpleMath">\(P\)</span> is a proper normal subgroup of <span class="SimpleMath">\(U\)</span>, we set <span class="SimpleMath">\(u(S, M, p) = |N_S(P)| / |U|\)</span>.</p>
</li>
<li><p>Otherwise, we set <span class="SimpleMath">\(u(S, M, p) = |N_S(P)| / |P|\)</span>.</p>
</li>
</ul>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">upper_bound:= function( tblS, tblM, p )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local ppart, ppartposS, ppartposM, n, N_S, f, subname, u;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> ppart:= Product( Filtered( Factors( Size( tblS ) ), x -> x = p ), 1 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ppartposS:= Positions( OrdersClassRepresentatives( tblS ), ppart );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if 0 < Length( ppartposS ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # P is cyclic.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if tblM = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return ( SizesCentralizers( tblS )[ ppartposS[1] ] * Phi( ppart )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> / Length( ppartposS ) ) / ppart;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ppartposM:= Positions( OrdersClassRepresentatives( tblM ), ppart );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return ( SizesCentralizers( tblS )[ ppartposS[1] ] * Phi( ppart )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> / Length( ppartposS ) ) /</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ( SizesCentralizers( tblM )[ ppartposM[1] ] * Phi( ppart )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> / Length( ppartposM ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> </span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Compute |N_S(P)|.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> n:= CharacterTable( Concatenation( Identifier( tblS ), "N",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> String( p ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if n <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> N_S:= Size( n );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif p = 2 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> N_S:= ppart * normindices.( Identifier( tblS ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif Identifier( tblS ) = "M" and p = 3 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # The Sylow 3-normalizer is contained in 3^(3+2+6+6):(L3(3)xSD16)</span>
<span class="GAPprompt">></span> <span class="GAPinput"> N_S:= ppart * 2^6;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif Identifier( tblS ) = "F3+" and p = 3 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> N_S:= ppart * 8;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "cannot compute |N_S(P)|" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> </span>
<span class="GAPprompt">></span> <span class="GAPinput"> if tblM = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return N_S / ppart;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> elif Sum( SizesConjugacyClasses( tblM ){</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfPCore( tblM, p ) } ) = ppart then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # P is normal in M.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return N_S / Size( tblM );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> # Inspect known character tables of subgroups of M.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> f:= N_S / ppart;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for subname in NamesOfFusionSources( tblM ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> u:= CharacterTable( subname );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ClassPositionsOfKernel( GetFusionMap( u, tblM ) ) = [ 1 ] and</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Sum( SizesConjugacyClasses( u ){</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ClassPositionsOfPCore( u, p ) } ) = ppart then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> f:= Minimum( f, N_S / Size( u ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return f;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
</pre></div>
<p>We run over the sporadic simple groups (except the Monster), and collect in the list <code class="code">badcases_strong</code> those "bad" prime divisors <span class="SimpleMath">\(p\)</span> of <span class="SimpleMath">\(|S|\)</span> and conjugacy class representatives <span class="SimpleMath">\(x\)</span> of nonidentity elements in <span class="SimpleMath">\(S\)</span> for which</p>
<p class="center">\[
\sum_M u(S, M, p) 1_M^S(x) / 1_M^S(1) \geq 1
\]</p>
<p>holds, where the sum is taken over representatives <span class="SimpleMath">\(M\)</span> of conjugacy classes of maximal subgroups of <span class="SimpleMath">\(S\)</span> whose index in <span class="SimpleMath">\(S\)</span> is coprime to <span class="SimpleMath">\(p\)</span>. In these cases, we have to find other arguments.</p>
<p>For the proof of <a href="chapBib_mj.html#biBBG21">[BG, Theorem 7.1]</a>, we can discard all those entries from the list of "bad" <span class="SimpleMath">\(p\)</span> and <span class="SimpleMath">\(x\)</span> where <span class="SimpleMath">\(x\)</span> is not a <span class="SimpleMath">\(q\)</span>-element, for some prime <span class="SimpleMath">\(q\)</span>, or where another nonidentity <span class="SimpleMath">\(q\)</span>-element exists that does not occur in the list. This is done by collecting a second list <code class="code">badcases_thm</code> of the remaining "bad" cases.</p>
