File: maintain.xml

package info (click to toggle)
gap-ctbllib 1.3.9-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 74,872 kB
  • sloc: xml: 41,268; makefile: 215; javascript: 155
file content (3619 lines) | stat: -rw-r--r-- 120,902 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619

<!-- %W  maintain.xml    GAP 4 package CTblLib              Thomas Breuer -->

<Chapter Label="chap:maintain">

<Heading>Maintenance Issues for the &GAP; Character Table Library</Heading>

This chapter collects examples of computations that arose
in the context of maintaining the &GAP; Character Table Library.
The sections have been added when the issues in question arose;
the dates of the additions are shown in the section titles.


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:disprove">
<Heading>Disproving Possible Character Tables (November 2006)</Heading>

I do not know a necessary and sufficient criterion for checking
whether a given matrix together with a list of power maps
describes the character table of a finite group.
Examples of <E>pseudo character tables</E>
(tables which satisfy certain necessary conditions
but for which actually no group exists) have been given
in&nbsp;<Cite Key="Gag86"/>.

Another such example is described in
Section&nbsp;<Ref Subsect="subsect:pseudo"/>.

The tables in the &GAP; Character Table Library satisfy the usual tests.
However,
there are table candidates for which these tests are not good enough.

<!-- (mention that this should be run when a table is going to be added) -->
<!-- (example: the candidate with nonintegral structure constants) -->

Another question would be whether a given character table
belongs to the group for which it is claimed to belong,
see Section <Ref Subsect="subsect:LyN2"/> for an example.


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:perfect_pseudo">
<Heading>A Perfect Pseudo Character Table (November 2006)</Heading>

(This example arose from a discussion with Jack Schmidt.)

<P/>

Up to version&nbsp;1.1.3 of the &GAP; Character Table Library,
the table with identifier <C>"P41/G1/L1/V4/ext2"</C> was not correct.
The problem occurs already in the microfiches
that are attached to&nbsp;<Cite Key="HP89"/>.

<P/>

In the following, we show that this table is not the character table
of a finite group,
using the &GAP; library of perfect groups.
Currently we do not know how to prove this inconsistency
alone from the table.

<P/>

We start with the construction of the inconsistent table;
apart from a little editing,
the following input equals the data formerly stored
in the file <F>data/ctoholpl.tbl</F> of the &GAP; Character Table Library.

<P/>

<Example><![CDATA[
gap> tbl:= rec(
>   Identifier:= "P41/G1/L1/V4/ext2",
>   InfoText:= Concatenation( [
>     "origin: Hanrath library,\n",
>     "structure is 2^7.L2(8),\n",
>     "characters sorted with permutation (12,14,15,13)(19,20)" ] ),
>   UnderlyingCharacteristic:= 0,
>   SizesCentralizers:= [64512,1024,1024,64512,64,64,64,64,128,128,64,
>     64,128,128,18,18,14,14,14,14,14,14,18,18,18,18,18,18],
>   ComputedPowerMaps:= [,[1,1,1,1,2,3,3,2,3,2,2,1,3,2,16,16,20,20,22,
>     22,18,18,26,26,27,27,23,23],[1,2,3,4,5,6,7,8,9,10,11,12,13,14,4,
>     1,21,22,17,18,19,20,16,15,15,16,16,15],,,,[1,2,3,4,5,6,7,8,9,10,
>     11,12,13,14,15,16,4,1,4,1,4,1,26,25,28,27,23,24]],
>   Irr:= 0,
>   AutomorphismsOfTable:= Group( [(23,26,27)(24,25,28),(9,13)(10,14),
>     (17,19,21)(18,20,22)] ),
>   ConstructionInfoCharacterTable:= ["ConstructClifford",[[[1,2,3,4,
>     5,6,7,8,9],[1,7,8,3,9,2],[1,4,5,6,2],[1,2,2,2,2,2,2,2]],
>     [["L2(8)"],["Dihedral",18],["Dihedral",14],["2^3"]],[[[1,2,3,4],
>     [1,1,1,1],["elab",4,25]],[[1,2,3,4,4,4,4,4,4,4],[2,6,5,2,3,4,5,
>     6,7,8],["elab",10,17]],[[1,2],[3,4],[[1,1],[-1,1]]],[[1,3],[4,
>     2],[[1,1],[-1,1]]],[[1,3],[5,3],[[1,1],[-1,1]]],[[1,3],[6,4],
>     [[1,1],[-1,1]]],[[1,2],[7,2],[[1,1],[1,-1]]],[[1,2],[8,3],[[1,
>     1],[-1,1]]],[[1,2],[9,5],[[1,1],[1,-1]]]]]],
>   );;
gap> ConstructClifford( tbl, tbl.ConstructionInfoCharacterTable[2] );
gap> ConvertToLibraryCharacterTableNC( tbl );;
]]></Example>

<P/>

Suppose that there is a group <M>G</M>, say, with this table.
Then <M>G</M> is perfect since the table has only one linear character.

<P/>

<Example><![CDATA[
gap> Length( LinearCharacters( tbl ) );
1
gap> IsPerfectCharacterTable( tbl );
true
]]></Example>

<P/>

The table satisfies the orthogonality relations,
the structure constants are nonnegative integers,
and symmetrizations of the irreducibles decompose
into the irreducibles, with nonnegative integral coefficients.

<P/>

<Example><![CDATA[
gap> IsInternallyConsistent( tbl );
true
gap> irr:= Irr( tbl );;
gap> test:= Concatenation( List( [ 2 .. 7 ],
>               n -> Symmetrizations( tbl, irr, n ) ) );;
gap> Append( test, Set( Tensored( irr, irr ) ) );
gap> fail in Decomposition( irr, test, "nonnegative" );
false
gap> if ForAny( Tuples( [ 1 .. NrConjugacyClasses( tbl ) ], 3 ),
>      t -> not ClassMultiplicationCoefficient( tbl, t[1], t[2], t[3] )
>               in NonnegativeIntegers ) then
>      Error( "contradiction" );
> fi;
]]></Example>

<P/>

The &GAP; Library of Perfect Groups contains representatives of the
four isomorphism types of perfect groups of order <M>|G| = 64\,512</M>.

<P/>

<Example><![CDATA[
gap> n:= Size( tbl );
64512
gap> NumberPerfectGroups( n );
4
gap> grps:= List( [ 1 .. 4 ], i -> PerfectGroup( IsPermGroup, n, i ) );
[ L2(8) 2^6 E 2^1, L2(8) N 2^6 E 2^1 I, L2(8) N 2^6 E 2^1 II, 
  L2(8) N 2^6 E 2^1 III ]
]]></Example>

<P/>

If we believe that the classification of perfect groups of order <M>|G|</M>
is correct then all we have to do is to show that none of the
character tables of these four groups is equivalent to the given table.

<P/>

<Example><![CDATA[
gap> tbls:= List( grps, CharacterTable );;
gap> List( tbls,
>          x -> TransformingPermutationsCharacterTables( x, tbl ) );
[ fail, fail, fail, fail ]
]]></Example>

<P/>

In fact, already the matrices of irreducible characters of the four groups
do not fit to the given table.

<P/>

<Example><![CDATA[
gap> List( tbls,
>          t -> TransformingPermutations( Irr( t ), Irr( tbl ) ) );
[ fail, fail, fail, fail ]
]]></Example>

<P/>

Let us look closer at the tables in question.
Each character table of a perfect group of order <M>64\,512</M>
has exactly one irreducible character of degree <M>63</M> that takes exactly
the values <M>-1</M>, <M>0</M>, <M>7</M>, and <M>63</M>;
moreover, the value <M>7</M> occurs in exactly two classes.

<P/>

<Example><![CDATA[
gap> testchars:= List( tbls,
>   t -> Filtered( Irr( t ),
>          x -> x[1] = 63 and Set( x ) = [ -1, 0, 7, 63 ] ) );;
gap> List( testchars, Length );
[ 1, 1, 1, 1 ]
gap> List( testchars, l -> Number( l[1], x -> x = 7 ) );
[ 2, 2, 2, 2 ]
]]></Example>

<P/>

(Another way to state this is that in each of the four tables <M>t</M> in
question,
there are ten preimage classes of the involution class in the simple
factor group <M>L_2(8)</M>,
there are eight preimage classes of this class in the factor group
<M>2^6.L_2(8)</M>,
and that the unique class in which an irreducible degree <M>63</M> character
of this factor group takes the value <M>7</M> splits in <M>t</M>.)

<P/>

In the erroneous table, however,
there is only one class with the value <M>7</M> in this character.

<P/>

<Example><![CDATA[
gap> testchars:= List( [ tbl ],
>   t -> Filtered( Irr( t ),
>          x -> x[1] = 63 and Set( x ) = [ -1, 0, 7, 63 ] ) );;
gap> List( testchars, Length );
[ 1 ]
gap> List( testchars, l -> Number( l[1], x -> x = 7 ) );
[ 1 ]
]]></Example>

<P/>

This property can be checked easily for the displayed table stored
in fiche <M>2</M>, row <M>4</M>, column <M>7</M> of&nbsp;<Cite Key="HP89"/>,
with the name <C>6L1&lt;>Z^7&lt;>L2(8); V4; MOD 2</C>,
and it turns out that this table is not correct.

<P/>

Note that these microfiches contain <E>two</E> tables of order <M>64\,512</M>,
and there were <E>three</E> tables of groups of that order
in the &GAP; Character Table Library
that contain <C>origin: Hanrath library</C> in their
<Ref Func="InfoText" BookName="ref"/>
value.
Besides the incorrect table, these library tables are
the character tables of the groups
<C>PerfectGroup( 64512, 1 )</C> and <C>PerfectGroup( 64512, 3 )</C>,
respectively.
(The matrices of irreducible characters of these tables are equivalent.)

<P/>

<Example><![CDATA[
gap> Filtered( [ 1 .. 4 ], i ->
>        TransformingPermutationsCharacterTables( tbls[i],
>            CharacterTable( "P41/G1/L1/V1/ext2" ) ) <> fail );
[ 1 ]
gap> Filtered( [ 1 .. 4 ], i ->
>        TransformingPermutationsCharacterTables( tbls[i],
>            CharacterTable( "P41/G1/L1/V2/ext2" ) ) <> fail );
[ 3 ]
gap> TransformingPermutations( Irr( tbls[1] ), Irr( tbls[3] ) ) <> fail;
true
]]></Example>

<P/>

Since version&nbsp;1.2 of the &GAP; Character Table Library,
the character table with the
<Ref Func="Identifier" BookName="ref"/>
value
<C>"P41/G1/L1/V4/ext2"</C> corresponds to the group
<C>PerfectGroup( 64512, 4 )</C>.
The choice of this group was somewhat arbitrary since the vector system
<C>V4</C> seems to be not defined in&nbsp;<Cite Key="HP89"/>;
anyhow, this group and the remaining perfect group,
<C>PerfectGroup( 64512, 2 )</C>,
have equivalent matrices of irreducibles.

<Example><![CDATA[
gap> Filtered( [ 1 .. 4 ], i ->
>        TransformingPermutationsCharacterTables( tbls[i],
>            CharacterTable( "P41/G1/L1/V4/ext2" ) ) <> fail );
[ 4 ]
gap> TransformingPermutations( Irr( tbls[2] ), Irr( tbls[4] ) ) <> fail;
true
]]></Example>

<!--
% Let us suppose that we are not convinced yet,
% perhaps because it might be that a perfect group of order <M>64\,512</M>
% has been overlooked up to now.
% Then we consider the factor group <M>F</M> of <M>G</M> modulo its centre.
% 
% <Example><![CDATA[
% gap> cen:= ClassPositionsOfCentre( tbl );
% [ 1, 4 ]
% gap> facttbl:= tbl / cen;
% CharacterTable( "P41/G1/L1/V4/ext2/[ 1, 4 ]" )
% ]]></Example>
% 
% The group <M>F</M> is a perfect group of order <M>32\,256</M>.
% According to the &GAP; Library of Perfect Groups,
% there are exactly two such groups, up to isomorphism,
% and <M>F</M> must be isomorphic to the second of these groups.
% 
% <Example><![CDATA[
% gap> factgrps:= List( [ 1 .. 2 ], i -> PerfectGroup( IsPermGroup, n/2, i ) );
% [ L2(8) 2^6, L2(8) N 2^6 ]
% gap> facttbls:= List( factgrps, CharacterTable );;                        
% gap> List( facttbls, x -> IsRecord(
% >            TransformingPermutationsCharacterTables( x, facttbl ) ) );
% [ false, true ]
% ]]></Example>
% 
% (In fact the situation is a bit more subtle:
% The matrices of irreducibles of the two perfect groups of order <M>32\,256</M>
% are equivalent,
% the two character tables differ just by their second power maps and,
% as a consequence, by their element orders.
% However, the second power map of the given table of <M>G</M>
% is uniquely determined by the matrix of irreducibles of this table.)
% 
% No!!
% 
% -> what about element orders?
% 
% <Example><![CDATA[
% gap> IsRecord( TransformingPermutations(
% >                  Irr( facttbls[1] ), Irr( facttbls[2] ) ) );
% true
% gap> IsRecord( TransformingPermutationsCharacterTables(
% >                  facttbls[1], facttbls[2] ) );
% false
% 
% ]]></Example>
% 
% 
% ...
% 
% (And the power maps are uniquely det. by the matrix.)
% 
% (and not equiv. to the other!
% note that one is split, the other nonsplit, 
% and the matrices of irreds are equivalent)
% 
% So if we believe that there is no other perfect group of order <M>32\,256</M>
% that has the same character table
% then <M>G</M> is a central extension of this group by a group of order two.
% 
% We compute the possible central extensions of a maximal subgroup
% of the structure <M>2^6.2^3:7</M>,
% and show that none of them admits an embedding into the table.
% 
% (Note that the extensions can be computed for solvable groups,
% that's why we switch to a subgroup.)
% 
% <Example><![CDATA[
% gap> sort;
% CharacterTable( "P41/G1/L1/V4/ext2" )
% gap> g:= PerfectGroup( IsPermGroup, 32256, 2 );;
% gap> nsg:= NormalSubgroups( g );
% ...
% gap> epi:= NaturalHomomorphismByNormalSubgroup( g, nsg[2] );;
% gap> img:= Image( epi );;
% gap> mx:= MaximalSubgroupClassReps( img );
% [ Group([ (3,4,8,6,7,5,9), (1,2)(4,9)(5,8)(6,7) ]), Group([ (1,2,3)(4,7,8)(5,6,9), (1,4,9,2,7,5,3,8,6), (2,3)(4,6)(5,7)(8,9) ]), Group([ (2,3)(4,6)(5,7)(8,9), (2,4)(3,6)(5,9)(7,8), (2,5)(3,7)(4,9)(6,8), 
%       (3,4,8,6,7,5,9) ]) ]
% gap> List( mx, Size );
% [ 14, 18, 56 ]
% gap> pre:= PreImages( epi, mx[3] );;
% gap> iso:= IsomorphismPcGroup( pre );;
% gap> G:= Image( iso );;
% gap> mats:= List( Pcgs( G ), x -> IdentityMat( 1, GF(2) ) );;     
% gap> M:= GModuleByMats( mats, GF(2) );; 
% gap> ext:= Extensions( G, M );;                                   
% gap> Length( ext );
% 8
% gap> List( ext, Size );
% [ 7168, 7168, 7168, 7168, 7168, 7168, 7168, 7168 ]
% gap> tbls:= List( ext, CharacterTable );;
% gap> List( tbls, t -> Length( PossibleClassFusions( t, sort ) ) );
% [ 0, 0, 0, 0, 0, 0, 0, 0 ]
% ]]></Example>
% 
% 
% now: how to replace the wrong table by the correct one!
% -> to which of the two?
% -> note that V1/ext2 and V2/ext2 belong to the first and third group,
%    they have equiv. matrices;
%    V4/ext2 is wrong, and there are the second and fourth group,
%    again with equiv. matrices but different power maps!
%    (so add two tables? with which names?)
% 
% <Example><![CDATA[
% ]]></Example>
% 
-->
</Subsection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:errorE62">
<Heading>An Error in the Character Table of <M>E_6(2)</M> (March 2016)</Heading>

In March 2016, Bill Unger computed the character table of the simple group
<M>E_6(2)</M> with Magma (see <Cite Key="CP96"/>)
and compared it with the table that was contained in the
&GAP; Character Table Library since 2000.
It turned out that the two tables did not coincide.

<P/>

The differences concern irrational character values on classes of element
order <M>91</M> and power map values on these classes.
(The character values and power maps fit to each other in both tables;
thus it may be that the assumption of a wrong power has implied the wrong
character values, or vice versa.)
Specifically, the <M>11</M>th power map in the &GAP; table
fixed all elements of order <M>91</M>.
Using the smallest matrix representation of <M>E_6(2)</M> over the field with
two elements, one can easily find an element <M>g</M> of order <M>91</M>,
and show that the characteristic polynomials of <M>g</M> and <M>g^{11}</M>
differ.
Hence these two elements cannot be conjugate in <M>E_6(2)</M>.
In other words, the &GAP; table was wrong.

