1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (CTblLibXpls) - References</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chapBib" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap11.html">[Previous Chapter]</a> <a href="chapInd.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chapBib_mj.html">[MathJax on]</a></p>
<p><a id="X7A6F98FD85F02BFE" name="X7A6F98FD85F02BFE"></a></p>
<h3>References</h3>
<p><a id="biBBe00" name="biBBe00"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1799483">Ber00</a></span>] <b class='BibAuthor'>Bereczky, Á.</b>,
<a href="http://dx.doi.org/10.1006/jabr.2000.8458"><i class='BibTitle'>Maximal overgroups of Singer elements in classical
groups</i></a>,
<span class='BibJournal'>J. Algebra</span>,
<em class='BibVolume'>234</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>2000</span>),
<span class='BibPages'>187–206</span>.
</p>
<p><a id="biBBG21" name="biBBG21"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>BG</span>] <b class='BibAuthor'>Breuer, T. and Guralnick, R. M.</b>,
<i class='BibTitle'>Finite groups can be generated by a pi-subgroup and a pi'-subgroup</i>,
<span class='BibHowpublished'><a href="https://arxiv.org/abs/2103.17216">arXiv:2103.17216</a></span>.
</p>
<p><a id="biBBGK" name="biBBGK"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2422303">BGK08</a></span>] <b class='BibAuthor'>Breuer, T., Guralnick, R. M. and Kantor, W. M.</b>,
<a href="http://dx.doi.org/10.1016/j.jalgebra.2007.10.028"><i class='BibTitle'>Probabilistic generation of finite simple groups, II</i></a>,
<span class='BibJournal'>J. Algebra</span>,
<em class='BibVolume'>320</em> (<span class='BibNumber'>2</span>)
(<span class='BibYear'>2008</span>),
<span class='BibPages'>443–494</span>.
</p>
<p><a id="biBGMN" name="biBGMN"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2669683">BGL+10</a></span>] <b class='BibAuthor'>Breuer, T., Guralnick, R. M., Lucchini, A., Maróti, A. and Nagy, G. P.</b>,
<a href="http://dx.doi.org/10.1112/blms/bdq017"><i class='BibTitle'>Hamiltonian cycles in the generating graphs of finite groups</i></a>,
<span class='BibJournal'>Bull. London Math. Soc.</span>,
<em class='BibVolume'>42</em> (<span class='BibNumber'>4</span>)
(<span class='BibYear'>2010</span>),
<span class='BibPages'>621–633</span>.
</p>
<p><a id="biBBGS11" name="biBBGS11"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2781219">BGS11</a></span>] <b class='BibAuthor'>Burness, T. C., Guralnick, R. M. and Saxl, J.</b>,
<a href="http://dx.doi.org/10.1112/blms/bdq123"><i class='BibTitle'>On base sizes for symmetric groups</i></a>,
<span class='BibJournal'>Bull. Lond. Math. Soc.</span>,
<em class='BibVolume'>43</em> (<span class='BibNumber'>2</span>)
(<span class='BibYear'>2011</span>),
<span class='BibPages'>386–391</span>.
</p>
<p><a id="biBBMO17" name="biBBMO17"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=3682588">BMO17</a></span>] <b class='BibAuthor'>Breuer, T., Malle, G. and O'Brien, E. A.</b>,
<i class='BibTitle'>Reliability and reproducibility of Atlas information</i>,
in <i class='BibBooktitle'>Finite simple groups: thirty years of the atlas and beyond</i>,
<span class='BibPublisher'>Amer. Math. Soc.</span>,
<span class='BibSeries'>Contemp. Math.</span>,
<em class='BibVolume'>694</em>,
<span class='BibAddress'>Providence, RI</span>
(<span class='BibYear'>2017</span>),
<span class='BibPages'>21–31</span>.
</p>
<p><a id="biBBN95" name="biBBN95"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1367961">BN95</a></span>] <b class='BibAuthor'>Breuer, T. and Norton, S. P.</b>,
<i class='BibTitle'>Improvements to the Atlas</i>,
<span class='BibPublisher'>The Clarendon Press Oxford University Press</span>,
<span class='BibSeries'>London Mathematical Society Monographs. New Series</span>,
<em class='BibVolume'>11</em>,
<span class='BibAddress'>New York</span>
(<span class='BibYear'>1995</span>),
<span class='BibPages'>297–327</span><br />
(<span class='BibNote'>Appendix 2 by T. Breuer and S. Norton,
Oxford Science Publications</span>).
