1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (CTblLibXpls) - Chapter 9: Ambiguous Class Fusions in the GAP Character Table Library</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap9" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap8_mj.html">[Previous Chapter]</a> <a href="chap10_mj.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap9.html">[MathJax off]</a></p>
<p><a id="X7A03A83E87FB1189" name="X7A03A83E87FB1189"></a></p>
<div class="ChapSects"><a href="chap9_mj.html#X7A03A83E87FB1189">9 <span class="Heading">Ambiguous Class Fusions in the <strong class="pkg">GAP</strong> Character Table Library</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9_mj.html#X784492877DB04FE9">9.1 <span class="Heading">Some <strong class="pkg">GAP</strong> Utilities</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9_mj.html#X7EA839057D3AD3B4">9.2 <span class="Heading">Fusions Determined by Factorization through Intermediate Subgroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X78DCEEFD85FF1EE2">9.2-1 <span class="Heading"><span class="SimpleMath">\(Co_3N5 \rightarrow Co_3\)</span> (September 2002)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X86BCEA907EC4C833">9.2-2 <span class="Heading"><span class="SimpleMath">\(31:15 \rightarrow B\)</span> (March 2003)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7C719F527831F35A">9.2-3 <span class="Heading"><span class="SimpleMath">\(SuzN3 \rightarrow Suz\)</span> (September 2002)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X828879F481EF30DD">9.2-4 <span class="Heading"><span class="SimpleMath">\(F_{{3+}}N5 \rightarrow F_{{3+}}\)</span> (March 2002)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9_mj.html#X7981579278F81AC6">9.3 <span class="Heading">Fusions Determined Using Commutative Diagrams Involving Smaller
Subgroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7F5186E28201B027">9.3-1 <span class="Heading"><span class="SimpleMath">\(BN7 \rightarrow B\)</span> (March 2002)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X79710B137B5BB1B8">9.3-2 <span class="Heading"><span class="SimpleMath">\((A_4 \times O_8^+(2).3).2 \rightarrow Fi_{24}^{\prime}\)</span> (November 2002)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X85822C647B29117B">9.3-3 <span class="Heading"><span class="SimpleMath">\(A_6 \times L_2(8).3 \rightarrow Fi_{24}^{\prime}\)</span> (November 2002)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X81A607758682D9A9">9.3-4 <span class="Heading"><span class="SimpleMath">\((3^2:D_8 \times U_4(3).2^2).2 \rightarrow B\)</span> (June 2007)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7962DD4387D63675">9.3-5 <span class="Heading"><span class="SimpleMath">\(7^{1+4}:(3 \times 2.S_7) \rightarrow M\)</span> (May 2009)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X860B6C30812DE3FC">9.3-6 <span class="Heading"><span class="SimpleMath">\(3^7.O_7(3):2 \rightarrow Fi_{24}\)</span> (November 2010)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7C3AC42F8342EE2E">9.3-7 <span class="Heading"><span class="SimpleMath">\({}^2E_6(2)N3C \rightarrow {}^2E_6(2)\)</span> (January 2019)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9_mj.html#X84F966E2824F5D52">9.4 <span class="Heading">Fusions Determined Using Commutative Diagrams Involving Factor
Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7F2B104686509CAA">9.4-1 <span class="Heading"><span class="SimpleMath">\(3.A_7 \rightarrow 3.Suz\)</span> (December 2010)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X82FB71647D37F4FD">9.4-2 <span class="Heading"><span class="SimpleMath">\(S_6 \rightarrow U_4(2)\)</span> (September 2011)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9_mj.html#X7CFBC41B818A318C">9.5 <span class="Heading">Fusions Determined Using Commutative Diagrams Involving
Automorphic Extensions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7E91F8707BA93081">9.5-1 <span class="Heading"><span class="SimpleMath">\(U_3(8).3_1 \rightarrow {}^2E_6(2)\)</span> (December 2010)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X81B37EF378E89E00">9.5-2 <span class="Heading"><span class="SimpleMath">\(L_3(4).2_1 \rightarrow U_6(2)\)</span> (December 2010)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9_mj.html#X85E2A6F480026C95">9.6 <span class="Heading">Conditions Imposed by Brauer Tables</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7ACC7F588213D5D5">9.6-1 <span class="Heading"><span class="SimpleMath">\(L_2(16).4 \rightarrow J_3.2\)</span> (January 2004)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7ACB86CB82ED49D1">9.6-2 <span class="Heading"><span class="SimpleMath">\(L_2(17) \rightarrow S_8(2)\)</span> (July 2004)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7DED4C437D479226">9.6-3 <span class="Heading"><span class="SimpleMath">\(L_2(19) \rightarrow J_3\)</span> (April 2003)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9_mj.html#X8225D9FA80A7D20F">9.7 <span class="Heading">Fusions Determined by Information about the Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7AE2962E82B4C814">9.7-1 <span class="Heading"><span class="SimpleMath">\(U_3(3).2 \rightarrow Fi_{24}^{\prime}\)</span> (November 2002)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X83061094871EE241">9.7-2 <span class="Heading"><span class="SimpleMath">\(L_2(13).2 \rightarrow Fi_{24}^{\prime}\)</span> (September 2002)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7E9C203C7C4D709D">9.7-3 <span class="Heading"><span class="SimpleMath">\(M_{11} \rightarrow B\)</span> (April 2009)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X85821D748716DC7E">9.7-4 <span class="Heading"><span class="SimpleMath">\(L_2(11):2 \rightarrow B\)</span> (April 2009)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X828D81487F57D612">9.7-5 <span class="Heading"><span class="SimpleMath">\(L_3(3) \rightarrow B\)</span> (April 2009)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7B4E13337D66020F">9.7-6 <span class="Heading"><span class="SimpleMath">\(L_2(17).2 \rightarrow B\)</span> (March 2004)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X8528432A84851F7B">9.7-7 <span class="Heading"><span class="SimpleMath">\(L_2(49).2_3 \rightarrow B\)</span> (June 2006)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7EAD52AA7A28D956">9.7-8 <span class="Heading"><span class="SimpleMath">\(2^3.L_3(2) \rightarrow G_2(5)\)</span> (January 2004)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X79617107849A6CEA">9.7-9 <span class="Heading"><span class="SimpleMath">\(5^{{1+4}}.2^{{1+4}}.A_5.4 \rightarrow B\)</span> (April 2009)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X85C48EEB7B711C09">9.7-10 <span class="Heading">The fusion from the character table of <span class="SimpleMath">\(7^2:2L_2(7).2\)</span>
into the table of marks (January 2004)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7B1C689C7EFD07CB">9.7-11 <span class="Heading"><span class="SimpleMath">\(3 \times U_4(2) \rightarrow 3_1.U_4(3)\)</span> (March 2010)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7A94F78C792122D5">9.7-12 <span class="Heading"><span class="SimpleMath">\(2.3^4.2^3.S_4 \rightarrow 2.A12\)</span> (September 2011)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7E2AF30C7E8F89F9">9.7-13 <span class="Heading"><span class="SimpleMath">\(127:7 \rightarrow L_7(2)\)</span> (January 2012)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X7E7B2AD67ACD27AE">9.7-14 <span class="Heading"><span class="SimpleMath">\(L_2(59) \rightarrow M\)</span> (May 2009)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X8409DA2E83A41ABE">9.7-15 <span class="Heading"><span class="SimpleMath">\(L_2(71) \rightarrow M\)</span> (May 2009)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap9_mj.html#X78B3B1BE7A2CA4D1">9.7-16 <span class="Heading"><span class="SimpleMath">\(L_2(41) \rightarrow M\)</span> (April 2012)</span></a>
</span>
</div></div>
</div>
<h3>9 <span class="Heading">Ambiguous Class Fusions in the <strong class="pkg">GAP</strong> Character Table Library</span></h3>
<p>Date: January 11th, 2004</p>
<p>This is a collection of examples showing how class fusions between character tables can be determined using the <strong class="pkg">GAP</strong> system <a href="chapBib_mj.html#biBGAP">[GAP21]</a>. In each of these examples, the fusion is <em>ambiguous</em> in the sense that the character tables do not determine it up to table automorphisms. Our strategy is to compute first all possibilities with the <strong class="pkg">GAP</strong> function <code class="func">PossibleClassFusions</code> (<a href="../../../doc/ref/chap73_mj.html#X7883271F7F26356E"><span class="RefLink">Reference: PossibleClassFusions</span></a>), and then to use either other character tables or information about the groups for excluding some of these candidates until only one (orbit under table automorphisms) remains.</p>
<p>The purpose of this writeup is twofold. On the one hand, the computations are documented this way. On the other hand, the <strong class="pkg">GAP</strong> code shown for the examples can be used as test input for automatic checking of the data and the functions used; therefore, each example ends with a comparison of the result with the fusion that is actually stored in the <strong class="pkg">GAP</strong> Character Table Library <a href="chapBib_mj.html#biBCTblLib">[Bre24]</a>.</p>
<p>The examples use the <strong class="pkg">GAP</strong> Character Table Library, so we first load this package.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "ctbllib", false );</span>
true
</pre></div>
<p><a id="X784492877DB04FE9" name="X784492877DB04FE9"></a></p>
<h4>9.1 <span class="Heading">Some <strong class="pkg">GAP</strong> Utilities</span></h4>
<p>The function <code class="code">SetOfComposedClassFusions</code> takes two list of class fusions, where the first list consists of fusions between the character tables of the groups <span class="SimpleMath">\(H\)</span> and <span class="SimpleMath">\(G\)</span>, say, and the second list consists of class fusions between the character tables of the groups <span class="SimpleMath">\(U\)</span> and <span class="SimpleMath">\(H\)</span>, say; the return value is the set of compositions of each map in the first list with each map in the second list (via <code class="func">CompositionMaps</code> (<a href="../../../doc/ref/chap73_mj.html#X8740C1397C6A96C8"><span class="RefLink">Reference: CompositionMaps</span></a>)).</p>
<p>Note that the returned list may be a proper subset of the set of all possible class fusions between <span class="SimpleMath">\(U\)</span> and <span class="SimpleMath">\(G\)</span>, which can be computed with <code class="func">PossibleClassFusions</code> (<a href="../../../doc/ref/chap73_mj.html#X7883271F7F26356E"><span class="RefLink">Reference: PossibleClassFusions</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetOfComposedClassFusions:= function( hfusg, ufush )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> local result, map1, map2;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> result:= [];;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for map2 in hfusg do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> for map1 in ufush do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> AddSet( result, CompositionMaps( map2, map1 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> return result;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
</pre></div>
<p><a id="X7EA839057D3AD3B4" name="X7EA839057D3AD3B4"></a></p>
<h4>9.2 <span class="Heading">Fusions Determined by Factorization through Intermediate Subgroups</span></h4>
<p>This situation clearly occurs only for nonmaximal subgroups. Interesting examples are Sylow normalizers.</p>
<p><a id="X78DCEEFD85FF1EE2" name="X78DCEEFD85FF1EE2"></a></p>
<h5>9.2-1 <span class="Heading"><span class="SimpleMath">\(Co_3N5 \rightarrow Co_3\)</span> (September 2002)</span></h5>
<p>Let <span class="SimpleMath">\(H\)</span> be the Sylow <span class="SimpleMath">\(5\)</span> normalizer in the sporadic simple group <span class="SimpleMath">\(Co_3\)</span>. The class fusion of <span class="SimpleMath">\(H\)</span> into <span class="SimpleMath">\(Co_3\)</span> is not uniquely determined by the character tables of the two groups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">co3:= CharacterTable( "Co3" );</span>
CharacterTable( "Co3" )
<span class="GAPprompt">gap></span> <span class="GAPinput">h:= CharacterTable( "Co3N5" );</span>
CharacterTable( "5^(1+2):(24:2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">hfusco3:= PossibleClassFusions( h, co3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( h, hfusco3, co3 ) );</span>
2
</pre></div>
<p>As <span class="SimpleMath">\(H\)</span> is not maximal in <span class="SimpleMath">\(Co_3\)</span>, we look at those maximal subgroups of <span class="SimpleMath">\(Co_3\)</span> whose order is divisible by that of <span class="SimpleMath">\(H\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= Maxes( co3 );</span>
[ "McL.2", "HS", "U4(3).(2^2)_{133}", "M23", "3^5:(2xm11)",
"2.S6(2)", "U3(5).3.2", "3^1+4:4s6", "2^4.a8", "L3(4).D12",
"2xm12", "2^2.[2^7*3^2].S3", "s3xpsl(2,8).3", "a4xs5" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( mx, CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( maxes, x -> Size( x ) mod Size( h ) = 0 );</span>
[ CharacterTable( "McL.2" ), CharacterTable( "HS" ),
CharacterTable( "U3(5).3.2" ) ]
</pre></div>
<p>According to the <strong class="pkg">Atlas</strong> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, pp. 34 and 100]</a>), <span class="SimpleMath">\(H\)</span> occurs as the Sylow <span class="SimpleMath">\(5\)</span> normalizer in <span class="SimpleMath">\(U_3(5).3.2\)</span> and in <span class="SimpleMath">\(McL.2\)</span>; however, <span class="SimpleMath">\(H\)</span> is not a subgroup of <span class="SimpleMath">\(HS\)</span>, since otherwise <span class="SimpleMath">\(H\)</span> would be contained in subgroups of type <span class="SimpleMath">\(U_3(5).2\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 80]</a>), but the only possible subgroups in these groups are too small (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 34]</a>).</p>
<p>We compute the possible class fusions from <span class="SimpleMath">\(H\)</span> into <span class="SimpleMath">\(McL.2\)</span> and from <span class="SimpleMath">\(McL.2\)</span> to <span class="SimpleMath">\(Co_3\)</span>, and then form the compositions of these maps.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">max:= filt[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hfusmax:= PossibleClassFusions( h, max );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxfusco3:= PossibleClassFusions( max, co3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= SetOfComposedClassFusions( maxfusco3, hfusmax );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( comp );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= RepresentativesFusions( h, comp, co3 );</span>
[ [ 1, 2, 3, 4, 8, 8, 7, 9, 10, 11, 17, 17, 19, 19, 22, 23, 27, 27,
30, 33, 34, 40, 40, 40, 40, 42 ] ]
</pre></div>
<p>So factoring through a maximal subgroup of type <span class="SimpleMath">\(McL.2\)</span> determines the fusion from <span class="SimpleMath">\(H\)</span> to <span class="SimpleMath">\(Co_3\)</span> uniquely up to table automorphisms.</p>
<p>Alternatively, we can use the group <span class="SimpleMath">\(U_3(5).3.2\)</span> as intermediate subgroup, which leads to the same result.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">max:= filt[3];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hfusmax:= PossibleClassFusions( h, max );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxfusco3:= PossibleClassFusions( max, co3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= SetOfComposedClassFusions( maxfusco3, hfusmax );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">reps2:= RepresentativesFusions( h, comp, co3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">reps2 = reps;</span>
true
</pre></div>
<p>Finally, we compare the result with the map that is stored on the library table of <span class="SimpleMath">\(H\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( h, co3 ) in reps;</span>
true
</pre></div>
<p><a id="X86BCEA907EC4C833" name="X86BCEA907EC4C833"></a></p>
<h5>9.2-2 <span class="Heading"><span class="SimpleMath">\(31:15 \rightarrow B\)</span> (March 2003)</span></h5>
<p>The Sylow <span class="SimpleMath">\(31\)</span> normalizer <span class="SimpleMath">\(H\)</span> in the sporadic simple group <span class="SimpleMath">\(B\)</span> has the structure <span class="SimpleMath">\(31:15\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:= CharacterTable( "31:15" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hfusb:= PossibleClassFusions( h, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( h, hfusb, b ) );</span>
2
</pre></div>
<p>We determine the correct fusion using the fact that <span class="SimpleMath">\(H\)</span> is contained in a (maximal) subgroup of type <span class="SimpleMath">\(Th\)</span> in <span class="SimpleMath">\(B\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">th:= CharacterTable( "Th" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hfusth:= PossibleClassFusions( h, th );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">thfusb:= PossibleClassFusions( th, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= SetOfComposedClassFusions( thfusb, hfusth );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( comp );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= RepresentativesFusions( h, comp, b );</span>
[ [ 1, 145, 146, 82, 82, 19, 82, 7, 19, 82, 82, 19, 7, 82, 19, 82, 82
] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( h, b ) in reps;</span>
true
</pre></div>
<p><a id="X7C719F527831F35A" name="X7C719F527831F35A"></a></p>
<h5>9.2-3 <span class="Heading"><span class="SimpleMath">\(SuzN3 \rightarrow Suz\)</span> (September 2002)</span></h5>
<p>The class fusion from the Sylow <span class="SimpleMath">\(3\)</span> normalizer into the sporadic simple group <span class="SimpleMath">\(Suz\)</span> is not uniquely determined by the character tables of these groups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:= CharacterTable( "SuzN3" );</span>
CharacterTable( "3^5:(3^2:SD16)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">suz:= CharacterTable( "Suz" );</span>
CharacterTable( "Suz" )
<span class="GAPprompt">gap></span> <span class="GAPinput">hfussuz:= PossibleClassFusions( h, suz );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( h, hfussuz, suz ) );</span>
2
</pre></div>
<p>Since <span class="SimpleMath">\(H\)</span> is not maximal in <span class="SimpleMath">\(Suz\)</span>, we try to factorize the fusion through a suitable maximal subgroup.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( Maxes( suz ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( maxes, x -> Size( x ) mod Size( h ) = 0 );</span>
[ CharacterTable( "3_2.U4(3).2_3'" ), CharacterTable( "3^5:M11" ),
CharacterTable( "3^2+4:2(2^2xa4)2" ) ]
</pre></div>
<p>The group <span class="SimpleMath">\(3_2.U_4(3).2_3^{\prime}\)</span> does not admit a fusion from <span class="SimpleMath">\(H\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions( h, filt[1] );</span>
[ ]
</pre></div>
<p>Definitely <span class="SimpleMath">\(3^5:M_{11}\)</span> contains a group isomorphic with <span class="SimpleMath">\(H\)</span>, because the Sylow <span class="SimpleMath">\(3\)</span> normalizer in <span class="SimpleMath">\(M_{11}\)</span> has the structure <span class="SimpleMath">\(3^2:SD_{16}\)</span>; using <span class="SimpleMath">\(3^{2+4}:2(2^2 \times A_4)2\)</span> would lead to the same result as we get below. We compute the compositions of possible class fusions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">max:= filt[2];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hfusmax:= PossibleClassFusions( h, max );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxfussuz:= PossibleClassFusions( max, suz );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= SetOfComposedClassFusions( maxfussuz, hfusmax );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( h, comp, suz );</span>
[ [ 1, 2, 2, 4, 5, 4, 5, 5, 5, 5, 5, 6, 9, 9, 14, 15, 13, 16, 16, 14,
15, 13, 13, 13, 16, 15, 14, 16, 16, 16, 21, 21, 23, 22, 29, 29,
29, 38, 39 ] ]
</pre></div>
<p>So the factorization determines the fusion map up to table automorphisms. We check that this map is equal to the stored one.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( h, suz ) in repr;</span>
true
</pre></div>
<p><a id="X828879F481EF30DD" name="X828879F481EF30DD"></a></p>
<h5>9.2-4 <span class="Heading"><span class="SimpleMath">\(F_{{3+}}N5 \rightarrow F_{{3+}}\)</span> (March 2002)</span></h5>
<p>The class fusion from the table of the Sylow <span class="SimpleMath">\(5\)</span> normalizer <span class="SimpleMath">\(H\)</span> in the sporadic simple group <span class="SimpleMath">\(F_{{3+}}\)</span> into <span class="SimpleMath">\(F_{{3+}}\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f3p:= CharacterTable( "F3+" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:= CharacterTable( "F3+N5" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hfusf3p:= PossibleClassFusions( h, f3p );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( h, hfusf3p, f3p ) );</span>
2
</pre></div>
<p><span class="SimpleMath">\(H\)</span> is not maximal in <span class="SimpleMath">\(F_{{3+}}\)</span>, so we look for tables of maximal subgroups that can contain <span class="SimpleMath">\(H\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxes:= List( Maxes( f3p ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( maxes, x -> Size( x ) mod Size( h ) = 0 );</span>
[ CharacterTable( "Fi23" ), CharacterTable( "2.Fi22.2" ),
CharacterTable( "(3xO8+(3):3):2" ), CharacterTable( "O10-(2)" ),
CharacterTable( "(A4xO8+(2).3).2" ), CharacterTable( "He.2" ),
CharacterTable( "F3+M14" ), CharacterTable( "(A5xA9):2" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">possfus:= List( filt, x -> PossibleClassFusions( h, x ) );</span>
[ [ ], [ ], [ ], [ ],
[ [ 1, 69, 110, 12, 80, 121, 4, 72, 113, 11, 11, 79, 79, 120, 120,
3, 71, 11, 79, 23, 91, 112, 120, 132, 29, 32, 97, 100, 37,