<P/>

<Example><![CDATA[
gap> g:= AtlasGroup( "E6(2)" );;
gap> repeat x:= PseudoRandom( g ); until Order( x ) = 91;
gap> CharacteristicPolynomial( x ) = CharacteristicPolynomial( x^11 );
false
]]></Example>

<P/>

The wrong &GAP; table has been corrected in version 1.3.0 of the
&GAP; Character Table Library.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "E6(2)" );;
gap> ord91:= Positions( OrdersClassRepresentatives( t ), 91 );
[ 163, 164, 165, 166, 167, 168 ]
gap> PowerMap( t, 11 ){ ord91 };
[ 167, 168, 163, 164, 165, 166 ]
]]></Example>

<!-- The wrong table involved irrationalities
     E(91)^6+E(91)^20+E(91)^31+E(91)^38+E(91)^48+E(91)^54+E(91)^66+E(91)^68
     +E(91)^69+E(91)^73+E(91)^75+E(91)^89,
     and the new one contains irrationalities
     E(91)^17+E(91)^27+E(91)^34+E(91)^45+E(91)^54+E(91)^59+E(91)^68+E(91)^75
     +E(91)^83+E(91)^87+E(91)^89+E(91)^90.
     These values define different subfields of CF(91). -->

</Subsection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:error2F422">
<Heading>An Error in a Power Map of the Character Table of <M>2.F_4(2).2</M> (November 2015)</Heading>

As a part of the computations for <Cite Key="BMO17"/>,
the character table of the group <M>2.F_4(2).2</M> was computed
automatically from a representation of the group,
using Magma (see <Cite Key="CP96"/>).
It turned out that the <M>2</M>-nd power map that had been stored on the
library character table of <M>2.F_4(2).2</M> had been wrong.

<P/>

In fact, this was the one and only case of a power map for an &ATLAS; group
which was not determined by the character table,
and the <Ref Attr="InfoText" BookName="ref"/> value of the character table
had mentioned the two alternatives.

<P/>

Note that the ambiguity is not present in the table of the factor group
<M>F_4(2).2</M>, and only four faithful irreducible characters of
<M>2.F_4(2).2</M> distinguish the four relevant conjugacy classes.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "2.F4(2).2" );;
gap> f:= CharacterTable( "F4(2).2" );;
gap> map:= PowerMap( t, 2 );
[ 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 11, 11, 3, 3, 3, 5, 5, 5, 3, 6, 6, 5, 
  5, 7, 7, 5, 8, 7, 29, 29, 9, 9, 9, 9, 11, 11, 9, 9, 9, 9, 11, 11, 
  43, 43, 20, 20, 20, 14, 14, 13, 13, 20, 21, 24, 28, 28, 57, 57, 29, 
  29, 29, 29, 33, 33, 35, 37, 37, 37, 37, 33, 33, 37, 37, 35, 41, 41, 
  42, 42, 79, 79, 43, 43, 83, 83, 45, 45, 47, 47, 53, 53, 91, 91, 57, 
  57, 61, 61, 61, 98, 98, 70, 70, 63, 63, 81, 81, 83, 83, 1, 6, 7, 
  11, 16, 17, 24, 24, 21, 27, 27, 25, 26, 29, 41, 53, 53, 53, 46, 56, 
  56, 56, 56, 62, 75, 75, 78, 78, 77, 77, 79, 79, 86, 86, 85, 85, 88, 
  88, 88, 88, 95, 95, 96, 96 ]
gap> PositionSublist( map, [ 86, 86, 85, 85 ] );
140
gap> OrdersClassRepresentatives( t ){ [ 140 .. 143 ] };
[ 32, 32, 32, 32 ]
gap> SizesCentralizers( t ){ [ 140 .. 143 ] };
[ 64, 64, 64, 64 ]
gap> GetFusionMap( t, f ){ [ 140 ..143 ] };
[ 86, 86, 87, 87 ]
gap> PowerMap( f, 2 ){ [ 86, 87 ] };
[ 50, 50 ]
gap> pos:= PositionsProperty( Irr( t ),
>    x -> x[1] <> x[2] and Length( Set( x{ [ 140 .. 143 ] } ) ) > 1 );
[ 144, 145, 146, 147 ]
gap> List( pos, i -> Irr(t)[i]{ [ 140 .. 143 ] } );
[ [ 2*E(16)-2*E(16)^7, -2*E(16)+2*E(16)^7, 2*E(16)^3-2*E(16)^5, 
      -2*E(16)^3+2*E(16)^5 ], 
  [ -2*E(16)+2*E(16)^7, 2*E(16)-2*E(16)^7, -2*E(16)^3+2*E(16)^5, 
      2*E(16)^3-2*E(16)^5 ], 
  [ -2*E(16)^3+2*E(16)^5, 2*E(16)^3-2*E(16)^5, 2*E(16)-2*E(16)^7, 
      -2*E(16)+2*E(16)^7 ], 
  [ 2*E(16)^3-2*E(16)^5, -2*E(16)^3+2*E(16)^5, -2*E(16)+2*E(16)^7, 
      2*E(16)-2*E(16)^7 ] ]
]]></Example>

<P/>

I had not found a suitable subgroup of <M>2.F_4(2).2</M> whose
character table could be used to decide the question which of the
two alternatives is the correct one.

</Subsection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:LyN2">
<Heading>A Character Table with a Wrong Name (May 2017)</Heading>

(This example is much older.)

<P/>

The character table that is shown in <Cite Key="Ost86" Where="p. 126 f."/>
is claimed to be the table of a Sylow <M>2</M> subgroup <M>P</M> of the
sporadic simple Lyons group <M>Ly</M>.
This table had been contained in the character table library of the
<Package>CAS</Package> system (see <Cite Key="NPP84"/>),
which was one of the predecessors of &GAP;.

<P/>

It is easy to see that no subgroup of <M>Ly</M>
can have this character table.
Namely,
the group of that table contains elements of order eight
with centralizer order <M>2^6</M>,
and this does not occur in <M>Ly</M>.

<P/>

<Example><![CDATA[
gap> tbl:= CharacterTable( "Ly" );;
gap> orders:= OrdersClassRepresentatives( tbl );;
gap> order8:= Filtered( [ 1 .. Length( orders ) ], x -> orders[x] = 8 );
[ 12, 13 ]
gap> SizesCentralizers( tbl ){ order8 } / 2^6;
[ 15/2, 3/2 ]
]]></Example>

<P/>

The table of <M>P</M> has been computed in <Cite Key="Bre91"/>
with character theoretic methods.
Nowadays it would be no problem to take a permutation representation of
<M>Ly</M>, to compute its Sylow <M>2</M> subgroup, and use this group
to compute its character table.
However, the task is even easier if we assume that <M>Ly</M> has a subgroup
of the structure <M>3.McL.2</M>.
This subgroup is of odd index, hence it contains a conjugate of <M>P</M>.
Clearly the Sylow <M>2</M> subgroups in the factor group <M>McL.2</M>
are isomorphic with <M>P</M>.
Thus we can start with a rather small permutation representation.

<P/>

<Example><![CDATA[
gap> g:= AtlasGroup( "McL.2" );;
gap> NrMovedPoints( g );
275
gap> syl:= SylowSubgroup( g, 2 );;
gap> pc:= Image( IsomorphismPcGroup( syl ) );;
gap> t:= CharacterTable( pc );;
]]></Example>

<P/>

The character table coincides with the one which is stored in
the Character Table Library.

<P/>

<Example><![CDATA[
gap> IsRecord( TransformingPermutationsCharacterTables( t,
>                  CharacterTable( "LyN2" ) ) );
true
]]></Example>

</Subsection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:spacegroupfactors">
<Heading>Some finite factor groups of perfect space groups (February 2014)</Heading>

If one wants to find a group to which a given character table from the
&GAP; Character Table Library belongs,
one can try the function
<Ref Func="GroupInfoForCharacterTable" BookName="ctbllib"/>.
For a long time,
this was not successful in the case of <M>16</M> character tables
that had been computed by W.&nbsp;Hanrath (see Section
<Q>Ordinary and Brauer Tables in the &GAP; Character Table Library</Q>
in the &CTblLib; manual).

<P/>

Using the information from&nbsp;<Cite Key="HP89"/>,
it is straightforward to construct
such groups as factor groups of infinite groups.
Since version&nbsp;1.3.0 of the &CTblLib; package,
calling
<Ref Func="GroupInfoForCharacterTable" BookName="ctbllib"/>
for the <M>16</M> library tables
in question yields nonempty lists and thus allows one to access the
results of these constructions,
via the function <C>CTblLib.FactorGroupOfPerfectSpaceGroup</C>.
This is an undocumented auxiliary function that becomes available
automatically when
<Ref Func="GroupInfoForCharacterTable" BookName="ctbllib"/>
has been called for the first time.

<P/>

<Example><![CDATA[
gap> GroupInfoForCharacterTable( "A5" );;
gap> IsBound( CTblLib.FactorGroupOfPerfectSpaceGroup );
true
]]></Example>
 
<P/>

Below we list the <M>16</M> group constructions.
In each case, an epimorphism from the space group in question is defined by
mapping the generators returned by by the function
<C>generatorsOfPerfectSpaceGroup</C> defined below to the generators
stored in the attribute
<Ref Func="GeneratorsOfGroup" BookName="ref"/>
of the group returned by
<C>CTblLib.FactorGroupOfPerfectSpaceGroup</C>.


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:constructspacegroups">
<Heading>Constructing the space groups in question</Heading>

In&nbsp;<Cite Key="HP89"/>,
a space group <M>S</M> is described as a subgroup
<M>\{ M(g, t); g \in P, t \in T \}</M> of GL<M>(d+1, &ZZ;)</M>,
where 

<P/>

<Alt Only="LaTeX">
\[
   M(g, t) = \left[ \begin{array}{cc}  g &amp; 0 \\
                                V(g) + t &amp; 1 \end{array} \right],
\]
</Alt>

<Alt Only="Text">
<Verb>
                          M(g, t) = ⌈      g  0 ⌉
                                    ⌊ V(g)+t  1 ⌋,
</Verb>
</Alt>

<Alt Only="HTML"><![CDATA[
<div class="pcenter"><table>
<tr>
<td class="tdright"><span class="SimpleMath">M(g, t)</span></td>
<td class="tdcenter"><span class="SimpleMath">&nbsp;=&nbsp;</span></td>
<td class="tdleft">
  <table class="GAPDocTable">
    <tr>
      <td class="tdright"><span class="SimpleMath">g</span></td>
      <td class="tdright"><span class="SimpleMath">0</span></td>
    </tr>
    <tr>
      <td class="tdright"><span class="SimpleMath">V(g)+t</span></td>
      <td class="tdright"><span class="SimpleMath">1</span></td>
    </tr>
  </table>
</td>
</tr>
</table>
</div>
]]></Alt>

<P/>

the <E>point group</E> <M>P</M> of <M>S</M> is a finite subgroup of
GL<M>(d, &ZZ;)</M>,
the <E>translation lattice</E> <M>T</M> of <M>S</M> is a sublattice of
<M>&ZZ;^d</M>,
and the <E>vector system</E> <M>V</M> of <M>S</M> is a map from <M>P</M> to
<M>&ZZ;^d</M>.
Note that <M>V</M> maps the identity matrix <M>I \in</M> GL<M>(d, &ZZ;)</M>
to the zero vector,
and <M>M(T):= \{ M(I, t); t \in T \}</M>
is a normal subgroup of <M>S</M> that is isomorphic with <M>T</M>.
More generally, <M>M(n T)</M> is a normal subgroup of <M>S</M>,
for any positive integer <M>n</M>.

<P/>

Specifically,
<M>P</M> is given by generators <M>g_1, g_2, \ldots, g_k</M>,
<M>T</M> is given by a <M>&ZZ;</M>-basis
<M>B = \{ b_1, b_2, \ldots, b_d \}</M> of <M>T</M>,
and <M>V</M> is given by the vectors <M>V(g_1), V(g_2), \ldots, V(g_k)</M>.

<P/>

In the examples below, the matrix representation of <M>P</M> is irreducible,
so we need just the following <M>k+1</M> elements to generate <M>S</M>:

<P/>

<Alt Only="LaTeX">
\[
   \left[ \begin{array}{cc}  g_1 &amp; 0 \\ V(g_1) &amp; 1  \end{array} \right],
   \left[ \begin{array}{cc}  g_2 &amp; 0 \\ V(g_2) &amp; 1  \end{array} \right],
   \ldots,
   \left[ \begin{array}{cc}  g_k &amp; 0 \\ V(g_k) &amp; 1  \end{array} \right],
   \left[ \begin{array}{cc}    I &amp; 0 \\ b_1    &amp; 1  \end{array} \right].
\]
</Alt>

<Alt Only="Text">
<Verb>
        ⌈    g_1  0 ⌉  ⌈    g_2  0 ⌉       ⌈    g_k  0 ⌉  ⌈   I  0 ⌉
        ⌊ V(g_1)  1 ⌋, ⌊ V(g_2)  1 ⌋, ..., ⌊ V(g_k)  1 ⌋, ⌊ b_1  1 ⌋.
</Verb>
</Alt>

<Alt Only="HTML"><![CDATA[
<div class="pcenter">
<table>
<tr>
<td class="tdleft">
  <table class="GAPDocTable">
    <tr>
      <td class="tdright"><span class="SimpleMath">g_1</span></td>
      <td class="tdright"><span class="SimpleMath">0</span></td>
    </tr>
    <tr>
      <td class="tdright"><span class="SimpleMath">V(g_1)</span></td>
      <td class="tdright"><span class="SimpleMath">1</span></td>
    </tr>
  </table>
<td class="tdleft">
  ,&nbsp;
</td>
</td>
<td class="tdleft">
  <table class="GAPDocTable">
    <tr>
      <td class="tdright"><span class="SimpleMath">g_2</span></td>
      <td class="tdright"><span class="SimpleMath">0</span></td>
    </tr>
    <tr>
      <td class="tdright"><span class="SimpleMath">V(g_2)</span></td>
      <td class="tdright"><span class="SimpleMath">1</span></td>
    </tr>
  </table>
</td>
<td class="tdleft">
  , ...,&nbsp;
</td>
<td class="tdleft">
  <table class="GAPDocTable">
    <tr>
      <td class="tdright"><span class="SimpleMath">g_k</span></td>
      <td class="tdright"><span class="SimpleMath">0</span></td>
    </tr>
    <tr>
      <td class="tdright"><span class="SimpleMath">V(g_k)</span></td>
      <td class="tdright"><span class="SimpleMath">1</span></td>
    </tr>
  </table>
</td>
<td class="tdleft">
  ,&nbsp;
</td>
<td class="tdleft">
  <table class="GAPDocTable">
    <tr>
      <td class="tdright"><span class="SimpleMath">I</span></td>
      <td class="tdright"><span class="SimpleMath">0</span></td>
    </tr>
    <tr>
      <td class="tdright"><span class="SimpleMath">b_1</span></td>
      <td class="tdright"><span class="SimpleMath">1</span></td>
    </tr>
  </table>
</td>
<td class="tdleft">
  .
</td>
</tr>
</table>
</div>
]]></Alt>

<P/>

These generators are returned by the function
<C>generatorsOfPerfectSpaceGroup</C>,
when the inputs are <M>[ g_1, g_2, \ldots, g_k ]</M>,
<M>[ V(g_1), V(g_2), \ldots, V(g_k) ]</M>, and <M>b_1</M>.

<P/>

<Example><![CDATA[
gap> generatorsOfPerfectSpaceGroup:= function( Pgens, V, t )
>     local d, result, i, m;
>     d:= Length( Pgens[1] );
>     result:= [];
>     for i in [ 1 .. Length( Pgens ) ] do
>       m:= IdentityMat( d+1 );
>       m{ [ 1 .. d ] }{ [ 1 .. d ] }:= Pgens[i];
>       m[ d+1 ]{ [ 1 .. d ] }:= V[i];
>       result[i]:= m;
>     od;
>     m:= IdentityMat( d+1 );
>     m[ d+1 ]{ [ 1 .. d ] }:= t;
>     Add( result, m );
>     return result;
> end;;
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:constructfactors">
<Heading>Constructing the factor groups in question</Heading>

The space group <M>S</M> acts on <M>&ZZ;^d</M>,
via <M>v \cdot M(g, t) = v g + V(g) + t</M>.
A (not necessarily faithful) representation of <M>S/M(n T)</M>
can be obtained from the corresponding action of <M>S</M> on
<M>&ZZ;^d/(n &ZZ;^d)</M>,
that is, by reducing the vectors modulo <M>n</M>.
For the &GAP; computations, we work instead with vectors of length <M>d+1</M>,
extending each vector in <M>&ZZ;^d</M> by <M>1</M> in the last position,
and acting on these vectors by right multiplicaton with elements of <M>S</M>.
Multiplication followed by reduction modulo <M>n</M> is implemented by
the action function returned by <C>multiplicationModulo</C>
when this is called with argument <M>n</M>.

<P/>

<Example><![CDATA[
gap> multiplicationModulo:= n -> function( v, g )
>        return List( v * g, x -> x mod n ); end;;
]]></Example>

<P/>

In some of the examples,
the representation of <M>P</M> given in&nbsp;<Cite Key="HP89"/>
is the action on the factor
of a permutation module modulo its trivial submodule.
For that, we provide the function <C>deletedPermutationMat</C>,
cf.&nbsp;<Cite Key="HP89" Where="p. 269"/>.

<P/>

<Example><![CDATA[
gap> deletedPermutationMat:= function( pi, n )
>     local mat, j, i;
>     mat:= PermutationMat( pi, n );
>     mat:= mat{ [ 1 .. n-1 ] }{ [ 1 .. n-1 ] };
>     j:= n ^ pi;
>     if j <> n then
>       for i in [ 1 .. n-1 ] do
>         mat[i][j]:= -1;
>       od;
>     fi;
>     return mat;
> end;;
]]></Example>

<P/>

After constructing permutation generators for the example groups,
we verify that the groups fit to the character tables from the
&GAP; Character Table Library and to the permutation generators
stored for the construction of the group via
<C>CTblLib.FactorGroupOfPerfectSpaceGroup</C>.

