1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
|
<!-- %W maintain.xml GAP 4 package CTblLib Thomas Breuer -->
<Chapter Label="chap:maintain">
<Heading>Maintenance Issues for the &GAP; Character Table Library</Heading>
This chapter collects examples of computations that arose
in the context of maintaining the &GAP; Character Table Library.
The sections have been added when the issues in question arose;
the dates of the additions are shown in the section titles.
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:disprove">
<Heading>Disproving Possible Character Tables (November 2006)</Heading>
I do not know a necessary and sufficient criterion for checking
whether a given matrix together with a list of power maps
describes the character table of a finite group.
Examples of <E>pseudo character tables</E>
(tables which satisfy certain necessary conditions
but for which actually no group exists) have been given
in <Cite Key="Gag86"/>.
Another such example is described in
Section <Ref Subsect="subsect:pseudo"/>.
The tables in the &GAP; Character Table Library satisfy the usual tests.
However,
there are table candidates for which these tests are not good enough.
<!-- (mention that this should be run when a table is going to be added) -->
<!-- (example: the candidate with nonintegral structure constants) -->
Another question would be whether a given character table
belongs to the group for which it is claimed to belong,
see Section <Ref Subsect="subsect:LyN2"/> for an example.
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:perfect_pseudo">
<Heading>A Perfect Pseudo Character Table (November 2006)</Heading>
(This example arose from a discussion with Jack Schmidt.)
<P/>
Up to version 1.1.3 of the &GAP; Character Table Library,
the table with identifier <C>"P41/G1/L1/V4/ext2"</C> was not correct.
The problem occurs already in the microfiches
that are attached to <Cite Key="HP89"/>.
<P/>
In the following, we show that this table is not the character table
of a finite group,
using the &GAP; library of perfect groups.
Currently we do not know how to prove this inconsistency
alone from the table.
<P/>
We start with the construction of the inconsistent table;
apart from a little editing,
the following input equals the data formerly stored
in the file <F>data/ctoholpl.tbl</F> of the &GAP; Character Table Library.
<P/>
<Example><![CDATA[
gap> tbl:= rec(
> Identifier:= "P41/G1/L1/V4/ext2",
> InfoText:= Concatenation( [
> "origin: Hanrath library,\n",
> "structure is 2^7.L2(8),\n",
> "characters sorted with permutation (12,14,15,13)(19,20)" ] ),
> UnderlyingCharacteristic:= 0,
> SizesCentralizers:= [64512,1024,1024,64512,64,64,64,64,128,128,64,
> 64,128,128,18,18,14,14,14,14,14,14,18,18,18,18,18,18],
> ComputedPowerMaps:= [,[1,1,1,1,2,3,3,2,3,2,2,1,3,2,16,16,20,20,22,
> 22,18,18,26,26,27,27,23,23],[1,2,3,4,5,6,7,8,9,10,11,12,13,14,4,
> 1,21,22,17,18,19,20,16,15,15,16,16,15],,,,[1,2,3,4,5,6,7,8,9,10,
> 11,12,13,14,15,16,4,1,4,1,4,1,26,25,28,27,23,24]],
> Irr:= 0,
> AutomorphismsOfTable:= Group( [(23,26,27)(24,25,28),(9,13)(10,14),
> (17,19,21)(18,20,22)] ),
> ConstructionInfoCharacterTable:= ["ConstructClifford",[[[1,2,3,4,
> 5,6,7,8,9],[1,7,8,3,9,2],[1,4,5,6,2],[1,2,2,2,2,2,2,2]],
> [["L2(8)"],["Dihedral",18],["Dihedral",14],["2^3"]],[[[1,2,3,4],
> [1,1,1,1],["elab",4,25]],[[1,2,3,4,4,4,4,4,4,4],[2,6,5,2,3,4,5,
> 6,7,8],["elab",10,17]],[[1,2],[3,4],[[1,1],[-1,1]]],[[1,3],[4,
> 2],[[1,1],[-1,1]]],[[1,3],[5,3],[[1,1],[-1,1]]],[[1,3],[6,4],
> [[1,1],[-1,1]]],[[1,2],[7,2],[[1,1],[1,-1]]],[[1,2],[8,3],[[1,
> 1],[-1,1]]],[[1,2],[9,5],[[1,1],[1,-1]]]]]],
> );;
gap> ConstructClifford( tbl, tbl.ConstructionInfoCharacterTable[2] );
gap> ConvertToLibraryCharacterTableNC( tbl );;
]]></Example>
<P/>
Suppose that there is a group <M>G</M>, say, with this table.
Then <M>G</M> is perfect since the table has only one linear character.
<P/>
<Example><![CDATA[
gap> Length( LinearCharacters( tbl ) );
1
gap> IsPerfectCharacterTable( tbl );
true
]]></Example>
<P/>
The table satisfies the orthogonality relations,
the structure constants are nonnegative integers,
and symmetrizations of the irreducibles decompose
into the irreducibles, with nonnegative integral coefficients.
<P/>
<Example><![CDATA[
gap> IsInternallyConsistent( tbl );
true
gap> irr:= Irr( tbl );;
gap> test:= Concatenation( List( [ 2 .. 7 ],
> n -> Symmetrizations( tbl, irr, n ) ) );;
gap> Append( test, Set( Tensored( irr, irr ) ) );
gap> fail in Decomposition( irr, test, "nonnegative" );
false
gap> if ForAny( Tuples( [ 1 .. NrConjugacyClasses( tbl ) ], 3 ),
> t -> not ClassMultiplicationCoefficient( tbl, t[1], t[2], t[3] )
> in NonnegativeIntegers ) then
> Error( "contradiction" );
> fi;
]]></Example>
<P/>
The &GAP; Library of Perfect Groups contains representatives of the
four isomorphism types of perfect groups of order <M>|G| = 64\,512</M>.
<P/>
<Example><![CDATA[
gap> n:= Size( tbl );
64512
gap> NumberPerfectGroups( n );
4
gap> grps:= List( [ 1 .. 4 ], i -> PerfectGroup( IsPermGroup, n, i ) );
[ L2(8) 2^6 E 2^1, L2(8) N 2^6 E 2^1 I, L2(8) N 2^6 E 2^1 II,
L2(8) N 2^6 E 2^1 III ]
]]></Example>
<P/>
If we believe that the classification of perfect groups of order <M>|G|</M>
is correct then all we have to do is to show that none of the
character tables of these four groups is equivalent to the given table.
<P/>
<Example><![CDATA[
gap> tbls:= List( grps, CharacterTable );;
gap> List( tbls,
> x -> TransformingPermutationsCharacterTables( x, tbl ) );
[ fail, fail, fail, fail ]
]]></Example>
<P/>
In fact, already the matrices of irreducible characters of the four groups
do not fit to the given table.
<P/>
<Example><![CDATA[
gap> List( tbls,
> t -> TransformingPermutations( Irr( t ), Irr( tbl ) ) );
[ fail, fail, fail, fail ]
]]></Example>
<P/>
Let us look closer at the tables in question.
Each character table of a perfect group of order <M>64\,512</M>
has exactly one irreducible character of degree <M>63</M> that takes exactly
the values <M>-1</M>, <M>0</M>, <M>7</M>, and <M>63</M>;
moreover, the value <M>7</M> occurs in exactly two classes.
<P/>
<Example><![CDATA[
gap> testchars:= List( tbls,
> t -> Filtered( Irr( t ),
> x -> x[1] = 63 and Set( x ) = [ -1, 0, 7, 63 ] ) );;
gap> List( testchars, Length );
[ 1, 1, 1, 1 ]
gap> List( testchars, l -> Number( l[1], x -> x = 7 ) );
[ 2, 2, 2, 2 ]
]]></Example>
<P/>
(Another way to state this is that in each of the four tables <M>t</M> in
question,
there are ten preimage classes of the involution class in the simple
factor group <M>L_2(8)</M>,
there are eight preimage classes of this class in the factor group
<M>2^6.L_2(8)</M>,
and that the unique class in which an irreducible degree <M>63</M> character
of this factor group takes the value <M>7</M> splits in <M>t</M>.)
<P/>
In the erroneous table, however,
there is only one class with the value <M>7</M> in this character.
<P/>
<Example><![CDATA[
gap> testchars:= List( [ tbl ],
> t -> Filtered( Irr( t ),
> x -> x[1] = 63 and Set( x ) = [ -1, 0, 7, 63 ] ) );;
gap> List( testchars, Length );
[ 1 ]
gap> List( testchars, l -> Number( l[1], x -> x = 7 ) );
[ 1 ]
]]></Example>
<P/>
This property can be checked easily for the displayed table stored
in fiche <M>2</M>, row <M>4</M>, column <M>7</M> of <Cite Key="HP89"/>,
with the name <C>6L1<>Z^7<>L2(8); V4; MOD 2</C>,
and it turns out that this table is not correct.
<P/>
Note that these microfiches contain <E>two</E> tables of order <M>64\,512</M>,
and there were <E>three</E> tables of groups of that order
in the &GAP; Character Table Library
that contain <C>origin: Hanrath library</C> in their
<Ref Func="InfoText" BookName="ref"/>
value.
Besides the incorrect table, these library tables are
the character tables of the groups
<C>PerfectGroup( 64512, 1 )</C> and <C>PerfectGroup( 64512, 3 )</C>,
respectively.
(The matrices of irreducible characters of these tables are equivalent.)
<P/>
<Example><![CDATA[
gap> Filtered( [ 1 .. 4 ], i ->
> TransformingPermutationsCharacterTables( tbls[i],
> CharacterTable( "P41/G1/L1/V1/ext2" ) ) <> fail );
[ 1 ]
gap> Filtered( [ 1 .. 4 ], i ->
> TransformingPermutationsCharacterTables( tbls[i],
> CharacterTable( "P41/G1/L1/V2/ext2" ) ) <> fail );
[ 3 ]
gap> TransformingPermutations( Irr( tbls[1] ), Irr( tbls[3] ) ) <> fail;
true
]]></Example>
<P/>
Since version 1.2 of the &GAP; Character Table Library,
the character table with the
<Ref Func="Identifier" BookName="ref"/>
value
<C>"P41/G1/L1/V4/ext2"</C> corresponds to the group
<C>PerfectGroup( 64512, 4 )</C>.
The choice of this group was somewhat arbitrary since the vector system
<C>V4</C> seems to be not defined in <Cite Key="HP89"/>;
anyhow, this group and the remaining perfect group,
<C>PerfectGroup( 64512, 2 )</C>,
have equivalent matrices of irreducibles.
<Example><![CDATA[
gap> Filtered( [ 1 .. 4 ], i ->
> TransformingPermutationsCharacterTables( tbls[i],
> CharacterTable( "P41/G1/L1/V4/ext2" ) ) <> fail );
[ 4 ]
gap> TransformingPermutations( Irr( tbls[2] ), Irr( tbls[4] ) ) <> fail;
true
]]></Example>
<!--
% Let us suppose that we are not convinced yet,
% perhaps because it might be that a perfect group of order <M>64\,512</M>
% has been overlooked up to now.
% Then we consider the factor group <M>F</M> of <M>G</M> modulo its centre.
%
% <Example><![CDATA[
% gap> cen:= ClassPositionsOfCentre( tbl );
% [ 1, 4 ]
% gap> facttbl:= tbl / cen;
% CharacterTable( "P41/G1/L1/V4/ext2/[ 1, 4 ]" )
% ]]></Example>
%
% The group <M>F</M> is a perfect group of order <M>32\,256</M>.
% According to the &GAP; Library of Perfect Groups,
% there are exactly two such groups, up to isomorphism,
% and <M>F</M> must be isomorphic to the second of these groups.
%
% <Example><![CDATA[
% gap> factgrps:= List( [ 1 .. 2 ], i -> PerfectGroup( IsPermGroup, n/2, i ) );
% [ L2(8) 2^6, L2(8) N 2^6 ]
% gap> facttbls:= List( factgrps, CharacterTable );;
% gap> List( facttbls, x -> IsRecord(
% > TransformingPermutationsCharacterTables( x, facttbl ) ) );
% [ false, true ]
% ]]></Example>
%
% (In fact the situation is a bit more subtle:
% The matrices of irreducibles of the two perfect groups of order <M>32\,256</M>
% are equivalent,
% the two character tables differ just by their second power maps and,
% as a consequence, by their element orders.
% However, the second power map of the given table of <M>G</M>
% is uniquely determined by the matrix of irreducibles of this table.)
%
% No!!
%
% -> what about element orders?
%
% <Example><![CDATA[
% gap> IsRecord( TransformingPermutations(
% > Irr( facttbls[1] ), Irr( facttbls[2] ) ) );
% true
% gap> IsRecord( TransformingPermutationsCharacterTables(
% > facttbls[1], facttbls[2] ) );
% false
%
% ]]></Example>
%
%
% ...
%
% (And the power maps are uniquely det. by the matrix.)
%
% (and not equiv. to the other!
% note that one is split, the other nonsplit,
% and the matrices of irreds are equivalent)
%
% So if we believe that there is no other perfect group of order <M>32\,256</M>
% that has the same character table
% then <M>G</M> is a central extension of this group by a group of order two.
%
% We compute the possible central extensions of a maximal subgroup
% of the structure <M>2^6.2^3:7</M>,
% and show that none of them admits an embedding into the table.
%
% (Note that the extensions can be computed for solvable groups,
% that's why we switch to a subgroup.)
%
% <Example><![CDATA[
% gap> sort;
% CharacterTable( "P41/G1/L1/V4/ext2" )
% gap> g:= PerfectGroup( IsPermGroup, 32256, 2 );;
% gap> nsg:= NormalSubgroups( g );
% ...
% gap> epi:= NaturalHomomorphismByNormalSubgroup( g, nsg[2] );;
% gap> img:= Image( epi );;
% gap> mx:= MaximalSubgroupClassReps( img );
% [ Group([ (3,4,8,6,7,5,9), (1,2)(4,9)(5,8)(6,7) ]), Group([ (1,2,3)(4,7,8)(5,6,9), (1,4,9,2,7,5,3,8,6), (2,3)(4,6)(5,7)(8,9) ]), Group([ (2,3)(4,6)(5,7)(8,9), (2,4)(3,6)(5,9)(7,8), (2,5)(3,7)(4,9)(6,8),
% (3,4,8,6,7,5,9) ]) ]
% gap> List( mx, Size );
% [ 14, 18, 56 ]
% gap> pre:= PreImages( epi, mx[3] );;
% gap> iso:= IsomorphismPcGroup( pre );;
% gap> G:= Image( iso );;
% gap> mats:= List( Pcgs( G ), x -> IdentityMat( 1, GF(2) ) );;
% gap> M:= GModuleByMats( mats, GF(2) );;
% gap> ext:= Extensions( G, M );;
% gap> Length( ext );
% 8
% gap> List( ext, Size );
% [ 7168, 7168, 7168, 7168, 7168, 7168, 7168, 7168 ]
% gap> tbls:= List( ext, CharacterTable );;
% gap> List( tbls, t -> Length( PossibleClassFusions( t, sort ) ) );
% [ 0, 0, 0, 0, 0, 0, 0, 0 ]
% ]]></Example>
%
%
% now: how to replace the wrong table by the correct one!
% -> to which of the two?
% -> note that V1/ext2 and V2/ext2 belong to the first and third group,
% they have equiv. matrices;
% V4/ext2 is wrong, and there are the second and fourth group,
% again with equiv. matrices but different power maps!
% (so add two tables? with which names?)
%
% <Example><![CDATA[
% ]]></Example>
%
-->
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:errorE62">
<Heading>An Error in the Character Table of <M>E_6(2)</M> (March 2016)</Heading>
In March 2016, Bill Unger computed the character table of the simple group
<M>E_6(2)</M> with Magma (see <Cite Key="CP96"/>)
and compared it with the table that was contained in the
&GAP; Character Table Library since 2000.
It turned out that the two tables did not coincide.
<P/>
The differences concern irrational character values on classes of element
order <M>91</M> and power map values on these classes.
(The character values and power maps fit to each other in both tables;
thus it may be that the assumption of a wrong power has implied the wrong
character values, or vice versa.)
Specifically, the <M>11</M>th power map in the &GAP; table
fixed all elements of order <M>91</M>.
Using the smallest matrix representation of <M>E_6(2)</M> over the field with
two elements, one can easily find an element <M>g</M> of order <M>91</M>,
and show that the characteristic polynomials of <M>g</M> and <M>g^{11}</M>
differ.
Hence these two elements cannot be conjugate in <M>E_6(2)</M>.
In other words, the &GAP; table was wrong.