</p>
<p><a id="biBBP98copy" name="biBBP98copy"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1633876">BP98</a></span>] <b class='BibAuthor'>Breuer, T. and Pfeiffer, G.</b>,
<a href="http://dx.doi.org/10.1006/jsco.1998.0217"><i class='BibTitle'>Finding possible permutation characters</i></a>,
<span class='BibJournal'>J. Symbolic Comput.</span>,
<em class='BibVolume'>26</em> (<span class='BibNumber'>3</span>)
(<span class='BibYear'>1998</span>),
<span class='BibPages'>343–354</span>.
</p>
<p><a id="biBAmbigFus" name="biBAmbigFus"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>Brea</span>] <b class='BibAuthor'>Breuer, T.</b>,
<i class='BibTitle'>Ambiguous Class Fusions in the <strong class='pkg'>GAP</strong>
Character Table Library</i>,
<span class='BibHowpublished'><a href="https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf">https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf</a></span>.
</p>
<p><a id="biBProbGenArxiv" name="biBProbGenArxiv"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>Breb</span>] <b class='BibAuthor'>Breuer, T.</b>,
<i class='BibTitle'><strong class='pkg'>GAP</strong> computations concerning
probabilistic generation of finite simple groups</i>,
<span class='BibHowpublished'><a href="https://export.arxiv.org/abs/0710.3267">arXiv:0710.3267</a></span>.
</p>
<p><a id="biBAuto" name="biBAuto"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>Brec</span>] <b class='BibAuthor'>Breuer, T.</b>,
<i class='BibTitle'>Using Table Automorphisms for Constructing Character Tables
in <strong class='pkg'>GAP</strong></i>,
<span class='BibHowpublished'><a href="https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf">https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf</a></span>.
</p>
<p><a id="biBBre91" name="biBBre91"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>Bre91</span>] <b class='BibAuthor'>Breuer, T.</b>,
<i class='BibTitle'>Potenzabbildungen, Untergruppenfusionen,
Tafel-Automorphismen</i>,
<span class='BibType'>Diplomarbeit</span>,
<span class='BibSchool'>Lehrstuhl D für Mathematik, Rheinisch Westfälische
Technische Hochschule</span>,
<span class='BibAddress'>Aachen, Germany</span>
(<span class='BibYear'>1991</span>).
</p>
<p><a id="biBBre11" name="biBBre11"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2831228">Bre11</a></span>] <b class='BibAuthor'>Breuer, T.</b>,
<a href="http://dx.doi.org/10.1112/S1461157010000318"><i class='BibTitle'>Computing character tables of groups of type
M.G.A</i></a>,
<span class='BibJournal'>LMS J. Comput. Math.</span>,
<em class='BibVolume'>14</em>
(<span class='BibYear'>2011</span>),
<span class='BibPages'>173–178</span>.
</p>
<p><a id="biBCTblLib" name="biBCTblLib"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>Bre24</span>] <b class='BibAuthor'>Breuer, T.</b>,
<i class='BibTitle'>The <strong class='pkg'>GAP</strong> Character Table
Library, Version 1.3.9</i>
(<span class='BibYear'>2024</span>)<br />
(<span class='BibNote'><strong class='pkg'>GAP</strong> package</span>),
<span class='BibHowpublished'><a href="https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib">https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib</a></span>.
</p>
<p><a id="biBBW1" name="biBBW1"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=0372033">BW75</a></span>] <b class='BibAuthor'>Brenner, J. L. and Wiegold, J.</b>,
<i class='BibTitle'>Two-generator groups. I</i>,
<span class='BibJournal'>Michigan Math. J.</span>,
<em class='BibVolume'>22</em>
(<span class='BibYear'>1975</span>),
<span class='BibPages'>53–64</span>.