<P/>

<!--

(In earlier versions of &GAP;, a call of the function
<Ref Func="SmallerDegreePermutationRepresentation" BookName="ref"/>
was sufficient for computing a reasonably small permutation representation
of each of the example groups.
Meanwhile, this function has become more sophisticated,
with the effect that it requires much more space in some of our cases.
Therefore, we reduce the number of points by hand.)

<Example><![CDATA[
gap> verifyFactorGroup:= function( gens, id )
>     local g, s, sgens, act, sm, stored, hom;
>     # sm:= SmallerDegreePermutationRepresentation( Group( gens ) );
>     g:= Group( gens );
>     s:= NormalClosure( g, Subgroup( g, [ gens[ Length( gens ) ] ] ) );
>     sgens:= MinimalGeneratingSet( s );
>     s:= Subgroup( s, sgens{ [ 2 .. Length( sgens ) ] } );
>     act:= Action( g, RightTransversal( g, s ), OnRight );
>     if Size( act ) <> Size( g ) then
>       Error( "wrong group order!" );
>     fi;
>     gens:= GeneratorsOfGroup( act );
>     sm:= SmallerDegreePermutationRepresentation( act );
>     gens:= List( gens, x -> x^sm );
>     act:= Images( sm );
>     if not IsRecord( TransformingPermutationsCharacterTables(
>                          CharacterTable( act ),
>                          CharacterTable( id ) ) ) then
>       return "wrong character table";
>     fi;
>     GroupInfoForCharacterTable( id );
>     stored:= CTblLib.FactorGroupOfPerfectSpaceGroup( id );
>     hom:= GroupHomomorphismByImages( stored, act,
>               GeneratorsOfGroup( stored ), gens );
>     if hom = fail or not IsBijective( hom ) then
>       return "wrong group";
>     fi;
>     return true;
> end;;
]]></Example>
-->

<P/>

<Example><![CDATA[
gap> verifyFactorGroup:= function( gens, id )
>     local sm, act, stored, hom;
>     sm:= SmallerDegreePermutationRepresentation( Group( gens ) );
>     gens:= List( gens, x -> x^sm );
>     act:= Images( sm );
>     if not IsRecord( TransformingPermutationsCharacterTables(
>                          CharacterTable( act ),
>                          CharacterTable( id ) ) ) then
>       return "wrong character table";
>     fi;
>     GroupInfoForCharacterTable( id );
>     stored:= CTblLib.FactorGroupOfPerfectSpaceGroup( id );
>     hom:= GroupHomomorphismByImages( stored, act,
>               GeneratorsOfGroup( stored ), gens );
>     if hom = fail or not IsBijective( hom ) then
>       return "wrong group";
>     fi;
>     return true;
> end;;
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-A5">
<Heading>Examples with point group <M>A_5</M></Heading>

There are two examples with <M>d = 5</M>.
The generators of the point group are as follows
(see&nbsp;<Cite Key="HP89" Where="p. 272"/>).

<P/>

<Example><![CDATA[
gap> a:= deletedPermutationMat( (1,3)(2,4), 6 );;
gap> b:= deletedPermutationMat( (1,2,3)(4,5,6), 6 );;
]]></Example>

<P/>

In both cases, the vector system is <M>V_2</M>.

<P/>

<Example><![CDATA[
gap> v:= [ [ 2, 2, 0, 0, 1 ], 0 * b[1] ];;
]]></Example>

<P/>

In the first example,
the translation lattice is the sublattice <M>L = 2 L_1</M> of the full lattice
<M>L_1 = &ZZ;^d</M>.

<P/>

<Example><![CDATA[
gap> t:= [ 2, 0, 0, 0, 0 ];;
]]></Example>

<P/>

The library character table with identifier <C>"P1/G2/L1/V2/ext4"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(4 L)</M>, so we compute the action on an orbit modulo <M>8</M>.

<P/>

<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 8 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P1/G2/L1/V2/ext4" );
true
]]></Example>

<P/>

In the second example,
the translation lattice is the sublattice <M>2 L_2</M> of <M>&ZZ;^d</M>
where <M>L_2</M> has the following basis.

<P/>

<Example><![CDATA[
gap> bas:= [ [-1,-1, 1, 1, 1 ],
>            [-1, 1,-1, 1, 1 ],
>            [ 1, 1, 1,-1,-1 ],
>            [ 1, 1,-1,-1, 1 ],
>            [-1, 1, 1,-1, 1 ] ];;
]]></Example>

<P/>

For the sake of simplicity, we rewrite the action of the point group
to one on <M>L_2</M>, and we adjust also the vector system.

<P/>

<Example><![CDATA[
gap> B:= Basis( Rationals^Length( bas ), bas );;
gap> abas:= List( bas, x -> Coefficients( B, x * a ) );;
gap> bbas:= List( bas, x -> Coefficients( B, x * b ) );;
gap> vbas:= List( v, x -> Coefficients( B, x ) );
[ [ 3/2, 1, 2, 3/2, -1 ], [ 0, 0, 0, 0, 0 ] ]
]]></Example>

<P/>

In order to work with integral matrices (which is necessary because
<C>multiplicationModulo</C> uses &GAP;'s <C>mod</C> operator),
we double both the vector system and the translation lattice.

<P/>

<Example><![CDATA[
gap> vbas:= vbas * 2;
[ [ 3, 2, 4, 3, -2 ], [ 0, 0, 0, 0, 0 ] ]
gap> t:= 2 * t;
[ 4, 0, 0, 0, 0 ]
]]></Example>

<P/>

The library character table with identifier <C>"P1/G2/L2/V2/ext4"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(8 L_2)</M>;
since we have doubled the lattice,
we compute the action on an orbit modulo <M>16</M>.

<P/>

<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ abas, bbas ], vbas, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 16 );;
gap> orb:= Orbit( g, [ 0, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P1/G2/L2/V2/ext4" );
true
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-L32">
<Heading>Examples with point group <M>L_3(2)</M></Heading>

There are three examples with <M>d = 6</M>
and one example with <M>d = 8</M>.
The generators of the point group for the first three examples are as follows
(see&nbsp;<Cite Key="HP89" Where="p. 290"/>).

<P/>

<Example><![CDATA[
gap> a:= [ [ 0, 1, 0, 1, 0, 0 ],
>          [ 1, 0, 1, 1, 1, 1 ],
>          [-1,-1,-1,-1, 0, 0 ],
>          [ 0, 0,-1,-1,-1,-1 ],
>          [ 1, 1, 1, 1, 0, 1 ],
>          [ 0, 0, 1, 0, 1, 0 ] ];;
gap> b:= [ [-1, 0, 0, 0, 0,-1 ],
>          [ 0, 0,-1, 0,-1, 0 ],
>          [ 1, 1, 1, 1, 1, 1 ],
>          [ 0, 0, 1, 0, 0, 0 ],
>          [-1,-1,-1, 0, 0, 0 ],
>          [ 1, 0, 0, 0, 0, 0 ] ];;
]]></Example>

<P/>

The first vector system is the trivial vector system <M>V_1</M>
(that is, the space group <M>S</M> is a split extension of the point group
and the translation lattice),
and the translation lattice is the full lattice <M>L_1 = &ZZ;^d</M>.

<P/>

The library character table with identifier <C>"P11/G1/L1/V1/ext4"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(4 L_1)</M>, so we compute the action on an orbit modulo <M>4</M>.

<P/>

<Example><![CDATA[
gap> v:= List( [ 1, 2 ], i -> 0 * a[1] );;
gap> t:= [ 1, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 4 );;
gap> seed:= [ 1, 0, 0, 0, 0, 0, 1 ];;
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P11/G1/L1/V1/ext4" );
true
]]></Example>

<P/>

The second vector system is <M>V_2</M>,
and the translation lattice is <M>2 L_1</M>.

<P/>

The library character table with identifier <C>"P11/G1/L1/V2/ext4"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(8 L_1)</M>, so we compute the action on an orbit modulo <M>8</M>.

<P/>

<Example><![CDATA[
gap> v:= [ [ 1, 0, 1, 0, 0, 0 ], 0 * a[1] ];;
gap> t:= [ 2, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 8 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P11/G1/L1/V2/ext4" );
true
]]></Example>

<P/>

The third vector system is <M>V_3</M>,
and the translation lattice is <M>2 L_1</M>.

<P/>

The library character table with identifier <C>"P11/G1/L1/V3/ext4"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(8 L_1)</M>, so we compute the action on an orbit modulo <M>8</M>.

<P/>

<Example><![CDATA[
gap> v:= [ [ 0, 1, 0, 0, 1, 0 ], 0 * a[1] ];;
gap> t:= [ 2, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 8 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P11/G1/L1/V3/ext4" );
true
]]></Example>

<P/>

The generators of the point group for the fourth example are as follows
(see&nbsp;<Cite Key="HP89" Where="p. 293"/>).

<P/>

<Example><![CDATA[
gap> a:= [ [ 1, 0, 0, 1, 0,-1, 0, 1 ],
>          [ 0,-1, 1, 0,-1, 0, 0, 0 ],
>          [ 1, 0, 0, 1, 0,-1, 0, 0 ],
>          [ 0,-1, 0,-1, 0, 1, 1,-1 ],
>          [ 1, 0,-1, 1, 1,-1, 0, 0 ],
>          [ 1,-1,-1, 0, 0, 0, 1, 0 ],
>          [ 0,-1, 1, 0,-1, 1, 0,-1 ],
>          [ 1, 0,-1, 0, 0, 0, 0, 0 ] ];;
gap> b:= [ [ 1, 0,-2, 0, 1,-1, 1, 0 ],
>          [ 0,-1, 0, 0, 0, 0, 1,-1 ],
>          [ 1, 0,-1, 0, 1,-1, 0, 0 ],
>          [-1,-1, 1,-1,-1, 2, 0,-1 ],
>          [ 0, 0, 0,-1, 0, 0, 0, 0 ],
>          [ 0,-1, 0,-1,-1, 1, 1,-1 ],
>          [ 1,-1, 0, 0, 0, 0, 0, 0 ],
>          [ 1, 0, 0, 0, 0, 0, 0, 0 ] ];;
]]></Example>

<P/>

The vector system is the trivial vector system <M>V_1</M>,
and the translation lattice is the full lattice <M>L_1 = &ZZ;^d</M>.

<P/>

The library character table with identifier <C>"P11/G4/L1/V1/ext3"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(3 L_1)</M>, so we compute the action on an orbit modulo <M>3</M>.

<P/>

<Example><![CDATA[
gap> v:= List( [ 1, 2 ], i -> 0 * a[1] );;
gap> t:= [ 1, 0, 0, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 3 );;
gap> seed:= [ 1, 0, 0, 0, 0, 0, 0, 0, 1 ];;
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P11/G4/L1/V1/ext3" );
true
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-sl27">
<Heading>Example with point group SL<M>_2(7)</M></Heading>

There is one example with <M>d = 8</M>.
The generators of the point group are as follows
(see&nbsp;<Cite Key="HP89" Where="p. 295"/>).

<P/>

<Example><![CDATA[
gap> a:= KroneckerProduct( IdentityMat( 4 ), [ [ 0, 1 ], [ -1, 0 ] ] );;
gap> b:= [ [ 0,-1, 0, 0, 0, 0, 0, 0 ],
>          [ 0, 0, 1, 0, 0, 0, 0, 0 ],
>          [-1, 0, 0, 0, 0, 0, 0, 0 ],
>          [ 0, 0, 0, 0, 0, 0,-1, 0 ],
>          [ 0, 0, 0,-1, 0, 0, 0, 0 ],
>          [ 0, 0, 0, 0, 0, 1, 0, 0 ],
>          [ 0, 0, 0, 0, 1, 0, 0, 0 ],
>          [ 0, 0, 0, 0, 0, 0, 0, 1 ] ];;
]]></Example>

<P/>

The vector system is the trivial vector system <M>V_1</M>,
and the translation lattice is the sublattice <M>L_2</M> of <M>&ZZ;^d</M>
that has the following basis,
which is called <M>B(2,8)</M> in&nbsp;<Cite Key="HP89" Where="p. 269"/>.

<P/>

<Example><![CDATA[
gap> bas:= [ [ 1, 1, 0, 0, 0, 0, 0, 0 ],
>            [ 0, 1, 1, 0, 0, 0, 0, 0 ],
>            [ 0, 0, 1, 1, 0, 0, 0, 0 ],
>            [ 0, 0, 0, 1, 1, 0, 0, 0 ],
>            [ 0, 0, 0, 0, 1, 1, 0, 0 ],
>            [ 0, 0, 0, 0, 0, 1, 1, 0 ],
>            [ 0, 0, 0, 0, 0, 0, 1, 1 ],
>            [ 0, 0, 0, 0, 0, 0,-1, 1 ] ];;
]]></Example>

<P/>

For the sake of simplicity, we rewrite the action to one on <M>L_2</M>.

<P/>

<Example><![CDATA[
gap> B:= Basis( Rationals^Length( bas ), bas );;
gap> abas:= List( bas, x -> Coefficients( B, x * a ) );;
gap> bbas:= List( bas, x -> Coefficients( B, x * b ) );;
]]></Example>

<P/>

The library character table with identifier <C>"P12/G1/L2/V1/ext2"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(2 L_2)</M>.
The action on an orbit modulo <M>2</M> is not faithful,
its kernel contains the centre of SL<M>(2,7)</M>.
We can compute a faithful representation by acting on pairs:
One entry is the usual vector and the other entry carries the action
of the point group.

<P/>

<Example><![CDATA[
gap> v:= List( [ 1, 2 ], i -> 0 * a[1] );;
gap> t:= [ 1, 0, 0, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ abas, bbas ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 2 );;
gap> funpairs:= function( pair, g )
>    return [ fun( pair[1], g ), pair[2] * g ];
>    end;;
gap> seed:= [ [ 1, 0, 0, 0, 0, 0, 0, 0, 1 ],
>             [ 1, 0, 0, 0, 0, 0, 0, 0, 0 ] ];;
gap> orb:= Orbit( g, seed, funpairs );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, funpairs ) );;
gap> verifyFactorGroup( permgens, "P12/G1/L2/V1/ext2" );
true
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-23L32">
<Heading>Example with point group <M>2^3.L_3(2)</M></Heading>

There is one example with <M>d = 7</M>.
The generators of the point group are as follows
(see&nbsp;<Cite Key="HP89" Where="p. 297"/>).

<P/>

<Example><![CDATA[
gap> a:= PermutationMat( (2,4)(5,7), 7 );;
gap> b:= PermutationMat( (1,3,2)(4,6,5), 7 );;
gap> c:= DiagonalMat( [ -1, -1, 1, 1, -1, -1, 1 ] );;
]]></Example>

<P/>

The vector system is the trivial vector system <M>V_1</M>,
and the translation lattice is the sublattice <M>L_2</M> of <M>&ZZ;^d</M>
that has the following basis,
which is called <M>B(2,7)</M> in&nbsp;<Cite Key="HP89" Where="p. 269"/>.

<P/>

<Example><![CDATA[
gap> bas:= [ [ 1, 1, 0, 0, 0, 0, 0 ],
>            [ 0, 1, 1, 0, 0, 0, 0 ],
>            [ 0, 0, 1, 1, 0, 0, 0 ],
>            [ 0, 0, 0, 1, 1, 0, 0 ],
>            [ 0, 0, 0, 0, 1, 1, 0 ],
>            [ 0, 0, 0, 0, 0, 1, 1 ],
>            [ 0, 0, 0, 0, 0,-1, 1 ] ];;
]]></Example>

<P/>

For the sake of simplicity, we rewrite the action to one on <M>L_2</M>.

<P/>

<Example><![CDATA[
gap> B:= Basis( Rationals^Length( bas ), bas );;
gap> abas:= List( bas, x -> Coefficients( B, x * a ) );;
gap> bbas:= List( bas, x -> Coefficients( B, x * b ) );;
gap> cbas:= List( bas, x -> Coefficients( B, x * c ) );;
]]></Example>

<P/>

The library character table with identifier <C>"P13/G1/L2/V1/ext2"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(2 L_2)</M>, so we compute the action on an orbit modulo <M>2</M>.

<P/>

<Example><![CDATA[
gap> v:= List( [ 1 .. 3 ], i -> 0 * a[1] );;
gap> t:= [ 1, 0, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ abas,bbas,cbas ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 2 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 0, 1 ], fun );;
gap> act:= Action( g, orb, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P13/G1/L2/V1/ext2" );
true
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-A6">
<Heading>Examples with point group <M>A_6</M></Heading>

There are two examples with <M>d = 10</M>.
In both cases, the generators of the point group are as follows
(see&nbsp;<Cite Key="HP89" Where="p. 307"/>).