<P/>
<Example><![CDATA[
gap> g:= AtlasGroup( "E6(2)" );;
gap> repeat x:= PseudoRandom( g ); until Order( x ) = 91;
gap> CharacteristicPolynomial( x ) = CharacteristicPolynomial( x^11 );
false
]]></Example>
<P/>
The wrong &GAP; table has been corrected in version 1.3.0 of the
&GAP; Character Table Library.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "E6(2)" );;
gap> ord91:= Positions( OrdersClassRepresentatives( t ), 91 );
[ 163, 164, 165, 166, 167, 168 ]
gap> PowerMap( t, 11 ){ ord91 };
[ 167, 168, 163, 164, 165, 166 ]
]]></Example>
<!-- The wrong table involved irrationalities
E(91)^6+E(91)^20+E(91)^31+E(91)^38+E(91)^48+E(91)^54+E(91)^66+E(91)^68
+E(91)^69+E(91)^73+E(91)^75+E(91)^89,
and the new one contains irrationalities
E(91)^17+E(91)^27+E(91)^34+E(91)^45+E(91)^54+E(91)^59+E(91)^68+E(91)^75
+E(91)^83+E(91)^87+E(91)^89+E(91)^90.
These values define different subfields of CF(91). -->
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:error2F422">
<Heading>An Error in a Power Map of the Character Table of <M>2.F_4(2).2</M> (November 2015)</Heading>
As a part of the computations for <Cite Key="BMO17"/>,
the character table of the group <M>2.F_4(2).2</M> was computed
automatically from a representation of the group,
using Magma (see <Cite Key="CP96"/>).
It turned out that the <M>2</M>-nd power map that had been stored on the
library character table of <M>2.F_4(2).2</M> had been wrong.
<P/>
In fact, this was the one and only case of a power map for an &ATLAS; group
which was not determined by the character table,
and the <Ref Attr="InfoText" BookName="ref"/> value of the character table
had mentioned the two alternatives.
<P/>
Note that the ambiguity is not present in the table of the factor group
<M>F_4(2).2</M>, and only four faithful irreducible characters of
<M>2.F_4(2).2</M> distinguish the four relevant conjugacy classes.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "2.F4(2).2" );;
gap> f:= CharacterTable( "F4(2).2" );;
gap> map:= PowerMap( t, 2 );
[ 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 11, 11, 3, 3, 3, 5, 5, 5, 3, 6, 6, 5,
5, 7, 7, 5, 8, 7, 29, 29, 9, 9, 9, 9, 11, 11, 9, 9, 9, 9, 11, 11,
43, 43, 20, 20, 20, 14, 14, 13, 13, 20, 21, 24, 28, 28, 57, 57, 29,
29, 29, 29, 33, 33, 35, 37, 37, 37, 37, 33, 33, 37, 37, 35, 41, 41,
42, 42, 79, 79, 43, 43, 83, 83, 45, 45, 47, 47, 53, 53, 91, 91, 57,
57, 61, 61, 61, 98, 98, 70, 70, 63, 63, 81, 81, 83, 83, 1, 6, 7,
11, 16, 17, 24, 24, 21, 27, 27, 25, 26, 29, 41, 53, 53, 53, 46, 56,
56, 56, 56, 62, 75, 75, 78, 78, 77, 77, 79, 79, 86, 86, 85, 85, 88,
88, 88, 88, 95, 95, 96, 96 ]
gap> PositionSublist( map, [ 86, 86, 85, 85 ] );
140
gap> OrdersClassRepresentatives( t ){ [ 140 .. 143 ] };
[ 32, 32, 32, 32 ]
gap> SizesCentralizers( t ){ [ 140 .. 143 ] };
[ 64, 64, 64, 64 ]
gap> GetFusionMap( t, f ){ [ 140 ..143 ] };
[ 86, 86, 87, 87 ]
gap> PowerMap( f, 2 ){ [ 86, 87 ] };
[ 50, 50 ]
gap> pos:= PositionsProperty( Irr( t ),
> x -> x[1] <> x[2] and Length( Set( x{ [ 140 .. 143 ] } ) ) > 1 );
[ 144, 145, 146, 147 ]
gap> List( pos, i -> Irr(t)[i]{ [ 140 .. 143 ] } );
[ [ 2*E(16)-2*E(16)^7, -2*E(16)+2*E(16)^7, 2*E(16)^3-2*E(16)^5,
-2*E(16)^3+2*E(16)^5 ],
[ -2*E(16)+2*E(16)^7, 2*E(16)-2*E(16)^7, -2*E(16)^3+2*E(16)^5,
2*E(16)^3-2*E(16)^5 ],
[ -2*E(16)^3+2*E(16)^5, 2*E(16)^3-2*E(16)^5, 2*E(16)-2*E(16)^7,
-2*E(16)+2*E(16)^7 ],
[ 2*E(16)^3-2*E(16)^5, -2*E(16)^3+2*E(16)^5, -2*E(16)+2*E(16)^7,
2*E(16)-2*E(16)^7 ] ]
]]></Example>
<P/>
I had not found a suitable subgroup of <M>2.F_4(2).2</M> whose
character table could be used to decide the question which of the
two alternatives is the correct one.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:LyN2">
<Heading>A Character Table with a Wrong Name (May 2017)</Heading>
(This example is much older.)
<P/>
The character table that is shown in <Cite Key="Ost86" Where="p. 126 f."/>
is claimed to be the table of a Sylow <M>2</M> subgroup <M>P</M> of the
sporadic simple Lyons group <M>Ly</M>.
This table had been contained in the character table library of the
<Package>CAS</Package> system (see <Cite Key="NPP84"/>),
which was one of the predecessors of &GAP;.
<P/>
It is easy to see that no subgroup of <M>Ly</M>
can have this character table.
Namely,
the group of that table contains elements of order eight
with centralizer order <M>2^6</M>,
and this does not occur in <M>Ly</M>.
<P/>
<Example><![CDATA[
gap> tbl:= CharacterTable( "Ly" );;
gap> orders:= OrdersClassRepresentatives( tbl );;
gap> order8:= Filtered( [ 1 .. Length( orders ) ], x -> orders[x] = 8 );
[ 12, 13 ]
gap> SizesCentralizers( tbl ){ order8 } / 2^6;
[ 15/2, 3/2 ]
]]></Example>
<P/>
The table of <M>P</M> has been computed in <Cite Key="Bre91"/>
with character theoretic methods.
Nowadays it would be no problem to take a permutation representation of
<M>Ly</M>, to compute its Sylow <M>2</M> subgroup, and use this group
to compute its character table.
However, the task is even easier if we assume that <M>Ly</M> has a subgroup
of the structure <M>3.McL.2</M>.
This subgroup is of odd index, hence it contains a conjugate of <M>P</M>.
Clearly the Sylow <M>2</M> subgroups in the factor group <M>McL.2</M>
are isomorphic with <M>P</M>.
Thus we can start with a rather small permutation representation.
<P/>
<Example><![CDATA[
gap> g:= AtlasGroup( "McL.2" );;
gap> NrMovedPoints( g );
275
gap> syl:= SylowSubgroup( g, 2 );;
gap> pc:= Image( IsomorphismPcGroup( syl ) );;
gap> t:= CharacterTable( pc );;
]]></Example>
<P/>
The character table coincides with the one which is stored in
the Character Table Library.
<P/>
<Example><![CDATA[
gap> IsRecord( TransformingPermutationsCharacterTables( t,
> CharacterTable( "LyN2" ) ) );
true
]]></Example>
</Subsection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:spacegroupfactors">
<Heading>Some finite factor groups of perfect space groups (February 2014)</Heading>
If one wants to find a group to which a given character table from the
&GAP; Character Table Library belongs,
one can try the function
<Ref Func="GroupInfoForCharacterTable" BookName="ctbllib"/>.
For a long time,
this was not successful in the case of <M>16</M> character tables
that had been computed by W. Hanrath (see Section
<Q>Ordinary and Brauer Tables in the &GAP; Character Table Library</Q>
in the &CTblLib; manual).
<P/>
Using the information from <Cite Key="HP89"/>,
it is straightforward to construct
such groups as factor groups of infinite groups.
Since version 1.3.0 of the &CTblLib; package,
calling
<Ref Func="GroupInfoForCharacterTable" BookName="ctbllib"/>
for the <M>16</M> library tables
in question yields nonempty lists and thus allows one to access the
results of these constructions,
via the function <C>CTblLib.FactorGroupOfPerfectSpaceGroup</C>.
This is an undocumented auxiliary function that becomes available
automatically when
<Ref Func="GroupInfoForCharacterTable" BookName="ctbllib"/>
has been called for the first time.
<P/>
<Example><![CDATA[
gap> GroupInfoForCharacterTable( "A5" );;
gap> IsBound( CTblLib.FactorGroupOfPerfectSpaceGroup );
true
]]></Example>
<P/>
Below we list the <M>16</M> group constructions.
In each case, an epimorphism from the space group in question is defined by
mapping the generators returned by by the function
<C>generatorsOfPerfectSpaceGroup</C> defined below to the generators
stored in the attribute
<Ref Func="GeneratorsOfGroup" BookName="ref"/>
of the group returned by
<C>CTblLib.FactorGroupOfPerfectSpaceGroup</C>.
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:constructspacegroups">
<Heading>Constructing the space groups in question</Heading>
In <Cite Key="HP89"/>,
a space group <M>S</M> is described as a subgroup
<M>\{ M(g, t); g \in P, t \in T \}</M> of GL<M>(d+1, &ZZ;)</M>,
where
<P/>
<Alt Only="LaTeX">
\[
M(g, t) = \left[ \begin{array}{cc} g & 0 \\
V(g) + t & 1 \end{array} \right],
\]
</Alt>
<Alt Only="Text">
<Verb>
M(g, t) = ⌈ g 0 ⌉
⌊ V(g)+t 1 ⌋,
</Verb>
</Alt>
<Alt Only="HTML"><![CDATA[
<div class="pcenter"><table>
<tr>
<td class="tdright"><span class="SimpleMath">M(g, t)</span></td>
<td class="tdcenter"><span class="SimpleMath"> = </span></td>
<td class="tdleft">
<table class="GAPDocTable">
<tr>
<td class="tdright"><span class="SimpleMath">g</span></td>
<td class="tdright"><span class="SimpleMath">0</span></td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">V(g)+t</span></td>
<td class="tdright"><span class="SimpleMath">1</span></td>
</tr>
</table>
</td>
</tr>
</table>
</div>
]]></Alt>
<P/>
the <E>point group</E> <M>P</M> of <M>S</M> is a finite subgroup of
GL<M>(d, &ZZ;)</M>,
the <E>translation lattice</E> <M>T</M> of <M>S</M> is a sublattice of
<M>&ZZ;^d</M>,
and the <E>vector system</E> <M>V</M> of <M>S</M> is a map from <M>P</M> to
<M>&ZZ;^d</M>.
Note that <M>V</M> maps the identity matrix <M>I \in</M> GL<M>(d, &ZZ;)</M>
to the zero vector,
and <M>M(T):= \{ M(I, t); t \in T \}</M>
is a normal subgroup of <M>S</M> that is isomorphic with <M>T</M>.
More generally, <M>M(n T)</M> is a normal subgroup of <M>S</M>,
for any positive integer <M>n</M>.
<P/>
Specifically,
<M>P</M> is given by generators <M>g_1, g_2, \ldots, g_k</M>,
<M>T</M> is given by a <M>&ZZ;</M>-basis
<M>B = \{ b_1, b_2, \ldots, b_d \}</M> of <M>T</M>,
and <M>V</M> is given by the vectors <M>V(g_1), V(g_2), \ldots, V(g_k)</M>.
<P/>
In the examples below, the matrix representation of <M>P</M> is irreducible,
so we need just the following <M>k+1</M> elements to generate <M>S</M>:
<P/>
<Alt Only="LaTeX">
\[
\left[ \begin{array}{cc} g_1 & 0 \\ V(g_1) & 1 \end{array} \right],
\left[ \begin{array}{cc} g_2 & 0 \\ V(g_2) & 1 \end{array} \right],
\ldots,
\left[ \begin{array}{cc} g_k & 0 \\ V(g_k) & 1 \end{array} \right],
\left[ \begin{array}{cc} I & 0 \\ b_1 & 1 \end{array} \right].
\]
</Alt>
<Alt Only="Text">
<Verb>
⌈ g_1 0 ⌉ ⌈ g_2 0 ⌉ ⌈ g_k 0 ⌉ ⌈ I 0 ⌉
⌊ V(g_1) 1 ⌋, ⌊ V(g_2) 1 ⌋, ..., ⌊ V(g_k) 1 ⌋, ⌊ b_1 1 ⌋.
</Verb>
</Alt>
<Alt Only="HTML"><![CDATA[
<div class="pcenter">
<table>
<tr>
<td class="tdleft">
<table class="GAPDocTable">
<tr>
<td class="tdright"><span class="SimpleMath">g_1</span></td>
<td class="tdright"><span class="SimpleMath">0</span></td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">V(g_1)</span></td>
<td class="tdright"><span class="SimpleMath">1</span></td>
</tr>
</table>
<td class="tdleft">
,
</td>
</td>
<td class="tdleft">
<table class="GAPDocTable">
<tr>
<td class="tdright"><span class="SimpleMath">g_2</span></td>
<td class="tdright"><span class="SimpleMath">0</span></td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">V(g_2)</span></td>
<td class="tdright"><span class="SimpleMath">1</span></td>
</tr>
</table>
</td>
<td class="tdleft">
, ...,
</td>
<td class="tdleft">
<table class="GAPDocTable">
<tr>
<td class="tdright"><span class="SimpleMath">g_k</span></td>
<td class="tdright"><span class="SimpleMath">0</span></td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">V(g_k)</span></td>
<td class="tdright"><span class="SimpleMath">1</span></td>
</tr>
</table>
</td>
<td class="tdleft">
,
</td>
<td class="tdleft">
<table class="GAPDocTable">
<tr>
<td class="tdright"><span class="SimpleMath">I</span></td>
<td class="tdright"><span class="SimpleMath">0</span></td>
</tr>
<tr>
<td class="tdright"><span class="SimpleMath">b_1</span></td>
<td class="tdright"><span class="SimpleMath">1</span></td>
</tr>
</table>
</td>
<td class="tdleft">
.
</td>
</tr>
</table>
</div>
]]></Alt>
<P/>
These generators are returned by the function
<C>generatorsOfPerfectSpaceGroup</C>,
when the inputs are <M>[ g_1, g_2, \ldots, g_k ]</M>,
<M>[ V(g_1), V(g_2), \ldots, V(g_k) ]</M>, and <M>b_1</M>.
<P/>
<Example><![CDATA[
gap> generatorsOfPerfectSpaceGroup:= function( Pgens, V, t )
> local d, result, i, m;
> d:= Length( Pgens[1] );
> result:= [];
> for i in [ 1 .. Length( Pgens ) ] do
> m:= IdentityMat( d+1 );
> m{ [ 1 .. d ] }{ [ 1 .. d ] }:= Pgens[i];
> m[ d+1 ]{ [ 1 .. d ] }:= V[i];
> result[i]:= m;
> od;
> m:= IdentityMat( d+1 );
> m[ d+1 ]{ [ 1 .. d ] }:= t;
> Add( result, m );
> return result;
> end;;
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:constructfactors">
<Heading>Constructing the factor groups in question</Heading>
The space group <M>S</M> acts on <M>&ZZ;^d</M>,
via <M>v \cdot M(g, t) = v g + V(g) + t</M>.
A (not necessarily faithful) representation of <M>S/M(n T)</M>
can be obtained from the corresponding action of <M>S</M> on
<M>&ZZ;^d/(n &ZZ;^d)</M>,
that is, by reducing the vectors modulo <M>n</M>.
For the &GAP; computations, we work instead with vectors of length <M>d+1</M>,
extending each vector in <M>&ZZ;^d</M> by <M>1</M> in the last position,
and acting on these vectors by right multiplicaton with elements of <M>S</M>.
Multiplication followed by reduction modulo <M>n</M> is implemented by
the action function returned by <C>multiplicationModulo</C>
when this is called with argument <M>n</M>.
<P/>
<Example><![CDATA[
gap> multiplicationModulo:= n -> function( v, g )
> return List( v * g, x -> x mod n ); end;;
]]></Example>
<P/>
In some of the examples,
the representation of <M>P</M> given in <Cite Key="HP89"/>
is the action on the factor
of a permutation module modulo its trivial submodule.
For that, we provide the function <C>deletedPermutationMat</C>,
cf. <Cite Key="HP89" Where="p. 269"/>.