<p>For the proof of the stronger version, we will later explicitly compute group elements from the classes in question that generate <span class="SimpleMath">\(S\)</span> together with a Sylow <span class="SimpleMath">\(p\)</span>-subgroup. (The only technical complication is that the class fusion of maximal subgroups of the type <span class="SimpleMath">\((2^2 \times F_4(2)):2\)</span> of the Baby Monster is currently not known, thus we cannot simply induce the trivial character in this case. However, the permutation character is uniquely determined by the two character tables.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">badcases_thm:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">badcases_strong:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for name in Filtered( names, x -> x <> "M" ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> t:= CharacterTable( name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> orders:= OrdersClassRepresentatives( t );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> n:= NrConjugacyClasses( t );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mx:= List( Maxes( t ), CharacterTable );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for p in PrimeDivisors( Size( t ) ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> good:= Filtered( mx, s -> ( Size( t ) / Size( s ) ) mod p <> 0 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> primperm:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for s in good do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if GetFusionMap( s, t ) <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( primperm, TrivialCharacter( s )^t );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ind:= Set( PossibleClassFusions( s, t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map -> InducedClassFunctionsByFusionMap( s, t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ TrivialCharacter( s ) ], map )[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( ind ) <> 1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "permutation character not uniquely determined" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( primperm, ind[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sum:= Sum( [ 1 .. Length( good ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> upper_bound( t, good[i], p )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> * primperm[i] / primperm[i][1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> badpos:= Filtered( [ 2 .. Length( sum ) ], i -> sum[i] >= 1 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if badpos <> [] then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( badcases_strong, [ name, p, ShallowCopy( badpos ) ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in ShallowCopy( badpos ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> q:= SmallestRootInt( orders[i] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if IsPrimeInt( q ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAny( [ 2 .. n ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> j -> SmallestRootInt( orders[j] ) = q</span>
<span class="GAPprompt">></span> <span class="GAPinput"> and not j in badpos ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> RemoveSet( badpos, i );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not IsEmpty( badpos ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( badcases_thm, [ name, p, badpos ] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">badcases_thm;</span>
[ [ "M23", 3, [ 3 ] ], [ "HS", 3, [ 4, 11 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">badcases_strong;</span>
[ [ "M11", 5, [ 2 ] ], [ "M12", 5, [ 3, 4 ] ], [ "M22", 3, [ 2 ] ],
[ "M22", 5, [ 2 ] ], [ "J2", 3, [ 2 ] ], [ "M23", 3, [ 2, 3 ] ],
[ "M23", 5, [ 2 ] ], [ "M23", 7, [ 2 ] ],
[ "HS", 3, [ 2, 3, 4, 5, 6, 7, 9, 11 ] ], [ "HS", 5, [ 2, 3, 5 ] ],
[ "M24", 5, [ 2, 4 ] ], [ "M24", 7, [ 2, 4 ] ], [ "He", 5, [ 2 ] ],
[ "Co2", 3, [ 2, 3 ] ], [ "Fi22", 5, [ 2 ] ], [ "Fi22", 7, [ 2 ] ],
[ "Fi23", 5, [ 2, 3, 5 ] ], [ "Fi23", 7, [ 2 ] ], [ "B", 7, [ 2 ] ]
]
</pre></div>
<p>Most of these open cases can be ruled out by constructing the group <span class="SimpleMath">\(S\)</span> and a Sylow <span class="SimpleMath">\(p\)</span>-subgroup <span class="SimpleMath">\(P\)</span> in question and then finding explicit elements <span class="SimpleMath">\(x\)</span> such that <span class="SimpleMath">\(S\)</span> is generated by <span class="SimpleMath">\(P\)</span> and <span class="SimpleMath">\(x\)</span>. For that, we use the data from the <strong class="pkg">Atlas</strong> of Group Representations <a href="chapBib_mj.html#biBAGRv3">[WWT+]</a>.</p>
<p>The following function tries to find random elements from all conjugacy classes of nonidentity elements that have the desired property. It returns <code class="keyw">fail</code> if no straight line program is available for computing class representatives, and returns <span class="SimpleMath">\(P\)</span> and the list of class representatives that generate together with <span class="SimpleMath">\(P\)</span> if such elements were found. Thus the function will not return if the generation property does not hold.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">prove_generation:= function( name, p )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local S, prg, P, reps, good, x, g, U;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> prg:= AtlasProgram( name, "classes" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if prg = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return fail;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> S:= AtlasGroup( name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> P:= SylowSubgroup( S, p );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> reps:= ResultOfStraightLineProgram( prg.program, GeneratorsOfGroup( S ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> good:= [];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for x in Filtered( reps, x -> Order( x ) <> 1 ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> g:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> U:= ClosureGroup( P, x^g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Size( U ) = Size( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( good, x^g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"></span>
<span class="GAPprompt">></span> <span class="GAPinput"> return [ P, good ];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for entry in badcases_strong do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> res:= prove_generation( entry[1], entry[2] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if res = fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Print( "no classes script for ", entry, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
no classes script for [ "He", 5, [ 2 ] ]