37, 105, 105, 139, 140, 145, 146, 155, 155, 156, 156, 44,
44, 167, 167, 48, 48, 171, 171, 57, 57, 180, 180, 66, 66,
189, 189 ],
[ 1, 69, 110, 12, 80, 121, 4, 72, 113, 11, 11, 79, 79, 120,
120, 3, 71, 11, 79, 23, 91, 112, 120, 132, 29, 32, 97, 100,
37, 37, 105, 105, 140, 139, 146, 145, 156, 156, 155, 155,
44, 44, 167, 167, 48, 48, 171, 171, 57, 57, 180, 180, 66,
66, 189, 189 ] ], [ ], [ ], [ ] ]
</pre></div>
<p>We see that from the eight possible classes of maximal subgroups in <span class="SimpleMath">\(F_{{3+}}\)</span> that might contain <span class="SimpleMath">\(H\)</span>, only the group of type <span class="SimpleMath">\((A_4 \times O_8^+(2).3).2\)</span> admits a class fusion from <span class="SimpleMath">\(H\)</span>. Hence we can compute the compositions of the possible fusions from <span class="SimpleMath">\(H\)</span> into this group with the possible fusions from this group into <span class="SimpleMath">\(F_{{3+}}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">max:= filt[5];</span>
CharacterTable( "(A4xO8+(2).3).2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">hfusmax:= possfus[5];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">maxfusf3p:= PossibleClassFusions( max, f3p );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= SetOfComposedClassFusions( maxfusf3p, hfusmax );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( comp );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( h, comp, f3p );</span>
[ [ 1, 2, 4, 12, 35, 54, 3, 3, 16, 9, 9, 11, 11, 40, 40, 2, 3, 9, 11,
35, 36, 13, 40, 90, 7, 22, 19, 20, 43, 43, 50, 50, 8, 8, 23,
23, 46, 46, 47, 47, 10, 10, 9, 9, 10, 10, 11, 11, 26, 26, 28,
28, 67, 67, 68, 68 ] ]
</pre></div>
<p>Finally, we check whether the map stored in the table library is correct.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( h, f3p ) in repr;</span>
true
</pre></div>
<p>Note that we did <em>not</em> determine the class fusion from the maximal subgroup <span class="SimpleMath">\((A_4 \times O_8^+(2).3).2\)</span> into <span class="SimpleMath">\(F_{{3+}}\)</span> up to table automorphisms (see Section <a href="chap9_mj.html#X79710B137B5BB1B8"><span class="RefLink">9.3-2</span></a> for this problem), since also the ambiguous result was enough for computing the fusion from <span class="SimpleMath">\(H\)</span> into <span class="SimpleMath">\(F_{{3+}}\)</span>.</p>
<p><a id="X7981579278F81AC6" name="X7981579278F81AC6"></a></p>
<h4>9.3 <span class="Heading">Fusions Determined Using Commutative Diagrams Involving Smaller
Subgroups</span></h4>
<p>In each of the following examples, the class fusion of a (not necessarily maximal) subgroup <span class="SimpleMath">\(M\)</span> of a group <span class="SimpleMath">\(G\)</span> into <span class="SimpleMath">\(G\)</span> is determined by considering a proper subgroup <span class="SimpleMath">\(U\)</span> of <span class="SimpleMath">\(M\)</span> whose class fusion into <span class="SimpleMath">\(G\)</span> can be computed, perhaps using another subgroup <span class="SimpleMath">\(S\)</span> of <span class="SimpleMath">\(G\)</span> that also contains <span class="SimpleMath">\(U\)</span>.</p>
<p><center> <img src="ambigfus1.png" alt="setup: some subgroups of G"/> </center></p>
<p><a id="X7F5186E28201B027" name="X7F5186E28201B027"></a></p>
<h5>9.3-1 <span class="Heading"><span class="SimpleMath">\(BN7 \rightarrow B\)</span> (March 2002)</span></h5>
<p>Let <span class="SimpleMath">\(H\)</span> be a Sylow <span class="SimpleMath">\(7\)</span> normalizer in the sporadic simple group <span class="SimpleMath">\(B\)</span>. The class fusion of <span class="SimpleMath">\(H\)</span> into <span class="SimpleMath">\(B\)</span> is not uniquely determined by the character tables of the two groups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );</span>
CharacterTable( "B" )
<span class="GAPprompt">gap></span> <span class="GAPinput">h:= CharacterTable( "BN7" );</span>
CharacterTable( "BN7" )
<span class="GAPprompt">gap></span> <span class="GAPinput">hfusb:= PossibleClassFusions( h, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( h, hfusb, b ) );</span>
2
</pre></div>
<p>Let us consider a maximal subgroup of the type <span class="SimpleMath">\(Th\)</span> in <span class="SimpleMath">\(B\)</span> (cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 217]</a>). By <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 177]</a>, the Sylow <span class="SimpleMath">\(7\)</span> normalizers in <span class="SimpleMath">\(Th\)</span> are maximal subgroups of <span class="SimpleMath">\(Th\)</span> and have the structure <span class="SimpleMath">\(7^2:(3 \times 2S_4)\)</span>. Let <span class="SimpleMath">\(U\)</span> be such a subgroup.</p>
<p>Note that the only maximal subgroups of <span class="SimpleMath">\(Th\)</span> whose order is divisible by the order of a Sylow <span class="SimpleMath">\(7\)</span> subgroup of <span class="SimpleMath">\(B\)</span> have the types <span class="SimpleMath">\({}^3D_4(2).3\)</span> and <span class="SimpleMath">\(7^2:(3 \times 2S_4)\)</span>, and the Sylow <span class="SimpleMath">\(7\)</span> normalizers in the former groups have the structure <span class="SimpleMath">\(7^2:(3 \times 2A_4)\)</span>, cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 89]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Number( Factors( Size( b ) ), x -> x = 7 );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">th:= CharacterTable( "Th" );</span>
CharacterTable( "Th" )
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( Maxes( th ), x -> Size( CharacterTable( x ) ) mod 7^2 = 0 );</span>
[ "3D4(2).3", "7^2:(3x2S4)" ]
</pre></div>
<p>The class fusion of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(B\)</span> via <span class="SimpleMath">\(Th\)</span> is uniquely determined by the character tables of these groups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">thn7:= CharacterTable( "ThN7" );</span>
CharacterTable( "7^2:(3x2S4)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= SetOfComposedClassFusions( PossibleClassFusions( th, b ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PossibleClassFusions( thn7, th ) );</span>
[ [ 1, 31, 7, 7, 5, 28, 28, 17, 72, 72, 6, 6, 7, 28, 27, 27, 109,
109, 17, 45, 45, 72, 72, 127, 127, 127, 127 ] ]
</pre></div>
<p>The condition that the class fusion of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(B\)</span> factors through <span class="SimpleMath">\(H\)</span> determines the class fusion of <span class="SimpleMath">\(H\)</span> into <span class="SimpleMath">\(B\)</span> up to table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">thn7fush:= PossibleClassFusions( thn7, h );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( hfusb, x -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> ForAny( thn7fush, y -> CompositionMaps( x, y ) in comp ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( h, filt, b ) );</span>
1
</pre></div>
<p>Finally, we compare the result with the map that is stored on the library table of <span class="SimpleMath">\(H\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( h, b ) in filt;</span>
true
</pre></div>
<p><a id="X79710B137B5BB1B8" name="X79710B137B5BB1B8"></a></p>
<h5>9.3-2 <span class="Heading"><span class="SimpleMath">\((A_4 \times O_8^+(2).3).2 \rightarrow Fi_{24}^{\prime}\)</span> (November 2002)</span></h5>
<p>The class fusion of the maximal subgroup <span class="SimpleMath">\(M \cong (A_4 \times O_8^+(2).3).2\)</span> of <span class="SimpleMath">\(G = Fi_{24}^{\prime}\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "(A4xO8+(2).3).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "F3+" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mfust:= PossibleClassFusions( m, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( m, mfust, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( repr );</span>
2
</pre></div>
<p>We first observe that the elements of order three in the normal subgroup of type <span class="SimpleMath">\(A_4\)</span> in <span class="SimpleMath">\(M\)</span> lie in the class <code class="code">3A</code> of <span class="SimpleMath">\(Fi_{24}^{\prime}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a4inm:= Filtered( ClassPositionsOfNormalSubgroups( m ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> n -> Sum( SizesConjugacyClasses( m ){ n } ) = 12 );</span>
[ [ 1, 69, 110 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( m ){ a4inm[1] };</span>
[ 1, 2, 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( repr, map -> map[110] );</span>
[ 4, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( t ){ [ 1 .. 4 ] };</span>
[ 1, 2, 2, 3 ]
</pre></div>
<p>Let us take one such element <span class="SimpleMath">\(g\)</span>, say. Its normalizer <span class="SimpleMath">\(S\)</span> in <span class="SimpleMath">\(G\)</span> has the structure <span class="SimpleMath">\((3 \times O_8^+(3).3).2\)</span>; this group is maximal in <span class="SimpleMath">\(G\)</span>, and its character table is available in <strong class="pkg">GAP</strong>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "F3+N3A" );</span>
CharacterTable( "(3xO8+(3):3):2" )
</pre></div>
<p>The intersection <span class="SimpleMath">\(N_M(g) = S \cap M\)</span> contains a subgroup <span class="SimpleMath">\(U\)</span> of the type <span class="SimpleMath">\(3 \times O_8^+(2).3\)</span>, and in the following we compute the class fusions of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(M\)</span>, and then utilize the fact that only those class fusions from <span class="SimpleMath">\(M\)</span> into <span class="SimpleMath">\(G\)</span> are possible whose composition with the class fusion from <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(M\)</span> equals a composition of class fusions from <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(S\)</span> and from <span class="SimpleMath">\(S\)</span> into <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "Cyclic", 3 ) * CharacterTable( "O8+(2).3" );</span>
CharacterTable( "C3xO8+(2).3" )
<span class="GAPprompt">gap></span> <span class="GAPinput">ufuss:= PossibleClassFusions( u, s );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusm:= PossibleClassFusions( u, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= SetOfComposedClassFusions( sfust, ufuss );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( comp );</span>
6
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( mfust,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> ForAny( ufusm, map -> CompositionMaps( x, map ) in comp ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( m, filt, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( repr );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( m, t ) in repr;</span>
true
</pre></div>
<p>So the class fusion from <span class="SimpleMath">\(M\)</span> into <span class="SimpleMath">\(G\)</span> is determined up to table automorphisms by the commutative diagram.</p>
<p><a id="X85822C647B29117B" name="X85822C647B29117B"></a></p>
<h5>9.3-3 <span class="Heading"><span class="SimpleMath">\(A_6 \times L_2(8).3 \rightarrow Fi_{24}^{\prime}\)</span> (November 2002)</span></h5>
<p>The class fusion of the maximal subgroup <span class="SimpleMath">\(M \cong A_6 \times L_2(8).3\)</span> of <span class="SimpleMath">\(G = Fi_{24}^{\prime}\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "A6xL2(8):3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "F3+" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mfust:= PossibleClassFusions( m, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( m, mfust, t ) );</span>
2
</pre></div>
<p>We will use the fact that the direct factor of the type <span class="SimpleMath">\(A_6\)</span> in <span class="SimpleMath">\(M\)</span> contains elements in the class <code class="code">3A</code> of <span class="SimpleMath">\(G\)</span>. This fact can be shown as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">dppos:= ClassPositionsOfDirectProductDecompositions( m );</span>
[ [ [ 1, 12 .. 67 ], [ 1 .. 11 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( dppos[1], l -> Sum( SizesConjugacyClasses( t ){ l } ) );</span>
[ 17733424133316996808705, 4545066196775803392 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( dppos[1], l -> Sum( SizesConjugacyClasses( m ){ l } ) );</span>
[ 360, 1512 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">3Apos:= Position( OrdersClassRepresentatives( t ), 3 );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">3Ainm:= List( mfust, map -> Position( map, 3Apos ) );</span>
[ 23, 23, 23, 23, 34, 34, 34, 34 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( 3Ainm, x -> x in dppos[1][1] );</span>
true
</pre></div>
<p>Since the normalizer of an element of order three in <span class="SimpleMath">\(A_6\)</span> has the form <span class="SimpleMath">\(3^2:2\)</span>, such a <code class="code">3A</code> element in <span class="SimpleMath">\(M\)</span> contains a subgroup <span class="SimpleMath">\(U\)</span> of the structure <span class="SimpleMath">\(3^2:2 \times L_2(8).3\)</span> which is contained in the <code class="code">3A</code> normalizer <span class="SimpleMath">\(S\)</span> in <span class="SimpleMath">\(G\)</span>, which has the structure <span class="SimpleMath">\((3 \times O_8^+(3).3).2\)</span>.</p>
<p>(Note that all classes in the <span class="SimpleMath">\(3^2:2\)</span> type group are rational, and its character table is available in the <strong class="pkg">GAP</strong> Character Table Library with the identifier <code class="code">"3^2:2"</code>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "3^2:2" ) * CharacterTable( "L2(8).3" );</span>
CharacterTable( "3^2:2xL2(8).3" )
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "F3+N3A" );</span>
CharacterTable( "(3xO8+(3):3):2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">ufuss:= PossibleClassFusions( u, s );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= SetOfComposedClassFusions( sfust, ufuss );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusm:= PossibleClassFusions( u, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( mfust,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map -> ForAny( ufusm,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map2 -> CompositionMaps( map, map2 ) in comp ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( m, filt, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( repr );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( m, t ) in repr;</span>
true
</pre></div>
<p><a id="X81A607758682D9A9" name="X81A607758682D9A9"></a></p>
<h5>9.3-4 <span class="Heading"><span class="SimpleMath">\((3^2:D_8 \times U_4(3).2^2).2 \rightarrow B\)</span> (June 2007)</span></h5>
<p>Let <span class="SimpleMath">\(G\)</span> be a maximal subgroup of the type <span class="SimpleMath">\((3^2:D_8 \times U_4(3).2^2).2\)</span> in the sporadic simple group <span class="SimpleMath">\(B\)</span>, cf. <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 217]</a>. Computing the class fusion of <span class="SimpleMath">\(G\)</span> into <span class="SimpleMath">\(B\)</span> just from the character tables of the two groups takes extremely long. So we use additional information.</p>
<p>According to <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 217]</a>, <span class="SimpleMath">\(G\)</span> is the normalizer in <span class="SimpleMath">\(B\)</span> of an elementary abelian group <span class="SimpleMath">\(\langle x, y \rangle\)</span> of order <span class="SimpleMath">\(9\)</span>, with <span class="SimpleMath">\(x, y\)</span> in the class <code class="code">3A</code> of <span class="SimpleMath">\(B\)</span>, and <span class="SimpleMath">\(N = N_B(\langle x \rangle)\)</span> has the structure <span class="SimpleMath">\(S_3 \times Fi_{22}.2\)</span>. The intersection <span class="SimpleMath">\(G \cap N\)</span> has the structure <span class="SimpleMath">\(S_3 \times S_3 \times U_4(3).2^2\)</span>, which is the direct product of <span class="SimpleMath">\(S_3\)</span> and the normalizer in <span class="SimpleMath">\(Fi_{22}.2\)</span> of a <code class="code">3A</code> element of <span class="SimpleMath">\(Fi_{22}.2\)</span>, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 163]</a>. Thus we may use that the class fusions from <span class="SimpleMath">\(G \cap N\)</span> into <span class="SimpleMath">\(B\)</span> through <span class="SimpleMath">\(G\)</span> or <span class="SimpleMath">\(N\)</span> coincide.</p>
<p>The class fusion from <span class="SimpleMath">\(N\)</span> into <span class="SimpleMath">\(B\)</span> is uniquely determined by the character tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:= CharacterTable( "BN3A" );</span>
CharacterTable( "S3xFi22.2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">nfusb:= PossibleClassFusions( n, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( nfusb );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">nfusb:= nfusb[1];;</span>
</pre></div>
<p>The computation of the class fusion from <span class="SimpleMath">\(G \cap N\)</span> into <span class="SimpleMath">\(N\)</span> is sped up by computing first the class fusion modulo the direct factor <span class="SimpleMath">\(S_3\)</span>, and then lifting these fusion maps.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fi222:= CharacterTable( "Fi22.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fi222n3a:= CharacterTable( "S3xU4(3).(2^2)_{122}" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s3:= CharacterTable( "S3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inter:= s3 * fi222n3a;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">intermods3fusnmods3:= PossibleClassFusions( fi222n3a, fi222 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( intermods3fusnmods3 );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( fi222n3a, intermods3fusnmods3, fi222 ) );</span>
1
</pre></div>
<p>We get two equivalent possibilities, and need to consider only one of them. For lifting it to a map between <span class="SimpleMath">\(G \cap N\)</span> and <span class="SimpleMath">\(N\)</span>, the safe way is to use the fusion map between the two factors for computing an approximation. (Additionally, we could interpret the known maps as fusions between two subgroups, and use this for improving the approximation, but in this case the speedup is not worth the effort.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">interfusn:= CompositionMaps( InverseMap( GetFusionMap( n, fi222 ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( intermods3fusnmods3[1],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GetFusionMap( inter, fi222n3a ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">interfusn:= PossibleClassFusions( inter, n,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> rec( fusionmap:= interfusn, quick:= true ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( interfusn );</span>
1
</pre></div>
<p>The lift is unique. Since we lift a class fusion to direct products, we could also "extend" the fusion directly. But note that this would assume the ordering of classes in character tables of direct products. This alternative would work as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">nccl:= NrConjugacyClasses( fi222 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">interfusn[1] = Concatenation( List( [ 0 .. 2 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> intermods3fusnmods3[1] + i * nccl ) );</span>
true
</pre></div>
<p>Next we compute the class fusions from <span class="SimpleMath">\(G \cap N\)</span> to <span class="SimpleMath">\(G\)</span>. We get two equivalent solutions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblg:= CharacterTable( "BM14" );</span>
CharacterTable( "(3^2:D8xU4(3).2^2).2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">interfusg:= PossibleClassFusions( inter, tblg );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( interfusg );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( inter, interfusg, tblg ) );</span>
1
</pre></div>
<p>The approximation of the class fusion from <span class="SimpleMath">\(G\)</span> to <span class="SimpleMath">\(B\)</span> is computed by composing the known maps. Because we have chosen one of the two possible maps from <span class="SimpleMath">\(G \cap N\)</span> to <span class="SimpleMath">\(N\)</span>, here we consider the two possibilities. From these approximations, we compute the possible class fusions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">interfusb:= CompositionMaps( nfusb, interfusn[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= List( interfusg,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map -> CompositionMaps( interfusb, InverseMap( map ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gfusb:= Set( Concatenation( List( approx,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map -> PossibleClassFusions( tblg, b,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> rec( fusionmap:= map ) ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( gfusb );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( tblg, gfusb, b ) );</span>
1
</pre></div>
<p>Finally, we compare the result with the class fusion that is stored on the library table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( tblg, b ) in gfusb;</span>
true
</pre></div>
<p><a id="X7962DD4387D63675" name="X7962DD4387D63675"></a></p>
<h5>9.3-5 <span class="Heading"><span class="SimpleMath">\(7^{1+4}:(3 \times 2.S_7) \rightarrow M\)</span> (May 2009)</span></h5>
<p>The class fusion of the maximal subgroup <span class="SimpleMath">\(U\)</span> of type <span class="SimpleMath">\(7^{1+4}:(3 \times 2.S_7)\)</span> of the Monster group <span class="SimpleMath">\(M\)</span> into <span class="SimpleMath">\(M\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblu:= CharacterTable( "7^(1+4):(3x2.S7)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusm:= PossibleClassFusions( tblu, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( tblu, ufusm, m ) );</span>
2
</pre></div>
<p>The subgroup <span class="SimpleMath">\(U\)</span> contains a Sylow <span class="SimpleMath">\(7\)</span>-subgroup of <span class="SimpleMath">\(M\)</span>, and the only maximal subgroups of <span class="SimpleMath">\(M\)</span> with this property are the class of <span class="SimpleMath">\(U\)</span> and another class of subgroups, of the type <span class="SimpleMath">\(7^{2+1+2}:GL_2(7)\)</span>. Moreover, it turns out that the Sylow <span class="SimpleMath">\(7\)</span> normalizers in the subgroups in both classes have the same order, hence they are the Sylow <span class="SimpleMath">\(7\)</span> normalizers in <span class="SimpleMath">\(M\)</span>.</p>