<P/>

<Example><![CDATA[
gap> b:= [ [ 0,-1, 0, 0, 0, 0, 0, 0, 0, 0 ], 
>          [ 0, 0, 0, 0,-1, 0, 0, 0, 0, 0 ], 
>          [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ], 
>          [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ], 
>          [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
>          [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], 
>          [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ], 
>          [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ], 
>          [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ], 
>          [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ];;
gap> c:= [ [ 0, 0, 0, 0, 0, 0, 0,-1, 0, 0 ], 
>          [ 0, 0, 0, 0, 0, 0, 0,-1, 1,-1 ], 
>          [ 0, 0, 0, 0,-1, 1, 0,-1, 0, 0 ], 
>          [ 0,-1, 1, 0, 0, 0, 0,-1, 0, 0 ], 
>          [ 0, 0, 0, 0, 0, 0, 0, 0, 0,-1 ], 
>          [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ], 
>          [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], 
>          [ 0, 0, 0, 0, 0, 1,-1, 0, 0, 1 ], 
>          [ 0, 0, 1,-1, 0, 0, 0, 0, 0, 1 ], 
>          [-1, 0, 1, 0, 0,-1, 0, 0, 0, 0 ] ];;
]]></Example>

<P/>

In both examples, the vector system is the trivial vector system <M>V_1</M>,
and the translation lattices are the lattices <M>L_2</M> and <M>L_5</M>,
respectively, which have the following bases.

<P/>

<Example><![CDATA[
gap> bas2:= [ [ 0, 1,-1, 0, 0, 0, 0, 0, 0, 0 ],
>             [ 0, 0, 1,-1, 0, 0, 0, 0, 0, 0 ],
>             [ 0, 0, 0, 0, 1,-1, 0, 0, 0, 0 ],
>             [ 0, 0, 0, 0, 0, 1,-1, 0, 0, 0 ],
>             [ 0, 0, 0, 0, 0, 1, 0,-1, 0, 0 ],
>             [ 0, 0, 0, 0, 0, 0, 0, 1,-1, 0 ],
>             [ 0, 0, 0, 0, 0, 0, 0, 0, 1,-1 ],
>             [ 0, 0, 0, 1, 0, 0, 0, 0, 0,-1 ],
>             [ 0, 1, 0, 0, 0, 0, 0, 1, 0, 0 ],
>             [ 1, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] ];;
gap> bas5:= [ [ 0,-1, 1, 1,-1, 1, 1,-1,-1, 0 ],
>             [ 1, 0,-1,-1,-1, 1, 1,-1,-1, 0 ],
>             [ 0, 1, 1,-1, 1, 1,-1, 0, 1, 1 ],
>             [ 1, 1, 0,-1, 0,-1, 1,-1, 1,-1 ],
>             [-1, 0,-1, 1, 1, 0,-1,-1, 1,-1 ],
>             [ 0, 1,-1, 1, 1,-1, 1, 1, 0,-1 ],
>             [-1,-1, 1, 1, 0,-1,-1,-1,-1, 0 ],
>             [ 1,-1, 0,-1, 1,-1, 1, 1, 0,-1 ],
>             [-1, 1,-1, 1,-1, 0,-1, 1, 0,-1 ],
>             [ 1,-1,-1, 1, 1, 1, 0, 0,-1,-1 ] ];;
]]></Example>

<P/>

For the sake of simplicity, we rewrite the action to actions on <M>L_2</M>
and <M>L_5</M>, respectively.

<P/>

<Example><![CDATA[
gap> B2:= Basis( Rationals^Length( bas2 ), bas2 );;
gap> bbas2:= List( bas2, x -> Coefficients( B2, x * b ) );;
gap> cbas2:= List( bas2, x -> Coefficients( B2, x * c ) );;
gap> B5:= Basis( Rationals^Length( bas5 ), bas5 );;
gap> bbas5:= List( bas5, x -> Coefficients( B5, x * b ) );;
gap> cbas5:= List( bas5, x -> Coefficients( B5, x * c ) );;
]]></Example>

<P/>

The library character table with identifier <C>"P21/G3/L2/V1/ext2"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(2 L_2)</M>, so we compute the action on an orbit modulo <M>2</M>.

<P/>

<Example><![CDATA[
gap> v:= List( [ 1, 2 ], i -> 0 * bbas2[1] );;
gap> t:= [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ bbas2, cbas2 ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 2 );;
gap> seed:= [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ];;
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P21/G3/L2/V1/ext2" );
true
]]></Example>

<P/>

The library character table with identifier <C>"P21/G3/L5/V1/ext2"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(2 L_5)</M>, so we compute the action on an orbit modulo <M>2</M>.

<P/>

<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ bbas5, cbas5 ], v, t );;
gap> g:= Group( sgens );;
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P21/G3/L5/V1/ext2" );
true
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-L28">
<Heading>Examples with point group <M>L_2(8)</M></Heading>

There are two examples with <M>d = 7</M>.
In both cases, the generators of the point group are as follows
(see&nbsp;<Cite Key="HP89" Where="p. 327"/>).

<P/>

<Example><![CDATA[
gap> a:= [ [ 0,-1, 0, 1, 0,-1, 1],
>          [ 0, 0,-1, 0, 1,-1, 0],
>          [ 0, 0, 0,-1, 1, 0, 0],
>          [ 0, 0, 0,-1, 0, 0, 0],
>          [ 0, 0, 1,-1, 0, 0, 0],
>          [ 0,-1, 1, 0,-1, 0, 0],
>          [ 1,-1, 0, 1, 0,-1, 0] ];;
gap> b:= [ [-1, 0, 1, 0,-1, 1, 0],
>          [ 0,-1, 0, 1,-1, 0, 0],
>          [ 0, 0,-1, 1, 0, 0, 0],
>          [ 0, 0,-1, 0, 0, 0, 0],
>          [ 0, 1,-1, 0, 0, 0, 0],
>          [-1, 1, 0,-1, 0, 0, 0],
>          [-1, 0, 1, 0,-1, 0, 1] ];;
]]></Example>

<P/>

In both examples, the vector system is <M>V_2</M>.
The translation lattice in the first example is the lattice <M>L = 3 &ZZ;^d</M>.

<P/>

<Example><![CDATA[
gap> v:= [ [ 2, 1, 0, 0, 0, 1, 4 ],
>          [ 2, 0, 0, 0, 0, 0, 0 ] ];;
gap> t:= [ 3, 0, 0, 0, 0, 0, 0 ];;
]]></Example>

<P/>

The library character table with identifier <C>"P41/G1/L1/V3/ext3"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(3 L)</M>, so we compute the action on an orbit modulo <M>9</M>.

<P/>

The orbits in this action are quite long.
we choose a seed vector from the fixed space of an element of order <M>7</M>.

<P/>

<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> aa:= sgens[1];;
gap> bb:= sgens[2];;
gap> elm:= aa*bb;;
gap> Order( elm );
7
gap> fixed:= NullspaceMat( elm - aa^0 );
[ [ 1, 1, 1, 1, 1, 1, 1, 0 ], [ -4, 1, 1, -5, -5, 2, 0, 1 ] ]
gap> fun:= multiplicationModulo( 9 );;
gap> seed:= fun( fixed[2], aa^0 );
[ 5, 1, 1, 4, 4, 2, 0, 1 ]
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P41/G1/L1/V3/ext3" );
true
]]></Example>

<P/>

The translation lattice in the second example is the lattice
<M>L = 6 &ZZ;^d</M>.

<P/>

<Example><![CDATA[
gap> t:= [ 6, 0, 0, 0, 0, 0, 0 ];;
]]></Example>

<P/>

The library character table with identifier <C>"P41/G1/L1/V4/ext3"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(6 L)</M>, so we compute the action on an orbit modulo <M>18</M>.

<P/>

<Example><![CDATA[
gap> fun:= multiplicationModulo( 18 );;
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> seed:= fun( fixed[2], aa^0 );
[ 14, 1, 1, 13, 13, 2, 0, 1 ]
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P41/G1/L1/V4/ext3" );
true
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-M11">
<Heading>Example with point group <M>M_{11}</M></Heading>

There is one example with <M>d = 10</M>.
The generators of the point group are as follows
(see&nbsp;<Cite Key="HP89" Where="p. 334"/>).

<P/>

<Example><![CDATA[
gap> a:= deletedPermutationMat( (1,9)(3,5)(7,11)(8,10), 11 );;
gap> b:= deletedPermutationMat( (1,4,3,2)(5,8,7,6), 11 );;
]]></Example>

<P/>

The vector system is <M>V_2</M>,
and the translation lattice is <M>L = 2 &ZZ;^d</M>.

<P/>

<Example><![CDATA[
gap> v:= [ 0 * a[1],
>          [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ] ];;
gap> t:= [ 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];;
]]></Example>

<P/>

The library character table with identifier <C>"P48/G1/L1/V2/ext2"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(2 L)</M>, so we compute the action on an orbit modulo <M>4</M>.

<P/>

<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 4 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P48/G1/L1/V2/ext2" );
true
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-U33">
<Heading>Example with point group <M>U_3(3)</M></Heading>

There is one example with <M>d = 7</M>.
The generators of the point group are as follows
(see&nbsp;<Cite Key="HP89" Where="p. 335"/>).

<P/>

<Example><![CDATA[
gap> a:= [ [ 0, 0,-1, 1, 0,-1, 1 ],
>          [ 1, 0,-1, 1, 1,-1, 0 ],
>          [ 0, 1,-1, 0, 1, 0,-1 ],
>          [ 0, 1, 0,-1, 1, 0,-1 ],
>          [-1, 1, 1,-1, 0, 1, 0 ],
>          [-1, 0, 1,-1, 0, 0, 1 ],
>          [ 0, 0, 0, 0, 0, 0, 1 ] ];;
gap> b:= [ [ 0, 0, 0, 0, 0, 0, 1 ],
>          [ 0, 0,-1, 1, 0,-1, 1 ],
>          [ 1, 0,-1, 1, 1,-1, 0 ],
>          [ 0, 1,-1, 0, 1, 0,-1 ],
>          [ 0, 1, 0,-1, 1, 0,-1 ],
>          [-1, 1, 1,-1, 0, 1, 0 ],
>          [-1, 0, 1,-1, 0, 0, 1 ] ];;
]]></Example>

<P/>

The vector system is <M>V_2</M>,
and the translation lattice is <M>L = 3 &ZZ;^d</M>.

<P/>

<Example><![CDATA[
gap> v:= [ [ 2, 1, 0, 0, 2, 1, 0 ],
>          0 * b[1] ];;
gap> t:= [ 3, 0, 0, 0, 0, 0, 0 ];;
]]></Example>

<P/>

The library character table with identifier <C>"P49/G1/L1/V2/ext3"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(3 L)</M>, so we compute the action on an orbit modulo <M>9</M>.

<P/>

<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 9 );;
]]></Example>

<P/>

The orbits in this action are quite long.
we choose a seed vector from the fixed space of an element of order <M>12</M>.

<P/>

<Example><![CDATA[
gap> aa:= sgens[1];;
gap> bb:= sgens[2];;
gap> elm:= aa*bb^4;;
gap> Order( elm );
12
gap> fixed:= NullspaceMat( elm - aa^0 );
[ [ -1, -1, 1, 1, -1, -1, 1, 0 ], [ 0, -3, 1, 1, -1, -2, 0, 1 ] ]
gap> seed:= fun( fixed[2], aa^0 );
[ 0, 6, 1, 1, 8, 7, 0, 1 ]
gap> orb:= Orbit( g, seed, fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P49/G1/L1/V2/ext3" );
true
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:expl-U42">
<Heading>Examples with point group <M>U_4(2)</M></Heading>

There are two examples with <M>d = 6</M>.
In both cases, the generators of the point group are as follows
(see&nbsp;<Cite Key="HP89" Where="p. 336"/>).

<P/>

<Example><![CDATA[
gap> a:= [ [ 0, 1, 0,-1,-1, 1 ],
>          [ 1, 0,-1, 0, 1, 0 ],
>          [ 0, 0, 0,-1, 0, 1 ],
>          [ 0, 0,-1, 0, 0, 1 ],
>          [ 0, 0, 0, 0, 1, 0 ],
>          [ 0, 0, 0, 0, 0, 1 ] ];;
gap> b:= [ [ 0,-1, 0, 1, 0,-1 ],
>          [ 0, 1, 0,-1,-1, 0 ],
>          [ 0, 0, 1, 1, 0,-1 ],
>          [ 0, 0, 0, 0,-1, 0 ],
>          [ 0, 1, 0, 0, 0, 0 ],
>          [ 1, 0, 0, 0, 0, 0 ] ];;
]]></Example>

<P/>

In both examples, the vector system is the trivial vector system <M>V_1</M>,
and the translation lattice is the full lattice <M>L_1 = &ZZ;^d</M>.

<P/>

<Example><![CDATA[
gap> v:= List( [ 1, 2 ], i -> 0 * a[1] );;
gap> t:= [ 1, 0, 0, 0, 0, 0 ];;
]]></Example>

<P/>

The library character table with identifier <C>"P50/G1/L1/V1/ext3"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(3 L_1)</M>, so we compute the action on an orbit modulo <M>3</M>.

<P/>

<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 3 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P50/G1/L1/V1/ext3" );
true
]]></Example>

<P/>

The library character table with identifier <C>"P50/G1/L1/V1/ext4"</C>
belongs to the factor group of <M>S</M> modulo the normal subgroup
<M>M(4 L_1)</M>, so we compute the action on an orbit modulo <M>4</M>.

<P/>

<Example><![CDATA[
gap> sgens:= generatorsOfPerfectSpaceGroup( [ a, b ], v, t );;
gap> g:= Group( sgens );;
gap> fun:= multiplicationModulo( 4 );;
gap> orb:= Orbit( g, [ 1, 0, 0, 0, 0, 0, 1 ], fun );;
gap> permgens:= List( sgens, x -> Permutation( x, orb, fun ) );;
gap> verifyFactorGroup( permgens, "P50/G1/L1/V1/ext4" );
true
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:A-remark-on-one-of-the-example-groups">
<Heading>A remark on one of the example groups</Heading>

The (perfect) character table with identifier <C>"P1/G2/L2/V2/ext4"</C>
has the property that its character degrees are exactly
the divisors of <M>60</M>.

<P/>

<Example><![CDATA[
gap> degrees:= CharacterDegrees( CharacterTable( "P1/G2/L2/V2/ext4" ) );
[ [ 1, 1 ], [ 2, 2 ], [ 3, 2 ], [ 4, 2 ], [ 5, 1 ], [ 6, 5 ], 
  [ 10, 4 ], [ 12, 4 ], [ 15, 20 ], [ 20, 2 ], [ 30, 29 ], [ 60, 8 ] ]
gap> List( degrees, x -> x[1] ) = DivisorsInt( 60 );
true
]]></Example>

<P/>

There are nilpotent groups with the same set of character degrees,
for example the direct product of four extraspecial groups of the orders
<M>2^3</M>, <M>2^3</M>, <M>3^3</M>, and <M>5^3</M>, respectively.
This phenomenon has been described in&nbsp;<Cite Key="NR14"/>.

</Subsection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:generalityproblems">
<Heading>Generality problems (December 2004/October 2015)</Heading>

The term <Q>generality problem</Q> is used for problems concerning
consistent choices of conjugacy classes of Brauer tables for the same
group, in different characteristics.
The definition and some examples are given
in <Cite Key="JLPW95" Where="p. x"/>.

<P/>

Section <Ref Subsect="subsect:generalityproblems_list"/>
shows how to detect generality problems
and lists the known generality problems,
and Section <Ref Subsect="subsect:generality_J3"/> gives an example
that actually arose.


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:generalityproblems_list">
<Heading>Listing possible generality problems</Heading>

We use the following idea for finding character tables which
may involve generality problems.
(The functions shown in this section are based on &GAP; 3 code
that was originally written by Jürgen Müller.)

<P/>

If the <M>p</M>-modular Brauer table <M>mtbl</M>, say,
of a group contributes to a generality problem
then some choice of conjugacy classes is necessary
in order to write down this table,
in the sense that some symmetry of the corresponding ordinary table
<M>tbl</M>, say, is broken in <M>mtbl</M>.
This situation can be detected as follows.
We assume that the class fusion from <M>mtbl</M> to <M>tbl</M>
has been fixed.
All possible class fusions are obtained as the orbit of this
class fusion under the actions of table automorphisms of <M>tbl</M>,
via mapping the images of the class fusion
(with the function <Ref Func="OnTuples" BookName="ref"/>),
and of the table automorphisms of <M>mtbl</M>,
via permuting the preimages.
The case of broken symmetries occurs if and only if this orbit
splits into several orbits when only the action of the
table automorphisms of <M>mtbl</M> is considered.
Equivalently, symmetries are broken if and only if the orbit under
table automorphisms of <M>mtbl</M> is not closed under the action of
table automorphisms of <M>tbl</M>.

<!-- It is sufficient to test generators of 'taut'
     because 'orb' is invariant under the action of 'taut'
     if and only if everey generator leaves 'orb' invariant. -->

<P/>

<Example><![CDATA[
gap> BrokenSymmetries:= function( ordtbl, modtbl )
>     local taut, maut, triv, fus, orb;
>     taut:= AutomorphismsOfTable( ordtbl );
>     maut:= AutomorphismsOfTable( modtbl );
>     triv:= TrivialSubgroup( taut );
>     fus:= GetFusionMap( modtbl, ordtbl );
>     orb:= MakeImmutable( Set( OrbitFusions( maut, fus, triv ) ) );
>     return ForAny( GeneratorsOfGroup( taut ),
>                x -> ForAny( orb,
>                         fus -> not OnTuples( fus, x ) in orb ) );
> end;;
]]></Example>

<P/>

<E>Remark:</E> (Thanks to Klaus Lux for discussions on this topic.)