<P/>
<Example><![CDATA[
gap> deletedPermutationMat:= function( pi, n )
> local mat, j, i;
> mat:= PermutationMat( pi, n );
> mat:= mat{ [ 1 .. n-1 ] }{ [ 1 .. n-1 ] };
> j:= n ^ pi;
> if j <> n then
> for i in [ 1 .. n-1 ] do
> mat[i][j]:= -1;
> od;
> fi;
> return mat;
> end;;
]]></Example>
<P/>
After constructing permutation generators for the example groups,
we verify that the groups fit to the character tables from the
&GAP; Character Table Library and to the permutation generators
stored for the construction of the group via
<C>CTblLib.FactorGroupOfPerfectSpaceGroup</C>.
<P/>
<!--
(In earlier versions of &GAP;, a call of the function
<Ref Func="SmallerDegreePermutationRepresentation" BookName="ref"/>
was sufficient for computing a reasonably small permutation representation
of each of the example groups.
Meanwhile, this function has become more sophisticated,
with the effect that it requires much more space in some of our cases.
Therefore, we reduce the number of points by hand.)
<Example><![CDATA[
gap> verifyFactorGroup:= function( gens, id )
> local g, s, sgens, act, sm, stored, hom;
> # sm:= SmallerDegreePermutationRepresentation( Group( gens ) );
> g:= Group( gens );
> s:= NormalClosure( g, Subgroup( g, [ gens[ Length( gens ) ] ] ) );
> sgens:= MinimalGeneratingSet( s );
> s:= Subgroup( s, sgens{ [ 2 .. Length( sgens ) ] } );
> act:= Action( g, RightTransversal( g, s ), OnRight );
> if Size( act ) <> Size( g ) then
> Error( "wrong group order!" );
> fi;
> gens:= GeneratorsOfGroup( act );
> sm:= SmallerDegreePermutationRepresentation( act );
> gens:= List( gens, x -> x^sm );
> act:= Images( sm );
> if not IsRecord( TransformingPermutationsCharacterTables(
> CharacterTable( act ),
> CharacterTable( id ) ) ) then
> return "wrong character table";
> fi;
> GroupInfoForCharacterTable( id );
> stored:= CTblLib.FactorGroupOfPerfectSpaceGroup( id );
> hom:= GroupHomomorphismByImages( stored, act,
> GeneratorsOfGroup( stored ), gens );
> if hom = fail or not IsBijective( hom ) then
> return "wrong group";
> fi;
> return true;
> end;;
]]></Example>
-->
<P/>
<Example><![CDATA[
gap> verifyFactorGroup:= function( gens, id )
> local sm, act, stored, hom;
> sm:= SmallerDegreePermutationRepresentation( Group( gens ) );
> gens:= List( gens, x -> x^sm );
> act:= Images( sm );
> if not IsRecord( TransformingPermutationsCharacterTables(
> CharacterTable( act ),
> CharacterTable( id ) ) ) then
> return "wrong character table";
> fi;
> GroupInfoForCharacterTable( id );
> stored:= CTblLib.FactorGroupOfPerfectSpaceGroup( id );
> hom:= GroupHomomorphismByImages( stored, act,
> GeneratorsOfGroup( stored ), gens );
> if hom = fail or not IsBijective( hom ) then
> return "wrong group";
> fi;
> return true;
> end;;
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-A5">
<Heading>Examples with point group <M>A_5</M></Heading>
There are two examples with <M>d = 5</M>.
The generators of the point group are as follows
(see <Cite Key="HP89" Where="p. 272"/>).
<P/>
<Example><![CDATA[
gap> a:= deletedPermutationMat( (1,3)(2,4), 6 );;
gap> b:= deletedPermutationMat( (1,2,3)(4,5,6), 6 );;
]]></Example>
<P/>
In both cases, the vector system is <M>V_2</M>.
<P/>
<Example><![CDATA[
gap> v:= [ [ 2, 2, 0, 0, 1 ], 0 * b[1] ];;
]]></Example>
<P/>
In the first example,
the translation lattice is the sublattice <M>L = 2 L_1</M> of the full lattice
<M>L_1 = &ZZ;^d</M>.
<P/>
<Example><![CDATA[
gap> t:= [ 2, 0, 0, 0, 0 ];;
]]></Example>
<P/>
The library character table with identifier <C>"P1/G2/L1/V2/ext4"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(4 L)</M>, so we compute the action on an orbit modulo <M>8</M>.
<P/>
<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 8 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P1/G2/L1/V2/ext4" );
true
]]></Example>
<P/>
In the second example,
the translation lattice is the sublattice <M>2 L_2</M> of <M>&ZZ;^d</M>
where <M>L_2</M> has the following basis.
<P/>
<Example><![CDATA[
gap> bas:= [ [-1,-1, 1, 1, 1 ],
> [-1, 1,-1, 1, 1 ],
> [ 1, 1, 1,-1,-1 ],
> [ 1, 1,-1,-1, 1 ],
> [-1, 1, 1,-1, 1 ] ];;
]]></Example>
<P/>
For the sake of simplicity, we rewrite the action of the point group
to one on <M>L_2</M>, and we adjust also the vector system.
<P/>
<Example><![CDATA[
gap> B:= Basis( Rationals^Length( bas ), bas );;
gap> abas:= List( bas, x -> Coefficients( B, x * a ) );;
gap> bbas:= List( bas, x -> Coefficients( B, x * b ) );;
gap> vbas:= List( v, x -> Coefficients( B, x ) );
[ [ 3/2, 1, 2, 3/2, -1 ], [ 0, 0, 0, 0, 0 ] ]
]]></Example>
<P/>
In order to work with integral matrices (which is necessary because
<C>multiplicationModulo</C> uses &GAP;'s <C>mod</C> operator),
we double both the vector system and the translation lattice.
<P/>
<Example><![CDATA[
gap> vbas:= vbas * 2;
[ [ 3, 2, 4, 3, -2 ], [ 0, 0, 0, 0, 0 ] ]
gap> t:= 2 * t;
[ 4, 0, 0, 0, 0 ]
]]></Example>
<P/>
The library character table with identifier <C>"P1/G2/L2/V2/ext4"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(8 L_2)</M>;
since we have doubled the lattice,
we compute the action on an orbit modulo <M>16</M>.
<P/>
<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ abas, bbas ], vbas, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 16 );;
gap> orb:= Orbit( g, [ 0, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P1/G2/L2/V2/ext4" );
true
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-L32">
<Heading>Examples with point group <M>L_3(2)</M></Heading>
There are three examples with <M>d = 6</M>
and one example with <M>d = 8</M>.
The generators of the point group for the first three examples are as follows
(see <Cite Key="HP89" Where="p. 290"/>).
<P/>
<Example><![CDATA[
gap> a:= [ [ 0, 1, 0, 1, 0, 0 ],
> [ 1, 0, 1, 1, 1, 1 ],
> [-1,-1,-1,-1, 0, 0 ],
> [ 0, 0,-1,-1,-1,-1 ],
> [ 1, 1, 1, 1, 0, 1 ],
> [ 0, 0, 1, 0, 1, 0 ] ];;
gap> b:= [ [-1, 0, 0, 0, 0,-1 ],
> [ 0, 0,-1, 0,-1, 0 ],
> [ 1, 1, 1, 1, 1, 1 ],
> [ 0, 0, 1, 0, 0, 0 ],
> [-1,-1,-1, 0, 0, 0 ],
> [ 1, 0, 0, 0, 0, 0 ] ];;
]]></Example>
<P/>
The first vector system is the trivial vector system <M>V_1</M>
(that is, the space group <M>S</M> is a split extension of the point group
and the translation lattice),
and the translation lattice is the full lattice <M>L_1 = &ZZ;^d</M>.
<P/>
The library character table with identifier <C>"P11/G1/L1/V1/ext4"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(4 L_1)</M>, so we compute the action on an orbit modulo <M>4</M>.
<P/>
<Example><![CDATA[
gap> v:= List( [ 1, 2 ], i -> 0 * a[1] );;
gap> t:= [ 1, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 4 );;
gap> seed:= [ 1, 0, 0, 0, 0, 0, 1 ];;
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P11/G1/L1/V1/ext4" );
true
]]></Example>
<P/>
The second vector system is <M>V_2</M>,
and the translation lattice is <M>2 L_1</M>.
<P/>
The library character table with identifier <C>"P11/G1/L1/V2/ext4"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(8 L_1)</M>, so we compute the action on an orbit modulo <M>8</M>.
<P/>
<Example><![CDATA[
gap> v:= [ [ 1, 0, 1, 0, 0, 0 ], 0 * a[1] ];;
gap> t:= [ 2, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 8 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P11/G1/L1/V2/ext4" );
true
]]></Example>
<P/>
The third vector system is <M>V_3</M>,
and the translation lattice is <M>2 L_1</M>.
<P/>
The library character table with identifier <C>"P11/G1/L1/V3/ext4"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(8 L_1)</M>, so we compute the action on an orbit modulo <M>8</M>.
<P/>
<Example><![CDATA[
gap> v:= [ [ 0, 1, 0, 0, 1, 0 ], 0 * a[1] ];;
gap> t:= [ 2, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 8 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P11/G1/L1/V3/ext4" );
true
]]></Example>
<P/>
The generators of the point group for the fourth example are as follows
(see <Cite Key="HP89" Where="p. 293"/>).
<P/>
<Example><![CDATA[
gap> a:= [ [ 1, 0, 0, 1, 0,-1, 0, 1 ],
> [ 0,-1, 1, 0,-1, 0, 0, 0 ],
> [ 1, 0, 0, 1, 0,-1, 0, 0 ],
> [ 0,-1, 0,-1, 0, 1, 1,-1 ],
> [ 1, 0,-1, 1, 1,-1, 0, 0 ],
> [ 1,-1,-1, 0, 0, 0, 1, 0 ],
> [ 0,-1, 1, 0,-1, 1, 0,-1 ],
> [ 1, 0,-1, 0, 0, 0, 0, 0 ] ];;
gap> b:= [ [ 1, 0,-2, 0, 1,-1, 1, 0 ],
> [ 0,-1, 0, 0, 0, 0, 1,-1 ],
> [ 1, 0,-1, 0, 1,-1, 0, 0 ],
> [-1,-1, 1,-1,-1, 2, 0,-1 ],
> [ 0, 0, 0,-1, 0, 0, 0, 0 ],
> [ 0,-1, 0,-1,-1, 1, 1,-1 ],
> [ 1,-1, 0, 0, 0, 0, 0, 0 ],
> [ 1, 0, 0, 0, 0, 0, 0, 0 ] ];;
]]></Example>
<P/>
The vector system is the trivial vector system <M>V_1</M>,
and the translation lattice is the full lattice <M>L_1 = &ZZ;^d</M>.
<P/>
The library character table with identifier <C>"P11/G4/L1/V1/ext3"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(3 L_1)</M>, so we compute the action on an orbit modulo <M>3</M>.
<P/>
<Example><![CDATA[
gap> v:= List( [ 1, 2 ], i -> 0 * a[1] );;
gap> t:= [ 1, 0, 0, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 3 );;
gap> seed:= [ 1, 0, 0, 0, 0, 0, 0, 0, 1 ];;
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P11/G4/L1/V1/ext3" );
true
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-sl27">
<Heading>Example with point group SL<M>_2(7)</M></Heading>
There is one example with <M>d = 8</M>.
The generators of the point group are as follows
(see <Cite Key="HP89" Where="p. 295"/>).
<P/>
<Example><![CDATA[
gap> a:= KroneckerProduct( IdentityMat( 4 ), [ [ 0, 1 ], [ -1, 0 ] ] );;
gap> b:= [ [ 0,-1, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 1, 0, 0, 0, 0, 0 ],
> [-1, 0, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0,-1, 0 ],
> [ 0, 0, 0,-1, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 1, 0, 0 ],
> [ 0, 0, 0, 0, 1, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 0, 1 ] ];;
]]></Example>
<P/>
The vector system is the trivial vector system <M>V_1</M>,
and the translation lattice is the sublattice <M>L_2</M> of <M>&ZZ;^d</M>
that has the following basis,
which is called <M>B(2,8)</M> in <Cite Key="HP89" Where="p. 269"/>.
<P/>
<Example><![CDATA[
gap> bas:= [ [ 1, 1, 0, 0, 0, 0, 0, 0 ],
> [ 0, 1, 1, 0, 0, 0, 0, 0 ],
> [ 0, 0, 1, 1, 0, 0, 0, 0 ],
> [ 0, 0, 0, 1, 1, 0, 0, 0 ],
> [ 0, 0, 0, 0, 1, 1, 0, 0 ],
> [ 0, 0, 0, 0, 0, 1, 1, 0 ],
> [ 0, 0, 0, 0, 0, 0, 1, 1 ],
> [ 0, 0, 0, 0, 0, 0,-1, 1 ] ];;
]]></Example>
<P/>
For the sake of simplicity, we rewrite the action to one on <M>L_2</M>.
<P/>
<Example><![CDATA[
gap> B:= Basis( Rationals^Length( bas ), bas );;
gap> abas:= List( bas, x -> Coefficients( B, x * a ) );;
gap> bbas:= List( bas, x -> Coefficients( B, x * b ) );;
]]></Example>
<P/>
The library character table with identifier <C>"P12/G1/L2/V1/ext2"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(2 L_2)</M>.
The action on an orbit modulo <M>2</M> is not faithful,
its kernel contains the centre of SL<M>(2,7)</M>.
We can compute a faithful representation by acting on pairs:
One entry is the usual vector and the other entry carries the action
of the point group.
<P/>
<Example><![CDATA[
gap> v:= List( [ 1, 2 ], i -> 0 * a[1] );;
gap> t:= [ 1, 0, 0, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ abas, bbas ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 2 );;
gap> funpairs:= function( pair, g )
> return [ fun( pair[1], g ), pair[2] * g ];
> end;;
gap> seed:= [ [ 1, 0, 0, 0, 0, 0, 0, 0, 1 ],
> [ 1, 0, 0, 0, 0, 0, 0, 0, 0 ] ];;
gap> orb:= Orbit( g, seed, funpairs );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, funpairs ) );;
gap> verifyFactorGroup( permgens, "P12/G1/L2/V1/ext2" );
true
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-23L32">
<Heading>Example with point group <M>2^3.L_3(2)</M></Heading>
There is one example with <M>d = 7</M>.
The generators of the point group are as follows
(see <Cite Key="HP89" Where="p. 297"/>).
<P/>
<Example><![CDATA[
gap> a:= PermutationMat( (2,4)(5,7), 7 );;
gap> b:= PermutationMat( (1,3,2)(4,6,5), 7 );;
gap> c:= DiagonalMat( [ -1, -1, 1, 1, -1, -1, 1 ] );;
]]></Example>
<P/>
The vector system is the trivial vector system <M>V_1</M>,
and the translation lattice is the sublattice <M>L_2</M> of <M>&ZZ;^d</M>
that has the following basis,
which is called <M>B(2,7)</M> in <Cite Key="HP89" Where="p. 269"/>.
<P/>
<Example><![CDATA[
gap> bas:= [ [ 1, 1, 0, 0, 0, 0, 0 ],
> [ 0, 1, 1, 0, 0, 0, 0 ],
> [ 0, 0, 1, 1, 0, 0, 0 ],
> [ 0, 0, 0, 1, 1, 0, 0 ],
> [ 0, 0, 0, 0, 1, 1, 0 ],
> [ 0, 0, 0, 0, 0, 1, 1 ],
> [ 0, 0, 0, 0, 0,-1, 1 ] ];;
]]></Example>
<P/>
For the sake of simplicity, we rewrite the action to one on <M>L_2</M>.
<P/>
<Example><![CDATA[
gap> B:= Basis( Rationals^Length( bas ), bas );;
gap> abas:= List( bas, x -> Coefficients( B, x * a ) );;
gap> bbas:= List( bas, x -> Coefficients( B, x * b ) );;
gap> cbas:= List( bas, x -> Coefficients( B, x * c ) );;
]]></Example>
<P/>
The library character table with identifier <C>"P13/G1/L2/V1/ext2"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(2 L_2)</M>, so we compute the action on an orbit modulo <M>2</M>.
<P/>
<Example><![CDATA[
gap> v:= List( [ 1 .. 3 ], i -> 0 * a[1] );;
gap> t:= [ 1, 0, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ abas,bbas,cbas ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 2 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 0, 1 ], fun );;
gap> act:= Action( g, orb, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P13/G1/L2/V1/ext2" );
true
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-A6">
<Heading>Examples with point group <M>A_6</M></Heading>
There are two examples with <M>d = 10</M>.
In both cases, the generators of the point group are as follows
(see <Cite Key="HP89" Where="p. 307"/>).