<p>For that, we use representations from the <strong class="pkg">Atlas</strong> of Group Representations <a href="chapBib_mj.html#biBAGRv3">[WWT+]</a>, and access these representations via the <strong class="pkg">GAP</strong> package <strong class="pkg">AtlasRep</strong> (<a href="chapBib_mj.html#biBAtlasRep">[WPN+22]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "atlasrep", false );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">g1:= AtlasGroup( "7^(2+1+2):GL2(7)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s1:= SylowSubgroup( g1, 7 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n1:= Normalizer( g1, s1 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g2:= AtlasGroup( "7^(1+4):(3x2.S7)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s2:= SylowSubgroup( g2, 7 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n2:= Normalizer( g2, s2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( n1 ) = Size( n2 );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">( Size( m ) / Size( s1 ) ) mod 7 <> 0;</span>
true
</pre></div>
<p>So let <span class="SimpleMath">\(N\)</span> be a Sylow <span class="SimpleMath">\(7\)</span> normalizer in <span class="SimpleMath">\(U\)</span>, and choose a subgroup <span class="SimpleMath">\(S\)</span> of the type <span class="SimpleMath">\(7^{2+1+2}:GL_2(7)\)</span> that contains <span class="SimpleMath">\(N\)</span>.</p>
<p>We compute the character table of <span class="SimpleMath">\(N\)</span>. Computing the possible class fusions of <span class="SimpleMath">\(N\)</span> into <span class="SimpleMath">\(M\)</span> directly yields two possibilities, but the class fusion of <span class="SimpleMath">\(N\)</span> into <span class="SimpleMath">\(M\)</span> via <span class="SimpleMath">\(S\)</span> is uniquely determined by the character tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbln:= CharacterTable( Image( IsomorphismPcGroup( n1 ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbls:= CharacterTable( "7^(2+1+2):GL2(7)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nfusm:= PossibleClassFusions( tbln, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( tbln, nfusm, m ) );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">nfuss:= PossibleClassFusions( tbln, tbls );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfusm:= PossibleClassFusions( tbls, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nfusm:= SetOfComposedClassFusions( sfusm, nfuss );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( nfusm );</span>
1
</pre></div>
<p>Now we use the condition that the class fusions from <span class="SimpleMath">\(N\)</span> into <span class="SimpleMath">\(M\)</span> factors through <span class="SimpleMath">\(U\)</span>. This determines the class fusion of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(M\)</span> up to table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">nfusu:= PossibleClassFusions( tbln, tblu );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusm:= Filtered( ufusm, map2 -> ForAny( nfusu, </span>
<span class="GAPprompt">></span> <span class="GAPinput"> map1 -> CompositionMaps( map2, map1 ) in nfusm ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( tblu, ufusm, m ) );</span>
1
</pre></div>
<p>Let <span class="SimpleMath">\(C\)</span> be the centralizer in <span class="SimpleMath">\(U\)</span> of the normal subgroup of order <span class="SimpleMath">\(7\)</span>; note that <span class="SimpleMath">\(C\)</span> is the <code class="code">7B</code> centralizer on <span class="SimpleMath">\(M\)</span>. We can use the information about the class fusion of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(M\)</span> for determining the class fusion of <span class="SimpleMath">\(C\)</span> into <span class="SimpleMath">\(M\)</span>. The class fusion of <span class="SimpleMath">\(C\)</span> into <span class="SimpleMath">\(M\)</span> is not determined by the character tables, but the class fusion of <span class="SimpleMath">\(C\)</span> into <span class="SimpleMath">\(U\)</span> is determined up to table automorphisms, so the same holds for the class fusion of <span class="SimpleMath">\(C\)</span> into <span class="SimpleMath">\(M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblc:= CharacterTable( "MC7B" ); </span>
CharacterTable( "7^1+4.2A7" )
<span class="GAPprompt">gap></span> <span class="GAPinput">cfusm:= PossibleClassFusions( tblc, m );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( tblc, cfusm, m ) );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">cfusu:= PossibleClassFusions( tblc, tblu );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cfusm:= SetOfComposedClassFusions( ufusm, cfusu );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( tblc, cfusm, m ) );</span>
1
</pre></div>
<p><a id="X860B6C30812DE3FC" name="X860B6C30812DE3FC"></a></p>
<h5>9.3-6 <span class="Heading"><span class="SimpleMath">\(3^7.O_7(3):2 \rightarrow Fi_{24}\)</span> (November 2010)</span></h5>
<p>The class fusion of the maximal subgroup <span class="SimpleMath">\(M \cong 3^7.O_7(3):2\)</span> of <span class="SimpleMath">\(G = Fi_{24} = F_{{3+}}.2\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "3^7.O7(3):2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "F3+.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mfust:= PossibleClassFusions( m, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( m, mfust, t ) );</span>
2
</pre></div>
<p>We will use the fact that the elementary abelian normal subgroup of order <span class="SimpleMath">\(3^7\)</span> in <span class="SimpleMath">\(M\)</span> contains an element <span class="SimpleMath">\(x\)</span>, say, in the class <code class="code">3A</code> of <span class="SimpleMath">\(G\)</span>. This fact can be shown as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">nsg:= ClassPositionsOfNormalSubgroups( m );</span>
[ [ 1 ], [ 1 .. 4 ], [ 1 .. 158 ], [ 1 .. 291 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Sum( SizesConjugacyClasses( m ){ nsg[2] } );</span>
2187
<span class="GAPprompt">gap></span> <span class="GAPinput">3^7;</span>
2187
<span class="GAPprompt">gap></span> <span class="GAPinput">rest:= Set( mfust, map -> map{ nsg[2] } );</span>
[ [ 1, 4, 5, 6 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( rest, l -> ClassNames( t, "Atlas" ){ l } );</span>
[ [ "1A", "3A", "3B", "3C" ] ]
</pre></div>
<p>The normalizer <span class="SimpleMath">\(S\)</span> of <span class="SimpleMath">\(\langle x \rangle\)</span> in <span class="SimpleMath">\(G\)</span> has the form <span class="SimpleMath">\(S_3 \times O_8^+(3):S_3\)</span>, and the order of <span class="SimpleMath">\(U = S \cap M = N_M( \langle x \rangle)\)</span> is <span class="SimpleMath">\(53059069440\)</span>, so <span class="SimpleMath">\(U\)</span> has index <span class="SimpleMath">\(3360\)</span> in <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "F3+.2N3A" );</span>
CharacterTable( "S3xO8+(3):S3" )
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerMap( m, 2 )[4];</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">size_u:= 2 * SizesCentralizers( m )[ 2 ];</span>
53059069440
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( s ) / size_u;</span>
3360
</pre></div>
<p>Using the list of maximal subgroups of <span class="SimpleMath">\(O_8^+(3)\)</span>, we see that only the maximal subgroups of the type <span class="SimpleMath">\(3^6:L_4(3)\)</span> have index dividing <span class="SimpleMath">\(3360\)</span> in <span class="SimpleMath">\(O_8^+(3)\)</span>. (There are three classes of such subgroups.) This implies that <span class="SimpleMath">\(U\)</span> contains a subgroup of the type <span class="SimpleMath">\(S_3 \times 3^6:L_4(3)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">o8p3:= CharacterTable( "O8+(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= List( Maxes( o8p3 ), CharacterTable );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( mx, x -> 3360 mod Index( o8p3, x ) = 0 );</span>
[ CharacterTable( "3^6:L4(3)" ), CharacterTable( "O8+(3)M8" ),
CharacterTable( "O8+(3)M9" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( filt, x -> Index( o8p3, x ) );</span>
[ 1120, 1120, 1120 ]
</pre></div>
<p>We compute the possible class fusions from <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(M\)</span> and <span class="SimpleMath">\(S\)</span> in two steps, because this is faster. First the possible class fusions from <span class="SimpleMath">\(U^{\prime\prime} \cong 3^6:L_4(3)\)</span> into <span class="SimpleMath">\(M\)</span> and <span class="SimpleMath">\(S\)</span> are computed, and then these fusions are used to derive approximations for the fusions from <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(M\)</span> and <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">uu:= filt[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "Symmetric", 3 ) * uu;</span>
CharacterTable( "Sym(3)x3^6:L4(3)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">uufusm:= PossibleClassFusions( uu, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( uufusm );</span>
8
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= List( uufusm, map -> CompositionMaps( map,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> InverseMap( GetFusionMap( uu, u ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusm:= Concatenation( List( approx, map -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> PossibleClassFusions( u, m, rec( fusionmap:= map ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( ufusm );</span>
8
<span class="GAPprompt">gap></span> <span class="GAPinput">uufuss:= PossibleClassFusions( uu, s );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( uufuss );</span>
8
<span class="GAPprompt">gap></span> <span class="GAPinput">approx:= List( uufuss, map -> CompositionMaps( map,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> InverseMap( GetFusionMap( uu, u ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufuss:= Concatenation( List( approx, map -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> PossibleClassFusions( u, s, rec( fusionmap:= map ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( ufuss );</span>
8
</pre></div>
<p>Now we compute the possible class fusions from <span class="SimpleMath">\(S\)</span> into <span class="SimpleMath">\(G\)</span>, and the compositions of these maps with the possible class fusions from <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(S\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= SetOfComposedClassFusions( sfust, ufuss );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( comp );</span>
8
</pre></div>
<p>It turns out that only one orbit of the possible class fusions from <span class="SimpleMath">\(M\)</span> to <span class="SimpleMath">\(G\)</span> is compatible with these possible class fusions from <span class="SimpleMath">\(U\)</span> to <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( mfust, map2 -> ForAny( ufusm, map1 -></span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( map2, map1 ) in comp ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( filt );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( m, filt, t ) );</span>
1
</pre></div>
<p>The class fusion stored in the <strong class="pkg">GAP</strong> Character Table Library is one of them.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( m, t ) in filt;</span>
true
</pre></div>
<p><a id="X7C3AC42F8342EE2E" name="X7C3AC42F8342EE2E"></a></p>
<h5>9.3-7 <span class="Heading"><span class="SimpleMath">\({}^2E_6(2)N3C \rightarrow {}^2E_6(2)\)</span> (January 2019)</span></h5>
<p>Let <span class="SimpleMath">\(G = {}^2E_6(2)\)</span>, and <span class="SimpleMath">\(g \in G\)</span> in the conjugacy class <code class="code">3C</code>. Using a permutation representation of <span class="SimpleMath">\(G\)</span>, Frank Lübeck has computed a representation and the character table of the maximal subgroup <span class="SimpleMath">\(N = N_G(\langle g \rangle)\)</span> of <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "2E6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos3CinG:= Position( ClassNames( t ), "3c" );</span>
7
<span class="GAPprompt">gap></span> <span class="GAPinput">n:= CharacterTable( "2E6(2)N3C" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nclasses:= SizesConjugacyClasses( n );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos3CinN:= Filtered( [ 1 .. NrConjugacyClasses( n ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> nclasses[i] = 2 );</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">nfust:= PossibleClassFusions( n, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( nfust, x -> x[ pos3CinN[1] ] = pos3CinG );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( n ) = 2 * SizesCentralizers( t )[ pos3CinG ];</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( Irr( n ), x -> IsInt( x[ pos3CinN[1] ] ) );</span>
true
</pre></div>
<p>The class fusion of <span class="SimpleMath">\(N\)</span> in <span class="SimpleMath">\(G\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">rep:= RepresentativesFusions( n, nfust, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( rep );</span>
4
</pre></div>
<p>We use the fact that <span class="SimpleMath">\(g\)</span> is contained in a subgroup <span class="SimpleMath">\(S \cong Fi_{22}\)</span> of <span class="SimpleMath">\(G\)</span>, <span class="SimpleMath">\(\ldots\)</span></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "Fi22" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( sfust, x -> x[6] = pos3CinG );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">pos3CinS:= 6;;</span>
</pre></div>
<p><span class="SimpleMath">\(\ldots\)</span> and that <span class="SimpleMath">\(U = N_S(\langle g \rangle) \cong 3^{1+6}:2^{3+4}:3^2:2\)</span> is a maximal subgroup of <span class="SimpleMath">\(S\)</span> whose character table is available. Thus <span class="SimpleMath">\(U \leq N\)</span>, of index four.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( Maxes( s )[11] );</span>
CharacterTable( "3^(1+6):2^(3+4):3^2:2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">uclasses:= SizesConjugacyClasses( u );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos3CinU:= Filtered( [ 1 .. NrConjugacyClasses( u ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> uclasses[i] = 2 );</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ufuss:= PossibleClassFusions( u, s );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ForAll( ufuss, x -> x[ pos3CinU[1] ] = pos3CinS );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( n ) / Size( u );</span>
4
</pre></div>
<p>Composing the class fusions of <span class="SimpleMath">\(U\)</span> in <span class="SimpleMath">\(N\)</span> and <span class="SimpleMath">\(N\)</span> in <span class="SimpleMath">\(G\)</span> must be equal to the composition of the class fusions of <span class="SimpleMath">\(U\)</span> in <span class="SimpleMath">\(S\)</span> and <span class="SimpleMath">\(S\)</span> in <span class="SimpleMath">\(G\)</span>. This reduces the number of candidates for the fusion of <span class="SimpleMath">\(N\)</span> in <span class="SimpleMath">\(G\)</span> from four to two.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusn:= PossibleClassFusions( u, n );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= SetOfComposedClassFusions( sfust, ufuss );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">good:= Filtered( nfust, map2 -> ForAny( ufusn,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map1 -> CompositionMaps( map2, map1 ) in comp ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( good );</span>
1728
<span class="GAPprompt">gap></span> <span class="GAPinput">goodrep:= RepresentativesFusions( n, good, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( goodrep );</span>
2
</pre></div>
<p>Next we use the fact that <span class="SimpleMath">\(g\)</span> and thus <span class="SimpleMath">\(N\)</span> is invariant under an outer automorphism <span class="SimpleMath">\(\alpha\)</span>, say, of order three of <span class="SimpleMath">\(G\)</span>. Note that such an automorphism acts nontrivially on the conjugacy classes of <span class="SimpleMath">\(G\)</span>, for example because the class fusion of <span class="SimpleMath">\(G\)</span> into <span class="SimpleMath">\(G.3 = \langle G, \alpha \rangle\)</span> shows the existence of orbits of length three, and that the permutation action of <span class="SimpleMath">\(\alpha\)</span> on the classes of <span class="SimpleMath">\(G\)</span> is given by the unique subgroup of order three in the group of table automorphisms of <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfust3:= GetFusionMap( t, CharacterTable( "2E6(2).3" ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Number( InverseMap( tfust3 ), IsList );</span>
14
<span class="GAPprompt">gap></span> <span class="GAPinput">autt:= AutomorphismsOfTable( t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord3:= Filtered( autt, x -> Order( x ) = 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( ord3 );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">alpha:= ord3[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos3CinG ^ alpha = pos3CinG;</span>
true
</pre></div>
<p>The character table of <span class="SimpleMath">\(N\)</span> has <span class="SimpleMath">\(26\)</span> table automorphisms of order three. We do not know which of them (or perhaps the identity permutation) is induced by the restriction <span class="SimpleMath">\(\alpha_N\)</span> of <span class="SimpleMath">\(\alpha\)</span> to <span class="SimpleMath">\(N\)</span>, but the embedding <span class="SimpleMath">\(\iota\colon N \rightarrow G\)</span> satisfies <span class="SimpleMath">\(\alpha \circ \iota = \iota \circ \alpha_N\)</span>, and we can check each fusion candidate for the existence of a candidate for <span class="SimpleMath">\(\alpha_N\)</span> such that this relation holds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">autn:= AutomorphismsOfTable( n );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord3:= Filtered( autn, x -> Order( x ) = 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( ord3 );</span>
26
<span class="GAPprompt">gap></span> <span class="GAPinput">Add( ord3, () );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( rep, map -> ForAny( ord3, beta -></span>
<span class="GAPprompt">></span> <span class="GAPinput">OnTuples( map, alpha ) = Permuted( map, beta ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( filt );</span>
2
</pre></div>
<p>Again, the number of candidates for the fusion of <span class="SimpleMath">\(N\)</span> in <span class="SimpleMath">\(G\)</span> is reduced from four to two. Moreover, we are lucky because only one candidate satifies also the first criterion we have checked.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">inter:= Intersection( good, filt );</span>
[ [ 1, 7, 5, 6, 7, 2, 3, 4, 27, 30, 24, 32, 25, 26, 9, 11, 12, 13,
10, 14, 19, 19, 19, 16, 17, 18, 21, 58, 61, 62, 67, 68, 69, 57,
72, 59, 75, 76, 77, 78, 79, 80, 64, 65, 66, 60, 81, 82, 5, 6,
7, 6, 7, 7, 7, 7, 6, 7, 6, 7, 7, 24, 25, 27, 26, 28, 30, 29,
31, 32, 31, 32, 32, 32, 32, 31, 32, 31, 32, 51, 52, 52, 52, 52,
74, 76, 77, 77, 75, 74, 76, 74, 75, 99, 100, 101, 102, 4, 20,
29, 31, 32, 36, 36, 42, 42, 39, 40, 41, 49, 49, 49, 49, 49, 49,
71, 112, 112, 114, 115, 116 ] ]
</pre></div>
<p>The class fusion stored in the <strong class="pkg">GAP</strong> Character Table Library is this candidate.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( n, t ) = inter[1];</span>
true
</pre></div>
<p><em>Remark:</em></p>
<p>Note that the structure of <span class="SimpleMath">\(N\)</span> is <span class="SimpleMath">\(3^{1+6}:2^{3+6}:3^2:2\)</span>, as is stated in <a href="chapBib_mj.html#biBAtlasImpII">[Nor]</a>. The structure <span class="SimpleMath">\(3^{1+6}.2^{3+6}.(S_3 \times 3)\)</span> claimed in the <strong class="pkg">Atlas</strong> <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 191]</a> is wrong, as we can read off for example from the fact that <span class="SimpleMath">\(N\)</span> has exactly two linear characters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( LinearCharacters( n ) );</span>
2
</pre></div>
<p><a id="X84F966E2824F5D52" name="X84F966E2824F5D52"></a></p>
<h4>9.4 <span class="Heading">Fusions Determined Using Commutative Diagrams Involving Factor
Groups</span></h4>
<p><a id="X7F2B104686509CAA" name="X7F2B104686509CAA"></a></p>
<h5>9.4-1 <span class="Heading"><span class="SimpleMath">\(3.A_7 \rightarrow 3.Suz\)</span> (December 2010)</span></h5>
<p>The maximal subgroups of type <span class="SimpleMath">\(A_7\)</span> in the sporadic simple Suzuki group <span class="SimpleMath">\(Suz\)</span> lift to groups of the type <span class="SimpleMath">\(3.A_7\)</span> in <span class="SimpleMath">\(3.Suz\)</span>. This can be seen from the fact that <span class="SimpleMath">\(3.Suz\)</span> does not admit a class fusion from <span class="SimpleMath">\(A_7\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "Suz" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3t:= CharacterTable( "3.Suz" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "A7" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">3s:= CharacterTable( "3.A7" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions( s, 3t );</span>
[ ]
</pre></div>
<p>The class fusion of <span class="SimpleMath">\(3.A_7\)</span> into <span class="SimpleMath">\(3.Suz\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">3sfus3t:= PossibleClassFusions( 3s, 3t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( 3sfus3t );</span>
6
<span class="GAPprompt">gap></span> <span class="GAPinput">RepresentativesFusions( 3s, 3sfus3t, 3t );</span>
[ [ 1, 2, 3, 7, 8, 9, 16, 16, 26, 27, 28, 32, 33, 34, 47, 47, 47, 48,
49, 50, 48, 49, 50 ],
[ 1, 11, 12, 4, 36, 37, 13, 16, 23, 82, 83, 32, 100, 101, 44, 38,
41, 48, 112, 116, 48, 115, 113 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassPositionsOfCentre( 3t );</span>