<List>
<Item>
    It may happen that some symmetry <M>\sigma_m</M> of a Brauer table
    does not belong to a symmetry <M>\sigma_o</M> of the corresponding
    ordinary table,
    in the sense that permuting the preimage classes of a fusion <M>f</M>
    between the two tables with <M>\sigma_m</M>
    and permuting the image classes with <M>\sigma_o</M> yields <M>f</M>.
    <P/>
    For example, consider the group <M>G = 2.A_6.2_1</M>,
    the double cover of the symmetric group <M>S_6</M> on six points.
    The <M>2</M>-modular Brauer table of <M>G</M>,
    which is essentially equal to that of <M>S_6</M>,
    has a table automorphism group order two,
    and the nonidentity element in it swaps the two classes
    of element order three.
    The automorphism group of the ordinary character table of <M>G</M>,
    however, fixes the two classes of element order three;
    note that exactly one of these classes possesses square roots in the
    <Q>outer half</Q> <M>G \setminus G'</M>.
    <P/>
    Thus it is not sufficient to compare the orbit of the fixed class fusion
    under the automorphisms of the ordinary table with the orbit of the
    same fusion under the automorphisms of the Brauer table.
</Item>
</List>

<Example><![CDATA[
gap> t:= CharacterTable( "2.A6.2_1" );;
gap> m:= t mod 2;;
gap> GetFusionMap( m, t );
[ 1, 4, 6, 9 ]
gap> AutomorphismsOfTable( t );
Group([ (16,17), (14,15), (14,15)(16,17) ])
gap> AutomorphismsOfTable( m );
Group([ (2,3) ])
gap> Display( m );
2.A6.2_1mod2

     2  5  2  2  1
     3  2  2  2  .
     5  1  .  .  1

       1a 3a 3b 5a
    2P 1a 3a 3b 5a
    3P 1a 1a 1a 5a
    5P 1a 3a 3b 1a

X.1     1  1  1  1
X.2     4  1 -2 -1
X.3     4 -2  1 -1
X.4    16 -2 -2  1
gap> Display( t );
2.A6.2_1

      2  5   5  4  2  2  2  2  3  1   1  4  4  3  2  2   2   2
      3  2   2  .  2  2  2  2  .  .   .  1  1  .  1  1   1   1
      5  1   1  .  .  .  .  .  .  1   1  .  .  .  .  .   .   .

        1a  2a 4a 3a 6a 3b 6b 8a 5a 10a 2b 4b 8b 6c 6d 12a 12b
     2P 1a  1a 2a 3a 3a 3b 3b 4a 5a  5a 1a 2a 4a 3a 3a  6b  6b
     3P 1a  2a 4a 1a 2a 1a 2a 8a 5a 10a 2b 4b 8b 2b 2b  4b  4b
     5P 1a  2a 4a 3a 6a 3b 6b 8a 1a  2a 2b 4b 8b 6d 6c 12b 12a

X.1      1   1  1  1  1  1  1  1  1   1  1  1  1  1  1   1   1
X.2      1   1  1  1  1  1  1  1  1   1 -1 -1 -1 -1 -1  -1  -1
X.3      5   5  1  2  2 -1 -1 -1  .   .  3 -1  1  .  .  -1  -1
X.4      5   5  1  2  2 -1 -1 -1  .   . -3  1 -1  .  .   1   1
X.5      5   5  1 -1 -1  2  2 -1  .   . -1  3  1 -1 -1   .   .
X.6      5   5  1 -1 -1  2  2 -1  .   .  1 -3 -1  1  1   .   .
X.7     16  16  . -2 -2 -2 -2  .  1   1  .  .  .  .  .   .   .
X.8      9   9  1  .  .  .  .  1 -1  -1  3  3 -1  .  .   .   .
X.9      9   9  1  .  .  .  .  1 -1  -1 -3 -3  1  .  .   .   .
X.10    10  10 -2  1  1  1  1  .  .   .  2 -2  . -1 -1   1   1
X.11    10  10 -2  1  1  1  1  .  .   . -2  2  .  1  1  -1  -1
X.12     4  -4  . -2  2  1 -1  . -1   1  .  .  .  .  .   B  -B
X.13     4  -4  . -2  2  1 -1  . -1   1  .  .  .  .  .  -B   B
X.14     4  -4  .  1 -1 -2  2  . -1   1  .  .  .  A -A   .   .
X.15     4  -4  .  1 -1 -2  2  . -1   1  .  .  . -A  A   .   .
X.16    16 -16  . -2  2 -2  2  .  1  -1  .  .  .  .  .   .   .
X.17    20 -20  .  2 -2  2 -2  .  .   .  .  .  .  .  .   .   .

A = E(3)-E(3)^2
  = Sqrt(-3) = i3
B = -E(12)^7+E(12)^11
  = Sqrt(3) = r3
]]></Example>

<P/>

When considering several characteristics in parallel, one argues as follows.
The possible class fusions from a Brauer table <M>mtbl</M> to its
ordinary table <M>tbl</M> are given by the orbit of a fixed class fusion
under the action of the table automorphisms of <M>tbl</M>.
If there are several orbits under the action of the automorphisms
of <M>mtbl</M> then we choose one orbit.
Due to this choice, only those table automorphisms of <M>tbl</M> are
admissible for other characteristics that stabilize the chosen orbit.
For the second characteristic, we take again the set of all class fusions
from the Brauer table to <M>tbl</M>, and split it into orbits under the
table automorphisms of the Brauer table.
Now there are two possibilities.
Either the action of the admissible subgroup of automorphisms of <M>tbl</M>
joins these orbits into one orbit or not.
In the former case, we choose again one of the orbits,
replace the group of admissible automorphisms of <M>tbl</M> by
the stabilizer of this orbit, and proceed with the next characteristic.
In the latter case, we have found a generality problem,
since we are not free to choose an arbitrary class fusion from the
set of possibilities.

<P/>

The following function returns the set of primes which may be involved
in generality problems for the given ordinary character table.
Note that the procedure sketched above does not tell
which characteristics are actually involved
or which classes are affected by the choices;
for example, we could argue that one is always free to choose a fusion
for the first characteristics, and that only the other ones cause problems.
We return <E>all</E> those primes <M>p</M> for which broken symmetries
between the <M>p</M>-modular table and the ordinary table have been detected.

<P/>

<Example><![CDATA[
gap> PrimesOfGeneralityProblems:= function( ordtbl )
>     local consider, p, modtbl, taut, triv, admiss, fusion, maut,
>           allfusions, orbits, orbit, reps;
>     # Find the primes for which symmetries are broken.
>     consider:= [];
>     for p in Filtered( PrimeDivisors( Size( ordtbl ) ), IsPrimeInt ) do
>       modtbl:= ordtbl mod p;
>       if modtbl <> fail and BrokenSymmetries( ordtbl, modtbl ) then
>         Add( consider, p );
>       fi;
>     od;
>     # Compute the choices and detect generality problems.
>     taut:= AutomorphismsOfTable( ordtbl );
>     triv:= TrivialSubgroup( taut );
>     admiss:= taut;
>     for p in consider do
>       modtbl:= ordtbl mod p;
>       fusion:= GetFusionMap( modtbl, ordtbl );
>       maut:= AutomorphismsOfTable( modtbl );
>       # - We need not apply the action of 'maut' here,
>       #   since 'maut' will later be used to get representatives.
>       # - We need not apply all elements in 'taut' but only
>       #   representatives of left cosets of 'admiss' in 'taut',
>       #   since 'admiss' will later be used to get representatives.
>       # allfusions:= OrbitFusions( maut, fusion, taut );
>       allfusions:= Set( RightTransversal( taut, admiss ),
>                         x -> OnTuples( fusion, x^-1 ) );
>       # For computing representatives, 'RepresentativesFusions' is not
>       # suitable because 'allfusions' is in generally not closed
>       # under the actions.
>       # reps:= RepresentativesFusions( maut, allfusions, admiss );
>       orbits:= [];
>       while not IsEmpty( allfusions ) do
>         orbit:= OrbitFusions( maut, allfusions[1], admiss );
>         Add( orbits, orbit );
>         SubtractSet( allfusions, orbit );
>       od;
>       reps:= List( orbits, x -> x[1] );
>       if Length( reps ) = 1 then
>         # Reduce the symmetries that are still available.
>         admiss:= Stabilizer( admiss,
>                              Set( OrbitFusions( maut, fusion, triv ) ),
>                              OnSetsTuples );
>       else
>         # We have found a generality problem.
>         return consider;
>       fi;
>     od;
>     # There is no generality problem for this table.
>     return [];
> end;;
]]></Example>

<P/>

Let us look at a small example,
the <M>5</M>-modular character table of the group <M>2.A_5.2</M>.
The irreducible characters of degree <M>2</M> have the values
<M>\pm \sqrt{{-2}}</M> on the classes <C>8a</C> and <C>8b</C>,
and the values <M>\pm \sqrt{{-3}}</M> on the classes <C>6b</C> and <C>6c</C>.
When we define which of the two classes of element order <M>8</M> is called
<C>8a</C>, this will also define which class is called <C>6b</C>.
The ordinary character table does not relate the two pairs of classes,
there are table automorphisms which interchange each pair independently.
This symmetry is thus broken in the <M>5</M>-modular character table.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "2.A5.2" );;
gap> m:= t mod 5;;
gap> Display( m );
2.A5.2mod5

      2  4  4  3  2  2  2  3  3  2  2
      3  1  1  .  1  1  1  .  .  1  1
      5  1  1  .  .  .  .  .  .  .  .

        1a 2a 4a 3a 6a 2b 8a 8b 6b 6c
     2P 1a 1a 2a 3a 3a 1a 4a 4a 3a 3a
     3P 1a 2a 4a 1a 2a 2b 8a 8b 2b 2b
     5P 1a 2a 4a 3a 6a 2b 8b 8a 6c 6b

X.1      1  1  1  1  1  1  1  1  1  1
X.2      1  1  1  1  1 -1 -1 -1 -1 -1
X.3      3  3 -1  .  .  1 -1 -1 -2 -2
X.4      3  3 -1  .  . -1  1  1  2  2
X.5      5  5  1 -1 -1  1 -1 -1  1  1
X.6      5  5  1 -1 -1 -1  1  1 -1 -1
X.7      2 -2  . -1  1  .  A -A  B -B
X.8      2 -2  . -1  1  . -A  A -B  B
X.9      4 -4  .  1 -1  .  .  .  B -B
X.10     4 -4  .  1 -1  .  .  . -B  B

A = E(8)+E(8)^3
  = Sqrt(-2) = i2
B = E(3)-E(3)^2
  = Sqrt(-3) = i3
gap> AutomorphismsOfTable( t );
Group([ (11,12), (9,10) ])
gap> AutomorphismsOfTable( m );
Group([ (7,8)(9,10) ])
gap> GetFusionMap( m, t );
[ 1, 2, 3, 4, 5, 8, 9, 10, 11, 12 ]
gap> BrokenSymmetries( t, m );
true
gap> BrokenSymmetries( t, t mod 2 );
false
gap> BrokenSymmetries( t, t mod 3 );
false
gap> PrimesOfGeneralityProblems( t );
[  ]
]]></Example>

<P/>

Since no symmetry is broken in the <M>2</M>- and <M>3</M>-modular
character tables of <M>G</M>, there is no generality problem
in this case.

<P/>

For an example of a generality problem,
we look at the smallest Janko group <M>J_1</M>.
As is mentioned in <Cite Key="JLPW95" Where="p. x"/>,
the unique irreducible <M>11</M>-modular Brauer character of degree <M>7</M>
distinguishes the two (algebraically conjugate) classes
of element order <M>5</M>.
Since also the unique irreducible <M>19</M>-modular Brauer character
of degree <M>22</M> distinguishes these classes,
we have to choose these classes consistently.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "J1" );;
gap> m:= t mod 11;;
gap> Display( m, rec( chars:= Filtered( Irr( m ), x -> x[1] = 7 ) ) );
J1mod11

     2  3  3  1  1  1  1  .   1   1   .   .   .   .   .
     3  1  1  1  1  1  1  .   .   .   1   1   .   .   .
     5  1  1  1  1  1  .  .   1   1   1   1   .   .   .
     7  1  .  .  .  .  .  1   .   .   .   .   .   .   .
    11  1  .  .  .  .  .  .   .   .   .   .   .   .   .
    19  1  .  .  .  .  .  .   .   .   .   .   1   1   1

       1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 19a 19b 19c
    2P 1a 1a 3a 5b 5a 3a 7a  5b  5a 15b 15a 19b 19c 19a
    3P 1a 2a 1a 5b 5a 2a 7a 10b 10a  5b  5a 19b 19c 19a
    5P 1a 2a 3a 1a 1a 6a 7a  2a  2a  3a  3a 19b 19c 19a
    7P 1a 2a 3a 5b 5a 6a 1a 10b 10a 15b 15a 19a 19b 19c
   11P 1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 19a 19b 19c
   19P 1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b  1a  1a  1a

Y.1     7 -1  1  A *A -1  .   B  *B   C  *C   D   E   F

A = E(5)+E(5)^4
  = (-1+Sqrt(5))/2 = b5
B = -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4
  = (3+Sqrt(5))/2 = 2+b5
C = -2*E(5)-2*E(5)^4
  = 1-Sqrt(5) = 1-r5
D = -E(19)-E(19)^2-E(19)^3-E(19)^5-E(19)^7-E(19)^8-E(19)^11-E(19)^12-E\
(19)^14-E(19)^16-E(19)^17-E(19)^18
E = -E(19)^2-E(19)^3-E(19)^4-E(19)^5-E(19)^6-E(19)^9-E(19)^10-E(19)^13\
-E(19)^14-E(19)^15-E(19)^16-E(19)^17
F = -E(19)-E(19)^4-E(19)^6-E(19)^7-E(19)^8-E(19)^9-E(19)^10-E(19)^11-E\
(19)^12-E(19)^13-E(19)^15-E(19)^18
gap> m:= t mod 19;;
gap> Display( m, rec( chars:= Filtered( Irr( m ), x -> x[1] = 22 ) ) );
J1mod19

     2  3  3  1  1  1  1  .   1   1   .   .   .
     3  1  1  1  1  1  1  .   .   .   .   1   1
     5  1  1  1  1  1  .  .   1   1   .   1   1
     7  1  .  .  .  .  .  1   .   .   .   .   .
    11  1  .  .  .  .  .  .   .   .   1   .   .
    19  1  .  .  .  .  .  .   .   .   .   .   .

       1a 2a 3a 5a 5b 6a 7a 10a 10b 11a 15a 15b
    2P 1a 1a 3a 5b 5a 3a 7a  5b  5a 11a 15b 15a
    3P 1a 2a 1a 5b 5a 2a 7a 10b 10a 11a  5b  5a
    5P 1a 2a 3a 1a 1a 6a 7a  2a  2a 11a  3a  3a
    7P 1a 2a 3a 5b 5a 6a 1a 10b 10a 11a 15b 15a
   11P 1a 2a 3a 5a 5b 6a 7a 10a 10b  1a 15a 15b
   19P 1a 2a 3a 5a 5b 6a 7a 10a 10b 11a 15a 15b

Y.1    22 -2  1  A *A  1  1  -A -*A   .   B  *B

A = E(5)+E(5)^4
  = (-1+Sqrt(5))/2 = b5
B = -2*E(5)-2*E(5)^4
  = 1-Sqrt(5) = 1-r5
]]></Example>

<P/>

Note that the degree <M>7</M> character above also distinguishes
the three classes of element order <M>19</M>,
and the same holds for the unique irreducible degree <M>31</M> character
from characteristic <M>7</M>.
Thus also the prime <M>7</M> occurs in the list of candidates for
generality problems.

<P/>

<Example><![CDATA[
gap> PrimesOfGeneralityProblems( t );
[ 7, 11, 19 ]
]]></Example>

<P/>

Finally, we list the candidates for generality problems
from &GAP;'s Character Table Library.