</p>
<p><a id="biBCCN85" name="biBCCN85"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=827219">CCN+85</a></span>] <b class='BibAuthor'>Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.</b>,
<i class='BibTitle'>Atlas of finite groups</i>,
<span class='BibPublisher'>Oxford University Press</span>,
<span class='BibAddress'>Eynsham</span>
(<span class='BibYear'>1985</span>),
<span class='BibPages'>xxxiv+252 pages</span><br />
(<span class='BibNote'>Maximal subgroups and ordinary characters for simple groups,
With computational assistance from J. G. Thackray</span>).
</p>
<p><a id="biBCP96" name="biBCP96"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>CP96</span>] <b class='BibAuthor'>Cannon, J. J. and Playoust, C.</b>,
<i class='BibTitle'>An introduction to algebraic programming in Magma</i>,
<span class='BibOrganization'>School of Mathematics and Statistics,
University of Sydney</span>,
<span class='BibAddress'>Sydney, Australia</span>
(<span class='BibYear'>1996</span>),
<span class='BibHowpublished'><a href="http://www.math.usyd.edu.au:8000/u/magma">http://www.math.usyd.edu.au:8000/u/magma</a></span>.
</p>
<p><a id="biBDad66" name="biBDad66"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=0200355">Dad66</a></span>] <b class='BibAuthor'>Dade, E. C.</b>,
<a href="http://dx.doi.org/10.2307/1970529"><i class='BibTitle'>Blocks with cyclic defect groups</i></a>,
<span class='BibJournal'>Ann. of Math. (2)</span>,
<em class='BibVolume'>84</em>
(<span class='BibYear'>1966</span>),
<span class='BibPages'>20–48</span>.
</p>
<p><a id="biBDLP23" name="biBDLP23"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>DLP23</span>] <b class='BibAuthor'>Dietrich, H., Lee, M. and Popiel, T.</b>,
<i class='BibTitle'>The maximal subgroups of the Monster</i>
(<span class='BibYear'>2023</span>),
<span class='BibHowpublished'><a href="https://arxiv.org/abs/2304.14646">arXiv:2304.14646</a></span>.
</p>
<p><a id="biBDNT" name="biBDNT"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=096641">DNT13</a></span>] <b class='BibAuthor'>Dolfi, S., Navarro, G. and Tiep, P. H.</b>,
<i class='BibTitle'>Finite groups whose same degree characters are Galois
conjugate</i>,
<span class='BibJournal'>Israel J. Math.</span>,
<em class='BibVolume'>198</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>2013</span>),
<span class='BibPages'>283–331</span>.
</p>
<p><a id="biBFeit82" name="biBFeit82"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=661045">Fei82</a></span>] <b class='BibAuthor'>Feit, W.</b>,
<i class='BibTitle'>The representation theory of finite groups</i>,
<span class='BibPublisher'>North-Holland Publishing Co.</span>,
<span class='BibSeries'>North-Holland Mathematical Library</span>,
<em class='BibVolume'>25</em>
(<span class='BibYear'>1982</span>)<br />
(<span class='BibNote'>xiv+502 pp., ISBN 0-444-86155-6</span>).
</p>
<p><a id="biBGag86" name="biBGag86"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=817904">Gag86</a></span>] <b class='BibAuthor'>Gagola, Jr., S. M.</b>,
<a href="http://dx.doi.org/10.1307/mmj/1029003285"><i class='BibTitle'>Formal character tables</i></a>,
<span class='BibJournal'>Michigan Math. J.</span>,
<em class='BibVolume'>33</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>1986</span>),
<span class='BibPages'>3–10</span>.
</p>
<p><a id="biBGAP" name="biBGAP"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>GAP21</span>]
<i class='BibTitle'><strong class='pkg'>GAP</strong> –
Groups, Algorithms, and Programming,
Version 4.11.1</i>,
<span class='BibOrganization'>The GAP Group</span>
(<span class='BibYear'>2021</span>),
<span class='BibHowpublished'><a href="https://www.gap-system.org">https://www.gap-system.org</a></span>.