[ 1, 2, 3 ]
</pre></div>
<p>We see that the possible fusions in the second orbit avoid the centre of <span class="SimpleMath">\(3.Suz\)</span>. Since the preimages in <span class="SimpleMath">\(3.Suz\)</span> of the <span class="SimpleMath">\(A_7\)</span> type subgroups of <span class="SimpleMath">\(Suz\)</span> contain the centre of <span class="SimpleMath">\(3.Suz\)</span>, we know that the class fusion of these preimages belong to the first orbit. This can be formalized by checking the commutativity of the diagram of fusions between <span class="SimpleMath">\(3.A_7\)</span>, <span class="SimpleMath">\(3.Suz\)</span>, and their factors <span class="SimpleMath">\(A_7\)</span> and <span class="SimpleMath">\(Suz\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( sfust );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( 3sfus3t, map -> CompositionMaps( GetFusionMap( 3t, t ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map )</span>
<span class="GAPprompt">></span> <span class="GAPinput"> = CompositionMaps( sfust[1], GetFusionMap( 3s, s ) ) );</span>
[ [ 1, 2, 3, 7, 8, 9, 16, 16, 26, 27, 28, 32, 33, 34, 47, 47, 47, 48,
49, 50, 48, 49, 50 ],
[ 1, 3, 2, 7, 9, 8, 16, 16, 26, 28, 27, 32, 34, 33, 47, 47, 47, 48,
50, 49, 48, 50, 49 ] ]
</pre></div>
<p>So the class fusion of maximal <span class="SimpleMath">\(3.A_7\)</span> type subgroups of <span class="SimpleMath">\(3.Suz\)</span> is determined up to table automorphisms. One of these fusions is stored on the table of <span class="SimpleMath">\(3.A_7\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">RepresentativesFusions( 3s, filt, 3t );</span>
[ [ 1, 2, 3, 7, 8, 9, 16, 16, 26, 27, 28, 32, 33, 34, 47, 47, 47, 48,
49, 50, 48, 49, 50 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( 3s, 3t ) in filt;</span>
true
</pre></div>
<p>Also the class fusions in the other orbit belong to subgroups of type <span class="SimpleMath">\(3.A_7\)</span> in <span class="SimpleMath">\(3.Suz\)</span>. Note that <span class="SimpleMath">\(Suz\)</span> contains maximal subgroups of the type <span class="SimpleMath">\(3_2.U_4(3).2_3^{\prime}\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 131]</a>), and the <span class="SimpleMath">\(A_7\)</span> type subgroups of <span class="SimpleMath">\(U_4(3)\)</span> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 52]</a>) lift to groups of the type <span class="SimpleMath">\(3.A_7\)</span> in <span class="SimpleMath">\(3_2.U_4(3)\)</span> because <span class="SimpleMath">\(3_2.U_4(3)\)</span> does not admit a class fusion from <span class="SimpleMath">\(A_7\)</span>. The preimages in <span class="SimpleMath">\(3.Suz\)</span> of the <span class="SimpleMath">\(3.A_7\)</span> type subgroups of <span class="SimpleMath">\(Suz\)</span> have the structure <span class="SimpleMath">\(3 \times 3.A_7\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "3_2.U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions( s, u );</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( 3s, u ) );</span>
8
</pre></div>
<p><a id="X82FB71647D37F4FD" name="X82FB71647D37F4FD"></a></p>
<h5>9.4-2 <span class="Heading"><span class="SimpleMath">\(S_6 \rightarrow U_4(2)\)</span> (September 2011)</span></h5>
<p>The simple group <span class="SimpleMath">\(G = U_4(2)\)</span> contains a maximal subgroup <span class="SimpleMath">\(U\)</span> of type <span class="SimpleMath">\(S_6\)</span>. The class fusion from <span class="SimpleMath">\(U\)</span> to <span class="SimpleMath">\(G\)</span> is unique up to table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "S6" );</span>
CharacterTable( "A6.2_1" )
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "U4(2)" );</span>
CharacterTable( "U4(2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t );</span>
[ [ 1, 3, 6, 7, 9, 10, 3, 2, 9, 16, 15 ],
[ 1, 3, 7, 6, 9, 10, 2, 3, 9, 15, 16 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( s, sfust, t ) );</span>
1
</pre></div>
<p>In the double cover <span class="SimpleMath">\(2.G\)</span> of <span class="SimpleMath">\(G\)</span>, <span class="SimpleMath">\(U\)</span> lifts to the double cover <span class="SimpleMath">\(2.U\)</span> of <span class="SimpleMath">\(U\)</span> (which is unique up to isomorphism). Also the class fusion from <span class="SimpleMath">\(2.U\)</span> to <span class="SimpleMath">\(2.G\)</span> is unique up to table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2t:= CharacterTable( "2.U4(2)" );</span>
CharacterTable( "2.U4(2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">2s:= CharacterTable( "2.A6.2_1" );</span>
CharacterTable( "2.A6.2_1" )
<span class="GAPprompt">gap></span> <span class="GAPinput">2sfus2t:= PossibleClassFusions( 2s, 2t );</span>
[ [ 1, 2, 4, 11, 12, 9, 10, 15, 16, 17, 3, 4, 15, 24, 25, 26, 26 ],
[ 1, 2, 4, 11, 12, 9, 10, 15, 16, 17, 3, 4, 15, 25, 24, 26, 26 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( 2s, 2sfus2t, 2t ) );</span>
1
</pre></div>
<p>However, the two possible fusions from <span class="SimpleMath">\(2.U\)</span> to <span class="SimpleMath">\(2.G\)</span> are lifts of the same class fusion from <span class="SimpleMath">\(U\)</span> to <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2sfuss:= GetFusionMap( 2s, s );</span>
[ 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 11 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">2tfust:= GetFusionMap( 2t, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">induced:= Set( 2sfus2t, x -> CompositionMaps( 2tfust,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( x, InverseMap( 2sfuss ) ) ) );</span>
[ [ 1, 3, 7, 6, 9, 10, 2, 3, 9, 15, 16 ] ]
</pre></div>
<p>The point is that the outer automorphism of <span class="SimpleMath">\(S_6\)</span> that makes the two fusions from <span class="SimpleMath">\(U\)</span> to <span class="SimpleMath">\(G\)</span> equivalent does not lift to <span class="SimpleMath">\(2.U\)</span>, and that we have silently assumed a fixed factor fusion from <span class="SimpleMath">\(2.U\)</span> to <span class="SimpleMath">\(U\)</span>. Note that composing this factor fusion with the automorphism of <span class="SimpleMath">\(U\)</span> would also yield a factor fusion, and w. r. t. the commutative diagram involving this factor fusion, the other possible class fusion from <span class="SimpleMath">\(U\)</span> to <span class="SimpleMath">\(G\)</span> is induced by the possible fusions from <span class="SimpleMath">\(2.U\)</span> to <span class="SimpleMath">\(2.G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">auts:= AutomorphismsOfTable( s );</span>
Group([ (3,4)(7,8)(10,11) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">other:= OnTuples( 2sfuss, GeneratorsOfGroup( auts )[1] );</span>
[ 1, 1, 2, 4, 4, 3, 3, 5, 6, 6, 8, 7, 9, 11, 11, 10, 10 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( 2sfus2t, x -> CompositionMaps( 2tfust,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( x, InverseMap( other ) ) ) );</span>
[ [ 1, 3, 6, 7, 9, 10, 3, 2, 9, 16, 15 ] ]
</pre></div>
<p>The library table of <span class="SimpleMath">\(U\)</span> stores the class fusion to <span class="SimpleMath">\(G\)</span> that is compatible with the stored factor fusion from <span class="SimpleMath">\(2.U\)</span> to <span class="SimpleMath">\(U\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, t ) in induced;</span>
true
</pre></div>
<p><a id="X7CFBC41B818A318C" name="X7CFBC41B818A318C"></a></p>
<h4>9.5 <span class="Heading">Fusions Determined Using Commutative Diagrams Involving
Automorphic Extensions</span></h4>
<p><a id="X7E91F8707BA93081" name="X7E91F8707BA93081"></a></p>
<h5>9.5-1 <span class="Heading"><span class="SimpleMath">\(U_3(8).3_1 \rightarrow {}^2E_6(2)\)</span> (December 2010)</span></h5>
<p>According to the <strong class="pkg">Atlas</strong> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 191]</a>), the group <span class="SimpleMath">\(G = {}^2E_6(2)\)</span> contains a maximal subgroup <span class="SimpleMath">\(U\)</span> of the type <span class="SimpleMath">\(U_3(8).3_1\)</span>. The class fusion of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(G\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "U3(8).3_1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "2E6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( sfust );</span>
24
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( s, sfust, t ) );</span>
2
</pre></div>
<p>In the automorphic extension <span class="SimpleMath">\(G.2 = {}^2E_6(2).2\)</span> of <span class="SimpleMath">\(G\)</span>, the subgroup <span class="SimpleMath">\(U\)</span> extends to a group <span class="SimpleMath">\(U.2\)</span> of the type <span class="SimpleMath">\(U_3(8).6\)</span> (again, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 191]</a>). The class fusion of <span class="SimpleMath">\(U.2\)</span> into <span class="SimpleMath">\(G.2\)</span> is unique up to table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s2:= CharacterTable( "U3(8).6" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t2:= CharacterTable( "2E6(2).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s2fust2:= PossibleClassFusions( s2, t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( s2fust2 );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( s2, s2fust2, t2 ) );</span>
1
</pre></div>
<p>Only half of the possible class fusions from <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(G\)</span> are compatible with the embeddings of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(G.2\)</span> via <span class="SimpleMath">\(U.2\)</span> and <span class="SimpleMath">\(G\)</span>, and the compatible maps form one orbit under table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfuss2:= PossibleClassFusions( s, s2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= SetOfComposedClassFusions( s2fust2, sfuss2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfust2:= PossibleClassFusions( t, t2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( sfust, map -> ForAny( tfust2,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map2 -> CompositionMaps( map2, map ) in comp ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( filt );</span>
12
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( s, filt, t ) );</span>
1
</pre></div>
<p>Let us see which classes of <span class="SimpleMath">\(U\)</span> and <span class="SimpleMath">\(G\)</span> are involved in the disambiguation of the class fusion. The "good" fusion candidates differ from the excluded ones on the classes at the positions <span class="SimpleMath">\(31\)</span> to <span class="SimpleMath">\(36\)</span>: Under all possible class fusions, two pairs of classes are mapped to the classes <span class="SimpleMath">\(81\)</span> and <span class="SimpleMath">\(82\)</span> of <span class="SimpleMath">\(G\)</span>; from these classes, the excluded maps fuse classes at odd positions with classes at even positions, whereas the "good" class fusions do not have this property.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( filt, x -> x{ [ 31 .. 36 ] } );</span>
[ [ 74, 74, 81, 82, 81, 82 ], [ 74, 74, 82, 81, 82, 81 ],
[ 81, 82, 74, 74, 81, 82 ], [ 81, 82, 81, 82, 74, 74 ],
[ 82, 81, 74, 74, 82, 81 ], [ 82, 81, 82, 81, 74, 74 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( Difference( sfust, filt ), x -> x{ [ 31 .. 36 ] } );</span>
[ [ 74, 74, 81, 82, 82, 81 ], [ 74, 74, 82, 81, 81, 82 ],
[ 81, 82, 74, 74, 82, 81 ], [ 81, 82, 82, 81, 74, 74 ],
[ 82, 81, 74, 74, 81, 82 ], [ 82, 81, 81, 82, 74, 74 ] ]
</pre></div>
<p>None of the possible class fusions from <span class="SimpleMath">\(U\)</span> to <span class="SimpleMath">\(U.2\)</span> fuses classes at odd positions in the interval from <span class="SimpleMath">\(31\)</span> to <span class="SimpleMath">\(36\)</span> with classes at even positions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( sfuss2, x -> x{ [ 31 .. 36 ] } );</span>
[ [ 28, 29, 30, 31, 30, 31 ], [ 29, 28, 31, 30, 31, 30 ],
[ 30, 31, 28, 29, 30, 31 ], [ 30, 31, 30, 31, 28, 29 ],
[ 31, 30, 29, 28, 31, 30 ], [ 31, 30, 31, 30, 29, 28 ] ]
</pre></div>
<p>This suffices to exclude the "bad" fusion candidates because no further fusion of the relevant classes of <span class="SimpleMath">\(G\)</span> happens in <span class="SimpleMath">\(G.2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( tfust2, x -> x{ [ 74, 81, 82 ] } );</span>
[ [ 65, 70, 71 ], [ 65, 70, 71 ], [ 65, 71, 70 ], [ 65, 71, 70 ],
[ 65, 70, 71 ], [ 65, 70, 71 ], [ 65, 71, 70 ], [ 65, 71, 70 ],
[ 65, 70, 71 ], [ 65, 70, 71 ], [ 65, 71, 70 ], [ 65, 71, 70 ] ]
</pre></div>
<p>(The same holds for the fusion of the relevant classes of <span class="SimpleMath">\(U.2\)</span> in <span class="SimpleMath">\(G.2\)</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( s2fust2, x -> x{ [ 28 .. 31 ] } );</span>
[ [ 65, 65, 70, 71 ], [ 65, 65, 71, 70 ] ]
</pre></div>
<p>Finally, we check that a correct map is stored on the library table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, t ) in filt;</span>
true
</pre></div>
<p><a id="X81B37EF378E89E00" name="X81B37EF378E89E00"></a></p>
<h5>9.5-2 <span class="Heading"><span class="SimpleMath">\(L_3(4).2_1 \rightarrow U_6(2)\)</span> (December 2010)</span></h5>
<p>According to the <strong class="pkg">Atlas</strong> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 115]</a>), the group <span class="SimpleMath">\(G = U_6(2)\)</span> contains a maximal subgroup <span class="SimpleMath">\(U\)</span> of the type <span class="SimpleMath">\(L_3(4).2_1\)</span>. The class fusion of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(G\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "L3(4).2_1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "U6(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( sfust );</span>
27
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( s, sfust, t ) );</span>
3
</pre></div>
<p>In the automorphic extension <span class="SimpleMath">\(G.3 = U_6(2).3\)</span> of <span class="SimpleMath">\(G\)</span>, the subgroup <span class="SimpleMath">\(U\)</span> extends to a group <span class="SimpleMath">\(U.3\)</span> of the type <span class="SimpleMath">\(L_3(4).6\)</span> (again, see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 115]</a>). The class fusion of <span class="SimpleMath">\(U.3\)</span> into <span class="SimpleMath">\(G.3\)</span> is unique up to table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s3:= CharacterTable( "L3(4).6" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t3:= CharacterTable( "U6(2).3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s3fust3:= PossibleClassFusions( s3, t3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( s3fust3 );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( s3, s3fust3, t3 ) );</span>
1
</pre></div>
<p>Here the argument used in Section <a href="chap9_mj.html#X7E91F8707BA93081"><span class="RefLink">9.5-1</span></a> does not work, because all possible class fusions from <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(G\)</span> are compatible with the embeddings of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(G.3\)</span> via <span class="SimpleMath">\(U.3\)</span> and <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfuss3:= PossibleClassFusions( s, s3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= SetOfComposedClassFusions( s3fust3, sfuss3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfust3:= PossibleClassFusions( t, t3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust = Filtered( sfust, map -> ForAny( tfust3,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map2 -> CompositionMaps( map2, map ) in comp ) );</span>
true
</pre></div>
<p>Consider the elements of order four in <span class="SimpleMath">\(U\)</span>. There are three such classes inside <span class="SimpleMath">\(U^{\prime} \cong L_3(4)\)</span>, which fuse to one class of <span class="SimpleMath">\(U.3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( s );</span>
[ 1, 2, 3, 4, 4, 4, 5, 7, 2, 4, 6, 8, 8, 8 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">sfuss3;</span>
[ [ 1, 2, 3, 4, 4, 4, 5, 6, 7, 8, 9, 10, 10, 10 ] ]
</pre></div>
<p>These classes of <span class="SimpleMath">\(U\)</span> fuse into some of the classes <span class="SimpleMath">\(10\)</span> to <span class="SimpleMath">\(12\)</span> of <span class="SimpleMath">\(G\)</span>. In <span class="SimpleMath">\(G.3\)</span>, these three classes fuse into one class.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( sfust, map -> map{ [ 4 .. 6 ] } );</span>
[ [ 10, 10, 10 ], [ 10, 10, 11 ], [ 10, 10, 12 ], [ 10, 11, 10 ],
[ 10, 11, 11 ], [ 10, 11, 12 ], [ 10, 12, 10 ], [ 10, 12, 11 ],
[ 10, 12, 12 ], [ 11, 10, 10 ], [ 11, 10, 11 ], [ 11, 10, 12 ],
[ 11, 11, 10 ], [ 11, 11, 11 ], [ 11, 11, 12 ], [ 11, 12, 10 ],
[ 11, 12, 11 ], [ 11, 12, 12 ], [ 12, 10, 10 ], [ 12, 10, 11 ],
[ 12, 10, 12 ], [ 12, 11, 10 ], [ 12, 11, 11 ], [ 12, 11, 12 ],
[ 12, 12, 10 ], [ 12, 12, 11 ], [ 12, 12, 12 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( tfust3, map -> map{ [ 10 .. 12 ] } );</span>
[ [ 10, 10, 10 ] ]
</pre></div>
<p>This means that the automorphism <span class="SimpleMath">\(\alpha\)</span> of <span class="SimpleMath">\(G\)</span> that is induced by the action of <span class="SimpleMath">\(G.3\)</span> permutes the classes <span class="SimpleMath">\(10\)</span> to <span class="SimpleMath">\(12\)</span> of <span class="SimpleMath">\(G\)</span> transitively. The fact that <span class="SimpleMath">\(U\)</span> extends to <span class="SimpleMath">\(U.3\)</span> in <span class="SimpleMath">\(G.3\)</span> means that <span class="SimpleMath">\(U\)</span> is invariant under <span class="SimpleMath">\(\alpha\)</span>. This implies that <span class="SimpleMath">\(U\)</span> contains either no elements from the classes <span class="SimpleMath">\(10\)</span> to <span class="SimpleMath">\(12\)</span> or elements from all of these classes. The possible class fusions from <span class="SimpleMath">\(U\)</span> to <span class="SimpleMath">\(G\)</span> satisfying this condition form one orbit under table automprhisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( sfust, map -> Intersection( map, [ 10 .. 12 ] ) = [] );</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( sfust, map -> IsSubset( map, [ 10 .. 12 ] ) );</span>
[ [ 1, 3, 7, 10, 11, 12, 15, 24, 4, 14, 23, 26, 27, 28 ],
[ 1, 3, 7, 10, 12, 11, 15, 24, 4, 14, 23, 26, 28, 27 ],
[ 1, 3, 7, 11, 10, 12, 15, 24, 4, 14, 23, 27, 26, 28 ],
[ 1, 3, 7, 11, 12, 10, 15, 24, 4, 14, 23, 27, 28, 26 ],
[ 1, 3, 7, 12, 10, 11, 15, 24, 4, 14, 23, 28, 26, 27 ],
[ 1, 3, 7, 12, 11, 10, 15, 24, 4, 14, 23, 28, 27, 26 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( s, filt, t ) );</span>
1
</pre></div>
<p>Finally, we check that a correct map is stored on the library table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, t ) in filt;</span>
true
</pre></div>
<p><a id="X85E2A6F480026C95" name="X85E2A6F480026C95"></a></p>
<h4>9.6 <span class="Heading">Conditions Imposed by Brauer Tables</span></h4>
<p>The examples in this section show that symmetries can be broken as soon as the class fusions between two ordinary tables shall be compatible with the corresponding Brauer character tables. More precisely, we assume that the class fusion from each Brauer table to its ordinary table is already fixed; choosing these fusions consistently can be a nontrivial task, solving so-called "generality problems" may require the construction of certain modules, similar to the arguments used in <a href="chap9_mj.html#X7DED4C437D479226"><span class="RefLink">9.6-3</span></a> below.</p>
<p><a id="X7ACC7F588213D5D5" name="X7ACC7F588213D5D5"></a></p>
<h5>9.6-1 <span class="Heading"><span class="SimpleMath">\(L_2(16).4 \rightarrow J_3.2\)</span> (January 2004)</span></h5>
<p>It can happen that Brauer tables decide ambiguities of class fusions between the corresponding ordinary tables. An easy example is the class fusion of <span class="SimpleMath">\(L_2(16).4\)</span> into <span class="SimpleMath">\(J_3.2\)</span>. The ordinary tables admit four possible class fusions, of which two are essentially different.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "L2(16).4" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "J3.2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( s, t );</span>
[ [ 1, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 5, 5, 8, 8, 13, 13 ],
[ 1, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23 ],
[ 1, 2, 3, 6, 14, 16, 15, 2, 5, 7, 12, 5, 5, 8, 8, 13, 13 ],
[ 1, 2, 3, 6, 14, 16, 15, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">RepresentativesFusions( s, fus, t );</span>
[ [ 1, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 5, 5, 8, 8, 13, 13 ],
[ 1, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23 ] ]
</pre></div>
<p>Using Brauer tables, we will see that just one fusion is admissible.</p>
<p>We can exclude two possible fusions by the fact that their images all lie inside the normal subgroup <span class="SimpleMath">\(J_3\)</span>, but <span class="SimpleMath">\(J_3\)</span> does not contain a subgroup of type <span class="SimpleMath">\(L_2(16).4\)</span>; so still one orbit of length two remains.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">j3:= CharacterTable( "J3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions( s, j3 );</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( j3, t );</span>
[ 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 14, 15, 16,
17, 17 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( fus,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> not IsSubset( ClassPositionsOfDerivedSubgroup( t ), x ) );</span>
[ [ 1, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23 ],
[ 1, 2, 3, 6, 14, 16, 15, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23 ] ]
</pre></div>