<P/>

<Example><![CDATA[
gap> list:= [];;
gap> isGeneralityProblem:= function( ordtbl )
>     local res;
>     res:= PrimesOfGeneralityProblems( ordtbl );
>     if res = [] then
>       return false;
>     fi;
>     Add( list, [ Identifier( ordtbl ), res ] );
>     return true;
> end;;
gap> AllCharacterTableNames( IsDuplicateTable, false,
>        isGeneralityProblem, true );;
gap> PrintArray( SortedList( list ) );
[ [          (2.A4x2.G2(4)).2,           [ 2, 5, 7, 13 ] ],
  [         (2^2x3).L3(4).2_1,                  [ 5, 7 ] ],
  [              (2x12).L3(4),               [ 2, 3, 7 ] ],
  [             (4^2x3).L3(4),               [ 2, 3, 7 ] ],
  [                (7:3xHe):2,              [ 5, 7, 17 ] ],
  [                (A5xA12):2,                  [ 2, 3 ] ],
  [                (D10xHN).2,    [ 2, 3, 5, 7, 11, 19 ] ],
  [             (S3x2.Fi22).2,             [ 3, 11, 13 ] ],
  [                    12.M22,           [ 2, 5, 7, 11 ] ],
  [                  12.M22.2,           [ 2, 5, 7, 11 ] ],
  [            12_1.L3(4).2_1,                  [ 5, 7 ] ],
  [                12_2.L3(4),               [ 2, 3, 7 ] ],
  [            12_2.L3(4).2_1,               [ 3, 5, 7 ] ],
  [            12_2.L3(4).2_2,               [ 2, 3, 7 ] ],
  [            12_2.L3(4).2_3,               [ 2, 3, 7 ] ],
  [            2.(A4xG2(4)).2,           [ 2, 5, 7, 13 ] ],
  [                  2.2E6(2),                [ 13, 19 ] ],
  [                2.2E6(2).2,                [ 13, 19 ] ],
  [                     2.A10,                  [ 5, 7 ] ],
  [                     2.A11,               [ 3, 5, 7 ] ],
  [                   2.A11.2,              [ 5, 7, 11 ] ],
  [                     2.A12,            [ 2, 3, 5, 7 ] ],
  [                   2.A12.2,              [ 5, 7, 11 ] ],
  [                     2.A13,        [ 2, 3, 5, 7, 11 ] ],
  [                   2.A13.2,              [ 5, 7, 13 ] ],
  [                 2.Alt(14),            [ 2, 3, 5, 7 ] ],
  [                 2.Alt(15),               [ 2, 5, 7 ] ],
  [                 2.Alt(16),            [ 2, 3, 5, 7 ] ],
  [                 2.Alt(17),            [ 2, 3, 5, 7 ] ],
  [                 2.Alt(18),            [ 2, 3, 5, 7 ] ],
  [                       2.B,                [ 17, 23 ] ],
  [                   2.F4(2),          [ 2, 7, 13, 17 ] ],
  [                  2.Fi22.2,                [ 11, 13 ] ],
  [                   2.G2(4),                  [ 2, 7 ] ],
  [                 2.G2(4).2,              [ 5, 7, 13 ] ],
  [                      2.HS,           [ 3, 5, 7, 11 ] ],
  [                    2.HS.2,                 [ 3, 11 ] ],
  [               2.L3(4).2_1,                  [ 5, 7 ] ],
  [                      2.Ru,          [ 5, 7, 13, 29 ] ],
  [                     2.Suz,              [ 2, 5, 11 ] ],
  [                   2.Suz.2,              [ 3, 7, 13 ] ],
  [                 2.Sym(15),               [ 3, 5, 7 ] ],
  [                 2.Sym(16),               [ 3, 5, 7 ] ],
  [                 2.Sym(17),               [ 3, 5, 7 ] ],
  [                 2.Sym(18),                  [ 5, 7 ] ],
  [                   2.Sz(8),              [ 2, 5, 13 ] ],
  [                2^2.2E6(2),                [ 13, 19 ] ],
  [              2^2.2E6(2).2,                [ 13, 19 ] ],
  [                2^2.Fi22.2,             [ 3, 11, 13 ] ],
  [             2^2.L3(4).2^2,                  [ 5, 7 ] ],
  [             2^2.L3(4).2_1,                  [ 5, 7 ] ],
  [                 2^2.Sz(8),              [ 2, 5, 13 ] ],
  [                 2x2.F4(2),          [ 2, 7, 13, 17 ] ],
  [                  2x3.Fi22,               [ 2, 3, 5 ] ],
  [                  2x6.Fi22,               [ 2, 3, 5 ] ],
  [                   2x6.M22,              [ 2, 5, 11 ] ],
  [                  2xFi22.2,                [ 11, 13 ] ],
  [                    2xFi23,             [ 3, 17, 23 ] ],
  [                    3.Fi22,               [ 2, 3, 5 ] ],
  [                  3.Fi22.2,          [ 2, 5, 11, 13 ] ],
  [                      3.J3,             [ 2, 17, 19 ] ],
  [                    3.J3.2,          [ 2, 5, 17, 19 ] ],
  [               3.L3(4).2_3,               [ 2, 3, 7 ] ],
  [             3.L3(4).3.2_3,               [ 2, 3, 7 ] ],
  [                 3.L3(7).2,              [ 3, 7, 19 ] ],
  [                3.L3(7).S3,              [ 3, 7, 19 ] ],
  [                     3.McL,              [ 2, 5, 11 ] ],
  [                   3.McL.2,           [ 2, 3, 5, 11 ] ],
  [                      3.ON,      [ 3, 7, 11, 19, 31 ] ],
  [                    3.ON.2,   [ 3, 5, 7, 11, 19, 31 ] ],
  [                   3.Suz.2,              [ 2, 3, 13 ] ],
  [                 3x2.F4(2),          [ 2, 7, 13, 17 ] ],
  [                3x2.Fi22.2,                [ 11, 13 ] ],
  [                 3x2.G2(4),                  [ 2, 7 ] ],
  [                    3xFi23,             [ 3, 17, 23 ] ],
  [                      3xJ1,             [ 7, 11, 19 ] ],
  [                 3xL3(7).2,              [ 3, 7, 19 ] ],
  [                    4.HS.2,              [ 5, 7, 11 ] ],
  [                     4.M22,                  [ 5, 7 ] ],
  [             4_1.L3(4).2_1,                  [ 5, 7 ] ],
  [             4_2.L3(4).2_1,               [ 3, 5, 7 ] ],
  [                    6.Fi22,               [ 2, 3, 5 ] ],
  [                  6.Fi22.2,          [ 2, 5, 11, 13 ] ],
  [               6.L3(4).2_1,                  [ 5, 7 ] ],
  [                     6.M22,              [ 2, 5, 11 ] ],
  [                   6.O7(3),              [ 3, 5, 13 ] ],
  [                 6.O7(3).2,              [ 3, 5, 13 ] ],
  [                     6.Suz,              [ 2, 5, 11 ] ],
  [                   6.Suz.2,        [ 2, 3, 5, 7, 13 ] ],
  [                 6x2.F4(2),          [ 2, 7, 13, 17 ] ],
  [                       A12,                  [ 2, 3 ] ],
  [                       A14,               [ 2, 5, 7 ] ],
  [                       A17,                  [ 2, 7 ] ],
  [                       A18,            [ 2, 3, 5, 7 ] ],
  [                         B,        [ 13, 17, 23, 31 ] ],
  [                       F3+,            [ 17, 23, 29 ] ],
  [                     F3+.2,            [ 17, 23, 29 ] ],
  [                    Fi22.2,                [ 11, 13 ] ],
  [                      Fi23,             [ 3, 17, 23 ] ],
  [                        HN,          [ 2, 3, 11, 19 ] ],
  [                      HN.2,          [ 5, 7, 11, 19 ] ],
  [                        He,                 [ 5, 17 ] ],
  [                      He.2,              [ 5, 7, 17 ] ],
  [       Isoclinic(12.M22.2),           [ 2, 5, 7, 11 ] ],
  [        Isoclinic(2.A11.2),              [ 5, 7, 11 ] ],
  [        Isoclinic(2.A12.2),              [ 5, 7, 11 ] ],
  [        Isoclinic(2.A13.2),              [ 5, 7, 13 ] ],
  [       Isoclinic(2.Fi22.2),                [ 11, 13 ] ],
  [      Isoclinic(2.G2(4).2),              [ 5, 7, 13 ] ],
  [         Isoclinic(2.HS.2),                 [ 3, 11 ] ],
  [         Isoclinic(2.HSx2),           [ 3, 5, 7, 11 ] ],
  [    Isoclinic(2.L3(4).2_1),                  [ 5, 7 ] ],
  [        Isoclinic(2.Suz.2),              [ 3, 7, 13 ] ],
  [  Isoclinic(4_1.L3(4).2_1),                  [ 5, 7 ] ],
  [  Isoclinic(4_2.L3(4).2_1),               [ 3, 5, 7 ] ],
  [       Isoclinic(6.Fi22.2),          [ 2, 5, 11, 13 ] ],
  [    Isoclinic(6.L3(4).2_1),                  [ 5, 7 ] ],
  [        Isoclinic(6.Suz.2),        [ 2, 3, 5, 7, 13 ] ],
  [                        J1,             [ 7, 11, 19 ] ],
  [                      J1x2,             [ 7, 11, 19 ] ],
  [                        J3,             [ 2, 17, 19 ] ],
  [                      J3.2,          [ 2, 5, 17, 19 ] ],
  [                 L3(4).2_3,                  [ 3, 7 ] ],
  [               L3(4).3.2_3,               [ 2, 3, 7 ] ],
  [                   L3(7).2,              [ 3, 7, 19 ] ],
  [                  L3(7).S3,              [ 3, 7, 19 ] ],
  [                 L3(9).2_1,              [ 3, 7, 13 ] ],
  [                   L5(2).2,              [ 2, 7, 31 ] ],
  [                        Ly,             [ 7, 37, 67 ] ],
  [                       M23,              [ 2, 3, 23 ] ],
  [                        ON,      [ 3, 7, 11, 19, 31 ] ],
  [                      ON.2,   [ 3, 5, 7, 11, 19, 31 ] ],
  [                        Ru,          [ 5, 7, 13, 29 ] ],
  [                 S3xFi22.2,                [ 11, 13 ] ],
  [                     Suz.2,                 [ 3, 13 ] ] ]
]]></Example>

<P/>

<!-- the list was computed only from those tables which store
     table automorphisms; there are some huge Brauer tables that are
     constructed as direct products, this takes quite long time. -->

Note that this list may become longer as new Brauer tables become
available.
(For example, the prime <M>2</M> was added to the entries for
extensions of <M>F_4(2)</M> when the <M>2</M>-modular table of <M>F_4(2)</M>
became available.)

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:generality_J3">
<Heading>A generality problem concerning the group <M>J_3</M> (April 2015)</Heading>

<Alt Only="HTML">
<![CDATA[
<a name="generality_problem_J3">In March 2015,</a>
]]>
</Alt>
<Alt Not="HTML">
In March 2015,
</Alt>
Klaus Lux reported an inconsistency in the character data of &GAP;:

<P/>

The sporadic simple Janko group <M>J_3</M> has a unique <M>19</M>-modular
irreducible Brauer character of degree <M>110</M>.
In the character table that is printed in the
&ATLAS; of Brauer characters&nbsp;<Cite Key="JLPW95" Where="p. 219"/>,
the Brauer character value on the class <C>17A</C> is <M>b_{17}</M>.
The &ATLAS; of Group Representations&nbsp;<Cite Key="AGRv3"/> provides
a straight line program for computing class representatives of <M>J_3</M>.
If we compute the Brauer character value in question,
we do not get <M>b_{17}</M> but its algebraic conjugate, <M>-1-b_{17}</M>.

<P/>

<!-- We cannot show the ``old'' status,
     since the table has been corrected. -->

<Example><![CDATA[
gap> t:= CharacterTable( "J3" );;
gap> m:= t mod 19;;
gap> cand:= Filtered( Irr( m ), x -> x[1] = 110 );;
gap> Length( cand );
1
gap> slp:= AtlasProgram( "J3", "classes" );;
gap> 17a:= Position( slp.outputs, "17A" );
18
gap> info:= OneAtlasGeneratingSetInfo( "J3", Characteristic, 19,
>               Dimension, 110 );;
gap> gens:= AtlasGenerators( info );;
gap> reps:= ResultOfStraightLineProgram( slp.program,
>               gens.generators );;
gap> Quadratic( BrauerCharacterValue( reps[ 17a ] ) );
rec( ATLAS := "-1-b17", a := -1, b := -1, d := 2, 
  display := "(-1-Sqrt(17))/2", root := 17 )
]]></Example>

<P/>

How shall we resolve this inconsistency,
by replacing the straight line program
or by swapping the classes <C>17A</C> and <C>17B</C> in the character table?
Before we decide this, we look at related information.

<P/>

<Alt Only="LaTeX">Table~\ref{valuesJ3}</Alt>
<Alt Not="LaTeX">The following table</Alt>
lists the <M>p</M>-modular irreducible characters of <M>J_3</M>,
according to&nbsp;<Cite Key="JLPW95"/>,
that can be used to define which of the two classes of element order <M>17</M>
shall be called <C>17A</C>;
a <M>+</M> sign in the last column of the table indicates that the
representation is available in the &ATLAS; of Group Representations.

<!-- and fetching a representation with given char. and degree will have
     the shown values -->

<P/>

<Table Label="valuesJ3" Align="|r|r|r|r|c|">
<Caption>Representations of <M>J_3</M> that may define <C>17A</C></Caption>
<HorLine/>
<Row>
<Item><M>p</M></Item>
<Item><M>\varphi(1)</M></Item>
<Item><M>\varphi(</M><C>17A</C><M>)</M></Item>
<Item><M>\varphi(</M><C>17B</C><M>)</M></Item>
<Item>&ATLAS;?</Item>
</Row>
<HorLine/>
<HorLine/>
<Row>
<Item><M>2</M></Item>
<Item><M>78</M></Item>
<Item><M>1-b_{17}</M></Item>
<Item><M>2+b_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>2</M></Item>
<Item><M>80</M></Item>
<Item><M>3-b_{17}</M></Item>
<Item><M>4+b_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>2</M></Item>
<Item><M>244</M></Item>
<Item><M>b_{17}-2</M></Item>
<Item><M>-3-b_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>2</M></Item>
<Item><M>966</M></Item>
<Item><M>r_{17}-3</M></Item>
<Item><M>-3-r_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>19</M></Item>
<Item><M>110</M></Item>
<Item><M>b_{17}</M></Item>
<Item><M>-1-b_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>19</M></Item>
<Item><M>214</M></Item>
<Item><M>1-b_{17}</M></Item>
<Item><M>2+b_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>19</M></Item>
<Item><M>706</M></Item>
<Item><M>-b_{17}</M></Item>
<Item><M>1+b_{17}</M></Item>
<Item><M>+</M></Item>
</Row>
<Row>
<Item><M>19</M></Item>
<Item><M>1214</M></Item>
<Item><M>-1+b_{17}</M></Item>
<Item><M>-2-b_{17}</M></Item>
<Item><M>-</M></Item>
</Row>
<HorLine/>
</Table>

<P/>

Note that the irreducible Brauer characters in characteristic <M>3</M> and
<M>5</M> that distinguish the two classes <C>17A</C> and <C>17B</C> occur
in pairs of Galois conjugate characters.

<P/>

The following computations show that the given straight line program
is compatible with the four characters in characteristic <M>2</M>
but is not compatible with the three available characters in characteristic
<M>19</M>.

<P/>

<Example><![CDATA[
gap> table:= [];;
gap> for pair in [ [  2, [ 78, 80, 244, 966 ] ],
>                  [ 19, [ 110, 214, 706 ] ] ] do
>      p:= pair[1];
>      for d in pair[2] do
>        info:= OneAtlasGeneratingSetInfo( "J3", Characteristic, p,
>                   Dimension, d );
>        gens:= AtlasGenerators( info );
>        reps:= ResultOfStraightLineProgram( slp.program,
>                   gens.generators );
>        val:= BrauerCharacterValue( reps[ 17a ] );
>        Add( table, [ p, d, Quadratic( val ).ATLAS,
>                            Quadratic( StarCyc( val ) ).ATLAS ] );
>      od;
>    od;
gap> PrintArray( table );
[ [       2,      78,   1-b17,   2+b17 ],
  [       2,      80,   3-b17,   4+b17 ],
  [       2,     244,  -2+b17,  -3-b17 ],
  [       2,     966,  -3+r17,  -3-r17 ],
  [      19,     110,  -1-b17,     b17 ],
  [      19,     214,   2+b17,   1-b17 ],
  [      19,     706,   1+b17,    -b17 ] ]
]]></Example>

<P/>

We see that the problem is an inconsistency between the <M>2</M>-modular and
the <M>19</M>-modular character table of <M>J_3</M>
in&nbsp;<Cite Key="JLPW95"/>.
In particular, changing the straight line program would not help to
resolve the problem.

<P/>

How shall we proceed in order to fix the problem?
We can decide to keep the <M>19</M>-modular table of <M>J_3</M>,
and to swap the two classes of element order <M>17</M> in the
<M>2</M>-modular table;
then also the straight line program has to be changed,
and the classes of element orders <M>17</M> and <M>51</M>
in the <M>2</M>-modular character table of the triple cover <M>3.J_3</M>
of <M>J_3</M> have to be adjusted.
Alternatively, we can keep the <M>2</M>-modular table of <M>J_3</M>
and the straight line program,
and adjust the conjugacy classes of element orders divisible
by <M>17</M> in the <M>19</M>-modular character tables of <M>J_3</M>,
<M>3.J_3</M>, <M>J_3.2</M>, and <M>3.J_3.2</M>.

<P/>

We decide to change the <M>19</M>-modular character tables.
Note that these character tables &mdash;or equivalently, the corresponding
Brauer trees&mdash; have been described in&nbsp;<Cite Key="HL89"/>,
where explicit choices are mentioned that lead to the shown Brauer trees.
Questions about the consistency with Brauer tables in other characteristic
had not been an issue in this book.
(Only the consistency of the Brauer trees among the <M>19</M>-blocks of
<M>3.J_3</M> is mentioned.)
In fact, the book mentions that the <M>19</M>-modular Brauer trees for
<M>J_3</M> had been computed already by W.&nbsp;Feit.
The inconsistency of Brauer character tables in different characteristic
has apparently been overlooked when the data for&nbsp;<Cite Key="JLPW95"/>
have been put together, and had not been detected until now.