<P/>
<Example><![CDATA[
gap> b:= [ [ 0,-1, 0, 0, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0,-1, 0, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ],
> [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ];;
gap> c:= [ [ 0, 0, 0, 0, 0, 0, 0,-1, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 0,-1, 1,-1 ],
> [ 0, 0, 0, 0,-1, 1, 0,-1, 0, 0 ],
> [ 0,-1, 1, 0, 0, 0, 0,-1, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 0, 0, 0,-1 ],
> [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
> [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 1,-1, 0, 0, 1 ],
> [ 0, 0, 1,-1, 0, 0, 0, 0, 0, 1 ],
> [-1, 0, 1, 0, 0,-1, 0, 0, 0, 0 ] ];;
]]></Example>
<P/>
In both examples, the vector system is the trivial vector system <M>V_1</M>,
and the translation lattices are the lattices <M>L_2</M> and <M>L_5</M>,
respectively, which have the following bases.
<P/>
<Example><![CDATA[
gap> bas2:= [ [ 0, 1,-1, 0, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 1,-1, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0, 1,-1, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 1,-1, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 1, 0,-1, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 0, 1,-1, 0 ],
> [ 0, 0, 0, 0, 0, 0, 0, 0, 1,-1 ],
> [ 0, 0, 0, 1, 0, 0, 0, 0, 0,-1 ],
> [ 0, 1, 0, 0, 0, 0, 0, 1, 0, 0 ],
> [ 1, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] ];;
gap> bas5:= [ [ 0,-1, 1, 1,-1, 1, 1,-1,-1, 0 ],
> [ 1, 0,-1,-1,-1, 1, 1,-1,-1, 0 ],
> [ 0, 1, 1,-1, 1, 1,-1, 0, 1, 1 ],
> [ 1, 1, 0,-1, 0,-1, 1,-1, 1,-1 ],
> [-1, 0,-1, 1, 1, 0,-1,-1, 1,-1 ],
> [ 0, 1,-1, 1, 1,-1, 1, 1, 0,-1 ],
> [-1,-1, 1, 1, 0,-1,-1,-1,-1, 0 ],
> [ 1,-1, 0,-1, 1,-1, 1, 1, 0,-1 ],
> [-1, 1,-1, 1,-1, 0,-1, 1, 0,-1 ],
> [ 1,-1,-1, 1, 1, 1, 0, 0,-1,-1 ] ];;
]]></Example>
<P/>
For the sake of simplicity, we rewrite the action to actions on <M>L_2</M>
and <M>L_5</M>, respectively.
<P/>
<Example><![CDATA[
gap> B2:= Basis( Rationals^Length( bas2 ), bas2 );;
gap> bbas2:= List( bas2, x -> Coefficients( B2, x * b ) );;
gap> cbas2:= List( bas2, x -> Coefficients( B2, x * c ) );;
gap> B5:= Basis( Rationals^Length( bas5 ), bas5 );;
gap> bbas5:= List( bas5, x -> Coefficients( B5, x * b ) );;
gap> cbas5:= List( bas5, x -> Coefficients( B5, x * c ) );;
]]></Example>
<P/>
The library character table with identifier <C>"P21/G3/L2/V1/ext2"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(2 L_2)</M>, so we compute the action on an orbit modulo <M>2</M>.
<P/>
<Example><![CDATA[
gap> v:= List( [ 1, 2 ], i -> 0 * bbas2[1] );;
gap> t:= [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ bbas2, cbas2 ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 2 );;
gap> seed:= [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ];;
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P21/G3/L2/V1/ext2" );
true
]]></Example>
<P/>
The library character table with identifier <C>"P21/G3/L5/V1/ext2"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(2 L_5)</M>, so we compute the action on an orbit modulo <M>2</M>.
<P/>
<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ bbas5, cbas5 ], v, t );;
gap> g:= Group( sgens );;
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P21/G3/L5/V1/ext2" );
true
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-L28">
<Heading>Examples with point group <M>L_2(8)</M></Heading>
There are two examples with <M>d = 7</M>.
In both cases, the generators of the point group are as follows
(see <Cite Key="HP89" Where="p. 327"/>).
<P/>
<Example><![CDATA[
gap> a:= [ [ 0,-1, 0, 1, 0,-1, 1],
> [ 0, 0,-1, 0, 1,-1, 0],
> [ 0, 0, 0,-1, 1, 0, 0],
> [ 0, 0, 0,-1, 0, 0, 0],
> [ 0, 0, 1,-1, 0, 0, 0],
> [ 0,-1, 1, 0,-1, 0, 0],
> [ 1,-1, 0, 1, 0,-1, 0] ];;
gap> b:= [ [-1, 0, 1, 0,-1, 1, 0],
> [ 0,-1, 0, 1,-1, 0, 0],
> [ 0, 0,-1, 1, 0, 0, 0],
> [ 0, 0,-1, 0, 0, 0, 0],
> [ 0, 1,-1, 0, 0, 0, 0],
> [-1, 1, 0,-1, 0, 0, 0],
> [-1, 0, 1, 0,-1, 0, 1] ];;
]]></Example>
<P/>
In both examples, the vector system is <M>V_2</M>.
The translation lattice in the first example is the lattice <M>L = 3 &ZZ;^d</M>.
<P/>
<Example><![CDATA[
gap> v:= [ [ 2, 1, 0, 0, 0, 1, 4 ],
> [ 2, 0, 0, 0, 0, 0, 0 ] ];;
gap> t:= [ 3, 0, 0, 0, 0, 0, 0 ];;
]]></Example>
<P/>
The library character table with identifier <C>"P41/G1/L1/V3/ext3"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(3 L)</M>, so we compute the action on an orbit modulo <M>9</M>.
<P/>
The orbits in this action are quite long.
we choose a seed vector from the fixed space of an element of order <M>7</M>.
<P/>
<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> aa:= sgens[1];;
gap> bb:= sgens[2];;
gap> elm:= aa*bb;;
gap> Order( elm );
7
gap> fixed:= NullspaceMat( elm - aa^0 );
[ [ 1, 1, 1, 1, 1, 1, 1, 0 ], [ -4, 1, 1, -5, -5, 2, 0, 1 ] ]
gap> fun:= multiplicationModulo( 9 );;
gap> seed:= fun( fixed[2], aa^0 );
[ 5, 1, 1, 4, 4, 2, 0, 1 ]
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P41/G1/L1/V3/ext3" );
true
]]></Example>
<P/>
The translation lattice in the second example is the lattice
<M>L = 6 &ZZ;^d</M>.
<P/>
<Example><![CDATA[
gap> t:= [ 6, 0, 0, 0, 0, 0, 0 ];;
]]></Example>
<P/>
The library character table with identifier <C>"P41/G1/L1/V4/ext3"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(6 L)</M>, so we compute the action on an orbit modulo <M>18</M>.
<P/>
<Example><![CDATA[
gap> fun:= multiplicationModulo( 18 );;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> seed:= fun( fixed[2], aa^0 );
[ 14, 1, 1, 13, 13, 2, 0, 1 ]
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P41/G1/L1/V4/ext3" );
true
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-M11">
<Heading>Example with point group <M>M_{11}</M></Heading>
There is one example with <M>d = 10</M>.
The generators of the point group are as follows
(see <Cite Key="HP89" Where="p. 334"/>).
<P/>
<Example><![CDATA[
gap> a:= deletedPermutationMat( (1,9)(3,5)(7,11)(8,10), 11 );;
gap> b:= deletedPermutationMat( (1,4,3,2)(5,8,7,6), 11 );;
]]></Example>
<P/>
The vector system is <M>V_2</M>,
and the translation lattice is <M>L = 2 &ZZ;^d</M>.
<P/>
<Example><![CDATA[
gap> v:= [ 0 * a[1],
> [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ] ];;
gap> t:= [ 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];;
]]></Example>
<P/>
The library character table with identifier <C>"P48/G1/L1/V2/ext2"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(2 L)</M>, so we compute the action on an orbit modulo <M>4</M>.
<P/>
<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 4 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P48/G1/L1/V2/ext2" );
true
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-U33">
<Heading>Example with point group <M>U_3(3)</M></Heading>
There is one example with <M>d = 7</M>.
The generators of the point group are as follows
(see <Cite Key="HP89" Where="p. 335"/>).
<P/>
<Example><![CDATA[
gap> a:= [ [ 0, 0,-1, 1, 0,-1, 1 ],
> [ 1, 0,-1, 1, 1,-1, 0 ],
> [ 0, 1,-1, 0, 1, 0,-1 ],
> [ 0, 1, 0,-1, 1, 0,-1 ],
> [-1, 1, 1,-1, 0, 1, 0 ],
> [-1, 0, 1,-1, 0, 0, 1 ],
> [ 0, 0, 0, 0, 0, 0, 1 ] ];;
gap> b:= [ [ 0, 0, 0, 0, 0, 0, 1 ],
> [ 0, 0,-1, 1, 0,-1, 1 ],
> [ 1, 0,-1, 1, 1,-1, 0 ],
> [ 0, 1,-1, 0, 1, 0,-1 ],
> [ 0, 1, 0,-1, 1, 0,-1 ],
> [-1, 1, 1,-1, 0, 1, 0 ],
> [-1, 0, 1,-1, 0, 0, 1 ] ];;
]]></Example>
<P/>
The vector system is <M>V_2</M>,
and the translation lattice is <M>L = 3 &ZZ;^d</M>.
<P/>
<Example><![CDATA[
gap> v:= [ [ 2, 1, 0, 0, 2, 1, 0 ],
> 0 * b[1] ];;
gap> t:= [ 3, 0, 0, 0, 0, 0, 0 ];;
]]></Example>
<P/>
The library character table with identifier <C>"P49/G1/L1/V2/ext3"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(3 L)</M>, so we compute the action on an orbit modulo <M>9</M>.
<P/>
<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 9 );;
]]></Example>
<P/>
The orbits in this action are quite long.
we choose a seed vector from the fixed space of an element of order <M>12</M>.
<P/>
<Example><![CDATA[
gap> aa:= sgens[1];;
gap> bb:= sgens[2];;
gap> elm:= aa*bb^4;;
gap> Order( elm );
12
gap> fixed:= NullspaceMat( elm - aa^0 );
[ [ -1, -1, 1, 1, -1, -1, 1, 0 ], [ 0, -3, 1, 1, -1, -2, 0, 1 ] ]
gap> seed:= fun( fixed[2], aa^0 );
[ 0, 6, 1, 1, 8, 7, 0, 1 ]
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P49/G1/L1/V2/ext3" );
true
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-U42">
<Heading>Examples with point group <M>U_4(2)</M></Heading>
There are two examples with <M>d = 6</M>.
In both cases, the generators of the point group are as follows
(see <Cite Key="HP89" Where="p. 336"/>).
<P/>
<Example><![CDATA[
gap> a:= [ [ 0, 1, 0,-1,-1, 1 ],
> [ 1, 0,-1, 0, 1, 0 ],
> [ 0, 0, 0,-1, 0, 1 ],
> [ 0, 0,-1, 0, 0, 1 ],
> [ 0, 0, 0, 0, 1, 0 ],
> [ 0, 0, 0, 0, 0, 1 ] ];;
gap> b:= [ [ 0,-1, 0, 1, 0,-1 ],
> [ 0, 1, 0,-1,-1, 0 ],
> [ 0, 0, 1, 1, 0,-1 ],
> [ 0, 0, 0, 0,-1, 0 ],
> [ 0, 1, 0, 0, 0, 0 ],
> [ 1, 0, 0, 0, 0, 0 ] ];;
]]></Example>
<P/>
In both examples, the vector system is the trivial vector system <M>V_1</M>,
and the translation lattice is the full lattice <M>L_1 = &ZZ;^d</M>.
<P/>
<Example><![CDATA[
gap> v:= List( [ 1, 2 ], i -> 0 * a[1] );;
gap> t:= [ 1, 0, 0, 0, 0, 0 ];;
]]></Example>
<P/>
The library character table with identifier <C>"P50/G1/L1/V1/ext3"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(3 L_1)</M>, so we compute the action on an orbit modulo <M>3</M>.
<P/>
<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 3 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P50/G1/L1/V1/ext3" );
true
]]></Example>
<P/>
The library character table with identifier <C>"P50/G1/L1/V1/ext4"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(4 L_1)</M>, so we compute the action on an orbit modulo <M>4</M>.
<P/>
<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 4 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P50/G1/L1/V1/ext4" );
true
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:A-remark-on-one-of-the-example-groups">
<Heading>A remark on one of the example groups</Heading>
The (perfect) character table with identifier <C>"P1/G2/L2/V2/ext4"</C>
has the property that its character degrees are exactly
the divisors of <M>60</M>.
<P/>
<Example><![CDATA[
gap> degrees:= CharacterDegrees( CharacterTable( "P1/G2/L2/V2/ext4" ) );
[ [ 1, 1 ], [ 2, 2 ], [ 3, 2 ], [ 4, 2 ], [ 5, 1 ], [ 6, 5 ],
[ 10, 4 ], [ 12, 4 ], [ 15, 20 ], [ 20, 2 ], [ 30, 29 ], [ 60, 8 ] ]
gap> List( degrees, x -> x[1] ) = DivisorsInt( 60 );
true
]]></Example>
<P/>
There are nilpotent groups with the same set of character degrees,
for example the direct product of four extraspecial groups of the orders
<M>2^3</M>, <M>2^3</M>, <M>3^3</M>, and <M>5^3</M>, respectively.
This phenomenon has been described in <Cite Key="NR14"/>.
</Subsection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:generalityproblems">
<Heading>Generality problems (December 2004/October 2015)</Heading>
The term <Q>generality problem</Q> is used for problems concerning
consistent choices of conjugacy classes of Brauer tables for the same
group, in different characteristics.
The definition and some examples are given
in <Cite Key="JLPW95" Where="p. x"/>.
<P/>
Section <Ref Subsect="subsect:generalityproblems_list"/>
shows how to detect generality problems
and lists the known generality problems,
and Section <Ref Subsect="subsect:generality_J3"/> gives an example
that actually arose.
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:generalityproblems_list">
<Heading>Listing possible generality problems</Heading>
We use the following idea for finding character tables which
may involve generality problems.
(The functions shown in this section are based on &GAP; 3 code
that was originally written by Jürgen Müller.)
<P/>
If the <M>p</M>-modular Brauer table <M>mtbl</M>, say,
of a group contributes to a generality problem
then some choice of conjugacy classes is necessary
in order to write down this table,
in the sense that some symmetry of the corresponding ordinary table
<M>tbl</M>, say, is broken in <M>mtbl</M>.
This situation can be detected as follows.
We assume that the class fusion from <M>mtbl</M> to <M>tbl</M>
has been fixed.
All possible class fusions are obtained as the orbit of this
class fusion under the actions of table automorphisms of <M>tbl</M>,
via mapping the images of the class fusion
(with the function <Ref Func="OnTuples" BookName="ref"/>),
and of the table automorphisms of <M>mtbl</M>,
via permuting the preimages.
The case of broken symmetries occurs if and only if this orbit
splits into several orbits when only the action of the
table automorphisms of <M>mtbl</M> is considered.
Equivalently, symmetries are broken if and only if the orbit under
table automorphisms of <M>mtbl</M> is not closed under the action of
table automorphisms of <M>tbl</M>.
<!-- It is sufficient to test generators of 'taut'
because 'orb' is invariant under the action of 'taut'
if and only if everey generator leaves 'orb' invariant. -->
<P/>
<Example><![CDATA[
gap> BrokenSymmetries:= function( ordtbl, modtbl )
> local taut, maut, triv, fus, orb;
> taut:= AutomorphismsOfTable( ordtbl );
> maut:= AutomorphismsOfTable( modtbl );
> triv:= TrivialSubgroup( taut );
> fus:= GetFusionMap( modtbl, ordtbl );
> orb:= MakeImmutable( Set( OrbitFusions( maut, fus, triv ) ) );
> return ForAny( GeneratorsOfGroup( taut ),
> x -> ForAny( orb,
> fus -> not OnTuples( fus, x ) in orb ) );
> end;;
]]></Example>
<P/>
<E>Remark:</E> (Thanks to Klaus Lux for discussions on this topic.)
<List>
<Item>
It may happen that some symmetry <M>\sigma_m</M> of a Brauer table
does not belong to a symmetry <M>\sigma_o</M> of the corresponding
ordinary table,
in the sense that permuting the preimage classes of a fusion <M>f</M>
between the two tables with <M>\sigma_m</M>
and permuting the image classes with <M>\sigma_o</M> yields <M>f</M>.
<P/>
For example, consider the group <M>G = 2.A_6.2_1</M>,
the double cover of the symmetric group <M>S_6</M> on six points.