<p>Now the remaining wrong fusion is excluded by the fact that the table automorphism of <span class="SimpleMath">\(J_3.2\)</span> that swaps the two classes of element order <span class="SimpleMath">\(17\)</span> –which swaps two of the possible class fusions– does not live in the <span class="SimpleMath">\(2\)</span>-modular table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">smod2:= s mod 2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tmod2:= t mod 2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">admissible:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for map in filt do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> modmap:= CompositionMaps( InverseMap( GetFusionMap( tmod2, t ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( map, GetFusionMap( smod2, s ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not fail in Decomposition( Irr( smod2 ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> List( Irr( tmod2 ), chi -> chi{ modmap } ), "nonnegative" ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> AddSet( admissible, map );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">admissible;</span>
[ [ 1, 2, 3, 6, 14, 16, 15, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23 ] ]
</pre></div>
<p>The test of all available Brauer tables is implemented in the function <code class="code">CTblLib.Test.Decompositions</code> of the <strong class="pkg">GAP</strong> Character Table Library (<a href="chapBib_mj.html#biBCTblLib">[Bre24]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CTblLib.Test.Decompositions( s, fus, t ) = admissible;</span>
true
</pre></div>
<p>We see that <span class="SimpleMath">\(p\)</span>-modular tables alone determine the class fusion uniquely; in fact the primes <span class="SimpleMath">\(2\)</span> and <span class="SimpleMath">\(3\)</span> suffice for that.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, t ) in admissible;</span>
true
</pre></div>
<p><em>Remark:</em></p>
<p>In May 2015, the <span class="SimpleMath">\(19\)</span>-modular character table of <span class="SimpleMath">\(J_3\)</span> has been corrected, by swapping the two classes of element order <span class="SimpleMath">\(17\)</span>. Since the class fusion of <span class="SimpleMath">\(L_2(16).4\)</span> into <span class="SimpleMath">\(J_3.2\)</span> is uniquely determined by the <span class="SimpleMath">\(2\)</span>-modular tables of <span class="SimpleMath">\(L_2(16).4\)</span> and <span class="SimpleMath">\(J_3.2\)</span> and since this class fusion has been compatible with the previous version of the <span class="SimpleMath">\(19\)</span>-modular table of <span class="SimpleMath">\(J_3\)</span>, the correction does not affect the above arguments.</p>
<p><a id="X7ACB86CB82ED49D1" name="X7ACB86CB82ED49D1"></a></p>
<h5>9.6-2 <span class="Heading"><span class="SimpleMath">\(L_2(17) \rightarrow S_8(2)\)</span> (July 2004)</span></h5>
<p>The class fusion of the maximal subgroup <span class="SimpleMath">\(M \cong L_2(17)\)</span> of <span class="SimpleMath">\(G = S_8(2)\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "L2(17)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "S8(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mfust:= PossibleClassFusions( m, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( m, mfust, t ) );</span>
4
</pre></div>
<p>The Brauer tables for <span class="SimpleMath">\(M\)</span> and <span class="SimpleMath">\(G\)</span> determine the class fusion up to table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= CTblLib.Test.Decompositions( m, mfust, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( m, filt, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( repr );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( m, t ) in repr;</span>
true
</pre></div>
<p><a id="X7DED4C437D479226" name="X7DED4C437D479226"></a></p>
<h5>9.6-3 <span class="Heading"><span class="SimpleMath">\(L_2(19) \rightarrow J_3\)</span> (April 2003)</span></h5>
<p>It can happen that Brauer tables impose conditions such that ambiguities arise which are not visible if one considers only ordinary tables.</p>
<p>The class fusion between the ordinary character tables of <span class="SimpleMath">\(L_2(19)\)</span> and <span class="SimpleMath">\(J_3\)</span> is unique up to table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "L2(19)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "J3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t );</span>
[ [ 1, 2, 4, 6, 7, 10, 11, 12, 13, 14, 20, 21 ],
[ 1, 2, 4, 6, 7, 10, 11, 12, 13, 14, 21, 20 ],
[ 1, 2, 4, 6, 7, 11, 12, 10, 13, 14, 20, 21 ],
[ 1, 2, 4, 6, 7, 11, 12, 10, 13, 14, 21, 20 ],
[ 1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 20, 21 ],
[ 1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 21, 20 ],
[ 1, 2, 4, 7, 6, 10, 11, 12, 14, 13, 20, 21 ],
[ 1, 2, 4, 7, 6, 10, 11, 12, 14, 13, 21, 20 ],
[ 1, 2, 4, 7, 6, 11, 12, 10, 14, 13, 20, 21 ],
[ 1, 2, 4, 7, 6, 11, 12, 10, 14, 13, 21, 20 ],
[ 1, 2, 4, 7, 6, 12, 10, 11, 14, 13, 20, 21 ],
[ 1, 2, 4, 7, 6, 12, 10, 11, 14, 13, 21, 20 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">fusreps:= RepresentativesFusions( s, sfust, t );</span>
[ [ 1, 2, 4, 6, 7, 10, 11, 12, 13, 14, 20, 21 ] ]
</pre></div>
<p>The Galois automorphism that permutes the three classes of element order <span class="SimpleMath">\(9\)</span> in the tables of (<span class="SimpleMath">\(L_2(19)\)</span> and) <span class="SimpleMath">\(J_3\)</span> does not live in characteristic <span class="SimpleMath">\(19\)</span>. For example, the unique irreducible Brauer character of degree <span class="SimpleMath">\(110\)</span> in the <span class="SimpleMath">\(19\)</span>-modular table of <span class="SimpleMath">\(J_3\)</span> is <span class="SimpleMath">\(\varphi_3\)</span>, and the value of this character on the class <code class="code">9A</code> is <code class="code">-1+2y9+&4</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tmod19:= t mod 19;</span>
BrauerTable( "J3", 19 )
<span class="GAPprompt">gap></span> <span class="GAPinput">deg110:= Filtered( Irr( tmod19 ), phi -> phi[1] = 110 );</span>
[ Character( BrauerTable( "J3", 19 ),
[ 110, -2, 5, 2, 2, 0, 0, 1, 0,
-2*E(9)^2+E(9)^3-E(9)^4-E(9)^5+E(9)^6-2*E(9)^7,
E(9)^2+E(9)^3-E(9)^4-E(9)^5+E(9)^6+E(9)^7,
E(9)^2+E(9)^3+2*E(9)^4+2*E(9)^5+E(9)^6+E(9)^7, -2, -2, -1, 0,
0, E(17)^3+E(17)^5+E(17)^6+E(17)^7+E(17)^10+E(17)^11+E(17)^12
+E(17)^14,
E(17)+E(17)^2+E(17)^4+E(17)^8+E(17)^9+E(17)^13+E(17)^15+E(17)^16
] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">9A:= Position( OrdersClassRepresentatives( tmod19 ), 9 );</span>
10
<span class="GAPprompt">gap></span> <span class="GAPinput">deg110[1][ 9A ];</span>
-2*E(9)^2+E(9)^3-E(9)^4-E(9)^5+E(9)^6-2*E(9)^7
<span class="GAPprompt">gap></span> <span class="GAPinput">AtlasIrrationality( "-1+2y9+&4" ) = deg110[1][ 9A ];</span>
true
</pre></div>
<p>It turns out that four of the twelve possible class fusions are not compatible with the <span class="SimpleMath">\(19\)</span>-modular tables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">smod19:= s mod 19;</span>
BrauerTable( "L2(19)", 19 )
<span class="GAPprompt">gap></span> <span class="GAPinput">compatible:= [];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for map in sfust do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> comp:= CompositionMaps( InverseMap( GetFusionMap( tmod19, t ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( map, GetFusionMap( smod19, s ) ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> rest:= List( Irr( tmod19 ), phi -> phi{ comp } );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if not fail in Decomposition( Irr( smod19 ), rest, "nonnegative" ) then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( compatible, map );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">compatible;</span>
[ [ 1, 2, 4, 6, 7, 11, 12, 10, 13, 14, 20, 21 ],
[ 1, 2, 4, 6, 7, 11, 12, 10, 13, 14, 21, 20 ],
[ 1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 20, 21 ],
[ 1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 21, 20 ],
[ 1, 2, 4, 7, 6, 11, 12, 10, 14, 13, 20, 21 ],
[ 1, 2, 4, 7, 6, 11, 12, 10, 14, 13, 21, 20 ],
[ 1, 2, 4, 7, 6, 12, 10, 11, 14, 13, 20, 21 ],
[ 1, 2, 4, 7, 6, 12, 10, 11, 14, 13, 21, 20 ] ]
</pre></div>
<p>Moreover, the subgroups of those table automorphisms of the ordinary tables that leave the set of compatible fusions invariant make two orbits on this set. Indeed, the two orbits belong to essentially different decompositions of the restriction of <span class="SimpleMath">\(\varphi_3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= RepresentativesFusions( s, compatible, t );</span>
[ [ 1, 2, 4, 6, 7, 11, 12, 10, 13, 14, 20, 21 ],
[ 1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 20, 21 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">compatiblemod19:= List( reps, map -> CompositionMaps(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> InverseMap( GetFusionMap( tmod19, t ) ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> CompositionMaps( map, GetFusionMap( smod19, s ) ) ) );</span>
[ [ 1, 2, 4, 6, 7, 11, 12, 10, 13, 14 ],
[ 1, 2, 4, 6, 7, 12, 10, 11, 13, 14 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">rest:= List( compatiblemod19, map -> Irr( tmod19 )[3]{ map } );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">dec:= Decomposition( Irr( smod19 ), rest, "nonnegative" );</span>
[ [ 0, 0, 1, 2, 1, 2, 2, 1, 0, 1 ], [ 0, 2, 0, 2, 0, 1, 2, 0, 2, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( Irr( smod19 ), phi -> phi[1] );</span>
[ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 ]
</pre></div>
<p>In order to decide which class fusion is correct, we take the matrix representation of <span class="SimpleMath">\(J_3\)</span> that affords <span class="SimpleMath">\(\varphi_3\)</span>, restrict it to <span class="SimpleMath">\(L_2(19)\)</span>, which is the second maximal subgroup of <span class="SimpleMath">\(J_3\)</span>, and compute the composition factors. For that, we use a representation from the <strong class="pkg">Atlas</strong> of Group Representations <a href="chapBib_mj.html#biBAGRv3">[WWT+]</a>, and access it via the <strong class="pkg">GAP</strong> package <strong class="pkg">AtlasRep</strong> (<a href="chapBib_mj.html#biBAtlasRep">[WPN+22]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "atlasrep", false );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">prog:= AtlasProgram( "J3", "maxes", 2 );</span>
rec( groupname := "J3", identifier := [ "J3", "J3G1-max2W1", 1 ],
program := <straight line program>, size := 3420,
standardization := 1, subgroupname := "L2(19)", version := "1" )
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:= OneAtlasGeneratingSetInfo( "J3", Characteristic, 19,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Dimension, 110 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:= AtlasGenerators( gens );</span>
rec( charactername := "110a", constituents := [ 3 ],
contents := "core", dim := 110,
generators := [ < immutable compressed matrix 110x110 over GF(19) >,
< immutable compressed matrix 110x110 over GF(19) > ],
groupname := "J3", id := "",
identifier := [ "J3", [ "J3G1-f19r110B0.m1", "J3G1-f19r110B0.m2" ],
1, 19 ], repname := "J3G1-f19r110B0", repnr := 35,
ring := GF(19), size := 50232960, standardization := 1,
type := "matff" )
<span class="GAPprompt">gap></span> <span class="GAPinput">restgens:= ResultOfStraightLineProgram( prog.program, gens.generators );</span>
[ < immutable compressed matrix 110x110 over GF(19) >,
< immutable compressed matrix 110x110 over GF(19) > ]
<span class="GAPprompt">gap></span> <span class="GAPinput">module:= GModuleByMats( restgens, GF( 19 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">facts:= SMTX.CollectedFactors( module );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( facts );</span>
7
<span class="GAPprompt">gap></span> <span class="GAPinput">List( facts, x -> x[1].dimension );</span>
[ 5, 7, 9, 11, 13, 15, 19 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( facts, x -> x[2] );</span>
[ 1, 2, 1, 2, 2, 1, 1 ]
</pre></div>
<p>This means that there are seven pairwise nonisomorphic composition factors, the smallest one of dimension five. In other words, the first of the two maps is the correct one. Let us check whether this map equals the one that is stored on the library table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, t ) = reps[1];</span>
true
</pre></div>
<p><em>Remark:</em></p>
<p>In May 2015, the <span class="SimpleMath">\(19\)</span>-modular character table of <span class="SimpleMath">\(J_3\)</span> has been corrected, by swapping the two classes of element order <span class="SimpleMath">\(17\)</span>. This affects the above computations only in one place, where the values of the character <code class="code">deg110</code> are shown.</p>
<p><a id="X8225D9FA80A7D20F" name="X8225D9FA80A7D20F"></a></p>
<h4>9.7 <span class="Heading">Fusions Determined by Information about the Groups</span></h4>
<p>In the examples in this section, character theoretic arguments do not suffice for determining the class fusions. So we use computations with the groups in question or information about these groups beyond the character table, and perhaps additionally character theoretic arguments.</p>
<p>The group representations are taken from the <strong class="pkg">Atlas</strong> of Group Representations <a href="chapBib_mj.html#biBAGRv3">[WWT+]</a> and are accessed via the <strong class="pkg">GAP</strong> package <strong class="pkg">AtlasRep</strong> (<a href="chapBib_mj.html#biBAtlasRep">[WPN+22]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage( "atlasrep", false );</span>
true
</pre></div>
<p><a id="X7AE2962E82B4C814" name="X7AE2962E82B4C814"></a></p>
<h5>9.7-1 <span class="Heading"><span class="SimpleMath">\(U_3(3).2 \rightarrow Fi_{24}^{\prime}\)</span> (November 2002)</span></h5>
<p>The group <span class="SimpleMath">\(G = Fi_{24}^{\prime}\)</span> contains a maximal subgroup <span class="SimpleMath">\(H\)</span> of type <span class="SimpleMath">\(U_3(3).2\)</span>. From the character tables of <span class="SimpleMath">\(G\)</span> and <span class="SimpleMath">\(H\)</span>, one gets a lot of essentially different possibilities (and additionally this takes quite some time). We use the description of <span class="SimpleMath">\(H\)</span> as the normalizer in <span class="SimpleMath">\(G\)</span> of a <span class="SimpleMath">\(U_3(3)\)</span> type subgroup containing elements in the classes <code class="code">2B</code>, <code class="code">3D</code>, <code class="code">3E</code>, <code class="code">4C</code>, <code class="code">4C</code>, <code class="code">6J</code>, <code class="code">7B</code>, <code class="code">8C</code>, and <code class="code">12M</code> (see <a href="chapBib_mj.html#biBBN95">[BN95]</a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "F3+" );</span>
CharacterTable( "F3+" )
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "U3(3).2" );</span>
CharacterTable( "U3(3).2" )
<span class="GAPprompt">gap></span> <span class="GAPinput">tnames:= ClassNames( t, "ATLAS" );</span>
[ "1A", "2A", "2B", "3A", "3B", "3C", "3D", "3E", "4A", "4B", "4C",
"5A", "6A", "6B", "6C", "6D", "6E", "6F", "6G", "6H", "6I", "6J",
"6K", "7A", "7B", "8A", "8B", "8C", "9A", "9B", "9C", "9D", "9E",
"9F", "10A", "10B", "11A", "12A", "12B", "12C", "12D", "12E",
"12F", "12G", "12H", "12I", "12J", "12K", "12L", "12M", "13A",
"14A", "14B", "15A", "15B", "15C", "16A", "17A", "18A", "18B",
"18C", "18D", "18E", "18F", "18G", "18H", "20A", "20B", "21A",
"21B", "21C", "21D", "22A", "23A", "23B", "24A", "24B", "24C",
"24D", "24E", "24F", "24G", "26A", "27A", "27B", "27C", "28A",
"29A", "29B", "30A", "30B", "33A", "33B", "35A", "36A", "36B",
"36C", "36D", "39A", "39B", "39C", "39D", "42A", "42B", "42C",
"45A", "45B", "60A" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( s );</span>
[ 1, 2, 3, 3, 4, 4, 6, 7, 8, 12, 2, 4, 6, 8, 12, 12 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= List( [ "1A", "2B", "3D", "3E", "4C", "4C", "6J", "7B", "8C",</span>
<span class="GAPprompt">></span> <span class="GAPinput"> "12M" ], x -> Position( tnames, x ) );</span>
[ 1, 3, 7, 8, 11, 11, 22, 25, 28, 50 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t, rec( fusionmap:= sfust ) );</span>
[ [ 1, 3, 7, 8, 11, 11, 22, 25, 28, 50, 3, 9, 23, 28, 43, 43 ],
[ 1, 3, 7, 8, 11, 11, 22, 25, 28, 50, 3, 11, 23, 28, 50, 50 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( s );</span>
[ 1, 2, 3, 3, 4, 4, 6, 7, 8, 12, 2, 4, 6, 8, 12, 12 ]
</pre></div>
<p>So we still have two possibilities, which differ on the outer classes of element order <span class="SimpleMath">\(4\)</span> and <span class="SimpleMath">\(12\)</span>.</p>
<p>Our idea is to take a subgroup <span class="SimpleMath">\(U\)</span> of <span class="SimpleMath">\(H\)</span> that contains such elements, and to compute the possible class fusions of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(G\)</span>, via the factorization through a suitable maximal subgroup <span class="SimpleMath">\(M\)</span> of <span class="SimpleMath">\(G\)</span>.</p>
<p>We take <span class="SimpleMath">\(U = N_H(\langle g \rangle)\)</span> where <span class="SimpleMath">\(g\)</span> is an element in the first class of order three elements of <span class="SimpleMath">\(H\)</span>; this is a maximal subgroup of <span class="SimpleMath">\(H\)</span>, of order <span class="SimpleMath">\(216\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Maxes( s );</span>
[ "U3(3)", "3^(1+2):SD16", "L3(2).2", "2^(1+4).S3", "4^2:D12" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesCentralizers( s );</span>
[ 12096, 192, 216, 18, 96, 32, 24, 7, 8, 12, 48, 48, 6, 8, 12, 12 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( Maxes( s )[2] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufuss:= GetFusionMap( u, s );</span>
[ 1, 2, 11, 3, 4, 5, 12, 7, 13, 9, 9, 15, 16, 10 ]
</pre></div>
<p>Candidates for <span class="SimpleMath">\(M\)</span> are those subgroups of <span class="SimpleMath">\(G\)</span> that contain elements in the class <code class="code">3D</code> of <span class="SimpleMath">\(G\)</span> whose centralizer is the full <code class="code">3D</code> centralizer in <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">3Dcentralizer:= SizesCentralizers( t )[7];</span>
153055008
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= [];; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for name in Maxes( t ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> m:= CharacterTable( name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mfust:= GetFusionMap( m, t ); </span>
<span class="GAPprompt">></span> <span class="GAPinput"> if ForAny( [ 1 .. Length( mfust ) ], </span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> mfust[i] = 7 and SizesCentralizers( m )[i] = 3Dcentralizer ) </span>
<span class="GAPprompt">></span> <span class="GAPinput"> then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( cand, m );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand;</span>
[ CharacterTable( "3^7.O7(3)" ),
CharacterTable( "3^2.3^4.3^8.(A5x2A4).2" ) ]
</pre></div>
<p>For these two groups <span class="SimpleMath">\(M\)</span>, we show that the possible class fusions from <span class="SimpleMath">\(U\)</span> to <span class="SimpleMath">\(G\)</span> via <span class="SimpleMath">\(M\)</span> factorize through <span class="SimpleMath">\(H\)</span> only if the second possible class fusion from <span class="SimpleMath">\(H\)</span> to <span class="SimpleMath">\(G\)</span> is chosen.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">possufust:= List( sfust, x -> CompositionMaps( x, ufuss ) );</span>
[ [ 1, 3, 3, 7, 8, 11, 9, 22, 23, 28, 28, 43, 43, 50 ],
[ 1, 3, 3, 7, 8, 11, 11, 22, 23, 28, 28, 50, 50, 50 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= cand[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusm:= PossibleClassFusions( u, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( ufusm );</span>
242
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= List( ufusm, x -> CompositionMaps( GetFusionMap( m, t ), x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Intersection( possufust, comp );</span>
[ [ 1, 3, 3, 7, 8, 11, 11, 22, 23, 28, 28, 50, 50, 50 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= cand[2];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusm:= PossibleClassFusions( u, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( ufusm ); </span>
256
<span class="GAPprompt">gap></span> <span class="GAPinput">comp:= List( ufusm, x -> CompositionMaps( GetFusionMap( m, t ), x ) );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Intersection( possufust, comp );</span>
[ [ 1, 3, 3, 7, 8, 11, 11, 22, 23, 28, 28, 50, 50, 50 ] ]
</pre></div>
<p>Finally, we check that the correct fusion is stored in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, t ) = sfust[2];</span>
true
</pre></div>
<p><a id="X83061094871EE241" name="X83061094871EE241"></a></p>
<h5>9.7-2 <span class="Heading"><span class="SimpleMath">\(L_2(13).2 \rightarrow Fi_{24}^{\prime}\)</span> (September 2002)</span></h5>
<p>The class fusion of maximal subgroups <span class="SimpleMath">\(U\)</span> of type <span class="SimpleMath">\(L_2(13).2\)</span> in <span class="SimpleMath">\(G = Fi_{24}^{\prime}\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "F3+" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "L2(13).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( u, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( u, fus, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( repr );</span>
3
</pre></div>
<p>In <a href="chapBib_mj.html#biBLW91">[LW91, p. 155]</a>, it is stated that <span class="SimpleMath">\(U^{\prime}\)</span> contains elements in the classes <code class="code">2B</code>, <code class="code">3D</code>, and <code class="code">7B</code> of <span class="SimpleMath">\(G\)</span>. (Note that the two conjugacy classes of groups isomorphic to <span class="SimpleMath">\(U\)</span> have the same class fusion because the outer automorphism of <span class="SimpleMath">\(G\)</span> fixes the relevant classes.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( repr, x -> t.2b in x and t.3d in x and t.7b in x );</span>
[ [ 1, 3, 7, 22, 25, 25, 25, 51, 3, 9, 43, 43, 53, 53, 53 ],
[ 1, 3, 7, 22, 25, 25, 25, 51, 3, 11, 50, 50, 53, 53, 53 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassNames( t ){ [ 43, 50 ] };</span>
[ "12f", "12m" ]
</pre></div>
<p>So we have to decide whether <span class="SimpleMath">\(U\)</span> contains elements in the class <code class="code">12F</code> or in <code class="code">12M</code> of <span class="SimpleMath">\(G\)</span>.</p>