<P/>

<E>Remarks:</E>

<List>
<Item>
  Such a change of a Brauer table can in general affect the class fusions
  from and to this table.
  Note that Brauer tables may impose conditions on the choice of the fusion
  among possible fusions that are equivalent w.&nbsp;r.&nbsp;t.&nbsp;the
  table automorphisms of the ordinary table.
  In this particular case, in fact no class fusion had to be changed,
  see the sections <Ref Subsect="subsect:L2(16).4_in_J3.2"/> and
  Section <Ref Subsect="subsect:generality"/>.
  <!-- the relevant sections in&nbsp;<Cite Key="AmbigFus"/>. -->
</Item>
<Item>
  The change of the character tables affects the decomposition matrices.
  Thus the PDF files containing the <M>19</M>-modular decomposition
  matrices had to be updated, see
  <URL>http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/dec/tex/J3/index.html</URL>.
</Item>
<Item>
  Jürgen Müller has checked that the conjugacy classes of all Brauer tables of
  <M>J_3</M>, <M>3.J_3</M>, <M>J_3.2</M>, <M>3.J_3.2</M> are consistent
  after the fix described above.
</Item>
</List>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:generality_HN">
<Heading>A generality problem concerning the group <M>HN</M> (August 2022)</Heading>

The classes <C>20A</C>, <C>20B</C> of the Harada-Norton group <M>HN</M>
in the <M>11</M>- and <M>19</M>-modular character tables
are determined by unique Brauer characters that have different values
on these classes.
Once we have <E>defined</E> these classes in one characteristic,
the two Brauer characters tell us how to <E>choose</E> them consistently
in the other characteristic.
Thus the question is whether the two Brauer tables are consistent
w.r.t. this property or not.

<P/>

(Note that this question can be answered independently of all other
questions of this kind for <M>HN</M>,
because the permutation that swaps exactly the classes <C>20A</C> and
<C>20B</C> is a table automorphism of the ordinary character table of
<M>HN</M>.)

<P/>

We start with the ordinary character table of <M>HN</M>.
There are exactly two ordinary irreducible characters
that take different values on the classes <C>20A</C>, <C>20B</C>,
these are <M>\chi_{51}</M> and <M>\chi_{52}</M>.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "HN" );;
gap> pos20:= Positions( OrdersClassRepresentatives( t ), 20 );
[ 39, 40, 41, 42, 43 ]
gap> diff:= Filtered( Irr( t ), x -> x[39] <> x[40] );;
gap> List( diff, x -> Position( Irr( t ), x ) );
[ 51, 52 ]
]]></Example>

<P/>

These values are irrational and lie in the field that is generated by
the square root of <M>5</M>.

<P/>

<Example><![CDATA[
gap> List( diff, x -> List( x{ [ 1, 39, 40 ] },
>                           CTblLib.StringOfAtlasIrrationality ) );
[ [ "5103000", "2r5+1", "-2r5+1" ], [ "5103000", "-2r5+1", "2r5+1" ] ]
]]></Example>

<P/>

In each of the characteristics <M>p \in \{ 11, 19 \}</M>,
the <M>p</M>-modular reductions of <M>\chi_{51}</M> and <M>\chi_{52}</M>
decompose differently into irreducibles.
Note that the Galois automorphism of the ordinary character table
that maps <M>\sqrt{5}</M> to <M>-\sqrt{5}</M> does not live in the
<M>11</M>- and <M>19</M>-modular Brauer tables.

<P/>

For <M>p = 11</M>, the reduction of <M>\chi_{51}</M> is
<M>\varphi_{40} + \varphi_{48}</M>,
with <M>\varphi_{40}(1) = 1\,575\,176</M> and
<M>\varphi_{48}(1) = 3\,527\,824</M>,
and the reduction of <M>\chi_{52}</M> is
<M>\varphi_{39} + \varphi_{49}</M>,
with <M>\varphi_{39}(1) = 1\,361\,919</M> and
<M>\varphi_{49}(1) = 3\,741\,081</M>.

<P/>

<Example><![CDATA[
gap> t11:= t mod 11;;
gap> rest11:= RestrictedClassFunctions( diff, t11 );;
gap> dec11:= Decomposition( Irr( t11 ), rest11, "nonnegative" );;
gap> List( dec11, Set );
[ [ 0, 1 ], [ 0, 1 ] ]
gap> List( dec11, x -> Positions( x, 1 ) );
[ [ 40, 48 ], [ 39, 49 ] ]
gap> List( Irr( t11 ){ [ 40, 48 ] }, x -> x[1] );
[ 1575176, 3527824 ]
gap> List( Irr( t11 ){ [ 39, 49 ] }, x -> x[1] );
[ 1361919, 3741081 ]
]]></Example>

<P/>

For <M>p = 19</M>, the reduction of <M>\chi_{51}</M> is

<M>\varphi_{42} + \varphi_{45}</M>,
with <M>\varphi_{42}(1) = 2\,125\,925</M> and
<M>\varphi_{45}(1) = 2\,977\,075</M>,
and the reduction of <M>\chi_{52}</M> is
<M>\varphi_{33} + \varphi_{48}</M>,
with <M>\varphi_{33}(1) = 1\,197\,330</M> and
<M>\varphi_{48}(1) = 3\,905\,670</M>.

<P/>

<Example><![CDATA[
gap> t19:= t mod 19;;
gap> rest19:= RestrictedClassFunctions( diff, t19 );;
gap> dec19:= Decomposition( Irr( t19 ), rest19, "nonnegative" );;
gap> List( dec19, Set );
[ [ 0, 1 ], [ 0, 1 ] ]
gap> List( dec19, x -> Positions( x, 1 ) );
[ [ 42, 45 ], [ 33, 48 ] ]
gap> List( Irr( t19 ){ [ 42, 45 ] }, x -> x[1] );
[ 2125925, 2977075 ]
gap> List( Irr( t19 ){ [ 33, 48 ] }, x -> x[1] );
[ 1197330, 3905670 ]
]]></Example>

<P/>

The Frobenius-Schur indicators of all involved <M>p</M>-modular constituents
are <M>+</M>.
This implies that <M>\chi_{51}</M> reduces orthogonally stably modulo <M>11</M>
but not orthogonally stably modulo <M>19</M>,
whereas <M>\chi_{52}</M> reduces orthogonally stably modulo <M>19</M>
but not orthogonally stably modulo <M>11</M>.

<P/>

<Example><![CDATA[
gap> Indicator( t11, 2 ){ [ 39, 40, 48, 49 ] };
[ 1, 1, 1, 1 ]
gap> Indicator( t19, 2 ){ [ 33, 42, 45, 48 ] };
[ 1, 1, 1, 1 ]
]]></Example>

<P/>

In version up to 1.3.4 of the character table library,
this condition was not satisfied:
The reduction of <M>\chi_{51}</M> modulo both <M>11</M> and <M>19</M> was
orthogonally stable,
and the reduction of <M>\chi_{52}</M> modulo both <M>11</M> and <M>19</M> was
not orthogonally stable.
However, this cannot happen, due to theoretical results about
orthogonal discriminants of the involved characters.
Thus we have found a way to decide the consistency of the classes
<C>20A</C> and <C>20B</C> in characteristics <M>11</M> and <M>19</M>:
Either the <M>11</M>-modular character table or the <M>19</M>-modular
character table of <M>HN</M> had to be changed for version 1.3.5,
by swapping the classes <C>20A</C> and <C>20B</C>.

<P/>

We decided to change the <M>11</M>-modular table,
because there are no other generality problems for <M>HN</M> involving the
<M>19</M>-modular table, and hence we are sure that this table will not
need to be changed because of new solutions to generality problems.

<P/>

For <M>HN.2</M>, the situation is similar.
There are additionally two classes of element order <M>40</M> that have to be
swapped if <C>20A</C> and <C>20B</C> get swapped.
Thus we have to change the <M>11</M>-modular table of <M>HN.2</M> accordingly.

<P/>

Changes of this kind may affect also derived character tables in the library.
In this case, the <M>11</M>-modular table with identifier <C>"(D10xHN).2"</C>
was changed as well.
Note that this table is not stored explicitly in the data files,
it gets constructed from ordinary and modular library tables via
<Ref Func="ConstructIndexTwoSubdirectProduct" BookName="ctbllib"/>.

</Subsection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:derivebrauercharacters">
<Heading>Brauer Tables that can be derived from Known Tables</Heading>

In a few situations, one can derive
the <M>p</M>-modular Brauer character table of a group
from known character theoretic information.

<P/>

For quite some time, a method is available in &GAP; that computes
the Brauer characters of <M>p</M>-solvable groups
(see <Ref Subsect="BrauerTable" BookName="ref"/> and
<Ref Subsect="IsPSolvableCharacterTable" BookName="ref"/>).

<P/>

The following sections list other situations where Brauer tables
can be computed by &GAP;.


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:brauercharactersbyconstruction">
<Heading>Brauer Tables via Construction Information</Heading>

If a given ordinary character table <M>t</M>, say,
has been constructed from other ordinary character tables
then &GAP; may be able to create the <M>p</M>-modular Brauer table
of <M>t</M> from the <M>p</M>-modular Brauer tables of the
<Q>ingredients</Q>.
This happens currently in the following cases.

<P/>

<List>
<Item>
  <M>t</M> has been constructed with
  <Ref Oper="CharacterTableDirectProduct" BookName="ref"/>,
  and &GAP; can compute the <M>p</M>-modular Brauer tables
  of the direct factors.
</Item>
<Item>
  <M>t</M> has been constructed with
  <Ref Oper="CharacterTableIsoclinic" BookName="ref"/>,
  and &GAP; can compute the <M>p</M>-modular Brauer table
  of the table that is stored in <M>t</M> as the value of the attribute
  <Ref Oper="SourceOfIsoclinicTable" BookName="ref"/>.
</Item>
<Item>
  <M>t</M> has the attribute
  <Ref Attr="ConstructionInfoCharacterTable" BookName="ctbllib"/> set,
  the first entry of this list <M>l</M>, say, is one of the strings
  <C>"ConstructGS3"</C> (see
  <Ref Subsect="sect:Character Tables of Groups of the Structure G.S_3"/>),
  <C>"ConstructIndexTwoSubdirectProduct"</C>
  (see <Ref Subsect="subsect:theorsubdir"/>),
  <C>"ConstructMGA"</C> (see <Ref Subsect="subsect:theorMGA"/>),
  <C>"ConstructPermuted"</C>,
  <C>"ConstructV4G"</C> (see <Ref Subsect="subsect:theorV4G"/>),
  and &GAP; can construct the <M>p</M>-modular Brauer table(s)
  of the relevant ordinary character table(s),
  which are library tables whose names occur in <M>l</M>.
</Item>
</List>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:liftablebrauercharacters">
<Heading>Liftable Brauer Characters (May 2017)</Heading>

Let <M>B</M> be a <M>p</M>-block of cyclic defect for the finite group
<M>G</M>.
It can be read off from the set Irr<M>(B)</M>
of ordinary irreducible characters of <M>B</M>
whether all irreducible Brauer characters in <M>B</M> are restrictions
of ordinary characters to the <M>p</M>-regular classes of <M>G</M>,
as follows.

<P/>

If <M>B</M> has only one irreducible Brauer character then all ordinary
characters in <M>B</M> restrict to this Brauer character.
So let us assume that <M>B</M> contains
at least two irreducible Brauer characters,
and consider the set <M>S</M>, say, of restrictions of Irr<M>(B)</M>
to the <M>p</M>-regular classes of <M>G</M>.

<P/>

The block <M>B</M> contains exactly <M>|S| - 1</M> irreducible Brauer
characters,
and the decomposition of the characters in <M>S</M> into these Brauer
characters is described by
an <M>|S|</M> by <M>|S| - 1</M> matrix <M>M</M>, say,
whose entries are zero and one, such that exactly two nonzero entries
occur in each column.
(See for example <Cite Key="HL89" Where="Theorem 2.1.5"/>,
which refers to <Cite Key="Dad66"/>.)

<P/>

If all irreducible Brauer characters of <M>B</M> occur in <M>S</M>
then the matrix <M>M</M> contains <M>|S| - 1</M> rows that contain
exactly one nonzero entry,
hence the remaining row consists only of <M>1</M>s.
This means that the element of largest degree in <M>S</M> is equal to
the sum of all other elements in <M>S</M>.
Conversely, if the element of largest degree in <M>S</M> is equal to
the sum of all other elements in <M>S</M> then
the matrix <M>M</M> has the structure as stated above,
hence all irreducible Brauer characters of <M>B</M> occur in <M>S</M>.

<P/>

Alternatively,
one could state that all irreducible Brauer characters of <M>B</M>
are restricted ordinary characters if and only if the Brauer tree
of <M>B</M> is a <E>star</E> (see <Cite Key="HL89" Where="p. 2"/>.
If <M>B</M> contains at least two irreducible Brauer characters
then this happens if and only if one of the types <M>\times</M> or
<M>\circ</M> occurs for exactly one node in the Brauer graph of <M>B</M>,
see <Cite Key="HL89" Where="Lemma 2.1.13"/>,
and the distribution to types is determined by Irr<M>(B)</M>.

<P/>

The default method for <Ref Oper="BrauerTableOp" BookName="ref"/>
that is contained in the &GAP; library has been extended in version 4.11
such that it checks whether the Sylow <M>p</M>-subgroups of the given group
<M>G</M> are cyclic and, if yes,
whether all <M>p</M>-blocks of <M>G</M> have the property discussed above.
(This feature arose from a discussion with Klaus Lux.)

<P/>

Examples where this method is successful for all blocks
are the <M>p</M>-modular character tables of the groups PSL<M>(2, q)</M>,
where <M>p</M> is odd and does not divide <M>q</M>.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( PSL( 2, 11 ) );;
gap> modt:= t mod 5;;
gap> modt <> fail;
true
gap> InfoText( modt );
"computed using that all Brauer characters lift to char. zero"
]]></Example>

<P/>

Another such example is the <M>5</M>-modular table
of the Mathieu group <M>M_{11}</M>.

<P/>

<Example><![CDATA[
gap> lib:= CharacterTable( "M11" );;
gap> fromgroup:= CharacterTable( MathieuGroup( 11 ) );;
gap> DecompositionMatrix( lib mod 5 );
[ [ 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 1, 0, 0 ], [ 1, 0, 0, 0, 1, 1, 1, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ]
gap> fromgroup mod 5 <> fail;
true
]]></Example>

<P/>

There are cases where all Brauer characters of a block lift
to characteristic zero but the defect group of the block is not cyclic,
thus the method cannot be used.
An example is the <M>2</M>-modular table of the Mathieu group <M>M_{11}</M>.

<P/>

<Example><![CDATA[
gap> DecompositionMatrix( lib mod 2 );
[ [ 1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], 
  [ 0, 1, 0, 0, 0 ], [ 1, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ], 
  [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ], [ 1, 0, 0, 0, 1 ], 
  [ 1, 1, 0, 0, 1 ] ]
gap> fromgroup mod 2;
fail
]]></Example>

</Subsection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:monstersubgroups">
<Heading>Information about certain subgroups of the Monster group</Heading>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:no2U42inMonster">
<Heading>The Monster group does not contain subgroups of the type <M>2.U_4(2)</M> (August 2023)</Heading>

In the context of a question about decomposition numbers of the
sporadic simple Monster group <M>&M;</M>,
Benjamin Sambale was interested in possible embeddings of certain groups
<M>G</M> into <M>&M;</M> such that the decomposition matrices of <M>G</M>
are known.
For a given <M>G</M>, the first steps were to compute the possible class
fusions of <M>G</M> in <M>&M;</M> and then to check whether the corresponding
embeddings would be interesting.

<P/>

Apparently, calling <Ref Func="PossibleClassFusions" BookName="ref"/>
with its default parameters often runs very long and requires a lot of space
when <M>G</M> is a small group such as <M>2.U_4(2)</M>.
We can do better by calling the function with the parameter
<C>decompose:= false</C>.
This has the effect that one criterion is omitted that checks the
decomposability of restricted characters of <M>&M;</M> as an integral
linear combination of characters of the subgroup.
As a rule of thumb, if the number of classes of the subgroup is small
compared to the number of classes of the group
and if the result consists of many candidates then it might be faster
to omit the decomposability criterion.

<P/>

<Example><![CDATA[
gap> s:= CharacterTable( "2.U4(2)" );;
gap> m:= CharacterTable( "M" );;
gap> sfusm:= PossibleClassFusions( s, m, rec( decompose:= false ) );;
gap> Length( sfusm );
2332
]]></Example>

<!-- The computation takes about 1928 seconds on my notebook. -->

<P/>

Looking at the (many) candidates,
we see that all map the central involution of
<M>2.U_4(2)</M> to the class <C>2B</C> of <M>&M;</M>,
thus any subgroup of the type <M>2.U_4(2)</M> lies inside the <C>2B</C>
normalizer in <M>&M;</M>.
We compute the possible class fusions into this subgroup.

<P/>

<Example><![CDATA[
gap> Set( List( sfusm, x -> x[2] ) );
[ 3 ]
gap> t:= CharacterTable( "MN2B" );
CharacterTable( "2^1+24.Co1" )
gap> sfust:= PossibleClassFusions( s, t, rec( decompose:= false ) );;
gap> Length( sfust );
0
]]></Example>

<!-- The computation takes about 29 seconds on my notebook. -->

<P/>

Thus we have shown that <M>&M;</M> does not contain subgroups of the type
<M>2.U_4(2)</M>.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:ML34inMonster">
<Heading>Perfect central extensions of <M>L_3(4)</M> (August 2023)</Heading>

There was <URL><LinkText>the question in MathOverflow</LinkText>
<Link>https://mathoverflow.net/questions/450255</Link></URL>
which perfect central extensions of the simple group <M>G = L_3(4)</M> are
subgroups of the sporadic simple Monster group <M>&M;</M>.

<P/>

First we get the list of perfect central extensions of <M>G</M> (asuming that
their character tables are contained in the character table library).