The <M>2</M>-modular Brauer table of <M>G</M>,
which is essentially equal to that of <M>S_6</M>,
has a table automorphism group order two,
and the nonidentity element in it swaps the two classes
of element order three.
The automorphism group of the ordinary character table of <M>G</M>,
however, fixes the two classes of element order three;
note that exactly one of these classes possesses square roots in the
<Q>outer half</Q> <M>G \setminus G'</M>.
<P/>
Thus it is not sufficient to compare the orbit of the fixed class fusion
under the automorphisms of the ordinary table with the orbit of the
same fusion under the automorphisms of the Brauer table.
</Item>
</List>
<Example><![CDATA[
gap> t:= CharacterTable( "2.A6.2_1" );;
gap> m:= t mod 2;;
gap> GetFusionMap( m, t );
[ 1, 4, 6, 9 ]
gap> AutomorphismsOfTable( t );
Group([ (16,17), (14,15), (14,15)(16,17) ])
gap> AutomorphismsOfTable( m );
Group([ (2,3) ])
gap> Display( m );
2.A6.2_1mod2
2 5 2 2 1
3 2 2 2 .
5 1 . . 1
1a 3a 3b 5a
2P 1a 3a 3b 5a
3P 1a 1a 1a 5a
5P 1a 3a 3b 1a
X.1 1 1 1 1
X.2 4 1 -2 -1
X.3 4 -2 1 -1
X.4 16 -2 -2 1
gap> Display( t );
2.A6.2_1
2 5 5 4 2 2 2 2 3 1 1 4 4 3 2 2 2 2
3 2 2 . 2 2 2 2 . . . 1 1 . 1 1 1 1
5 1 1 . . . . . . 1 1 . . . . . . .
1a 2a 4a 3a 6a 3b 6b 8a 5a 10a 2b 4b 8b 6c 6d 12a 12b
2P 1a 1a 2a 3a 3a 3b 3b 4a 5a 5a 1a 2a 4a 3a 3a 6b 6b
3P 1a 2a 4a 1a 2a 1a 2a 8a 5a 10a 2b 4b 8b 2b 2b 4b 4b
5P 1a 2a 4a 3a 6a 3b 6b 8a 1a 2a 2b 4b 8b 6d 6c 12b 12a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
X.3 5 5 1 2 2 -1 -1 -1 . . 3 -1 1 . . -1 -1
X.4 5 5 1 2 2 -1 -1 -1 . . -3 1 -1 . . 1 1
X.5 5 5 1 -1 -1 2 2 -1 . . -1 3 1 -1 -1 . .
X.6 5 5 1 -1 -1 2 2 -1 . . 1 -3 -1 1 1 . .
X.7 16 16 . -2 -2 -2 -2 . 1 1 . . . . . . .
X.8 9 9 1 . . . . 1 -1 -1 3 3 -1 . . . .
X.9 9 9 1 . . . . 1 -1 -1 -3 -3 1 . . . .
X.10 10 10 -2 1 1 1 1 . . . 2 -2 . -1 -1 1 1
X.11 10 10 -2 1 1 1 1 . . . -2 2 . 1 1 -1 -1
X.12 4 -4 . -2 2 1 -1 . -1 1 . . . . . B -B
X.13 4 -4 . -2 2 1 -1 . -1 1 . . . . . -B B
X.14 4 -4 . 1 -1 -2 2 . -1 1 . . . A -A . .
X.15 4 -4 . 1 -1 -2 2 . -1 1 . . . -A A . .
X.16 16 -16 . -2 2 -2 2 . 1 -1 . . . . . . .
X.17 20 -20 . 2 -2 2 -2 . . . . . . . . . .
A = E(3)-E(3)^2
= Sqrt(-3) = i3
B = -E(12)^7+E(12)^11
= Sqrt(3) = r3
]]></Example>
<P/>
When considering several characteristics in parallel, one argues as follows.
The possible class fusions from a Brauer table <M>mtbl</M> to its
ordinary table <M>tbl</M> are given by the orbit of a fixed class fusion
under the action of the table automorphisms of <M>tbl</M>.
If there are several orbits under the action of the automorphisms
of <M>mtbl</M> then we choose one orbit.
Due to this choice, only those table automorphisms of <M>tbl</M> are
admissible for other characteristics that stabilize the chosen orbit.
For the second characteristic, we take again the set of all class fusions
from the Brauer table to <M>tbl</M>, and split it into orbits under the
table automorphisms of the Brauer table.
Now there are two possibilities.
Either the action of the admissible subgroup of automorphisms of <M>tbl</M>
joins these orbits into one orbit or not.
In the former case, we choose again one of the orbits,
replace the group of admissible automorphisms of <M>tbl</M> by
the stabilizer of this orbit, and proceed with the next characteristic.
In the latter case, we have found a generality problem,
since we are not free to choose an arbitrary class fusion from the
set of possibilities.
<P/>
The following function returns the set of primes which may be involved
in generality problems for the given ordinary character table.
Note that the procedure sketched above does not tell
which characteristics are actually involved
or which classes are affected by the choices;
for example, we could argue that one is always free to choose a fusion
for the first characteristics, and that only the other ones cause problems.
We return <E>all</E> those primes <M>p</M> for which broken symmetries
between the <M>p</M>-modular table and the ordinary table have been detected.
<P/>
<Example><![CDATA[
gap> PrimesOfGeneralityProblems:= function( ordtbl )
> local consider, p, modtbl, taut, triv, admiss, fusion, maut,
> allfusions, orbits, orbit, reps;
> # Find the primes for which symmetries are broken.
> consider:= [];
> for p in Filtered( PrimeDivisors( Size( ordtbl ) ), IsPrimeInt ) do
> modtbl:= ordtbl mod p;
> if modtbl <> fail and BrokenSymmetries( ordtbl, modtbl ) then
> Add( consider, p );
> fi;
> od;
> # Compute the choices and detect generality problems.
> taut:= AutomorphismsOfTable( ordtbl );
> triv:= TrivialSubgroup( taut );
> admiss:= taut;
> for p in consider do
> modtbl:= ordtbl mod p;
> fusion:= GetFusionMap( modtbl, ordtbl );
> maut:= AutomorphismsOfTable( modtbl );
> # - We need not apply the action of 'maut' here,
> # since 'maut' will later be used to get representatives.
> # - We need not apply all elements in 'taut' but only
> # representatives of left cosets of 'admiss' in 'taut',
> # since 'admiss' will later be used to get representatives.
> # allfusions:= OrbitFusions( maut, fusion, taut );
> allfusions:= Set( RightTransversal( taut, admiss ),
> x -> OnTuples( fusion, x^-1 ) );
> # For computing representatives, 'RepresentativesFusions' is not
> # suitable because 'allfusions' is in generally not closed
> # under the actions.
> # reps:= RepresentativesFusions( maut, allfusions, admiss );
> orbits:= [];
> while not IsEmpty( allfusions ) do
> orbit:= OrbitFusions( maut, allfusions[1], admiss );
> Add( orbits, orbit );
> SubtractSet( allfusions, orbit );
> od;
> reps:= List( orbits, x -> x[1] );
> if Length( reps ) = 1 then
> # Reduce the symmetries that are still available.
> admiss:= Stabilizer( admiss,
> Set( OrbitFusions( maut, fusion, triv ) ),
> OnSetsTuples );
> else
> # We have found a generality problem.
> return consider;
> fi;
> od;
> # There is no generality problem for this table.
> return [];
> end;;
]]></Example>
<P/>
Let us look at a small example,
the <M>5</M>-modular character table of the group <M>2.A_5.2</M>.
The irreducible characters of degree <M>2</M> have the values
<M>\pm \sqrt{{-2}}</M> on the classes <C>8a</C> and <C>8b</C>,
and the values <M>\pm \sqrt{{-3}}</M> on the classes <C>6b</C> and <C>6c</C>.
When we define which of the two classes of element order <M>8</M> is called
<C>8a</C>, this will also define which class is called <C>6b</C>.
The ordinary character table does not relate the two pairs of classes,
there are table automorphisms which interchange each pair independently.
This symmetry is thus broken in the <M>5</M>-modular character table.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "2.A5.2" );;
gap> m:= t mod 5;;
gap> Display( m );
2.A5.2mod5
2 4 4 3 2 2 2 3 3 2 2
3 1 1 . 1 1 1 . . 1 1
5 1 1 . . . . . . . .
1a 2a 4a 3a 6a 2b 8a 8b 6b 6c
2P 1a 1a 2a 3a 3a 1a 4a 4a 3a 3a
3P 1a 2a 4a 1a 2a 2b 8a 8b 2b 2b
5P 1a 2a 4a 3a 6a 2b 8b 8a 6c 6b
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 -1 -1 -1 -1 -1
X.3 3 3 -1 . . 1 -1 -1 -2 -2
X.4 3 3 -1 . . -1 1 1 2 2
X.5 5 5 1 -1 -1 1 -1 -1 1 1
X.6 5 5 1 -1 -1 -1 1 1 -1 -1
X.7 2 -2 . -1 1 . A -A B -B
X.8 2 -2 . -1 1 . -A A -B B
X.9 4 -4 . 1 -1 . . . B -B
X.10 4 -4 . 1 -1 . . . -B B
A = E(8)+E(8)^3
= Sqrt(-2) = i2
B = E(3)-E(3)^2
= Sqrt(-3) = i3
gap> AutomorphismsOfTable( t );
Group([ (11,12), (9,10) ])
gap> AutomorphismsOfTable( m );
Group([ (7,8)(9,10) ])
gap> GetFusionMap( m, t );
[ 1, 2, 3, 4, 5, 8, 9, 10, 11, 12 ]
gap> BrokenSymmetries( t, m );
true
gap> BrokenSymmetries( t, t mod 2 );
false
gap> BrokenSymmetries( t, t mod 3 );
false
gap> PrimesOfGeneralityProblems( t );
[ ]
]]></Example>
<P/>
Since no symmetry is broken in the <M>2</M>- and <M>3</M>-modular
character tables of <M>G</M>, there is no generality problem
in this case.
<P/>
For an example of a generality problem,
we look at the smallest Janko group <M>J_1</M>.
As is mentioned in <Cite Key="JLPW95" Where="p. x"/>,
the unique irreducible <M>11</M>-modular Brauer character of degree <M>7</M>
distinguishes the two (algebraically conjugate) classes
of element order <M>5</M>.
Since also the unique irreducible <M>19</M>-modular Brauer character
of degree <M>22</M> distinguishes these classes,
we have to choose these classes consistently.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "J1" );;
gap> m:= t mod 11;;
gap> Display( m, rec( chars:= Filtered( Irr( m ), x -> x[1] = 7 ) ) );
J1mod11
2 3 3 1 1 1 1 . 1 1 . . . . .
3 1 1 1 1 1 1 . . . 1 1 . . .
5 1 1 1 1 1 . . 1 1 1 1 . . .
7 1 . . . . . 1 . . . . . . .
11 1 . . . . . . . . . . . . .
19 1 . . . . . . . . . . 1 1 1
1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 19a 19b 19c
2P 1a 1a 3a 5b 5a 3a 7a 5b 5a 15b 15a 19b 19c 19a
3P 1a 2a 1a 5b 5a 2a 7a 10b 10a 5b 5a 19b 19c 19a
5P 1a 2a 3a 1a 1a 6a 7a 2a 2a 3a 3a 19b 19c 19a
7P 1a 2a 3a 5b 5a 6a 1a 10b 10a 15b 15a 19a 19b 19c
11P 1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 19a 19b 19c
19P 1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 1a 1a 1a
Y.1 7 -1 1 A *A -1 . B *B C *C D E F
A = E(5)+E(5)^4
= (-1+Sqrt(5))/2 = b5
B = -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4
= (3+Sqrt(5))/2 = 2+b5
C = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5
D = -E(19)-E(19)^2-E(19)^3-E(19)^5-E(19)^7-E(19)^8-E(19)^11-E(19)^12-E\
(19)^14-E(19)^16-E(19)^17-E(19)^18
E = -E(19)^2-E(19)^3-E(19)^4-E(19)^5-E(19)^6-E(19)^9-E(19)^10-E(19)^13\
-E(19)^14-E(19)^15-E(19)^16-E(19)^17
F = -E(19)-E(19)^4-E(19)^6-E(19)^7-E(19)^8-E(19)^9-E(19)^10-E(19)^11-E\
(19)^12-E(19)^13-E(19)^15-E(19)^18
gap> m:= t mod 19;;
gap> Display( m, rec( chars:= Filtered( Irr( m ), x -> x[1] = 22 ) ) );
J1mod19
2 3 3 1 1 1 1 . 1 1 . . .
3 1 1 1 1 1 1 . . . . 1 1
5 1 1 1 1 1 . . 1 1 . 1 1
7 1 . . . . . 1 . . . . .
11 1 . . . . . . . . 1 . .
19 1 . . . . . . . . . . .
1a 2a 3a 5a 5b 6a 7a 10a 10b 11a 15a 15b
2P 1a 1a 3a 5b 5a 3a 7a 5b 5a 11a 15b 15a
3P 1a 2a 1a 5b 5a 2a 7a 10b 10a 11a 5b 5a
5P 1a 2a 3a 1a 1a 6a 7a 2a 2a 11a 3a 3a
7P 1a 2a 3a 5b 5a 6a 1a 10b 10a 11a 15b 15a
11P 1a 2a 3a 5a 5b 6a 7a 10a 10b 1a 15a 15b
19P 1a 2a 3a 5a 5b 6a 7a 10a 10b 11a 15a 15b
Y.1 22 -2 1 A *A 1 1 -A -*A . B *B
A = E(5)+E(5)^4
= (-1+Sqrt(5))/2 = b5
B = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5
]]></Example>
<P/>
Note that the degree <M>7</M> character above also distinguishes
the three classes of element order <M>19</M>,
and the same holds for the unique irreducible degree <M>31</M> character
from characteristic <M>7</M>.
Thus also the prime <M>7</M> occurs in the list of candidates for
generality problems.
<P/>
<Example><![CDATA[
gap> PrimesOfGeneralityProblems( t );
[ 7, 11, 19 ]
]]></Example>
<P/>
Finally, we list the candidates for generality problems
from &GAP;'s Character Table Library.