<p>The order <span class="SimpleMath">\(12\)</span> elements in question lie inside subgroups of type <span class="SimpleMath">\(13 : 12\)</span> in <span class="SimpleMath">\(U\)</span>. These subgroups are clearly contained in the Sylow <span class="SimpleMath">\(13\)</span> normalizers of <span class="SimpleMath">\(G\)</span>, which are contained in maximal subgroups of type <span class="SimpleMath">\((3^2:2 \times G_2(3)).2\)</span> in <span class="SimpleMath">\(G\)</span>; the class fusion of the latter groups is unique up to table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos:= Position( OrdersClassRepresentatives( t ), 13 );</span>
51
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesCentralizers( t )[ pos ];</span>
234
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassOrbit( t, pos );</span>
[ 51 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">cand:= [];; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for name in Maxes( t ) do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> m:= CharacterTable( name );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> pos:= Position( OrdersClassRepresentatives( m ), 13 );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if pos <> fail and </span>
<span class="GAPprompt">></span> <span class="GAPinput"> SizesCentralizers( m )[ pos ] = 234 </span>
<span class="GAPprompt">></span> <span class="GAPinput"> and ClassOrbit( m, pos ) = [ pos ] then</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Add( cand, m );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cand;</span>
[ CharacterTable( "(3^2:2xG2(3)).2" ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= cand[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t );;</span>
</pre></div>
<p>As no <span class="SimpleMath">\(13:12\)</span> type subgroup is contained in the derived subgroup of <span class="SimpleMath">\((3^2:2 \times G_2(3)).2\)</span>, we look at the elements of order <span class="SimpleMath">\(12\)</span> in the outer half.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">der:= ClassPositionsOfDerivedSubgroup( s );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">outer:= Difference( [ 1 .. NrConjugacyClasses( s ) ], der );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">imgs:= Set( Flat( List( sfust, x -> x{ outer } ) ) );</span>
[ 2, 3, 10, 11, 15, 17, 18, 19, 21, 22, 26, 44, 45, 49, 50, 52, 62,
83, 87, 98 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">t.12f in imgs;</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">t.12m in imgs;</span>
true
</pre></div>
<p>So <span class="SimpleMath">\(L_2(13).2 \setminus L_2(13)\)</span> does not contain <code class="code">12F</code> elements of <span class="SimpleMath">\(G\)</span>, i. e., we have determined the class fusion of <span class="SimpleMath">\(U\)</span> in <span class="SimpleMath">\(G\)</span>.</p>
<p>Finally, we check whether the correct fusion is stored in the <strong class="pkg">GAP</strong> Character Table Library.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( u, t ) = filt[2];</span>
true
</pre></div>
<p><a id="X7E9C203C7C4D709D" name="X7E9C203C7C4D709D"></a></p>
<h5>9.7-3 <span class="Heading"><span class="SimpleMath">\(M_{11} \rightarrow B\)</span> (April 2009)</span></h5>
<p>The sporadic simple group <span class="SimpleMath">\(B\)</span> contains a maximal subgroup <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(M_{11}\)</span> whose class fusion is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m11:= CharacterTable( "M11" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m11fusb:= PossibleClassFusions( m11, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( m11fusb );</span>
31
<span class="GAPprompt">gap></span> <span class="GAPinput">CompositionMaps( ClassNames( b, "ATLAS" ), Parametrized( m11fusb ) );</span>
[ "1A", [ "2B", "2D" ], [ "3A", "3B" ],
[ "4B", "4E", "4G", "4H", "4J" ], [ "5A", "5B" ],
[ "6C", "6E", "6H", "6I", "6J" ],
[ "8B", "8E", "8G", "8J", "8K", "8L", "8M", "8N" ],
[ "8B", "8E", "8G", "8J", "8K", "8L", "8M", "8N" ], "11A", "11A" ]
</pre></div>
<p>According to <a href="chapBib_mj.html#biBWil93a">[Wil93a, Thm. 12.1]</a>, <span class="SimpleMath">\(M\)</span> contains no <code class="code">5A</code> elements of <span class="SimpleMath">\(B\)</span>. By the proof of <a href="chapBib_mj.html#biBWil99">[Wil99, Prop. 4.1]</a>, the involutions in any <span class="SimpleMath">\(S_5\)</span> type subgroup <span class="SimpleMath">\(U\)</span> of <span class="SimpleMath">\(M\)</span> lie in the class <code class="code">2C</code> or <code class="code">2D</code> of <span class="SimpleMath">\(B\)</span>, and since the possible class fusions of <span class="SimpleMath">\(M\)</span> computed above admit only involutions in the class <code class="code">2B</code> or <code class="code">2D</code>, all involutions of <span class="SimpleMath">\(U\)</span> lie in the class <code class="code">2D</code>. Again by the proof of <a href="chapBib_mj.html#biBWil99">[Wil99, Prop. 4.1]</a>, <span class="SimpleMath">\(U\)</span> is contained in a maximal subgroup of type <span class="SimpleMath">\(Th\)</span> in <span class="SimpleMath">\(B\)</span>.</p>
<p>Now we use the embedding of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(B\)</span> via <span class="SimpleMath">\(M\)</span> and <span class="SimpleMath">\(Th\)</span> for determining the class fusion of <span class="SimpleMath">\(M\)</span> into <span class="SimpleMath">\(B\)</span>. The class fusion of the embedding of <span class="SimpleMath">\(U\)</span> via <span class="SimpleMath">\(Th\)</span> is uniquely determined.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">th:= CharacterTable( "Th" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s5:= CharacterTable( "S5" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s5fusth:= PossibleClassFusions( s5, th );</span>
[ [ 1, 2, 4, 8, 2, 7, 11 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">thfusb:= PossibleClassFusions( th, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s5fusb:= Set( thfusb, x -> CompositionMaps( x, s5fusth[1] ) );</span>
[ [ 1, 5, 7, 19, 5, 17, 29 ] ]
</pre></div>
<p>Also the class fusion of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(M\)</span> is unique, and this determines the class fusion of <span class="SimpleMath">\(M\)</span> into <span class="SimpleMath">\(B\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s5fusm11:= PossibleClassFusions( s5, m11 );</span>
[ [ 1, 2, 3, 5, 2, 4, 6 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">m11fusb:= Filtered( m11fusb,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map -> CompositionMaps( map, s5fusm11[1] ) = s5fusb[1] );</span>
[ [ 1, 5, 7, 17, 19, 29, 45, 45, 54, 54 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">CompositionMaps( ClassNames( b, "ATLAS" ), m11fusb[1] );</span>
[ "1A", "2D", "3B", "4J", "5B", "6J", "8N", "8N", "11A", "11A" ]
</pre></div>
<p>(Using the information that the <span class="SimpleMath">\(M_{10}\)</span> type subgroups of <span class="SimpleMath">\(M\)</span> are also contained in <span class="SimpleMath">\(Th\)</span> type subgroups would not have helped us, since these subgroups do not contain elements of order <span class="SimpleMath">\(6\)</span>, and two possibilities would have remained.)</p>
<p><a id="X85821D748716DC7E" name="X85821D748716DC7E"></a></p>
<h5>9.7-4 <span class="Heading"><span class="SimpleMath">\(L_2(11):2 \rightarrow B\)</span> (April 2009)</span></h5>
<p>The sporadic simple group <span class="SimpleMath">\(B\)</span> contains a maximal subgroup <span class="SimpleMath">\(L\)</span> of the type <span class="SimpleMath">\(L_2(11):2\)</span> whose class fusion is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">l:= CharacterTable( "L2(11).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">lfusb:= PossibleClassFusions( l, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( lfusb );</span>
16
<span class="GAPprompt">gap></span> <span class="GAPinput">CompositionMaps( ClassNames( b, "ATLAS" ), Parametrized( lfusb ) );</span>
[ "1A", [ "2B", "2D" ], [ "3A", "3B" ], [ "5A", "5B" ],
[ "5A", "5B" ], [ "6C", "6H", "6I", "6J" ], "11A", [ "2C", "2D" ],
[ "4D", "4E", "4F", "4G", "4H", "4J" ], [ "10C", "10E", "10F" ],
[ "10C", "10E", "10F" ],
[ "12E", "12F", "12H", "12I", "12J", "12L", "12N", "12P", "12Q",
"12R", "12S" ],
[ "12E", "12F", "12H", "12I", "12J", "12L", "12N", "12P", "12Q",
"12R", "12S" ] ]
</pre></div>
<p>According to <a href="chapBib_mj.html#biBWil93a">[Wil93a, Thm. 12.1]</a>, <span class="SimpleMath">\(L\)</span> contains no <code class="code">5A</code> elements of <span class="SimpleMath">\(B\)</span>. By the proof of <a href="chapBib_mj.html#biBWil99">[Wil99, Prop. 4.1]</a>, <span class="SimpleMath">\(B\)</span> contains exactly one class of <span class="SimpleMath">\(L_2(11)\)</span> type subgroups with this property. Hence the subgroup <span class="SimpleMath">\(U\)</span> of index two in <span class="SimpleMath">\(L\)</span> is contained in a maximal subgroup <span class="SimpleMath">\(M\)</span> of type <span class="SimpleMath">\(M_{11}\)</span> in <span class="SimpleMath">\(B\)</span>, whose class fusion was determined in Section <a href="chap9_mj.html#X7E9C203C7C4D709D"><span class="RefLink">9.7-3</span></a>.</p>
<p>In the same way as we proceeded in Section <a href="chap9_mj.html#X7E9C203C7C4D709D"><span class="RefLink">9.7-3</span></a>, we use the embedding of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(B\)</span> via <span class="SimpleMath">\(L\)</span> and <span class="SimpleMath">\(M\)</span> for determining the class fusion of <span class="SimpleMath">\(L\)</span> into <span class="SimpleMath">\(B\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "M11" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "L2(11)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusm:= PossibleClassFusions( u, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mfusb:= GetFusionMap( m, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusb:= Set( ufusm, x -> CompositionMaps( mfusb, x ) );</span>
[ [ 1, 5, 7, 19, 19, 29, 54, 54 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusl:= PossibleClassFusions( u, l );</span>
[ [ 1, 2, 3, 4, 5, 6, 7, 7 ], [ 1, 2, 3, 5, 4, 6, 7, 7 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">lfusb:= Filtered( lfusb, </span>
<span class="GAPprompt">></span> <span class="GAPinput"> map2 -> ForAny( ufusl, </span>
<span class="GAPprompt">></span> <span class="GAPinput"> map1 -> CompositionMaps( map2, map1 ) in ufusb ) );</span>
[ [ 1, 5, 7, 19, 19, 29, 54, 5, 15, 53, 53, 73, 73 ] ]
</pre></div>
<p><a id="X828D81487F57D612" name="X828D81487F57D612"></a></p>
<h5>9.7-5 <span class="Heading"><span class="SimpleMath">\(L_3(3) \rightarrow B\)</span> (April 2009)</span></h5>
<p>The sporadic simple group <span class="SimpleMath">\(B\)</span> contains a maximal subgroup <span class="SimpleMath">\(T\)</span> of the type <span class="SimpleMath">\(L_3(3)\)</span> whose class fusion is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "L3(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfusb:= PossibleClassFusions( t, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( tfusb );</span>
36
</pre></div>
<p>According to <a href="chapBib_mj.html#biBWil99">[Wil99, Section 9]</a>, <span class="SimpleMath">\(T\)</span> contains a subgroup <span class="SimpleMath">\(U\)</span> of the type <span class="SimpleMath">\(3^2:2S_4\)</span> that is contained also in a maximal subgroup <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(3^2.3^3.3^6.(S_4 \times 2S_4)\)</span>. So we throw away the possible fusions from <span class="SimpleMath">\(T\)</span> to <span class="SimpleMath">\(B\)</span> that are not compatible with the compositions of the embeddings of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(B\)</span> via <span class="SimpleMath">\(T\)</span> and <span class="SimpleMath">\(M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "3^2.3^3.3^6.(S4x2S4)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= PSL(3,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mx:= MaximalSubgroupClassReps( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= First( mx, x -> Size( x ) = 432 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( u );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusm:= PossibleClassFusions( u, m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufust:= PossibleClassFusions( u, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mfusb:= GetFusionMap( m, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusb:= Set( ufusm, map -> CompositionMaps( mfusb, map ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfusb:= Filtered( tfusb, map -> ForAny( ufust,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map2 -> CompositionMaps( map, map2 ) in ufusb ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tfusb;</span>
[ [ 1, 5, 6, 7, 12, 27, 41, 41, 75, 75, 75, 75 ],
[ 1, 5, 7, 6, 12, 28, 41, 41, 75, 75, 75, 75 ],
[ 1, 5, 7, 7, 12, 28, 41, 41, 75, 75, 75, 75 ],
[ 1, 5, 7, 7, 12, 29, 41, 41, 75, 75, 75, 75 ],
[ 1, 5, 7, 7, 17, 29, 45, 45, 75, 75, 75, 75 ] ]
</pre></div>
<p>Now we use that <span class="SimpleMath">\(T\)</span> does not contain <code class="code">4E</code> elements of <span class="SimpleMath">\(B\)</span> (again see <a href="chapBib_mj.html#biBWil99">[Wil99, Section 9]</a>). Thus the last of the five candidates is the correct class fusion.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassNames( b, "ATLAS" ){ [ 12, 17 ] };</span>
[ "4E", "4J" ]
</pre></div>
<p>We check that this map is stored on the library table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( t, b ) = tfusb[5];</span>
true
</pre></div>
<p><a id="X7B4E13337D66020F" name="X7B4E13337D66020F"></a></p>
<h5>9.7-6 <span class="Heading"><span class="SimpleMath">\(L_2(17).2 \rightarrow B\)</span> (March 2004)</span></h5>
<p>The sporadic simple group <span class="SimpleMath">\(B\)</span> contains a maximal subgroup <span class="SimpleMath">\(U\)</span> of the type <span class="SimpleMath">\(L_2(17).2\)</span> whose class fusion is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "L2(17).2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusb:= PossibleClassFusions( u, b );</span>
[ [ 1, 5, 7, 15, 42, 42, 47, 47, 47, 91, 4, 30, 89, 89, 89, 89, 97,
97, 97 ],
[ 1, 5, 7, 15, 44, 44, 46, 46, 46, 91, 5, 29, 90, 90, 90, 90, 96,
96, 96 ],
[ 1, 5, 7, 15, 44, 44, 47, 47, 47, 91, 5, 29, 90, 90, 90, 90, 95,
95, 95 ] ]
</pre></div>
<p>According to <a href="chapBib_mj.html#biBWil99">[Wil99, Prop. 11.1]</a>, <span class="SimpleMath">\(U\)</span> contains elements in the classes <code class="code">8M</code> and <code class="code">9A</code> of <span class="SimpleMath">\(B\)</span>. This determines the fusion map.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">names:= ClassNames( b, "ATLAS" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos:= List( [ "8M", "9A" ], x -> Position( names, x ) );</span>
[ 44, 46 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusb:= Filtered( ufusb, map -> IsSubset( map, pos ) );</span>
[ [ 1, 5, 7, 15, 44, 44, 46, 46, 46, 91, 5, 29, 90, 90, 90, 90, 96,
96, 96 ] ]
</pre></div>
<p>We check that this map is stored on the library table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( u, b ) = ufusb[1];</span>
true
</pre></div>
<p><a id="X8528432A84851F7B" name="X8528432A84851F7B"></a></p>
<h5>9.7-7 <span class="Heading"><span class="SimpleMath">\(L_2(49).2_3 \rightarrow B\)</span> (June 2006)</span></h5>
<p>The sporadic simple group <span class="SimpleMath">\(B\)</span> contains a class of maximal subgroups of the type <span class="SimpleMath">\(L_2(49).2_3\)</span> (a non-split extension of <span class="SimpleMath">\(L_2(49)\)</span>, see <a href="chapBib_mj.html#biBWilson93">[Wil93b, Theorem 2]</a>). Let <span class="SimpleMath">\(U\)</span> be such a subgroup. The class fusion of <span class="SimpleMath">\(U\)</span> in <span class="SimpleMath">\(B\)</span> is not determined by the character tables of <span class="SimpleMath">\(U\)</span> and <span class="SimpleMath">\(B\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "L2(49).2_3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusb:= PossibleClassFusions( u, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( u, ufusb, b ) );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">ufusb;</span>
[ [ 1, 5, 7, 15, 19, 28, 31, 42, 42, 71, 125, 125, 128, 128, 128,
128, 128, 15, 71, 71, 89, 89, 89, 89 ],
[ 1, 5, 7, 15, 19, 28, 31, 42, 42, 71, 125, 125, 128, 128, 128,
128, 128, 17, 72, 72, 89, 89, 89, 89 ] ]
</pre></div>
<p>We show that the fusion is determined by the embeddings of the Sylow <span class="SimpleMath">\(7\)</span> normalizer <span class="SimpleMath">\(N\)</span>, say, of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(U\)</span> and into the Sylow <span class="SimpleMath">\(7\)</span> normalizer of <span class="SimpleMath">\(B\)</span>. (Note that the fusion of the latter group into <span class="SimpleMath">\(B\)</span> has been determined in Section <a href="chap9_mj.html#X7F5186E28201B027"><span class="RefLink">9.3-1</span></a>.)</p>
<p>For that, we compute the character table of <span class="SimpleMath">\(N\)</span> from a representation of <span class="SimpleMath">\(U\)</span>. Note that <span class="SimpleMath">\(U\)</span> is a non-split extension of the simple group <span class="SimpleMath">\(L_2(49)\)</span> by the product of a diagonal automorphism and a field automorphism. In <a href="chapBib_mj.html#biBWilson93">[Wil93b]</a>, the structure of <span class="SimpleMath">\(N\)</span> is described as <span class="SimpleMath">\(7^2:(3 \times Q_{16})\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= SL( 2, 49 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:= GeneratorsOfGroup( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= GF(49);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mats:= List( gens, x -> IdentityMat( 4, f ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [ 1 .. Length( gens ) ] do</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mats[i]{ [ 1, 2 ] }{ [ 1, 2 ] }:= gens[i];</span>
<span class="GAPprompt">></span> <span class="GAPinput"> mats[i]{ [ 3, 4 ] }{ [ 3, 4 ] }:= List( gens[i],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> List( x, y -> y^7 ) );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fieldaut:= PermutationMat( (1,3)(2,4), 4, f );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">diagaut:= IdentityMat( 4, f );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">diagaut[1][1]:= Z(49);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">diagaut[3][3]:= Z(49)^7;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( Concatenation( mats, [ fieldaut * diagaut ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= [ 1, 0, 0, 0 ] * Z(7)^0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, v, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">act:= Action( g, orb, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:= Normalizer( act, SylowSubgroup( act, 7 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ntbl:= CharacterTable( n );;</span>
</pre></div>
<p>Now we compute the possible class fusions of <span class="SimpleMath">\(N\)</span> into <span class="SimpleMath">\(B\)</span>, via the Sylow <span class="SimpleMath">\(7\)</span> normalizer in <span class="SimpleMath">\(B\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">bn7:= CharacterTable( "BN7" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">nfusbn7:= PossibleClassFusions( ntbl, bn7 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( ntbl, nfusbn7, bn7 ) );</span>
3
<span class="GAPprompt">gap></span> <span class="GAPinput">nfusb:= SetOfComposedClassFusions( PossibleClassFusions( bn7, b ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> nfusbn7 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( ntbl, nfusb, b ) );</span>
5
</pre></div>
<p>Although there are several possibilities, this information is enough to exclude one of the possible fusions of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(B\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">nfusu:= PossibleClassFusions( ntbl, u );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( nfusu );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">filt:= Filtered( ufusb,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> ForAny( nfusu, y -> CompositionMaps( x, y ) in nfusb ) );</span>
[ [ 1, 5, 7, 15, 19, 28, 31, 42, 42, 71, 125, 125, 128, 128, 128,
128, 128, 17, 72, 72, 89, 89, 89, 89 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassNames( b, "ATLAS" ){ filt[1] };</span>
[ "1A", "2D", "3B", "4H", "5B", "6I", "7A", "8K", "8K", "12Q", "24L",
"24L", "25A", "25A", "25A", "25A", "25A", "4J", "12R", "12R",
"16G", "16G", "16G", "16G" ]
</pre></div>
<p>So the class fusion of <span class="SimpleMath">\(U\)</span> into <span class="SimpleMath">\(B\)</span> can be described by the property that the elements of order four inside and outside the simple subgroup <span class="SimpleMath">\(L_2(49)\)</span> are not conjugate in <span class="SimpleMath">\(B\)</span>.</p>
<p>We check that the correct map is stored on the library table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( u, b ) in filt;</span>
true
</pre></div>
<p>Let us confirm that the two groups of the types <span class="SimpleMath">\(L_2(49).2_1\)</span> and <span class="SimpleMath">\(L_2(49).2_2\)</span> cannot occur as subgroups of <span class="SimpleMath">\(B\)</span>. First we show that <span class="SimpleMath">\(L_2(49).2_1\)</span> is isomorphic with PGL<span class="SimpleMath">\((2,49)\)</span>, an extension of <span class="SimpleMath">\(L_2(49)\)</span> by a diagonal automorphism, and <span class="SimpleMath">\(L_2(49).2_2\)</span> is an extension by a field automorphism.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">NrConjugacyClasses( u ); NrConjugacyClasses( act );</span>
24
24
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "L2(49).2_1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( Concatenation( mats, [ diagaut ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, v, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">act:= Action( g, orb, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(act );</span>
117600
<span class="GAPprompt">gap></span> <span class="GAPinput">NrConjugacyClasses( u ); NrConjugacyClasses( act );</span>