</p>
<p><a id="biBGMS89" name="biBGMS89"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1025167">GJMS89</a></span>] <b class='BibAuthor'>Griess Jr., R. L., Meierfrankenfeld, U. and Segev, Y.</b>,
<a href="https://doi.org/10.2307/1971455"><i class='BibTitle'>A uniqueness proof for the Monster</i></a>,
<span class='BibJournal'>Ann. of Math. (2)</span>,
<em class='BibVolume'>130</em> (<span class='BibNumber'>3</span>)
(<span class='BibYear'>1989</span>),
<span class='BibPages'>567–602</span>.
</p>
<p><a id="biBGK" name="biBGK"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1800754">GK00</a></span>] <b class='BibAuthor'>Guralnick, R. M. and Kantor, W. M.</b>,
<a href="http://dx.doi.org/10.1006/jabr.2000.8357"><i class='BibTitle'>Probabilistic generation of finite simple groups</i></a>,
<span class='BibJournal'>J. Algebra</span>,
<em class='BibVolume'>234</em> (<span class='BibNumber'>2</span>)
(<span class='BibYear'>2000</span>),
<span class='BibPages'>743–792</span><br />
(<span class='BibNote'>Special issue in honor of Helmut Wielandt</span>).
</p>
<p><a id="biBGM01" name="biBGM01"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1849484">GM01</a></span>] <b class='BibAuthor'>Ganief, S. and Moori, J.</b>,
<a href="http://dx.doi.org/10.1081/AGB-100105019"><i class='BibTitle'>On the spread of the sporadic simple groups</i></a>,
<span class='BibJournal'>Comm. Algebra</span>,
<em class='BibVolume'>29</em> (<span class='BibNumber'>8</span>)
(<span class='BibYear'>2001</span>),
<span class='BibPages'>3239–3255</span>.
</p>
<p><a id="biBGPPS" name="biBGPPS"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1658168">GPPS99</a></span>] <b class='BibAuthor'>Guralnick, R., Penttila, T., Praeger, C. E. and Saxl, J.</b>,
<a href="http://dx.doi.org/10.1112/S0024611599001616"><i class='BibTitle'>Linear groups with orders having certain large prime divisors</i></a>,
<span class='BibJournal'>Proc. London Math. Soc.</span>,
<em class='BibVolume'>78</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>1999</span>),
<span class='BibPages'>167–214</span>.
</p>
<p><a id="biBHL89" name="biBHL89"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1033265">HL89</a></span>] <b class='BibAuthor'>Hiss, G. and Lux, K.</b>,
<i class='BibTitle'>Brauer trees of sporadic groups</i>,
<span class='BibPublisher'>The Clarendon Press, Oxford University Press</span>,
<span class='BibSeries'>Oxford Science Publications</span>,
<span class='BibAddress'>New York</span>
(<span class='BibYear'>1989</span>),
<span class='BibPages'>x+526 pages</span>.
</p>
<p><a id="biBHL94" name="biBHL94"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1278806">HL94</a></span>] <b class='BibAuthor'>Hiss, G. and Lux, K.</b>,
<a href="http://dx.doi.org/10.1080/00927879408825042"><i class='BibTitle'>The 5-modular characters of the sporadic simple
Fischer
groups Fi_{22} and Fi_{23}</i></a>,
<span class='BibJournal'>Comm. Algebra</span>,
<em class='BibVolume'>22</em> (<span class='BibNumber'>9</span>)
(<span class='BibYear'>1994</span>),
<span class='BibPages'>3563–3590</span><br />
(<span class='BibNote'>With an appendix by Thomas Breuer</span>).
</p>
<p><a id="biBcohomolo" name="biBcohomolo"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>Hol08</span>] <b class='BibAuthor'>Holt, D.</b>,
<i class='BibTitle'><strong class='pkg'>cohomolo</strong>,
computing cohomology groups and Schur multipliers,
Version 1.6</i>
(<span class='BibYear'>2008</span>)<br />
(<span class='BibNote'><strong class='pkg'>GAP</strong> package</span>),
<span class='BibHowpublished'><a href="http://www.maths.warwick.ac.uk/~dfh/cohomolo">http://www.maths.warwick.ac.uk/~dfh/cohomolo</a></span>.