<P/>
<Example><![CDATA[
gap> list:= [];;
gap> isGeneralityProblem:= function( ordtbl )
> local res;
> res:= PrimesOfGeneralityProblems( ordtbl );
> if res = [] then
> return false;
> fi;
> Add( list, [ Identifier( ordtbl ), res ] );
> return true;
> end;;
gap> AllCharacterTableNames( IsDuplicateTable, false,
> isGeneralityProblem, true );;
gap> PrintArray( SortedList( list ) );
[ [ (2.A4x2.G2(4)).2, [ 2, 5, 7, 13 ] ],
[ (2^2x3).L3(4).2_1, [ 5, 7 ] ],
[ (2x12).L3(4), [ 2, 3, 7 ] ],
[ (4^2x3).L3(4), [ 2, 3, 7 ] ],
[ (7:3xHe):2, [ 5, 7, 17 ] ],
[ (A5xA12):2, [ 2, 3 ] ],
[ (D10xHN).2, [ 2, 3, 5, 7, 11, 19 ] ],
[ (S3x2.Fi22).2, [ 3, 11, 13 ] ],
[ 12.M22, [ 2, 5, 7, 11 ] ],
[ 12.M22.2, [ 2, 5, 7, 11 ] ],
[ 12_1.L3(4).2_1, [ 5, 7 ] ],
[ 12_2.L3(4), [ 2, 3, 7 ] ],
[ 12_2.L3(4).2_1, [ 3, 5, 7 ] ],
[ 12_2.L3(4).2_2, [ 2, 3, 7 ] ],
[ 12_2.L3(4).2_3, [ 2, 3, 7 ] ],
[ 2.(A4xG2(4)).2, [ 2, 5, 7, 13 ] ],
[ 2.2E6(2), [ 13, 19 ] ],
[ 2.2E6(2).2, [ 13, 19 ] ],
[ 2.A10, [ 5, 7 ] ],
[ 2.A11, [ 3, 5, 7 ] ],
[ 2.A11.2, [ 5, 7, 11 ] ],
[ 2.A12, [ 2, 3, 5, 7 ] ],
[ 2.A12.2, [ 5, 7, 11 ] ],
[ 2.A13, [ 2, 3, 5, 7, 11 ] ],
[ 2.A13.2, [ 5, 7, 13 ] ],
[ 2.Alt(14), [ 2, 3, 5, 7 ] ],
[ 2.Alt(15), [ 2, 5, 7 ] ],
[ 2.Alt(16), [ 2, 3, 5, 7 ] ],
[ 2.Alt(17), [ 2, 3, 5, 7 ] ],
[ 2.Alt(18), [ 2, 3, 5, 7 ] ],
[ 2.B, [ 17, 23 ] ],
[ 2.F4(2), [ 2, 7, 13, 17 ] ],
[ 2.Fi22.2, [ 11, 13 ] ],
[ 2.G2(4), [ 2, 7 ] ],
[ 2.G2(4).2, [ 5, 7, 13 ] ],
[ 2.HS, [ 3, 5, 7, 11 ] ],
[ 2.HS.2, [ 3, 11 ] ],
[ 2.L3(4).2_1, [ 5, 7 ] ],
[ 2.Ru, [ 5, 7, 13, 29 ] ],
[ 2.Suz, [ 2, 5, 11 ] ],
[ 2.Suz.2, [ 3, 7, 13 ] ],
[ 2.Sym(15), [ 3, 5, 7 ] ],
[ 2.Sym(16), [ 3, 5, 7 ] ],
[ 2.Sym(17), [ 3, 5, 7 ] ],
[ 2.Sym(18), [ 5, 7 ] ],
[ 2.Sz(8), [ 2, 5, 13 ] ],
[ 2^2.2E6(2), [ 13, 19 ] ],
[ 2^2.2E6(2).2, [ 13, 19 ] ],
[ 2^2.Fi22.2, [ 3, 11, 13 ] ],
[ 2^2.L3(4).2^2, [ 5, 7 ] ],
[ 2^2.L3(4).2_1, [ 5, 7 ] ],
[ 2^2.Sz(8), [ 2, 5, 13 ] ],
[ 2x2.F4(2), [ 2, 7, 13, 17 ] ],
[ 2x3.Fi22, [ 2, 3, 5 ] ],
[ 2x6.Fi22, [ 2, 3, 5 ] ],
[ 2x6.M22, [ 2, 5, 11 ] ],
[ 2xFi22.2, [ 11, 13 ] ],
[ 2xFi23, [ 3, 17, 23 ] ],
[ 3.Fi22, [ 2, 3, 5 ] ],
[ 3.Fi22.2, [ 2, 5, 11, 13 ] ],
[ 3.J3, [ 2, 17, 19 ] ],
[ 3.J3.2, [ 2, 5, 17, 19 ] ],
[ 3.L3(4).2_3, [ 2, 3, 7 ] ],
[ 3.L3(4).3.2_3, [ 2, 3, 7 ] ],
[ 3.L3(7).2, [ 3, 7, 19 ] ],
[ 3.L3(7).S3, [ 3, 7, 19 ] ],
[ 3.McL, [ 2, 5, 11 ] ],
[ 3.McL.2, [ 2, 3, 5, 11 ] ],
[ 3.ON, [ 3, 7, 11, 19, 31 ] ],
[ 3.ON.2, [ 3, 5, 7, 11, 19, 31 ] ],
[ 3.Suz.2, [ 2, 3, 13 ] ],
[ 3x2.F4(2), [ 2, 7, 13, 17 ] ],
[ 3x2.Fi22.2, [ 11, 13 ] ],
[ 3x2.G2(4), [ 2, 7 ] ],
[ 3xFi23, [ 3, 17, 23 ] ],
[ 3xJ1, [ 7, 11, 19 ] ],
[ 3xL3(7).2, [ 3, 7, 19 ] ],
[ 4.HS.2, [ 5, 7, 11 ] ],
[ 4.M22, [ 5, 7 ] ],
[ 4_1.L3(4).2_1, [ 5, 7 ] ],
[ 4_2.L3(4).2_1, [ 3, 5, 7 ] ],
[ 6.Fi22, [ 2, 3, 5 ] ],
[ 6.Fi22.2, [ 2, 5, 11, 13 ] ],
[ 6.L3(4).2_1, [ 5, 7 ] ],
[ 6.M22, [ 2, 5, 11 ] ],
[ 6.O7(3), [ 3, 5, 13 ] ],
[ 6.O7(3).2, [ 3, 5, 13 ] ],
[ 6.Suz, [ 2, 5, 11 ] ],
[ 6.Suz.2, [ 2, 3, 5, 7, 13 ] ],
[ 6x2.F4(2), [ 2, 7, 13, 17 ] ],
[ A12, [ 2, 3 ] ],
[ A14, [ 2, 5, 7 ] ],
[ A17, [ 2, 7 ] ],
[ A18, [ 2, 3, 5, 7 ] ],
[ B, [ 13, 17, 23, 31 ] ],
[ F3+, [ 17, 23, 29 ] ],
[ F3+.2, [ 17, 23, 29 ] ],
[ Fi22.2, [ 11, 13 ] ],
[ Fi23, [ 3, 17, 23 ] ],
[ HN, [ 2, 3, 11, 19 ] ],
[ HN.2, [ 5, 7, 11, 19 ] ],
[ He, [ 5, 17 ] ],
[ He.2, [ 5, 7, 17 ] ],
[ Isoclinic(12.M22.2), [ 2, 5, 7, 11 ] ],
[ Isoclinic(2.A11.2), [ 5, 7, 11 ] ],
[ Isoclinic(2.A12.2), [ 5, 7, 11 ] ],
[ Isoclinic(2.A13.2), [ 5, 7, 13 ] ],
[ Isoclinic(2.Fi22.2), [ 11, 13 ] ],
[ Isoclinic(2.G2(4).2), [ 5, 7, 13 ] ],
[ Isoclinic(2.HS.2), [ 3, 11 ] ],
[ Isoclinic(2.HSx2), [ 3, 5, 7, 11 ] ],
[ Isoclinic(2.L3(4).2_1), [ 5, 7 ] ],
[ Isoclinic(2.Suz.2), [ 3, 7, 13 ] ],
[ Isoclinic(4_1.L3(4).2_1), [ 5, 7 ] ],
[ Isoclinic(4_2.L3(4).2_1), [ 3, 5, 7 ] ],
[ Isoclinic(6.Fi22.2), [ 2, 5, 11, 13 ] ],
[ Isoclinic(6.L3(4).2_1), [ 5, 7 ] ],
[ Isoclinic(6.Suz.2), [ 2, 3, 5, 7, 13 ] ],
[ J1, [ 7, 11, 19 ] ],
[ J1x2, [ 7, 11, 19 ] ],
[ J3, [ 2, 17, 19 ] ],
[ J3.2, [ 2, 5, 17, 19 ] ],
[ L3(4).2_3, [ 3, 7 ] ],
[ L3(4).3.2_3, [ 2, 3, 7 ] ],
[ L3(7).2, [ 3, 7, 19 ] ],
[ L3(7).S3, [ 3, 7, 19 ] ],
[ L3(9).2_1, [ 3, 7, 13 ] ],
[ L5(2).2, [ 2, 7, 31 ] ],
[ Ly, [ 7, 37, 67 ] ],
[ M23, [ 2, 3, 23 ] ],
[ ON, [ 3, 7, 11, 19, 31 ] ],
[ ON.2, [ 3, 5, 7, 11, 19, 31 ] ],
[ Ru, [ 5, 7, 13, 29 ] ],
[ S3xFi22.2, [ 11, 13 ] ],
[ Suz.2, [ 3, 13 ] ] ]
]]></Example>
<P/>
<!-- the list was computed only from those tables which store
table automorphisms; there are some huge Brauer tables that are
constructed as direct products, this takes quite long time. -->
Note that this list may become longer as new Brauer tables become
available.
(For example, the prime <M>2</M> was added to the entries for
extensions of <M>F_4(2)</M> when the <M>2</M>-modular table of <M>F_4(2)</M>
became available.)
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:generality_J3">
<Heading>A generality problem concerning the group <M>J_3</M> (April 2015)</Heading>
<Alt Only="HTML">
<![CDATA[
<a name="generality_problem_J3">In March 2015,</a>
]]>
</Alt>
<Alt Not="HTML">
In March 2015,
</Alt>
Klaus Lux reported an inconsistency in the character data of &GAP;:
<P/>
The sporadic simple Janko group <M>J_3</M> has a unique <M>19</M>-modular
irreducible Brauer character of degree <M>110</M>.
In the character table that is printed in the
&ATLAS; of Brauer characters <Cite Key="JLPW95" Where="p. 219"/>,
the Brauer character value on the class <C>17A</C> is <M>b_{17}</M>.
The &ATLAS; of Group Representations <Cite Key="AGRv3"/> provides
a straight line program for computing class representatives of <M>J_3</M>.
If we compute the Brauer character value in question,
we do not get <M>b_{17}</M> but its algebraic conjugate, <M>-1-b_{17}</M>.
<P/>
<!-- We cannot show the ``old'' status,
since the table has been corrected. -->
<Example><![CDATA[
gap> t:= CharacterTable( "J3" );;
gap> m:= t mod 19;;
gap> cand:= Filtered( Irr( m ), x -> x[1] = 110 );;
gap> Length( cand );
1
gap> slp:= AtlasProgram( "J3", "classes" );;
gap> 17a:= Position( slp.outputs, "17A" );
18
gap> info:= OneAtlasGeneratingSetInfo( "J3", Characteristic, 19,
> Dimension, 110 );;
gap> gens:= AtlasGenerators( info );;
gap> reps:= ResultOfStraightLineProgram( slp.program,
> gens.generators );;
gap> Quadratic( BrauerCharacterValue( reps[ 17a ] ) );
rec( ATLAS := "-1-b17", a := -1, b := -1, d := 2,
display := "(-1-Sqrt(17))/2", root := 17 )
]]></Example>
<P/>
How shall we resolve this inconsistency,
by replacing the straight line program
or by swapping the classes <C>17A</C> and <C>17B</C> in the character table?
Before we decide this, we look at related information.
<P/>
<Alt Only="LaTeX">Table~\ref{valuesJ3}</Alt>
<Alt Not="LaTeX">The following table</Alt>
lists the <M>p</M>-modular irreducible characters of <M>J_3</M>,
according to <Cite Key="JLPW95"/>,
that can be used to define which of the two classes of element order <M>17</M>
shall be called <C>17A</C>;
a <M>+</M> sign in the last column of the table indicates that the
representation is available in the &ATLAS; of Group Representations.
<!-- and fetching a representation with given char. and degree will have
the shown values -->
<P/>
<Table Label="valuesJ3" Align="|r|r|r|r|c|">
<Caption>Representations of <M>J_3</M> that may define <C>17A</C></Caption>
<HorLine/>
<Row>
<Item><M>p</M></Item>
<Item><M>\varphi(1)</M></Item>
<Item><M>\varphi(</M><C>17A</C><M>)</M></Item>
<Item><M>\varphi(</M><C>17B</C><M>)</M></Item>
<Item>&ATLAS;?</Item>
</Row>
<HorLine/>
<HorLine/>
<Row>
<Item><M>2</M></Item>
<Item><M>78</M></Item>
<Item><M>1-b_{17}</M></Item>
<Item><M>2+b_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>2</M></Item>
<Item><M>80</M></Item>
<Item><M>3-b_{17}</M></Item>
<Item><M>4+b_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>2</M></Item>
<Item><M>244</M></Item>
<Item><M>b_{17}-2</M></Item>
<Item><M>-3-b_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>2</M></Item>
<Item><M>966</M></Item>
<Item><M>r_{17}-3</M></Item>
<Item><M>-3-r_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>19</M></Item>
<Item><M>110</M></Item>
<Item><M>b_{17}</M></Item>
<Item><M>-1-b_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>19</M></Item>
<Item><M>214</M></Item>
<Item><M>1-b_{17}</M></Item>
<Item><M>2+b_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>19</M></Item>
<Item><M>706</M></Item>
<Item><M>-b_{17}</M></Item>
<Item><M>1+b_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>19</M></Item>
<Item><M>1214</M></Item>
<Item><M>-1+b_{17}</M></Item>
<Item><M>-2-b_{17}</M></Item>
<Item><M>-</M></Item>
</Row>
<HorLine/>
</Table>
<P/>
Note that the irreducible Brauer characters in characteristic <M>3</M> and
<M>5</M> that distinguish the two classes <C>17A</C> and <C>17B</C> occur
in pairs of Galois conjugate characters.
<P/>
The following computations show that the given straight line program
is compatible with the four characters in characteristic <M>2</M>
but is not compatible with the three available characters in characteristic
<M>19</M>.
<P/>
<Example><![CDATA[
gap> table:= [];;
gap> for pair in [ [ 2, [ 78, 80, 244, 966 ] ],
> [ 19, [ 110, 214, 706 ] ] ] do
> p:= pair[1];
> for d in pair[2] do
> info:= OneAtlasGeneratingSetInfo( "J3", Characteristic, p,
> Dimension, d );
> gens:= AtlasGenerators( info );
> reps:= ResultOfStraightLineProgram( slp.program,
> gens.generators );
> val:= BrauerCharacterValue( reps[ 17a ] );
> Add( table, [ p, d, Quadratic( val ).ATLAS,
> Quadratic( StarCyc( val ) ).ATLAS ] );
> od;
> od;
gap> PrintArray( table );
[ [ 2, 78, 1-b17, 2+b17 ],
[ 2, 80, 3-b17, 4+b17 ],
[ 2, 244, -2+b17, -3-b17 ],
[ 2, 966, -3+r17, -3-r17 ],
[ 19, 110, -1-b17, b17 ],
[ 19, 214, 2+b17, 1-b17 ],
[ 19, 706, 1+b17, -b17 ] ]
]]></Example>
<P/>
We see that the problem is an inconsistency between the <M>2</M>-modular and
the <M>19</M>-modular character table of <M>J_3</M>
in <Cite Key="JLPW95"/>.
In particular, changing the straight line program would not help to
resolve the problem.
<P/>
How shall we proceed in order to fix the problem?
We can decide to keep the <M>19</M>-modular table of <M>J_3</M>,
and to swap the two classes of element order <M>17</M> in the
<M>2</M>-modular table;
then also the straight line program has to be changed,
and the classes of element orders <M>17</M> and <M>51</M>
in the <M>2</M>-modular character table of the triple cover <M>3.J_3</M>
of <M>J_3</M> have to be adjusted.
Alternatively, we can keep the <M>2</M>-modular table of <M>J_3</M>
and the straight line program,
and adjust the conjugacy classes of element orders divisible
by <M>17</M> in the <M>19</M>-modular character tables of <M>J_3</M>,
<M>3.J_3</M>, <M>J_3.2</M>, and <M>3.J_3.2</M>.
<P/>
We decide to change the <M>19</M>-modular character tables.
Note that these character tables —or equivalently, the corresponding
Brauer trees— have been described in <Cite Key="HL89"/>,
where explicit choices are mentioned that lead to the shown Brauer trees.
Questions about the consistency with Brauer tables in other characteristic
had not been an issue in this book.
(Only the consistency of the Brauer trees among the <M>19</M>-blocks of
<M>3.J_3</M> is mentioned.)
In fact, the book mentions that the <M>19</M>-modular Brauer trees for
<M>J_3</M> had been computed already by W. Feit.
The inconsistency of Brauer character tables in different characteristic
has apparently been overlooked when the data for <Cite Key="JLPW95"/>
have been put together, and had not been detected until now.
<P/>
<E>Remarks:</E>
<List>
<Item>
Such a change of a Brauer table can in general affect the class fusions
from and to this table.
Note that Brauer tables may impose conditions on the choice of the fusion
among possible fusions that are equivalent w. r. t. the
table automorphisms of the ordinary table.
In this particular case, in fact no class fusion had to be changed,
see the sections <Ref Subsect="subsect:L2(16).4_in_J3.2"/> and
Section <Ref Subsect="subsect:generality"/>.
<!-- the relevant sections in <Cite Key="AmbigFus"/>. -->
</Item>
<Item>
The change of the character tables affects the decomposition matrices.
Thus the PDF files containing the <M>19</M>-modular decomposition
matrices had to be updated, see
<URL>http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/dec/tex/J3/index.html</URL>.
</Item>
<Item>
Jürgen Müller has checked that the conjugacy classes of all Brauer tables of
<M>J_3</M>, <M>3.J_3</M>, <M>J_3.2</M>, <M>3.J_3.2</M> are consistent
after the fix described above.
</Item>
</List>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:generality_HN">
<Heading>A generality problem concerning the group <M>HN</M> (August 2022)</Heading>
The classes <C>20A</C>, <C>20B</C> of the Harada-Norton group <M>HN</M>
in the <M>11</M>- and <M>19</M>-modular character tables
are determined by unique Brauer characters that have different values
on these classes.
Once we have <E>defined</E> these classes in one characteristic,
the two Brauer characters tell us how to <E>choose</E> them consistently
in the other characteristic.
Thus the question is whether the two Brauer tables are consistent
w.r.t. this property or not.