51
51
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= CharacterTable( "L2(49).2_2" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Group( Concatenation( mats, [ fieldaut ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orb:= Orbit( g, v, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">act:= Action( g, orb, OnLines );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NrConjugacyClasses( u ); NrConjugacyClasses( act );</span>
27
27
</pre></div>
<p>The group <span class="SimpleMath">\(L_2(49).2_1\)</span> can be excluded because no class fusion into <span class="SimpleMath">\(B\)</span> is possible.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PossibleClassFusions( CharacterTable( "L2(49).2_1" ), b );</span>
[ ]
</pre></div>
<p>For <span class="SimpleMath">\(L_2(49).2_2\)</span>, it is not that easy. We would get several possible class fusions into <span class="SimpleMath">\(B\)</span>. However, the Sylow <span class="SimpleMath">\(7\)</span> normalizer of <span class="SimpleMath">\(L_2(49).2_2\)</span> does not admit a class fusion into the Sylow <span class="SimpleMath">\(7\)</span> normalizer of <span class="SimpleMath">\(B\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:= Normalizer( act, SylowSubgroup( act, 7 ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( PossibleClassFusions( CharacterTable( n ), bn7 ) );</span>
0
</pre></div>
<p><a id="X7EAD52AA7A28D956" name="X7EAD52AA7A28D956"></a></p>
<h5>9.7-8 <span class="Heading"><span class="SimpleMath">\(2^3.L_3(2) \rightarrow G_2(5)\)</span> (January 2004)</span></h5>
<p>The Chevalley group <span class="SimpleMath">\(G = G_2(5)\)</span> contains a maximal subgroup <span class="SimpleMath">\(U\)</span> of the type <span class="SimpleMath">\(2^3.L_3(2)\)</span> whose class fusion is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "G2(5)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "2^3.L3(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sfust:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RepresentativesFusions( s, sfust, t );</span>
[ [ 1, 2, 2, 5, 6, 4, 13, 16, 17, 15, 15 ],
[ 1, 2, 2, 5, 6, 4, 14, 16, 17, 15, 15 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( s );</span>
[ 1, 2, 2, 4, 4, 3, 6, 8, 8, 7, 7 ]
</pre></div>
<p>So the question is whether <span class="SimpleMath">\(U\)</span> contains elements in the class <code class="code">6B</code> or <code class="code">6C</code> of <span class="SimpleMath">\(G\)</span> (position <span class="SimpleMath">\(13\)</span> or <span class="SimpleMath">\(14\)</span> in the <strong class="pkg">Atlas</strong> table). We use a permutation representation of <span class="SimpleMath">\(G\)</span>, restrict it to <span class="SimpleMath">\(U\)</span>, and compute the centralizer in <span class="SimpleMath">\(G\)</span> of a suitable element of order <span class="SimpleMath">\(6\)</span> in <span class="SimpleMath">\(U\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= AtlasGroup( "G2(5)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:= AtlasSubgroup( "G2(5)", 7 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( u );</span>
1344
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x:= Random( u );</span>
<span class="GAPprompt">></span> <span class="GAPinput"> until Order( x ) = 6;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">siz:= Size( Centralizer( g, x ) );</span>
36
<span class="GAPprompt">gap></span> <span class="GAPinput">Filtered( [ 1 .. NrConjugacyClasses( t ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> SizesCentralizers( t )[i] = siz );</span>
[ 14 ]
</pre></div>
<p>So <span class="SimpleMath">\(U\)</span> contains <code class="code">6C</code> elements in <span class="SimpleMath">\(G_2(5)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, t ) in Filtered( sfust, map -> 14 in map ); </span>
true
</pre></div>
<p><a id="X79617107849A6CEA" name="X79617107849A6CEA"></a></p>
<h5>9.7-9 <span class="Heading"><span class="SimpleMath">\(5^{{1+4}}.2^{{1+4}}.A_5.4 \rightarrow B\)</span> (April 2009)</span></h5>
<p>The sporadic simple group <span class="SimpleMath">\(B\)</span> contains a maximal subgroup <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(5^{{1+4}}.2^{{1+4}}.A_5.4\)</span> whose class fusion is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= CharacterTable( "B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= CharacterTable( "5^(1+4).2^(1+4).A5.4" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mfusb:= PossibleClassFusions( m, b );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( mfusb );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">repres:= RepresentativesFusions( m, mfusb, b );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( repres );</span>
2
</pre></div>
<p>The restriction of the unique irreducible character of degree <span class="SimpleMath">\(4\,371\)</span> distinguishes the two possibilities,</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">char:= Filtered( Irr( b ), x -> x[1] = 4371 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( char );</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">rest:= List( repres, map -> char[1]{ map } );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">scprs:= MatScalarProducts( m, Irr( m ), rest );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">constit:= List( scprs,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> Filtered( [1 .. Length(x) ], i -> x[i] <> 0 ) );</span>
[ [ 2, 27, 60, 63, 73, 74, 75, 79, 82 ],
[ 2, 27, 60, 63, 70, 72, 75, 79, 84 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( constit, x -> List( Irr( m ){ x }, Degree ) );</span>
[ [ 1, 6, 384, 480, 400, 400, 500, 1000, 1200 ],
[ 1, 6, 384, 480, 100, 300, 500, 1000, 1600 ] ]
</pre></div>
<p>The database <a href="chapBib_mj.html#biBAGRv3">[WWT+]</a> contains the <span class="SimpleMath">\(3\)</span>-modular reduction of the irreducible representation of degree <span class="SimpleMath">\(4\,371\)</span> and also a straight line program for restricting this representation to <span class="SimpleMath">\(M\)</span>. We access these data via the <strong class="pkg">GAP</strong> package <strong class="pkg">AtlasRep</strong> (see <a href="chapBib_mj.html#biBAtlasRep">[WPN+22]</a>), and compute the composition factors of the natural module of this restriction.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= AtlasSubgroup( "B", Dimension, 4371, Ring, GF(3), 21 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">module:= GModuleByMats( GeneratorsOfGroup( g ), GF(3) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">dec:= MTX.CompositionFactors( module );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SortedList( List( dec, x -> x.dimension ) );</span>
[ 1, 6, 100, 384, 400, 400, 400, 480, 1000, 1200 ]
</pre></div>
<p>We see that exactly one ordinary constituent does not stay irreducible upon restriction to characteristic <span class="SimpleMath">\(3\)</span>. Thus the first of the two possible class fusions is the correct one.</p>
<p><a id="X85C48EEB7B711C09" name="X85C48EEB7B711C09"></a></p>
<h5>9.7-10 <span class="Heading">The fusion from the character table of <span class="SimpleMath">\(7^2:2L_2(7).2\)</span>
into the table of marks (January 2004)</span></h5>
<p>It can happen that the class fusion from the ordinary character table of a group <span class="SimpleMath">\(G\)</span> into the table of marks of <span class="SimpleMath">\(G\)</span> is not unique up to table automorphisms of the character table of <span class="SimpleMath">\(G\)</span>.</p>
<p>As an example, consider <span class="SimpleMath">\(G = 7^2:2L_2(7).2\)</span>, a maximal subgroup in the sporadic simple group <span class="SimpleMath">\(He\)</span>.</p>
<p><span class="SimpleMath">\(G\)</span> contains four classes of cyclic subgroups of order <span class="SimpleMath">\(7\)</span>. One contains the elements in the normal subgroup of type <span class="SimpleMath">\(7^2\)</span>, and the other three are preimages of the order <span class="SimpleMath">\(7\)</span> elements in the factor group <span class="SimpleMath">\(L_2(7)\)</span>. The conjugacy classes of nonidentity elements in the latter three classes split into two Galois conjugates each, which are permuted cyclicly by the table automorphisms of the character table of <span class="SimpleMath">\(G\)</span>, but on which the stabilizer of one class acts trivially. This means that determining one of the three classes determines also the other two.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">tbl:= CharacterTable( "7^2:2psl(2,7)" );</span>
CharacterTable( "7^2:2psl(2,7)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">tom:= TableOfMarks( tbl );</span>
TableOfMarks( "7^2:2L2(7)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleFusionsCharTableTom( tbl, tom );</span>
[ [ 1, 6, 2, 4, 3, 5, 13, 13, 7, 8, 10, 9, 16, 7, 10, 9, 8, 16 ],
[ 1, 6, 2, 4, 3, 5, 13, 13, 7, 9, 8, 10, 16, 7, 8, 10, 9, 16 ],
[ 1, 6, 2, 4, 3, 5, 13, 13, 7, 10, 9, 8, 16, 7, 9, 8, 10, 16 ],
[ 1, 6, 2, 4, 3, 5, 13, 13, 7, 8, 9, 10, 16, 7, 9, 10, 8, 16 ],
[ 1, 6, 2, 4, 3, 5, 13, 13, 7, 10, 8, 9, 16, 7, 8, 9, 10, 16 ],
[ 1, 6, 2, 4, 3, 5, 13, 13, 7, 9, 10, 8, 16, 7, 10, 8, 9, 16 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">reps:= RepresentativesFusions( tbl, fus, Group(()) ); </span>
[ [ 1, 6, 2, 4, 3, 5, 13, 13, 7, 8, 9, 10, 16, 7, 9, 10, 8, 16 ],
[ 1, 6, 2, 4, 3, 5, 13, 13, 7, 8, 10, 9, 16, 7, 10, 9, 8, 16 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AutomorphismsOfTable( tbl );</span>
Group([ (9,14)(10,17)(11,15)(12,16)(13,18), (7,8), (10,11,12)
(15,16,17) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( tbl );</span>
[ 1, 7, 2, 4, 3, 6, 8, 8, 7, 7, 7, 7, 14, 7, 7, 7, 7, 14 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">perms1:= PermCharsTom( reps[1], tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms2:= PermCharsTom( reps[2], tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms1 = perms2; </span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( perms1 ) = Set( perms2 );</span>
true
</pre></div>
<p>The table of marks of <span class="SimpleMath">\(G\)</span> does not distinguish the three classes of cyclic subgroups, there are permutations of rows and columns that act as an <span class="SimpleMath">\(S_3\)</span> on them.</p>
<p>Note that an <span class="SimpleMath">\(S_3\)</span> acts on the classes in question in the <em>rational</em> character table. So it is due to the irrationalities in the character table that it contains more information.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display( tbl );</span>
7^2:2psl(2,7)
2 4 . 4 3 1 1 3 3 1 . . . 1 1 . . .
3 1 . 1 . 1 1 . . . . . . . . . . .
7 3 3 1 . . . . . 2 2 2 2 1 2 2 2 2
1a 7a 2a 4a 3a 6a 8a 8b 7b 7c 7d 7e 14a 7f 7g 7h 7i
2P 1a 7a 1a 2a 3a 3a 4a 4a 7b 7c 7d 7e 7b 7f 7g 7h 7i
3P 1a 7a 2a 4a 1a 2a 8b 8a 7f 7i 7g 7h 14b 7b 7d 7e 7c
5P 1a 7a 2a 4a 3a 6a 8b 8a 7f 7i 7g 7h 14b 7b 7d 7e 7c
7P 1a 1a 2a 4a 3a 6a 8a 8b 1a 1a 1a 1a 2a 1a 1a 1a 1a
11P 1a 7a 2a 4a 3a 6a 8b 8a 7b 7c 7d 7e 14a 7f 7g 7h 7i
13P 1a 7a 2a 4a 3a 6a 8b 8a 7f 7i 7g 7h 14b 7b 7d 7e 7c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 3 3 3 -1 . . 1 1 B B B B B /B /B /B /B
X.3 3 3 3 -1 . . 1 1 /B /B /B /B /B B B B B
X.4 6 6 6 2 . . . . -1 -1 -1 -1 -1 -1 -1 -1 -1
X.5 7 7 7 -1 1 1 -1 -1 . . . . . . . . .
X.6 8 8 8 . -1 -1 . . 1 1 1 1 1 1 1 1 1
X.7 4 4 -4 . 1 -1 . . -B -B -B -B B -/B -/B -/B -/B
X.8 4 4 -4 . 1 -1 . . -/B -/B -/B -/B /B -B -B -B -B
X.9 6 6 -6 . . . A -A -1 -1 -1 -1 1 -1 -1 -1 -1
X.10 6 6 -6 . . . -A A -1 -1 -1 -1 1 -1 -1 -1 -1
X.11 8 8 -8 . -1 1 . . 1 1 1 1 -1 1 1 1 1
X.12 48 -1 . . . . . . 6 -1 -1 -1 . 6 -1 -1 -1
X.13 48 -1 . . . . . . C -1 /C /D . /C C D -1
X.14 48 -1 . . . . . . C /C /D -1 . /C D -1 C
X.15 48 -1 . . . . . . /C D -1 C . C -1 /C /D
X.16 48 -1 . . . . . . C /D -1 /C . /C -1 C D
X.17 48 -1 . . . . . . /C C D -1 . C /D -1 /C
X.18 48 -1 . . . . . . /C -1 C D . C /C /D -1
2 1
3 .
7 1
14b
2P 7f
3P 14a
5P 14a
7P 2a
11P 14b
13P 14a
X.1 1
X.2 /B
X.3 B
X.4 -1
X.5 .
X.6 1
X.7 /B
X.8 B
X.9 1
X.10 1
X.11 -1
X.12 .
X.13 .
X.14 .
X.15 .
X.16 .
X.17 .
X.18 .
A = E(8)-E(8)^3
= Sqrt(2) = r2
B = E(7)+E(7)^2+E(7)^4
= (-1+Sqrt(-7))/2 = b7
C = 2*E(7)+2*E(7)^2+2*E(7)^4
= -1+Sqrt(-7) = 2b7
D = -3*E(7)-3*E(7)^2-2*E(7)^3-3*E(7)^4-2*E(7)^5-2*E(7)^6
= (5-Sqrt(-7))/2 = 2-b7
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:= MatTom( tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mataut:= MatrixAutomorphisms( mat );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Print( mataut, "\n" );</span>
Group( [ (11,12)(23,24)(27,28)(46,47)(53,54)(56,57),
( 9,10)(20,21)(31,32)(38,39), ( 8, 9)(20,22)(31,33)(38,40) ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">RepresentativesFusions( Group( () ), reps, mataut );</span>
[ [ 1, 6, 2, 4, 3, 5, 13, 13, 7, 8, 9, 10, 16, 7, 9, 10, 8, 16 ] ]
</pre></div>
<p>We could say that thus the fusion is unique up to table automorphisms and automorphisms of the table of marks. But since a group is associated with the table of marks, we compute the character table from the group, and decide which class fusion is correct.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= UnderlyingGroup( tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tg:= CharacterTable( g );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tgfustom:= FusionCharTableTom( tg, tom );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">trans:= TransformingPermutationsCharacterTables( tg, tbl );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tblfustom:= Permuted( tgfustom, trans.columns );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">orbits:= List( reps, map -> OrbitFusions( AutomorphismsOfTable( tbl ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map, Group( () ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionProperty( orbits, orb -> tblfustom in orb );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionProperty( orbits, orb -> FusionToTom( tbl ).map in orb );</span>
2
</pre></div>
<p>So we see that the second one of the possibilities above is the right one.</p>
<p><a id="X7B1C689C7EFD07CB" name="X7B1C689C7EFD07CB"></a></p>
<h5>9.7-11 <span class="Heading"><span class="SimpleMath">\(3 \times U_4(2) \rightarrow 3_1.U_4(3)\)</span> (March 2010)</span></h5>
<p>According to the <strong class="pkg">Atlas</strong> (see <a href="chapBib_mj.html#biBCCN85">[CCN+85, p. 52]</a>), the simple group <span class="SimpleMath">\(U_4(3)\)</span> contains two classes of maximal subgroups of the type <span class="SimpleMath">\(U_4(2)\)</span>. The class fusion of <span class="SimpleMath">\(U_4(2)\)</span> into <span class="SimpleMath">\(U_4(3)\)</span> is unique up to table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u42:= CharacterTable( "U4(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u43:= CharacterTable( "U4(3)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u42fusu43:= PossibleClassFusions( u42, u43 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( u42fusu43 );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( u42, u42fusu43, u43 ) );</span>
1
</pre></div>
<p>More precisely, take the outer automorphism group of <span class="SimpleMath">\(U_4(3)\)</span>, which is a dihedral group of order eight, and consider the subgroup generated by its central involution (this automorphism is denoted by <span class="SimpleMath">\(2_1\)</span> in the <strong class="pkg">Atlas</strong>) and another involution called <span class="SimpleMath">\(2_3\)</span> in the <strong class="pkg">Atlas</strong>. This subgroup is a Klein four group that induces a permutation group on the classes of <span class="SimpleMath">\(U_4(3)\)</span> and thus acts on the four possible class fusions of <span class="SimpleMath">\(U_4(2)\)</span> into <span class="SimpleMath">\(U_4(3)\)</span>. In fact, this action is transitive.</p>
<p>The automorphism <span class="SimpleMath">\(2_1\)</span> swaps each pair of mutually inverse classes of order nine, that is, <code class="code">9A</code> is swapped with <code class="code">9B</code> and <code class="code">9C</code> is swapped with <code class="code">9D</code>. All <span class="SimpleMath">\(U_4(2)\)</span> type subgroups of <span class="SimpleMath">\(U_4(3)\)</span> are invariant under this automorphism, they extend to subgroups of the type <span class="SimpleMath">\(U_4(2).2\)</span> in <span class="SimpleMath">\(U_4(3).2_1\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u43_21:= CharacterTable( "U4(3).2_1" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus1:= GetFusionMap( u43, u43_21 );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 17, 17,
18 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">act1:= Filtered( InverseMap( fus1 ), IsList );</span>
[ [ 16, 17 ], [ 18, 19 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">CompositionMaps( ClassNames( u43, "Atlas" ), act1 );</span>
[ [ "9A", "9B" ], [ "9C", "9D" ] ]
</pre></div>
<p>The automorphism <span class="SimpleMath">\(2_3\)</span> swaps <code class="code">6B</code> with <code class="code">6C</code>, <code class="code">9A</code> with <code class="code">9C</code>, and <code class="code">9B</code> with <code class="code">9D</code>. The two classes of <span class="SimpleMath">\(U_4(2)\)</span> type subgroups of <span class="SimpleMath">\(U_4(3)\)</span> are swapped by this automorphism.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u43_23:= CharacterTable( "U4(3).2_3" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus3:= GetFusionMap( u43, u43_23 );</span>
[ 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 13, 14, 13, 14,
15 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">act3:= Filtered( InverseMap( fus3 ), IsList );</span>
[ [ 4, 5 ], [ 11, 12 ], [ 13, 14 ], [ 16, 18 ], [ 17, 19 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">CompositionMaps( ClassNames( u43, "Atlas" ), act3 );</span>
[ [ "3B", "3C" ], [ "6B", "6C" ], [ "7A", "7B" ], [ "9A", "9C" ],
[ "9B", "9D" ] ]
</pre></div>
<p>The <strong class="pkg">Atlas</strong> states that the permutation character induced by the first class of <span class="SimpleMath">\(U_4(2)\)</span> type subgroups is <code class="code">1a+35a+90a</code>, which means that the subgroups in this class contain <code class="code">9A</code> and <code class="code">9B</code> elements. Then the permutation character induced by the second class of <span class="SimpleMath">\(U_4(2)\)</span> type subgroups is <code class="code">1a+35b+90a</code>, and the subgroups in this class contain <code class="code">9C</code> and <code class="code">9D</code> elements.</p>
<p>So we choose appropriate fusions for the two classes of maximal <span class="SimpleMath">\(U_4(2)\)</span> type subgroups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">firstfus:= First( u42fusu43, x -> IsSubset( x, [ 16, 17 ] ) );</span>
[ 1, 2, 2, 3, 3, 5, 4, 7, 8, 9, 10, 10, 12, 12, 11, 12, 16, 17, 20,
20 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">secondfus:= First( u42fusu43, x -> IsSubset( x, [ 18, 19 ] ) );</span>
[ 1, 2, 2, 3, 3, 4, 5, 7, 8, 9, 10, 10, 11, 11, 12, 11, 18, 19, 20,
20 ]
</pre></div>
<p>Let us now consider the central extension <span class="SimpleMath">\(3_1.U_4(3)\)</span>. Since the Schur multiplier of <span class="SimpleMath">\(U_4(2)\)</span> has order two, the <span class="SimpleMath">\(U_4(2)\)</span> type subgroups of <span class="SimpleMath">\(U_4(3)\)</span> lift to groups of the structure <span class="SimpleMath">\(3 \times U_4(2)\)</span> in <span class="SimpleMath">\(3_1.U_4(3)\)</span>. There are eight possible class fusions from <span class="SimpleMath">\(3 \times U_4(2)\)</span> to <span class="SimpleMath">\(3_1.U_4(3)\)</span>, in two orbits of length four under the action of table automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">3u42:= CharacterTable( "Cyclic", 3 ) * u42;</span>
CharacterTable( "C3xU4(2)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">3u43:= CharacterTable( "3_1.U4(3)" );</span>
CharacterTable( "3_1.U4(3)" )
<span class="GAPprompt">gap></span> <span class="GAPinput">3u42fus3u43:= PossibleClassFusions( 3u42, 3u43 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( 3u42fus3u43 );</span>
8
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( RepresentativesFusions( 3u42, 3u42fus3u43, 3u43 ) );</span>
2
</pre></div>
<p>More precisely, each of the four fusions from <span class="SimpleMath">\(U_4(2)\)</span> to <span class="SimpleMath">\(U_4(3)\)</span> has exactly two lifts. The four lifts of those fusions from <span class="SimpleMath">\(U_4(2)\)</span> to <span class="SimpleMath">\(U_4(3)\)</span> with <code class="code">9A</code> and <code class="code">9B</code> in their image form one orbit under the action of table automorphisms. The other orbit consists of the lifts of those fusions with <code class="code">9C</code> and <code class="code">9D</code> in their image.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">inducedmaps:= List( 3u42fus3u43, map -> CompositionMaps(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GetFusionMap( 3u43, u43 ), CompositionMaps( map,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> InverseMap( GetFusionMap( 3u42, u42 ) ) ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( inducedmaps, map -> Position( u42fusu43, map ) );</span>
[ 1, 1, 2, 2, 4, 4, 3, 3 ]
</pre></div>
<p>This solves the ambiguity: Fusions from each of the two orbits occur, and we can assign them to the two classes of subgroups by the choice of the fusions from <span class="SimpleMath">\(U_4(2)\)</span> to <span class="SimpleMath">\(U_4(3)\)</span>.</p>
<p>The reason for the asymmetry is that the automorphism <span class="SimpleMath">\(2_3\)</span> of <span class="SimpleMath">\(U_4(3)\)</span> does not lift to <span class="SimpleMath">\(3_1.U_4(3)\)</span>. Note that each of the classes <code class="code">9A</code>, <code class="code">9B</code> of <span class="SimpleMath">\(U_4(3)\)</span> has three preimages in <span class="SimpleMath">\(3_1.U_4(3)\)</span>, whereas each of the classes <code class="code">9C</code>, <code class="code">9D</code> has only one preimage.</p>