no classes script for [ "Fi22", 5, [ 2 ] ]
no classes script for [ "Fi22", 7, [ 2 ] ]
no classes script for [ "Fi23", 5, [ 2, 3, 5 ] ]
no classes script for [ "Fi23", 7, [ 2 ] ]
no classes script for [ "B", 7, [ 2 ] ]
</pre></div>
<p>In the remaining cases, we show only the generation property for the class representatives in the list. These are involutions from the class <code class="code">2A</code>, and for the group <span class="SimpleMath">\(Fi_{23}\)</span> and <span class="SimpleMath">\(p = 5\)</span> additionally elements from the classes <code class="code">2B</code> and <code class="code">3A</code>.</p>
<p>A <code class="code">2A</code> element in the group <span class="SimpleMath">\(He\)</span> can be found as the fifth power of any element of order <span class="SimpleMath">\(10\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:= AtlasGroup( "He" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) = 10;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= x^5;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P5:= SylowSubgroup( S, 5 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> g:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> U:= ClosureGroup( P5, x^g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Size( U ) = Size( S );</span>
</pre></div>
<p>A <code class="code">2A</code> element in the group <span class="SimpleMath">\(Fi_{22}\)</span> can be found as the <span class="SimpleMath">\(15\)</span>-th power of any element of order <span class="SimpleMath">\(30\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:= AtlasGroup( "Fi22" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) = 30;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= x^15;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P5:= SylowSubgroup( S, 5 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> g:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> U:= ClosureGroup( P5, x^g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Size( U ) = Size( S );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P7:= SylowSubgroup( S, 7 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> g:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> U:= ClosureGroup( P7, x^g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Size( U ) = Size( S );</span>
</pre></div>
<p>A <code class="code">2A</code> element in the group <span class="SimpleMath">\(Fi_{23}\)</span> can be found as the <span class="SimpleMath">\(21\)</span>-st power of any element of order <span class="SimpleMath">\(42\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:= AtlasGroup( "Fi23" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) = 42;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= x^21;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P5:= SylowSubgroup( S, 5 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> g:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> U:= ClosureGroup( P5, x^g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Size( U ) = Size( S );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P7:= SylowSubgroup( S, 7 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> g:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> U:= ClosureGroup( P7, x^g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Size( U ) = Size( S );</span>
</pre></div>
<p>A <code class="code">2B</code> element in the group <span class="SimpleMath">\(Fi_{23}\)</span> can be found as the <span class="SimpleMath">\(30\)</span>-th power of any element of order <span class="SimpleMath">\(60\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) = 60;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= x^30;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> g:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> U:= ClosureGroup( P5, x^g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Size( U ) = Size( S );</span>
</pre></div>
<p>A <code class="code">3A</code> element in the group <span class="SimpleMath">\(Fi_{23}\)</span> can be found as the <span class="SimpleMath">\(20\)</span>-th power of any element of order <span class="SimpleMath">\(60\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) = 60;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= x^20;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> g:= Random( S );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> U:= ClosureGroup( P5, x^g );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Size( U ) = Size( S );</span>
</pre></div>
<p>In the open case for the Baby Monster, we have to show that the group is generated by a <code class="code">2A</code> element and an element of order <span class="SimpleMath">\(7\)</span>. This can be done character-theoretically, for example as follows. There are such elements <span class="SimpleMath">\(x\)</span> and <span class="SimpleMath">\(y\)</span> whose product <span class="SimpleMath">\(x y\)</span> has order <span class="SimpleMath">\(47\)</span>, and the only proper subgroups of the Baby Monster that contain elements of order <span class="SimpleMath">\(47\)</span> are contained in maximal subgroups of the type <span class="SimpleMath">\(47:23\)</span>. Thus <span class="SimpleMath">\(x\)</span> and <span class="SimpleMath">\(y\)</span> generate the Baby Monster.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">7pos:= Positions( OrdersClassRepresentatives( t ), 7 );</span>
[ 31 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">47pos:= Positions( OrdersClassRepresentatives( t ), 47 );</span>
[ 172, 173 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassMultiplicationCoefficient( t, 2, 7pos[1], 47pos[1] );</span>
7332
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( Maxes( t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Size( CharacterTable( x ) ) mod 47 = 0 );</span>
[ "47:23" ]
</pre></div>