<P/>
(Note that this question can be answered independently of all other
questions of this kind for <M>HN</M>,
because the permutation that swaps exactly the classes <C>20A</C> and
<C>20B</C> is a table automorphism of the ordinary character table of
<M>HN</M>.)
<P/>
We start with the ordinary character table of <M>HN</M>.
There are exactly two ordinary irreducible characters
that take different values on the classes <C>20A</C>, <C>20B</C>,
these are <M>\chi_{51}</M> and <M>\chi_{52}</M>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "HN" );;
gap> pos20:= Positions( OrdersClassRepresentatives( t ), 20 );
[ 39, 40, 41, 42, 43 ]
gap> diff:= Filtered( Irr( t ), x -> x[39] <> x[40] );;
gap> List( diff, x -> Position( Irr( t ), x ) );
[ 51, 52 ]
]]></Example>
<P/>
These values are irrational and lie in the field that is generated by
the square root of <M>5</M>.
<P/>
<Example><![CDATA[
gap> List( diff, x -> List( x{ [ 1, 39, 40 ] },
> CTblLib.StringOfAtlasIrrationality ) );
[ [ "5103000", "2r5+1", "-2r5+1" ], [ "5103000", "-2r5+1", "2r5+1" ] ]
]]></Example>
<P/>
In each of the characteristics <M>p \in \{ 11, 19 \}</M>,
the <M>p</M>-modular reductions of <M>\chi_{51}</M> and <M>\chi_{52}</M>
decompose differently into irreducibles.
Note that the Galois automorphism of the ordinary character table
that maps <M>\sqrt{5}</M> to <M>-\sqrt{5}</M> does not live in the
<M>11</M>- and <M>19</M>-modular Brauer tables.
<P/>
For <M>p = 11</M>, the reduction of <M>\chi_{51}</M> is
<M>\varphi_{40} + \varphi_{48}</M>,
with <M>\varphi_{40}(1) = 1\,575\,176</M> and
<M>\varphi_{48}(1) = 3\,527\,824</M>,
and the reduction of <M>\chi_{52}</M> is
<M>\varphi_{39} + \varphi_{49}</M>,
with <M>\varphi_{39}(1) = 1\,361\,919</M> and
<M>\varphi_{49}(1) = 3\,741\,081</M>.
<P/>
<Example><![CDATA[
gap> t11:= t mod 11;;
gap> rest11:= RestrictedClassFunctions( diff, t11 );;
gap> dec11:= Decomposition( Irr( t11 ), rest11, "nonnegative" );;
gap> List( dec11, Set );
[ [ 0, 1 ], [ 0, 1 ] ]
gap> List( dec11, x -> Positions( x, 1 ) );
[ [ 40, 48 ], [ 39, 49 ] ]
gap> List( Irr( t11 ){ [ 40, 48 ] }, x -> x[1] );
[ 1575176, 3527824 ]
gap> List( Irr( t11 ){ [ 39, 49 ] }, x -> x[1] );
[ 1361919, 3741081 ]
]]></Example>
<P/>
For <M>p = 19</M>, the reduction of <M>\chi_{51}</M> is
<M>\varphi_{42} + \varphi_{45}</M>,
with <M>\varphi_{42}(1) = 2\,125\,925</M> and
<M>\varphi_{45}(1) = 2\,977\,075</M>,
and the reduction of <M>\chi_{52}</M> is
<M>\varphi_{33} + \varphi_{48}</M>,
with <M>\varphi_{33}(1) = 1\,197\,330</M> and
<M>\varphi_{48}(1) = 3\,905\,670</M>.
<P/>
<Example><![CDATA[
gap> t19:= t mod 19;;
gap> rest19:= RestrictedClassFunctions( diff, t19 );;
gap> dec19:= Decomposition( Irr( t19 ), rest19, "nonnegative" );;
gap> List( dec19, Set );
[ [ 0, 1 ], [ 0, 1 ] ]
gap> List( dec19, x -> Positions( x, 1 ) );
[ [ 42, 45 ], [ 33, 48 ] ]
gap> List( Irr( t19 ){ [ 42, 45 ] }, x -> x[1] );
[ 2125925, 2977075 ]
gap> List( Irr( t19 ){ [ 33, 48 ] }, x -> x[1] );
[ 1197330, 3905670 ]
]]></Example>
<P/>
The Frobenius-Schur indicators of all involved <M>p</M>-modular constituents
are <M>+</M>.
This implies that <M>\chi_{51}</M> reduces orthogonally stably modulo <M>11</M>
but not orthogonally stably modulo <M>19</M>,
whereas <M>\chi_{52}</M> reduces orthogonally stably modulo <M>19</M>
but not orthogonally stably modulo <M>11</M>.
<P/>
<Example><![CDATA[
gap> Indicator( t11, 2 ){ [ 39, 40, 48, 49 ] };
[ 1, 1, 1, 1 ]
gap> Indicator( t19, 2 ){ [ 33, 42, 45, 48 ] };
[ 1, 1, 1, 1 ]
]]></Example>
<P/>
In version up to 1.3.4 of the character table library,
this condition was not satisfied:
The reduction of <M>\chi_{51}</M> modulo both <M>11</M> and <M>19</M> was
orthogonally stable,
and the reduction of <M>\chi_{52}</M> modulo both <M>11</M> and <M>19</M> was
not orthogonally stable.
However, this cannot happen, due to theoretical results about
orthogonal discriminants of the involved characters.
Thus we have found a way to decide the consistency of the classes
<C>20A</C> and <C>20B</C> in characteristics <M>11</M> and <M>19</M>:
Either the <M>11</M>-modular character table or the <M>19</M>-modular
character table of <M>HN</M> had to be changed for version 1.3.5,
by swapping the classes <C>20A</C> and <C>20B</C>.
<P/>
We decided to change the <M>11</M>-modular table,
because there are no other generality problems for <M>HN</M> involving the
<M>19</M>-modular table, and hence we are sure that this table will not
need to be changed because of new solutions to generality problems.
<P/>
For <M>HN.2</M>, the situation is similar.
There are additionally two classes of element order <M>40</M> that have to be
swapped if <C>20A</C> and <C>20B</C> get swapped.
Thus we have to change the <M>11</M>-modular table of <M>HN.2</M> accordingly.
<P/>
Changes of this kind may affect also derived character tables in the library.
In this case, the <M>11</M>-modular table with identifier <C>"(D10xHN).2"</C>
was changed as well.
Note that this table is not stored explicitly in the data files,
it gets constructed from ordinary and modular library tables via
<Ref Func="ConstructIndexTwoSubdirectProduct" BookName="ctbllib"/>.
</Subsection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:derivebrauercharacters">
<Heading>Brauer Tables that can be derived from Known Tables</Heading>
In a few situations, one can derive
the <M>p</M>-modular Brauer character table of a group
from known character theoretic information.
<P/>
For quite some time, a method is available in &GAP; that computes
the Brauer characters of <M>p</M>-solvable groups
(see <Ref Subsect="BrauerTable" BookName="ref"/> and
<Ref Subsect="IsPSolvableCharacterTable" BookName="ref"/>).
<P/>
The following sections list other situations where Brauer tables
can be computed by &GAP;.
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:brauercharactersbyconstruction">
<Heading>Brauer Tables via Construction Information</Heading>
If a given ordinary character table <M>t</M>, say,
has been constructed from other ordinary character tables
then &GAP; may be able to create the <M>p</M>-modular Brauer table
of <M>t</M> from the <M>p</M>-modular Brauer tables of the
<Q>ingredients</Q>.
This happens currently in the following cases.
<P/>
<List>
<Item>
<M>t</M> has been constructed with
<Ref Oper="CharacterTableDirectProduct" BookName="ref"/>,
and &GAP; can compute the <M>p</M>-modular Brauer tables
of the direct factors.
</Item>
<Item>
<M>t</M> has been constructed with
<Ref Oper="CharacterTableIsoclinic" BookName="ref"/>,
and &GAP; can compute the <M>p</M>-modular Brauer table
of the table that is stored in <M>t</M> as the value of the attribute
<Ref Oper="SourceOfIsoclinicTable" BookName="ref"/>.
</Item>
<Item>
<M>t</M> has the attribute
<Ref Attr="ConstructionInfoCharacterTable" BookName="ctbllib"/> set,
the first entry of this list <M>l</M>, say, is one of the strings
<C>"ConstructGS3"</C> (see
<Ref Subsect="sect:Character Tables of Groups of the Structure G.S_3"/>),
<C>"ConstructIndexTwoSubdirectProduct"</C>
(see <Ref Subsect="subsect:theorsubdir"/>),
<C>"ConstructMGA"</C> (see <Ref Subsect="subsect:theorMGA"/>),
<C>"ConstructPermuted"</C>,
<C>"ConstructV4G"</C> (see <Ref Subsect="subsect:theorV4G"/>),
and &GAP; can construct the <M>p</M>-modular Brauer table(s)
of the relevant ordinary character table(s),
which are library tables whose names occur in <M>l</M>.
</Item>
</List>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:liftablebrauercharacters">
<Heading>Liftable Brauer Characters (May 2017)</Heading>
Let <M>B</M> be a <M>p</M>-block of cyclic defect for the finite group
<M>G</M>.
It can be read off from the set Irr<M>(B)</M>
of ordinary irreducible characters of <M>B</M>
whether all irreducible Brauer characters in <M>B</M> are restrictions
of ordinary characters to the <M>p</M>-regular classes of <M>G</M>,
as follows.
<P/>
If <M>B</M> has only one irreducible Brauer character then all ordinary
characters in <M>B</M> restrict to this Brauer character.
So let us assume that <M>B</M> contains
at least two irreducible Brauer characters,
and consider the set <M>S</M>, say, of restrictions of Irr<M>(B)</M>
to the <M>p</M>-regular classes of <M>G</M>.
<P/>
The block <M>B</M> contains exactly <M>|S| - 1</M> irreducible Brauer
characters,
and the decomposition of the characters in <M>S</M> into these Brauer
characters is described by
an <M>|S|</M> by <M>|S| - 1</M> matrix <M>M</M>, say,
whose entries are zero and one, such that exactly two nonzero entries
occur in each column.
(See for example <Cite Key="HL89" Where="Theorem 2.1.5"/>,
which refers to <Cite Key="Dad66"/>.)
<P/>
If all irreducible Brauer characters of <M>B</M> occur in <M>S</M>
then the matrix <M>M</M> contains <M>|S| - 1</M> rows that contain
exactly one nonzero entry,
hence the remaining row consists only of <M>1</M>s.
This means that the element of largest degree in <M>S</M> is equal to
the sum of all other elements in <M>S</M>.
Conversely, if the element of largest degree in <M>S</M> is equal to
the sum of all other elements in <M>S</M> then
the matrix <M>M</M> has the structure as stated above,
hence all irreducible Brauer characters of <M>B</M> occur in <M>S</M>.
<P/>
Alternatively,
one could state that all irreducible Brauer characters of <M>B</M>
are restricted ordinary characters if and only if the Brauer tree
of <M>B</M> is a <E>star</E> (see <Cite Key="HL89" Where="p. 2"/>.
If <M>B</M> contains at least two irreducible Brauer characters
then this happens if and only if one of the types <M>\times</M> or
<M>\circ</M> occurs for exactly one node in the Brauer graph of <M>B</M>,
see <Cite Key="HL89" Where="Lemma 2.1.13"/>,
and the distribution to types is determined by Irr<M>(B)</M>.
<P/>
The default method for <Ref Oper="BrauerTableOp" BookName="ref"/>
that is contained in the &GAP; library has been extended in version 4.11
such that it checks whether the Sylow <M>p</M>-subgroups of the given group
<M>G</M> are cyclic and, if yes,
whether all <M>p</M>-blocks of <M>G</M> have the property discussed above.
(This feature arose from a discussion with Klaus Lux.)
<P/>
Examples where this method is successful for all blocks
are the <M>p</M>-modular character tables of the groups PSL<M>(2, q)</M>,
where <M>p</M> is odd and does not divide <M>q</M>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( PSL( 2, 11 ) );;
gap> modt:= t mod 5;;
gap> modt <> fail;
true
gap> InfoText( modt );
"computed using that all Brauer characters lift to char. zero"
]]></Example>
<P/>
Another such example is the <M>5</M>-modular table
of the Mathieu group <M>M_{11}</M>.
<P/>
<Example><![CDATA[
gap> lib:= CharacterTable( "M11" );;
gap> fromgroup:= CharacterTable( MathieuGroup( 11 ) );;
gap> DecompositionMatrix( lib mod 5 );
[ [ 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0, 0 ], [ 1, 0, 0, 0, 1, 1, 1, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ]
gap> fromgroup mod 5 <> fail;
true
]]></Example>
<P/>
There are cases where all Brauer characters of a block lift
to characteristic zero but the defect group of the block is not cyclic,
thus the method cannot be used.
An example is the <M>2</M>-modular table of the Mathieu group <M>M_{11}</M>.
<P/>
<Example><![CDATA[
gap> DecompositionMatrix( lib mod 2 );
[ [ 1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ],
[ 0, 1, 0, 0, 0 ], [ 1, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ],
[ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ], [ 1, 0, 0, 0, 1 ],
[ 1, 1, 0, 0, 1 ] ]
gap> fromgroup mod 2;
fail
]]></Example>
</Subsection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:monstersubgroups">
<Heading>Information about certain subgroups of the Monster group</Heading>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:no2U42inMonster">
<Heading>The Monster group does not contain subgroups of the type <M>2.U_4(2)</M> (August 2023)</Heading>
In the context of a question about decomposition numbers of the
sporadic simple Monster group <M>&M;</M>,
Benjamin Sambale was interested in possible embeddings of certain groups
<M>G</M> into <M>&M;</M> such that the decomposition matrices of <M>G</M>
are known.
For a given <M>G</M>, the first steps were to compute the possible class
fusions of <M>G</M> in <M>&M;</M> and then to check whether the corresponding
embeddings would be interesting.
<P/>
Apparently, calling <Ref Func="PossibleClassFusions" BookName="ref"/>
with its default parameters often runs very long and requires a lot of space
when <M>G</M> is a small group such as <M>2.U_4(2)</M>.
We can do better by calling the function with the parameter
<C>decompose:= false</C>.
This has the effect that one criterion is omitted that checks the
decomposability of restricted characters of <M>&M;</M> as an integral
linear combination of characters of the subgroup.
As a rule of thumb, if the number of classes of the subgroup is small
compared to the number of classes of the group
and if the result consists of many candidates then it might be faster
to omit the decomposability criterion.
<P/>
<Example><![CDATA[
gap> s:= CharacterTable( "2.U4(2)" );;
gap> m:= CharacterTable( "M" );;
gap> sfusm:= PossibleClassFusions( s, m, rec( decompose:= false ) );;
gap> Length( sfusm );
2332
]]></Example>
<!-- The computation takes about 1928 seconds on my notebook. -->
<P/>
Looking at the (many) candidates,
we see that all map the central involution of
<M>2.U_4(2)</M> to the class <C>2B</C> of <M>&M;</M>,
thus any subgroup of the type <M>2.U_4(2)</M> lies inside the <C>2B</C>
normalizer in <M>&M;</M>.
We compute the possible class fusions into this subgroup.
<P/>
<Example><![CDATA[
gap> Set( List( sfusm, x -> x[2] ) );
[ 3 ]
gap> t:= CharacterTable( "MN2B" );
CharacterTable( "2^1+24.Co1" )
gap> sfust:= PossibleClassFusions( s, t, rec( decompose:= false ) );;
gap> Length( sfust );
0
]]></Example>
<!-- The computation takes about 29 seconds on my notebook. -->
<P/>
Thus we have shown that <M>&M;</M> does not contain subgroups of the type
<M>2.U_4(2)</M>.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:ML34inMonster">
<Heading>Perfect central extensions of <M>L_3(4)</M> (August 2023)</Heading>
There was <URL><LinkText>the question in MathOverflow</LinkText>
<Link>https://mathoverflow.net/questions/450255</Link></URL>
which perfect central extensions of the simple group <M>G = L_3(4)</M> are
subgroups of the sporadic simple Monster group <M>&M;</M>.
<P/>
First we get the list of perfect central extensions of <M>G</M> (asuming that
their character tables are contained in the character table library).