<p>In fact the two classes of <span class="SimpleMath">\(3 \times U_4(2)\)</span> type subgroups of <span class="SimpleMath">\(3_1.U_4(3)\)</span> behave differently. For example, inducing the irreducible characters of a <span class="SimpleMath">\(3 \times U_4(2)\)</span> type subgroup in the first class of maximal subgroups of <span class="SimpleMath">\(3_1.U_4(3)\)</span> yields no irreducible character, whereas the two irreducible characters of degree <span class="SimpleMath">\(630\)</span> are obtained by inducing the irreducible characters of a subgroup in the second class.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">rep:= RepresentativesFusions( 3u42, 3u42fus3u43, 3u43 );</span>
[ [ 1, 4, 4, 7, 7, 10, 13, 15, 18, 21, 24, 24, 27, 27, 30, 27, 48,
49, 50, 50, 2, 5, 5, 8, 8, 11, 13, 16, 19, 22, 25, 25, 28, 28,
31, 28, 48, 49, 51, 51, 3, 6, 6, 9, 9, 12, 13, 17, 20, 23, 26,
26, 29, 29, 32, 29, 48, 49, 52, 52 ],
[ 1, 4, 4, 8, 9, 13, 10, 15, 18, 21, 25, 26, 31, 32, 27, 30, 46,
44, 51, 52, 2, 5, 5, 9, 7, 13, 11, 16, 19, 22, 26, 24, 32, 30,
28, 31, 47, 42, 52, 50, 3, 6, 6, 7, 8, 13, 12, 17, 20, 23, 24,
25, 30, 31, 29, 32, 45, 43, 50, 51 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">irr:= Irr( 3u42 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ind:= InducedClassFunctionsByFusionMap( 3u42, 3u43, irr, rep[1] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Intersection( ind, Irr( 3u43 ) );</span>
[ Character( CharacterTable( "3_1.U4(3)" ),
[ 630, 630*E(3)^2, 630*E(3), 6, 6*E(3)^2, 6*E(3), 9, 9*E(3)^2,
9*E(3), -9, -9*E(3)^2, -9*E(3), 0, 0, 2, 2*E(3)^2, 2*E(3), -2,
-2*E(3)^2, -2*E(3), 0, 0, 0, -3, -3*E(3)^2, -3*E(3), 3,
3*E(3)^2, 3*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, -1, -E(3)^2, -E(3) ] ),
Character( CharacterTable( "3_1.U4(3)" ),
[ 630, 630*E(3), 630*E(3)^2, 6, 6*E(3), 6*E(3)^2, 9, 9*E(3),
9*E(3)^2, -9, -9*E(3), -9*E(3)^2, 0, 0, 2, 2*E(3), 2*E(3)^2,
-2, -2*E(3), -2*E(3)^2, 0, 0, 0, -3, -3*E(3), -3*E(3)^2, 3,
3*E(3), 3*E(3)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, -1, -E(3), -E(3)^2 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ind:= InducedClassFunctionsByFusionMap( 3u42, 3u43, irr, rep[2] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Intersection( ind, Irr( 3u43 ) );</span>
[ ]
</pre></div>
<p>For <span class="SimpleMath">\(6_1.U_4(3)\)</span> and <span class="SimpleMath">\(12_1.U_4(3)\)</span>, one gets the same phenomenon: We have two orbits of class fusions, one corresponding to each of the two classes of subgroups of the type <span class="SimpleMath">\(3 \times 4 Y 2.U_4(2)\)</span>. We get <span class="SimpleMath">\(10\)</span> irreducible induced characters from a subgroup in the second class (four faithful ones, four with kernel of order two, and the two abovementioned degree <span class="SimpleMath">\(630\)</span> characters with kernel of order four) and no irreducible character from a subgroup in the first class.</p>
<p><a id="X7A94F78C792122D5" name="X7A94F78C792122D5"></a></p>
<h5>9.7-12 <span class="Heading"><span class="SimpleMath">\(2.3^4.2^3.S_4 \rightarrow 2.A12\)</span> (September 2011)</span></h5>
<p>The double cover <span class="SimpleMath">\(G\)</span> of the alternating group <span class="SimpleMath">\(A_{12}\)</span> contains a maximal subgroup <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(2.3^4.2^3.S_4\)</span> whose class fusion is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2a12:= CharacterTable( "2.A12" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mtbl:= CharacterTable( "2.3^4.2^3.S4" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mtblfus2a12:= PossibleClassFusions( mtbl, 2a12 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( mtblfus2a12 );</span>
32
<span class="GAPprompt">gap></span> <span class="GAPinput">repres:= RepresentativesFusions( mtbl, mtblfus2a12, 2a12 );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( repres );</span>
2
</pre></div>
<p>We decide the question which of the essentially different two possible class fusion is the right one, by explicitly constructing <span class="SimpleMath">\(M\)</span> as a subgroup of <span class="SimpleMath">\(G\)</span>.</p>
<p>For that, let <span class="SimpleMath">\(\pi\)</span> denote the natural epimorphism from <span class="SimpleMath">\(G\)</span> to <span class="SimpleMath">\(A_{12}\)</span>, and note that <span class="SimpleMath">\(\pi(M)\)</span> can be described as the intersection of a <span class="SimpleMath">\(S_3 \wp S_4\)</span> type subgroup of <span class="SimpleMath">\(S_{12}\)</span> with <span class="SimpleMath">\(A_{12}\)</span>. Further note that the generators for <span class="SimpleMath">\(G\)</span> and <span class="SimpleMath">\(A_{12}\)</span> provided by <a href="chapBib_mj.html#biBAGRv3">[WWT+]</a> are compatible in the sense that <span class="SimpleMath">\(\pi\)</span> can be defined by mapping the generators of <span class="SimpleMath">\(G\)</span> to those of <span class="SimpleMath">\(A_{12}\)</span>.</p>
<p>We need <span class="SimpleMath">\(\pi\)</span> only for computing one preimage of each given element. Therefore, we represent <span class="SimpleMath">\(\pi\)</span> implicitly by two epimorphisms from a free group to <span class="SimpleMath">\(G\)</span> and <span class="SimpleMath">\(A_{12}\)</span>, respectively, in order to avoid that <strong class="pkg">GAP</strong>precomputes a lot of unnecessary information for <span class="SimpleMath">\(G\)</span>. This way, computing a preimage of an element of <span class="SimpleMath">\(A_{12}\)</span> under <span class="SimpleMath">\(\pi\)</span> is cheap. However, computing the preimage of a subgroup of <span class="SimpleMath">\(A_{12}\)</span> would be very expensive. So we construct the subgroup of <span class="SimpleMath">\(G\)</span> that is generated by preimages of a set of generators of <span class="SimpleMath">\(\pi(M)\)</span>; later we see that this subgroup is in fact equal to <span class="SimpleMath">\(M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= AtlasGroup( "A12" );</span>
Group([ (1,2,3), (2,3,4,5,6,7,8,9,10,11,12) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">2g:= AtlasGroup( "2.A12" );</span>
<matrix group of size 479001600 with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= FreeGroup( 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi1:= GroupHomomorphismByImagesNC( f, 2g, GeneratorsOfGroup( f ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GeneratorsOfGroup( 2g ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi2:= GroupHomomorphismByImagesNC( f, g, GeneratorsOfGroup( f ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> GeneratorsOfGroup( g ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">w:= WreathProduct( SymmetricGroup( 3 ), SymmetricGroup(4) );</span>
<permutation group of size 31104 with 10 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">NrMovedPoints( w );</span>
12
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= Intersection( w, g ); Size( s );</span>
<permutation group with 8 generators>
15552
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= SubgroupNC( 2g, List( SmallGeneratingSet( s ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> x -> ImagesRepresentative( pi1,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PreImagesRepresentative( pi2, x ) ) ) );;</span>
</pre></div>
<p>Now we compute the character table of <span class="SimpleMath">\(M\)</span>, using a faithful permutation representation of <span class="SimpleMath">\(M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">iso:= IsomorphismPermGroup( m );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( Image( iso ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( t );</span>
31104
<span class="GAPprompt">gap></span> <span class="GAPinput">trans:= TransformingPermutationsCharacterTables( mtbl, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRecord( trans );</span>
true
</pre></div>
<p>Now let us see where the two fusion candidates differ.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">para:= Parametrized( repres );</span>
[ 1, 2, 6, 10, 8, 12, 7, 11, 9, 13, 5, 5, 17, 17, 17, 17, 3, 4, 24,
22, 27, 25, 12, 10, 13, 11, 28, 29, 35, 37, 39, 36, 38, 40, 5, 23,
28, 29, 26, 14, 14, 16, 16, 33, 34, [ 33, 34 ], [ 33, 34 ], 49, 49,
48, 48 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionsProperty( para, IsList );</span>
[ 46, 47 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( repres, map -> map{ [ 44 .. 47 ] } );</span>
[ [ 33, 34, 33, 34 ], [ 33, 34, 34, 33 ] ]
</pre></div>
<p>So the question is whether the elements in class 44 are conjugate in <span class="SimpleMath">\(G\)</span> to the elements in class 46 or in class 47. In order to answer this question, we compute preimages of the relevant class representatives in the matrix group <span class="SimpleMath">\(M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">positions:= OnTuples( [ 44 .. 47 ], trans.columns );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">classreps:= List( ConjugacyClasses( t ){ positions },</span>
<span class="GAPprompt">></span> <span class="GAPinput"> c -> PreImagesRepresentative( iso, Representative( c ) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">traces:= List( classreps, TraceMat );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List( traces, x -> Position( traces, x ) );</span>
[ 1, 2, 2, 1 ]
</pre></div>
<p>We are lucky, already the traces of the elements allow us to decide which pairs of elements are <span class="SimpleMath">\(G\)</span>-conjugate; there is no need for an explicit (and expensive) conjugacy test in the matrix group <span class="SimpleMath">\(G\)</span>.</p>
<p>Finally, we check whether the stored fusion is correct.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">good:= First( repres,</span>
<span class="GAPprompt">></span> <span class="GAPinput"> map -> map{ [ 44 .. 47 ] } = [ 33, 34, 34, 33 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( mtbl, 2a12 ) = good;</span>
true
</pre></div>
<p><a id="X7E2AF30C7E8F89F9" name="X7E2AF30C7E8F89F9"></a></p>
<h5>9.7-13 <span class="Heading"><span class="SimpleMath">\(127:7 \rightarrow L_7(2)\)</span> (January 2012)</span></h5>
<p>The simple group <span class="SimpleMath">\(G = L_7(2)\)</span> contains a maximal subgroup <span class="SimpleMath">\(M\)</span> of the type <span class="SimpleMath">\(127:7\)</span> (the normalizer of an extension field type subgroup GL<span class="SimpleMath">\((1,2^7)\)</span>) whose class fusion is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "L7(2)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "127:7" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( s, fus, t );</span>
[ [ 1, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 117, 116, 76, 76, 77, 76, 77, 77 ],
[ 1, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 117, 116, 83, 83, 83, 83, 83, 83 ] ]
</pre></div>
<p>The two fusion candidates differ only for elements of order <span class="SimpleMath">\(7\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">diff:= Filtered( [ 1 .. Length( repr[1] ) ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> i -> repr[1][i] <> repr[2][i] );</span>
[ 20, 21, 22, 23, 24, 25 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">OrdersClassRepresentatives( s ){ diff };</span>
[ 7, 7, 7, 7, 7, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( repr, l -> l{ diff } );</span>
[ [ 76, 76, 77, 76, 77, 77 ], [ 83, 83, 83, 83, 83, 83 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SizesCentralizers( t ){ [ 76, 77, 83 ] };</span>
[ 3528, 3528, 49 ]
</pre></div>
<p>We can decide which candidate is the correct one if we know the centralizer order in G of the elements of order <span class="SimpleMath">\(7\)</span> in <span class="SimpleMath">\(M\)</span>. So we compute this centralizer order.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Image( IsomorphismPermGroup( GL(7,2) ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( g ); until Order(x) = 127;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:= Normalizer( g, SubgroupNC( g, [ x ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( n ) / 127;</span>
7
<span class="GAPprompt">gap></span> <span class="GAPinput">repeat x:= Random( n ); until Order( x ) = 7;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:= Centralizer( g, x );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size( c );</span>
49
</pre></div>
<p>We see that the second candidate is the fusion from <span class="SimpleMath">\(M\)</span> into <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, t ) = repr[2];</span>
true
</pre></div>
<p><a id="X7E7B2AD67ACD27AE" name="X7E7B2AD67ACD27AE"></a></p>
<h5>9.7-14 <span class="Heading"><span class="SimpleMath">\(L_2(59) \rightarrow M\)</span> (May 2009)</span></h5>
<p>The sporadic simple Monster group <span class="SimpleMath">\(M\)</span> contains a maximal subgroup <span class="SimpleMath">\(G\)</span> of the type <span class="SimpleMath">\(L_2(59)\)</span>, see <a href="chapBib_mj.html#biBHW04">[HW04]</a>. The class fusion of <span class="SimpleMath">\(G\)</span> into <span class="SimpleMath">\(M\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "L2(59)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( s, fus, t );</span>
[ [ 1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
97, 98, 52, 32, 52, 14, 12, 98, 52, 32, 5, 98, 12, 98, 52, 3 ],
[ 1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
97, 100, 50, 30, 50, 15, 11, 100, 50, 30, 4, 100, 11, 100, 50,
3 ],
[ 1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
97, 101, 51, 30, 51, 14, 11, 101, 51, 30, 5, 101, 11, 101, 51,
3 ],
[ 1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
97, 102, 53, 32, 53, 18, 12, 102, 53, 32, 6, 102, 12, 102, 53,
3 ],
[ 1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
97, 104, 52, 33, 52, 17, 12, 104, 52, 33, 5, 104, 12, 104, 52,
3 ] ]
</pre></div>
<p>The candidates differ on the classes of element order <span class="SimpleMath">\(30\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord:= OrdersClassRepresentatives( s );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord30:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = 30 );</span>
[ 18, 24, 28, 30 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( repr, x -> x{ ord30 } );</span>
[ [ 98, 98, 98, 98 ], [ 100, 100, 100, 100 ], [ 101, 101, 101, 101 ],
[ 102, 102, 102, 102 ], [ 104, 104, 104, 104 ] ]
</pre></div>
<p>According to <a href="chapBib_mj.html#biBHW04">[HW04]</a>, <span class="SimpleMath">\(G\)</span> contains elements in the class <code class="code">30G</code> of <span class="SimpleMath">\(M\)</span>. This determines the class fusion up to Galois automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos:= Position( ClassNames( t, "Atlas" ), "30G" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">good:= Filtered( fus, map -> pos in map );</span>
[ [ 1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
97, 104, 52, 33, 52, 17, 12, 104, 52, 33, 5, 104, 12, 104, 52,
3 ],
[ 1, 153, 152, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
97, 104, 52, 33, 52, 17, 12, 104, 52, 33, 5, 104, 12, 104, 52,
3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( s, good, t );</span>
[ [ 1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
97, 104, 52, 33, 52, 17, 12, 104, 52, 33, 5, 104, 12, 104, 52,
3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, t ) = repr[1];</span>
true
</pre></div>
<p><a id="X8409DA2E83A41ABE" name="X8409DA2E83A41ABE"></a></p>
<h5>9.7-15 <span class="Heading"><span class="SimpleMath">\(L_2(71) \rightarrow M\)</span> (May 2009)</span></h5>
<p>The sporadic simple Monster group <span class="SimpleMath">\(M\)</span> contains a maximal subgroup <span class="SimpleMath">\(G\)</span> of the type <span class="SimpleMath">\(L_2(71)\)</span>, see <a href="chapBib_mj.html#biBHW08">[HW08]</a>. The class fusion of <span class="SimpleMath">\(G\)</span> into <span class="SimpleMath">\(M\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "L2(71)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( s, fus, t );</span>
[ [ 1, 169, 170, 112, 112, 112, 112, 19, 112, 11, 112, 112, 19, 112,
112, 112, 11, 19, 112, 112, 114, 60, 36, 27, 114, 17, 114, 27,
7, 60, 114, 5, 114, 60, 36, 27, 114, 3 ],
[ 1, 169, 170, 112, 112, 112, 112, 19, 112, 11, 112, 112, 19, 112,
112, 112, 11, 19, 112, 112, 115, 61, 36, 28, 115, 17, 115, 28,
7, 61, 115, 5, 115, 61, 36, 28, 115, 3 ],
[ 1, 169, 170, 112, 112, 112, 112, 19, 112, 11, 112, 112, 19, 112,
112, 112, 11, 19, 112, 112, 117, 61, 43, 28, 117, 17, 117, 28,
9, 61, 117, 5, 117, 61, 43, 28, 117, 3 ],
[ 1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113,
113, 113, 12, 20, 113, 113, 114, 60, 36, 27, 114, 17, 114, 27,
7, 60, 114, 5, 114, 60, 36, 27, 114, 3 ],
[ 1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113,
113, 113, 12, 20, 113, 113, 115, 61, 36, 28, 115, 17, 115, 28,
7, 61, 115, 5, 115, 61, 36, 28, 115, 3 ],
[ 1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113,
113, 113, 12, 20, 113, 113, 117, 61, 43, 28, 117, 17, 117, 28,
9, 61, 117, 5, 117, 61, 43, 28, 117, 3 ] ]
</pre></div>
<p>The candidates differ on the classes of the element orders <span class="SimpleMath">\(7\)</span> and <span class="SimpleMath">\(36\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord:= OrdersClassRepresentatives( s );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord36:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = 36 );</span>
[ 21, 25, 27, 31, 33, 37 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( repr, x -> x{ ord36 } );</span>
[ [ 114, 114, 114, 114, 114, 114 ], [ 115, 115, 115, 115, 115, 115 ],
[ 117, 117, 117, 117, 117, 117 ], [ 114, 114, 114, 114, 114, 114 ],
[ 115, 115, 115, 115, 115, 115 ], [ 117, 117, 117, 117, 117, 117 ] ]
</pre></div>
<p>According to <a href="chapBib_mj.html#biBNW02">[NW02, Table 3]</a>, <span class="SimpleMath">\(G\)</span> contains elements in the classes <code class="code">7B</code> and <code class="code">36D</code> of <span class="SimpleMath">\(M\)</span>. This determines the class fusion up to Galois automorphisms.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos1:= Position( ClassNames( t, "Atlas" ), "7B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos2:= Position( ClassNames( t, "Atlas" ), "36D" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos:= [ pos1, pos2 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">good:= Filtered( fus, map -> IsSubset( map, pos ) );</span>
[ [ 1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113,
113, 113, 12, 20, 113, 113, 117, 61, 43, 28, 117, 17, 117, 28,
9, 61, 117, 5, 117, 61, 43, 28, 117, 3 ],
[ 1, 170, 169, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113,
113, 113, 12, 20, 113, 113, 117, 61, 43, 28, 117, 17, 117, 28,
9, 61, 117, 5, 117, 61, 43, 28, 117, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( s, good, t );</span>
[ [ 1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113,
113, 113, 12, 20, 113, 113, 117, 61, 43, 28, 117, 17, 117, 28,
9, 61, 117, 5, 117, 61, 43, 28, 117, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, t ) = repr[1];</span>
true
</pre></div>
<p><a id="X78B3B1BE7A2CA4D1" name="X78B3B1BE7A2CA4D1"></a></p>
<h5>9.7-16 <span class="Heading"><span class="SimpleMath">\(L_2(41) \rightarrow M\)</span> (April 2012)</span></h5>
<p>The sporadic simple Monster group <span class="SimpleMath">\(M\)</span> contains a maximal subgroup <span class="SimpleMath">\(G\)</span> of the type <span class="SimpleMath">\(L_2(41)\)</span>, see <a href="chapBib_mj.html#biBNW12">[NW13]</a>. The class fusion of <span class="SimpleMath">\(G\)</span> into <span class="SimpleMath">\(M\)</span> is ambiguous.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">t:= CharacterTable( "M" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= CharacterTable( "L2(41)" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fus:= PossibleClassFusions( s, t );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">repr:= RepresentativesFusions( s, fus, t );</span>
[ [ 1, 127, 127, 64, 30, 64, 11, 7, 30, 64, 11, 64, 3, 70, 70, 19,
70, 70, 19, 4, 70, 19, 70 ],
[ 1, 127, 127, 64, 30, 64, 11, 7, 30, 64, 11, 64, 3, 72, 72, 19,
72, 72, 19, 6, 72, 19, 72 ],
[ 1, 127, 127, 64, 30, 64, 11, 7, 30, 64, 11, 64, 3, 73, 73, 20,
73, 73, 20, 5, 73, 20, 73 ],
[ 1, 127, 127, 66, 33, 66, 12, 7, 33, 66, 12, 66, 3, 72, 72, 19,
72, 72, 19, 6, 72, 19, 72 ],
[ 1, 127, 127, 66, 33, 66, 12, 7, 33, 66, 12, 66, 3, 73, 73, 20,
73, 73, 20, 5, 73, 20, 73 ],
[ 1, 127, 127, 67, 30, 67, 11, 10, 30, 67, 11, 67, 3, 72, 72, 19,
72, 72, 19, 6, 72, 19, 72 ],
[ 1, 127, 127, 67, 30, 67, 11, 10, 30, 67, 11, 67, 3, 73, 73, 20,
73, 73, 20, 5, 73, 20, 73 ],
[ 1, 127, 127, 68, 32, 68, 12, 10, 32, 68, 12, 68, 3, 72, 72, 19,
72, 72, 19, 6, 72, 19, 72 ],
[ 1, 127, 127, 68, 32, 68, 12, 10, 32, 68, 12, 68, 3, 73, 73, 20,
73, 73, 20, 5, 73, 20, 73 ],
[ 1, 127, 127, 69, 33, 69, 12, 9, 33, 69, 12, 69, 3, 72, 72, 19,
72, 72, 19, 6, 72, 19, 72 ],
[ 1, 127, 127, 69, 33, 69, 12, 9, 33, 69, 12, 69, 3, 73, 73, 20,
73, 73, 20, 5, 73, 20, 73 ] ]
</pre></div>
<p>The candidates differ on the classes of the element orders <span class="SimpleMath">\(3\)</span>–<span class="SimpleMath">\(8\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ambig:= Parametrized( repr );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ambigpos:= PositionsProperty( ambig, IsList );</span>
[ 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Set( OrdersClassRepresentatives( t ){ ambigpos } );</span>
[ 3, 4, 5, 6, 7, 8 ]
</pre></div>
<p>According to <a href="chapBib_mj.html#biBNW12">[NW13, Theorem 3]</a>, <span class="SimpleMath">\(G\)</span> contains elements in the classes <code class="code">3B</code> and <code class="code">4C</code> of <span class="SimpleMath">\(M\)</span>. This determines the class fusion uniquely.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos1:= Position( ClassNames( t, "Atlas" ), "3B" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos2:= Position( ClassNames( t, "Atlas" ), "4C" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pos:= [ pos1, pos2 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">good:= Filtered( fus, map -> IsSubset( map, pos ) );</span>
[ [ 1, 127, 127, 69, 33, 69, 12, 9, 33, 69, 12, 69, 3, 73, 73, 20,
73, 73, 20, 5, 73, 20, 73 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GetFusionMap( s, t ) = good[1];</span>
true
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap8_mj.html">[Previous Chapter]</a> <a href="chap10_mj.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|