</p>
<p><a id="biBHP89" name="biBHP89"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1025760">HP89</a></span>] <b class='BibAuthor'>Holt, D. F. and Plesken, W.</b>,
<i class='BibTitle'>Perfect groups</i>,
<span class='BibPublisher'>The Clarendon Press Oxford University Press</span>,
<span class='BibSeries'>Oxford Mathematical Monographs</span>,
<span class='BibAddress'>New York</span>
(<span class='BibYear'>1989</span>),
<span class='BibPages'>xii+364 pages</span><br />
(<span class='BibNote'>With an appendix by W. Hanrath,
Oxford Science Publications</span>).
</p>
<p><a id="biBHulpkeTG" name="biBHulpkeTG"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2168238">Hul05</a></span>] <b class='BibAuthor'>Hulpke, A.</b>,
<i class='BibTitle'>Constructing transitive permutation groups</i>,
<span class='BibJournal'>J. Symbolic Comput.</span>,
<em class='BibVolume'>39</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>2005</span>),
<span class='BibPages'>1–30</span>.
</p>
<p><a id="biBHup67" name="biBHup67"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=0224703">Hup67</a></span>] <b class='BibAuthor'>Huppert, B.</b>,
<i class='BibTitle'>Endliche Gruppen. I</i>,
<span class='BibPublisher'>Springer-Verlag</span>,
<span class='BibSeries'>Die Grundlehren der Mathematischen Wissenschaften, Band 134</span>,
<span class='BibAddress'>Berlin</span>
(<span class='BibYear'>1967</span>),
<span class='BibPages'>xii+793 pages</span>.
</p>
<p><a id="biBHW04" name="biBHW04"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2025332">HW04</a></span>] <b class='BibAuthor'>Holmes, P. E. and Wilson, R. A.</b>,
<a href="http://dx.doi.org/10.1112/S0024610703004915"><i class='BibTitle'>PSL_2(59) is a subgroup of the Monster</i></a>,
<span class='BibJournal'>J. London Math. Soc.</span>,
<em class='BibVolume'>69</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>2004</span>),
<span class='BibPages'>141–152</span>.
</p>
<p><a id="biBHW08" name="biBHW08"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2397402">HW08</a></span>] <b class='BibAuthor'>Holmes, P. E. and Wilson, R. A.</b>,
<a href="http://dx.doi.org/10.1016/j.jalgebra.2003.11.014"><i class='BibTitle'>On subgroups of the Monster containing A_5's</i></a>,
<span class='BibJournal'>J. Algebra</span>,
<em class='BibVolume'>319</em> (<span class='BibNumber'>7</span>)
(<span class='BibYear'>2008</span>),
<span class='BibPages'>2653–2667</span>.
</p>
<p><a id="biBIsa76" name="biBIsa76"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=0460423">Isa76</a></span>] <b class='BibAuthor'>Isaacs, I. M.</b>,
<i class='BibTitle'>Character theory of finite groups</i>,
<span class='BibPublisher'>Academic Press [Harcourt Brace Jovanovich Publishers]</span>,
<span class='BibAddress'>New York</span>
(<span class='BibYear'>1976</span>),
<span class='BibPages'>xii+303 pages</span><br />
(<span class='BibNote'>Pure and Applied Mathematics, No. 69</span>).
</p>
<p><a id="biBJLPW95" name="biBJLPW95"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1367961">JLPW95</a></span>] <b class='BibAuthor'>Jansen, C., Lux, K., Parker, R. and Wilson, R.</b>,
<i class='BibTitle'>An atlas of Brauer characters</i>,
<span class='BibPublisher'>The Clarendon Press Oxford University Press</span>,
<span class='BibSeries'>London Mathematical Society Monographs. New Series</span>,
<em class='BibVolume'>11</em>,
<span class='BibAddress'>New York</span>
(<span class='BibYear'>1995</span>),
<span class='BibPages'>xviii+327 pages</span><br />
(<span class='BibNote'>Appendix 2 by T. Breuer and S. Norton,
Oxford Science Publications</span>).