<p>Now consider the case that <span class="SimpleMath">\(S\)</span> is the Monster, which is special because the complete list of classes of maximal subgroups of <span class="SimpleMath">\(S\)</span> is currently not known. From <a href="chapBib_mj.html#biBNW12">[NW13]</a> and <a href="chapBib_mj.html#biBMmaxes">[Wil]</a> we know <span class="SimpleMath">\(44\)</span> classes of maximal subgroups, and that each possible additional maximal subgroup is almost simple and has socle <span class="SimpleMath">\(L_2(13)\)</span>, <span class="SimpleMath">\(U_3(4)\)</span>, <span class="SimpleMath">\(U_3(8)\)</span>, or <span class="SimpleMath">\(Sz(8)\)</span>. This implies that we know all those maximal subgroups that contain a Sylow <span class="SimpleMath">\(p\)</span>-subgroup of <span class="SimpleMath">\(S\)</span> except in the case <span class="SimpleMath">\(p = 19\)</span>, where maximal subgroups with socle <span class="SimpleMath">\(U_3(8)\)</span> may arise.</p>
<p>Thus let us first consider that at least one of <span class="SimpleMath">\(p\)</span>, <span class="SimpleMath">\(r\)</span> is different from <span class="SimpleMath">\(19\)</span>. In this situation, we use the same approach as for the other sporadic simple groups. The only complication is that not all permutation characters <span class="SimpleMath">\(1_M^S\)</span>, for the relevant maximal subgroups <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(S\)</span>, are known; however, if this happens then the character table of <span class="SimpleMath">\(M\)</span> is known, and we can compute the possible permutation characters, and take the common upper bounds for these characters. In each case, we get that the claimed property holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orders:= OrdersClassRepresentatives( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for p in Difference( PrimeDivisors( Size( t ) ), [ 19 ] ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> goodpos:= Filtered( [ 1 .. Length( Monster_prim_data ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> monstermaxindices[i] mod p <> 0 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sum:= ListWithIdenticalEntries( NrConjugacyClasses( t ), 0 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for i in goodpos do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if Length( Monster_prim_data[i] ) = 2 then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # We know the permutation character but not the subgroup table.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sum:= sum + upper_bound( t, fail, p )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> * Monster_prim_data[i][2] / monstermaxindices[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> s:= monstermaxtables[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if GetFusionMap( s, t ) <> fail then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # We can compute the permutation character.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sum:= sum + upper_bound( t, s, p )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> * TrivialCharacter( s )^t / monstermaxindices[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> else</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # We get only candidates for the permutation character.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> cand:= Set( PossibleClassFusions( s, t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map -> InducedClassFunctionsByFusionMap( s, t,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ TrivialCharacter( s ) ], map )[1] );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> # For each class, take the maximum of the possible values.</span>
<span class="GAPprompt">></span> <span class="GAPinput"> sum:= sum + upper_bound( t, s, p )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> * List( TransposedMat( cand ), Maximum )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> / monstermaxindices[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> badpos:= Filtered( [ 2 .. Length( sum ) ], i -> sum[i] >= 1 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if badpos <> [] then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Error( "check open cases in ", badpos, "\n" );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
</pre></div>
<p>Finally, let <span class="SimpleMath">\(p = r = 19\)</span>. The group <span class="SimpleMath">\(S\)</span> has exactly one class of elements of order <span class="SimpleMath">\(19\)</span>. Let <span class="SimpleMath">\(x\)</span> be such an element. From the character table of <span class="SimpleMath">\(S\)</span>, we compute that there exist conjugates <span class="SimpleMath">\(y\)</span> of <span class="SimpleMath">\(x\)</span> such that <span class="SimpleMath">\(x y\)</span> has order <span class="SimpleMath">\(71\)</span>. Since <span class="SimpleMath">\(\langle x, y \rangle = \langle x, x y \rangle\)</span> holds and no maximal subgroup of <span class="SimpleMath">\(S\)</span> has order divisible by <span class="SimpleMath">\(19 \cdot 71\)</span>, we have <span class="SimpleMath">\(\langle x, y \rangle = S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos19:= Positions( OrdersClassRepresentatives( t ), 19 );</span>
[ 63 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">pos71:= Positions( OrdersClassRepresentatives( t ), 71 );</span>
[ 169, 170 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassMultiplicationCoefficient( t, pos19[1], pos19[1], pos71[1] );</span>
621743152370566020417806353602387433415016198936
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAny( monstermaxindices,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> ( Size( t ) / x ) mod ( 19 * 71 ) = 0 );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAny( [ "L2(13)", "U3(4)", "U3(8)", "Sz(8)" ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Size( CharacterTable( x ) ) mod 71 = 0 );</span>
false
</pre></div>
<p><em>Remark</em> added in December 2023:</p>
<p>Meanwhile the complete list of conjugacy classes of maximal subgroups of the Monster group is known, due to <a href="chapBib_mj.html#biBDLP23">[DLP23]</a>. The result is that there are two more classes than had been known before, which consist of groups of the structures <span class="SimpleMath">\(L_2(13).2\)</span> and <span class="SimpleMath">\(U_3(4).4\)</span>, respectively.</p>
<div class="chlinkprevnextbot"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap7_mj.html">[Previous Chapter]</a> <a href="chap9_mj.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|