<Example><![CDATA[
gap> simp:= CharacterTable( "L3(4)" );;
gap> extnames:= AllCharacterTableNames( Identifier,
>                   x -> EndsWith(x, "L3(4)" ) );;
gap> ext:= List( extnames, CharacterTable );;
gap> ext:= Filtered( ext, x -> Length( ClassPositionsOfCentre( x ) ) =
>                              Size( x ) / Size( simp ) );;
gap> SortBy( ext, Size );
gap> names:= List( ext, Identifier );
[ "L3(4)", "2.L3(4)", "3.L3(4)", "2^2.L3(4)", "4_1.L3(4)", 
  "4_2.L3(4)", "6.L3(4)", "(2x4).L3(4)", "(2^2x3).L3(4)", 
  "12_1.L3(4)", "12_2.L3(4)", "4^2.L3(4)", "(2x12).L3(4)", 
  "(4^2x3).L3(4)" ]
]]></Example>

<P/>

The fact that <M>G</M> is <E>not</E> isomorphic to a subgroup of <M>&M;</M>
is shown in <Cite Key="HW08"/> (at the end of this paper).

<!-- In <Cite Key="NW02"/>, $L_3(4)$ is listed as perhaps contained
     as a subgroup.
     (And it is stated in Section 4.2 which class fusion such a subgroup
     would have.) -->

<P/>

And the following embeddings of central extensions of <M>G</M> in <M>&M;</M>
can be established using known subgroups of <M>&M;</M>.

<List>
<Item>
  <M>2.G &lt; 2.U_4(3) &lt; 2^2.U_6(2) &lt; Fi_{23} &lt; 3.Fi_{24}' &lt; &M;</M>.
</Item>
<Item>
  <M>2^2.G &lt; He &lt; 3.Fi_{24}' &lt; &M;</M>.
</Item>
<Item>
  <M>6.G &lt; 2.G_2(4) &lt; 6.Suz &lt; 3^{1+12}_+.2Suz &lt; &M;</M>.
</Item>
</List>

Note that <M>G</M> is a subgroup of <M>U_4(3)</M> but not of <M>2.U_4(3)</M>,
<M>3.G</M> is a subgroup of <M>G_2(4)</M> but not of <M>2.G_2(4)</M>,
and <M>G_2(4)</M> is a subgroup of <M>Suz</M> but not of <M>2.Suz</M>.
The positive statements follow from <Cite Key="CCN85" Where="pp. 52, 97, 131"/>
and the negative ones from the following computations.

<P/>

<Example><![CDATA[
gap> Length( PossibleClassFusions( CharacterTable( "L3(4)" ),
>                                  CharacterTable( "2.U4(3)" ) ) );
0
gap> Length( PossibleClassFusions( CharacterTable( "3.L3(4)" ),
>                                  CharacterTable( "2.G2(4)" ) ) );
0
gap> Length( PossibleClassFusions( CharacterTable( "G2(4)" ),
>                                  CharacterTable( "2.Suz" ) ) );
0
]]></Example>

<P/>

The group <M>3.G</M> centralizes an element of order three.
If <M>3.G</M> is a subgroup of <M>&M;</M> then it is contained in
a <C>3A</C> centralizer (of the structure <M>3.Fi_{24}'</M>),
a <C>3B</C> centralizer (of the structure <M>3^{1+12}_+.2Suz</M>) or
a <C>3C</C> centralizer (of the structure <M>3 \times Th</M>).
Clearly the case <M>3C</M> cannot occur,
and <C>3B</C> is excluded by the fact that no class fusion between <M>3.G</M>
and the <M>3B</M> normalizer <M>3^{1+12}_+.2Suz.2</M> is possible.

<P/>

<Example><![CDATA[
gap> t:= CharacterTable( "MN3B" );
CharacterTable( "3^(1+12).2.Suz.2" )
gap> Length( PossibleClassFusions( CharacterTable( "3.L3(4)" ), t ) );
0
]]></Example>

<P/>

If <M>3.G</M> is contained in the <C>3A</C> centralizer
then this embedding induces one of <M>G</M> into some maximal subgroup of
<M>Fi_{24}'</M>.
Using the known character tables of these maximal subgroups
in GAP's character table library,
one shows that only <M>Fi_{23}</M> admits a class fusion,
but this subgroup lifts to <M>3 \times Fi_{23}</M> in <M>3.Fi_{24}'</M>
and thus cannot lead to a subgroup of type <M>3.G</M>..

<P/>

<Example><![CDATA[
gap> mx:= List( Maxes( CharacterTable( "Fi24'" ) ), CharacterTable );;
gap> s:= CharacterTable( "L3(4)" );;
gap> Filtered( mx, x -> Length( PossibleClassFusions( s, x ) ) > 0 );
[ CharacterTable( "Fi23" ) ]
]]></Example>

<P/>

The other candidates <M>m.G</M> contain at least one central involution.
If <M>m.G</M> is a subgroup of <M>&M;</M> then it is contained in
a <C>2A</C> centralizer (of the structure <M>2.B</M>) or
a <C>2B</C> centralizer (of the structure <C>2^{1+24}_+.Co_1</C>).
Again we use <Ref Func="PossibleClassFusions" BookName="ref"/>
to list all candidates for the class fusion,
but here we prescribe the central involution of the <C>2A</C> or <C>2B</C>
centralizer as an image of one central involution in <M>m.G</M>.

<P/>

<Example><![CDATA[
gap> done:= [ "L3(4)", "2.L3(4)", "3.L3(4)", "2^2.L3(4)", "6.L3(4)" ];;
gap> names:= Filtered( names, x -> not x in done );
[ "4_1.L3(4)", "4_2.L3(4)", "(2x4).L3(4)", "(2^2x3).L3(4)", 
  "12_1.L3(4)", "12_2.L3(4)", "4^2.L3(4)", "(2x12).L3(4)", 
  "(4^2x3).L3(4)" ]
gap> invcent:= List( [ "MN2A", "MN2B" ], CharacterTable );
[ CharacterTable( "2.B" ), CharacterTable( "2^1+24.Co1" ) ]
gap> ForAll( invcent, x -> ClassPositionsOfCentre( x ) = [ 1, 2 ] );
true
gap> cand:= [];;
gap> ords:= "dummy";;   #  Avoid a message about an unbound variable ...
gap> for name in names do
>      s:= CharacterTable( name );
>      ords:= OrdersClassRepresentatives( s );
>      invpos:= Filtered( ClassPositionsOfCentre( s ), i -> ords[i] = 2 );
>      for i in invpos do
>        for t in invcent do
>          init:= InitFusion( s, t );
>          if init = fail then
>            continue;
>          fi;
>          init[i]:= 2;
>          fus:= PossibleClassFusions( s, t, rec( fusionmap:= init,
>                                                 decompose:= false ) );
>          if fus <> [] then
>            Add( cand, [ s, t, i, fus ] );
>          fi;
>        od;
>      od;
>    od;
gap> List( cand, x -> x{ [ 1 .. 3 ] } );
[ [ CharacterTable( "4_1.L3(4)" ), CharacterTable( "2^1+24.Co1" ), 3 ]
    , [ CharacterTable( "(2x4).L3(4)" ), CharacterTable( "2.B" ), 2 ],
  [ CharacterTable( "(2x4).L3(4)" ), CharacterTable( "2.B" ), 3 ] ]
]]></Example>

<!-- These computations take about 3445 seconds on my notebook. -->

<P/>

(Note that we have called <Ref Func="PossibleClassFusions" BookName="ref"/>
with the option <C>decompose:= false</C>, in order to save space and time.
See Section <Ref Subsect="sect:no2U42inMonster"/> for more details.)

<P/>

Concerning the candidate <M>(2 \times 4).G</M>,
we see that only fusions are possible for which the central involution
in question is mapped to a <C>2A</C> element of <M>&M;</M>.
Since we get candidates only for two out of the three central involutions,
we see that <M>(2 \times 4).G</M> does not embed into <M>&M;</M>.

<P/>

Thus it turns out that exactly one group <M>m.G</M> cannot be excluded
this way.
Namely, these character-theoretical criteria leave the possibility
that <M>4_1.G</M> may occur as a subgroup of <M>2^{1+24}_+.Co_1</M>.

<P/>

Moreover, we see that if this happens then the centre <M>C</M>
of <M>4_1.G</M> lies inside the normal subgroup <M>N = 2^{1+24}_+</M>.
The centralizer of <M>C</M> in <M>N</M> has order <M>2^{24}</M>,
and the centralizer of <M>C</M> in <M>2^{1+24}_+.Co_1</M> has order
<M>2^{24} \cdot |Co_3|</M>.
We see that <M>4_1.G</M>,
if it exists as a subgroup of <M>2^{1+24}_+.Co_1</M>,
must lie inside the subgroup <M>[2^{24}].Co_3</M>.

<P/>

<Example><![CDATA[
gap> s:= cand[1][1];
CharacterTable( "4_1.L3(4)" )
gap> t:= cand[1][2];
CharacterTable( "2^1+24.Co1" )
gap> fus:= cand[1][4];
[ [ 1, 5, 2, 5, 9, 8, 23, 27, 24, 27, 49, 49, 50, 50, 70, 74, 71, 74, 
      70, 74, 71, 74, 114, 119, 115, 119, 114, 119, 115, 119 ] ]
gap> ClassPositionsOfCentre( s );
[ 1, 2, 3, 4 ]
gap> 5 in ClassPositionsOfPCore( t, 2 );
true
gap> siz:= SizesCentralizers( t )[5] / 2^24;
495766656000
gap> mx:= Filtered( List( Maxes( CharacterTable( "Co1" ) ),
>                         CharacterTable ),
>                   x -> Size( x ) mod siz = 0 );
[ CharacterTable( "Co3" ) ]
gap> Size( mx[1] ) = siz;
true
]]></Example>

<!-- Inside Co_3, several maximal subgroups can contain the given L_3(4). -->

<P/>

I do not see a character-theoretic argument that could disprove
the existence of such an <M>4_1.G</M> type subgroup.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:2BM12">
<Heading>The character table of <M>(2 \times O_8^+(3)).S_4 \leq 2.B</M> (October 2023)</Heading>

Consider a maximal subgroup <M>H</M> of type <M>(3^2:2 \times O_8^+(3)).S_4</M>
in the sporadic simple Monster group.
The character table of <M>H</M> has been contributed by Tim Burness.
We can view <M>H</M> as <M>O_8^+(3).(3^2:2S_4) = O_8^+(3).F</M>.
The character table of <M>H</M> determines that of <M>F</M>, 
and this table determines the isomorphism type of <M>F</M> as
<C>SmallGroup( 432, 734 )</C>.

<P/>

<Example><![CDATA[
gap> tblH:= CharacterTable( "(3^2:2xO8+(3)).S4" );
CharacterTable( "(3^2:2xO8+(3)).S4" )
gap> N:= ClassPositionsOfSolvableResiduum( tblH );;
gap> tblF:= tblH / N;;
gap> Size( tblF );
432
gap> known:= NamesOfEquivalentLibraryCharacterTables( tblF );
[ "3^2.2.S4", "M12M7" ]
gap> Filtered( GroupInfoForCharacterTable( known[1] ),
>              x -> x[1] = "SmallGroup" );
[ [ "SmallGroup", [ 432, 734 ] ] ]
]]></Example>

<P/>

(Note that the precomputed
<Ref Attr="GroupInfoForCharacterTable" BookName="CTblLib"/>
information about &GAP; library character tables means that exactly
one isomorphism type of groups fits to the character table of <M>F</M>.)

<P/>

We compute that <M>O_3(F) \cong 3^2</M> has complements in <M>F</M>,
thus <M>H</M> has a subgroup <M>V</M> of the type <M>O_8^+(3).2S_4</M>,
which is a complement of <M>O_3(H)</M> in <M>H</M>,
thus <M>V</M> is isomorphic with <M>H / O_3(H)</M>.

<P/>

<Example><![CDATA[
gap> G:= SmallGroup( 432, 734 );;
gap> P:= PCore( G, 3 );;
gap> Length( ComplementClassesRepresentatives( G, P ) );
1
]]></Example>

<P/>

We can derive the character table of <M>V</M> from that of <M>H</M>,
and compute that the group structure of <M>V</M> is
<M>(2 \times O_8^+(3)).S_4</M>.
For that, we consider the element orders of the unique normal subgroup
of order <M>2 |O_8^+(3)|</M> in <M>V</M>.
If this normal subgroup would not be isomorphic with <M>2 \times O_8^+(3)</M>
then it would have one of the structures <M>O_8^+(3).2_1</M> or
<M>O_8^+(3).2_2</M>,
but then it would contain elements of the orders <M>24</M>.

<P/>

<Example><![CDATA[
gap> tblV:= tblH / ClassPositionsOfPCore( tblH, 3 );;
gap> ord:= 2 * Size( tblH ) / Size( tblF );
9904359628800
gap> classes:= SizesConjugacyClasses( tblV );;
gap> 2N:= Filtered( ClassPositionsOfNormalSubgroups( tblV ),
>                   l -> Sum( classes{ l } ) = ord );;
gap> Length( 2N );
1
gap> Set( OrdersClassRepresentatives( tblV ){ 2N[1] } );
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 26, 30 ]
gap> Set( OrdersClassRepresentatives( CharacterTable( "O8+(3)" ) ) );
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20 ]
gap> Set( OrdersClassRepresentatives( CharacterTable( "O8+(3).2_1" ) ) );
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 24, 26, 28, 
  30, 36, 40 ]
gap> Set( OrdersClassRepresentatives( CharacterTable( "O8+(3).2_2" ) ) );
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 24, 26, 28, 
  30, 36 ]
]]></Example>

<P/>

The class fusion of <M>V</M> into the Monster group shows that <M>V</M>
centralizes a <C>2A</C> element in the Monster,
hence <M>V</M> is a subgroup of a maximal subgroup of the type <M>2.B</M>.

<P/>

<Example><![CDATA[
gap> tblM:= CharacterTable( "M" );;
gap> VfusM:= PossibleClassFusions( tblV, tblM );;
gap> Length( VfusM );
4
gap> ZV:= ClassPositionsOfCentre( tblV );
[ 1, 2 ]
gap> Set( List( VfusM, l -> l{ ZV } ) );
[ [ 1, 2 ] ]
]]></Example>

<P/>

From the list of maximal subgroups of <M>B</M>,
we see that either <M>V</M> is contained in the preimage of <M>Fi_{23}</M>
under the natural epimorphism from <M>2.B</M> to <M>B</M>,
or <M>V</M> is equal to the preimage of <M>O_8^+(3).S_4</M>.

<P/>

<Example><![CDATA[
gap> tblB:= CharacterTable( "B" );;
gap> mxB:= List( Maxes( tblB ), CharacterTable );;
gap> cand:= Filtered( mxB, s -> Size( s ) mod ( Size( tblV ) / 2 ) = 0 );
[ CharacterTable( "Fi23" ), CharacterTable( "O8+(3).S4" ) ]
]]></Example>

<P/>

The former possibility is excluded from the fact that the factor of <M>V</M>
by its center does not admit a class fusion into <M>Fi_{23}</M>.

<P/>

<Example><![CDATA[
gap> Length( PossibleClassFusions( tblV / ZV, CharacterTable( "Fi23" ) ) );
0
]]></Example>

<P/>

We conclude that <M>V</M> is a maximal subgroup of <M>2.B</M>.

<P/>

Thus we have used the character table of <M>H</M> to construct
the character table of a maximal subgroup of <M>2.B</M>,
with very little effort.

<P/>

This table is meanwhile available in the table library,
with the identifier <C>"(2xO8+(3)).S4"</C>.

<P/>

<Example><![CDATA[
gap> lib:= CharacterTable( "(2xO8+(3)).S4" );;
gap> TransformingPermutationsCharacterTables( tblV, lib ) <> fail;
true
gap> Irr( lib ) = Irr( tblV );
true
]]></Example>

<P/>

In order to add the table to the library,
we have to provide also the class fusions from <M>V</M> to <M>2.B</M>,
to the maximal subgroup <M>(2 \times O_8^+(3)).S_4</M> of <M>B</M>,
and to the maximal subgroup <M>(3^2:2 \times O_8^+(3)).S_4</M> of <M>M</M>,
such that the compositions of fusions from <M>V</M> to <M>B</M>
via <M>O_8^+(3).S_4</M> and <M>2.B</M> are compatible, <M>\ldots</M>

<P/>

<Example><![CDATA[
gap> tblU:= CharacterTable( "O8+(3).S4" );;
gap> tbl2B:= CharacterTable( "2.B" );;
gap> CompositionMaps( GetFusionMap( tblU, tblB ),
>                     GetFusionMap( lib, tblU ) ) =
>    CompositionMaps( GetFusionMap( tbl2B, tblB ),
>                     GetFusionMap( lib, tbl2B ) );
true
]]></Example>

<P/>

<M>\ldots</M> and that the compositions of fusions from <M>V</M> to <M>M</M>
via <M>(3^2:2 \times O_8^+(3)).S_4</M> and <M>2.B</M> are compatible.

<P/>

<Example><![CDATA[
gap> tblH:= CharacterTable( "(3^2:2xO8+(3)).S4" );;
gap> CompositionMaps( GetFusionMap( tblH, tblM ),
>                     GetFusionMap( lib, tblH ) ) =
>    CompositionMaps( GetFusionMap( tbl2B, tblM ),
>                     GetFusionMap( lib, tbl2B ) );
true
]]></Example>

</Subsection>
</Section>
</Chapter>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->