</p>
<p><a id="biBKlL90" name="biBKlL90"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1057341">KL90</a></span>] <b class='BibAuthor'>Kleidman, P. and Liebeck, M.</b>,
<a href="http://dx.doi.org/10.1017/CBO9780511629235"><i class='BibTitle'>The subgroup structure of the finite classical groups</i></a>,
<span class='BibPublisher'>Cambridge University Press</span>,
<span class='BibSeries'>London Mathematical Society Lecture Note Series</span>,
<em class='BibVolume'>129</em>,
<span class='BibAddress'>Cambridge</span>
(<span class='BibYear'>1990</span>),
<span class='BibPages'>x+303 pages</span>.
</p>
<p><a id="biBKle87" name="biBKle87"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=904187">Kle87</a></span>] <b class='BibAuthor'>Kleidman, P. B.</b>,
<a href="http://dx.doi.org/10.1016/0021-8693(87)90042-1"><i class='BibTitle'>The maximal subgroups of the finite 8-dimensional
orthogonal groups PΩ^+_8(q) and of their
automorphism groups</i></a>,
<span class='BibJournal'>J. Algebra</span>,
<em class='BibVolume'>110</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>1987</span>),
<span class='BibPages'>173–242</span>.
</p>
<p><a id="biBLP10" name="biBLP10"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2680716">LP10</a></span>] <b class='BibAuthor'>Lux, K. and Pahlings, H.</b>,
<i class='BibTitle'>Representations of groups</i>,
<span class='BibPublisher'>Cambridge University Press</span>,
<span class='BibSeries'>Cambridge Studies in Advanced Mathematics</span>,
<em class='BibVolume'>124</em>,
<span class='BibAddress'>Cambridge</span>
(<span class='BibYear'>2010</span>),
<span class='BibPages'>x+460 pages</span><br />
(<span class='BibNote'>A computational approach</span>).
</p>
<p><a id="biBLW91" name="biBLW91"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1105720">LW91</a></span>] <b class='BibAuthor'>Linton, S. A. and Wilson, R. A.</b>,
<a href="http://dx.doi.org/10.1112/plms/s3-63.1.113"><i class='BibTitle'>The maximal subgroups of the Fischer groups Fi_{24} and Fi'_{24}</i></a>,
<span class='BibJournal'>Proc. London Math. Soc. (3)</span>,
<em class='BibVolume'>63</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>1991</span>),
<span class='BibPages'>113–164</span>.
</p>
<p><a id="biBTomLib" name="biBTomLib"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>MNP19</span>] <b class='BibAuthor'>Merkwitz, T., Naughton, L. and Pfeiffer, G.</b>,
<i class='BibTitle'>TomLib, The GAP Library of Tables of Marks,
Version 1.2.9</i>
(<span class='BibYear'>2019</span>)<br />
(<span class='BibNote'>GAP package</span>),
<span class='BibHowpublished'><a href="https://gap-packages.github.io/tomlib">https://gap-packages.github.io/tomlib</a></span>.
</p>
<p><a id="biBMSW94" name="biBMSW94"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1261575">MSW94</a></span>] <b class='BibAuthor'>Malle, G., Saxl, J. and Weigel, T.</b>,
<a href="http://dx.doi.org/10.1007/BF01263536"><i class='BibTitle'>Generation of classical groups</i></a>,
<span class='BibJournal'>Geom. Dedicata</span>,
<em class='BibVolume'>49</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>1994</span>),
<span class='BibPages'>85–116</span>.
</p>
<p><a id="biBNav98" name="biBNav98"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1632299">Nav98</a></span>] <b class='BibAuthor'>Navarro, G.</b>,
<a href="http://dx.doi.org/10.1017/CBO9780511526015"><i class='BibTitle'>Characters and blocks of finite groups</i></a>,
<span class='BibPublisher'>Cambridge University Press</span>,
<span class='BibSeries'>London Mathematical Society Lecture Note Series</span>,
<em class='BibVolume'>250</em>,
<span class='BibAddress'>Cambridge</span>
(<span class='BibYear'>1998</span>),
<span class='BibPages'>x+287 pages</span>.
</p>
<p><a id="biBAtlasImpII" name="biBAtlasImpII"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>Nor</span>] <b class='BibAuthor'>Norton, S. P.</b>,
<i class='BibTitle'>Improvements to the ATLAS–II</i>,
<span class='BibHowpublished'><a href="http://brauer.maths.qmul.ac.uk/Atlas/info/fullatlasmods.html">http://brauer.maths.qmul.ac.uk/Atlas/info/fullatlasmods.html</a></span>.