<Example><![CDATA[
gap> simp:= CharacterTable( "L3(4)" );;
gap> extnames:= AllCharacterTableNames( Identifier,
> x -> EndsWith(x, "L3(4)" ) );;
gap> ext:= List( extnames, CharacterTable );;
gap> ext:= Filtered( ext, x -> Length( ClassPositionsOfCentre( x ) ) =
> Size( x ) / Size( simp ) );;
gap> SortBy( ext, Size );
gap> names:= List( ext, Identifier );
[ "L3(4)", "2.L3(4)", "3.L3(4)", "2^2.L3(4)", "4_1.L3(4)",
"4_2.L3(4)", "6.L3(4)", "(2x4).L3(4)", "(2^2x3).L3(4)",
"12_1.L3(4)", "12_2.L3(4)", "4^2.L3(4)", "(2x12).L3(4)",
"(4^2x3).L3(4)" ]
]]></Example>
<P/>
The fact that <M>G</M> is <E>not</E> isomorphic to a subgroup of <M>&M;</M>
is shown in <Cite Key="HW08"/> (at the end of this paper).
<!-- In <Cite Key="NW02"/>, $L_3(4)$ is listed as perhaps contained
as a subgroup.
(And it is stated in Section 4.2 which class fusion such a subgroup
would have.) -->
<P/>
And the following embeddings of central extensions of <M>G</M> in <M>&M;</M>
can be established using known subgroups of <M>&M;</M>.
<List>
<Item>
<M>2.G < 2.U_4(3) < 2^2.U_6(2) < Fi_{23} < 3.Fi_{24}' < &M;</M>.
</Item>
<Item>
<M>2^2.G < He < 3.Fi_{24}' < &M;</M>.
</Item>
<Item>
<M>6.G < 2.G_2(4) < 6.Suz < 3^{1+12}_+.2Suz < &M;</M>.
</Item>
</List>
Note that <M>G</M> is a subgroup of <M>U_4(3)</M> but not of <M>2.U_4(3)</M>,
<M>3.G</M> is a subgroup of <M>G_2(4)</M> but not of <M>2.G_2(4)</M>,
and <M>G_2(4)</M> is a subgroup of <M>Suz</M> but not of <M>2.Suz</M>.
The positive statements follow from <Cite Key="CCN85" Where="pp. 52, 97, 131"/>
and the negative ones from the following computations.
<P/>
<Example><![CDATA[
gap> Length( PossibleClassFusions( CharacterTable( "L3(4)" ),
> CharacterTable( "2.U4(3)" ) ) );
0
gap> Length( PossibleClassFusions( CharacterTable( "3.L3(4)" ),
> CharacterTable( "2.G2(4)" ) ) );
0
gap> Length( PossibleClassFusions( CharacterTable( "G2(4)" ),
> CharacterTable( "2.Suz" ) ) );
0
]]></Example>
<P/>
The group <M>3.G</M> centralizes an element of order three.
If <M>3.G</M> is a subgroup of <M>&M;</M> then it is contained in
a <C>3A</C> centralizer (of the structure <M>3.Fi_{24}'</M>),
a <C>3B</C> centralizer (of the structure <M>3^{1+12}_+.2Suz</M>) or
a <C>3C</C> centralizer (of the structure <M>3 \times Th</M>).
Clearly the case <M>3C</M> cannot occur,
and <C>3B</C> is excluded by the fact that no class fusion between <M>3.G</M>
and the <M>3B</M> normalizer <M>3^{1+12}_+.2Suz.2</M> is possible.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "MN3B" );
CharacterTable( "3^(1+12).2.Suz.2" )
gap> Length( PossibleClassFusions( CharacterTable( "3.L3(4)" ), t ) );
0
]]></Example>
<P/>
If <M>3.G</M> is contained in the <C>3A</C> centralizer
then this embedding induces one of <M>G</M> into some maximal subgroup of
<M>Fi_{24}'</M>.
Using the known character tables of these maximal subgroups
in GAP's character table library,
one shows that only <M>Fi_{23}</M> admits a class fusion,
but this subgroup lifts to <M>3 \times Fi_{23}</M> in <M>3.Fi_{24}'</M>
and thus cannot lead to a subgroup of type <M>3.G</M>..
<P/>
<Example><![CDATA[
gap> mx:= List( Maxes( CharacterTable( "Fi24'" ) ), CharacterTable );;
gap> s:= CharacterTable( "L3(4)" );;
gap> Filtered( mx, x -> Length( PossibleClassFusions( s, x ) ) > 0 );
[ CharacterTable( "Fi23" ) ]
]]></Example>
<P/>
The other candidates <M>m.G</M> contain at least one central involution.
If <M>m.G</M> is a subgroup of <M>&M;</M> then it is contained in
a <C>2A</C> centralizer (of the structure <M>2.B</M>) or
a <C>2B</C> centralizer (of the structure <C>2^{1+24}_+.Co_1</C>).
Again we use <Ref Func="PossibleClassFusions" BookName="ref"/>
to list all candidates for the class fusion,
but here we prescribe the central involution of the <C>2A</C> or <C>2B</C>
centralizer as an image of one central involution in <M>m.G</M>.
<P/>
<Example><![CDATA[
gap> done:= [ "L3(4)", "2.L3(4)", "3.L3(4)", "2^2.L3(4)", "6.L3(4)" ];;
gap> names:= Filtered( names, x -> not x in done );
[ "4_1.L3(4)", "4_2.L3(4)", "(2x4).L3(4)", "(2^2x3).L3(4)",
"12_1.L3(4)", "12_2.L3(4)", "4^2.L3(4)", "(2x12).L3(4)",
"(4^2x3).L3(4)" ]
gap> invcent:= List( [ "MN2A", "MN2B" ], CharacterTable );
[ CharacterTable( "2.B" ), CharacterTable( "2^1+24.Co1" ) ]
gap> ForAll( invcent, x -> ClassPositionsOfCentre( x ) = [ 1, 2 ] );
true
gap> cand:= [];;
gap> ords:= "dummy";; # Avoid a message about an unbound variable ...
gap> for name in names do
> s:= CharacterTable( name );
> ords:= OrdersClassRepresentatives( s );
> invpos:= Filtered( ClassPositionsOfCentre( s ), i -> ords[i] = 2 );
> for i in invpos do
> for t in invcent do
> init:= InitFusion( s, t );
> if init = fail then
> continue;
> fi;
> init[i]:= 2;
> fus:= PossibleClassFusions( s, t, rec( fusionmap:= init,
> decompose:= false ) );
> if fus <> [] then
> Add( cand, [ s, t, i, fus ] );
> fi;
> od;
> od;
> od;
gap> List( cand, x -> x{ [ 1 .. 3 ] } );
[ [ CharacterTable( "4_1.L3(4)" ), CharacterTable( "2^1+24.Co1" ), 3 ]
, [ CharacterTable( "(2x4).L3(4)" ), CharacterTable( "2.B" ), 2 ],
[ CharacterTable( "(2x4).L3(4)" ), CharacterTable( "2.B" ), 3 ] ]
]]></Example>
<!-- These computations take about 3445 seconds on my notebook. -->
<P/>
(Note that we have called <Ref Func="PossibleClassFusions" BookName="ref"/>
with the option <C>decompose:= false</C>, in order to save space and time.
See Section <Ref Subsect="sect:no2U42inMonster"/> for more details.)
<P/>
Concerning the candidate <M>(2 \times 4).G</M>,
we see that only fusions are possible for which the central involution
in question is mapped to a <C>2A</C> element of <M>&M;</M>.
Since we get candidates only for two out of the three central involutions,
we see that <M>(2 \times 4).G</M> does not embed into <M>&M;</M>.
<P/>
Thus it turns out that exactly one group <M>m.G</M> cannot be excluded
this way.
Namely, these character-theoretical criteria leave the possibility
that <M>4_1.G</M> may occur as a subgroup of <M>2^{1+24}_+.Co_1</M>.
<P/>
Moreover, we see that if this happens then the centre <M>C</M>
of <M>4_1.G</M> lies inside the normal subgroup <M>N = 2^{1+24}_+</M>.
The centralizer of <M>C</M> in <M>N</M> has order <M>2^{24}</M>,
and the centralizer of <M>C</M> in <M>2^{1+24}_+.Co_1</M> has order
<M>2^{24} \cdot |Co_3|</M>.
We see that <M>4_1.G</M>,
if it exists as a subgroup of <M>2^{1+24}_+.Co_1</M>,
must lie inside the subgroup <M>[2^{24}].Co_3</M>.
<P/>
<Example><![CDATA[
gap> s:= cand[1][1];
CharacterTable( "4_1.L3(4)" )
gap> t:= cand[1][2];
CharacterTable( "2^1+24.Co1" )
gap> fus:= cand[1][4];
[ [ 1, 5, 2, 5, 9, 8, 23, 27, 24, 27, 49, 49, 50, 50, 70, 74, 71, 74,
70, 74, 71, 74, 114, 119, 115, 119, 114, 119, 115, 119 ] ]
gap> ClassPositionsOfCentre( s );
[ 1, 2, 3, 4 ]
gap> 5 in ClassPositionsOfPCore( t, 2 );
true
gap> siz:= SizesCentralizers( t )[5] / 2^24;
495766656000
gap> mx:= Filtered( List( Maxes( CharacterTable( "Co1" ) ),
> CharacterTable ),
> x -> Size( x ) mod siz = 0 );
[ CharacterTable( "Co3" ) ]
gap> Size( mx[1] ) = siz;
true
]]></Example>
<!-- Inside Co_3, several maximal subgroups can contain the given L_3(4). -->
<P/>
I do not see a character-theoretic argument that could disprove
the existence of such an <M>4_1.G</M> type subgroup.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:2BM12">
<Heading>The character table of <M>(2 \times O_8^+(3)).S_4 \leq 2.B</M> (October 2023)</Heading>
Consider a maximal subgroup <M>H</M> of type <M>(3^2:2 \times O_8^+(3)).S_4</M>
in the sporadic simple Monster group.
The character table of <M>H</M> has been contributed by Tim Burness.
We can view <M>H</M> as <M>O_8^+(3).(3^2:2S_4) = O_8^+(3).F</M>.
The character table of <M>H</M> determines that of <M>F</M>,
and this table determines the isomorphism type of <M>F</M> as
<C>SmallGroup( 432, 734 )</C>.
<P/>
<Example><![CDATA[
gap> tblH:= CharacterTable( "(3^2:2xO8+(3)).S4" );
CharacterTable( "(3^2:2xO8+(3)).S4" )
gap> N:= ClassPositionsOfSolvableResiduum( tblH );;
gap> tblF:= tblH / N;;
gap> Size( tblF );
432
gap> known:= NamesOfEquivalentLibraryCharacterTables( tblF );
[ "3^2.2.S4", "M12M7" ]
gap> Filtered( GroupInfoForCharacterTable( known[1] ),
> x -> x[1] = "SmallGroup" );
[ [ "SmallGroup", [ 432, 734 ] ] ]
]]></Example>
<P/>
(Note that the precomputed
<Ref Attr="GroupInfoForCharacterTable" BookName="CTblLib"/>
information about &GAP; library character tables means that exactly
one isomorphism type of groups fits to the character table of <M>F</M>.)
<P/>
We compute that <M>O_3(F) \cong 3^2</M> has complements in <M>F</M>,
thus <M>H</M> has a subgroup <M>V</M> of the type <M>O_8^+(3).2S_4</M>,
which is a complement of <M>O_3(H)</M> in <M>H</M>,
thus <M>V</M> is isomorphic with <M>H / O_3(H)</M>.
<P/>
<Example><![CDATA[
gap> G:= SmallGroup( 432, 734 );;
gap> P:= PCore( G, 3 );;
gap> Length( ComplementClassesRepresentatives( G, P ) );
1
]]></Example>
<P/>
We can derive the character table of <M>V</M> from that of <M>H</M>,
and compute that the group structure of <M>V</M> is
<M>(2 \times O_8^+(3)).S_4</M>.
For that, we consider the element orders of the unique normal subgroup
of order <M>2 |O_8^+(3)|</M> in <M>V</M>.
If this normal subgroup would not be isomorphic with <M>2 \times O_8^+(3)</M>
then it would have one of the structures <M>O_8^+(3).2_1</M> or
<M>O_8^+(3).2_2</M>,
but then it would contain elements of the orders <M>24</M>.
<P/>
<Example><![CDATA[
gap> tblV:= tblH / ClassPositionsOfPCore( tblH, 3 );;
gap> ord:= 2 * Size( tblH ) / Size( tblF );
9904359628800
gap> classes:= SizesConjugacyClasses( tblV );;
gap> 2N:= Filtered( ClassPositionsOfNormalSubgroups( tblV ),
> l -> Sum( classes{ l } ) = ord );;
gap> Length( 2N );
1
gap> Set( OrdersClassRepresentatives( tblV ){ 2N[1] } );
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 26, 30 ]
gap> Set( OrdersClassRepresentatives( CharacterTable( "O8+(3)" ) ) );
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20 ]
gap> Set( OrdersClassRepresentatives( CharacterTable( "O8+(3).2_1" ) ) );
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 24, 26, 28,
30, 36, 40 ]
gap> Set( OrdersClassRepresentatives( CharacterTable( "O8+(3).2_2" ) ) );
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 24, 26, 28,
30, 36 ]
]]></Example>
<P/>
The class fusion of <M>V</M> into the Monster group shows that <M>V</M>
centralizes a <C>2A</C> element in the Monster,
hence <M>V</M> is a subgroup of a maximal subgroup of the type <M>2.B</M>.
<P/>
<Example><![CDATA[
gap> tblM:= CharacterTable( "M" );;
gap> VfusM:= PossibleClassFusions( tblV, tblM );;
gap> Length( VfusM );
4
gap> ZV:= ClassPositionsOfCentre( tblV );
[ 1, 2 ]
gap> Set( List( VfusM, l -> l{ ZV } ) );
[ [ 1, 2 ] ]
]]></Example>
<P/>
From the list of maximal subgroups of <M>B</M>,
we see that either <M>V</M> is contained in the preimage of <M>Fi_{23}</M>
under the natural epimorphism from <M>2.B</M> to <M>B</M>,
or <M>V</M> is equal to the preimage of <M>O_8^+(3).S_4</M>.
<P/>
<Example><![CDATA[
gap> tblB:= CharacterTable( "B" );;
gap> mxB:= List( Maxes( tblB ), CharacterTable );;
gap> cand:= Filtered( mxB, s -> Size( s ) mod ( Size( tblV ) / 2 ) = 0 );
[ CharacterTable( "Fi23" ), CharacterTable( "O8+(3).S4" ) ]
]]></Example>
<P/>
The former possibility is excluded from the fact that the factor of <M>V</M>
by its center does not admit a class fusion into <M>Fi_{23}</M>.
<P/>
<Example><![CDATA[
gap> Length( PossibleClassFusions( tblV / ZV, CharacterTable( "Fi23" ) ) );
0
]]></Example>
<P/>
We conclude that <M>V</M> is a maximal subgroup of <M>2.B</M>.
<P/>
Thus we have used the character table of <M>H</M> to construct
the character table of a maximal subgroup of <M>2.B</M>,
with very little effort.
<P/>
This table is meanwhile available in the table library,
with the identifier <C>"(2xO8+(3)).S4"</C>.
<P/>
<Example><![CDATA[
gap> lib:= CharacterTable( "(2xO8+(3)).S4" );;
gap> TransformingPermutationsCharacterTables( tblV, lib ) <> fail;
true
gap> Irr( lib ) = Irr( tblV );
true
]]></Example>
<P/>
In order to add the table to the library,
we have to provide also the class fusions from <M>V</M> to <M>2.B</M>,
to the maximal subgroup <M>(2 \times O_8^+(3)).S_4</M> of <M>B</M>,
and to the maximal subgroup <M>(3^2:2 \times O_8^+(3)).S_4</M> of <M>M</M>,
such that the compositions of fusions from <M>V</M> to <M>B</M>
via <M>O_8^+(3).S_4</M> and <M>2.B</M> are compatible, <M>\ldots</M>
<P/>
<Example><![CDATA[
gap> tblU:= CharacterTable( "O8+(3).S4" );;
gap> tbl2B:= CharacterTable( "2.B" );;
gap> CompositionMaps( GetFusionMap( tblU, tblB ),
> GetFusionMap( lib, tblU ) ) =
> CompositionMaps( GetFusionMap( tbl2B, tblB ),
> GetFusionMap( lib, tbl2B ) );
true
]]></Example>
<P/>
<M>\ldots</M> and that the compositions of fusions from <M>V</M> to <M>M</M>
via <M>(3^2:2 \times O_8^+(3)).S_4</M> and <M>2.B</M> are compatible.
<P/>
<Example><![CDATA[
gap> tblH:= CharacterTable( "(3^2:2xO8+(3)).S4" );;
gap> CompositionMaps( GetFusionMap( tblH, tblM ),
> GetFusionMap( lib, tblH ) ) =
> CompositionMaps( GetFusionMap( tbl2B, tblM ),
> GetFusionMap( lib, tbl2B ) );
true
]]></Example>
</Subsection>
</Section>
</Chapter>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
|