</p>
<p><a id="biBNPP84" name="biBNPP84"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=760658">NPP84</a></span>] <b class='BibAuthor'>Neubüser, J., Pahlings, H. and Plesken, W.</b> (<span class='BibEditor'>Atkinson, M. D.</span>, Ed.),
<i class='BibTitle'>CAS; design and use of a system for the handling of
characters of finite groups</i>,
in <i class='BibBooktitle'>Computational group theory (Durham, 1982)</i>,
<span class='BibPublisher'>Academic Press</span>,
<span class='BibAddress'>London</span>
(<span class='BibYear'>1984</span>),
<span class='BibPages'>195–247</span>.
</p>
<p><a id="biBNR14" name="biBNR14"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=3225128">NR14</a></span>] <b class='BibAuthor'>Navarro, G. and Rizo, N.</b>,
<a href="http://dx.doi.org/10.1142/S0219498814500613"><i class='BibTitle'>Nilpotent and perfect groups with the same set of character
degrees</i></a>,
<span class='BibJournal'>J. Algebra Appl.</span>,
<em class='BibVolume'>13</em> (<span class='BibNumber'>8</span>)
(<span class='BibYear'>2014</span>),
<span class='BibPages'>1450061, 3</span>.
</p>
<p><a id="biBNW02" name="biBNW02"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1888424">NW02</a></span>] <b class='BibAuthor'>Norton, S. P. and Wilson, R. A.</b>,
<a href="http://dx.doi.org/10.1112/S0024611502013357"><i class='BibTitle'>Anatomy of the Monster. II</i></a>,
<span class='BibJournal'>Proc. London Math. Soc. (3)</span>,
<em class='BibVolume'>84</em> (<span class='BibNumber'>3</span>)
(<span class='BibYear'>2002</span>),
<span class='BibPages'>581–598</span>.
</p>
<p><a id="biBNW12" name="biBNW12"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=3073684">NW13</a></span>] <b class='BibAuthor'>Norton, S. P. and Wilson, R. A.</b>,
<a href="https://doi.org/10.1112/jlms/jds078"><i class='BibTitle'>A correction to the 41-structure of the Monster,
a construction of a new maximal subgroup L_2(41)
and a new Moonshine phenomenon</i></a>,
<span class='BibJournal'>J. Lond. Math. Soc. (2)</span>,
<em class='BibVolume'>87</em> (<span class='BibNumber'>3</span>)
(<span class='BibYear'>2013</span>),
<span class='BibPages'>943–962</span>.
</p>
<p><a id="biBOst86" name="biBOst86"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=872094">Ost86</a></span>] <b class='BibAuthor'>Ostermann, T.</b>,
<i class='BibTitle'>Charaktertafeln von Sylownormalisatoren sporadischer
einfacher Gruppen</i>,
<span class='BibOrganization'>Universität Essen</span>,
<span class='BibPublisher'>Universität Essen Fachbereich Mathematik</span>,
<span class='BibSeries'>Vorlesungen aus dem Fachbereich Mathematik der
Universität
GH Essen [Lecture Notes in Mathematics at the University of
Essen]</span>,
<em class='BibVolume'>14</em>,
<span class='BibAddress'>Essen</span>
(<span class='BibYear'>1986</span>),
<span class='BibPages'>x+187 pages</span>.
</p>
<p><a id="biBVdo00" name="biBVdo00"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1805754">Vdo00</a></span>] <b class='BibAuthor'>Vdovin, E. P.</b>,
<a href="http://dx.doi.org/10.1007/BF02681614"><i class='BibTitle'>Large nilpotent subgroups of finite simple groups</i></a>,
<span class='BibJournal'>Algebra Log.</span>,
<em class='BibVolume'>39</em> (<span class='BibNumber'>5</span>)
(<span class='BibYear'>2000</span>),
<span class='BibPages'>526–546, 630</span>.
</p>
<p><a id="biBMmaxes" name="biBMmaxes"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>Wil</span>] <b class='BibAuthor'>Wilson, R. A.</b>,
<i class='BibTitle'>ATLAS: Monster group M</i>,
<span class='BibHowpublished'><a href="http://brauer.maths.qmul.ac.uk/Atlas/spor/M">http://brauer.maths.qmul.ac.uk/Atlas/spor/M</a></span>.
</p>
<p><a id="biBWil93a" name="biBWil93a"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1254061">Wil93a</a></span>] <b class='BibAuthor'>Wilson, R. A.</b>,
<i class='BibTitle'>More on maximal subgroups of the Baby Monster</i>,
<span class='BibJournal'>Arch. Math. (Basel)</span>,
<em class='BibVolume'>61</em> (<span class='BibNumber'>6</span>)
(<span class='BibYear'>1993</span>),
<span class='BibPages'>497–507</span>.
</p>
<p><a id="biBWilson93" name="biBWilson93"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1190359">Wil93b</a></span>] <b class='BibAuthor'>Wilson, R. A.</b>,
<a href="http://dx.doi.org/10.1112/blms/25.1.23"><i class='BibTitle'>Some new subgroups of the Baby Monster</i></a>,
<span class='BibJournal'>Bull. London Math. Soc.</span>,
<em class='BibVolume'>25</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>1993</span>),
<span class='BibPages'>23–28</span>.
</p>
<p><a id="biBWil98" name="biBWil98"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1643110">Wil98</a></span>] <b class='BibAuthor'>Wilson, R. A.</b>,
<a href="http://dx.doi.org/10.1006/jabr.1998.7450"><i class='BibTitle'>The McKay conjecture is true for the sporadic simple
groups</i></a>,
<span class='BibJournal'>J. Algebra</span>,
<em class='BibVolume'>207</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>1998</span>),
<span class='BibPages'>294–305</span>.
</p>
<p><a id="biBWil99" name="biBWil99"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1656568">Wil99</a></span>] <b class='BibAuthor'>Wilson, R. A.</b>,
<a href="http://dx.doi.org/10.1006/jabr.1998.7601"><i class='BibTitle'>The maximal subgroups of the Baby Monster.
I</i></a>,
<span class='BibJournal'>J. Algebra</span>,
<em class='BibVolume'>211</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>1999</span>),
<span class='BibPages'>1–14</span>.
</p>
<p><a id="biBWil10" name="biBWil10"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2681789">Wil10</a></span>] <b class='BibAuthor'>Wilson, R. A.</b>,
<i class='BibTitle'>New computations in the Monster</i>,
in <i class='BibBooktitle'>Moonshine: the first quarter century and beyond</i>,
<span class='BibPublisher'>Cambridge Univ. Press</span>,
<span class='BibSeries'>London Math. Soc. Lecture Note Ser.</span>,
<em class='BibVolume'>372</em>,
<span class='BibAddress'>Cambridge</span>
(<span class='BibYear'>2010</span>),
<span class='BibPages'>393–403</span>.
</p>
<p><a id="biBAtlasRep" name="biBAtlasRep"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>WPN+22</span>] <b class='BibAuthor'>Wilson, R. A., Parker, R. A., Nickerson, S., Bray, J. N. and Breuer, T.</b>,
<i class='BibTitle'>AtlasRep, A <strong class='pkg'>GAP</strong> Interface
to the Atlas of Group Representations,
Version 2.1.6</i>
(<span class='BibYear'>2022</span>)<br />
(<span class='BibNote'><strong class='pkg'>GAP</strong> package</span>),
<span class='BibHowpublished'><a href="https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep">https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep</a></span>.
</p>
<p><a id="biBAGRv3" name="biBAGRv3"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>WWT+</span>] <b class='BibAuthor'>Wilson, R. A., Walsh, P., Tripp, J., Suleiman, I., Parker, R. A., Norton, S. P., Nickerson, S., Linton, S., Bray, J. and Abbott, R.</b>,
<i class='BibTitle'>ATLAS of Finite Group Representations</i>,
<span class='BibHowpublished'><a href="http://brauer.maths.qmul.ac.uk/Atlas/v3">http://brauer.maths.qmul.ac.uk/Atlas/v3</a></span>.
</p>
<p> </p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap11.html">[Previous Chapter]</a> <a href="chapInd.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|